CCBY-IEEE不是本材料的版权所有者。请按照以下说明操作https://z.library.sh.cn:443/https/443/org/creativecommons/yitlink/licenses/by/4.0/获取API文档中的全文文章和规定。
Introduction 介绍
As the most common navigation system, SINS can provide attitude, velocity and position of a vehicle, such as a ship, a spacecraft and an aircraft [1]. To get correct navigation information, high reliability of SINS is needed. However, SINS suffers a lot due to poor working environment or improper operation. In consequence, high reliability of SINS cannot be guaranteed all the time [2].
作为最常见的导航系统,SINS可以提供车辆的姿态、速度和位置,如船舶、航天器和飞机[1]。为了获得正确的导航信息,SINS需要高可靠性。然而,由于工作环境恶劣或操作不当,SINS遭受了很大的损失。因此,无法始终保证SINS的高可靠性[2]。
Among all components of SINS, inertial sensors (including gyros and accelerometers) are the most critical and easily damaged components [3]. As a result, redundant SINS is developed to increase reliability of SINS, which is obtained by utilizing multiple inertial sensors in SINS [4]. In redundant SINS, four-gyro SINS has a wide range of application as it supplies big reliability considering cost and volume [5], [6].
在SINS的所有组件中,惯性传感器(包括陀螺仪和加速度计)是最关键和最容易损坏的组件[3]。因此,开发了冗余SINS来提高SINS的可靠性,这是通过在SINS中利用多个惯性传感器获得的[4]。在冗余SINS中,考虑到成本和体积,四陀螺SINS具有很高的可靠性,因此具有广泛的应用[5]、[6]。
In four-gyro SINS, navigation result can be calculated from eight inertial sensors’ outputs. Incorrect navigation results will be obtained if any one of the gyros or accelerometers fails.
在四陀螺捷联惯导系统中,可以根据八个惯性传感器的输出计算导航结果。如果任何一个陀螺仪或加速计发生故障,将获得不正确的导航结果。
The International Federation of Automatic Control (IFAC) Safe Process Technical Committee defines a fault as an unpermitted deviation of at least one characteristic property or parameter of the system from the acceptable/usual/standard condition [7]. There are two ways to describe a fault: hard fault and soft fault. Hard faults present a sudden change on the basis of the normal outputs of sensors. Hard faults generally result from hardware damage, and make sensors fail immediately.
国际自动控制联合会(IFAC)安全过程技术委员会将故障定义为系统的至少一个特征属性或参数与可接受/通常/标准条件的不允许偏差[7]。描述故障有两种方法:硬故障和软故障。硬故障在传感器正常输出的基础上呈现突然变化。硬故障通常是由硬件损坏引起的,并使传感器立即失效。
Soft faults present a slow change on the basis of the normal outputs of sensors. Soft faults generally result from complex reasons, and cannot be detected immediately [7], [8].
软故障在传感器正常输出的基础上呈现缓慢变化。软故障通常是由复杂的原因引起的,不能立即检测[7],[8]。
FI is necessary when a fault occurs in four-gyro SINS. FI is to determine which sensor has a fault and judge the fault’s type in redundant SINS. Current FI approaches are mainly for single fault.
当四陀螺捷联惯导系统发生故障时,FI是必要的。FI是确定冗余SINS中哪个传感器发生故障并判断故障类型。目前的FI方法主要针对单一故障。
There are three kinds of FI approaches for redundant SINS: direct comparison approach, signal processing approach and parity space approach. Direct comparison approach isolates a fault through linear relationship of multiple sensors.
冗余捷联惯导系统的FI方法有三种:直接比较法、信号处理法和奇偶空间法。直接比较法通过多个传感器的线性关系隔离故障。
However, in four-gyro SINS, there is only one group of linear FI equation, and no FI truth table can be built up. As a result, direct comparison approach cannot isolate a fault in four-gyro SINS [9]–[11]. In addition, direct comparison approach cannot be applied when considering errors of inertial sensors.
然而,在四陀螺捷联惯导系统中,只有一组线性FI方程,无法建立FI真值表。因此,直接比较方法无法隔离四个陀螺SINS[9]-[11]中的故障。此外,在考虑惯性传感器误差时,不能采用直接比较法。
Signal processing approach, such as linear estimation approach [12], variance identification approach [13] and wavelet transform approach [14], [15], can be applied to FI in four-gyro SINS. While they are only useful to a hard fault. Moreover, they show bad isolation performance when SINS change its motion state. Yan proposed mean test approach [16] to isolate a fault by testing mean value of an inertial sensor. However, the isolation results is not correct when considering errors of inertial sensors.
信号处理方法,如线性估计方法[12]、方差识别方法[13]和小波变换方法[14]、[15],可以应用于四陀螺SINS中的FI。虽然它们只对严重的错误有用。此外,当SINS改变其运动状态时,它们表现出较差的隔离性能。Yan提出了平均测试方法[16],通过测试惯性传感器的平均值来隔离故障。然而,当考虑惯性传感器的误差时,隔离结果是不正确的。
In general, signal processing approach are all especially suitable for a hard fault, and they lose effectiveness when a soft fault happens.
