这是用户在 2024-12-1 23:35 为 https://journals.asm.org/doi/full/10.1128/spectrum.00262-24?rfr_dat=cr_pub++0pubmed&url_ver=Z39.88-2... 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
Advertisement 广告
Open access
Food Microbiology 食品微生物学
Research Article 研究论文
21 June 2024 21 六月 2024

Dynamic antimicrobial resistance and phylogenomic structure of Salmonella Typhimurium from 2007 to 2019 in Shanghai, China
2007—2019 年中国上海鼠伤寒沙门氏菌动态耐药性和系统发育结构

ABSTRACT 抽象

Salmonella enterica serovar Typhimurium is an important foodborne pathogen associated with human salmonellosis worldwide. A retrospective screening was performed to elucidate the prevalence, antimicrobial resistance, and phylogenomic characterization of this pathogen in Shanghai, China. S. Typhimurium isolates were selected from 2,211 serotyped Salmonella isolates collected during 2007–2019. Two hundred and seventy-seven S. Typhimurium isolates were detected in 15 of 16 districts in Shanghai. It was noted that 214 (77.3%) isolates were multi-drug resistant and 32 (11.6%) isolates were resistant to ciprofloxacin and 5 (1.8%) isolates were further resistant to ceftriaxone. Poisson generalized linear mixed model results showed that the multi-drug resistance (MDR) in 2017 and 2018 was significantly higher than that in 2010 (P<0.05), highlighting an increase in the risk of MDR. Phylogenetic results showed that a global data set of 401 sequenced S. Typhimurium isolates was classified into four clones (ST36, ST313, ST19, and ST34), which appeared in international clonal dissemination. The ST34 isolates from China fell into two clades, ST34C1 and ST34C2, the latter of which might originate from Shanghai, and then expanded nationally, accompanied by extended-spectrum β-lactamase gene blaCTX-M-14 and a mutation in quinolone resistance-determining region of the gyrA 87 site. Furthermore, blaCTX-M-14 linking to ISEcp1 upstream and ΔIS903B downstream was found in IncI (Gamma)-like plasmids, and the plasmid conjugation contributed to its horizontal transmission. To our knowledge, it is the first report of the epidemiological and phylogenetic characterization for S. Typhimurium including the emerged clade ST34C2 in Shanghai, warranting the necessity of surveillance for this high-risk pathogen.
鼠伤寒沙门氏菌血清型是世界范围内与人类沙门氏菌病相关的一种重要食源性病原体。在中国上海进行了回顾性筛选,以阐明该病原体的患病率、抗菌素耐药性和系统发育特征。鼠伤寒沙门氏菌分离株是从 2007-2019 年收集的 2,211 个血清型沙门氏菌分离株中选择的。二百七十七 。在上海 16 个区中的 15 个区检测到鼠伤寒分离株。值得注意的是,214 株 (77.3%) 分离株对环丙沙星耐药,32 株 (11.6%) 分离株对环丙沙星耐药,5 株 (1.8%) 分离株对头孢曲松进一步耐药。泊松广义线性混合模型结果显示,2017 年和 2018 年的多重耐药 (MDR) 显著高于 2010 年 (P<0.05),凸显 MDR 风险增加。系统发育结果表明,401 个全球数据集对 S 进行了测序。鼠伤寒分离株分为 4 个克隆 (ST36 、 ST313 、 ST19 和 ST34),出现在国际克隆传播中。来自中国的 ST34 分离株分为 ST34C1 和 ST34C2 两个分支,后者可能起源于上海,然后在全国范围内扩展,伴有超广谱 β-内酰胺酶基因 blaCTX-M-14gyrA 87 位点喹诺酮类耐药决定区突变。此外,在 IncI (Gamma) 样质粒中发现 blaCTX-M-14 与 ISEcp1 上游和ΔIS 903B 下游相连,质粒偶联有助于其水平传递。 据我们所知,这是 S 流行病学和系统发育特征的首次报告。鼠伤寒包括上海出现的 ST34C2 分支,因此有必要对这种高危病原体进行监测。

IMPORTANCE 重要性

Our study uncovered a widespread distribution of Salmonella enterica serovar Typhimurium isolates in Shanghai accompanied by the increase in antimicrobial resistance (AMR) especially MDR during a 10-year period, which filled in the gap about a long period of continuous monitoring of AMR in this pathogen in Shanghai. Meanwhile, we identified a new clade ST34C2 of S. Typhimurium with the acquisition of IncI (Gamma)-like plasmids mediated by extended-spectrum β-lactamase gene blaCTX-M-14 as well as gyrA 87 mutation, which had not been reported before. It was noted that IncI (Gamma)-like plasmids were reported in S. Typhimurium for the first time and conjugation could accelerate the spread of antimicrobial resistance gene blaCTX-M-14. These findings on the epidemic, antimicrobial resistance, and phylogenomic characterization for S. Typhimurium provide valuable insights into its potential risk to public health and also the basis for AMR prevention and control strategies in Shanghai in the future.
我们的研究发现,鼠伤寒沙门氏菌血清型分离株在上海广泛分布,伴随着 10 年期间抗菌素耐药性 (AMR) 的增加,尤其是 MDR,这填补了上海长期连续监测该病原体中 AMR 的空白。同时,我们确定了 S 的新分支 ST34C2。鼠伤寒获得由超广谱 β-内酰胺酶基因 blaCTX-M-14 介导的 IncI (Gamma) 样质粒以及 gyrA 87 突变,这在以前没有报道过。值得注意的是,在 S 中报道了 IncI (Gamma) 样质粒。鼠伤寒首次结合可加速抗菌素耐药基因 bla CTX-M-14 的传播。这些发现关于 S 的流行病、抗菌素耐药性和系统发育特征。鼠伤寒可为其对公共卫生的潜在风险提供有价值的见解,也为未来上海的 AMR 防控策略提供依据。

INTRODUCTION 介绍

Salmonellosis is one of the most common foodborne diseases worldwide, which poses a serious threat to public health (1, 2). Among more than 2,600 serovars of Salmonella, Salmonella enterica serovar Typhimurium was a leading cause of human gastroenteritis worldwide (3). In China, S. Typhimurium was the most common serovar responsible for acute gastroenteritis among all ages of people, accounting for 69.1% (4). Furthermore, the outbreaks of S. Typhimurium were frequently reported to be caused by food contaminations. In 2018, a multistate foodborne outbreak of S. Typhimurium in the United States resulted in at least 265 persons with foodborne pathogen illness, and the source of the outbreak was prepackaged chicken salad (5). In the global sense, 369 cases (by 18 May 2022) of confirmed and probable S. Typhimurium linked to chocolate products from Belgium have been reported (6). Especially in Europe, the outbreak of multi-drug-resistant (MDR, resistance to at least three antimicrobial classes) monophasic S. Typhimurium associated with chocolate products had resulted in at least 150 reported cases (by 10 April 2022) in nine EU/EEA countries and the UK, and the cases were predominately under the age of 10 years (n  =  134; 89%) (7). Therefore, it is urgent to monitor the prevalence of S. Typhimurium to reduce its threat to food safety.
沙门氏菌病是全世界最常见的食源性疾病之一,对公共卫生构成严重威胁 (12)。在 2,600 多种沙门氏菌血清型中,鼠伤寒沙门氏菌血清型是全球人类胃肠炎的主要原因 (3)。在中国,S.鼠伤寒是导致急性胃肠炎的最常见血清型,占 69.1% (4)。此外,S.据报道,鼠伤寒是由食物污染引起的。2018 年,多州食源性 S 疫情爆发。在美国,鼠伤寒导致至少 265 人患有食源性病原体疾病,疫情的来源是预先包装的鸡肉沙拉 (5)。在全球范围内,确诊和可能 S 病例为 369 例(截至 2022 年 5 月 18 日)。据报道,鼠伤寒与比利时的巧克力产品有关 (6)。特别是在欧洲,爆发了多重耐药性 (MDR,对至少三种抗菌类别耐药性) 单相 S。与巧克力产品相关的鼠伤寒已在 9 个欧盟/欧洲经济区国家和英国导致至少 150 例报告病例(截至 2022 年 4 月 10 日),病例主要在 10 岁以下 (n = 134;89%) (7)。因此,迫切需要监测 S 的患病率。鼠伤寒以减少其对食品安全的威胁。
The increased AMR in bacteria has become a global public health concern. A previous study reported that in 2019, AMR directly resulted in more than 1.2 million deaths in 204 countries worldwide, which was higher than the number of deaths caused by HIV infection or malaria, while the number of indirect deaths was as high as 4.95 million (8). The AMR study commissioned by the UK government has estimated that approximately 10 million people will die annually by 2050 due to drug-resistant bacteria unless there is a global response to the problem of AMR (9). The overall mortality rate in patients infected with MDR pathogens in intensive care units was 13.1%, which was two to three times higher than those infected with sensitive strains (10). The high-level AMR, especially MDR, had been observed in S. Typhimurium isolates in a previous study from Henan, China, 91.1% of S. Typhimurium isolates was MDR, and 13 MDR isolates exhibited co-resistance to the cephalosporins and fluoroquinolones, which are the first-line antimicrobials for the treatment of pathogen infections (11). The classical MDR pattern of ACSSuT (ampicillin, chloramphenicol, streptomycin, sulphonamides, and tetracycline) ranged from 21.6% to 22.8% in S. Typhimurium isolates (12, 13). In addition to AMR, important antimicrobial resistance genes (ARG) such as mcr-1, mcr-3, and blaCTX-M in S. Typhimurium isolates had expanded and spread worldwide (1417). We are now facing a formidable and growing menace for the clinical treatment from the MDR S. Typhimurium isolates.
细菌中 AMR 的增加已成为全球公共卫生问题。之前的一项研究报告称,2019 年,抗微生物药物耐药性直接导致全球 204 个国家/地区超过 120 万人死亡,高于 HIV 感染或疟疾造成的死亡人数,而间接死亡人数高达 495 万人 (8)。英国政府委托进行的 AMR 研究估计,到 2050 年,每年将有大约 1000 万人死于耐药细菌,除非全球对 AMR 问题做出反应 (9)。重症监护病房感染 MDR 病原体的患者的总死亡率为 13.1%,是敏感菌株感染患者的 2 到 3 倍 (10)。在 S 中观察到高水平的 AMR,尤其是 MDR。鼠伤寒分离株 在先前的一项研究中,来自中国河南,占 91.1% 的 S。鼠伤寒分离株是 MDR,13 种 MDR 分离株对头孢菌素和氟喹诺酮类药物表现出共耐药性,它们是治疗病原体感染的一线抗菌药物 (11)。ACSSuT (氨苄西林、氯霉素、链霉素、磺胺类药物和四环素) 的经典 MDR 模式在 S 中为 21.6% 至 22.8%。鼠伤寒分离株 (1213)。除 AMR 外,S 中还有重要的抗菌素耐药基因 (ARG),如 mcr-1mcr-3blaCTX-M。鼠伤寒分离株已经扩大并传播到世界各地 (1417)。我们现在面临着来自 MDR S 的临床治疗的巨大且日益增长的威胁。鼠伤寒分离株。
Currently, whole-genome sequencing has been widely applied to reveal the evolutionary dynamics of bacteria (1820). In Africa, the most common S. enterica associated with invasive non-typhoidal salmonellosis is S. Typhimurium ST313 (19). AMR and genome degradation were found to contribute to the success of ST313 tree lineages (L1, L2, and L3) in the phylogenomic analysis (19). In Japan, the phylogenomic analysis showed that S. Typhimurium and its monophasic 4,[5],12:i:- could be divided into nine clades, and clade 9 (ST34) among food animals might be a part of the S. 4,[5],12:i:- clone in Europe (21). Currently, the evolutional characteristics of S. Typhimurium isolates are still unclear in China. It is important to elucidate the phylogenetic route of S. Typhimurium isolates to track their dissemination through phylogenomic analysis.
目前,全基因组测序已被广泛应用于揭示细菌的进化动力学 (1820)。在非洲,与侵袭性非伤寒沙门氏菌病相关的最常见肠道沙门氏门氏菌。鼠伤寒 ST313 (19)。在系统发育分析中,发现 AMR 和基因组降解有助于 ST313 树谱系 (L1、L2 和 L3) 的成功 (19)。在日本,系统发育分析显示 S.鼠伤寒及其单相 4,[5],12:i:- 可分为九个分支,而食用动物中的分支 9 (ST34) 可能是 S 的一部分。4,[5],12:i:- 克隆在欧洲 (21)。目前,S 的进化特征。在中国,鼠伤寒分离株仍不清楚。阐明 S 的系统发育途径很重要。斑疹伤寒分离株通过系统发育分析跟踪其传播。
In this study, a large-scale retrospective screening was performed on 2,211 serotyped Salmonella isolates from Shanghai, China, to elucidate the regional prevalence and AMR characteristics of S. Typhimurium. Phylogenomic analysis was performed on S. Typhimurium isolates in this study together with those from other countries to gain insight into the population structure and evolutionary dynamics. In addition, plasmid sequence characteristics and plasmid transferability were further explored in this pathogen.
在本研究中,对来自中国上海的 2,211 例血清型沙门氏菌分离株进行了大规模回顾性筛查,以阐明 S 的区域患病率和 AMR 特征。鼠伤寒。对 S 进行系统发育分析。本研究中的鼠伤寒分离株与来自其他国家的分离株一起,以深入了解种群结构和进化动力学。此外,进一步探索了该病原体的质粒序列特征和质粒转移性。

RESULTS AND DISCUSSION 结果与讨论

The distribution and source analysis of S. Typhimurium isolates
S 的分布和来源分析。鼠伤寒分离株

