这是用户在 2024-12-16 20:07 为 https://pubs.acs.org/doi/full/10.1021/acs.est.9b02892 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
ACS Publications. Most Trusted. Most Cited. Most Read
Balance between Reducibility and N2O Adsorption Capacity for the N2O Decomposition: CuxCoy Catalysts as an Example

Figure 1Loading Img
  • Subscribed
Article

Balance between Reducibility and N2O Adsorption Capacity for the N2O Decomposition: CuxCoy Catalysts as an Example
Reducibility 和 N2O 对 N2O 分解的吸附能力:CuxCoy Catalysts as an Example
Click to copy article link
点击复制文章链接
Article link copied!
环境科学与生态学TOPEI检索SCI升级版 环境科学与生态学1区SCI基础版 环境科学与生态学1区IF 10.8SWJTU A++SWUFE A

  • Shangchao Xiong
    Shangchao Xiong
    State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
    National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, Tsinghua University, Beijing 100084, PR China
  • Jianjun Chen*
    Jianjun Chen
    State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
    National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, Tsinghua University, Beijing 100084, PR China
    *E-mail: chenjianjun@tsinghua.edu.cn. Phone: +86 010 62771093.
    More by Jianjun Chen
  • Nan Huang
    Nan Huang
    State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
    School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
    More by Nan Huang
  • Shijian Yang
    Shijian Yang
    School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
    More by Shijian Yang
  • Yue Peng
    Yue Peng
    State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
    National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, Tsinghua University, Beijing 100084, PR China
    More by Yue Peng
  • Junhua Li
    Junhua Li
    State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
    National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, Tsinghua University, Beijing 100084, PR China
    More by Junhua Li
Open PDFSupporting Information (1)

Environmental Science & Technology

Cite this: Environ. Sci. Technol. 2019, 53, 17, 10379–10386
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.est.9b02892
Published August 5, 2019
Copyright © 2019 American Chemical Society

Abstract 摘要

Click to copy section link
点击复制章节链接
Section link copied!

CuxCoy (CuO–Co3O4 mixed oxides) catalysts were prepared via co-precipitation for the N2O decomposition reaction. They exhibited a higher N2O decomposition activity than that of pure CuO and Co3O4 because of the balance of the redox property and N2O adsorption capacity. Co3O4 presented a large number of surface oxygen vacancies, increasing the N2O chemical adsorption as “□–Co–ON2” on the catalyst surface, whereas CuO was dispersed around Co3O4 and presented high reducibility on the interface of Co3O4–CuOx for the N–O break of N2O, healing oxygen vacancies by leaving one oxygen atom in the vacancy. Based on kinetic studies, the rate constant of N2O decomposition was related to the number of surface vacancy sites ([Mn+]) and the rate of N–O break (k3), whereas the rate-determining step is the N–O break. Therefore, the N2O decomposition rate is first order to the N2O concentration. Overall, both the density functional theory calculations and kinetic results indicate that the quantities of adsorption and activation sites derived from the interaction between Co and Cu (dual-function mechanism) were accounted for the excellent N2O decomposition performance of CuxCoy catalysts.
CuxCoy (CuO-Co3O4 混合氧化物)共沉淀制备了用于 N2O 分解反应的催化剂。与纯 CuO 和 Co3O4 因为氧化还原特性和 N2O 吸附能力的平衡。Co3O4 表面存在大量氧空位、增加了催化剂表面的 N2O 化学吸附,表现为"□-Co-ON2"、而 CuO 分散在 Co3O4 周围,并在 Co3O4-CuOx N2O 的 N-O 断裂、通过在空位中保留一个氧原子来修复氧空位。 根据动力学研究、N2O 分解的速率常数与表面空位的数量([Mn+])和N-O断裂速率(k3)有关、而决定速率的步骤是 N-O 断裂。因此,N2O 分解速率与 N2O 浓度呈一阶关系。总之、密度泛函理论计算和动力学结果都表明,Co 和 Cu 之间的相互作用(双功能机制)所产生的吸附量和活化位点是 N2CuxCoy 催化剂。

This publication is licensed under the terms of your institutional subscription. Request reuse permissions.
本出版物的许可条款如下 机构订阅。 请求重复使用权限。

Copyright © 2019 American Chemical Society
版权所有 © 2019 美国化学学会

1. Introduction 1.导言

Click to copy section link
点击复制章节链接
Section link copied!

