Same function can be achieved by a 1.5 xx1.5cm^(2)1.5 \times 1.5 \mathrm{~cm}^{2} die in mid 1970s! 在 1970 年代中期,可以通過一個 1.5 xx1.5cm^(2)1.5 \times 1.5 \mathrm{~cm}^{2} 模具實現相同的功能!
IC Industries IC 產業
Raw material supplier 原材料供應商
wafers, chemicals 晶圓,化學品
IC circuitry design 集成電路設計
Design house 設計公司
IC fabrication 集成電路製造
E.g., TSMC, UMI for fab only 例如,台積電,僅限於晶圓廠的 UMI
E.g., Intel, TI, Lucent for both design and fabrication 例如,英特爾、德州儀器、盧森特用於設計和製造。
Equipment suppliers of IC fabrication/characterization IC 製造/表徵的設備供應商
An overall idea on how a IC chip was fabricated IC 晶片製造的整體概念
Certain depth on each important fabrication step 每個重要製造步驟的特定深度
The role of a non-electrical engineering background person in semiconductor industries or related research projects 非電機工程背景的人在半導體產業或相關研究項目中的角色
Courses after this introductory material 這些入門材料之後的課程
Semiconductor fabrication related courses 半導體製造相關課程
MEMS related courses MEMS 相關課程
nanosystems related courses 納米系統相關課程
semiconductor processes 半導體製程
Microelectronics Devices 微電子裝置
Yao-Joe Yang 楊耀久
Outline 大綱
Basic semiconductor physics 基本半導體物理學
Semiconductor devices 半導體裝置
Resistors 電阻器
Capacitors 電容器
P-N diodes P-N 二極體
BJT/MOSFET
Solid materials may be classified as follows: 固體材料可以分類如下:
Amorphous 無定形
no ordered atomic arrangement 無序的原子排列
Polycrystalline 多晶體
short range atomic order usually in small crystalline grains (10 Å - few mum\mu \mathrm{m} ) 短程原子序通常存在於小的晶粒中(10 Å - 幾個 mum\mu \mathrm{m} )
Crystalline 晶體的
long range, ordered, atomic arrangement, repeating unit cell 長程、有序、原子排列、重複單元格
All important semiconductor devices are based on crystalline materials (Si especially) because of their reproducible and predictable electrical properties 所有重要的半導體器件都是基於晶體材料(特別是矽),因為它們具有可重複和可預測的電氣特性
Strength strongly depends on surface quality 強度在很大程度上依賴於表面質量
Poly silicon has similar elastic constant and mechanical properties as crystalline silicon. However, residual strength, toughness, and electrical properties are quite different 多晶矽的彈性常數和機械性能與晶體矽相似。然而,殘餘強度、韌性和電氣性能卻有很大不同。
Extrinsic Semiconductors 外部半導體
In all important electronic devices, dopant are purposely added to control the electronic properties 在所有重要的電子設備中,故意添加摻雜劑以控制電子特性
n-type semiconductor n 型半導體
add phosphorus or arsenic to provide excess electron carriers 添加磷或砷以提供過量的電子載體
p-type semiconductor p 型半導體
add boron, gallium, or indium into silicon to provide additional vacancies or holes 在矽中添加硼、鎵或銦以提供額外的空位或孔洞
The mass-action law is still valid 質量作用定律仍然有效
np=n_(i)^(2)n p=n_{i}^{2}
Doping 禁藥使用
All semiconductor devices are fabricated LOCALLY introducing controlled number of n - and p -type dopant 所有半導體設備都是在本地製造的,並引入受控數量的 n 型和 p 型摻雜劑
Semiconductor Conductivity 半導體導電性
The conductivity ((Omega.cm)^(-1))\left((\Omega . \mathrm{cm})^{-1}\right) is determined by the mobility and concentration of both electrons and holes 導電率 ((Omega.cm)^(-1))\left((\Omega . \mathrm{cm})^{-1}\right) 由電子和空穴的遷移率及濃度決定
sigma=qmu_(n)n+qmu_(p)p\sigma=q \mu_{n} n+q \mu_{p} p