A total of 277 (12.5%) S. Typhimurium isolates were obtained from 2,211 serotyped Salmonella isolates, which were disseminated in 15 of 16 districts in Shanghai (Baoshan, Fengxian, Hongkou, Huangpu, Jiading, Jinshan, Jingan, Minhang, Pudong, Putuo, Qingpu, Songjiang, Xuhui, Yangpu, and Changning) (Fig. 1A), suggesting their wide distribution in this city.
共 277 个 (12.5%) S。从 2,211 株血清型沙门氏菌分离株中获得,分布在上海 16 个区中的 15 个区(宝山、奉贤、虹口、黄埔、嘉定、金山、静安、闵行、浦东、普陀、青浦、松江、徐汇、杨浦和长宁)(图 1A),表明它们在该市分布广泛。
Fig 1 图 1
Fig 1 Prevalence of S. Typhimurium isolates in Shanghai, China. (A) The distribution of isolates in the districts of Shanghai city. The districts where S. Typhimurium isolates were identified are indicated in red, and the district where the isolate was not identified is indicated in blue-green. The number of isolates obtained from each district is shown. The initial map originated from DataV.GeoAtlas (http://datav.aliyun.com/portal/school/atlas/area_selector), followed by the use of Inkscape software to overlay different colored shades for representation. (B) The sample sources of isolates. The number of isolates obtained from different sources is shown.
图 1S 的患病率。中国上海的鼠伤寒分离株。(A) 上海市各区分离株的分布情况。S.鉴定出的鼠伤寒分离株用红色表示,未鉴定出分离株的地区用蓝绿色表示。显示了从每个地区获得的分离株数量。最初的地图源自 DataV.GeoAtlas (http://datav.aliyun.com/portal/school/atlas/area_selector),然后使用 Inkscape 软件叠加不同颜色的阴影进行表示。(B) 分离株的样本来源。显示了从不同来源获得的分离株的数量。
In this study, food samples (52.7%; 146/277) were the predominant sources of S. Typhimurium isolates (Fig. 1B). It was further demonstrated that food samples were mainly composed of pork, duck, chicken, and aquatic products. A total of 38 (26.0%) isolates were recovered from pork, accounting for the largest portion, and then duck (17.1%), chicken (15.1%), and aquatic products (15.1%) (Fig. 1B), which suggested that pork was the main vehicle of S. Typhimurium isolates. It was noted that S. Typhimurium isolates were identified in shellfish (n = 8) and turtle (n = 7) samples. In a previous study, the genetic relationship of Salmonella isolates from turtles and humans was close, which suggested a possible public health risk of Salmonella infections transmitted through turtles (22). In addition, S. Typhimurium isolates could be recovered from ready-to-eat foods, quick-frozen foods, and fruit-vegetables, which were rarely reported in previous studies. Besides, 121 (43.7%) S. Typhimurium isolates were recovered from patients whose ages ranged from 8 months after birth to 82 years old (Fig. 1B). Forty-four (36.4%) isolates were identified in patients from 51 to 82 years old, which were mostly the elderly with weakened immunity. Moreover, S. Typhimurium isolates could also be found in the environments, such as waste water and poultry feces.
在本研究中,食物样本 (52.7%;146/277) 是 S 的主要来源。鼠伤寒分离株(图 1B)。进一步证明食品样本主要由猪、鸭、鸡和水产品组成。从猪肉中共回收 38 株 (26.0%) 分离株,占最大部分,其次是鸭 (17.1%) 、鸡 (15.1%) 和水产品 (15.1%) (图 1B),这表明猪肉是 S 的主要载体。鼠伤寒分离株。值得注意的是,S.在贝类 (n = 8) 和海龟 (n = 7) 样本中鉴定出鼠伤寒分离株。在之前的一项研究中,从海龟和人类分离出的沙门氏菌的遗传关系很密切,这表明沙门氏菌感染通过海龟传播可能存在公共卫生风险 (22)。此外,S.可以从即食食品、速冻食品和水果蔬菜中回收鼠伤寒分离株,这在以前的研究中很少报道。此外,还有 121 个 (43.7%) S。从年龄从出生后 8 个月到 82 岁不等的患者中回收了鼠伤寒分离株(图 1B)。在 51 至 82 岁的患者中发现了 44 株 (36.4%) 分离株,其中大多数是免疫力较弱的老年人。此外,S.鼠伤寒分离株也可以在环境中找到,例如废水和家禽粪便。

The AMR in S. Typhimurium
S 中的 AMR。鼠伤寒

Among 277 S. Typhimurium isolates, the highest rate of resistance to sulfisoxazole (98.6%) was observed and then nalidixic acid (67.1%), ampicillin (61.0%), tetracycline (55.6%), trimethoprim-sulfamethoxazole (51.6%), streptomycin (47.3%), chloramphenicol (43.7%), gentamicin (42.2%), kanamycin (41.5%), and amikacin (0.4%) (Table 1). All 277 S. Typhimurium isolates were susceptible to colistin, meropenem, and imipenem. It was noted that 32 (11.6%) and 5 (1.8%) isolates were found to be resistant to ciprofloxacin and ceftriaxone, respectively, which are typically employed as first-line drugs for salmonellosis treatments upon other therapies have failed (23).
在 277 S 中。鼠伤寒分离株对磺胺异恶唑的耐药率最高 (98.6%),其次是萘啶酸 (67.1%)、氨苄西林 (61.0%)、四环素 (55.6%)、甲氧苄啶-磺胺甲噁唑 (51.6%)、链霉素 (47.3%)、氯霉素 (43.7%)、庆大霉素 (42.2%)、卡那霉素 (41.5%) 和阿米卡星 (0.4%)(表 1)。所有 277 S.鼠伤寒分离株对粘菌素、美罗培南和亚胺培南敏感。值得注意的是,分别发现 32 种 (11.6%) 和 5 种 (1.8%) 分离株对环丙沙星和头孢曲松耐药,这两种分离株通常用作沙门氏菌病治疗的一线药物,而其他疗法均失败 (23)。
TABLE 1 表 1
TABLE 1 Antimicrobial resistance of 277 S. Typhimurium isolates from patients, foods, and environment in Shanghai, Chinaa
表 1277 S 的抗菌素耐药性。中国上海的患者、食物和环境中的鼠伤寒分离株a
Antimicrobials 抗菌剂Resistant isolates (no./ratio %)
耐药菌株(数量/比例%)
Total (n = 277) 总计 (n = 277)
Patients (n = 121)
患者 (n = 121)
Foods (n = 146) 食物 (n = 146)Environment (n = 10)
环境 (n = 10)
β-Lactams β-内酰胺    
Ampicillin 氨 苄 西林77/63.6a 77/63.685/58.2a 85/58.27/70.0169/61.0
Ceftriaxone 头孢曲松4/3.3a 4/3.31/0.7a 1/0.7安培0/0.05/1.8
Ceftiofur 头孢噻氟4/3.3a 4/3.31/0.7a 1/0.7安培0/0.05/1.8
Aminoglycosides 氨基糖苷类    
Amikacin 阿米卡星1/0.8a 1/0.8安培0/0.0a 0/0.0安培0/0.01/0.4
Gentamicin 庆大霉素56/46.3a 一个 56/46.360/41.1a 60/41.11/10.0117/42.2
Streptomycin 链霉素57/47.1a 一个 57/47.169/47.3a 69/47.3 安5/50.0131/47.3
Kanamycin 卡那霉素47/38.8a 47/38.865/44.5a 65/44.53/30.0115/41.5
Quinolones 喹诺酮类    
Nalidixic acid 萘啶酸84/69.4a 84/69.496/65.8a 96/65.86/60.0186/67.1
Ciprofloxacin 环丙沙星21/17.4a 21/17.410/6.8 b 10/6.8 字节1/10.032/11.6
Tetracyclines 四环素类    
Tetracycline 四环素67/55.4a 67/55.481/55.5a 81/55.56/60.0154/55.6
Sulphamethoxazole 磺胺甲噁唑    
Sulfisoxazole 磺胺异恶唑121/100.0a 一个 121/100.0142/97.3a 一个 142/97.310/100.0273/98.6
Folate pathway antagonists
叶酸途径拮抗剂
    
Trimethoprim-sulfamethoxazole
甲氧苄啶-磺胺甲噁唑
60/49.6a 一个 60/49.678/53.4a 78/53.45/50.0143/51.6
Phenicols    
Chloramphenicol 氯霉素57/47.1a 一个 57/47.161/41.8a 一个 61/41.83/30.0121/43.7
Lipopeptides 脂肽    
Colistin 粘菌素0/0.00/0.00/0.00/0.0
Carbapenems 碳青霉烯类    
Meropenem 美罗培南0/0.00/0.00/0.00/0.0
Imipenem 亚胺培南0/0.00/0.00/0.00/0.0
≥3 (MDR) ≥3 (MDR)101/83.5a 101/83.5107/73.3a 一个 107/73.36/60.0214/77.3
≥567/55.4a 67/55.478/53.4a 78/53.42/20.0147/53.1
≥720/16.5a 20/16.512/8.2a 12/8.20/0.032/11.6
a
Different superscript lowercase letters on one line indicate a significant difference (P < 0.05).
一行上标小写字母不同表示差异显著 (P < 0.05)。
TABLE 2 表 2
TABLE 2 Antimicrobial resistance of 277 S. Typhimurium isolates from 2007 to 2019 in Shanghai, Chinaa
表 2277 S 的抗菌素耐药性。2007 年至 2019 年在中国上海分离的鼠伤寒a
Antimicrobials 抗菌剂Resistant isolates (no./ratio %)
耐药菌株(数量/比例%)
2007–2011 (n = 73)
2007–2011 (n = 73)
2012–2013 (n = 58)
2012–2013 (n = 58)
2014–2015 (n = 55)
2014–2015 (n = 55)
2016–2017 (n = 38)
2016–2017 (n = 38)
2018–2019 (n = 53)
2018–2019 (n = 53)
Total (n = 277) 总计 (n = 277)
β-Lactams β-内酰胺      
Ampicillin 氨 苄 西林35/47.9b 35/47.9字节30/51.7ab 30/51.7绝对43/78.2a 一个 43/78.230/78.9a 30/78.9安培31/58.5ab169/61.0
Ceftriaxone 头孢曲松1/1.4a 1/1.40/0.02/3.6a 2/3.62/5.3a 2/5.3安培0/0.05/1.8
Ceftiofur 头孢噻氟1/1.4a 1/1.40/0.02/3.6a 2/3.62/5.3a 2/5.3安培0/0.05/1.8
Aminoglycosides 氨基糖苷类      
Amikacin 阿米卡星0/0.01/1.70/0.00/0.00/0.01/0.4
Gentamicin 庆大霉素19/26.0b 19/26.0字节24/41.4ab27/49.1a 27/49.1 安19/50.0a 19/50.028/52.8a 28/52.8117/42.2
Streptomycin 链霉素22/30.1c 22/30.1摄氏度24/41.4bc 公元前 41.4 年 24 月31/56.4ab24/63.2a 24/63.2安培30/56.6ab131/47.3
Kanamycin 卡那霉素20/27.4c 20/27.4摄氏度21/36.2bc 公元前 21/36.225/45.5ab19/50.0ab30/56.6a 30/56.6115/41.5
Quinolones 喹诺酮类      
Nalidixic acid 萘啶酸41/56.2b 41/56.2字节36/62.1ab41/74.5a 41/74.529/76.3a 29/76.339/73.6a 39/73.6186/67.1
Ciprofloxacin 环丙沙星1/1.4c 1/1.4摄氏度3/5.2bc 公元前 3/5.2 年9/16.4ab9/23.8a 一个 9/23.89/17.0ab32/11.6
Tetracyclines 四环素类      
Tetracycline 四环素33/45.2bc 公元前 33/45.225/43.1c 25/43.1摄氏度34/61.8ab29/76.3a 29/76.333/62.3ab154/55.6
Sulphamethoxazole 磺胺甲噁唑      
Sulfisoxazole 磺胺异恶唑73/100.0a 一个 73/100.058/100.0a 一个 58/100.055/100.0a 一个 55/100.038/100.0a 一个 38/100.049/92.5a 49/92.5273/98.6
Folate pathway antagonists
叶酸途径拮抗剂
      