Nitrous oxide (N2O) emitted from the production of adipic acid and nitric acid, as well as the processes using nitric acid as an oxidant, contributes to the ozone hole and greenhouse effect. (1,2) Its global warming potential is ∼310 times and ∼31 times higher than that of CO2 and CH4, respectively, and the lifetime of N2O is ∼114 years. (3) Moreover, N2O can deplete the ozone layer by a reaction pathway similar to that of chlorofluorocarbons. Previous studies reported that N2O would be the dominant ozone-depleting substance in the 21st century. (4) Thus, the reduction in anthropogenic N2O emissions is urgently required. Several techniques were proposed to control anthropogenic N2O emissions, whereas the direct catalytic decomposition of N2O is regarded as the most promising alternative technique. (5,6) Retrofitting the existing flue gas treatment process to incorporate this technique is relatively convenient and can minimize the economic demands.
一氧化二氮(N2O )从己二酸和硝酸的生产过程以及使用硝酸作为氧化剂的过程中排放出来,造成了臭氧空洞和温室效应。(1、2) 其全球变暖潜势分别是 CO2 和 CH4 的 310 倍和 31 倍、而 N2O 的寿命则为∼114 年。(3) 此外,N2O 可以通过与氟氯化碳类似的反应途径消耗臭氧层。先前的研究报告指出,N2O 将成为 21 世纪最主要的臭氧消耗物质。(4) 因此,迫切需要减少人为 N2O 排放。人们提出了几种控制人为 N2O 排放的技术,而直接催化分解 N2O 被认为是最有前途的替代技术。(5,6) 对现有烟气处理工艺进行改造以采用该技术相对方便,并能最大限度地降低经济要求。
A series of noble metals and non-noble metals were used to catalyze the decomposition of N2O. (6) Noble metals (e.g., Rh and Ru) show a satisfactory N2O decomposition performance at low temperature, but their high cost and poor tolerance to various influential factors (e.g., oxygen and water vapor) extremely restrict their widespread applications. (7−9) Iron-based zeolites (especially Fe-ZSM-5) are another type of N2O decomposition catalyst, which attracted great interest because of their tolerance to O2 and H2O. (10,11) The N2O decomposition activity of Fe-ZSM-5 is even promoted by the presence of NO in flue gas. (12) However, the reaction temperature of iron-based zeolites is quite high, and it is difficult to meet the actual flue gas conditions.
一系列贵金属和非贵金属被用来催化 N2O 的分解。(6) 贵金属(如 Rh 和 Ru)在低温下具有令人满意的 N2O 分解性能,但其成本高,对各种影响因素(如氧气和水蒸气)的耐受性差,极大地限制了其广泛应用。(7-9) 铁基沸石(尤其是 Fe-ZSM-5)是另一类 N2O 分解催化剂、由于对 O2 和 H2O 的耐受性,这些催化剂引起了人们的极大兴趣。(10,11) 烟气中的 NO 甚至促进了 Fe-ZSM-5 的 N2O 分解活性。(12) 然而,铁基沸石的反应温度相当高,很难满足实际烟气条件。
Metal oxides, especially transition-metal oxides, are widely researched and employed in the N2O decomposition reaction, which are consequences of their low price, excellent reducibility, and adequate catalytic characteristics. (13,14) Particularly, metal oxides exhibiting the spinel structure are efficient catalysts to decompose N2O. (15) The metal cations in the spinel structure are in the mixed valence state, which frequently consists of divalent and trivalent states. The divalent and trivalent cations in the spinel structure are located in tetrahedral and octahedral coordination centers and are represented as AIIBIII2O4. Because the key step in the N2O decomposition reaction is generally regarded as the charge transfer from the active sites to the antibonding orbital of N2O, spinels can decompose N2O at a relatively low temperature because of their excellent redox property attributed to the divalent and trivalent cations in the spinel structure. (16,17) Given this perspective, metal oxides with the spinel structure were systematically investigated in the decomposition of N2O. (6) Russo et al. investigated several spinel-type catalysts and found that Co-based spinels can provide the most efficient N2O decomposition performance. (18) However, the redox properties of Co-based spinels are not the best among those of spinel catalysts. Consequently, there must exist another crucial property that significantly affects the catalytic performance of N2O decomposition. Many researchers used density functional theory (DFT) methods to calculate the reaction pathway of N2O decomposition and proposed that N2O adsorption is the first step in N2O decomposition. (15,19) The chemical adsorption of N2O generally follows “N–N–O–□”. (20,21) This result suggests that abundant surface oxygen vacancies can contribute to the chemical adsorption of N2O, and this is probably the main reason for the superior N2O decomposition performance of the Co3O4 spinel. Given this perspective, improving the reducibility without blocking oxygen vacancies is the most efficient way to improve the N2O decomposition performance of the Co3O4 spinel. Cu-based catalysts are another type of N2O decomposition catalysts that possess a superior redox property. (22) Combining the advantages of both the Cu-based catalysts and Co3O4 spinel can certainly improve the N2O decomposition performance. Therefore, in this work, a series of CuxCoy (CuO–Co3O4 spinel mixed oxides) catalysts were synthesized to decompose N2O.
金属氧化物,尤其是过渡金属氧化物,因其价格低廉、还原性好、催化性强等特点,在N2O 分解反应中被广泛研究和应用。(13,14) 尤其是尖晶石结构的金属氧化物是分解 N2O 的高效催化剂。(15) 尖晶石结构中的金属阳离子处于混合价态,通常由二价态和三价态组成。尖晶石结构中的二价和三价阳离子位于四面体和八面体配位中心,用 AIIBIII2O4 。由于 N2O 分解反应的关键步骤通常被认为是电荷从活性位点转移到 N2O 的反键轨道、尖晶石能在相对较低的温度下分解 N2O ,这是因为尖晶石结构中的二价和三价阳离子具有出色的氧化还原特性。 (16,17) 从这个角度出发,在分解 N2O 的过程中,对具有尖晶石结构的金属氧化物进行了系统研究。(6) Russo 等人研究了几种尖晶石型催化剂,发现 Co 基尖晶石具有最高效的 N2O 分解性能。(18) 然而,Co 基尖晶石的氧化还原特性并不是尖晶石催化剂中最好的。因此,一定还有另一种关键性质会对 N2O 分解的催化性能产生重大影响。许多研究人员利用密度泛函理论(DFT)方法计算了 N2O 分解的反应途径,并提出了 N2O 吸附是 N2O 分解的第一步。(15,19) N2O 的化学吸附一般遵循 "N-N-O-□"。 (20,21) 这一结果表明,丰富的表面氧空位有助于 N2O 的化学吸附、这可能是 Co3O4 尖晶石具有出色的 N2O 分解性能的主要原因。有鉴于此、从这个角度来看,在不阻塞氧空位的情况下提高还原性是改善 N2Co3O4 尖晶石的氧化分解性能。铜基催化剂是另一种具有优异氧化还原特性的 N2O 分解催化剂。(22) 结合铜基催化剂和 Co3O4 尖晶石无疑可以改善 N2O 的分解性能。 因此,在这项工作中、CuxCoy (CuO-Co3O4 尖晶石混合氧化物)催化剂,用于分解 N2O 。
Kinetic study is an important approach to investigate the key factors of the N2O decomposition reaction. Kapteijn et al. accomplished a comparative kinetic analysis over Co-, Fe-, and Cu-ZSM-5 and found that the effects of O2, NO, and CO were influenced by their partial pressure. (23) Obalová and Fíla established a novel kinetic model over hydrotalcites, which proposes that N2O chemisorption determines the rate of N2O decomposition at low O2 partial pressures, whereas the reaction between active O atoms and N2O is the rate-determining step at high O2 partial pressures. (24) However, kinetic studies of N2O decomposition are rarely reported among recent studies and are even absent from recent reviews. (6,15) Furthermore, a lack of connection between the kinetic model and physicochemical properties exists and greatly limits the design of efficient catalysts for N2O decomposition.
动力学研究是研究 N2O 分解反应关键因素的重要方法。Kapteijn 等人对 Co-、Fe- 和 Cu-ZSM-5 进行了动力学比较分析,发现 O2 、NO 和 CO 的影响受其分压的影响。(23) Obalová 和 Fíla 建立了一种新的氢铝酸盐动力学模型、该模型提出,在低 O2O 化学吸附作用下,N2O 分解的速率决定于低 O2 分压、而在高 O2 分压下,活性 O 原子和 N2O 之间的反应是决定速率的步骤。(24)然而,对 N2O 分解的动力学研究在最近的研究中鲜有报道,甚至在最近的综述中也没有提及。(6,15)此外,动力学模型与物理化学性质之间缺乏联系,极大地限制了 N2O 分解的高效催化剂的设计。
Herein, the N2O decomposition mechanism and the key roles of CuO and Co3O4 spinel in CuxCoy mixed oxides were systematically investigated by a kinetic study combined with DFT, in situ diffuse reflectance Fourier transforms, N2O-temperature program desorption (TPD), H2-TPR and X-ray photoelectron spectroscopy (XPS) studies. The crucial properties of CuxCoy catalysts and the connection between the physicochemical properties and the kinetic study were proposed.
在此、N2O 分解机理以及 CuO 和 Co3O4 尖晶石在 CuxCoy 混合氧化物中的尖晶石、通过动力学研究结合 DFT、原位漫反射傅立叶变换、N2O 温度程序解吸 (TPD)、H2-TPR 和 X 射线光电子能谱 (XPS) 研究,对混合氧化物进行了系统研究。提出了铜xCoy 催化剂的关键性质以及物理化学性质与动力学研究之间的联系。

2. Experimental Section 2.实验部分

Click to copy section link
点击复制章节链接
Section link copied!

2.1. Catalyst Preparation
2.1.催化剂制备

Co3O4, CuxCoy, and CuO catalysts were prepared via the coprecipitation method. CuxCoy represents Cu1Co2, Cu1.5Co1.5, and Cu2Co1 catalysts, corresponding to molar ratios of Cu to Co of 1:2, 1:1, and 2:1, respectively. Suitable amounts of cupric nitrate and cobaltous sulfate were added to a solution with an excess of sodium hydroxide followed by continuous stirring for 3 h. The suspension was separated by centrifugation and washed with deionized water. The process of centrifugation and washing was repeated five times to remove any residual substances. The obtained particles were dried at 105 °C for 12 h and then calcinated at 500 °C for 3 h in air.
Co3O4、通过共沉淀法制备了 CuxCoy 和 CuO 催化剂。CuxCoy 表示 Cu1Co2、Cu1.5Co1.5 和 Cu2Co1 催化剂,对应的 Cu 与 Co 的摩尔比分别为 1:2、1:1 和 2:1。将适量的硝酸铜和硫酸钴加入到过量氢氧化钠溶液中,然后持续搅拌 3 小时。离心和洗涤过程重复五次,以去除任何残留物质。得到的颗粒在 105 °C 下干燥 12 小时,然后在 500 °C 下空气中煅烧 3 小时。

2.2. Characterization 2.2.特征

The Brunauer–Emmett–Teller (BET) surface area and X-ray diffraction (XRD) data were determined on a physisorption analyzer (BELSORP-max II) and an X-ray diffractometer (Rigaku D/max-2500). The surface analyses [XPS and atomic emission spectroscopy (AES)] were carried out on an XPS microprobe (ESCALAB 250 Xi). TPD of O2 and N2O were both conducted on a chemisorption apparatus (AutoChem II 2920), and N2O-TPD was further analyzed by a mass spectrum (MS, HPR-20 R&D). H2-temperature program reduction (H2-TPR) was also performed on the chemisorption apparatus. After H2-TPR studies, the coefficient between the H2 consumption rate and peak intensity was gotten by the test results of the standard sample (standard CuO). Therefore, the dependences of H2 consumption rates versus 1/T (T = 130–165 °C) were obtained as the initial H2 consumption rates.
在物理吸附分析仪(BELSORP-max II)和 X 射线衍射仪(Rigaku D/max-2500)上测定了布鲁纳-埃美特-泰勒(BET)表面积和 X 射线衍射(XRD)数据。表面分析[XPS 和原子发射光谱(AES)]是在 XPS 微探针(ESCALAB 250 Xi)上进行的。O2 和 N2O 的 TPD 均在化学吸附仪 (AutoChem II 2920) 上进行、而 N2O-TPD 则通过质谱(MS,HPR-20 R&;D).H2 温度程序还原(H2-TPR )也在化学吸附仪器上进行。H2-TPR 研究结束后,根据标准样品(标准 CuO)的测试结果得出了 H2 消耗率与峰值强度之间的系数。因此、因此,H2 消耗率与 1/TT = 130-165 °C)得到的初始 H2 消耗率。

