这是用户在 2024-7-9 17:02 为 https://app.immersivetranslate.com/pdf-pro/b3c918a5-0f1f-4299-9107-46f06d825ccd 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
2024_07_09_7054c48bf41aade6a30bg

A digital twin framework for civil engineering structures
土木工程结构的数字孪生框架

Matteo Torzoni , Marco Tezzele , Stefano Mariani , Andrea Manzoni ,
Matteo Torzoni , Marco Tezzele , Stefano Mariani , Andrea Manzoni 、
Karen E. Willcox
卡伦-威尔库克斯
a Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Piazza L. da Vinci 32, Milan, 20133, Italy
a 意大利米兰 Politecnico di Milano, Piazza L. da Vinci 32, Milan, 20133,土木与环境工程系
Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, 78712, TX, United States
美国德克萨斯大学奥斯汀分校奥登计算工程与科学研究所,美国德克萨斯州奥斯汀 78712
c MOX, Dipartimento di Matematica, Politecnico di Milano, Piazza L. da Vinci 32, Milan, 20133, Italy
c MOX,数学系,米兰理工大学,达芬奇广场 32 号,米兰,20133,意大利

A R T I C L E I N F O
A R T I C L E I N F O R M A T I O N

Keywords: 关键词:

Digital twins 数字双胞胎
Predictive maintenance 预测性维护
Bayesian networks 贝叶斯网络
Deep learning 深度学习
Structural health monitoring
结构健康监测
Model order reduction 减少模型顺序

Abstract 摘要

A B S T R A C T The digital twin concept represents an appealing opportunity to advance condition-based and predictive maintenance paradigms for civil engineering systems, thus allowing reduced lifecycle costs, increased system safety, and increased system availability. This work proposes a predictive digital twin approach to the health monitoring, maintenance, and management planning of civil engineering structures. The asset-twin coupled dynamical system is encoded employing a probabilistic graphical model, which allows all relevant sources of uncertainty to be taken into account. In particular, the time-repeating observations-to-decisions flow is modeled using a dynamic Bayesian network. Real-time structural health diagnostics are provided by assimilating sensed data with deep learning models. The digital twin state is continually updated in a sequential Bayesian inference fashion. This is then exploited to inform the optimal planning of maintenance and management actions within a dynamic decision-making framework. A preliminary offline phase involves the population of training datasets through a reduced-order numerical model and the computation of a health-dependent control policy. The strategy is assessed on two synthetic case studies, involving a cantilever beam and a railway bridge, demonstrating the dynamic decision-making capabilities of health-aware digital twins
A B S T R A C T 数字孪生概念为推进土木工程系统基于状态的预测性维护范例提供了一个极具吸引力的机会,从而可以降低生命周期成本、提高系统安全性和系统可用性。本研究提出了一种预测性数字孪生方法,用于土木工程结构的健康监测、维护和管理规划。资产-孪生耦合动态系统采用概率图形模型进行编码,可将所有相关的不确定性来源考虑在内。特别是,使用动态贝叶斯网络对从观测到决策的时间重复流进行建模。通过深度学习模型同化感知数据,提供实时结构健康诊断。数字孪生状态以连续贝叶斯推理的方式不断更新。然后在动态决策框架内,利用这些数据为维护和管理行动的优化规划提供信息。初步离线阶段包括通过简化的数字模型生成训练数据集,并计算与健康状况相关的控制策略。该策略在涉及悬臂梁和铁路桥梁的两个合成案例研究中进行了评估,展示了健康感知数字孪生的动态决策能力。