Trimethoprim-sulfamethoxazole
甲氧苄啶-磺胺甲噁唑
31/42.5bc 公元前 31/42.521/36.2c 21/36.2摄氏度34/61.8a 34/61.826/68.4a 26/68.431/58.5ab143/51.6
Phenicols      
Chloramphenicol 氯霉素17/23.3b 17/23.3字节19/32.8b 19/32.8字节31/56.4a 31/56.424/63.2a 24/63.2安培30/56.6a 30/56.6121/43.7
Lipopeptides 脂肽      
Colistin 粘菌素0/0.00/0.00/0.00/0.00/0.00/0.0
Carbapenems 碳青霉烯类      
Meropenem 美罗培南0/0.00/0.00/0.00/0.00/0.00/0.0
Imipenem 亚胺培南0/0.00/0.00/0.00`/0.00/0.00/0.0
≥3 (MDR) ≥3 (MDR)48/65.8b 48/65.8字节44/75.9ab46/83.6a 46/83.632/84.2a 一个 32/84.244/83.0a 44/83.0安培214/77.3
≥530/41.1c 30/41.1摄氏度25/43.1c 25/43.1摄氏度29/52.7bc 公元前 29/52.728/73.7a 28/73.7 安35/66.0ab147/53.1
≥74/5.5a 4/5.5安培7/12.1a 7/12.18/14.5a 一个 8/14.55/13.2a 5/13.28/15.1a 一个 8/15.132/11.6
a
Different superscript lowercase letters on one line indicate a significant difference (P < 0.05).
一行上标小写字母不同表示差异显著 (P < 0.05)。
Ciprofloxacin resistance (17.4%) in isolates from patients was significantly higher (P < 0.05) than that (6.8%) from foods. There was no significant difference (P>0.05) in resistance to sulfisoxazole, nalidixic acid, ampicillin, tetracycline, trimethoprim-sulfamethoxazole, streptomycin, chloramphenicol, gentamicin, and kanamycin. Five ceftriaxone-resistant isolates were recovered from patients (n = 4) and meat sample (n = 1). The ceftriaxone-resistant isolates in this study were found to carry the blaCTX-M-14 gene. The cephalosporin resistance was usually due to extended-spectrum β-lactamases (ESBLs) including the CTX-M group produced by Salmonella spp. (2426). It was noted that SJTUF10405 and SJTUF11216 isolates from patients were concurrently resistant to both ciprofloxacin and ceftriaxone. Furthermore, these two isolates harbored a ACSSuT resistance pattern. The ACSSuT type had spread in S. Typhimurium isolates in the world (27). We further compared the AMR characteristics of isolates from different foods (Table S1). Ciprofloxacin resistance in isolates from aquatic products (13.6%) was significantly higher than that from meats (6.3%) (P < 0.05) (Table S1). A total of 214 (77.3%) S. Typhimurium isolates were identified to have MDR profiles (Table 1). Furthermore, 147 (53.1%) and 32 (11.6%) isolates were resistant to at least five and seven antimicrobial classes, respectively. The MDR rate (83.5%) was identified in isolates from patients in this study, which was consistent with that (84.6%) in S. Typhimurium isolates from patients with diarrhea in a previous study (12). The high-level MDR in S. Typhimurium isolates, especially ciprofloxacin and ceftriaxone co-resistance, would greatly increase the challenge of clinical treatments for patients.
患者分离株对环丙沙星的耐药性 (17.4%) 显著高于 (P < 0.05) 高于来自食物的耐药性 (6.8%)。对磺胺异恶唑、萘啶酸、氨苄西林、四环素、甲氧苄啶-磺胺甲噁唑、链霉素、氯霉素、庆大霉素和卡那霉素的耐药性 (P>0.05) 无显著差异。从患者 (n = 4) 和肉类样本 (n = 1) 中回收了 5 株头孢曲松耐药菌株。本研究发现头孢曲松耐药菌株携带 blaCTX-M-14 基因。头孢菌素耐药通常是由于超广谱 β-内酰胺酶 (ESBL),包括沙门氏菌属产生的 CTX-M 组 (2426)。值得注意的是,来自患者的 SJTUF10405 和 SJTUF11216 分离株同时对环丙沙星和头孢曲松耐药。此外,这两种分离株具有 ACSSuT 抗性模式。ACSSuT 类型已在 S 中传播。世界上的鼠伤寒分离株 (27)。我们进一步比较了来自不同食物的分离株的抗菌素耐药特性(表 S1)。水产品分离株对环丙沙星的耐药性 (13.6%) 显著高于肉类 (6.3%) (P < 0.05)(表 S1)。共 214 个 (77.3%) S。斑疹伤寒分离株被鉴定为具有 MDR 谱(表 1)。此外,147 种 (53.1%) 和 32 种 (11.6%) 分离株分别对至少 5 种和 7 种抗菌类别耐药。在本研究中,在患者的分离株中确定了 MDR 率 (83.5%),这与 S 中的 MDR 率 (84.6%) 一致。在之前的一项研究中,从腹泻患者中分离出鼠伤寒 (12)。 S 中的高水平 MDR。鼠伤寒分离株,尤其是环丙沙星和头孢曲松的共同耐药性,将大大增加患者临床治疗的挑战。
It was noted that more than 50% of isolates from 2014 to 2019 was resistant to ampicillin, streptomycin, nalidixic acid, tetracycline, sulfisoxazole, trimethoprim-sulfamethoxazole, and chloramphenicol (Table 2), suggesting the severe threat to clinical treatment of infections. Furthermore, some AMR rates exhibited significant changes over the years. The gentamicin resistance rate significantly increased from 26.0% in 2007–2011 to 52.8% in 2018–2019 (Table 2). Similar results could be found in other aminoglycoside resistance such as kanamycin and streptomycin. The tetracycline resistance rate significantly increased from 45.2% in 2007–2011 to 76.3% in 2016–2017 (P < 0.05) and declined to 62.3% in 2018–2019. The chloramphenicol resistance rate significantly increased from 23.3% in 2007–2011 to 56.6% in 2018–2019 (P < 0.05). It was noted that the ciprofloxacin resistance rate significantly increased from 1.4% in 2007–2011 to 17.0% in 2018–2019 (P < 0.05). The nalidixic acid resistance rate significantly increased from 56.2% in 2007–2011 to 73.6% in 2018–2019 (P < 0.05). The sulfisoxazole resistance rate was maintained at a high level (92.5%-100.0%) over these 10 years. Meanwhile, both the ceftriaxone resistance rate and the ceftiofur resistance rate were maintained at a low level (1.4%–5.3%) over these 10 years. The MDR rate significantly increased from 65.8% in 2007–2011 to 83.0% in 2018–2019 (P < 0.05).
值得注意的是,从 2014 年到 2019 年,超过 50% 的分离株对氨苄西林、链霉素、萘啶酸、四环素、磺胺异恶唑、甲氧苄氨嘧啶-磺胺甲噁唑和氯霉素耐药(表 2),表明对感染的临床治疗构成严重威胁。此外,一些 AMR 率多年来表现出显着变化。庆大霉素耐药率从 2007-2011 年的 26.0% 显着增加到 2018-2019 年的 52.8%(表 2)。在其他氨基糖苷类药物耐药性中也可以找到类似的结果,例如卡那霉素和链霉素。四环素耐药率从 2007-2011 年的 45.2% 显著增加到 2016-2017 年的 76.3% (P < 0.05),并下降到 2018-2019 年的 62.3%。氯霉素耐药率从 2007-2011 年的 23.3% 显著增加到 2018-2019 年的 56.6% (P < 0.05)。值得注意的是,环丙沙星耐药率从 2007-2011 年的 1.4% 显著增加到 2018-2019 年的 17.0% (P<萘啶酸耐药率从 2007-2011 年的 56.2% 显著增加到 2018-2019 年的 73.6% (P < 0.05)。磺胺异恶唑耐药率在这 10 年中保持在较高水平 (92.5%-100.0%)。同时,在这 10 年中,头孢曲松耐药率和头孢噻呋耐药率均维持在较低水平 (1.4%-5.3%)。MDR 率从 2007-2011 年的 65.8% 显著增加到 2018-2019 年的 83.0%。P < 0.05)。
The Poisson generalized linear mixed models (GLMMs) were further used to test whether MDR differed among sampling sources, years, and locations (Table 3). The MDR in non-patient isolates was negatively correlated with that in patients [odds ratio (OR) = 0.957], and they were not significantly different (P > 0.05). MDRs in isolates from 2011 to 2016 were not significantly different with those in 2010 as reference (P > 0.05). However, MDRs in isolates in 2017 and 2018 were positively correlated with those in 2010 as reference (OR > 1), and a significant difference was observed (P < 0.05) (Table 3). In addition, MDR in eight locations (Hongkou, Huangpu, Jinshan, Jingan, Minhang, Pudong, and Putuo) showed no significant difference than that in Changning as reference (P > 0.05) (Table 3).
泊松广义线性混合模型 (GLMM) 进一步用于测试 MDR 是否因采样来源、年份和地点而异(表 3)。非患者分离株的 MDR 与患者呈负相关 [比值比 (OR) = 0.957],差异无统计学意义 (P > 0.05)。2011 年至 2016 年分离株的 MDR 与 2010 年的 MDR 没有显著差异 (P > 0.05)。然而,2017 年和 2018 年分离株的 MDR 与 2010 年的 MDR 呈正相关(OR > 1),观察到显著差异 (P < 0.05)(表 3)。此外,8 个地点(虹口、黄埔、金山、静安、闵行、浦东和普陀)的 MDR 与长宁作为参考的MDR无显著差异(P > 0.05)(表 3)。
TABLE 3 表3
TABLE 3 Analysis of a Poisson generalized linear mixed model examining the likelihood of antibiogram length within the hosts, years, and locations
表3泊松广义线性混合模型的分析,检查宿主、年份和位置内抗菌谱长度的可能性
 No. isolates 不。分离Estimate 估计SEZ score Z 分数P value P
Sources 来源     
Patients 病人84Reference 参考  
Non-patients 非患者101−0.0440.069−0.6370.524
Years      
201030Reference 参考  
201119−0.1270.142−0.8910.373
201217−0.1250.147−0.8490.396
2013220.0830.1280.6520.514
2014260.1210.1211.0010.317
2015120.2800.1451.9310.053
2016140.1660.1431.1590.246
2017150.2770.1352.0490.040
2018300.3960.1103.5940.000
Locations 地点     
Changning 长宁区36Reference 参考  
Hongkou 虹口区140.0380.1690.2230.823
Huangpu 黄埔150.0380.1540.2440.807
Jinshan 金山31−0.1030.132−0.7810.435
Jingan 静安110.0060.1970.0320.974
Minhang 闵行230.0150.1430.1040.917
Pudong 浦东21−0.0300.145−0.2060.837
Putuo 普陀17−0.0050.167−0.0330.974
It appeared that the high-level MDR in S. Typhimurium was likely to be caused by the widespread use of antimicrobials. In 2013, the total amount of antimicrobials used in China was about 162,000 tons, approximately 160 times that of the United Kingdom, and 48% of which was used for human consumption and the rest was shared by animals (28). Furthermore, the production yield of fluoroquinolones (including ciprofloxacin) and β-lactams (including ceftriaxone) in China was estimated to be 27,300 and 34,100 tons, respectively (28). Governmental regulations limiting the use of antimicrobial agents have been issued in China to reduce the potential threat of MDR bacteria to the public health. A national plan against antimicrobial resistance 2016–2020 to strengthen national AMR prevention and control (https://www.gov.cn/xinwen/2016-08/25/content_5102348.htm) in China was issued. Some AMR rates had a declined trend in 2018–2019 compared with those in 2016–2017, such as ampicillin, ciprofloxacin, tetracycline, trimethoprim-sulfamethoxazole, and chloramphenicol, which supported the behavior of the national plan. Indeed, the Chinese government has issued a new national plan against antimicrobial resistance 2022–2025 to further control AMR (http://www.nhc.gov.cn/yzygj/s7659/202210/2875ad7e2b2e46a2a672240ed9ee750f.shtml). In addition, “One Health,” as a new concept and strategy for AMR control, is becoming a research hotspot globally (29). It emphasizes the holistic interconnectedness of animals, the environment, food, and humans and requires coordinated cooperation across fields and industries to address AMR. We believe that these strategies will contribute to the decrease of AMR in the future, which will greatly reduce the threat to public health.
看起来 S 中的高水平 MDR。鼠伤寒可能是由抗菌剂的广泛使用引起的。2013 年,中国使用的抗菌素总量约为 162,000 吨,约为英国的 160 倍,其中 48% 用于人类消费,其余由动物共享 (28)。此外,中国氟喹诺酮类药物(包括环丙沙星)和β-内酰胺类药物(包括头孢曲松)的产量估计分别为 27,300 吨和 34,100 吨 (28)。中国已经颁布了限制使用抗菌剂的政府法规,以减少 MDR 细菌对公共卫生的潜在威胁。中国发布了 2016-2020 年抗微生物药物耐药性国家计划,以加强中国国家抗微生物药物耐药性预防和控制 (https://www.gov.cn/xinwen/2016-08/25/content_5102348.htm)。与 2016-2017 年相比,2018-2019 年的一些 AMR 率呈下降趋势,例如氨苄西林、环丙沙星、四环素、甲氧苄氨嘧啶-磺胺甲噁唑和氯霉素,这些都支持了国家计划的行为。事实上,中国政府已经发布了一项新的《2022-2025 年抗微生物药物耐药性国家计划》,以进一步控制抗菌素耐药性 (http://www.nhc.gov.cn/yzygj/s7659/202210/2875ad7e2b2e46a2a672240ed9ee750f.shtml)。此外,“同一个健康”作为 AMR 控制的新概念和策略,正在成为全球研究热点 (29)。它强调动物、环境、食物和人类的整体相互关联性,需要跨领域和跨行业协调合作以应对 AMR。 我们相信,这些策略将有助于未来降低 AMR,从而大大减少对公共卫生的威胁。

Phylogenomic analysis of S. Typhimurium isolates internationally

To determine the evolutionary dynamics of S. Typhimurium isolates carrying blaCTX-M, phylogenomic analysis was performed on 135 genomes from China and 266 genomes in the public databases from 14 other countries. Major types of ST34 (n = 183), ST19 (n = 133), ST313 (n = 66), and ST36 (n = 11) were identified in these 401 S. Typhimurium isolates. Furthermore, ST types varied in different countries. ST34 was the major type in China and Germany (Fig. 2A). ST19 was the major type in the United Kingdom and Australia. ST313 was the major type in Kenya. Importantly, there was a sharp increase after 2012 (Fig. 2B).
Fig 2
Fig 2 (A) ST distribution of S. Typhimurium isolates bearing blaCTX-M in Australia, China, Germany, Kenya, the United Kingdom, and the United States. (B) The prevalence of S. Typhimurium isolates bearing blaCTX-M from 2005 to 2021. (C) Phylogenomic analysis of S. Typhimurium isolates bearing blaCTX-M from 15 countries. Rings ①–⑨ from inside to outside along the tree represent metadata including STs, countries, sources, and blaCTX-M variants (as shown in the inset legend).
图 2AS 的 ST 分布。在澳大利亚、中国、德国、肯尼亚、英国和美国出现带有 blaCTX-M 的鼠伤寒分离株。(BS 的患病率。2005 年至 2021 年期间携带 blaCTX-M 的鼠伤寒分离株。(CS 的系统发育分析来自 15 个国家/地区的带有 blaCTX-M 的鼠伤寒分离株。沿树从内到外的环 (1)–(9) 表示元数据,包括 ST、国家/地区、来源和 blaCTX-M 变体(如插图图例所示)。
A total of 103,276 core single-nucleotide polymorphisms (SNPs) were extracted from these 401 S. Typhimurium genome sequences to construct a maximum likelihood tree (Fig. 2C). Phylogenomic results suggested that the clustering effect of S. Typhimurium isolates was indicated by their ST types. These S. Typhimurium isolates evolved into ST34, ST313, ST19, and ST36 clones (Fig. 2C ; Fig. S1). The ST36 clone was composed of 12 human isolates from the United Kingdom (n = 10), China (n = 1), and Sri Lanka (n = 1), most of which carried blaCTX-M-15. The ST19 clone was separated into ST19C1, ST19C2, and ST19C3 clades. Clade ST19C2 evolved from clade ST19C1, both of which showed a far phylogenetic relationship with clade ST19C3. Clade ST19C2 was mainly composed of isolates from Australia, most of which carried blaCTX-M-9. Clade ST19C3 was mainly composed of human isolates from the United Kingdom, most of which also carried blaCTX-M-9. The ST313 clone was composed of human isolates from Kenya and the United Kingdom, all of which carried blaCTX-M-15, suggesting that their genetic relationships were close. Furthermore, most isolates from China belonged to ST34 and fell into the ST34 clone (Fig. 2C). Besides the isolates from China, this ST34 clone also consisted of some isolates from the United Kingdom, Germany, Thailand, and Australia, showing their close genetic relationship. In the ST34 clone, it was observed that one historical, independent location jump event from China to Germany occurred in a 1998 and then a subsequent location jump back into China in 2005 (Fig. S2). Another location jump event across the United Kingdom and China occurred in 2004 (Fig. S2). The location jump events implied that the international spread of the S. Typhimurium ST34 clone occurred.
从这 401 个 S 中共提取了 103,276 个核心单核苷酸多态性 (SNP)。鼠伤寒基因组序列构建最大似然树(图 2C)。系统发育结果表明,S 的聚类效应。鼠伤寒分离株由其 ST 型表示。这些 S.鼠伤寒分离株进化成 ST34、ST313、ST19 和 ST36 克隆(图 2C;图 S1)。ST36 克隆由来自英国 (n = 10)、中国 (n = 1) 和斯里兰卡 (n = 1) 的 12 个人类分离株组成,其中大多数携带 blaCTX-M-15。将 ST19 克隆分离为 ST19C1 、 ST19C2 和 ST19C3 分支。ST19C2 分支是从 ST19C1 分支进化而来的,两者均与 ST19C3 分支存在远系统发育关系。分支 ST19C2 主要由来自澳大利亚的分离株组成,其中大部分携带 blaCTX-M-9。分支 ST19C3 主要由来自英国的人分离株组成,其中大多数还携带 blaCTX-M-9。ST313 克隆由来自肯尼亚和英国的人类分离株组成,它们都携带 blaCTX-M-15,表明它们的遗传关系密切。此外,大多数来自中国的分离株属于 ST34 并属于 ST34 克隆(图 2C)。除了来自中国的分离株外,该 ST34 克隆还包括一些来自英国、德国、泰国和澳大利亚的分离株,显示出它们之间的密切亲缘关系。在 ST34 克隆中,观察到 1998 年发生了一次从中国到德国的历史性独立位置跳跃事件,然后随后在 2005 年又发生了一次位置跳跃回中国(图 S2)。 2004 年,英国和中国发生了另一次位置跳跃事件(图 S2)。位置跳跃事件意味着 S 的国际传播。发生鼠伤寒 ST34 克隆。