一般来说,信号处理方法都特别适用于硬故障,当软故障发生时,它们会失效。
Parity space approach, such as local estimation approach, optimal parity vector (OPT) approach, singular value decomposition (SVD) approach and GLT, is the most popular FI approach. They are useful when there is a hard fault or a soft fault.
奇偶空间方法,如局部估计方法、最优奇偶向量(OPT)方法、奇异值分解(SVD)方法和GLT,是最流行的FI方法。当出现硬故障或软故障时,它们很有用。
Local estimation approach can detect and isolate a small fault, but its amount of calculation is large, and it cannot diagnose a fault in time [17]. OPT has good robustness, but the rate of correct isolation is lower than that of correct detection [18], [19]. SVD cannot diagnose a fault with an opposite direction [20], [21].
局部估计方法可以检测和隔离小故障,但其计算量很大,无法及时诊断故障[17]。OPT具有良好的鲁棒性,但正确隔离率低于正确检测率[18],[19]。SVD无法诊断相反方向的故障[20],[21]。
GLT become most widely used in FI as it achieves high sensitivity, small calculation and easy implementation [22]–[24]. Lots of researchers apply KF algorithms to GLT, making GLT useful when considering errors of inertial sensors [25], [26]. However, GLT isolation approach based on KF cannot be applied to isolate a hard fault or a soft fault in four-gyro SINS.
GLT在FI中的应用最为广泛,因为它实现了高灵敏度、小计算和易于实现[22]-[24]。许多研究人员将KF算法应用于GLT,使GLT在考虑惯性传感器误差时非常有用[25],[26]。然而,基于KF的GLT隔离方法不能应用于隔离四陀螺SINS中的硬故障或软故障。
A few researchers come up with an idea for FI—using other kinds of sensors to provide angular velocity baseline information. Fault can be isolated by checking difference between angular velocity baseline information and gyro outputs.
一些研究人员提出了FI的想法——使用其他类型的传感器提供角速度基线信息。通过检查角速度基线信息和陀螺仪输出之间的差异,可以隔离故障。
Since 1990s, lots of domestic and foreign scholars do research on star sensors to get accurate angular velocity of a vehicle in non-gyro system, and many research results have been obtained [27]–[30]. In recent years, with the development of star sensors and the maturity of angular velocity’s algorithm based on a star sensor, the accuracy of angular velocity can reach
自20世纪90年代以来,国内外许多学者对星敏感器进行了研究,以在非陀螺系统中获得车辆的精确角速度,并取得了许多研究成果[27]-[30]。近年来,随着星敏感器的发展和基于星敏感器的角速度算法的成熟,角速度的精度可以达到
In this paper, with the aid of star sensors, an improved residual chi-square test fault isolation approach improves the thought of residual chi-square test, which has been widely applied to detect a fault for integrated navigation system (INS) [35], [36]. This approach first modifies the model of GLT considering the errors of inertial sensors, and redesigns a residual vector generated by gyros and star sensors for four-gyro SINS. Second, a separate residual chi-square test approach is designed to isolate a fault for each gyro.
本文借助星敏感器,提出了一种改进的残差卡方检验故障隔离方法,改进了残差卡方试验的思想,该方法已被广泛应用于组合导航系统(INS)的故障检测[35],[36]。该方法首先修改了GLT模型,考虑了惯性传感器的误差,并为四陀螺SINS重新设计了由陀螺仪和星敏感器生成的残差矢量。其次,设计了一种单独的残差卡方检验方法来隔离每个陀螺仪的故障。
Third, to reduce soft fault isolation time, an average separate residual vector and new isolation threshold are designed. Fourth, star sensors provide accurate angular velocity baseline information to generate residual vector for FI in four-gyro SINS.
第三,为了减少软故障隔离时间,设计了一个平均分离残差向量和新的隔离阈值。第四,星敏感器提供精确的角速度基线信息,为四陀螺SINS中的FI生成残差矢量。
The contribution of our research are as follows. To recognize a fault in four-gyro SINS, first, a new observation model for isolation is designed. Second, separate residual chi-square test fault isolation approach is proposed to isolation a fault in four-gyro SINS.
我们的研究贡献如下。为了识别四陀螺捷联惯导系统中的故障,首先,设计了一种新的隔离观测模型。其次,提出了一种分离残差卡方检验故障隔离方法,用于隔离四陀螺捷联惯导系统中的故障。
Third, average separate residual chi-square test fault isolation approach improves separate residual chi-square test approach, and reduce the isolation time of a soft fault.
第三,平均分离残差卡方检验故障隔离方法改进了分离残差卡平方检验方法,减少了软故障的隔离时间。
The rest of this paper is organized as follows. In part II, the limitation of GLT algorithm based on KF is proved. In part III, an improved residual chi-square test fault isolation approach for four-gyro SINS is proposed.
本文的其余部分组织如下。第二部分证明了基于KF的GLT算法的局限性。在第三部分中,提出了一种改进的四陀螺捷联惯导系统残差卡方检验故障隔离方法。
Part IV describes a redundant model, tetrahedral structure. Experimental results and discussions are presented in part V. Finally, conclusions are summarized in Part VI.