1. Introduction 1.导言

The optimal management of deteriorating structural systems is an important challenge in modern engineering. In particular, the failure or non-optimized maintenance planning of civil structures may entail high safety, economic, and social costs. Within this context, enabling a digital twin (DT) perspective for structural systems that are critical for either safety or operative reasons, is crucial to allow for condition-based or predictive maintenance practices, in place of customarily employed time-based ones. Indeed, having an up-to-date digital replica of the physical asset of interest can yield several benefits spanning its entire lifecycle, including performance and health monitoring, as well as maintenance, inspection, and management planning [1].
对老化的结构系统进行优化管理是现代工程学面临的一项重要挑战。特别是,民用结构的故障或未优化的维护规划可能会带来高昂的安全、经济和社会成本。在这种情况下,对那些因安全或运行原因而至关重要的结构系统采用数字孪生(DT)视角,对于实现基于状态或预测的维护实践,以取代通常采用的基于时间的维护实践至关重要。事实上,拥有相关物理资产的最新数字副本可以在其整个生命周期内产生多种益处,包括性能和健康监测,以及维护、检查和管理规划[1]。
The DT concept [2-6] has been recently applied to several fields for operational monitoring, control, and decision support, including structural health monitoring (SHM) and predictive maintenance [7,8], additive manufacturing [9], smart cities [10], urban sustainability [11], and railway systems management [12]. It allows for a personalized characterization of a physical asset, in the form of computational models and parameters of interest, that evolves over time and is kept synchronized with its physical counterpart by means of data-collecting devices. Within a civil SHM framework, such a twinning perspective can be enabled by
DT 概念[2-6]最近被应用于多个领域的运行监测、控制和决策支持,包括结构健康监测(SHM)和预测性维护[7,8]、增材制造[9]、智能城市[10]、城市可持续性[11]和铁路系统管理[12]。它允许以计算模型和相关参数的形式对物理资产进行个性化描述,并随着时间的推移而不断变化,通过数据采集设备与其物理对应物保持同步。在民用 SHM 框架内,可以通过以下方式实现这种孪生观点
Fig. 1. Predictive digital twin framework for civil engineering structures: graphical abstraction of the end-to-end information flow enabled by the probabilistic graphical model.
图 1.土木工程结构的预测性数字孪生框架:概率图形模型实现的端到端信息流的图形抽象。
the assimilation of data through data-driven structural health diagnostics (from physical to digital), possibly accommodating the quantification and propagation of relevant uncertainties related to, e.g., measurement noise, modeling assumptions, environmental and operational variabilities [13-17]. The resulting updated digital state should then enable prediction of the physical system evolution, as well as inform optimal planning of maintenance and management actions (from digital to physical).
通过数据驱动的结构健康诊断(从物理到数字)对数据进行同化,并可能考虑到与测量噪声、建模假设、环境和运行变异等相关的不确定性的量化和传播[13-17]。由此更新的数字状态应能预测物理系统的演变,并为维护和管理行动的优化规划提供信息(从数字到物理)。
In this work, we propose a DT framework for civil engineering structures. The overall computational strategy is based upon a probabilistic graphical model (PGM) inspired by the foundational model proposed in [18], which provides a general framework to carry out data assimilation, state estimation, prediction, planning, and learning. Formally, such a PGM is a dynamic Bayesian network with the addition of decision nodes, i.e., a dynamic decision network . This is employed to encode the end-to-end information flow, from physical to digital through assimilation and inference, and back to the physical asset in the form of informed control actions. A graphical abstraction of the proposed DT strategy is depicted in Fig. 1. The figure shows a physical-to-digital information flow and a digital-to-physical information flow. These bi-directional information flows repeat indefinitely over time. In particular, we have:
在这项工作中,我们提出了土木工程结构的 DT 框架。整体计算策略基于概率图形模型(PGM),该模型受文献[18]中提出的基础模型的启发,为数据同化、状态估计、预测、规划和学习提供了一个通用框架。从形式上看,这种 PGM 是一个增加了决策节点的动态贝叶斯网络,即动态决策网络 。它用于编码端到端的信息流,通过同化和推理从物理到数字,再以知情控制行动的形式返回到物理资产。图 1 展示了拟议 DT 战略的图形抽象。图中显示了从物理到数字的信息流和从数字到物理的信息流。这些双向信息流随着时间的推移无限重复。具体来说,我们有
  • From physical to digital. Structural response data are gathered from the physical system and assimilated with deep learning (DL) models, see e.g., [21,22], to estimate the current structural health in terms of presence, location, and severity of structural damage. To solve this inverse problem, we refer to vibration-based SHM techniques, see e.g., [23-26], which exploit the aforementioned collected data, such as displacement or acceleration time histories. This first estimate of the digital state is then employed to estimate an updated digital state, according to control-dependent transition dynamics models describing how the structural health is expected to evolve.