Phylogenomic analysis of S. Typhimurium isolates in China
S 的系统发育分析中国的鼠伤寒分离株

To further understand the evolutional characteristics of S. Typhimurium isolates in China, a phylogenetic tree was re-constructed on 135 Chinese genomes including 16 genomes in this study (Fig. 3). It was found that ST34 isolates in China fell into clades ST34C1 and ST34C2, and isolates from Shanghai fell into clade ST34C2. It was noted that the base isolates of clade ST34C2 were from Shanghai and then evolved in Guangdong and Beijing. It was interesting that base isolates in Shanghai carried no mutation in gyrA, but the rest in ST34C2 obtained a mutation in the gyrA 87 site. Point mutations in the quinolone resistance-determining region (QRDR) of GyrA and ParC have been demonstrated to lead to decreased susceptibility to fluoroquinolones (30, 31). The mutation in gyrA might provide an evolutional power for ST34C2 isolates under external antimicrobial selective pressure.
进一步了解 S 的进化特征。中国鼠伤寒分离株,在 135 个中国基因组上重建了系统发育树,其中本研究涉及 16 个基因组(图 3)。研究发现,中国的 ST34 分离株属于 ST34C1 和 ST34C2 分支,上海的分离株属于 ST34C2 分支。值得注意的是,ST34C2 分支的基础分离株来自上海,然后在广东和北京进化。有趣的是,上海的碱基分离株在 gyrA 中没有携带突变,但 ST34C2 中的其余分离株在 gyrA 87 位点获得了突变。GyrA 和 ParC 的喹诺酮类药物耐药决定区 (QRDR) 中的点突变已被证明会导致对氟喹诺酮类药物的敏感性降低 (3031)。gyrA 的突变可能为外部抗菌药物选择压力下的 ST34C2 分离株提供进化能力。
Fig 3 图 3
Fig 3 Phylogenetic tree of S. Typhimurium isolates bearing blaCTX-M in China. Leaf nodes are colored by provinces (see the key). The colors of isolate tips represent metadata columns including STs, provinces, years, sources, blaCTX-M variants (blaCTX-M-14, blaCTX-M-15, blaCTX-M-55, and blaCTX-M-65), and mutations in QRDR of GyrA (as shown in the inset legend). Light-green and pink shading shows clades ST34C1 and ST34C2, respectively.
图 3S 的系统发育树在中国带有 blaCTX-M 的鼠伤寒分离株。叶节点按省份着色(参见 key)。分离提示的颜色表示元数据列,包括 ST、省份、年份、来源、blaCTX-M 变体(blaCTX-M-14blaCTX-M-15blaCTX-M-55blaCTX-M-65)以及 GyrA 的 QRDR 中的突变(如插图图例所示)。浅绿色和粉红色阴影分别显示进化枝 ST34C1 和 ST34C2。
ST34C1 was mainly composed of isolates from Guangdong and Zhejiang, and ST34C2 was mainly composed of isolates from Shanghai, Beijing, and Guangdong. The difference between ST34C1 and ST34C2 was that blaCTX-M-55 was the major type in the former but blaCTX-M-14 in the latter. Furthermore, another difference was that no mutation in gyrA occurred in the former. In addition, isolates from different sources (ST34C1: human, pork, chicken, and beef isolates; ST34C2: human and pork isolates) showed a close genetic relationship, suggesting that clone spread occurred.
ST34C1 主要由来自广东和浙江的分离株组成,ST34C2 主要由来自上海、北京和广东的分离株组成。ST34C1 和 ST34C2 的区别在于 blaCTX-M-55 是前者的主要类型,而 blaCTX-M-14 是后者的主要类型。此外,另一个区别是前者没有发生 gyrA 突变。此外,来自不同来源的分离株(ST34C1:人、猪、鸡和牛肉分离株;ST34C2: 人分离株和猪分离株)显示出密切的遗传关系,表明克隆传播发生。

Plasmid sequence analysis of S. Typhimurium isolates carrying blaCTX-M
S 的质粒序列分析。携带 blaCTX-M 的鼠伤寒分离株

Two plasmids (p11216B and p10405B) from the SJTUF11216 and SJTUF14504 were further sequenced for analysis (Fig. 4). Plasmids p11216B (Fig. 4A) and p10405B (Fig. 4B) were identified to be 87,292 bp and 88,993 bp in size, respectively. Plasmid p11216B shared 137 of the 141-bp IncI (Gamma) replicon gene (Fig. S3A), and the same result was also found in p10405B (Fig. S3B). Both of these two plasmids belonged to IncI (Gamma)-like types.
对来自 SJTUF11216 和 SJTUF14504 的两个质粒 (p11216B 和 p10405B) 进一步测序以进行分析(图 4)。质粒 p11216B(图 4A)和 p10405B(图 4B)的大小分别为 87,292 bp 和 88,993 bp。质粒 p11216B 共享 137 个 141 bp IncI (Gamma) 复制子基因(图 S3A),在 p10405B 中也发现了相同的结果(图 S3B)。这两种质粒都属于 IncI (Gamma) 样类型。
Fig 4 图 4
Fig 4 Sequence characterization of p11216B plasmid (A) and p10405B plasmid (B) in this study. Sequence comparison of IncI (Gamma) plasmids and IncI1-I (Alpha) plasmids (C). IncI (Gamma) plasmids included S. Enteritidis pSE115 (Accession number KT868530). IncI1-I (Alpha) plasmids included Escherichia coli pEK204 (Accession number NC_013120), Escherichia coli pEC32-IncI1 (Accession number CP085621), S. Heidelberg pSL476_91 (Accession number NC_011081), and S. Typhimurium pR17.1451_p102k (Accession number CP063296). Areas shaded in gray indicate homologies between the corresponding genetic loci.
图 4本研究中 p11216B 质粒 (A) 和 p10405B 质粒 (B) 的序列表征。IncI (γ) 质粒和 IncI1-I (Alpha) 质粒 (C) 的序列比较。IncI (γ) 质粒包括 S。Enteritidis pSE115 (登录号 KT868530)。IncI1-I (Alpha) 质粒包括大肠埃希菌 pEK204 (登录号 NC_013120)、大肠埃希菌 pEC32-IncI1 (登录号 CP085621)、S。Heidelberg pSL476_91(登录号 NC_011081)和 S. Typhimurium pR17.1451_p102k(登录号 CP063296)。灰色阴影区域表示相应遗传位点之间的同源性。
It was found that p11216B was highly similar to p10405B (98% coverage; 99.94% identity). In addition, both of these two plasmids showed being highly similar to another IncI1 plasmid pSE115 (Accession number KT868530; 98% coverage; 99.93% identity), which was recovered from a clinical Salmonella Enteritidis isolate in China. These plasmids were carried by different hosts, which suggested that the transfer of plasmids might occur through conjugation interspecies. The major difference between p11216B and p10405B was that an IS91 element was inserted into the backbone between trbA and finQ genes (Fig. 4A and B). Gene blaCTX-M-14 was linked to the transposable elements ISEcp1 upstream and ΔIS903B downstream (Fig. 4A). Furthermore, this transposon unit was inserted into the conjugational transfer region of the plasmid. The same result was also found in p10405B (Fig. 4B). Mobile genetic elements like insertion sequences could mediate the horizontal transfer of ARGs (32). A previous study demonstrated that ISEcp1 could move blaCTX-M-2 from the chromosome to the plasmid in Kluyvera ascorbata through transposition (33). Therefore, we speculated that ISEcp1 might play a key role in the horizontal transfer of blaCTX-M genes in S. Typhimurium.
结果发现 p11216B 与 p10405B 高度相似 (98% 的覆盖率;99.94% 的同一性)。此外,这两种质粒都显示出与另一种 IncI1 质粒 pSE115 (登录号 KT868530;98% 覆盖度;99.93% 鉴定)高度相似,后者是从中国临床肠炎沙门氏菌分离株中回收的。这些质粒由不同的宿主携带,这表明质粒的转移可能通过种间结合发生。p11216B 和 p10405B 之间的主要区别在于 IS91 元件入到 trbA 和 finQ 基因之间的骨架中(图 4A 和 B)。基因 blaCTX-M-14 与上游的转座因子 ISEcp1 和下游的 ΔIS903B 有关(图 4A)。此外,该转座子单元入质粒的偶联转移区。在 p10405B 中也发现了相同的结果(图 4B)。插入序列等移动遗传元件可以介导 ARG 的水平转移 (32)。先前的一项研究表明,ISEcp1 可以通过转座将 blaCTX-M-2染色体移动到抗坏血酸克鲁维菌的质粒 (33)。因此,我们推测 ISEcp1 可能在 SblaCTX-M 基因的水平转移中发挥关键作用。鼠伤寒。
We further compared these two plasmids in this study with epidemic IncI1-I (Alpha) plasmids (Fig. 4C). It was found that IncI (Gamma) plasmids including p11216B and p10405B shared a highly similar plasmid backbone with IncI1-I (Alpha) plasmids, suggesting that they might be originated from an ancestor. It appeared that the ISEcp1-blaCTX-M-14-ΔIS903B module was special for IncI (Gamma) plasmids, which was absent for IncI1-I (Alpha) plasmids. The reasons were urgent to be explored in the future.
我们进一步将本研究中的这两种质粒与流行的 IncI1-I (Alpha) 质粒进行了比较(图 4C)。研究发现,包括 p11216B 和 p10405B 在内的 IncI (Gamma) 质粒与 IncI1-I (Alpha) 质粒具有高度相似的质粒骨架,表明它们可能起源于一个祖先。ISEcp1-blaCTX-M-14-ΔIS 903B 模块似乎对 IncI (Gamma) 质粒是特殊的,而 IncI1-I (Alpha) 质粒则不存在。这些原因亟待将来探索。

Plasmid transfer analysis
质粒转移分析

Conjugation experiments were carried out to determine the transferability of plasmids p11216B and p10405B with E. coli C600 as the recipient. Transconjugants SJTUF11216-TC and SJTUF10405-TC were successfully obtained (Table 4), suggesting that IncI (Gamma)-like plasmids in this study could transfer through conjugation. Conjugation frequencies of SJTUF11216 and SJTUF10405 were 2.55 × 10−3 and 9.55 × 10−4, respectively, suggesting their strong conjugation transferability. The conjugative regions of self-transmissible mobile genetic elements typically consist of four modules: the origin of transfer site (oriT), relaxase gene, gene encoding type IV coupling protein (T4CP), and a gene cluster for the bacterial type IV secretion system (T4SS) (34). The above genetic elements were found in IncI (Gamma)-like plasmids, which may explain their successful transfer by conjugation in S. Typhimurium.
进行偶联实验以确定以大肠杆菌 C600 为受体的质粒 p11216B 和 p10405B 的转移性。成功获得转偶联体 SJTUF11216-TC 和 SJTUF10405-TC(表 4),表明本研究中的 IncI (Gamma) 样质粒可以通过偶联转移。SJTUF11216 和 SJTUF10405 的共轭频率分别为 2.55 × 10−3 和 9.55 × 10−4,表明它们具有很强的共轭可转移性。自传性移动遗传元件的共轭区通常由四个模块组成:转移位点起点 (oriT)、松弛酶基因、编码 IV 型偶联蛋白 (T4CP) 的基因和细菌 IV 型分泌系统 (T4SS) 的基因簇 (34)。上述遗传元件在 IncI (Gamma) 样质粒中发现,这可能解释了它们在 S 中通过偶联成功转移的原因。鼠伤寒。
TABLE 4 表 4
TABLE 4 Antimicrobial MICs of S. Typhimurium SJTUF11216 and SJTUF10405 isolates as well as their transconjugants
表 4S 的抗菌 MICs。鼠伤寒 SJTUF11216 和 SJTUF10405 分离株及其转偶联物
Antimicrobial agents 抗菌剂R value (μg/mL) R 值 (μg/mL)MICs MIC
SJTUF11216SJTUF11216-TCSJTUF10405SJTUF10405-TC
β-Lactams β-内酰胺     
Ampicillin 氨 苄 西林≥32≥1,024 (R) ≥1,024 (R)512 (R) 512 (R)≥1,024 (R) ≥1,024 (R)512 (R) 512 (R)
Ceftriaxone 头孢曲松≥416 (R) 16 (R)16 (R) 16 (R)16 (R) 16 (R)16 (R) 16 (R)
Ceftiofur 头孢噻氟≥864 (R) 64 (R)16 (R) 16 (R)64 (R) 64 (R)32 (R) 32 (R)
Aminoglycosides 氨基糖苷类     
Gentamicin 庆大霉素≥161 (S) 1 (小)0.5 (S) 0.5 (秒)8 (I) 8 (一)0.5 (S) 0.5 (秒)
Streptomycin 链霉素≥6432 (I) 32 (一)≤4 (S) ≤4 (实)≥256 (R) ≥256 (R)≤4 (S) ≤4 (实)
Kanamycin 卡那霉素≥64≥1,024 (R) ≥1,024 (R)≤4 (S) ≤4 (实)32 (I) 32 (一)≤4 (S) ≤4 (实)
Quinolones 喹诺酮类     
Nalidixic acid 萘啶酸≥32≥256 (R) ≥256 (R)4 (S) 4 (实)≥256 (R) ≥256 (R)4 (S) 4 (实)
Ciprofloxacin 环丙沙星≥11 (R) 1 (R)0.125 (S) 0.125 (秒)2 (R) 2 (R)0.125 (S) 0.125 (秒)
Tetracyclines 四环素类     
Tetracycline 四环素≥16128 (R) 128 (R)1 (S) 1 (小)128 (R) 128 (R)1 (S) 1 (小)
Sulphamethoxazole 磺胺甲噁唑     
Sulfisoxazole 磺胺异恶唑≥512≥2,048 (R) ≥2,048 (R)128 (S) 128 (实)≥2,048 (R) ≥2,048 (R)128 (S) 128 (实)
Folate pathway antagonists
叶酸途径拮抗剂
     
Trimethoprim-sulfamethoxazole
甲氧苄啶-磺胺甲噁唑
≥4/76≥32/608 (R) ≥32/608 (R)1/19 (S) 1/19(实号)≥32/608 (R) ≥32/608 (R)1/19 (S) 1/19(实号)
Phenicols     
Chloramphenicol 氯霉素≥32256 (R) 256 (R)4 (S) 4 (实)256 (R) 256 (R)4 (S) 4 (实)
Lipopeptides 脂肽     
Colistin 粘菌素≥8≤0.5 (S) ≤0.5 (实)≤0.5 (S) ≤0.5 (实)≤0.5 (S) ≤0.5 (实)≤0.5 (S) ≤0.5 (实)
Carbapenems 碳青霉烯类     
Meropenem 美罗培南≥4≤0.125 (S) ≤0.125 (实)≤0.125 (S) ≤0.125 (实)≤0.125 (S) ≤0.125 (实)≤0.125 (S) ≤0.125 (实)
Imipenem 亚胺培南≥4≤0.125 (S) ≤0.125 (实)≤0.125 (S) ≤0.125 (实)≤0.125 (S) ≤0.125 (实)≤0.125 (S) ≤0.125 (实)
Antimicrobial susceptibility tests showed that SJTUF11216-TC exhibited resistance to ceftriaxone (MIC = 16 µg/mL) as well as other β-lactam antimicrobials such as ampicillin (MIC = 512 µg/mL) and ceftiofur (MIC = 16 µg/mL) (Table 4). SJTUF10405-TC exhibited resistance to ceftriaxone (MIC = 16 µg/mL) as well as other β-lactam antimicrobials such as ampicillin (MIC = 512 µg/mL) and ceftiofur (MIC = 32 µg/mL) (Table 4). Gene blaCTX-M-14 was identified in transconjugants SJTUF11216-TC and SJTUF10405-TC, suggesting that horizontal transfer of blaCTX-M-14 on the IncI (Gamma)-like plasmids occurred in the conjugation. The MICs of ciprofloxacin in transconjugants decreased 8–16 times compared with those in the donors, which resulted from the absence of the mutation in gyrA in the recipient. These findings suggested that IncI (Gamma)-like plasmids contributed to the horizontal transfer of blaCTX-M-14 through conjugation.
药敏试验显示,SJTUF11216-TC 对头孢曲松 (MIC = 16 μg/mL) 以及其他β-内酰胺类抗菌剂如氨苄青霉素 (MIC = 512 μg/mL) 和头孢噻呋 (MIC = 16 μg/mL) 表现出耐药性(表 4)。SJTUF10405-TC 对头孢曲松 (MIC = 16 μg/mL) 以及其他β-内酰胺类抗菌剂,如氨苄青霉素 (MIC = 512 μg/mL) 和头孢噻呋 (MIC = 32 μg/mL) 表现出耐药性(表 4)。在转偶联体 SJTUF11216-TC 和 SJTUF10405-TC 中鉴定出基因 blaCTX-M-14,表明 blaCTX-M-14 在 IncI (γ) 样质粒上的水平转移发生在偶联中。与供体相比,转偶联体中环丙沙星的 MIC 降低了 8-16 倍,这是由于受体体内 gyrA 没有突变。这些发现表明,IncI (Gamma) 样质粒有助于通过偶联水平转移 blaCTX-M-14