2.3. DFT Calculation Details
2.3.DFT 计算细节

Previous experimental data indicated that the Co3O4 spinel mainly exposes the (100) and (111) planes, with only a minor exposure of the (110) plane. (25) Additionally, the (100) plane is more stable than the (110) and (111) planes in a wide range of temperatures. (26) Thus, the (100) plane of the Co3O4 spinel was reconstructed by a [2 × 2] supercell to generate the slab model. For CuO, the (111) plane is regarded as the most stable plane. (27) Therefore, a slab model of the CuO (111) plane was also reconstructed by a [2 × 2] supercell.
以前的实验数据表明,Co3O4 尖晶石主要暴露于 (100) 和 (111) 平面,只有少量暴露于 (110) 平面。(25) 此外,在很宽的温度范围内,(100) 面比 (110) 面和 (111) 面更稳定。(26) 因此、Co3O4 尖晶石的 (100) 平面由 [2 × 2] 超级电池重构,生成板坯模型。对于氧化铜,(111) 平面被认为是最稳定的平面。(27) 因此,CuO(111)面的板坯模型也是通过 [2 × 2] 超级电池重建的。
All calculations were conducted by the Vienna ab initio simulation package (VASP 5.4.4). The Perdew, Burke, and Ernzerhof functional within the generalized gradient approximation plus Hubbard model (GGA + U) was used to calculate the electronic exchange and correlation. The Ueff of Cu and Co in this study were 7.0 and 3.5 eV, respectively. (28,29) The cutoff energy was 500 eV, and a Monkhorst–Pack grid of 2 × 2 × 1 k-points were employed due to the large size of the slab (∼12 Å × 12 Å). The thickness of the slab was ∼8 Å, with a 15 Å vacuum gap. Moreover, all of the slabs were relaxed until the atomic forces were reduced below 0.05 eV/Å.
所有计算均由维也纳原子序数模拟软件包(VASP 5.4.4)进行。使用广义梯度近似加哈伯德模型(GGA + U)中的 Perdew、Burke 和 Ernzerhof 函数计算电子交换和相关性。本研究中铜和钴的 Ueff 分别为 7.0 和 3.5 eV。(28,29) 临界能量为 500 eV,由于板坯尺寸较大(∼12 Å × 12 Å),采用了 2 × 2 × 1 k 点的 Monkhorst-Pack 网格。平板厚度为 ∼8 Å,真空间隙为 15 Å。此外,所有板坯都被放松,直到原子力降低到 0.05 eV/Å 以下。
The adsorption energies of N2O (Ead) were estimated by the following equationwhere E
N2O 的吸附能(Ead)通过下式估算E
surf represents the energy of the clean surface, EN2O denotes the energy of a free N2O molecule in the vacuum, and Esurf+N2O is the energy of N2O adsorbed on the surface. It is noteworthy that a negative value for Ead indicates a stable adsorption.
surf 表示清洁表面的能量、EN2O 表示自由 N2O 分子在真空中的能量、和 Esurf+N2O 是表面吸附的 N2O 的能量。值得注意的是,Ead 的负值表示吸附稳定。

2.4. Activity Test 2.4.活动测试

The catalytic decomposition of N2O was performed in a fixed-bed reactor with 100 mL min–1 of flue gas containing 1000 ppm N2O, 2% O2 (when used), 200 ppm NO (when used), 0.5% H2O (when used), and the balance as N2. The catalyst mass was 100 mg, and the corresponding gas hourly space velocity (GHSV) was 60 000 cm3 g–1 h–1. The N2O concentration at the outlet was monitored online by a MultiGas 2030 Fourier transform infrared continuous gas analyzer.
N2O 的催化分解是在一个固定床反应器中进行的。100 mL min-1 含有 1000 ppm N2O 的烟道气的固定床反应器中进行、2% O2(使用时)、200 ppm NO(使用时)、0.5% H2O(使用时),余量为 N2。催化剂质量为 100 毫克、相应的气体时空速度 (GHSV) 为 60 000 cm3 g-1 h-1。出口处的 N2O 浓度由 MultiGas 2030 傅立叶变换红外连续气体分析仪在线监测。
The steady-state kinetic study of N2O decomposition was also performed in the fixed-bed reactor. The flue gas contained 500–1500 ppm N2O with the balance as N2. An extremely high GHSV of 60 000–6 000 000 cm3 g–1 h–1 was used to ensure that the N2O decomposition was less than 20%, thus, overcoming the diffusion limitation. (30−32)
N2O 分解的稳态动力学研究也在固定床反应器中进行。烟气中含有 500-1500 ppm N2O ,其余为 N2。60 000-6 000 000 cm3 g-1 h-1 来确保 N2O 分解小于 20%、从而克服了扩散限制。(30−32)

3. Results 3.成果

Click to copy section link
点击复制章节链接
Section link copied!

3.1. Performance of N2O Decomposition
3.1.N2O 分解的性能

The N2O decomposition performance of Co3O4, CuxCoy, and CuO catalysts is shown in Figure 1a. The N2O decomposition activity of Co3O4 was superior to that of CuO. Furthermore, all of the CuxCoy catalysts showed activity superior to that of Co3O4 and CuO. Interestingly, although CuO presented the lowest N2O decomposition activity, high amounts of Cu promoted the performance more significantly. For Cu2Co1, the reaction temperature for full N2O decomposition was ∼375 °C under idealized reaction conditions, which was significantly lower than ∼450 °C for Co3O4 and ∼500 °C for CuO.
The N2O decomposition performance of Co3O4、CuxCoyFigure 1a 中所示。Co2O 的 N3O4 分解活性优于 CuO。此外、所有的 CuxCoy 催化剂的活性优于 Co3O4 和 CuO。有趣的是,虽然 CuO 的 N2O 分解活性最低,但高含量的 Cu 对性能的促进作用更为显著。对于 Cu2Co1、在理想化反应条件下,N2O 完全分解的反应温度为 ∼375 °C、这明显低于 Co3O4 和 CuO 的 ∼450 °C。

Figure 1 图 1

Figure 1. (a) N2O decomposition performance of the Co3O4, CuxCoy, and CuO catalysts. (b) N2O decomposition performance of Cu2Co1 under different conditions. Reaction conditions: [N2O] = 1000 ppm, [O2] = 2% (when used), [NO] = 200 ppm (when used), [H2O] = 0.5% (when used), catalyst mass = 100 mg, flow rate = 100 mL min–1, and GHSV = 60 000 cm3 g–1 h–1.
图 1。(a) Co3O4 的 N2O 分解性能、CuxCoy 和 CuO 催化剂。(b) Cu2O 在不同条件下的 N2Co1 分解性能。反应条件:[N2O] = 1000 ppm,[O2] = 2%(使用时)、[NO] = 200 ppm(使用时),[H2O] = 0.5%(使用时),催化剂质量 = 100 毫克,流速 = 100 毫升/分钟-1 、和 GHSV = 60 000 cm3 g-1 h-1

Generally, O2, NO, and water vapor exist in flue gas and often interfere with N2O decomposition. (33) The effects of O2, NO, and water vapor on N2O decomposition over Cu2Co1 were investigated (Figure 1b). O2, NO, and water vapor all interfered with the N2O decomposition performance of Cu2Co1 at low temperatures, and the influencing degree increased according to the following sequence: NO < O2 < H2O. These results were also observed in Co3O4, Cu1Co2, and CuO catalysts (shown in Figure S1). Previous studies have shown that NO and H2O have completely different inhibiting mechanisms in the N2O decomposition. H2O prefers to bind with oxygen vacancy sites and then blocks the oxygen transfer, whereas NO shows a competitive oxidation effect, which consumes labile oxygen and decelerates the regeneration of active sites. (34) Further, O2 possibly can inhibit the recombination of residual O during the N2O decomposition reaction, leading to the inhibition of the regeneration of active sites. On the whole, N2O decomposition dramatically decreased from ∼90 to ∼6% at 350 °C when O2, NO, and water vapor coexisted; however, their influencing degrees decreased with increasing temperature. The N2O decomposition of Cu2Co1 in the presence of O2, NO, and H2O increased from ∼6 to ∼95% when the temperature increased from 350 to 450 °C. This result suggests that Cu2Co1 still showed a superior N2O decomposition performance in the simulated flue gas.
一般来说,烟道气中存在 O2 、NO 和水蒸气,它们经常干扰 N2O 的分解。(33) O2, NO、和水蒸气对 N2O 在 Cu2Co1 进行了研究(1b)。O2, NO、和水蒸气都会干扰 Cu2O 在低温下的分解性能、影响程度按以下顺序增加:NO < O2 < H2O。在 Co3O4 中也观察到了这些结果、Cu1Co2 和 CuO 催化剂(如图 S1所示)。以前的研究表明,NO 和 H2O 对 N2O 分解的抑制机制完全不同。 H2O更喜欢与氧空缺位点结合,然后阻断氧的转移,而 NO 则表现出竞争性氧化作用,它消耗可变氧,减缓活性位点的再生。(34) 更多、O2 可能会在 N2O 分解反应过程中抑制残余 O 的重组,从而导致活性位点的再生受到抑制。总的来说,当 O2 、NO 和水蒸气共存时,350 °C 时 N2O 的分解率从∼90%急剧下降到∼6%,但它们的影响程度随着温度的升高而降低。N2O 分解 Cu2Co1 在 O2、NO 和 H2O 的情况下,当温度从 350 ℃ 升高到 450 ℃ 时,Cu2O 的溶解度从 6 ∼ 95% 增加。这一结果表明,在模拟烟道气中,Cu2Co1 的 N2O 分解性能仍然优越。