    从物理到数字。从物理系统中收集结构响应数据,并与深度学习(DL)模型同化(参见文献[21,22]),以估计当前结构的健康状况,包括结构损坏的存在、位置和严重程度。为解决这一逆向问题,我们参考了基于振动的 SHM 技术,如 [23-26],该技术利用了上述收集的数据,如位移或加速度时间历程。然后,根据描述结构健康状况预期演变方式的控制相关过渡动力学模型,利用对数字状态的首次估计来估计更新的数字状态。
  • From digital to physical. The updated digital state is exploited to predict the future evolution of the physical system and the associated uncertainty, thereby enabling predictive decision-making about maintenance and management actions feeding back to the physical system.
    从数字到物理。利用更新后的数字状态来预测物理系统的未来演变和相关的不确定性,从而对反馈到物理系统的维护和管理行动做出预测性决策。
  • Offline learning phase. The DT setup considered in this work takes advantage of a preliminary offline learning phase. This phase involves the training of the DL models underlying the structural health identification, and learning the control policy to be applied at each time step of the online phase. The DL models are trained in a supervised fashion, with labeled data pertaining to specific damage conditions generated by exploiting physics-based numerical models. To efficiently assemble a training dataset representative of potential damage and operational conditions the structure might undergo during its lifetime, we exploit a reduced-order modeling strategy for parametrized systems relying on the reduced basis method [27]. The health-dependent
    离线学习阶段。本工作中考虑的 DT 设置利用了初步离线学习阶段。该阶段包括对结构健康识别所依据的 DL 模型进行训练,以及学习在线阶段每个时间步骤所要应用的控制策略。DL 模型采用监督方式进行训练,利用基于物理的数值模型生成的与特定损坏条件相关的标记数据。为了有效地收集代表结构在其寿命期内可能发生的潜在损坏和运行条件的训练数据集,我们采用了一种参数化系统的降阶建模策略,该策略依赖于降阶基方法[27]。与健康相关的
Fig. 2. Dynamic decision network encoding the asset-twin coupled dynamical system. Circle nodes denote random variables, square nodes denote actions, and diamond nodes denote the objective function. Bold outlines denote observed quantities, while thin outlines denote estimated quantities. Directed solid edges represent the variables' dependencies encoded via conditional probability distributions, while directed dashed edges represent the variables' dependencies encoded via deterministic functions.
图 2.编码资产-双胞胎耦合动态系统的动态决策网络。圆形节点表示随机变量,方形节点表示行动,菱形节点表示目标函数。粗体轮廓表示观测量,细体轮廓表示估计量。有向实线表示通过条件概率分布编码的变量依赖关系,有向虚线表示通过确定性函数编码的变量依赖关系。
control policy is also computed offline, by maximizing the expected future rewards for the planning problem induced by the PGM.
控制策略也是离线计算的,方法是使 PGM 诱导的规划问题的预期未来回报最大化。
The elements of novelty that characterize this work are the following: (i) the adaptation of the PGM digital twinning framework to the health monitoring, maintenance, and management planning of civil engineering structures; (ii) the assimilation of vibration response data is carried out by exploiting DL models, which allow automated selection and extraction of optimized damagesensitive features and real-time assessment of the structural state. This work shows how to incorporate in the DT framework high-dimensional multivariate time series describing the sensor measurements, while tracking the associated uncertainties. The proposed computational framework is made available in the public repository digital-twin-SHM [28]. The code implements the PGM framework as a dynamic decision network. This enables us to easily specify the graph topology from a few time slices, and then unroll it for any number of time steps in the future.
这项工作的新颖之处在于以下几点:(i) PGM 数字孪生框架适用于土木工程结构的健康监测、维护和管理规划;(ii) 利用 DL 模型对振动响应数据进行同化,从而自动选择和提取优化的损伤敏感特征,并对结构状态进行实时评估。这项工作展示了如何将描述传感器测量的高维多变量时间序列纳入 DT 框架,同时跟踪相关的不确定性。提出的计算框架可在公共存储库 digital-twin-SHM [28] 中获取。代码以动态决策网络的形式实现了 PGM 框架。这使我们能够轻松地从几个时间片中指定图拓扑结构,然后在未来任意数量的时间步骤中展开它。
The remainder of this paper is organized as follows. In Section 2, we describe the proposed DT framework. In Section 3, the computational procedure is assessed on two test cases, respectively related to a cantilever beam and a railway bridge. Conclusions and future developments are drawn in Section 4.
本文的其余部分安排如下。在第 2 节中,我们介绍了所提出的 DT 框架。第 3 节中,我们在两个测试案例中对计算程序进行了评估,这两个案例分别与悬臂梁和铁路桥梁有关。第 4 节是结论和未来发展。