Conclusion 结论

The MDR S. Typhimurium isolates presented a large-scale prevalence in Shanghai, China, and especially the ceftriaxone and ciprofloxacin co-resistance isolates aroused great concern. The international spread of S. Typhimurium isolates was observed, especially the ST34 clone. It was noted that ST34 isolates from Shanghai had fallen into the ST34C2 clade accompanied by ESBL gene blaCTX-M-14 and a mutation in the gyrA 87 site, which might be responsible for the ceftriaxone and ciprofloxacin co-resistance. Our study suggests that necessary strategies such as a national plan and “One Health” theory are warranted to prevent the further dissemination of MDR S. Typhimurium, especially the newly emerging ST34C2 clade. We also advocate food enterprises, livestock farms, and hospitals to strictly comply with the national AMR prevention and control document and adopt the “One Health” theory to reduce AMR threat to public health.
MDR S.鼠伤寒分离株在中国上海呈现大规模流行,尤其是头孢曲松和环丙沙星的共耐药分离株引起了高度关注。S.观察到鼠伤寒分离株,尤其是 ST34 克隆。值得注意的是,来自上海的 ST34 分离株属于 ST34C2 分支,伴有 ESBL 基因 blaCTX-M-14gyrA 87 位点突变,这可能是头孢曲松和环丙沙星共同耐药的原因。我们的研究表明,有必要采取必要的策略,例如国家计划和“同一个健康”理论,以防止 MDR S 的进一步传播。鼠伤寒,尤其是新出现的 ST34C2 分支。我们还倡导食品企业、畜牧场和医院严格遵守国家抗菌素耐药性防控文件,采用“同一个健康”理论,以减少抗菌素耐药性对公众健康的威胁。

MATERIALS AND METHODS 材料和方法

Bacterial isolates in this study
本研究中的细菌分离物

A total of 2,211 Salmonella isolates from foods, patients, and environments in Shanghai, China, were collected during 2007–2019. The 277 S. Typhimurium isolates were then selected in this study, and the rest of serotyped isolates were analyzed in other studies. Food sources included pork, chicken, duck, aquatic products, and others. Human sources included the stool and blood of health checkers, outpatients, and inpatients in hospitals for diarrhea treatment. Environment sources included wastewater and poultry feces. All the above Salmonella isolates were identified via API20E test strips (BioMerieux, France) and serotyped via commercial antiserum (Statens Serum Institute, Copenhagen, Denmark) according to the manufacturer’s guidelines.
2007 年至 2019 年期间,共从中国上海的食物、患者和环境中收集了 2,211 株沙门氏菌分离株。277 S.然后在本研究中选择了鼠伤寒分离株,其余血清型分离株在其他研究中进行了分析。食物来源包括猪肉、鸡肉、鸭肉、水产品等。人源包括健康检查员、门诊病人和医院住院病人的粪便和血液,用于腹泻治疗。环境来源包括废水和家禽粪便。根据制造商的指南,通过 API20E 试纸(BioMerieux,法国)鉴定上述所有沙门氏菌分离株,并通过商业抗血清(Statens Serum Institute,哥本哈根,丹麦)进行血清分型。

Antimicrobial susceptibility testing
药敏试验

Antimicrobial susceptibility testing was performed on S. Typhimurium isolates using the agar dilution method provided by the Clinical and Laboratory Standard Institute (35) and the European Committee on Antimicrobial Susceptibility Testing (36). The following antimicrobials were selected: amikacin, ampicillin, ceftiofur, ceftriaxone, nalidixic acid, ciprofloxacin, chloramphenicol, kanamycin, gentamicin, streptomycin, tetracycline, sulfamethoxazole/trimethoprim, sulfisoxazole, meropenem, and imipenem. Bacterial susceptibility to colistin was performed with the broth microdilution method recommended by the European Committee on Antimicrobial Susceptibility Testing. Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212 were used as quality control strains.
S 进行药敏试验。使用临床和实验室标准研究所 (35) 和欧洲药敏试验委员会 (36) 提供的琼脂稀释方法的鼠伤寒分离株。选择以下抗菌药物:阿米卡星、氨苄西林、头孢噻呋、头孢曲松、萘啶酸、环丙沙星、氯霉素、卡那霉素、庆大霉素、链霉素、四环素、磺胺甲噁唑/甲氧苄啶、磺胺异恶唑、美罗培南和亚胺培南。使用欧洲抗菌素敏感性测试委员会推荐的肉汤微量稀释法进行细菌对粘菌素的敏感性。大肠杆菌以 ATCC 25922 和粪肠球菌 ATCC 29212 为质控菌株。

Whole-genome sequencing 全基因组测序

The S. Typhimurium isolates were grown in 250 mL lysogeny broth overnight at 37°C, with agitation at 200 rpm. The cell biomass was harvested after 10 min centrifugation at 12,000 × g. Genomic DNA was extracted from S. Typhimurium isolates using the QIAamp DNA Mini Kit (Qiagen, CA). Genomic DNA was sequenced using a combination of PacBio RS II and Illumina sequencing platforms.
S.鼠伤寒分离株在 250 mL 溶原肉汤中于 37°C 下生长过夜,并以 200 rpm 搅拌。以 12,000 × g 离心 10 分钟后收获细胞生物量。从 S 中提取基因组 DNA。使用 QIAamp DNA Mini Kit (Qiagen, CA) 分离鼠伤寒。使用 PacBio RS II 和 Illumina 测序平台的组合对基因组 DNA 进行测序。
For Illumina sequencing, genomic DNA was used for each strain in sequencing library construction. DNA samples were sheared into 400–500-bp fragments using a Covaris M220 Focused Acoustic Shearer following the manufacturer’s protocol. Illumina sequencing libraries were prepared from the sheared fragments using the NEXTFLEX Rapid DNA-Seq Kit. The prepared libraries then were used for paired-end Illumina sequencing (2 × 150 bp) on Illumina NovaSeq 6000 (Illumina Inc., San Diego, CA, USA). For PacBio sequencing, genomic DNA was fragmented at ~10 kb. DNA fragments were then purified, end-repaired, and ligated with SMRT bell sequencing adapters following the manufacturer’s recommendations (Pacific Biosciences, Menlo Park, CA, USA). Next, the PacBio library was prepared and sequenced on one SMRT cell using standard methods. Sequence data from the PacBio RS II platform were assembled using the Canu software (37). Finally, the consensus genome sequence was determined using the Pilon software (38). The plasmid sequence was extracted from the assembled whole-genome sequence.
对于 Illumina 测序,测序文库构建中的每个菌株都使用基因组 DNA。按照制造商的方案,使用 Covaris M220 聚焦声波采煤机将 DNA 样品剪切成 400–500 bp 的片段。使用 NEXTFLEX Rapid DNA-Seq 试剂盒从剪切片段制备 Illumina 测序文库。然后将制备的文库用于 Illumina NovaSeq 6000 (Illumina Inc., San Diego, CA, USA) 上的双端 Illumina 测序 (2 × 150 bp)。对于 PacBio 测序,基因组 DNA 在 ~10 kb 处片段化。然后按照制造商的建议(Pacific Biosciences, Menlo Park, CA, USA)纯化、末端修复并使用 SMRT 钟形测序接头连接 DNA 片段。接下来,使用标准方法在一个 SMRT 细胞上制备和测序 PacBio 文库。使用 Canu 软件组装来自 PacBio RS II 平台的序列数据 (37)。最后,使用 Pilon 软件确定共有基因组序列 (38)。质粒序列是从组装的全基因组序列中提取的。
Annotation of the genome was performed using RAST (39), BLASTn, and BLASTp programs. The encoding genes in the genome were predicted by Glimmer (40) and GeneMarkS (41). The tRNAs, rRNAs, and repeated sequences in the genome were predicted by tRNAscan-SE v2.0 (http://trna.ucsc.edu/software/), Barrnap (https://github.com/tseemann/barrnap), and Tandem Repeats Finder (http://tandem.bu.edu/trf/trf.html), respectively. The origin of transfers in DNA sequences of bacterial mobile genetic elements was identified using oriTfinder (https://tool-mml.sjtu.edu.cn/oriTfinder/oriTfinder.html).
使用 RAST (39) 、 BLASTn 和 BLASTp 程序对基因组进行注释。基因组中的编码基因由 Glimmer (40) 和 GeneMarkS (41) 预测。tRNAscan-SE v2.0 (http://trna.ucsc.edu/software/) 、 Barrnap (https://github.com/tseemann/barrnap) 和 Tandem Repeats Finder (http://tandem.bu.edu/trf/trf.html) 分别预测基因组中的 tRNAs 、 rRNAs 和重复序列。使用 oriTfinder (https://tool-mml.sjtu.edu.cn/oriTfinder/oriTfinder.html) 鉴定细菌移动遗传元件 DNA 序列中转移的来源。

AMR determinant analysis AMR 决定因素分析

ResFinder 4.1 (https://cge.cbs.dtu.dk/services/ResFinder/) was used to identify ARGs and chromosomal mutations mediating AMR in the genome (42). MLST 2.0 (https://cge.food.dtu.dk/services/MLST/) was used to identify the STs of bacteria (43). PlasmidFinder 2.1 (https://cge.food.dtu.dk/services/PlasmidFinder/) was used to identify replicon types of plasmids (44). ISfinder (https://www-is.biotoul.fr/) was used to analyze the IS and transposons in the genome.
ResFinder 4.1 (https://cge.cbs.dtu.dk/services/ResFinder/) 用于鉴定基因组中介导 AMR 的 ARG 和染色体突变 (42)。MLST 2.0 (https://cge.food.dtu.dk/services/MLST/) 用于鉴定细菌的 STs (43)。PlasmidFinder 2.1 (https://cge.food.dtu.dk/services/PlasmidFinder/) 用于鉴定质粒的复制子类型 (44)。ISfinder (https://www-is.biotoul.fr/) 用于分析基因组中的 IS 和转座子。

Phylogenomic analysis 系统发育分析

Phylogenomic analysis was performed on genome sequences of S. Typhimurium isolates from China (n = 135) including 16 genome sequences in this study and other countries (n = 266) available from the NCBI public database (by the time 4 June 2021). These 16 isolates for phylogenomic analysis were selected by the number and spectrum of tested antimicrobials. We have added the detailed table (Table S2 ) to explain their AMR characterization. Sequence from S. Typhimurium LT2 (Accession number NC_003197) was used as the reference genome. SNPs were extracted using Snippy (https://github.com/tseemann/snippy) to generate core genomic alignment. Gubbins (45) was then used to remove recombination regions. The core SNP alignment was used to generate a maximum likelihood phylogeny using RAxML v8.1.23 (46) with the GTR nucleotide substitution model. Furthermore, 100 random bootstrap replicates were conducted to assess the node support. The phylogenetic tree was visualized together with metadata using Microreact v5.99.0 (47).
S 的基因组序列进行系统发育分析。来自中国 (n = 135) 的鼠伤寒分离株,包括本研究中的 16 个基因组序列,以及 NCBI 公共数据库(截至 2021 年 6 月 4 日)提供的其他国家 (n = 266)。这 16 种用于系统发育分析的分离株是根据测试的抗菌剂的数量和谱选择的。我们添加了详细表格(表 S2 )来解释它们的 AMR 特性。Sequence from S.鼠伤寒 LT2 (Accession Number NC_003197) 用作参考基因组。使用 Snippy (https://github.com/tseemann/snippy) 提取 SNP 以生成核心基因组比对。然后使用 Gubbins (45) 去除重组区域。使用 RAxML v8.1.23 (46) 和 GTR 核苷酸替换模型,使用核心 SNP 比对生成最大似然系统发育。此外,进行了 100 次随机 bootstrap 重复以评估节点支持。使用 Microreact v5.99.0 (47) 将系统发育树与元数据一起可视化。
A timescale phylogenetic tree of ST34 clone was re-constructed to get the evolutionary history using Beast v2.7.6. The GTR substitution model, random local clock model, and coalescent extended Bayesian skyline model were chosen with BEAUti 2. Markov chain Monte Carlo analyses were run three times with chain lengths of 1.2 × 108 with sampling every 1,000 generations and using a burn-in set at 10%. The effective sample size of all parameters was >200. A timescaled tree was obtained using the maximum sum clade credibility topology with TreeAnnotator v2.6.0.
使用 Beast v2.7.6 重建 ST34 克隆的时间尺度系统发育树,以获得进化历史。GTR 替换模型、随机局部时钟模型和合并扩展贝叶斯天际线模型由 BEAUti 2 选择。马尔可夫链蒙特卡洛分析运行 3 次,链长为 1.2 × 108,每 1,000 代采样一次,并使用 10% 的老化设置。所有参数的有效样本量为 >200。使用 TreeAnnotator v2.6.0 的最大总和分支可信度拓扑获得时间尺度树。

Conjugation experiment 偶联实验

Conjugation experiments were performed as described previously (25) with E.coli C600 as the recipient. Briefly, Salmonella isolates used as the donor were incubated with the recipient overnight, and then, the overnight cultures were mixed and transferred to filter paper on an lysogeny broth (Beijing Landbridge Technology Co. Ltd., China) plate. Transconjugants were selected on MacConkey agar plates supplemented with ceftriaxone (4 µg/mL) and rifampin (200 µg/mL). PCR-based replicon typing using 18 replicon primers was performed on transconjugants as described previously (48). Conjugation frequencies were also calculated as the number of transconjugants per recipient.
如前所述 (25) 以大肠杆菌 C600 为受体进行偶联实验。简而言之,将用作供体的沙门氏菌分离株与受体一起孵育过夜,然后将过夜培养物混合并转移到溶原肉汤(北京蓝桥科技有限公司,中国)板上的滤纸中。在补充有头孢曲松 (4 μg/mL) 和利福平 (200 μg/mL) 的 MacConkey 琼脂平板上选择转偶联物。如前所述,使用 18 个复制子引物对转偶联物进行基于 PCR 的复制子分型 (48)。偶联频率也计算为每个受体的转偶联数。