3.2. Characterization 3.2.特征

3.2.1. XRD and BET Surface Area
3.2.1.XRD 和 BET 表面积

As shown in Figure S2, the XRD pattern of Co3O4 corresponded well to that of the cubic spinel (JCPDS: #43-1003), and the XRD pattern of CuO was assigned to tenorite (JCPDS: #48-1548). The XRD patterns of the CuxCoy catalysts showed characteristic peaks corresponding to both the Co3O4 and CuO, and the peak positions were nearly unchanged. The crystal sizes and crystal parameters of CuO and Co3O4 clusters in the Co3O4, CuxCoy, and CuO catalysts were calculated on the basis of the XRD patterns, and the results are shown in Table 1. The crystal parameters of Co3O4 clusters of CuxCoy catalysts (a = b = c = ∼0.8097) were all slightly higher than those of pure Co3O4 (a = b = c = 0.8090), meanwhile the crystal parameters of CuO clusters of CuxCoy catalysts were slightly different from those of pure CuO. These results indicate that a small amount of Cu–Co solid solution was generated, whereas most of CuO and Co3O4 existed in a crystal form. The Co3O4 and CuO catalysts exhibited the maximum crystal sizes, whereas the crystal size of Cu2Co1 was the smallest. These results are in accordance with the results of BET surface area. The BET surface area of Cu2Co1 was higher than those of Co3O4, CuO, and other CuxCoy catalysts. Moreover, the BET surface area of CuO was only 8.1 m2 g–1, which was significantly lower than those of the Co3O4 and CuxCoy catalysts. This difference might have been one of the reasons responsible for the poor N2O decomposition performance of CuO.
图 S2所示、Co3O4 的 XRD 图与立方尖晶石(JCPDS:#43-1003),而 CuO 的 XRD 图样被归类为芒硝(JCPDS:#48-1548)。CuxCoy 催化剂显示出与 Co3O4 和 CuO 相对应的特征峰、的峰位置几乎没有变化。CuO 和 Co3O4 Co3O4 簇、CuxCoy、和 CuO 催化剂的 XRD 图谱进行计算,结果见1 。 Co3O4 CuxCoy 催化剂(a = b = c = ∼0.8097)都略高于纯 Co3O4 (a = b = c = 0.8090),而 CuxCoy 催化剂的 CuO 簇的晶体参数与纯 CuO 的略有不同。这些结果表明,生成了少量 Cu-Co 固溶体,而大部分 CuO 和 Co3O4 以晶体形式存在。Co3O4 和 CuO 催化剂的晶体尺寸最大、而 Cu2Co1 的晶体尺寸最小。这些结果与 BET 表面积的结果一致。 Cu2Co1 高于 Co3O4、CuO 以及其他 CuxCoy 催化剂。此外,CuO 的 BET 表面积仅为 8.1 m2 g-1 、明显低于 Co3O4 和 CuxCoy 催化剂。这种差异可能是导致 CuO 的 N2O 分解性能较差的原因之一。
Table 1. Crystal Sizes, Crystal Parameters, and BET Surface Areas of the Co3O4, CuxCoy, and CuO Catalysts
表 1.Co3O4 的晶体尺寸、晶体参数和 BET 表面积、CuxCoy 和 CuO 催化剂
 crystal sizea/nm
晶体尺寸a/nm
crystal parametera/nm
晶体参数a/nm
 
 CuO 氧化铜Co3O4CuO 氧化铜Co3O4BET surface area/m2 g–1
BET 表面积/m2 g-1
Co3O4 21 a = b = c = 0.8090, α = β = γ = 90°
a = b = c = 0.8090,α = β = γ = 90°。
27
Cu1Co22218a = 0.4689, b = 0.3433, c = 0.5137, α = γ = 90°, β = 99.44°
a = 0.4689, b = 0.3433, c = 0.5137, α = γ = 90°, β = 99.44°
a = b = c = 0.8098, α = β = γ = 90°
a = b = c = 0.8098,α = β = γ = 90°。
30
Cu1.5Co1.52417a = 0.4678, b = 0.3446, c = 0.5127, α = γ = 90°, β = 99.47°
a = 0.4678, b = 0.3446, c = 0.5127, α = γ = 90°, β = 99.47°
a = b = c = 0.8097, α = β = γ = 90°
a = b = c = 0.8097,α = β = γ = 90°。
28
Cu2Co11413a = 0.4687, b = 0.3399, c = 0.5104, α = γ = 90°, β = 99.49°
a = 0.4687, b = 0.3399, c = 0.5104, α = γ = 90°, β = 99.49°
a = b = c = 0.8095, α = β = γ = 90°
a = b = c = 0.8095,α = β = γ = 90°。
40
CuO 氧化铜27 a = 0.4687, b = 0.3420, c = 0.5135, α = γ = 90°, β = 99.37°
a = 0.4687, b = 0.3420, c = 0.5135, α = γ = 90°, β = 99.37°
 8.1
a

Calculated from the XRD patterns.


a

根据 XRD 图样计算得出。

3.2.2. Redox Properties 3.2.2.氧化还原特性

The reducibility of active sites (e.g., Cu, (21) Ni, (35) Co, (17) and Fe (36)) would strongly affect the N2O decomposition performance. H2-TPR studies were performed to investigate the enhancement in reducibility of CuxCoy catalysts (Figure 2a). The H2 reduction peaks of the CuxCoy catalysts were similar to those of CuO, which are situated at lower temperatures than those of Co3O4. That result means the reductions of CuO and Co3O4 in CuxCoy catalysts occurred at approximately the same time. Consequently, the data indicate the Cu species in CuxCoy catalysts played a dominant role in the redox reaction, which could promote the reduction of Co species by a charge interaction in the CuxCoy catalysts. (37) Moreover, the H2 reduction peaks and the initial H2 consumption temperature of all of the Cu-containing catalysts seem identical (∼158 °C). To further identify the reducibility of Cu-containing catalysts, the initial H2 consumption rates were determined and are shown in Figure 2b. The initial H2 consumption rate of Cu2Co1 was clearly faster than those of the other Cu-containing materials. This result indicates that Cu2Co1 represented the optimal reducibility, which could facilitate the N2O decomposition of the Cu2Co1 mixed oxide.
活性位点的还原性(如Cu、(21) Ni、(35) Co、(17) 和 Fe (36))会严重影响 N2O 的分解性能。进行了 H2-TPR 研究,以了解 CuxCoy 催化剂(Figure 2a )。CuxCoy 催化剂的温度与 CuO 相似、3O4 催化剂的温度较低。这一结果意味着 CuO 和 Co3O4 在 CuxCoy 催化剂中的反应时间大致相同。 因此,数据表明 CuxCoy 催化剂中的 Cu 物种在氧化还原反应中起主导作用、这可以通过 CuxCoy 催化剂中的电荷相互作用促进 Co 物种的还原。(37) 此外、所有含铜催化剂的 H2 还原峰和初始 H2 消耗温度似乎相同(∼158 °C)。为了进一步确定含铜催化剂的还原性,测定了初始 H2 消耗率,如 2b 所示。Cu2Co1 的初始 H2 消耗率明显快于其他含铜材料。 这一结果表明,Cu2Co1 代表了最佳还原性、这有助于 Cu2Co1 混合氧化物的 N2O 分解。

Figure 2 图 2

Figure 2. (a) H2-TPR profiles of the Co3O4, CuxCoy, and CuO catalysts. (b) Initial H2 consumption rates of the CuxCoy and CuO catalysts in the H2-TPR study.
图 2。(a) Co2 的 H3O4 的 TPR 曲线、CuxCoy 和 CuO 催化剂。(b) Cu2 和 CuO 催化剂的初始 HxCoy 和 CuO 催化剂的 H2-TPR 研究。

