这是用户在 2024-6-18 10:06 为 https://app.immersivetranslate.com/word/ 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

Chapter 4

Stress Intensity Factor- Calculation of Stress Field in the Vicinity of a Crack Tip
应力强度因子 - 计算裂纹尖端附近的应力场

Elastic behavior of material near crack tip is assumed. The assumption is valid for brittle materials. In many cases for ductile materials, the size of the plastic zone near crack tip is quite small so that its effect can be ignored.
假设材料在裂纹尖端附近具有弹性行为。该假设适用于脆性材料。在许多情况下,对于延展性材料,裂纹尖端附近的塑性区域的尺寸非常小,因此可以忽略其影响。

r singularity near the crack tip will be derived.
r 将推导裂纹尖端附近的奇点。

Critical stress intensity factor as a measure of toughness of a material will be developed.
将开发临界应力强度因子作为材料韧性的量度。

Fundamental modes of cracks
裂纹的基本模式

Figure 4.1. The three modes of loading that can be applied to a crack
图 4.1.可应用于裂纹的三种加载模式

Mode I: The crack faces are pulled in a direction normal to the plane of the crack.
模式 I:将裂纹面沿垂直于裂纹平面的方向拉动。

Mode II: The crack faces are sheared in a direction normal to the crack front
模式二:裂纹面沿垂直于裂纹前沿的方向剪切

Mode III: The crack faces are sheared parallel to the crack front. This mode is also called “Tearing Mode”
模式III:裂纹面平行于裂纹前沿进行剪切。此模式也称为“撕裂模式”

Some Cracks can be represented by the combination of these fundamental modes.
※ 有些裂缝可以用这些基本模式的组合来表示。

Airy stress function formulation of plane problems
平面问题的空气应力函数公式

For cracks, most B.C.s are traction B.C.’s.
对于裂缝,大多数 BC 是牵引 BC 的。

Most convenient when problems are formulated in terms of stresses
当问题以应力表述时最方便

In that case, the stresses must satisfy compatibility conditions as well as equilibrium equations.
在这种情况下,应力必须满足相容性条件以及平衡方程。

To reduce the number of equations to be solved, Airy stress function is introduced.
为了减少要求解的方程数量,引入了艾里应力函数。

- 24 -

4.2.1 Airy stress function
4.2.1 通风应力函数

If we introduce a function such that
如果我们引入一个函数,使得

the apparently satisfies equilibrium equation with no body force. The compatibility condition for 2-D (2.10): can be written in terms of stresses:
显然满足平衡方程,没有体力。2-D (2.10) 的兼容条件:可以用应力来表示:

for plane-stress state.
用于平面应力状态。

Using (4.1) in (4.2), we obtain
在(4.2)中使用(4.1),我们得到

where

(4.3) is the same for both plane-stress and plane strain when there is no body force. - Show this (H.W)
※ (4.3) 对于没有体力时的平面应力和平面应变相同。- 显示这个 (H.W)

- 24 -

4.2.2 Westgaard Stress Function
4.2.2 Westgaard 应力函数

Westgaard proposed(1939) a complex stress function for the solution of the stress field near crack tip.
Westgaard(1939)提出了一个复应力函数,用于解裂纹尖端附近的应力场。

Westgaard complex stress function in terms of a complex function :
Westgaard复应力函数在复函数方面:

where (or is the integral of and is the integral of )
其中 (or 是 的积分 andis 的积分 )

Elementary properties of complex function Cauchy-Riemann relations
复函数的基本性质  柯西-黎曼关系

Let be a complex function of. Then, The forms a surface on the complex plane:
让是一个复杂的函数。然后,在复平面上形成一个曲面:

For the function to be analytic at point , the derivatives of must be the same in all directions (“Functions of complex variables”, Carrier, Krook and Pearson)
对于在点上解析的函数,的导数必须在所有方向上都相同(“复变量的函数”,Carrier、Krook 和 Pearson)

(a)

If we take derivative of in :
如果我们取 in 的导数:

(b)

and in with multiplied,
并在乘以

(c)

Compare (a) and (b) to obtain:
比较(a)和(b)可得出:

(4.5 a)

Compare (a) and (c) to obtain:
比较(a)和(c)得到:

(4.5 b)

The relations in (4.5 a) and (4.5 b) are called Cauchy-Riemann Relations.
(4.5 a)和(4.5 b)中的关系称为柯西-黎曼关系。

Note: The satisfies the bi-harmonic equation (4.3).
注:满足双谐波方程(4.3)。

Now, let

Using the relations of (4.5):
使用 (4.5) 的关系:

Now, taking one more derivative with respect to :
现在,再取一个关于以下的导数:

Thus,

(a)

Also,

(b)

And, therefore
因此

(c)

From (a), (b) and (c)

Thus Westgaard’s Stress Function satisfies the bi-harmonic equation.
因此,Westgaard 的应力函数满足双谐波方程。

Stresses (can be obtained with the stress function:)
应力(可通过应力函数获得:)

(4.6)

For any particular problem, the Westgaard function is chosen such that the stresses from (4.6) satisfy all the boundary conditions. The suitable form of for any specific problem needs to be devised.
对于任何特定问题,选择Westgaard函数,使得(4.6)中的应力满足所有边界条件。需要设计适合任何特定问题的格式。

Displacements:

Using (4.5)

(4.7 a)

Likewise,

(4.7 b)

(4.7 c)

Rearranging the terms using , (4.7 a) and (4.7 b) become
使用 (4.7 a) 和 (4.7 b) 重新排列术语变为

Integrating the equations using Cauchy-Riemann relations, we obtain
使用柯西-黎曼关系对方程进行积分,我们得到

(4.8)

where and are the integration constants.
其中 和 是积分常量。

Plugging (4.8) into (4.7 c), we obtain

All the terms involving are canceled
※ 所有涉及的条款均被取消

Therefore,

Apparently, and are rigid-body translations in and respectively.
显然,和 分别是 和 中的刚体翻译。

- 24 -

Let’s look at :
让我们看一下:

Thus, represents a rigid-body rotation. Without losing generality, we can set .
因此,表示刚体旋转。在不失去通用性的情况下,我们可以设置.

Therefore, for a plane-stress problem,
因此,对于平面应力问题,

(4.9)

For a plane-strain problem
对于平面应变问题

(4.10)

(4.10) can be obtained from (4.7)
※(4.10)可从(4.7)获得

using instead

- 24 -

Stress Field for Mode I
模式 I 的应力场

Consider an infinite plate under a biaxial loading with a through thickness crack of length 2a
考虑在双轴载荷作用下的无限板,其通厚裂纹长度为 2a

Boundary conditions for the crack:
裂纹的边界条件:

at the crack tip

on crack surfaces ()
在裂纹表面上 ()

far away from the crack
远离裂缝

A Westgaard’s function that satisfies all the B.C.’s:
满足所有 BC 的 Westgaard 函数:

(4.11)

- 24 -

Now, the validity of the suggested function will be shown.
现在,将显示建议函数的有效性。

At the crack tip:

.

Thus, .

Then

(4.12)

On the crack surfaces:
在裂纹面上:

and ignored to give .
并忽略了给.

However, on the surfaces. Since , is imaginary.
但是,在表面上。由于 是虚构的。

Thus,

(4.13)

- 24 -

In the far field:
在远场:

can be written as
可以写成

If we take
如果我们采取
,

(a)

Now

(4.14)

Also, when ,

(b)

From (a) and (b), in the far field, eqn (4.6) yields
从(a)和(b)中,在远场中,方程(4.6)产生

(4.15)

From (4.12), (4.13) and (4.15), it can be seen that (4.11) clearly satisfies all the B.C.’s.
从(4.12)、(4.13)和(4.15)可以看出,(4.11)显然满足了所有BC的要求。

Before we proceed further, we transform the original form of with .
在继续之前,我们先转换 with 的原始形式。

Then, becomes
然后,变成

Since in the vicinity of the crack tip,
由于在裂缝尖端附近,

(4.16)

is appeared for a historical reason. It is customary to include in Fracture Mechanics.
※ 由于历史原因而出现。通常包含在断裂力学中。

Expressing (4.16) in polar coordinate system with:
在极坐标系中表示 (4.16):

we obtain

(4.17)

where

is called “Stress Intensity Factor for Mode I
称为“模式 I 的应力强度系数”

Similarly, with , from (4.14),
类似地,从 (4.14),

Using ,

(4.18)

Using (4.17) and (4.18), the stresses can be obtained from (4.6) with :
使用(4.17)和(4.18),可以从(4.6)获得应力:

(4.19)

with

Displacement Field for Mode I
模式 I 的位移场

In the vicinity of the crank tip, we have
在曲柄尖端附近,我们有

The above is integrated to yield
以上综合收率

or with

(4.20)