Statistical analysis 统计分析

The AMR data were analyzed using DPS software 9.5 (Institute of Insect Science, Zhejiang University, Hangzhou, China). Significant (P < 0.05) difference in AMR in S. Typhimurium isolates from patients and foods during 2007–2019 was determined using the Pearson χ2 test at the 5% level (α = 0.05).
使用 DPS 软件 9.5 (浙江大学昆虫科学研究所,中国杭州) 对 AMR 数据进行分析。S 中 AMR 的显着 (P < 0.05) 差异。使用 5% 水平 (α = 0.05) 的 Pearson χ2 检验测定 2007-2019 年期间患者和食物中的鼠伤寒分离株。
The antibiogram length was considered as the number of antimicrobial classes to which an isolate was phenotypically resistant. The MDR was refined as a dependent variable to test whether it differed among sources, years, and locations by utilizing GLMMs as a previous study (49). The “lme4” package of R 4.2.0 (Lucent Technologies, Jasmine Mountain, USA) was used to analyze the antibiogram length, especially MDR data. MDR data were divided into patient and non-patient groups. The isolated years of strains from these groups must be continuous according to the requirements of the GLMMs. Therefore, 185 strains were selected for the analysis of Poisson GLMMs.
抗菌谱长度被认为是分离株对表型耐药的抗菌类别的数量。将 MDR 提炼为因变量,以通过使用 GLMM 作为先前的研究来测试它是否在来源、年份和地点之间有所不同 (49)。使用 R 4.2.0 (Lucent Technologies, Jasmine Mountain, USA) 的 “lme4” 包分析抗菌谱长度,尤其是 MDR 数据。将 MDR 数据分为患者组和非患者组。根据 GLMM 的要求,来自这些组的分离菌株年限必须是连续的。因此,选择了 185 株菌株用于 Poisson GLMM 的分析。

ACKNOWLEDGMENTS 确认

This research was supported by the National Natural Science Foundation of China (grant number 32202193 and 31972169) and the Science and Technology Commission of Shanghai Municipality, China (grant number 21N31900200).
这项研究得到了中国国家自然科学基金(批准号 32202193 和 31972169)和中国上海市科学技术委员会(批准号 21N31900200)的支持。

SUPPLEMENTAL MATERIAL 补充资料

Supplemental figures and tables - spectrum.00262-24-s0001.docx
补充数字和表格 - spectrum.00262-24-s0001.docx
Tables S1 and S2; Fig. S1-S3.
表 S1 和 S2;图 S1-S3.
ASM does not own the copyrights to Supplemental Material that may be linked to, or accessed through, an article. The authors have granted ASM a non-exclusive, world-wide license to publish the Supplemental Material files. Please contact the corresponding author directly for reuse.
先进电子汇电子不拥有可能链接到文章或通过文章访问的补充材料的版权。作者已授予 ASM 非排他性的全球许可,以发布 Supplemental Material 文件。请直接联系通讯作者进行重复使用。

REFERENCES 引用

1.
Liang Z, Ke B, Deng X, Liang J, Ran L, Lu L, He D, Huang Q, Ke C, Li Z, Yu H, Klena JD, Wu S. 2015. Serotypes, seasonal trends, and antibiotic resistance of non-typhoidal Salmonella from human patients in Guangdong province,China, 2009-2012. BMC Infect Dis 15.
梁振军, 柯B, 邓旭, 梁振军, 冉丽, 卢丽, 何丹, 黄Q, 柯C, 李Z, 余华, Klena JD, 吴S. 2015.2009-2012 年中国广东省人类患者非伤寒沙门氏菌的血清型、季节性趋势和抗生素耐药性。BMC 感染 Dis 15。
2.
Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson M-A, Roy SL, Jones JL, Griffin PM. 2011. Foodborne illness acquired in the United States-major pathogens. Emerg Infect Dis 17:7–15.
Scallan E、Hoekstra RM、Angulo FJ、Tauxe RV、Widdowson MA、Roy SL、Jones JL、Griffin PM. 2011。在美国获得的食源性疾病 - 主要病原体。新兴感染疾病 17:7-15。
3.
Sana TG, Flaugnatti N, Lugo KA, Lam LH, Jacobson A, Baylot V, Durand E, Journet L, Cascales E, Monack DM. 2016. Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proc Natl Acad Sci USA 113:E5044–51.
Sana TG、Flaugnatti N、Lugo KA、Lam LH、Jacobson A、Baylot V、Durand E、Journet L、Cascales E、Monack DM. 2016 年。鼠伤寒沙门氏菌利用 T6SS 介导的抗菌武器在宿主肠道中建立。美国国家科学院院刊 113:E5044–51。
4.
Liang B, Xie Y, He S, Mai J, Huang Y, Yang L, Zhong H, Deng Q, Yao S, Long Y, Yang Y, Gong S, Zhou Z. 2019. Prevalence, serotypes, and drug resistance of nontyphoidal Salmonella among paediatric patients in a tertiary hospital in Guangzhou,China, 2014-2016. J Infect Public Health 12:252–257.
梁斌, 谢 Y, 何 S, 麦 J, 黄 Y, 杨 L, 钟 H, 邓 Q, 姚 S, 龙 Y, 杨 Y, 龚 S, 周 Z. 2019.2014-2016 年中国广州市一家三级医院儿科患者非伤寒沙门氏菌的患病率、血清型和耐药性。J 感染公共卫生 12:252-257。
5.
Greening BJ, Whitham HK, Aldous WK, Hall N, Garvey A, Mandernach S, Kahn EB, Nonnenmacher P, Snow J, Meltzer MI, Hoffmann S. 2022. Public health response to multistate Salmonella Typhimurium outbreak associated with prepackaged chicken salad,United States, 2018. Emerg Infect Dis 28:1254–1256.
绿化 BJ、惠特姆 HK、奥尔德斯 WK、Hall N、Garvey A、Mandernach S、Kahn EB、Nonnenmacher P、Snow J、Meltzer MI、霍夫曼 S. 2022 年。2018 年美国对与预包装鸡肉沙拉相关的多州鼠伤寒沙门氏菌疫情的公共卫生反应。新兴感染病 28:1254–1256。
6.
Samarasekera U. 2022. Salmonella Typhimurium outbreak linked to chocolate. Lancet Infect Dis 22:947.
萨马拉塞克拉 U. 2022。鼠伤寒沙门氏菌爆发与巧克力有关。柳叶刀感染疾病 22:947。
7.
Larkin L, Pardos de la Gandara M, Hoban A, Pulford C, Jourdan-Da Silva N, de Valk H, Browning L, Falkenhorst G, Simon S, Lachmann R, et al. 2022. Investigation of an international outbreak of multidrug-resistant monophasic Salmonella Typhimurium associated with chocolate products, EU/EEA and United kingdom, February to April 2022. Euro Surveill 27:2200314.
Larkin L、Pardos de la Gandara M、Hoban A、Pulford C、Jourdan-Da Silva N、de Valk H、Browning L、Falkenhorst G、Simon S、Lachmann R 等人,2022 年。2022 年 2 月至 2022 年 4 月,欧盟/欧洲经济区和英国与巧克力产品相关的耐多药单相鼠伤寒沙门氏菌国际疫情调查。欧洲监视 27:2200314。
8.
Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi M, Abbasifard M, Abbasi-Kangevari M, Abbastabar H, Abd-Allah F, Abdelalim A, et al. 2020. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet 396:1204–1222.
Vos T、Lim SS、Abbafati C、Abbas KM、Abbasi M、Abbasifard M、Abbasi-Kangevari M、Abbastabar H、Abd-Allah F、Abdelalim A 等人,2020 年。1990-2019 年全球 204 个国家和地区的 369 种疾病和伤害负担:2019 年全球疾病负担研究的系统分析。柳叶刀 396:1204–1222。
9.
O’Neill J. 2014. Review on antimicrobial resistance antimicrobial resistance: tackling a crisis for the health and wealth of nations.London: review on antimicrobial resistance. Available from: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf
奥尼尔 J. 2014 年。抗菌素耐药性综述 抗菌素耐药性:应对国家健康和财富的危机。伦敦:抗菌素耐药性综述。可从: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf
10.
Gandra S, Tseng KK, Arora A, Bhowmik B, Robinson ML, Panigrahi B, Laxminarayan R, Klein EY. 2019. The mortality burden of multidrug-resistant pathogens in India: a retrospective, observational study. Clin Infect Dis 69:563–570.
Gandra S、Tseng KK、Arora A、Bhowmik B、Robinson ML、Panigrahi B、Laxminarayan R、Klein EY。2019. 印度多重耐药病原体的死亡负担:一项回顾性观察性研究。临床感染疾病 69:563-570。
11.
Dong N, Li Y, Zhao J, Ma H, Wang J, Liang B, Du X, Wu F, Xia S, Yang X, Liu H, Yang C, Qiu S, Song H, Jia L, Li Y, Sun Y. 2020. The Phenotypic and molecular characteristics of antimicrobial resistance of salmonella Enterica Subsp Enterica Serovar Typhimurium in Henan province, China. BMC Infect Dis 20:511.
董 N, 李 Y, 赵 J, 马 H, 王 J, 梁 B, 杜 X, 吴 F, 夏 S, 杨 X, 刘 H, 杨 C, 邱 S, 宋 H, 贾 L, 李 Y, 孙 Y. 2020. 2020.中国河南省鼠伤寒沙门氏菌亚种 Enterica Serovar Typhimurium 抗菌素耐药性的表型和分子特征。BMC 感染 Dis 20:511。
12.
Wang J, Li Y, Xu X, Liang B, Wu F, Yang X, Ma Q, Yang C, Hu X, Liu H, Li H, Sheng C, Xie J, Du X, Hao R, Qiu S, Song H. 2017. Antimicrobial resistance of Salmonella enterica serovar Typhimurium in Shanghai, China. Front Microbiol 8:510.
王 J, 李 Y, 徐 X, 梁 B, 吴 F, 杨 X, 马 Q, 杨 C, 胡 X, 刘 H, 李 H, 盛 C, 谢 J, 杜 X, 郝 R, 邱 S, 宋 H. 2017. 2017.中国上海肠道沙门氏菌血清型鼠伤寒的抗菌素耐药性。前微生物学 8:510。
13.
Wei Z, Xu X, Yan M, Chang H, Li Y, Kan B, Zeng M. 2019. Salmonella Typhimurium and Salmonella Enteritidis infections in sporadic diarrhea in children: source tracing and resistance to third-generation cephalosporins and ciprofloxacin. Foodborne Pathog Dis 16:244–255.
Wei Z, Xu X, Yan M, Chang H, Li Y, Kan B, Zeng M. 2019.儿童散发性腹泻中的鼠伤寒沙门氏菌和肠炎沙门氏菌感染:来源追踪和对第三代头孢菌素和环丙沙星的耐药性。食源性病原体疾病 16:244-255。
14.
Biswas S, Li Y, Elbediwi M, Yue M. 2019. Emergence and dissemination of mcr-carrying clinically relevant Salmonella Typhimurium monophasic clone ST34. Microorganisms 7:298.
Biswas S, Li Y, Elbediwi M, 岳 M. 2019.携带 mcr 的临床相关鼠伤寒沙门氏菌单相克隆 ST34 的出现和传播。微生物 7:298。
15.
Guo L, Zhao Y. 2021. Global spread and molecular characterization of CTX-M-producing Salmonella Typhimurium isolates. Antibiotics (Basel) 10:1417.
郭丽,赵 Y. 2021 年。产 CTX-M 的鼠伤寒沙门氏菌分离株的全球传播和分子表征。抗生素(巴塞尔)10:1417。
16.
Luo Q, Wan F, Yu X, Zheng B, Chen Y, Gong C, Fu H, Xiao Y, Li L. 2020. MDR Salmonella enterica serovar Typhimurium ST34 carrying mcr-1 isolated from cases of bloodstream and intestinal infection in children in China. J Antimicrob Chemother 75:92–95.
罗 Q, 万 F, 于晓, 郑 B, 陈 Y, 龚 C, 付 H, 肖 Y, 李 L. 2020。MDR 肠道沙门氏菌血清型 鼠伤寒沙门氏菌 ST34 携带 mcr-1,从中国儿童血液和肠道感染病例中分离出来。J 抗菌剂化学 75:92-95。
17.
Sun R-Y, Ke B-X, Fang L-X, Guo W-Y, Li X-P, Yu Y, Zheng S-L, Jiang Y-W, He D-M, Sun J, Ke C-W, Liu Y-H, Liao X-P. 2020. Global clonal spread of mcr-3-carrying MDR ST34 Salmonella enterica serotype Typhimurium and monophasic 1,4,[5],12:i:− variants from clinical isolates. J Antimicrob Chemother 75:1756–1765.
孙 R-Y, 柯 B-X, 方 L-X, 郭文宇, 李 X-P, 于Y, 郑 S-L, 江 Y-W, 何 D-M, 孙 J, 柯 C-W, 刘 Y-H, 廖 X-P.2020. 携带 mcr-3 的 MDR ST34 肠道沙门氏菌血清型鼠伤寒和来自临床分离株的单相 1,4,[5],12:i:− 变体的全球克隆传播。J 抗菌剂化学 75:1756–1765。
18.
Chen H, Yin Y, Li X, Li S, Gao H, Wang X, Zhang Y, Liu Y, Wang H. 2020. Whole-genome analysis of livestock-associated methicillin-resistant Staphylococcus aureus sequence type 398 strains isolated from patients with bacteremia in China. J Infect Dis 221:S220–S228.
Chen H, Yin Y, Li X, Li S, Gao H, Wang X, Zhang Y, Liu Y, Wang H. 2020 年。从中国菌血症患者中分离的家畜相关耐甲氧西林金黄色葡萄球菌序列 398 型菌株的全基因组分析。J 感染疾病 221:S220–S228。
19.
Pulford CV, Perez-Sepulveda BM, Canals R, Bevington JA, Bengtsson RJ, Wenner N, Rodwell EV, Kumwenda B, Zhu X, Bennett RJ, et al. 2021. Stepwise evolution of Salmonella Typhimurium ST313 causing bloodstream infection in Africa. Nat Microbiol 6:327–338.
Pulford CV、Perez-Sepulveda BM、Canals R、Bevington JA、Bengtsson RJ、Wenner N、Rodwell EV、Kumwenda B、Zhu X、Bennett RJ 等人,2021 年。鼠伤寒沙门氏菌 ST313 的逐步进化导致非洲的血流感染。国家微生物学 6:327-338。
20.
Van Puyvelde S, Pickard D, Vandelannoote K, Heinz E, Barbé B, de Block T, Clare S, Coomber EL, Harcourt K, Sridhar S, Lees EA, Wheeler NE, Klemm EJ, Kuijpers L, Mbuyi Kalonji L, Phoba M-F, Falay D, Ngbonda D, Lunguya O, Jacobs J, Dougan G, Deborggraeve S. 2019. An African Salmonella Typhimurium ST313 sublineage with extensive drug-resistance and signatures of host adaptation. Nat Commun 10:4280.
Van Puyvelde S、Pickard D、Vandelannoote K、Heinz E、Barbé B、de Block T、Clare S、Coomber EL、Harcourt K、Sridhar S、Lees EA、Wheeler NE、Klemm EJ、Kuijpers L、Mbuyi Kalonji L、Phoba MF、Falay D、Ngbonda D、Lunguya O、Jacobs J、Dougan G、Deborggraeve S. 2019 年。非洲鼠伤寒沙门氏菌 ST313 亚系,具有广泛的耐药性和宿主适应特征。Nat Commun 10:4280.
21.
Arai N, Sekizuka T, Tamamura Y, Tanaka K, Barco L, Izumiya H, Kusumoto M, Hinenoya A, Yamasaki S, Iwata T, Watanabe A, Kuroda M, Uchida I, Akiba M. 2018. Phylogenetic characterization of Salmonella enterica serovar Typhimurium and its monophasic variant isolated from food animals in Japan revealed replacement of major epidemic clones in the last 4 decades. J Clin Microbiol 56:e01758-17.
Arai N, Sekizuka T, Tamamura Y, Tanaka K, Barco L, Izumiya H, Kusumoto M, Hinenoya A, Yamasaki S, Iwata T, Watanabe A, Kuroda M, Uchida I, Akiba M. 2018 年。从日本食用动物中分离的肠道鼠伤寒沙门氏菌血清型及其单相变体的系统发育特征揭示了过去 4 年中主要流行性克隆的替换。临床微生物学杂志 56:e01758-17。
22.
Zhang J, Kuang D, Wang F, Meng J, Jin H, Yang X, Liao M, Klena JD, Wu S, Zhang Y, Xu X. 2016. Turtles as a possible reservoir of nontyphoidal Salmonella in Shanghai, China. Foodborne Pathog Dis 13:428–433.
Zhang J, Kuang D, Wang F, Meng J, Jin H, Yang X, Liao M, Klena JD, Wu S, Zhang Y, Xu X. 2016.海龟是中国上海非伤寒沙门氏菌的可能宿主。食源性病原体疾病 13:428-433。
23.
Medalla F, Gu W, Mahon BE, Judd M, Folster J, Griffin PM, Hoekstra RM. 2016. Estimated incidence of antimicrobial drug-resistant nontyphoidal Salmonella infections, United States, 2004-2012. Emerg Infect Dis 23:29–37.
Medalla F, Gu W, Mahon BE, Judd M, Folster J, Griffin PM, Hoekstra RM. 2016.2004-2012 年美国抗菌耐药非伤寒沙门氏菌感染的估计发病率。Emerg Infect Dis 23:29-37。
24.
Qiao J, Zhang Q, Alali WQ, Wang J, Meng L, Xiao Y, Yang H, Chen S, Cui S, Yang B. 2017. Characterization of extended-spectrum β-lactamases (ESBLs)-producing Salmonella in retail raw chicken carcasses. Int J Food Microbiol 248:72–81.
乔杰, 张群, 阿拉里 WQ, 王 J, 孟 L, 肖 Y, 杨 H, 陈 S, 崔 S, 杨 B. 2017.零售生鸡胴体中产广谱 β-内酰胺酶 (ESBLs) 的沙门氏菌的表征。国际食品微生物学杂志 248:72-81。
25.
Zhang Z, Chang J, Xu X, Zhou M, Shi C, Liu Y, Shi X. 2021. Dissemination of IncFII plasmids carrying fosA3 and blaCTX-M-55 in clinical isolates of Salmonella enteritidis. Zoonoses Public Health 68:760–768.
张 Z, 张 J, 徐 X, 周 M, 石 C, 刘 Y, 石 X. 2021.携带 fosA3 和 blaCTX-M-55 的 IncFII 质粒在肠炎沙门氏菌临床分离株中的传播。人畜共患病公共卫生 68:760-768。
26.
Zhang Z, He S, Xu X, Chang J, Zhan Z, Cui Y, Shi C, Shi X. 2022. Antimicrobial susceptibility and molecular characterization of salmonella Enterica Serovar Indiana from foods, patients, and environments in China during 2007–2016. Food Control 131:108427.
张 Z, 何 S, 徐 X, 张 J, 詹 Z, 崔 Y, 石 C, 石 X. 2022.2007-2016 年中国食品、患者和环境中 Salmonella Enterica Serovar Indiana 的抗菌敏感性和分子特征。食品控制 131:108427。
27.
Parry CM. 2003. Antimicrobial drug resistance in Salmonella enterica. Curr Opin Infect Dis 16:467–472.
帕里 CM. 2003 年。肠道沙门氏菌的抗菌药物耐药性。Curr Opin 感染疾病 16:467-472。
28.
Zhang Q-Q, Ying G-G, Pan C-G, Liu Y-S, Zhao J-L. 2015. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol 49:6772–6782.
张 Q-Q, 应 G-G, 潘 C-G, 刘 Y-S, 赵 J-L.2015. 中国流域抗生素排放和归宿的综合评价:来源分析、多媒体建模以及与细菌耐药性的联系。环境科学技术 49:6772–6782。
29.
McEwen SA, Collignon PJ. 2018. Antimicrobial resistance: a one health perspective. Microbiol Spectr 6:6.
McEwen SA,Collignon PJ。2018. 抗菌素耐药性:同一个健康的观点。微生物光谱 6:6。
30.
Dimitrov T, Udo EE, Albaksami O, Kilani AA, Shehab E-D. 2007. Ciprofloxacin treatment failure in a case of typhoid fever caused by Salmonella enterica serotype Paratyphi A with reduced susceptibility to ciprofloxacin. J Med Microbiol 56:277–279.
Dimitrov T, Udo EE, Albaksami O, Kilani AA, Shehab E-D.2007. 环丙沙星治疗失败,一例由肠道沙门氏菌血清型副伤寒 A 引起的伤寒,对环丙沙星的敏感性降低。J Med 微生物学 56:277–279。
31.
Hirose K, Hashimoto A, Tamura K, Kawamura Y, Ezaki T, Sagara H, Watanabe H. 2002. DNA sequence analysis of DNA gyrase and DNA topoisomerase IV quinolone resistance-determining regions of Salmonella enterica serovar Typhi and serovar Paratyphi A. Antimicrob Agents Chemother 46:3249–3252.
Hirose K, Hashimoto A, Tamura K, Kawamura Y, Ezaki T, Sagara H, Watanabe H. 2002 年。肠道沙门氏菌血清型伤寒和血清型喹诺酮类耐药决定区的 DNA 旋转酶和 DNA 拓扑异构酶 IV 喹诺酮类耐药决定区 A. 抗菌剂 Chemother 46:3249–3252。
32.
Sultan I, Siddiqui MT, Gogry FA, Haq QMR. 2022. Molecular characterization of resistance determinants and mobile genetic elements of ESBL producing multidrug-resistant bacteria from freshwater lakes in Kashmir, India. Sci Total Environ 827:154221.
苏丹一世、西迪基 MT、高格里 FA、哈克 QMR。2022. 印度克什米尔淡水湖中产生多重耐药细菌的 ESBL 的耐药决定因素和移动遗传元件的分子特征。Sci Total Environ 827:154221。
33.
Lartigue M-F, Poirel L, Aubert D, Nordmann P. 2006. In vitro analysis of ISECP1B-mediated mobilization of naturally occurring β-lactamase gene blaCTX-M of Kluyvera ascorbata. Antimicrob Agents Chemother 50:1282–1286.
Lartigue MF、Poirel L、Aubert D、Nordmann P. 2006 年。ISECP1B 介导的抗坏血酸克鲁维菌天然存在的 β-内酰胺酶基因 blaCTX-M 的动员的体外分析。抗菌剂 Chemother 50:1282–1286。
34.
Burrus V. 2017. Mechanisms of stabilization of integrative and conjugative elements. Curr Opin Microbiol 38:44–50.
Burrus V. 2017 年。整合元件和共轭元件的稳定机制。Curr Opin 微生物学 38:44-50。
35.
CLSI. 2019. Clinical and laboratory standards Institute. 2019. performance standards for antimicrobial susceptibility testing. Clinical and laboratory standards Institute, Wayne, PA.
CLSI.2019. 临床和实验室标准研究所。2019. 抗菌药物敏感性测试的性能标准。宾夕法尼亚州韦恩市临床和实验室标准研究所。
36.
ECAST. 2019. The european committee on antimicrobial susceptibility testing. breakpoint tables for interpretation of MICs and zone diameters. Version 9.0, 2019
埃卡斯特。2019. 欧洲抗菌药物敏感性测试委员会。用于解释 MIC 和区域直径的断点表。版本 9.0, 2019
37.
Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27:722–736.
Koren S、Walenz BP、Berlin K、Miller JR、Bergman NH、Phillippy AM。2017. Canu:通过自适应 k-mer 加权和重复分离实现可扩展且准确的长读长组装。基因组研究 27:722-736。
38.
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9:e112963.
Walker BJ、Abeel T、Shea T、Priest M、Abouelliel A、Sakthikumar S、Cuomo CA、Zeng Q、Wortman J、Young SK、Earl AM。2014. Pilon:用于全面微生物变异检测和基因组组装改进的集成工具。公共科学图书馆一号 9:e112963。
39.
Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R. 2014. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:D206–14.
Overbeek R、Olson R、Pusch GD、Olsen GJ、Davis JJ、Disz T、Edwards RA、Gerdes S、Parrello B、Shukla M、Vonstein V、Wattam AR、Xia F、Stevens R. 2014 年。SEED 和使用子系统技术 (RAST) 快速注释微生物基因组。核酸研究 42:D206-14。
40.
Delcher AL, Bratke KA, Powers EC, Salzberg SL. 2007. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673–679.
Delcher AL、Bratke KA、Powers EC、Salzberg SL. 2007 年。使用 Glimmer 鉴定细菌基因和内共生体 DNA。生物信息学 23:673–679。
41.
Besemer J, Lomsadze A, Borodovsky M. 2001. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29:2607–2618.
Besemer J, Lomsadze A, Borodovsky M. 2001 年。GeneMarkS:一种从微生物基因组开始预测基因的自我训练方法。对在调节区域中寻找序列基序的意义。核酸研究 29:2607–2618。
42.
Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, Philippon A, Allesoe RL, Rebelo AR, Florensa AF, et al. 2020. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 75:3491–3500.
Bortolaia V、Kaas RS、Ruppe E、Roberts MC、Schwarz S、Cattoir V、Philippon A、Allesoe RL、Rebelo AR、Florensa AF 等人,2020 年。ResFinder 4.0 用于预测基因型的表型。J 抗菌剂化学 75:3491–3500。
43.
Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, Jelsbak L, Sicheritz-Pontén T, Ussery DW, Aarestrup FM, Lund O. 2012. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol 50:1355–1361.
Larsen MV、Cosentino S、Rasmussen S、Friis C、Hasman H、Marvig RL、Jelsbak L、Sicheritz-Pontén T、Ussery DW、Aarestrup FM、Lund O. 2012 年。全基因组测序细菌的多位点序列分型。临床微生物学杂志 50:1355–1361。
44.
Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, Møller Aarestrup F, Hasman H. 2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58:3895–3903.
Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, Møller Aarestrup F, Hasman H. 2014.使用 PlasmidFinder 和质粒多位点序列分型对质粒进行计算机检测和分型。抗菌剂 Chemother 58:3895–3903。
45.
Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, Parkhill J, Harris SR. 2015. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 43:e15.
新泽西州裘槎、佩奇 AJ、康纳 TR、德莱尼 AJ、基恩 JA、本特利 SD、帕克希尔 J、哈里斯 SR。2015 年。使用 Gubbins 对重组细菌全基因组序列的大样本进行快速系统发育分析。核酸研究 43:e15。
46.
Stamatakis A. 2014. RaxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313.
斯塔马塔基斯 A. 2014 年。RaxML 版本 8:用于大型系统发育分析和后分析的工具。生物信息学 30:1312–1313。
47.
Argimón S, Abudahab K, Goater RJE, Fedosejev A, Bhai J, Glasner C, Feil EJ, Holden MTG, Yeats CA, Grundmann H, Spratt BG, Aanensen DM. 2016. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. Microb Genom 2:e000093.
Argimón S、Abudahab K、Goater RJE、Fedosejev A、Bhai J、Glasner C、Feil EJ、Holden MTG、Yeats CA、Grundmann H、Spratt BG、Aanensen DM。2016 年。Microreact:可视化和共享基因组流行病学和系统地理学数据。微生物基因组 2:e000093。
48.
Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. 2005. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 63:219–228.
Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ.2005. 通过基于 PCR 的复制子分型鉴定质粒。微生物学方法杂志 63:219-228。
49.
Lv C, Shang J, Zhang W, Sun B, Li M, Guo C, Zhou N, Guo X, Huang S, Zhu Y. 2022. Dynamic antimicrobial resistant patterns of Escherichia coli from healthy poultry and swine over 10 years in Chongming Island, Shanghai. Infect Dis Poverty 11.
吕 C, 尚 J, 张 W, 孙 B, 李 M, 郭 C, 周 N, 郭 X, 黄 S, 朱 Y. 2022.上海崇明岛健康家禽和猪大肠杆菌 10 多年的动态抗菌素耐药模式。感染 Dis 贫困 11.