3.2.3. Surface Analysis 3.2.3.表面分析

Generally, the redox cycles between the Cu2+/Cu and Co+3+/Co2+ play important roles in N2O decomposition. (38) Thus, the ratios of Cu/(Cu + Cu++2+) and Co2+/(Co2+ + Co3+) are crucial to N2O decomposition. (15) The AES and XPS studies were used to determine the surface components of the Co3O4, CuxCoy, and CuO catalysts, and the surface chemical compositions are listed in Table 2. In Figure 3a, the AES spectra of Cu-containing catalysts over the spectral region of the Cu LMM contained features mainly centered at ∼916.0 and ∼918.0 eV, which were assigned to Cu and Cu+2+, respectively. (39,40) Among the Cu-containing samples, the ratios of Cu/(Cu + Cu++2+) for all of the CuxCoy catalysts were higher than those for CuO. This result was further confirmed by the XPS spectra for the Cu 2p3/2 spectral region (shown in Figure S3). Additionally, the Cu 2p3/2 spectral region of pure CuO was situated at higher binding energies, whereas the peaks of Cu 2p3/2 for the CuxCoy catalysts were shifted to lower binding energies. These results imply that the electron cloud of Cu species in the CuxCoy catalysts were altered due to the charge interaction between Cu and Co. Corresponding with the shift in Cu 2p3/2, Figure 3b shows that the Co 2p3/2 spectral region of pristine Co3O4 was also located at higher binding energies, and the peaks moved to lower binding energies as Cu was added, further confirming the existence of the charge interaction between Cu and Co. These results are in accordance with those of the H2-TPR study. The XPS spectra of Co-containing samples for the spectral region of the Co 2p3/2 contained peaks mainly centered at 780.5 and 779.3 eV, which were attributed to Co2+ and Co3+, respectively. The ratios of Co2+/(Co2+ + Co3+) for the CuxCoy catalysts were also higher than that for Co3O4. Overall, part of the metal elements on the surface of the CuxCoy catalysts transformed from high valence states to relatively low valence states, which was mainly due to the charge interaction between Co and Cu. (41) The facilitation of redox cycles between Cu2+/Cu and Co+3+/Co2+ could play an important role in the N2O decomposition performance of the CuxCoy catalysts.
一般来说、Cu2+/Cu 和 Co+3+/Co2+ 在 N2O 分解中发挥重要作用。(38) 因此、Cu/(Cu + Cu++2+) 和 Co2+/(Co2+ + Co3+) 对 N2O 分解至关重要。(15) AES 和 XPS 研究用于确定 Co3O4 的表面成分、CuxCoy、表2中列出了CuO催化剂和CuO催化剂的表面化学成分。在3a 中,含铜催化剂在 Cu LMM 光谱区的 AES 光谱包含主要以 ∼916.0 和 ∼918.0 eV 的特征,这些特征分别归属于 Cu 和 Cu+2+(39,40) 在含铜样品中、++2+) 的比率xCoy催化剂的辐照度均高于 CuO 催化剂。Cu 2p3/2 光谱区的 XPS 光谱进一步证实了这一结果(如图 S3 所示)。此外,纯氧化铜的 Cu 2p3/2 光谱区位于较高的结合能上、而 Cu 2p3/2 的峰xCoy 催化剂被转移到较低的结合能。这些结果表明,由于 Cu 和 Co 之间的电荷相互作用,CuxCoy 催化剂中 Cu 物种的电子云发生了改变。 对应于铜 2p 的移动3/23b显示原始Co的Co 2p3/2光谱区3O4 也位于较高的结合能处、随着 Cu 的加入,峰值移动到较低的结合能处,这进一步证实了 Cu 和 Co 之间存在电荷相互作用。这些结果与 H2-TPR 研究的结果一致。含 Co 样品在 Co 2p3/2 光谱区的 XPS 光谱包含的峰值主要集中在 780.5和 779.3 eV,分别归因于Co2+和Co3+。Co2+/(Co2+ + Co3+)的 CuxCoy 催化剂也高于 Co3O4. 总的来说,CuxCoy 催化剂表面的部分金属元素从高价态转变为相对低价态、这主要是由于 Co 和 Cu 之间的电荷相互作用。(41) Cu2+/Cu 和 Co+3+/Co2+ 可能在 Cu2O 分解性能中发挥重要作用。uid="125">xCoy 催化剂的氧化分解性能。

Figure 3 图 3

Figure 3. (a) AES spectra of the CuxCoy and CuO catalysts for the spectral region of the Cu LMM. (b) XPS spectra of the Co3O4 and CuxCoy catalysts for the spectral region of the Co 2p3/2.
图 3。(a) CuxCoy 和 CuO 催化剂在 Cu LMM 光谱区的 AES 光谱。(b) Co3O4 和 CuxCoy 催化剂的 Co 2p3/2 光谱区。

Table 2. Surface Chemical Compositions of the Co3O4, CuxCoy, and CuO Catalysts/%
表 2.Co3O4 的表面化学成分、CuxCoy 和 CuO 催化剂/%
 CuaCob 
 Cu2+Cu+Co3+Co2+O
Co3O4  13.27.779.1
Cu1Co29.83.811.69.565.3
Cu1.5Co1.513.44.710.38.563.1
Cu2Co117.16.98.56.660.9
CuO 氧化铜36.54.8  58.7
a

Calculated from the AES spectra of Cu LMM.


a

根据 Cu LMM 的 AES 光谱计算得出。

b

Obtained from the XPS spectra of Co 2p3/2.


b

从 Co 2p 的 XPS 光谱中获得3/2.

3.2.4. N2O Adsorption Capacities
3.2.4.N2O 吸附能力

DFT calculations were employed to identify the characteristics of N2O adsorption on the CuxCoy catalysts. Considering that the CuxCoy catalysts were mixed oxides of CuO and Co3O4, the N2O adsorption configurations on their slab models were calculated. A negative value for Ead indicates a stable adsorption in this study. As shown in Figure 4a, N2O could be weakly adsorbed on Cu2+ to form a Cu–ON2 species. The bond length of Cu–O in the Cu–ON2 species was 2.87 Å, and the corresponding N2O adsorption energy (Ead) was only −0.1 eV. N2O could also be weakly adsorbed on a CuO surface with an oxygen vacancy to form a □–Cu–ON2 species (Figure 4b). The bond length of Cu–O in the □–Cu–ON2 species was quite short (2.14 Å), whereas the corresponding Ead was slightly lower than that of the Cu–ON2 species. These results suggest that oxygen vacancies slightly promoted N2O adsorption on CuO, but these adsorption configurations remained very unstable. For Co3O4, N2O could hardly be adsorbed on the complete surface structure (Figure 4c). The Ead of Co–ON2 was even higher than 0. However, the Ead of N2O adsorbed on the Co3O4 surface with an oxygen vacancy (Figure 4d–f) was lower than those of N2O adsorbed on Co3O4 and CuO, which suggests that N2O could be strongly adsorbed on the Co3O4 surface with oxygen vacancies to form the □–Co–ON2 species. Consequently, N2O is more likely to be adsorbed on a Co3O4 surface with oxygen vacancies than on a CuO or CuO–□ surface in the CuxCoy catalysts.
DFT 计算确定了 N2O 在 CuxCoy 催化剂上的 O 吸附。考虑到 CuxCoy 催化剂是 CuO 和 Co3O4 的混合氧化物、计算了 N2O 在其板坯模型上的吸附构型。在本研究中,Ead 的负值表示吸附稳定。如4a 所示、N2O 可以弱吸附在 Cu2+ 上,形成 Cu-ON2 物种。Cu-ON2 物种中 Cu-O 的键长为 2.87 Å,相应的 N2O 吸附能 (Ead) 仅为 -0.1 eV。 N2O 也可以弱吸附在有氧空位的 CuO 表面,形成 □-Cu-ON2 物种(4b)。在 □-Cu-ON2 物种中,Cu-O 的键长相当短(2.14 Å),而相应的 Ead 则略低于 Cu-ON2 物种。这些结果表明,氧空位略微促进了 N2O 在 CuO 上的吸附,但这些吸附构型仍然很不稳定。对于 Co3O4、N2O 几乎不能吸附在完整的表面结构上(4c)。Co-ON2Ead 甚至高于 0。 然而、Ead 的 N2O 吸附在 Co3O4 氧空位的表面(Figure 4d-f)低于 N2O 吸附在 Co3O4 和 CuO 上、这表明,N2O 可能会强烈吸附在 Co3O4 表面的氧空位,形成 □-Co-ON2 物种。因此、N2O 更有可能被吸附在 Co3O4 表面的氧空位比在 CuxCoy 催化剂。

Figure 4 图 4

Figure 4. Model structures of N2O adsorbed on: (a) CuO, (b) CuO with an oxygen vacancy, (c) Co3O4, and (d−f) Co3O4 with an oxygen vacancy. The white balls represent N, red balls represent O, blue balls represent Cu, and navy-blue balls represent Co. (g) N2O desorption amounts during N2O-TPD over Co3O4, CuxCoy, and CuO catalysts.
图 4.吸附在 N2O 上的模型结构:(a) CuO,(b) 具有氧空位的 CuO,(c) Co3O4 、和 (d-f) Co3O4 氧空位。白球代表 N,红球代表 O,蓝球代表 Cu,藏青色球代表 Co。(g) N2O 在 N2O-TPD over Co3O4、CuxCoy 和 CuO 催化剂。

N2O-TPD was performed to determine the capacity of N2O adsorption at 50 °C. In the N2O-TPD study, all of the samples were first treated under a He atmosphere at 400 °C for 1 h and then cooled to 50 °C to adsorb 2% N2O/He for 30 min. Finally, the original N2O-TPD profiles (Figure S4a) were recorded by a thermal conductivity detector (TCD) detector at a heating rate of 10 °C/min, and the detailed desorption species were analyzed by MS (Figures S4b–f). Therefore, the desorption amounts of N2O (Figure 4g), N2 (Figure S4g), and NO (Figure S4h, a byproduct of N2O decomposition) were obtained by the integration of MS spectra. It is worth mentioning that the desorption amounts of O2 generated by N2O decomposition during N2O-TPD could not be obtained because of the influences of adsorbed oxygen and/or the crystal oxygen on/in the catalysts.
Interestingly, although the N2O decomposition performance of Co3O4 was weaker than those of the CuxCoy catalysts, the catalyst showed a relatively high capacity for N2O adsorption. This property is mainly originated from the abundant surface oxygen vacancies of Co3O4 (shown in Figure S5), which could promote the N2O adsorption through a □–Co–ON2 style (shown in Figure 4d–f). The high N2O adsorption capacity was probably responsible for the excellent N2O decomposition performance of Co3O4 and the other Co-based spinels. In contrast, CuO exhibited the worst N2O adsorption capacity, which was mainly due to the unstable Cu–ON2 and □–Cu–ON2 species (shown in Figure 4a,b) and the lowest BET surface area, and therefore, this catalyst showed the poorest N2O decomposition performance. The N2O adsorption capacities of the CuxCoy catalysts increased with the Cu doping amount, which is in excellent accordance with their N2O decomposition performance and O2-TPD profiles (Figure S5). Consequently, the capacity of N2O adsorption played an important role in the N2O decomposition reaction.

