Data availability 数据可用性
数据将根据请求提供。
Fig. 1. Experimental protocol for the in-house dataset. (a) Indicates the electrode configuration of the amputee (b) Indicates the hand gestures involved in the study. HO: represents hand open, WS: wrist supination, WE: wrist extension, WP: wrist pronation, WF: wrist flexion, HC: hand close, and NM: no motion.
图 1. 内部数据集的实验协议。(a) 表示截肢者的电极配置。(b) 表示研究中涉及的手势。HO:表示手部打开,WS:腕部外旋,WE:腕部伸展,WP:腕部内旋,WF:腕部屈曲,HC:手部闭合,NM:无运动。
Fig. 2. A conceptualization of the experimental settings for EMG recordings with respect to variation of muscle contraction forces.
图 2. 关于肌肉收缩力变化的 EMG 记录实验设置的概念化。
Fig. 3. The Flow chart for the proposed feature and distribution adaptation method.
图 3. 提出的特征和分布适应方法的流程图。
Fig. 4. Tangent space of the manifold M at S, is the tangent vector of , while is the geodesic distance between and .
图 4. 流形 M 在 S 处的切空间, 是 的切向量,而 是 和 之间的测地距离。
Table 1. Classification accuracy of NERD at different values of t on Random Forest classifier: Moderate: indicate that the moderate force level was used for testing, Low: the low force level was used for testing, and High: means the high force level was used for testing.
表 1. NERD 在随机森林分类器上不同 t 值的分类准确率:中等:表示使用了中等力度水平进行测试,低:表示使用了低力度水平进行测试,高:表示使用了高力度水平进行测试。
t values t 值 | 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 10.0 |
---|---|---|---|---|---|---|---|---|---|---|---|
Moderate 适度 | 47.71 | 87.47 | 87.54 | 87.57 | 87.51 | 87.70 | 87.62 | 87.62 | 87.54 | 87.67 | 87.51 |
Low 低 | 38.94 | 66.82 | 66.65 | 66.85 | 66.89 | 67.62 | 67.31 | 67.44 | 67.21 | 67.35 | 67.22 |
High 高 | 42.66 | 67.56 | 67.90 | 67.77 | 67.91 | 68.09 | 67.97 | 67.88 | 67.64 | 67.64 | 67.36 |
Algorithm 1: Geometric Mean of m SCM matrices |
---|
Input: m SCMs {) and tolerance > 0 |
Output: The estimated geometric mean ( ) |
Initialize: = |
While |
Until <∈ |
Return |
Algorithm 1: Geometric Mean of m SCM matrices |
---|
Input: m SCMs {) and tolerance > 0 |
Output: The estimated geometric mean ( ) |
Initialize: = |
While |
Until <∈ |
Return |
Fig. 5. Scenario 1: The classification accuracy (%) when training and testing data are taken from same force level and classified using (a) Random Forest, (b) Linear Discriminant Analysis, (c) Support Vector Machine. AV: Average across all forces. Moder means moderate.
图 5. 场景 1:当训练和测试数据来自相同的力级时,分类准确率(%)使用(a) 随机森林,(b) 线性判别分析,(c) 支持向量机进行分类。AV:所有力的平均值。Moder 表示中等。
Table 2. The F1-score classification results (%) under experimental scenario 1 when training and testing data are taken from similar force level and classified using Random Forest (RF), Linear discriminant analysis (LDA), and Support vector machine (SVM). NERD is the propose feature scheme.