第四部分描述了一个冗余模型,四面体结构。第五部分给出了实验结果和讨论。最后,第六部分总结了结论。
GLT Algorithm and Limitation
GLT算法及其局限性
In this part, GLT algorithm is first presented. Second, GLT algorithm based on KF is described. Third, limitation of GLT isolation algorithm is proved.
本部分首先介绍了GLT算法。其次,描述了基于KF的GLT算法。第三,证明了GLT隔离算法的局限性。
A. GLT Algorithm A.GLT算法
其中
A
确定
其中
(3) can be rewritten as
(3) 可以改写为
The parity vector
奇偶校验向量
GLT fault detection decision function is [22]:
GLT故障检测决策函数为[22]:
其中
GLT fault isolation function is shown:
GLT故障隔离功能如图所示:
故障传感器的最大值为
B. GLT Algorithm Based on KF
B.基于KF的GLT算法
In traditional GLT algorithm, the errors of sensors-input misalignment, scale factor and bias are not taken into consideration. As a result, traditional GLT algorithm cannot detect and isolate a fault. KF has been applied to compensate the errors in GLT, and makes GLT work.
在传统的GLT算法中,没有考虑传感器输入失准、比例因子和偏差的误差。因此,传统的GLT算法无法检测和隔离故障。KF已被应用于补偿GLT中的误差,并使GLT工作。
When faults are not taken into consideration, (1) will be rewritten as:
当不考虑故障时,(1)将改写为:
其中
From (3) and (4), parity vector is expressed:
根据(3)和(4),奇偶向量表示为:
其中估计
The state vector
与
From KF, the estimation
从KF可以获得估计
After compensation, compensated parity vector, GLT fault detection function and isolation function based on KF are
补偿后,补偿奇偶向量、GLT故障检测功能和基于KF的隔离功能
C. Limitation of GLT Isolation Based on KF
C.基于KF的GLT分离的局限性
GLT algorithm can only detect a fault, but fails to isolate a fault in four-gyro SINS. Here is a proof of the conclusion.
GLT算法只能检测故障,但无法隔离四陀螺SINS中的故障。这是结论的证明。
From (4) and (13), the fault vector
根据(4)和(13),描述了故障向量
Assuming that gyro
假设陀螺仪
其中
According to (15), (17) can be rewritten as:
根据(15),(17)可以改写为:
From the property of
从
From (19), no matter which inertial sensor fails in four-gyro SINS, GLT fault isolation function value will remain the same. There is no maximum value in the isolation functions. Thus, GLT isolation function based on KF cannot isolate a fault in four-gyro SINS.
从(19)可以看出,无论四个陀螺捷联惯导系统中哪个惯性传感器发生故障,GLT故障隔离函数值都将保持不变。隔离函数中没有最大值。因此,基于KF的GLT隔离功能无法隔离四陀螺SINS中的故障。
From (15), GLT isolation works through judging which column of
根据(15),GLT隔离是通过判断
Simulations are conducted to verify the limitation of GLT isolation based on KF. Assuming that gyro 4 has a hard fault in the thirtieth second. The results are shown below. The gyro providing the biggest isolation value is the faulty one. Fig. 1 shows that gyro 4’s isolation function value is the same as others. As a result, we can’t tell which gyro is faulty. The results demonstrate that fault isolation are wrong. Same situation happens when there is a soft fault in four-gyro SINS.
通过仿真验证了基于KF的GLT隔离的局限性。假设陀螺仪4在第三十秒内出现硬故障。结果如下所示。提供最大隔离值的陀螺仪是有故障的陀螺仪。图1显示,陀螺仪4的隔离函数值与其他陀螺仪相同。因此,我们无法判断哪个陀螺仪有故障。结果表明,故障隔离是错误的。当四个陀螺捷联惯导系统出现软故障时,也会出现同样的情况。
From these above, we can see that GLT fault isolation based on KF cannot be applied to FI in four-gyro SINS. In order to isolate a fault in four-gyro SINS, a new fault isolation approach must be designed.
综上所述,基于KF的GLT故障隔离不能应用于四陀螺SINS中的FI。为了隔离四陀螺捷联惯导系统中的故障,必须设计一种新的故障隔离方法。
Improved Residual Chi-Square Test Fault Isolation Approach
改进的残差卡方检验故障隔离方法
Improved residual chi-square test fault isolation approach, first, designs a residual vector based on KF, which is for isolating faulty gyro. Second, separate residual vector chi-square test fault isolation algorithm is proposed to isolate a fault for four-gyro SINS system.
改进的残差卡方检验故障隔离方法,首先设计了一种基于KF的残差向量,用于隔离故障陀螺仪。其次,提出了一种分离残差向量卡方检验故障隔离算法,用于隔离四陀螺SINS系统的故障。
Third, average residual vector chi-square test fault isolation algorithm is designed to improve isolation performance of a soft fault.