2. Predictive digital twins using physics-based models and machine learning
2.利用物理模型和机器学习预测数字双胞胎

In this section, we describe the methodology characterizing our DT framework in terms of the PGM encoding the assettwin coupled dynamical system in Section 2.1; the population of training datasets exploiting physics-based numerical models in Section 2.2; and the DL models underlying the structural health identification in Section 2.3.
在本节中,我们将在第 2.1 节中介绍 DT 框架的方法论特征,包括编码资产双耦合动力系统的 PGM;第 2.2 节中介绍利用基于物理的数值模型的训练数据集群;以及第 2.3 节中介绍结构健康识别所依据的 DL 模型。

2.1. Probabilistic graphical model for predictive digital twins
2.1.预测数字双胞胎的概率图模型

The digital twin assimilates vibration recordings shaped as multivariate time series , consisting of time series made of sensor measurements equally spaced in time, for instance in terms of accelerations or displacements. The vector comprises the parameters representing the operational, damage, and (possibly) environmental conditions. Each recording refers to a time interval , within which measurements are recorded with a sampling rate . For the problem settings we consider, the interval is short enough for the operational, environmental, and damage conditions to be considered time-invariant, yet long enough not to compromise the identification of the structural behavior.
数字孪生系统将振动记录同化为多变量时间序列 ,由时间间隔相等的 传感器测量值(例如加速度或位移)组成的 时间序列。矢量 包括代表运行、损坏和(可能)环境条件的参数。每次记录指的是一个时间间隔 ,在该时间间隔内以采样率 记录测量值。对于我们所考虑的问题设置, 时间间隔足够短,可将运行、环境和损坏条件视为时间不变,但又足够长,不会影响结构行为的识别。
The PGM that defines the elements comprising the asset-twin coupled dynamical system, and mathematically describes the relevant interactions via observed data and control inputs, is the dynamic decision network sketched in Fig. 2. Circle nodes in the graph denote random variables at discrete times, square nodes denote actions, and diamond nodes denote the objective function. Bold outlines denote observed quantities, while thin outlines denote estimated quantities. The directed acyclic structure of the PGM encodes the assumed conditional dependencies. Edges in the graph represent dependencies between random variables. Solid edges represent the variables' dependencies encoded via conditional probability distributions, while dashed edges represent the variables' dependencies encoded via deterministic functions.
图 2 所示的动态决策网络定义了资产-孪生兄弟耦合动态系统的组成要素,并通过观测数据和控制输入对相关的相互作用进行了数学描述。图中的圆形节点表示离散时间的随机变量,方形节点表示行动,菱形节点表示目标函数。粗体轮廓表示观察到的数量,细体轮廓表示估计的数量。PGM 的有向无循环结构编码了假定的条件依赖关系。图中的边代表随机变量之间的依赖关系。实线表示通过条件概率分布编码的变量依赖关系,虚线表示通过确定性函数编码的变量依赖关系。
We consider a non-dimensional time discretization, and denote discrete time steps by . The physical time duration between successive time steps may vary depending on the application, and is governed by the update frequency of the DT via data assimilation, so that the DT is updated once per time step. Thanks to the modeled conditional dependencies between random variables, the graph topology is specified from the first two time steps, and can then be unrolled for any number of time steps.
我们考虑非一维时间离散化,用 表示离散时间步长。连续时间步之间的物理时间长度可能因应用而异,并受数据同化 DT 更新频率的制约,因此 DT 每个时间步更新一次。由于随机变量之间的条件依赖关系模型化,图拓扑结构从头两个时间步开始指定,然后可以在任意数量的时间步中展开。