表 2. 在实验场景 1 下,当训练和测试数据来自相似的力水平并使用随机森林(RF)、线性判别分析(LDA)和支持向量机(SVM)进行分类时的 F1-score 分类结果(%)。NERD 是提出的特征方案。
Scenario1 场景 1 | RF | LDA | SVM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
invTDD 反 TDD | RMS | NERD | TD4 | invTDD 反 TDD | RMS | NERD | TD4 | invTDD 反 TDD | RMS | NERD | TD4 | |
Moderate 适度 | 80.7 ± 6.8 80.7 ± 6.8 | 75.6 ± 10.5 | 87.1 ± 6.9 87.1 ± 6.9 | 81.3 ± 8.5 | 89.3 ± 6.8 89.3 ± 6.8 | 75.2 ± 9.1 75.2 ± 9.1 | 90.6 ± 5.7 | 86.2 ± 7.3 86.2 ± 7.3 | 77.2 ± 9.9 77.2 ± 9.9 | 78.4 ± 9.6 | 89.2 ± 6.8 | 79.2 ± 10.5 |
Low 低 | 83.7 ± 7.9 83.7 ± 7.9 | 78.0 ± 9.2 | 88.5 ± 8.0 88.5 ± 8.0 | 84.1 ± 9.0 | 90.8 ± 7.9 90.8 ± 7.9 | 76.6 ± 12.6 76.6 ± 12.6 | 91.5 ± 6.9 | 87.0± 9.4 | 77.9 ± 12.6 77.9 ± 12.6 | 78.4 ± 11.7 | 89.1 ± 8.5 | 77.4 ± 13.6 |
High 高 | 79.9 ± 7.1 79.9 ± 7.1 | 74.9 ± 11.3 74.9 ± 11.3 | 86.6 ± 6.3 86.6 ± 6.3 | 80.2 ± 9.8 | 88.1 ± 7.1 88.1 ± 7.1 | 73.7 ± 10.5 | 89.2 ± 6.5 89.2 ± 6.5 | 84.4 ± 8.7 84.4 ± 8.7 | 74.7 ± 12.0 74.7 ± 12.0 | 76.9 ± 11.4 | 87.3 ± 7.7 | 75.8 ± 12.8 |
Average 平均 | 81.4 ± 7.3 81.4 ± 7.3 | 76.2 ± 10.3 76.2 ± 10.3 | 87.4 ± 7.1 87.4 ± 7.1 | 81.9 ± 9.1 81.9 ± 9.1 | 89.4 ± 7.3 89.4 ± 7.3 | 75.2 ± 10.7 75.2 ± 10.7 | 90.4 ± 6.3 | 85.9 ± 8.5 85.9 ± 8.5 | 76.6 ± 11.9 76.6 ± 11.9 | 77.9 ± 10.9 | 88.5 ± 7.7 | 77.5 ± 12.3 |
Fig. 6. Scenario 2, classification accuracy (%) when features are classified using a) Random Forest (RF), (b) Linear Discriminant Analysis (SVM) , (c) Support vector machine (SVM). Train-M: Moderate was used for training, Train-L: Low force used for training, Train-H: High force used for training, AV: Average across all forces.
图 6. 情景 2,当特征使用 a) 随机森林 (RF),b) 线性判别分析 (SVM),c) 支持向量机 (SVM) 进行分类时的分类准确率(%)。Train-M: 中等用于训练,Train-L: 低强度用于训练,Train-H: 高强度用于训练,AV: 所有强度的平均值。
Table 3. The F1-score classification results (%) under experimental scenario 2. Train-M, means the classifiers were trained by features from moderate force and testing data was from low and high force levels. Train-L means training features were from Low force levels and other force levels were used for testing. NERD is the propose method.
表 3. 实验场景 2 下的 F1-score 分类结果(%)。Train-M 表示分类器是通过中等力度的特征进行训练的,测试数据来自低和高力度水平。Train-L 表示训练特征来自低力度水平,其他力度水平用于测试。NERD 是提出的方法。
Scenario2 场景 2 | RF | LDA | SVM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
invTDD 反 TDD | RMS | NERD | TD4 | invTDD 反 TDD | RMS | NERD | TD4 | invTDD | RMS | NERD | TD4 | |
Train-M 训练-M | 55.2 ± 15.0 55.2 ± 15.0 | 53.6 ± 15.0 53.6 ± 15.0 | 69.6 ± 11.4 69.6 ± 11.4 | 55.0 ± 15.9 55.0 ± 15.9 | 66.5 ± 13.3 66.5 ± 13.3 | 54.6 ± 13.6 54.6 ± 13.6 | 73.2 ± 11.3 | 61.1 ± 14.2 | 56.4 ± 15.2 | 55.5 ± 14.5 | 71.2 ± 9.9 | 54.6 ± 13.1 |
Train-L 训练-L | 45.6 ± 16.3 45.6 ± 16.3 | 44.4 ± 17.9 44.4 ± 17.9 | 61.3 ± 13.2 | 44.8 ± 17.2 44.8 ± 17.2 | 56.7 ± 13.7 56.7 ± 13.7 | 48.9 ± 13.4 48.9 ± 13.4 | 63.8 ± 15.2 63.8 ± 15.2 | 56.7 ± 12.3 | 44.7 ± 154 | 45.9 ± 13.7 | 61.6 ± 13.0 | 43.3 ± 10.3 |
Train-H 训练-H | 46.8 ± 18.6 | 45.8 ± 19.3 45.8 ± 19.3 | 62.4 ± 17.6 | 48.0 ± 19.8 48.0 ± 19.8 | 61.1 ± 14.6 | 37.4 ± 10.0 | 64.8 ± 16.7 64.8 ± 16.7 | 46.9 ± 14.7 46.9 ± 14.7 | 42.9 ± 17.4 | 44.2 ± 13.9 | 64.5 ± 13.2 | 46.6 ± 12.8 |
Average 平均 | 49.2 ± 16.6 49.2 ± 16.6 | 47.9 ± 17.4 47.9 ± 17.4 | 64.4 ± 14.0 | 49.3 ± 17.6 49.3 ± 17.6 | 61.4 ± 13.9 | 47.0 ± 12.3 47.0 ± 12.3 | 67.3 ± 14.4 | 54.9 ± 13.8 54.9 ± 13.8 | 48.0 ± 16.0 | 48.5 ± 14.0 | 65.8 ± 12.0 | 48.1 ± 12.1 |
Fig. 7. Confusion matrices for individual motion intent decoding on public dataset. The results are presented as average across all force levels when applying the invTDD, RMS, NERD (proposed), and TD4 features on (a) Random Forest (b) Linear discriminant analysis (LDA), and (c) support vector machine (SVM). The hand gestures involved are, TF: thumb flexion, IF: index flexion, FP: fine pinch, TG: tripod grip, HG: hook grip, and SG: spherical grip.