第三,设计了一种平均残差向量卡方检验故障隔离算法,以提高软故障的隔离性能。
At last, an approach to obtain angular velocity of a vehicle with the aid of star sensor is presented, which can provide important observation baseline information for isolation approach.
最后,提出了一种借助星敏感器获取车辆角速度的方法,该方法可以为隔离方法提供重要的观测基线信息。
A. Residual Vector Based on KF
A.基于KF的残差向量
In this part, first, a new isolation observation model and the state vector are designed. Second, on the basis of KF, a residual vector can be obtained through KF algorithm.
在这一部分中,首先,设计了一个新的隔离观测模型和状态向量。其次,在KF的基础上,通过KF算法可以获得残差向量。
From part II, both parity vector and isolation function of GLT fail to isolate a fault in four-gyro SINS. As a result, the observation model in (10) cannot be applied to isolation anymore. A new observation model should be considered.
从第二部分可以看出,GLT的奇偶向量和隔离功能都无法隔离四陀螺SINS中的故障。因此,(10)中的观察模型不能再应用于隔离。应考虑新的观测模型。
From (8), when there is no fault, (8) can be presented as:
从(8)中,当没有故障时,(8)可以表示为:
Different from (12),
与(12)不同,
From (20), there exists
从(20)开始,存在
Supposing there is a vector
假设有一个向量
其中
其中
(21) can be expressed as:
(21)可以表示为:
A new state vector
新的状态向量
Substituting (26) into (25), we can derive an observation model:
将(26)代入(25),我们可以得到一个观测模型:
A dynamic model is needed to get the state vector
需要一个动态模型来获得状态向量
其中
The estimation
估计值#0可以从KF中得出:
The practical observation is
实际观察是
预测的观测结果为
The residual vector can be contained from the difference between the practical observation outputs and the predicted observation [35]
残差向量可以包含在实际观测输出和预测观测之间的差异中[35]
其中
B. Separate Residual Chi-Square Test Fault Isolation Approach
B.单独的残差卡方检验故障隔离方法
In traditional residual chi-square test, the function can only be used to detect a fault in INS, but it is never used to isolate a fault. In traditional residual chi-square test approach, the fault detection function [35] is
在传统的残差卡方检验中,该函数只能用于检测惯性导航系统中的故障,但从不用于隔离故障。在传统的残差卡方检验方法中,故障检测函数[35]为
其中,当没有故障时,残差向量
其中
From (37), the detection function
从(37)中,检测函数
Thus, a new fault isolation approach is required to isolate a fault effectively in four-gyro SINS.
因此,需要一种新的故障隔离方法来有效隔离四陀螺捷联惯导系统中的故障。
In order to achieve isolation, separate residual chi-square test fault isolation approach designs a separate residual vector for each gyro. The problem of isolation can be realized by checking whether one gyro is faulty or not.
为了实现隔离,单独的残差卡方检验故障隔离方法为每个陀螺仪设计了一个单独的残差向量。隔离问题可以通过检查一个陀螺仪是否有故障来实现。
Consequently, the proposed approach can not only isolate a fault in four-gyro SINS, but also isolate a fault in any other redundant SINS.
因此,所提出的方法不仅可以隔离四个陀螺捷联惯导系统中的故障,还可以隔离任何其他冗余SINS中的故障。
Obviously, (36) can be rewritten as
显然,(36)可以改写为
其中
In (39), the separate residual vector
在(39)中,当没有故障时,分离残差向量
From (39), when there is no fault,
根据(39),当没有故障时,
The statistical property of
在两种情况下,
其中
A log-likelihood ratio function related to
定义了与
其中
From (44), the maximum likelihood estimation of
根据(44),可以获得
Substituting (45) into (44), we obtain (46) as follows:
将(45)代入(44),我们得到(46)如下:
Thus, separate residual chi-square test fault isolation function can be derived:
因此,可以推导出单独的残差卡方检验故障隔离函数:
其中
C. Average Separate Residual Chi-Square Test Fault Isolation Approach
C.平均分离残差卡方检验故障隔离方法
Separate residual chi-square test fault isolation approach can isolate a hard or a soft fault. As a soft fault can only be isolated when it accumulated to some degree, its isolation time is later than the time that the fault happens.
单独的残差卡方检验故障隔离方法可以隔离硬故障或软故障。由于软故障只有在积累到一定程度时才能被隔离,因此其隔离时间晚于故障发生的时间。
To reduce the isolation time for a soft fault, an average separate residual chi-square test fault isolation approach is proposed.
为了减少软故障的隔离时间,提出了一种平均分离残差卡方检验故障隔离方法。
The proposed approach can be divided into two parts: one is the proposal of an average separate residual vector, and the other is the calculation of new isolation threshold.
所提出的方法可分为两部分:一是提出平均分离残差向量,二是计算新的隔离阈值。
To decrease the influence of noise, an average separate residual vector is proposed based on the thought of weighted average. By calculating the mean value of separate residual vector through sliding data window, an average separate residual vector can be obtained.