4. Discussion

Click to copy section linkSection link copied!

4.1. Reaction Mechanism and Kinetic Study

Many researchers proposed that the N2O decomposition process can be generally described as (17,19,21,42,43)
(1)
(2)
(3)
First, N2O is adsorbed at an active site on the surface (reaction 1). Then, the adsorbed N2O can decompose to N2 and a residual O atom (reaction 2). Finally, two residual O atoms on the surface can combine to generate O2, and the active sites are regenerated (reaction 3).
Thus far, the rate-limiting step of N2O decomposition was comprehensively discussed using the DFT calculations and experimental study. However, the conclusions were completely inconsistent. (15) Some researchers found that the splitting of N2O (reaction 2) is the rate-determining step, but others considered that the recombination of O2 (reaction 3) determines the N2O decomposition rate. (44−47)
If the rate-determining step is the splitting of N2O (reaction 2), the rate of N2O decomposition can be described as
(4)
where υN2O, k2, and [Mn+–ONN] represent the N2O decomposition rate, kinetic constant of reaction 2, and concentration of adsorbed N2O, respectively.
While the GHSV is extremely high and the gaseous N2O concentration is relatively low, reaction 1 can be simply considered as a reversible reaction. Therefore, the concentration of the adsorbed N2O can be approximately described as
(5)
where K1, [Mn+], and [N2O(g)] represent the equilibrium constant of reaction 1, quantity of active sites, and the concentration of gaseous N2O, respectively.
Combined with eqs 4 and 5, the N2O decomposition rate can de depicted as
(6)
In eq 6, K1 and k2 are only related to the reaction temperature over the same catalyst. Therefore, K1 and k2 can be regarded as constants if the reaction reaches a steady state. Meanwhile, the quantity of active sites (Mn+) can be rapidly regenerated through reaction 3. This action suggests that the quantity of active sites (Mn+) can also be regarded as a constant. Therefore, eq 6 can be simplified to
(7)
(8)
where kN2O denotes the reaction rate constant of the N2O decomposition.
Overall, the N2O decomposition is a first-order reaction when the rate-determining step is the splitting of N2O.
If the recombination of O2 (reaction 3) determines the N2O decomposition rate, then the rate of N2O decomposition can be described as
(9)
where k3 and [M(n+1)+–O] denote the reaction rate constant of reaction 3 and concentration of M(n+1)+–O, respectively.
Reactions 1 and 2 can be regarded as opposing reactions while the GHSV is extremely high with a relatively low gaseous N2O concentration, and the recombination of O2 is the rate-determining step. Therefore, eq 5 remains workable in this case, and the concentration of M(n+1)+–O can be described as
(10)
where K2 represents the equilibrium constant of reaction 2 in this case.
Combining eqs 5, 9, and 10, the rate of N2O decomposition can be formulated as
(11)
(12)
Overall, the N2O decomposition is a second-order reaction when the rate-determining step is the recombination of O2.

4.2. Model Verification

A steady-state kinetic study was performed to judge the rate-limiting step of N2O decomposition. An extremely high GHSV and a relatively low gaseous N2O concentration were employed to satisfy the assumptions of the kinetic equations and to overcome the diffusion limitations. The results of the steady-state kinetic study over the Co3O4, CuxCoy and CuO catalysts are shown in Figure S6. All of the materials showed significant linear relationships between the gaseous N2O concentration and the N2O decomposition rate from 350 to 500 °C, with all lines going through the origin of the coordinates. This result indicates that the N2O decomposition reaction was a first-order reaction in this case, which is in good accordance with eq 7. Therefore, the splitting of N2O (reaction 2), rather than the recombination of O2 (reaction 3), was the rate-determining step of N2O decomposition over the Co3O4, CuxCoy, and CuO catalysts. Because if the recombination of O2 was the rate-determining step, then the reaction order of N2O decomposition would be 2. Thus, the linear regression presented in Figure S6 was performed to obtain the reaction rate constant of N2O decomposition, and the results are shown in Figure 5.

Figure 5

Figure 5. N2O decomposition rate constants of the Co3O4, CuxCoy, and CuO catalysts.

Hinted by eqs 7 and 8, the reaction rate constant of N2O decomposition (kN2O) positively correlated with the equilibrium constant of N2O adsorption (K1), kinetic constant of N2O splitting (k2), and quantity of active sites (Mn+). Generally, the kinetic constant of N2O splitting (k2) increases with the temperature. Therefore, the N2O decomposition rate of all of the materials increased with the temperature (shown in Figure 5). The kinetic constant of N2O splitting (k2) relates to the redox ability, (21,38) whereas the quantity of active sites (Mn+) mainly relates to the metal cations in a low valence state (e.g., Cu and Co+2+) on the surface. The results of the H2-TPR study (Figure 2) suggest that the sequence of redox ability followed Cu2Co1 > Cu1.5Co1.5 ≈ Cu1Co2 ≈ CuO ≫ Co3O4. The AES and XPS results (Figure 3) demonstrate that the percentages of metal cations in a low valence state on the surface of the CuxCoy catalysts were almost the same, but these percentages were significantly higher than those for CuO and Co3O4. The equilibrium constant of N2O adsorption (K1) is mainly related to the ability to adsorb N2O. The adsorptivity of N2O was determined by N2O-TPD (Figure 4g), and the results show that the adsorptivity of N2O decreased in the following sequence: Cu2Co1 > Co3O4 > Cu1.5Co1.5 > Cu1Co2 > CuO. CuO presented the lowest N2O adsorptivity and redox cyclability, as well as a medium quantity of active sites and redox property. Therefore, the lowest N2O decomposition performance of CuO (shown in Figure 5) mainly resulted from its poor N2O adsorptivity and redox cycling between the Cu2+/Cu. Co+3O4 presented a relatively high N2O adsorptivity as well as a medium quantity of active sites. However, its redox ability was the weakest, which was mainly responsible for the inferior N2O decomposition performance of Co3O4 (shown in Figure 5). For the CuxCoy catalysts, the redox ability derived from CuO, N2O adsorptivity derived from Co3O4, and higher quantities of active sites derived from the charge interaction between Co and Cu were all responsible for the excellent N2O decomposition performance. Meanwhile, these properties in Cu1.5Co1.5 and Cu1Co2 were almost the same, except that the N2O adsorption capacity of Cu1.5Co1.5 was slightly higher than that of Cu1Co2. This result proves that the N2O decomposition performance of Cu1.5Co1.5 was slightly higher than that of Cu1Co2 (shown in Figure 5). Cu2Co1 sustained the highest N2O adsorptivity, redox ability, and quantity of active sites. Consequently, Cu2Co1 showed the optimum performance for N2O decomposition (shown in Figure 5).
Based on the above results and conclusions, the N2O decomposition mechanism over CuxCoy catalysts and the key roles of CuO and Co3O4 in CuxCoy catalysts for N2O decomposition were proposed (Scheme 1). The DFT calculation results suggest that Co3O4 provided abundant surface oxygen vacancies, and thus, served as the major adsorption site of N2O. CuO was dispersed around Co3O4 and provided high reducibility on the interface of Co3O4–CuOx, which promoted the rate-determining step (N–O break) of N2O decomposition and left O in the defect sites. Meanwhile, the charge interaction became stronger with the increasing Cu content and promoted the formation of Cu and Co+2+, which performed as the active sites and adsorption sites, respectively. Finally, the residual O in the defect sites recombined to release O2.

Scheme 1

Scheme 1. Key Roles of CuO and Co3O4 in the CuxCoy Catalysts for N2O Decomposition

Supporting Information

Click to copy section linkSection link copied!

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.est.9b02892 .