图 7. 在公共数据集上对个体运动意图解码的混淆矩阵。结果以应用 invTDD、RMS、NERD(提议)和 TD4 特征时在所有力量水平上的平均值呈现,使用的分类器为(a) 随机森林 (b) 线性判别分析 (LDA) 和 (c) 支持向量机 (SVM)。涉及的手势包括,TF: 拇指屈曲,IF: 食指屈曲,FP: 精细捏合,TG: 三脚架握持,HG: 钩握,SG: 球形握持。
Fig. 8. Confusion matrices for individual motion intent decoding on in-house dataset. The results are presented as average across all force levels when applying the invTDD, RMS, NERD (proposed), and TD4 features on (a) Random Forest (b) Linear discriminant analysis (LDA), and (c) support vector machine (SVM). The hand gestures involved are, WF: wrist flexion, HO: hand open, HC: hand close, WE: wrist extension, WP: wrist pronation, WS: wrist supination, and NM: No motion.
图 8. 在内部数据集上对个体运动意图解码的混淆矩阵。结果以应用 invTDD、RMS、NERD(提议)和 TD4 特征时在所有力量水平上的平均值呈现,使用的分类器为(a) 随机森林 (b) 线性判别分析 (LDA) 和 (c) 支持向量机 (SVM)。涉及的手势包括:WF:腕屈曲,HO:手打开,HC:手闭合,WE:腕伸展,WP:腕内旋,WS:腕外旋,以及 NM:无运动。
Fig. 9. The t-SNE feature space analysis for individual class of movement for subject 1 and subject 2. (a) Represents features for moderate force level, (b) represents features for low force level, and (c) for high force level. Each row compares features from same force level when extracted using invTDD, RMS, proposed (NERD), and TD4 technique. The color code for are TF represents thumb flexion, IF: index flexion, FP: fine pinch, TG: tripod grip, HG: hook grip, and SG: spherical grip,
图 9. 受试者 1 和受试者 2 的各个运动类别的 t-SNE 特征空间分析。(a) 表示中等力量水平的特征,(b) 表示低力量水平的特征,(c) 表示高力量水平的特征。每一行比较使用 invTDD、RMS、提议的(NERD)和 TD4 技术提取的相同力量水平的特征。颜色代码为 TF 表示拇指屈曲,IF:食指屈曲,FP:精细捏握,TG:三指握,HG:钩握,SG:球形握。
Table 4. Ablation study to observe the contribution of SPD stage, FA stage, and DA stage.
表 4. 切除研究以观察 SPD 阶段、FA 阶段和 DA 阶段的贡献。
Experimental scenario 实验场景 | Accuracy 准确性 | F1-score | ||||
---|---|---|---|---|---|---|
SPD | FA | DA | SPD | FA | DA | |
Train and test with moderate force level 以中等力量水平进行训练和测试 | 79.08 | 87.71 | 87.90 | 78.64 | 87.42 | 87.64 |
Train with moderate-Test with low force 以中等强度训练-以低强度测试 | 58.20 | 62.63 | 69.77 | 54.58 | 59.00 | 68.61 |
Train with moderate-Test with high force 以中等强度训练-以高强度测试 | 40.10 | 58.26 | 68.09 | 33.46 | 53.25 | 67.62 |