为了降低噪声的影响,基于加权平均的思想,提出了一种平均分离残差向量。通过滑动数据窗口计算分离残差向量的平均值,可以获得平均分离残差向量。
From (39), average separate residual vector can be expressed:
从(39)中,平均单独残差向量可以表示为:
From (48), (41), and (42), the statistical property of
根据(48)、(41)和(42),
From (47), average separate residual chi-square test fault isolation function can be obtained:
根据(47),可以获得平均单独残差卡方检验故障隔离函数:
The new isolation threshold is the key to average separate residual chi-square test fault isolation. In B, part III, the isolation threshold is obtained by limiting the probability of false alarm, but it is usually too large.
新的隔离阈值是平均单独残差卡方检验故障隔离的关键。在B第三部分中,隔离阈值是通过限制误报概率获得的,但通常太大。
To get a proper isolation threshold, two steps are designed.
为了获得合适的隔离阈值,设计了两个步骤。
At the first step, the magnitude of a tolerable fault should be calculated. In redundant SINS, navigation result are calculated from three-axis inertial sensors’ outputs, which are obtained by least square approach from multiple inertial sensors.
第一步,应计算可容忍故障的大小。在冗余捷联惯导系统中,导航结果由三轴惯性传感器的输出计算得出,这些输出是通过最小二乘法从多个惯性传感器获得的。
The accuracy of navigation results are decided by the errors of three-axis inertial sensors’ outputs. As C.K Yang said [37], if the errors of three-axis inertial sensors’ outputs are the same whether there is a fault or not in redundant SINS, the fault is tolerant, and it needn’t to be isolated.
导航结果的准确性取决于三轴惯性传感器输出的误差。正如C.K Yang所说[37],如果冗余SINS中无论是否存在故障,三轴惯性传感器输出的误差都是相同的,则故障是可容忍的,不需要隔离。
When the faulty gyro is included, the error covariance
当包括故障陀螺仪时,误差协方差
其中
When faulty gyro is not included, the error covariance
当不包括故障陀螺仪时,误差协方差
其中
When (52) is equal to (53), tolerable fault can be performed (details can be found in [37]):
当(52)等于(53)时,可以执行可容忍的故障(详见[37]):
Only when the magnitude of fault is bigger than tolerable fault, it can be isolated.
只有当故障的规模大于可容忍的故障时,才能将其隔离。
At the second step, new isolation threshold can be obtained from fault isolation function in (51) and tolerable fault in (54). As shown in (45), separate residual vector
在第二步,可以从(51)中的故障隔离函数和(54)中的可容忍故障中获得新的隔离阈值。如(45)所示,分离残差向量
Substituting (54) into (51), new isolation threshold can be designed:
将(54)代入(51),可以设计新的隔离阈值:
其中表示陀螺仪#0的新隔离阈值。
D. Angular Velocity Estimation Using Star Sensor
D.使用星敏感器进行角速度估计
The key to make improved fault isolation approach work is the determination of three-dimensional angular velocity
使改进的故障隔离方法发挥作用的关键是确定(36)中的三维角速度
In GLT approach based on KF algorithm, angular velocity
在基于KF算法的GLT方法中,角速度
While in improved fault isolation approach, using LSE to get angular velocity
而在改进的故障隔离方法中,使用LSE获得角速度
As we metioned in part I, a star sensor is a high accurate and autonomous sensor, which provides attitude information (or cateloged vector). Lots of researchers study how to get accurate angular velocity information based on star sensors.
正如我们在第一部分中提到的,星敏感器是一种高精度和自主的传感器,它提供姿态信息(或分类向量)。许多研究人员研究如何基于星敏感器获得准确的角速度信息。
Among these studies, Liu proposed an adaptive Kalman Filter (AKF) to estimate angular velocity, and accuracy can reach
在这些研究中,刘提出了一种自适应卡尔曼滤波器(AKF)来估计角速度,精度可以达到#0。因此,我们可以应用刘的方法来提高角速度的精度。以下是刘方法的简要介绍。
The measurement model of the star sensor can be considered as a pinhole imaging system. The star’s direction vector is provided in the star sensor reference [32]:
星敏感器的测量模型可以看作是一个针孔成像系统。恒星的方向矢量在恒星传感器参考文献[32]中提供:
其中
其中
The derivative with respect to
关于(57)中
其中
The observation model and measurement model are
观测模型和测量模型为
From AKF algorithm, angular velocity
根据AKF算法,可以推导出角速度
Detailed improved residual chi-square test fault isolation approach is displayed as follows:
详细的改进残差卡方检验故障隔离方法如下:
Redundant Model 冗余模型
In order to verify the proposed approach, we take four-gyro SINS as an example. Fig. 4 shows a four-gyro tetrahedral structure [38]. The frame of this structure is a tetrahedron. Its bottom is a regular triangle, and its side is an isosceles triangle. The angle between bottom and side is 70.53°. The four gyros are installed on planes of the tetrahedron. In Fig. 4, the axis of gyro 1 and
为了验证所提出的方法,我们以四个陀螺捷联惯导系统为例。图4显示了四陀螺四面体结构[38]。这个结构的框架是一个四面体。它的底部是一个正三角形,侧面是一个等腰三角形。底部和侧面之间的角度为70.53°。四个陀螺仪安装在四面体的平面上。在图4中,陀螺仪1和
The measurement matrix
测量矩阵
Compared with other redundant SINS, four-gyro tetrahedral structure’s advantages are displayed:
与其他冗余捷联惯导系统相比,四陀螺四面体结构具有以下优点:
Compared to other four-gyro SINS, a tetrahedral structure achieves greatest reliability and optimal navigation accuracy norm [39]:
与其他四陀螺捷联惯导系统相比,四面体结构实现了最大的可靠性和最佳的导航精度规范[39]:
其中
It is noticeable that any three of the gyros’ sensitive axes are not in a plane in four-gyro tetrahedral structure. This four-gyro SINS is able to work after isolating any one of the gyros. Consequently, four-gyro tetrahedral structure is good for FI.