  • N2O decomposition performances of Co3O4, Cu1Co2, and CuO under different conditions; XRD patterns of the Co3O4, CuxCoy, and CuO catalysts; XPS spectra of the CuxCoy and CuO catalysts for the spectral region of Cu 2p3/2; TCD signals of N2O-TPD profiles over Co3O4, CuxCoy, and CuO catalysts; MS spectra of N2O, O2, NO, and N2 over Co3O4, CuxCoy, and CuO during N2O-TPD; N2 and NO desorption amounts during N2O-TPD over Co3O4, CuxCoy, and CuO catalysts; and dependence of the N2O decomposition rate on the N2O concentration over the Co3O4, CuxCoy, and CuO catalysts at 350–500 °C (PDF)

Balance between Reducibility and N2O Adsorption Capacity for the N2O Decomposition: CuxCoy Catalysts as an Example

223 views

0 shares

0 downloads

S
1
Supporting Information
Balance
between
R
educibility and N
2
O
A
dsorption
C
apacity for
the N
2
O
D
ecomposition:
Cu
x
Co
y
C
atalysts as an
E
xample
Shangchao Xiong
1, 2
,
Jianjun Chen*
1, 2
, Nan
Huang
1, 3
, Shijian Yang
4
,
Yue Peng
1, 2
, Junhua Li
1, 2
1
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of
Environment, Tsinghua University, Beijing 100084
,
PR China
2
National Engineering Laboratory for Multi Flue Gas
Pollution Control Technology and
Equipment,
Tsinghua University,
Beijing
100084,
PR
China
3
School of Environmental and Biological Engineering, Nanjing University of
Science and
Technology, Nanjing
210094
,
PR China
4
School of Environment and Civil Engineeri
ng, Jiangnan University, Wuxi 214122, PR China
*Corresponding author.
Phone: +86 010 62771093
E
mail address:
chenjianjun@tsinghua.edu.cn (Jianjun Chen)
Content including:
7
pages
and
6
figures
S
2
(
a
)
(b)
(
c
)
Fig
ure
S
1.
N
2
O decomposition
performance
s
of
Co
3
O
4
(
a
)
, Cu
1
Co
2
(b)
, and
CuO
(c)
under different
conditions. Reaction conditions: [N
2
O] = 1000 ppm, [O
2
] = 2% (when used), [NO] = 200 ppm
(when used), [H
2
O] = 0.5% (when used), catalyst mass = 100 mg, flow rate = 100 ml min
−1
, and
GHSV=60
,000 cm
3
g
−1
h
−1
.
350
400
450
0
20
40
60
80
100
N
2
O decomposition/%
Temperature/
o
C
no addition
with O
2
with NO
with H
2
O
350
400
450
0
20
40
60
80
100
N
2
O decomposition/%
Temperature/
o
C
no addition
with O
2
with NO
with H
2
O
350
400
450
0
20
40
60
80
100
N
2
O decomposition/%
Temperature/
o
C
no addition
with O
2
with NO
with H
2
O

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
    • Jianjun Chen - State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR ChinaNational Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, Tsinghua University, Beijing 100084, PR ChinaOrcidhttp://orcid.org/0000-0003-4730-7803 Email: chenjianjun@tsinghua.edu.cn
  • Authors
    • Shangchao Xiong - State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR ChinaNational Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, Tsinghua University, Beijing 100084, PR China
    • Nan Huang - State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR ChinaSchool of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
    • Shijian Yang - School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR ChinaOrcidhttp://orcid.org/0000-0002-8275-5225
    • Yue Peng - State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR ChinaNational Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, Tsinghua University, Beijing 100084, PR ChinaOrcidhttp://orcid.org/0000-0001-5772-3443
    • Junhua Li - State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR ChinaNational Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, Tsinghua University, Beijing 100084, PR ChinaOrcidhttp://orcid.org/0000-0001-7249-0529
  • Notes
    The authors declare no competing financial interest.

Acknowledgments

Click to copy section linkSection link copied!

This work was financially supported by the National Key Research and Development Program (2017YFC0210700 and 2017YFC0212804) and the National Natural Science Foundation of China (21876093 and 21777081).

References

Click to copy section linkSection link copied!

This article references 47 other publications.