With and of (4.17) and (4.20) respectively in (4.9), we obtain
在(4.9)中分别使用(4.17)和(4.20)的和,我们得到

u1=KIμ(r)1/2cosθ2[1+ν1-ν+sin2θ2]
u2=KIμ(r)1/2sinθ2[21+ν-cos2θ2] (4.21)

For plane-strain cases, (4.10) yields
对于平面应变情况,(4.10) 产率

u1=KIμ(r2π)1/2cosθ2[(1-2ν)+sin2θ2]
u2=KIμ(r2π)1/2sinθ2[2(1)-cos2θ2] (4.22)

- 24 -

For displacements, singularity does not exist
对于位移奇点不存在

As , and . These expressions are valid only in the vicinity of the crack tip.
如 、 和 。这些表达式仅在裂纹尖端附近有效。

does not depend on the sign of , which means its symmetry about the crack plane.
不依赖于 的符号,这意味着它对裂纹平面的对称性。

changes its sign with the sign of .
将其符号更改为 。

Notes:

The stress field developed is for bi-axially loaded case. However, the far field stress does not cause any substantial change in the stress field near the crack tip. (it does not open up the crack) Therefore, the solution for bi-axially loaded case is normally considered also a valid solution for uni-axially loaded case.
产生的应力场是针对双轴载荷的情况。然而,远场应力不会引起裂纹尖端附近的应力场发生任何实质性变化。(它不会打开裂缝)因此,双轴载荷情况的解通常也被认为是单轴载荷情况的有效解。

No simple solution exists for the uni-axially loaded case
对于单轴加载的情况,没有简单的解决方案

Williams has developed equivalent expressions for stress field in polar coordinate.
威廉姆斯已经开发了极坐标中应力场的等效表达式。

appears in the equation only for historical reasons.
仅出于历史原因出现在等式中。

- 24 -

Crack Opening Displacement (COD)

COD of a center-cracked plate (Mode I)
中心裂纹板的COD(模式I)

Along the crack surfaces .
沿着裂纹表面。

Then,

Using and in (4.9), we can obtain .
在(4.9)中使用和,我们可以得到。

Then,

(4.23)

At the center:
在中心:

Note: COD is a useful parameter to be used in a later chapter.
※ 注意:COD是一个有用的参数,将在后面的章节中使用。

Stress Field for Mode II
模式 II 的应力场

Westgaard’s stress function:
Westgaard的应力函数:

where , far field shear stress.
其中,远场剪应力。

It can be shown this satisfies all the B.C.’s.
可以看出,这满足了所有不列颠哥伦比亚省的要求。

Stress Field:

(4.24)

where : Stress Intensity Factor for Mode II
式中:模式II的应力强度系数

Displacement Field:
位移场:

Plane-stress

(4.25)

- 24 -

Plane-strain

(4.26)

- 24 -

Stress Field for Mode III (Tearing Mode)
模式III(撕裂模式)的应力场

Far field stress is considered. Mode IIII is neither a plane-stress nor a plane-strain case. However, it is considerably simple because many components of stress, strain and displacement are zero.
考虑远场应力。模式IIII既不是平面应力,也不是平面应变。然而,它相当简单,因为应力、应变和位移的许多分量为零。

Now,

and

(a)

(b)

Therefore, is the sole independent variable. The only non-trivial equilibrium equation is
因此,是唯一的自变量。唯一的非平凡平衡方程是

In terms of displacements, the above becomes
在位移方面,以上变为

(c)

This is a harmonic equation and Westgaard’s approach is also applicable.
这是一个谐波方程,Westgaard的方法也适用。

is chosen as

(d)

is a complex function of .
是 的复函数。

Substituting in (a) and (b), we obtain
代入(a)和(b),我们得到

(e)

The

(f)

satisfies all the boundary conditions. With , after neglecting small terms, we obtain
满足所有边界条件。用 ,在忽略小项后,我们得到

(g)

Using , and expressing in polar coordinates, we obtain
使用 ,并以极坐标表示,我们得到

Then, substituting the above relation in (e) for , we obtain stresses
然后,将(e)中的上述关系代入,我们得到应力

(4.27)

Integrating (g), we obtain
积分(g),我们得到

Then, displacement field is obtained
然后,得到位移场

(4.28)

The problem is formulated in terms of displacement component . Therefore, there is no need to consider compatibility conditions.
※ 问题是根据位移分量来表述的。因此,无需考虑兼容性条件。

- 24 -

Crack Tip Stress Field in Polar Coordinate
极坐标中的裂纹尖端应力场

In this case
在这种情况下

Therefore,

Therefore, for Mode I, we obtain
因此,对于模式 I,我们得到

σrr=KI2πr(54cosθ2-14cos2)
σθθ=KI2πr(34cosθ2+14cos2)
σ=KI2πr(14sinθ2+14sin2)
etc.(4.29)

- 24 -

Note: Universal nature of the asymptotic stress field
注:渐近应力场的普遍性

(Westergaards, Sneddon etc.)