值得注意的是,在四个陀螺仪四面体结构中,任何三个陀螺仪的敏感轴都不在一个平面上。这种四陀螺捷联惯导系统能够在隔离任何一个陀螺仪后工作。因此,四陀螺四面体结构有利于FI。
Results and Discussion 结果和讨论
A. Experimental Condition
A.实验条件
Semi-physical simulation is conducted to test the performance of the proposed approach. Two kinds of data are needed in the experiment: the gyro outputs and star sensor outputs.
通过半物理仿真来测试所提出方法的性能。实验中需要两种数据:陀螺仪输出和星敏感器输出。
The gyros’ outputs can be described as follows:
陀螺仪的输出可以描述如下:
其中
In Fig. 5, IMU, which is composed of three-axis gyros and three-axis accelerometers, is used for experiments. Four-gyro’s noise can be obtained from two experiments.
在图5中,使用由三轴陀螺仪和三轴加速度计组成的IMU进行实验。通过两次实验可以获得四个陀螺仪的噪声。
When considering gyros’ error in (8), the errors information should be considered. They are set as follows:
在考虑(8)中的陀螺仪误差时,应考虑误差信息。设置如下:
The scale factor error matrix is
比例因子误差矩阵为
The input misalignment error matrix is given in (66), as shown at the bottom of this page,
输入未对准误差矩阵如本页底部所示在(66)中给出,
其中安装误差角为
Then gyro outputs can be confirmed considering sensor errors.
然后,可以考虑传感器误差来确认陀螺仪输出。
Star sensors’ outputs can be modeled as follows:
星敏感器的输出可以建模如下:
其中
Other detailed conditions are displayed as follows:
其他详细情况如下:
The vehicle moves in a straight line, and the velocity is set to
. The initial latitude and longitude are 45° and 126°, relatively. The resulting attitudes, pitch, roll, and heading angle of vehicle are modeled as sine functions. The amplitude/period are6.17m/s ,9∘/5s and8∘/7s , respectively.10∘/9s
车辆沿直线移动,速度设置为6.17m/s 。初始纬度和经度分别为45°和126°。由此产生的车辆姿态、俯仰角、横滚角和航向角被建模为正弦函数。振幅/周期分别为9∘/5s 、8∘/7s 和10∘/9s 。The time of fault isolation is 50 seconds, and simulation step is 0.1 seconds.
故障隔离时间为50秒,模拟步长为0.1秒。The detection threshold and isolation threshold are
when given false alarm rate is 0.001, and the degree of freedom isTD=TI=χ20.999(1)=6.63 .m−n=4−3=1
当给定的误报率为0.001时,检测阈值和隔离阈值为TD=TI=χ20.999(1)=6.63 ,自由度为m−n=4−3=1 。A fault happens at the thirtieth second, and 2 kinds of fault conditions are shown below:
故障发生在第三十秒,以下显示了2种故障情况:Condition A:
gyro 4 has a hard fault with amplitude
.10∘/h
条件A:陀螺仪4发生硬故障,振幅为10∘/h 。Condition B:
gyro 4 has a soft faults with slope
.1∘/h
条件B:陀螺仪4存在斜率为1∘/h 的软故障。
B. Result and Discussion B.结果和讨论
The proposed approach improves residual chi-square test algorithm to isolate a fault. This part first verifies the incorrectness and effectiveness of separate residual chi-square fault isolation in different condition.
所提出的方法改进了残差卡方检验算法来隔离故障。本部分首先验证了不同条件下分离残差卡方故障隔离的正确性和有效性。
Second, average separate residual chi-square fault isolation is verified for four-gyro SINS in improving the isolation performance of a soft fault.
其次,验证了四个陀螺捷联惯导系统的平均分离残差卡方故障隔离在提高软故障隔离性能方面的有效性。
1) Separate Residual Chi-Square Test Fault Isolation
1) 独立剩余卡方检验故障隔离
a: Angular Velocity From Gyro
a: 陀螺仪角速度
This part verifies the incorrectness of separate residual chi-square fault isolation when the angular velocity is provided by LSE from gyro. The results are shown as follows.
这部分验证了当LSE从陀螺仪提供角速度时,单独的残差卡方故障隔离是不正确的。结果如下。
Separate residual chi-square test fault isolation functions in condition A are shown in Fig. 6 when angular velocity is provided by LSE from gyro. Table 1 shows the detailed isolation value in Fig. 6.