where mu\mu is the mobility, for silicon 其中 mu\mu 是矽的遷移率 -mu_(n)=1350cm^(2)//V.s-\mu_{\mathrm{n}}=1350 \mathrm{~cm}^{2} / \mathrm{V} . \mathrm{s} -mu_(p)=480cm^(2)//V.s-\mu_{p}=480 \mathrm{~cm}^{2} / \mathrm{V} . \mathrm{s} -q=1.609 xx10^(-19)C-\mathrm{q}=1.609 \times 10^{-19} \mathrm{C}
temperature decreases, conductivity increases 溫度降低,導電性增加
Resistivity Vs. Doping Concentration 電阻率與摻雜濃度
Resistivity = 1/conductivity 電阻率 = 1/導電率
Semiconductor Device Overview 半導體器件概述
VLSI are consisted by many transistors, capacitors, diodes, and resistors. However, the transistor fabrication can cover the other three VLSI 由許多晶體管、電容器、二極體和電阻器組成。然而,晶體管的製造可以涵蓋其他三者。
One need to know the basic definition, working principle, and fabrication routes for these basic elements 需要了解這些基本元素的基本定義、工作原理和製造途徑
Resistors 電阻器
A resistor can be defined as a device in which the applied electric potential and measured current exhibit a certain relationship, i.e., V=f(I)V=f(I) 電阻器可以定義為一種裝置,其中施加的電位和測量的電流之間顯示出某種關係,即 V=f(I)V=f(I)
For linear device, we have V=RI\mathrm{V}=\mathrm{RI}, where R is called the resistance of the resistor 對於線性元件,我們有 V=RI\mathrm{V}=\mathrm{RI} ,其中 R 被稱為電阻器的電阻
Consider a resistor with length LL and crosssectional dimension W and d, R can be expressed as 考慮一個長度為 LL 且橫截面尺寸為 W 和 d 的電阻器,R 可以表示為
reduce the junction barrier and eliminate the depletion zone 降低接面障礙並消除耗盡區域
Reverse bias 反向偏壓
enhance the junction barrier and increase the depletion zone 增強接面障礙並增加耗盡區域
Capacitors 電容器
Capacitor is a device in which the charge and electric potential can be defined, i.e., V=f(Q)V=f(Q). 電容器是一種可以定義電荷和電位的裝置,即 V=f(Q)V=f(Q) 。
In linear element, we can express the above relationship as Q=CV\mathrm{Q}=\mathrm{CV}. Where C is the capacitance of the capacitor. 在線性元件中,我們可以將上述關係表示為 Q=CV\mathrm{Q}=\mathrm{CV} 。其中 C 是電容器的電容。
Where epsi\varepsilon is the dielectric constant of dielectric, A is the overlapped area and dd is the separation of two parallel plates. 其中 epsi\varepsilon 是介電材料的介電常數,A 是重疊面積,而 dd 是兩個平行板之間的距離。
Transistors 晶體管
Transistors are widely used for switching and amplification 晶體管廣泛用於開關和放大
replace vacuum tubes 更換真空管
Two major transistors 兩個主要的晶體管
Bipolar Junction Transistor (BJT) 雙極接面晶體管 (BJT)
collector, emitter, base 集電極、發射極、基極
current controlled 當前控制
Field Effect Transistor (FET) 場效應晶體管 (FET)
source, drain, gate 源極、漏極、閘極
voltage controlled 電壓控制
Bipolar Junction Transistors (BJT) 雙極接面晶體管 (BJT)
Fig. 4.1 A simplified structure of the non transistor. 圖 4.1 簡化的非晶體管結構。
p型基板 p 型基板
(a) npn
23
Field Effect Transistors (FET) 場效應晶體管 (FET)
FET is the most popular transistor at this moment FET 是目前最受歡迎的晶體管
incorporate with MOS process 結合 MOS 過程
Can be divided into 可以分為
two catalog 兩個目錄
MOSFET
depletion 耗竭
enhancement 增強
JFET
Symbols of FET 場效應晶體管的符號
FETs are unipolar devices 場效應晶體管是單極裝置
for switch operation, usually we use NMOS or CMOS technology to further reduce power consumption and increase the device density 在開關操作中,通常我們使用 NMOS 或 CMOS 技術來進一步降低功耗並增加設備密度
CMOS IC CMOS 集成電路
From Basic Elements to a IC Chips 從基本元素到集成電路晶片
Analog 類比
basic devices (transistors, resistors…) to OPAMP 基本元件(晶體管、電阻器……)到運算放大器
OPAMP to analog circuit 運算放大器至類比電路
The designer may start from basic devices 設計師可以從基本設備開始