Information & Contributors

Information

Published In

cover image Microbiology Spectrum
Microbiology Spectrum
Volume 12Number 86 August 2024
eLocator: e00262-24
Editor: Salina Parveen, University of Maryland Eastern Shore, Princess Anne, Maryland, USA

History

Received: 28 January 2024
Accepted: 11 May 2024
Published online: 21 June 2024

Keywords

  1. Salmonella Typhimurium
  2. antimicrobial resistance
  3. phylogenomic analysis
  4. IncI (Gamma) plasmids

Data Availability

The genome sequence data are available from BioProject ID PRJNA484101. The plasmid sequences of p10405B and p11216B have been deposited in the NCBI database under the accession numbers CP047539 and CP047524, respectively.

Contributors

Authors

Editor

Notes

The authors declare no conflict of interest.

Metrics & Citations

Metrics

Note:

  • For recently published articles, the TOTAL download count will appear as zero until a new month starts.
  • There is a 3- to 4-day delay in article usage, so article usage will not appear immediately after publication.
  • Citation counts come from the Crossref Cited by service.

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. For an editable text file, please select Medlars format which will download as a .txt file. Simply select your manager software from the list below and click Download.

View Options

Figures and Media

Figures

Fig 1 Prevalence of S. Typhimurium isolates in Shanghai, China. (A) The distribution of isolates in the districts of Shanghai city. The districts where S. Typhimurium isolates were identified are indicated in red, and the district where the isolate was not identified is indicated in blue-green. The number of isolates obtained from each district is shown. The initial map originated from DataV.GeoAtlas (http://datav.aliyun.com/portal/school/atlas/area_selector), followed by the use of Inkscape software to overlay different colored shades for representation. (B) The sample sources of isolates. The number of isolates obtained from different sources is shown.
Fig 2 (A) ST distribution of S. Typhimurium isolates bearing blaCTX-M in Australia, China, Germany, Kenya, the United Kingdom, and the United States. (B) The prevalence of S. Typhimurium isolates bearing blaCTX-M from 2005 to 2021. (C) Phylogenomic analysis of S. Typhimurium isolates bearing blaCTX-M from 15 countries. Rings ①–⑨ from inside to outside along the tree represent metadata including STs, countries, sources, and blaCTX-M variants (as shown in the inset legend).
Fig 3 Phylogenetic tree of S. Typhimurium isolates bearing blaCTX-M in China. Leaf nodes are colored by provinces (see the key). The colors of isolate tips represent metadata columns including STs, provinces, years, sources, blaCTX-M variants (blaCTX-M-14, blaCTX-M-15, blaCTX-M-55, and blaCTX-M-65), and mutations in QRDR of GyrA (as shown in the inset legend). Light-green and pink shading shows clades ST34C1 and ST34C2, respectively.
Fig 4 Sequence characterization of p11216B plasmid (A) and p10405B plasmid (B) in this study. Sequence comparison of IncI (Gamma) plasmids and IncI1-I (Alpha) plasmids (C). IncI (Gamma) plasmids included S. Enteritidis pSE115 (Accession number KT868530). IncI1-I (Alpha) plasmids included Escherichia coli pEK204 (Accession number NC_013120), Escherichia coli pEC32-IncI1 (Accession number CP085621), S. Heidelberg pSL476_91 (Accession number NC_011081), and S. Typhimurium pR17.1451_p102k (Accession number CP063296). Areas shaded in gray indicate homologies between the corresponding genetic loci.