当LSE从陀螺仪提供角速度时,条件A下的单独残差卡方检验故障隔离函数如图6所示。表1显示了图6中的详细隔离值。
Separate residual chi-square test fault isolation works after GLT detect a fault in redundant SINS. The proposed approach is to determine which gyro has a fault.
在GLT检测到冗余SINS中的故障后,单独的残差卡方检验故障隔离工作。所提出的方法是确定哪个陀螺仪有故障。
When a gyro’s separate residual chi-square test isolation function value is bigger than isolation threshould, the gyro has a fault.
当陀螺仪的单独残差卡方检验隔离函数值大于隔离阈值时,陀螺仪发生故障。
As shown in Fig. 6 and table 1, gyros’ isolation function values are almost the same. We cannot know which gyro is faulty. While angular velocity is calculated by LSE from gyro, every element of observation in (25) is polluted by some gyro’s faulty information. At this time, no faulty one can be determined.
如图6和表1所示,陀螺仪的隔离函数值几乎相同。我们不知道哪个陀螺仪有故障。当LSE从陀螺仪计算角速度时,(25)中的每个观测元素都受到一些陀螺仪错误信息的污染。此时,无法确定有故障的人。
The simulation results show that when angular velocity is from gyro, separate residual chi-square test fault isolation fails to isolate a hard fault in four-gyro SINS.
仿真结果表明,当角速度来自陀螺仪时,单独的残差卡方检验故障隔离无法隔离四个陀螺捷联惯导系统中的硬故障。
Simulations are conducted for a soft fault in condition B. The results are displayed as follows. Separate residual chi-square test fault isolation functions are presented in Fig. 7 when angular velocity is provided by LSE from gyro. Table 2 shows the detailed isolation value in Fig. 7.
对条件B下的软故障进行了模拟。结果显示如下。当LSE从陀螺仪提供角速度时,图7中给出了单独的残差卡方检验故障隔离函数。表2显示了图7中的详细隔离值。
Fig. 7 and table 2 show that gyros’ isolation function values are nearly the same. We cannot tell which gyro has a fault. The simulation results show that separate residual chi-square test fault isolation fails to isolate a soft fault in four-gyro SINS when angular velocity is from gyro.
图7和表2显示,陀螺仪的隔离函数值几乎相同。我们无法判断哪个陀螺仪有故障。仿真结果表明,当角速度来自陀螺仪时,单独的残差卡方检验故障隔离无法隔离四陀螺SINS中的软故障。
b: Angular Velocity From Star Sensor
b: 星敏感器角速度
In this part, the effectiveness of separate residual chi-square test fault isolation approach is verified when angular velocity is provided by AKF from star sensor. The results are shown as follows.
在这一部分中,验证了当星敏感器的AKF提供角速度时,单独残差卡方检验故障隔离方法的有效性。结果如下。
Separate residual chi-square test fault isolation functions in condition A are in Fig. 8 when angular velocity is provided by AKF of star sensor.
当星敏感器的AKF提供角速度时,条件A下的单独残差卡方检验故障隔离函数如图8所示。
As shown in Fig. 8, only gyro 4’s fault isolation function value is bigger than isolation threshold. As a result, gyro 4 has a fault.
如图8所示,只有陀螺仪4的故障隔离函数值大于隔离阈值。结果,陀螺仪4发生故障。
Simulations show that when angular velocity is provided by star sensor, separate residual chi-square test fault isolation approach can isolate a hard fault in four-gyro SINS.
仿真表明,当角速度由星敏感器提供时,单独的残差卡方检验故障隔离方法可以隔离四陀螺捷联惯导系统中的硬故障。
Next simulations are for soft fault in condition B. The results are presented. Separate residual chi-square test fault isolation functions in condition B are presented in Fig. 9 when angular velocity is provided by AKF from star sensor.
接下来的模拟是针对条件B下的软故障。给出了结果。当星敏感器的AKF提供角速度时,图9中给出了条件B下的单独残差卡方检验故障隔离函数。
From Fig. 9, gyro 4’s isolation function value is much bigger than isolation threshold. We can see that gyro 4 has a soft fault.
从图9可以看出,陀螺仪4的隔离函数值远大于隔离阈值。我们可以看到陀螺仪4有软故障。
Simulations demonstrate that when angular velocity is provided by star sensor, separate residual chi-square test fault isolation approach can isolate a soft fault in four-gyro SINS.
仿真表明,当角速度由星敏感器提供时,单独的残差卡方检验故障隔离方法可以隔离四陀螺捷联惯导系统中的软故障。
From Fig. 8, the hard fault can be isolated when the fault occurs. This approach shows good performance when there is a hard fault. However, for the soft fault in Fig. 9, the fault isolation time is usually later than the time fault occurs as the soft fault always presents a slow change. Consequently, although separate residual chi-square test fault isolation approach can isolate a fault in four-gyro SINS, it cannot isolate a soft fault in time.