The physical state , with denoting the realization of the random variable at time , encapsulates the variability in the health state of the asset, which is usually only partially observable. The probability distribution encoding the relative likelihood that , for any possible , is denoted with . The digital state is characterized by those parameters employed to capture the variability of the physical asset by means of the computational models comprising the DT. In our framework, the digital state is given as a vector of length two, describing the presence/location and magnitude of damage in the asset. The physical-todigital information flow is governed by the observed data , which are assimilated by the DT to update the digital state. The assimilation is carried out using the DL models described in Section 2.3, providing a first estimate of the digital state . This estimation is then used in a Bayesian inference formulation, together with the prior belief from the previous time step, to estimate an updated digital state according to a control-dependent transition dynamics model describing how the digital state is expected to evolve. The updated digital state can thus be exploited to compute quantities of interest , such as modal quantities or other response features, through the computational models comprising the DT. For instance, quantities of interest can be useful to perform posterior predictive checks on the tracking capabilities of the DT to assess how it matches the reality, by comparing sensor measurements with the corresponding posterior estimates. However, we point out that this capability is not exploited in the present work, and that the node is kept in the graph in agreement with the foundational model proposed in [18]. Nevertheless, the updated digital state is eventually exploited to inform the digital-to-physical information flow, in the form of control inputs; in Fig. 2, and denote the belief about what action to take and the control input effectively enacted on the asset, respectively. At each time step, is estimated according to a health-dependent control policy, that maps the belief over the digital state onto the control actions feeding back to the physical asset. Finally, the reward quantifies the performance of the asset for the time step and can be equivalently perceived as a negative cost to be maximized.
物理状态 ,其中 表示随机变量 在时间 的实现,它包含了资产健康状态的变化,通常只能部分观测到。对于任何可能的 ,编码 的相对可能性的概率分布用 表示。数字状态 的特征是通过构成 DT 的计算模型来捕捉物理资产变化的参数。在我们的框架中,数字状态是一个长度为 2 的向量,描述了资产中损坏的存在/位置和程度。物理-数字信息流受观测数据 的支配,DT 通过同化这些数据来更新数字状态。同化使用第 2.3 节所述的 DL 模型进行,提供数字状态的初步估计 。然后,根据描述数字状态预期演变方式的控制相关过渡动力学模型,将这一估计值与上一时间步的先验信 念 一起用于贝叶斯推理公式,以估计出更新的数字状态 。更新后的数字状态可用于计算 ,如模态量或其他响应特征。例如,通过比较传感器测量值和相应的后验估计值,相关数量可用于对 DT 的跟踪能力进行后验预测检查,以评估其与实际情况的匹配程度。 不过,我们要指出的是,本研究并没有利用这一功能,而是根据 [18] 中提出的基础模型,在图中保留了 节点。尽管如此,更新后的数字状态 最终还是会以控制输入的形式为数字到物理信息流提供信息;在图 2 中, 分别表示对资产采取何种行动的信念和有效实施的控制输入。在每个时间步骤中, 都会根据健康控制策略进行估算,该策略将数字状态的信念映射到反馈给物理资产的控制行动上。最后,奖励 量化了资产在该时间步长内的性能,可等同于需要最大化的负成本。
The key assumptions behind our PGM are that the physical state is only observable indirectly via the sensed structural response, and the physical and digital states evolve according to a Markovian process. This implies that the conditional probabilities associated with the random variables at one time step depend only on the random variables at the previous time step, and are independent of all past states. The resulting graph topology encodes a conditional independence structure that allows us to conveniently cast the asset tracking within a sequential Bayesian inference framework. Indeed, by exploiting conditional independence and Bayes rule, the joint distributions over variables can be factorized up to the current time step , as follows:
我们的 PGM 背后的关键假设是,物理状态只能通过感应到的结构响应间接观测到,物理状态和数字状态按照马尔可夫过程演化。这意味着与某一时间步的随机变量相关的条件概率仅取决于前一时间步的随机变量,而与过去的所有状态无关。由此产生的图拓扑结构编码了一种条件独立性结构,使我们能够方便地将资产跟踪置于顺序贝叶斯推理框架内。事实上,利用条件独立性和贝叶斯规则,变量的联合分布可以因式分解到当前时间步 ,如下所示:
with factors: 因素:

and factorize the belief about the digital state , conditioned on the digital state at the previous time step , the last enacted control input , and the data assimilation outcome . In our PGM, the spaces of the digital states and control inputs are discrete, thus the relevant causal relationships are modeled by means of conditional probability tables (CPTs). In particular, plays the role of a predictor forward in time, parametrized by means of a control-dependent CPT describing how the digital state is expected to evolve. Such a CPT should embody any a priori knowledge that the DT designer has with respect to the asset and the relevant operational conditions. can be estimated offline from historical data, see e.g., [29,30], or learned online from experience. On the other hand, updates the digital state estimate to account for data assimilation. This is encoded by means of a CPT mapping the estimate provided by the DL models, onto a belief about . Such a CPT is a confusion matrix measuring the offline (expected) performance of the DL models in correctly identifying the digital state among all the possible outcomes of and respectively encapsulate the evaluation of the computational models comprising the DT to estimate quantities of interest, and the computation of the reward function quantifying the performance of the asset. Finally, the control factor is encoded by means of a health-dependent control policy computed as described in the following. Since the spaces of the unobserved variables are discrete, we can propagate and update the relative belief exactly with a single pass of the sum-product message-passing algorithm [19].
和 对数字状态的信念进行因式分解 ,条件是前一时间步骤的数字状态 、最后颁布的控制输入 和数据同化结果 。在我们的 PGM 中,数字状态和控制输入的空间是离散的,因此相关的因果关系是通过条件概率表(CPT)来建模的。特别是, 在时间上扮演着预测者的角色,通过与控制相关的 CPT 参数来描述数字状态的预期演变过程。这种 CPT 应包含 DT 设计者对资产和相关运行条件的任何先验知识。 可以根据历史数据离线估算(参见 [29,30] 等),也可以根据经验在线学习。另一方面, 更新数字状态估计,以考虑数据同化。这是通过将 DL 模型提供的估计值 与 的信念映射的 CPT 来编码的。这样的 CPT 是一个混淆矩阵,用于衡量 DL 模型在所有可能结果中正确识别数字状态的离线(预期)性能。 和 分别封装了由 DT 组成的计算模型的评估,以估算相关数量,以及量化资产性能的奖励函数的计算。最后,控制因素 是通过依赖健康的控制策略 进行编码的,计算方法如下所述。 由于未观测变量的空间是离散的,我们只需通过一次和积传递信息算法 [19],就能准确地传播和更新相对信念。
The control policy is computed offline under the simplifying assumption of sufficient sensing capability to provide an accurate estimate of the structural health, allowing us to decouple the sensing and control problems. This involves solving the planning problem induced by the expected evolution of the structural health, maximizing the expected reward over the planning horizon. Considering an infinite planning horizon, this can be stated as the optimization problem:
控制策略 是离线计算的,其简化假设是有足够的传感能力来提供对结构健康状况的准确估计,从而使我们能够将传感和控制问题分离开来。这就需要解决由结构健康状况的预期变化引起的规划问题,使规划期内的预期收益最大化。考虑到规划期限为无限期,可以将其视为优化问题:
Fig. 3. Dynamic decision network employed to predict the future evolution of the digital state and the associated uncertainty. Circle nodes denote random variables, and diamond nodes denote the objective function. Directed solid edges represent the variables' dependencies encoded via conditional probability distributions, while directed dashed edges represent the dependencies encoded via deterministic functions
图 3.用于预测未来数字状态演变和相关不确定性的动态决策网络。圆圈节点表示随机变量,菱形节点表示目标函数。有向实线表示通过条件概率分布编码的变量依赖关系,有向虚线表示通过确定性函数编码的变量依赖关系。
where is the discount factor. Here, this is solved using the dynamic-programming value iteration algorithm [31]. The reward function to be optimized is chosen as:
其中 是折扣系数。这里采用动态编程值迭代算法 [31]。需要优化的奖励函数选为
Herein, and quantify the rewards relative to control inputs and health state, respectively, and is a weighting factor, useful to tune the trade-off between risk-averse and risk-seeking behavior. After learning is selected as the best point estimate of .
在这里, 分别量化了相对于控制投入和健康状态的奖励, 是一个加权系数,用于调整规避风险行为和寻求风险行为之间的权衡。经过学习, 被选为 的最佳估计点。
Starting from the updated digital state at the current time step , future prediction is achieved by unrolling until a prediction time the portion of PGM relative to , and (see Fig. 3). All other nodes are removed from the prediction graph, as neither data assimilation nor actions are performed on the asset while forecasting its evolution. The factorization in Eq. (1) can be extended over the prediction horizon as:
从当前时间步骤 的更新数字状态 开始,通过展开至预测时间 PGM 相对于 的部分,实现未来预测(见图 3)。所有其他节点都从预测图中删除,因为在预测资产变化时,既不会对资产进行数据同化,也不会对资产采取任何行动。公式 (1) 中的因式分解可以在预测范围内扩展为
The algorithmic description of the online phase of the proposed digital twinning framework is reported in Algorithm 1. The operations repeat each time new observational data are provided. Note that the considered PGM digital twinning framework is general, and can easily be adapted to deal with physical assets other than civil engineering structures by reorganizing the topology of the graph, if necessary.
拟议数字孪生框架在线阶段的算法说明见算法 1。每次提供新的观测数据时,都会重复这些操作。需要注意的是,所考虑的 PGM 数字孪生框架是通用的,如有必要,可以通过重新组织图的拓扑结构,很容易地适应于处理土木工程结构以外的其他有形资产。
Algorithm 1 Online phase - algorithmic description
    Input: observational data \(O_{t}=o_{t}\)
    assimilate \(o_{t}\) with the DL models to provide \(D_{t}^{\mathrm{NN}}=d_{t}^{\mathrm{NN}}\). \(\quad \triangleright\left(O_{t}\right) \rightarrow\left(D_{t}^{\mathrm{NN}}\right)\)
    infer \(D_{t}\) and \(U_{t}\) by updating \(d_{t-1}\), given \(u_{t-1}^{A}, d_{t}^{\mathrm{NN}}\), and the CPTs encoding \(\phi_{t}^{\text {history }}, \phi_{t}^{\mathrm{NN}}\) and \(\phi_{t}^{\text {control }} \triangleright\left(D_{t-1}, D_{t}^{\mathrm{NN}}, U_{t-1}^{A},\right) \rightarrow\left(D_{t}, U_{t}\right)\)
    infer the future evolution of \(D_{t}\) and \(U_{t}\), given the updated \(d_{t}\), and the CPTs encoding \(\phi_{t}^{\text {history }}\) and \(\phi_{t}^{\text {control }} . \quad \triangleright\left(D_{t_{c}}\right) \rightarrow\left(D_{t_{p}}, U_{t_{p}}\right)\)
    select \(U_{t}^{A}=u_{t}^{A}\) as the best point estimate of \(U_{t}=u_{t} . \quad \triangleright\left(U_{t}\right) \rightarrow\left(U_{t}^{A}\right)\)
    return control input to be enacted \(u_{t}^{A}\), expected evolution of \(D_{t}\) and \(U_{t}\).