(Mode I)

(Mode II)

Irwin

(4.30)

- 24 -

The Relation between and (Irwin)
和 (Irwin) 之间的关系

Consider a crack of length “” which is extended by incremental length “
考虑长度为 “” 的裂缝,该裂缝由增量长度 “” 扩展

The assumption:
假设:

Total energy released for creating
为创造而释放的总能量

= the work done by in closing the crack by
= 通过关闭裂缝所做的功

is evaluated with unextended crack of length “
※ 用长度为“”的未延伸裂纹进行评估

Thus,

(a)

where is the Energy Release Rate for Mode I.
其中 是模式 I 的能量释放速率。

We have

u1=KIμ(r)1/2cosθ2[1+ν1-ν+sin2θ2]
u2=KIμ(r)1/2sinθ2[21+ν-cos2θ2] <= (4.21)

With , which is the distance from the crack tip, and (the origin of the coordinate is located at the tip of the extended crack), on the crack surface becomes
用 ,即距裂纹尖端的距离和(坐标的原点位于延伸裂纹的尖端),在裂纹表面上变为

(b)

where is for the extended crack.
哪里是扩展裂缝。

The , with and
的 、 和
,

(c)

Using (b) and (c) in (a) and taking , we obtain
使用(a)中的(b)和(c)并取,我们得到

However, as .
但是,作为.

Thus,

Integrating with the substitution , we obtain
与替换积分,我们得到

(4.31)

where .

Thus, for plane-stress state
因此,对于平面应力状态

(4.32)

For plane-strain state
对于平面应变状态

(4.33)

It can be shown, for Mode II and Mode III, that
对于模式 II 和模式 III,可以显示

(4.34)

and

(4.35)

In the case of Mode III, the stress state is neither a plane-stress nor a plane-strain.
在模式III的情况下,应力状态既不是平面应力,也不是平面应变。

In the case where all three modes exist (mixed):
在存在所有三种模式(混合)的情况下:

(4.36)

In the context of linearity, principle of superposition holds.
※ 在线性方面,叠加原理成立。

- 24 -

Critical Stress Intensity Factor (CSIF)
临界应力强度因子 (CSIF)

Stresses near the crack tip are linearly proportional to (SIF)
裂纹尖端附近的应力与 (SIF) 成线性比例

Thus, (SIF) uniquely defines the crack tip stress state.
因此,(SIF)唯一地定义了裂纹尖端应力状态。

In this reason, it can be used as a single parameter for judging crack propagation.
因此,它可以用作判断裂纹扩展的单个参数。

Critical value of for which crack starts to grow is the “Critical Stress Intensity Factor” and is denoted .
裂纹开始扩大的临界值为“临界应力强度因子”,用 表示。

is a property of material and is obtained from material testing.
是材料的一种特性,是从材料测试中获得的。

If , crack will grow.

It is known that only the SIF of plane-strain state is independent of the plate (specimen) thickness. Handbook provides CSIF only for plane-strain state.
众所周知,只有平面应变状态的SIF与板(试样)厚度无关。手册仅提供平面应变状态的 CSIF。

Therefore, using handbook values of CSIF would provide more conservative designs. (CSIF for plane-strain < CSIF for plane-stress)
因此,使用CSIF的手册值将提供更保守的设计。(平面应变的CSIF<平面应力的CSIF)

- 24 -

Table 4.1 Representative of various materials
表4.1 各种材料的代表

Material

Yield stress, Mpa

, Mpam

Mild Steel

240

very high (220)

Medium Carbon Steel
中碳钢

260

54

860

99

1070

77

1515

60

1850

47

Rotor Steel
转子钢

626

50

Nuclear Reactor Steel
核反应堆钢

350

190

Maraging Steel
马氏体时效钢

1770

93

2000

47

2240

38

Stainless Steel
不锈钢

80-150

Aluminum

2014-T4

460

29

2014-T651

455

24

7075-T651

495

24

7178-T651

570

23

Titanium (Ti-6Al-4V)
钛 (Ti-6Al-4V)

910

55

Perspex (PMMA)

1.6

PVC

3.5

Nylon

3.0