从图8可以看出,当故障发生时,可以隔离硬故障。当出现硬故障时,这种方法显示出良好的性能。然而,对于图9中的软故障,故障隔离时间通常晚于故障发生的时间,因为软故障总是呈现出缓慢的变化。因此,尽管单独的残差卡方检验故障隔离方法可以隔离四陀螺捷联惯导系统中的故障,但它不能及时隔离软故障。
2) Average Separate Residual Chi-Square Test Fault Isolation
2) 平均单独剩余卡方检验故障隔离
This part verifies the good isolation performance of average separate residual chi-square test fault isolation approach for a soft fault.
这部分验证了平均分离残差卡方检验故障隔离方法对软故障的良好隔离性能。
Fig. 10 shows a clearer view of Fig. 9. Average separate residual chi-square test fault isolation functions are presented in Fig. 11. Fig. 12 shows a clearer view of Fig. 11.
图10显示了图9的更清晰的视图。平均单独残差卡方检验故障隔离函数如图11所示。图12显示了图11的更清晰的视图。
As shown in Fig. 10, when a soft fault occurs at the thirtieth second, the isolation time of gyro 4’s separate residual chi-square test function is at the thirty-fifth second. In this situation, the isolation threshold is 6.63, which is obtained by checking chi-square distribution table.
如图10所示,当软故障发生在第30秒时,陀螺仪4的单独残差卡方检验函数的隔离时间为第35秒。在这种情况下,隔离阈值为6.63,这是通过检查卡方分布表获得的。
Obviously, separate residual chi-square test fault isolation approach cannot achieve good isolation performance for a soft isolation. From Fig. 11 and Fig. 12, we may find that the isolation time of gyro 4’s average separate residual test function is at the thirty-second second. The new isolation threshold is 4, and it is calculated from (55). We can Obviously find that the isolation time of average separate residual chi-square test is less than that of separate residual chi-square test approach.
显然,对于软隔离,单独的残差卡方检验故障隔离方法无法实现良好的隔离性能。从图11和图12中,我们可以发现陀螺仪4的平均分离残差测试函数的隔离时间为30秒。新的隔离阈值为4,根据(55)计算得出。我们可以明显地发现,平均单独残差卡方检验的隔离时间小于单独残差卡平方检验方法的隔离时间。
Comparing Fig. 12 with Fig. 10, on the one hand, the isolation curves in Fig. 12 is much more smoother than that in Fig. 10. Average separate residual chi-square test function decrease the influence of noise. On the other hand, the new threshold value is 4 in Fig. 12, which is smaller than the isolation threshould (6.63) in Fig. 10. Average separate residual chi-square test approach gets a proper isolation threshold for a soft fault. Thus, average separate residual chi-square test fault isolation approach achieves good isolation peformance when a soft fault happens.
将图12与图10进行比较,一方面,图12中的隔离曲线比图10中的隔离曲线平滑得多。平均分离残差卡方检验函数降低了噪声的影响。另一方面,图12中的新阈值为4,小于图10中的隔离阈值(6.63)。平均分离残差卡方检验方法为软故障获得了适当的隔离阈值。因此,当软故障发生时,平均分离残差卡方检验故障隔离方法可以实现良好的隔离性能。
Conclusions 结论
In this paper, we propose an improved residual chi-square test fault isolation approach to solve the problem that GLT fault isolation approach based on KF cannot effectively isolate a fault in four-gyro SINS.
本文提出了一种改进的残差卡方检验故障隔离方法,以解决基于KF的GLT故障隔离方法不能有效隔离四陀螺SINS故障的问题。
First, the proposed approach designs a residual vector based on KF for isolation. Second, a separate residual chi-square test fault isolation approach correctly recognize a fault.
首先,该方法基于KF设计残差向量进行隔离。其次,一种单独的残差卡方检验故障隔离方法可以正确识别故障。
Third, an average separate residual chi-square fault isolation approach reduce the soft fault isolation time. At last, a star sensor has been employed to get the angular velocity, which provides observation baseline information in the proposed isolation approach.
第三,平均分离残差卡方故障隔离方法减少了软故障隔离时间。最终,我们采用星敏感器来获取角速度,这为所提出的隔离方法提供了观测基线信息。
The experimental results demonstrate that the new approach can successfully recognize a fault in four-gyro SINS.
实验结果表明,新方法可以成功识别四陀螺捷联惯导系统的故障。
The proposed isolation approach are designed to isolate a fault in four-gyro SINS. From part III, we may infer that the isolation approach can also isolate multiple faults in redundant SINS.
所提出的隔离方法旨在隔离四陀螺捷联惯导系统中的故障。从第三部分可以推断,隔离方法也可以隔离冗余SINS中的多个故障。
In future, more experiment should be conducted in different complex environment to verify the proposed isolation approach.
未来,应在不同的复杂环境中进行更多的实验来验证所提出的隔离方法。
Meanwhile, adaptive algorithm can be combined with the proposed isolation approach, which would improve the performance of the isolation approach in different situation.
同时,自适应算法可以与所提出的隔离方法相结合,这将提高隔离方法在不同情况下的性能。