2.2. Numerical models for simulation-based damage identification
2.2.基于模拟的损伤识别数值模型

As anticipated in the previous section, the assimilation of structural response data to identify the structural state is carried out through DL models. A simulation-based strategy is exploited to train the DL models on the basis of vibration responses. The training data are numerically generated by simulating physics-based models so that the effect of damage on the structural response can be systematically reproduced [32]. In particular, the structure to be monitored is modeled as a linear-elastic continuum, discretized in space through finite elements. Its dynamic response to the applied loadings, under the assumption of linearized kinematics, is described by the following semi-discretized form of the elasto-dynamic problem:
如上一节所述,通过 DL 模型对结构响应数据进行同化以识别结构状态。在振动响应的基础上,采用基于模拟的策略来训练 DL 模型。训练数据是通过模拟物理模型数值生成的,因此可以系统地再现损伤对结构响应的影响[32]。具体而言,需要监测的结构被模拟为线性弹性连续体,并通过有限元在空间中离散化。在线性化运动学假设下,其对外加载荷的动态响应由以下弹性动力问题的半离散形式描述:
which is referred to as the full-order model (FOM). Here denotes time; are the vectors of nodal displacements, velocities and accelerations, respectively; is the number of degrees of freedom (dofs); is the mass matrix; is the damping matrix, assembled according to the Rayleigh's model; is the stiffness matrix; is the vector of nodal forces induced by the external loadings; and and are the initial conditions (at ), in terms of nodal displacements and velocities, respectively. The mass matrix is not a function of because the mass properties of the structure are unaffected by the employed damage description or by the operational conditions. The solution of Problem (11) is advanced in time using the Newmark integration scheme (constant average acceleration method) [33], to provide and , for , with being the vector of nodal displacements at time .
称为全阶模型(FOM)。 表示时间;