Media

Tables

TABLE 1 Antimicrobial resistance of 277 S. Typhimurium isolates from patients, foods, and environment in Shanghai, Chinaa
TABLE 2 Antimicrobial resistance of 277 S. Typhimurium isolates from 2007 to 2019 in Shanghai, Chinaa
TABLE 3 Analysis of a Poisson generalized linear mixed model examining the likelihood of antibiogram length within the hosts, years, and locations
TABLE 4 Antimicrobial MICs of S. Typhimurium SJTUF11216 and SJTUF10405 isolates as well as their transconjugants

Share

Share

Share the article link

Share with email

Email a colleague

Share on social media

References

References

1.
Liang Z, Ke B, Deng X, Liang J, Ran L, Lu L, He D, Huang Q, Ke C, Li Z, Yu H, Klena JD, Wu S. 2015. Serotypes, seasonal trends, and antibiotic resistance of non-typhoidal Salmonella from human patients in Guangdong province,China, 2009-2012. BMC Infect Dis 15.
2.
Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson M-A, Roy SL, Jones JL, Griffin PM. 2011. Foodborne illness acquired in the United States-major pathogens. Emerg Infect Dis 17:7–15.
3.
Sana TG, Flaugnatti N, Lugo KA, Lam LH, Jacobson A, Baylot V, Durand E, Journet L, Cascales E, Monack DM. 2016. Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proc Natl Acad Sci USA 113:E5044–51.
4.
Liang B, Xie Y, He S, Mai J, Huang Y, Yang L, Zhong H, Deng Q, Yao S, Long Y, Yang Y, Gong S, Zhou Z. 2019. Prevalence, serotypes, and drug resistance of nontyphoidal Salmonella among paediatric patients in a tertiary hospital in Guangzhou,China, 2014-2016. J Infect Public Health 12:252–257.
5.
Greening BJ, Whitham HK, Aldous WK, Hall N, Garvey A, Mandernach S, Kahn EB, Nonnenmacher P, Snow J, Meltzer MI, Hoffmann S. 2022. Public health response to multistate Salmonella Typhimurium outbreak associated with prepackaged chicken salad,United States, 2018. Emerg Infect Dis 28:1254–1256.
6.
Samarasekera U. 2022. Salmonella Typhimurium outbreak linked to chocolate. Lancet Infect Dis 22:947.
7.
Larkin L, Pardos de la Gandara M, Hoban A, Pulford C, Jourdan-Da Silva N, de Valk H, Browning L, Falkenhorst G, Simon S, Lachmann R, et al. 2022. Investigation of an international outbreak of multidrug-resistant monophasic Salmonella Typhimurium associated with chocolate products, EU/EEA and United kingdom, February to April 2022. Euro Surveill 27:2200314.
8.
Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi M, Abbasifard M, Abbasi-Kangevari M, Abbastabar H, Abd-Allah F, Abdelalim A, et al. 2020. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet 396:1204–1222.
9.
O’Neill J. 2014. Review on antimicrobial resistance antimicrobial resistance: tackling a crisis for the health and wealth of nations.London: review on antimicrobial resistance. Available from: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf
10.
Gandra S, Tseng KK, Arora A, Bhowmik B, Robinson ML, Panigrahi B, Laxminarayan R, Klein EY. 2019. The mortality burden of multidrug-resistant pathogens in India: a retrospective, observational study. Clin Infect Dis 69:563–570.
11.
Dong N, Li Y, Zhao J, Ma H, Wang J, Liang B, Du X, Wu F, Xia S, Yang X, Liu H, Yang C, Qiu S, Song H, Jia L, Li Y, Sun Y. 2020. The Phenotypic and molecular characteristics of antimicrobial resistance of salmonella Enterica Subsp Enterica Serovar Typhimurium in Henan province, China. BMC Infect Dis 20:511.
12.
Wang J, Li Y, Xu X, Liang B, Wu F, Yang X, Ma Q, Yang C, Hu X, Liu H, Li H, Sheng C, Xie J, Du X, Hao R, Qiu S, Song H. 2017. Antimicrobial resistance of Salmonella enterica serovar Typhimurium in Shanghai, China. Front Microbiol 8:510.
13.
Wei Z, Xu X, Yan M, Chang H, Li Y, Kan B, Zeng M. 2019. Salmonella Typhimurium and Salmonella Enteritidis infections in sporadic diarrhea in children: source tracing and resistance to third-generation cephalosporins and ciprofloxacin. Foodborne Pathog Dis 16:244–255.
14.
Biswas S, Li Y, Elbediwi M, Yue M. 2019. Emergence and dissemination of mcr-carrying clinically relevant Salmonella Typhimurium monophasic clone ST34. Microorganisms 7:298.
15.
Guo L, Zhao Y. 2021. Global spread and molecular characterization of CTX-M-producing Salmonella Typhimurium isolates. Antibiotics (Basel) 10:1417.
16.
Luo Q, Wan F, Yu X, Zheng B, Chen Y, Gong C, Fu H, Xiao Y, Li L. 2020. MDR Salmonella enterica serovar Typhimurium ST34 carrying mcr-1 isolated from cases of bloodstream and intestinal infection in children in China. J Antimicrob Chemother 75:92–95.
17.
Sun R-Y, Ke B-X, Fang L-X, Guo W-Y, Li X-P, Yu Y, Zheng S-L, Jiang Y-W, He D-M, Sun J, Ke C-W, Liu Y-H, Liao X-P. 2020. Global clonal spread of mcr-3-carrying MDR ST34 Salmonella enterica serotype Typhimurium and monophasic 1,4,[5],12:i:− variants from clinical isolates. J Antimicrob Chemother 75:1756–1765.
18.
Chen H, Yin Y, Li X, Li S, Gao H, Wang X, Zhang Y, Liu Y, Wang H. 2020. Whole-genome analysis of livestock-associated methicillin-resistant Staphylococcus aureus sequence type 398 strains isolated from patients with bacteremia in China. J Infect Dis 221:S220–S228.
19.
Pulford CV, Perez-Sepulveda BM, Canals R, Bevington JA, Bengtsson RJ, Wenner N, Rodwell EV, Kumwenda B, Zhu X, Bennett RJ, et al. 2021. Stepwise evolution of Salmonella Typhimurium ST313 causing bloodstream infection in Africa. Nat Microbiol 6:327–338.
20.
Van Puyvelde S, Pickard D, Vandelannoote K, Heinz E, Barbé B, de Block T, Clare S, Coomber EL, Harcourt K, Sridhar S, Lees EA, Wheeler NE, Klemm EJ, Kuijpers L, Mbuyi Kalonji L, Phoba M-F, Falay D, Ngbonda D, Lunguya O, Jacobs J, Dougan G, Deborggraeve S. 2019. An African Salmonella Typhimurium ST313 sublineage with extensive drug-resistance and signatures of host adaptation. Nat Commun 10:4280.
21.
Arai N, Sekizuka T, Tamamura Y, Tanaka K, Barco L, Izumiya H, Kusumoto M, Hinenoya A, Yamasaki S, Iwata T, Watanabe A, Kuroda M, Uchida I, Akiba M. 2018. Phylogenetic characterization of Salmonella enterica serovar Typhimurium and its monophasic variant isolated from food animals in Japan revealed replacement of major epidemic clones in the last 4 decades. J Clin Microbiol 56:e01758-17.
22.
Zhang J, Kuang D, Wang F, Meng J, Jin H, Yang X, Liao M, Klena JD, Wu S, Zhang Y, Xu X. 2016. Turtles as a possible reservoir of nontyphoidal Salmonella in Shanghai, China. Foodborne Pathog Dis 13:428–433.
23.
Medalla F, Gu W, Mahon BE, Judd M, Folster J, Griffin PM, Hoekstra RM. 2016. Estimated incidence of antimicrobial drug-resistant nontyphoidal Salmonella infections, United States, 2004-2012. Emerg Infect Dis 23:29–37.
24.
Qiao J, Zhang Q, Alali WQ, Wang J, Meng L, Xiao Y, Yang H, Chen S, Cui S, Yang B. 2017. Characterization of extended-spectrum β-lactamases (ESBLs)-producing Salmonella in retail raw chicken carcasses. Int J Food Microbiol 248:72–81.
25.
Zhang Z, Chang J, Xu X, Zhou M, Shi C, Liu Y, Shi X. 2021. Dissemination of IncFII plasmids carrying fosA3 and blaCTX-M-55 in clinical isolates of Salmonella enteritidis. Zoonoses Public Health 68:760–768.
26.
Zhang Z, He S, Xu X, Chang J, Zhan Z, Cui Y, Shi C, Shi X. 2022. Antimicrobial susceptibility and molecular characterization of salmonella Enterica Serovar Indiana from foods, patients, and environments in China during 2007–2016. Food Control 131:108427.
27.
Parry CM. 2003. Antimicrobial drug resistance in Salmonella enterica. Curr Opin Infect Dis 16:467–472.
28.
Zhang Q-Q, Ying G-G, Pan C-G, Liu Y-S, Zhao J-L. 2015. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol 49:6772–6782.
29.
McEwen SA, Collignon PJ. 2018. Antimicrobial resistance: a one health perspective. Microbiol Spectr 6:6.
30.
Dimitrov T, Udo EE, Albaksami O, Kilani AA, Shehab E-D. 2007. Ciprofloxacin treatment failure in a case of typhoid fever caused by Salmonella enterica serotype Paratyphi A with reduced susceptibility to ciprofloxacin. J Med Microbiol 56:277–279.
31.
Hirose K, Hashimoto A, Tamura K, Kawamura Y, Ezaki T, Sagara H, Watanabe H. 2002. DNA sequence analysis of DNA gyrase and DNA topoisomerase IV quinolone resistance-determining regions of Salmonella enterica serovar Typhi and serovar Paratyphi A. Antimicrob Agents Chemother 46:3249–3252.
32.
Sultan I, Siddiqui MT, Gogry FA, Haq QMR. 2022. Molecular characterization of resistance determinants and mobile genetic elements of ESBL producing multidrug-resistant bacteria from freshwater lakes in Kashmir, India. Sci Total Environ 827:154221.
33.
Lartigue M-F, Poirel L, Aubert D, Nordmann P. 2006. In vitro analysis of ISECP1B-mediated mobilization of naturally occurring β-lactamase gene blaCTX-M of Kluyvera ascorbata. Antimicrob Agents Chemother 50:1282–1286.
34.
Burrus V. 2017. Mechanisms of stabilization of integrative and conjugative elements. Curr Opin Microbiol 38:44–50.
35.
CLSI. 2019. Clinical and laboratory standards Institute. 2019. performance standards for antimicrobial susceptibility testing. Clinical and laboratory standards Institute, Wayne, PA.
36.
ECAST. 2019. The european committee on antimicrobial susceptibility testing. breakpoint tables for interpretation of MICs and zone diameters. Version 9.0, 2019
37.
Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27:722–736.
38.
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9:e112963.
39.
Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R. 2014. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:D206–14.
40.
Delcher AL, Bratke KA, Powers EC, Salzberg SL. 2007. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673–679.
41.
Besemer J, Lomsadze A, Borodovsky M. 2001. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29:2607–2618.
42.
Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, Philippon A, Allesoe RL, Rebelo AR, Florensa AF, et al. 2020. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 75:3491–3500.
43.
Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, Jelsbak L, Sicheritz-Pontén T, Ussery DW, Aarestrup FM, Lund O. 2012. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol 50:1355–1361.
44.
Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, Møller Aarestrup F, Hasman H. 2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58:3895–3903.
45.
Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, Parkhill J, Harris SR. 2015. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 43:e15.
46.
Stamatakis A. 2014. RaxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313.
47.
Argimón S, Abudahab K, Goater RJE, Fedosejev A, Bhai J, Glasner C, Feil EJ, Holden MTG, Yeats CA, Grundmann H, Spratt BG, Aanensen DM. 2016. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. Microb Genom 2:e000093.
48.
Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. 2005. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 63:219–228.
49.
Lv C, Shang J, Zhang W, Sun B, Li M, Guo C, Zhou N, Guo X, Huang S, Zhu Y. 2022. Dynamic antimicrobial resistant patterns of Escherichia coli from healthy poultry and swine over 10 years in Chongming Island, Shanghai. Infect Dis Poverty 11.
View figure
Fig 1
Fig 1 Prevalence of S. Typhimurium isolates in Shanghai, China. (A) The distribution of isolates in the districts of Shanghai city. The districts where S. Typhimurium isolates were identified are indicated in red, and the district where the isolate was not identified is indicated in blue-green. The number of isolates obtained from each district is shown. The initial map originated from DataV.GeoAtlas (http://datav.aliyun.com/portal/school/atlas/area_selector), followed by the use of Inkscape software to overlay different colored shades for representation. (B) The sample sources of isolates. The number of isolates obtained from different sources is shown.
View figure
Fig 2
Fig 2 (A) ST distribution of S. Typhimurium isolates bearing blaCTX-M in Australia, China, Germany, Kenya, the United Kingdom, and the United States. (B) The prevalence of S. Typhimurium isolates bearing blaCTX-M from 2005 to 2021. (C) Phylogenomic analysis of S. Typhimurium isolates bearing blaCTX-M from 15 countries. Rings ①–⑨ from inside to outside along the tree represent metadata including STs, countries, sources, and blaCTX-M variants (as shown in the inset legend).
View figure
Fig 3
Fig 3 Phylogenetic tree of S. Typhimurium isolates bearing blaCTX-M in China. Leaf nodes are colored by provinces (see the key). The colors of isolate tips represent metadata columns including STs, provinces, years, sources, blaCTX-M variants (blaCTX-M-14, blaCTX-M-15, blaCTX-M-55, and blaCTX-M-65), and mutations in QRDR of GyrA (as shown in the inset legend). Light-green and pink shading shows clades ST34C1 and ST34C2, respectively.
View figure
Fig 4
Fig 4 Sequence characterization of p11216B plasmid (A) and p10405B plasmid (B) in this study. Sequence comparison of IncI (Gamma) plasmids and IncI1-I (Alpha) plasmids (C). IncI (Gamma) plasmids included S. Enteritidis pSE115 (Accession number KT868530). IncI1-I (Alpha) plasmids included Escherichia coli pEK204 (Accession number NC_013120), Escherichia coli pEC32-IncI1 (Accession number CP085621), S. Heidelberg pSL476_91 (Accession number NC_011081), and S. Typhimurium pR17.1451_p102k (Accession number CP063296). Areas shaded in gray indicate homologies between the corresponding genetic loci.
TABLE 1
TABLE 1 Antimicrobial resistance of 277 S. Typhimurium isolates from patients, foods, and environment in Shanghai, Chinaa
TABLE 2
TABLE 2 Antimicrobial resistance of 277 S. Typhimurium isolates from 2007 to 2019 in Shanghai, Chinaa
TABLE 3
TABLE 3 Analysis of a Poisson generalized linear mixed model examining the likelihood of antibiogram length within the hosts, years, and locations
TABLE 4
TABLE 4 Antimicrobial MICs of S. Typhimurium SJTUF11216 and SJTUF10405 isolates as well as their transconjugants