  1. 1
    Hungate, B. A.; Dukes, J. S.; Shaw, M. R.; Luo, Y.; Field, C. B. ATMOSPHERIC SCIENCE: Nitrogen and Climate Change. Science 2003, 302, 15121513,  DOI: 10.1126/science.1091390
  2. 2
    Li, L.; Xu, J.; Hu, J.; Han, J. Reducing nitrous oxide emissions to mitigate climate change and protect the ozone layer. Environ. Sci. Technol. 2014, 48, 52905297,  DOI: 10.1021/es404728s
  3. 3
    Zabilskiy, M.; Djinović, P.; Erjavec, B.; Dražić, G.; Pintar, A. Small CuO clusters on CeO2 nanospheres as active species for catalytic N2O decomposition. Appl. Catal., B 2015, 163, 113122,  DOI: 10.1016/j.apcatb.2014.07.057
  4. 4
    Ravishankara, A. R.; Daniel, J. S.; Portmann, R. W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 2009, 326, 123125,  DOI: 10.1126/science.1176985
  5. 5
    Dandekar, A.; Vannice, M. A. Decomposition and reduction of N2O over copper catalysts. Appl. Catal., B 1999, 22, 179200,  DOI: 10.1016/s0926-3373(99)00049-1
  6. 6
    Liu, Z.; He, F.; Ma, L.; Peng, S. Recent advances in catalytic decomposition of N2O on noble metal and metal oxide catalysts. Catal. Surv. Asia 2016, 20, 121132,  DOI: 10.1007/s10563-016-9213-y
  7. 7
    Komvokis, V. G.; Marti, M.; Delimitis, A.; Vasalos, I. A.; Triantafyllidis, K. S. Catalytic decomposition of N2O over highly active supported Ru nanoparticles (≤3nm) prepared by chemical reduction with ethylene glycol. Appl. Catal., B 2011, 103, 6271,  DOI: 10.1016/j.apcatb.2011.01.009
  8. 8
    Kawi, S.; Liu, S. Y.; Shen, S.-C. Catalytic decomposition and reduction of N2O on Ru/MCM-41 catalyst. Catal. Today 2001, 68, 237244,  DOI: 10.1016/s0920-5861(01)00283-8
  9. 9
    Parres-Esclapez, S.; Illán-Gómez, M. J.; de Lecea, C. S.-M.; Bueno-López, A. On the importance of the catalyst redox properties in the N2O decomposition over alumina and ceria supported Rh, Pd and Pt. Appl. Catal., B 2010, 96, 370378,  DOI: 10.1016/j.apcatb.2010.02.034
  10. 10
    Rutkowska, M.; Piwowarska, Z.; Micek, E.; Chmielarz, L. Hierarchical Fe-, Cu- and Co-Beta zeolites obtained by mesotemplate-free method. Part I: Synthesis and catalytic activity in N2O decomposition. Microporous Mesoporous Mater. 2015, 209, 5465,  DOI: 10.1016/j.micromeso.2014.10.011
  11. 11
    Jíša, K.; Novakova, J.; Schwarze, M.; Vondrova, A.; Sklenak, S.; Sobalik, Z. Role of the Fe-zeolite structure and iron state in the N2O decomposition: Comparison of Fe-FER, Fe-BEA, and Fe-MFI catalysts. J. Catal. 2009, 262, 2734,  DOI: 10.1016/j.jcat.2008.11.025
  12. 12
    Pirngruber, G.; Pieterse, J. The positive effect of NO on the N2O decomposition activity of Fe-ZSM-5: A combined kinetic and in situ IR spectroscopic study. J. Catal. 2006, 237, 237247,  DOI: 10.1016/j.jcat.2005.11.012
  13. 13
    Yao, X.; Tang, C.; Gao, F.; Dong, L. Research progress on the catalytic elimination of atmospheric molecular contaminants over supported metal-oxide catalysts. Catal. Sci. Technol. 2014, 4, 28142829,  DOI: 10.1039/c4cy00397g
  14. 14
    Konsolakis, M.; Sgourakis, M.; Carabineiro, S. A. C. Surface and redox properties of cobalt–ceria binary oxides: On the effect of Co content and pretreatment conditions. Appl. Surf. Sci. 2015, 341, 4854,  DOI: 10.1016/j.apsusc.2015.02.188
  15. 15
    Konsolakis, M. Recent advances on nitrous oxide (N2O) decomposition over non-noble-metal oxide catalysts: Catalytic performance, mechanistic considerations, and surface chemistry aspects. ACS Catal. 2015, 5, 63976421,  DOI: 10.1021/acscatal.5b01605
  16. 16
    Pasha, N.; Lingaiah, N.; Babu, N.; Reddy, P.; Prasad, P. Studies on cesium doped cobalt oxide catalysts for direct N2O decomposition in the presence of oxygen and steam. Catal. Commun. 2008, 10, 132136,  DOI: 10.1016/j.catcom.2008.06.006
  17. 17
    Xue, L.; Zhang, C.; He, H.; Teraoka, Y. Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst. Appl. Catal., B 2007, 75, 167174,  DOI: 10.1016/j.apcatb.2007.04.013
  18. 18
    Russo, N.; Fino, D.; Saracco, G.; Specchia, V. N2O catalytic decomposition over various spinel-type oxides. Catal. Today 2007, 119, 228232,  DOI: 10.1016/j.cattod.2006.08.012
  19. 19
    Piskorz, W.; Zasada, F.; Stelmachowski, P.; Kotarba, A.; Sojka, Z. DFT modeling of reaction mechanism and ab initio microkinetics of catalytic N2O decomposition over alkaline earth oxides: From molecular orbital picture account to simulation of transient and stationary rate profiles. J. Phys. Chem. C 2013, 117, 1848818501,  DOI: 10.1021/jp405459g
  20. 20
    Piskorz, W.; Zasada, F.; Stelmachowski, P.; Kotarba, A.; Sojka, Z. Decomposition of N2O over the surface of cobalt spinel: A DFT account of reactivity experiments. Catal. Today 2008, 137, 418422,  DOI: 10.1016/j.cattod.2008.02.027
  21. 21
    Zhou, H.; Huang, Z.; Sun, C.; Qin, F.; Xiong, D.; Shen, W.; Xu, H. Catalytic decomposition of N2O over CuxCe1–xOy mixed oxides. Appl. Catal., B 2012, 125, 492498,  DOI: 10.1016/j.apcatb.2012.06.021
  22. 22
    Zabilskiy, M.; Djinović, P.; Tchernychova, E.; Tkachenko, O. P.; Kustov, L. M.; Pintar, A. Nanoshaped CuO/CeO2 materials: Effect of the exposed ceria surfaces on catalytic activity in N2O decomposition reaction. ACS Catal. 2015, 5, 53575365,  DOI: 10.1021/acscatal.5b01044
  23. 23
    Kapteijn, F.; Marbán, G.; Rodriguez-Mirasol, J.; Moulijn, J. A. Kinetic Analysis of the Decomposition of Nitrous Oxide over ZSM-5 Catalysts. J. Catal. 1997, 167, 256265,  DOI: 10.1006/jcat.1997.1581
  24. 24
    Obalová, L.; Fíla, V. Kinetic analysis of N2O decomposition over calcined hydrotalcites. Appl. Catal., B 2007, 70, 353359,  DOI: 10.1016/j.apcatb.2005.11.031
  25. 25
    Liu, X.; Qiu, G.; Li, X. Shape-controlled synthesis and properties of uniform spinel cobalt oxide nanocubes. Nanotechnology 2005, 16, 30353040,  DOI: 10.1088/0957-4484/16/12/051
  26. 26
    Shojaee, K.; Montoya, A.; Haynes, B. S. Insight into oxygen stability and vacancy formation on Co3O4 model slabs. Comput. Mater. Sci. 2013, 72, 1525,  DOI: 10.1016/j.commatsci.2013.02.001
  27. 27
    Maimaiti, Y.; Nolan, M.; Elliott, S. D. Reduction mechanisms of the CuO(111) surface through surface oxygen vacancy formation and hydrogen adsorption. Phys. Chem. Chem. Phys. 2014, 16, 30363046,  DOI: 10.1039/c3cp53991a
  28. 28
    Yang, B.-X.; Ye, L.-P.; Gu, H.-J.; Huang, J.-H.; Li, H.-Y.; Luo, Y. A density functional theory study of CO oxidation on CuO1-x(111). J. Mol. Model. 2015, 21, 195,  DOI: 10.1007/s00894-015-2726-x
  29. 29
    Zasada, F.; Piskorz, W.; Sojka, Z. Cobalt spinel at various redox conditions: DFT+U investigations into the structure and surface thermodynamics of the (100) facet. J. Phys. Chem. C 2015, 119, 1918019191,  DOI: 10.1021/acs.jpcc.5b05136
  30. 30
    Xiong, S.; Xiao, X.; Liao, Y.; Dang, H.; Shan, W.; Yang, S. Global kinetic study of NO reduction by NH3 over V2O5-WO3/TiO2: Relationship between the SCR performance and the key factors. Ind. Eng. Chem. Res. 2015, 54, 1101111023,  DOI: 10.1021/acs.iecr.5b03044
  31. 31
    Xiong, S.; Weng, J.; Liao, Y.; Li, B.; Zou, S.; Geng, Y.; Xiao, X.; Huang, N.; Yang, S. Alkali metal deactivation on the low temperature selective catalytic reduction of NOx with NH3 over MnOx-CeO2: A mechanism study. J. Phys. Chem. C 2016, 120, 1529915309,  DOI: 10.1021/acs.jpcc.6b05175
  32. 32
    Wang, D.; Peng, Y.; Xiong, S.-c.; Li, B.; Gan, L.-n.; Lu, C.-m.; Chen, J.-j.; Ma, Y.-l.; Li, J.-h. De-reducibility mechanism of titanium on maghemite catalysts for the SCR reaction: An in situ DRIFTS and quantitative kinetics study. Appl. Catal., B 2018, 221, 556564,  DOI: 10.1016/j.apcatb.2017.09.045
  33. 33
    Pérez-Ramírez, J.; Kapteijn, F.; Schöffel, K.; Moulijn, J. A. Formation and control of N2O in nitric acid production. Appl. Catal., B 2003, 44, 117151,  DOI: 10.1016/s0926-3373(03)00026-2
  34. 34
    Zabilskiy, M.; Djinović, P.; Tchernychova, E.; Pintar, A. N2O decomposition over CuO/CeO2 catalyst: New insights into reaction mechanism and inhibiting action of H2O and NO by operando techniques. Appl. Catal., B 2016, 197, 146158,  DOI: 10.1016/j.apcatb.2016.02.024
  35. 35
    Pasha, N.; Lingaiah, N.; Siva Sankar Reddy, P.; Sai Prasad, P. S. An investigation into the effect of Cs promotion on the catalytic activity of NiO in the direct decomposition of N2O. Catal. Lett. 2007, 118, 6468,  DOI: 10.1007/s10562-007-9146-1
  36. 36
    Perezalonso, F.; Meliancabrera, I.; Lopezgranados, M.; Kapteijn, F.; Fierro, J. Synergy of FexCe1–xO2 mixed oxides for N2O decomposition. J. Catal. 2006, 239, 340346,  DOI: 10.1016/j.jcat.2006.02.008
  37. 37
    Bloemen, P. J. H.; van de Vorst, M. T. H.; Johnson, M. T.; Coehoorn, R.; de Jonge, W. J. M. Magnetic layer thickness dependence of the interlayer exchange coupling in (001) Co/Cu/Co. J. Appl. Phys. 1994, 76, 70817083,  DOI: 10.1063/1.358034
  38. 38
    Konsolakis, M.; Carabineiro, S. A. C.; Papista, E.; Marnellos, G. E.; Tavares, P. B.; Moreira, J. A.; Romaguera-Barcelay, Y.; Figueiredo, J. L. Effect of preparation method on the solid state properties and the deN2O performance of CuO–CeO2 oxides. Catal. Sci. Technol. 2015, 5, 37143727,  DOI: 10.1039/c5cy00343a
  39. 39
    Svintsitskiy, D. A.; Kardash, T. Y.; Stonkus, O. A.; Slavinskaya, E. M.; Stadnichenko, A. I.; Koscheev, S. V.; Chupakhin, A. P.; Boronin, A. I. In situ XRD, XPS, TEM, and TPR study of highly active in CO oxidation CuO nanopowders. J. Phys. Chem. C 2013, 117, 1458814599,  DOI: 10.1021/jp403339r
  40. 40
    Timmermans, B.; Reniers, F.; Hubin, A.; Buess-Herman, C. Chemical effects in the Auger spectrum of copper-oxygen compounds. Appl. Surf. Sci. 1999, 144–145, 5458,  DOI: 10.1016/s0169-4332(98)00764-8
  41. 41
    Fierro, G.; Lo Jacono, M.; Inversi, M.; Dragone, R.; Porta, P. TPR and XPS study of cobalt-copper mixed oxide catalysts: evidence of a strong Co-Cu interaction. Top. Catal. 2000, 10, 3948,  DOI: 10.1023/a:1019151731177
  42. 42
    Grzybek, G.; Stelmachowski, P.; Gudyka, S.; Indyka, P.; Sojka, Z.; Guillén-Hurtado, N.; Rico-Pérez, V.; Bueno-López, A.; Kotarba, A. Strong dispersion effect of cobalt spinel active phase spread over ceria for catalytic N2O decomposition: The role of the interface periphery. Appl. Catal., B 2016, 180, 622629,  DOI: 10.1016/j.apcatb.2015.07.027
  43. 43
    Piskorz, W.; Zasada, F.; Stelmachowski, P.; Diwald, O.; Kotarba, A.; Sojka, Z. Computational and experimental investigations into N2O decomposition over MgO nanocrystals from thorough molecular mechanism to ab initio microkinetics. J. Phys. Chem. C 2011, 115, 2245122460,  DOI: 10.1021/jp2070826
  44. 44
    Liu, X.; Yang, Z.; Li, Y.; Zhang, F. Theoretical study of N2O decomposition mechanism over binuclear Cu-ZSM-5 zeolites. J. Mol. Catal. A: Chem. 2015, 396, 181187,  DOI: 10.1016/j.molcata.2014.09.039
  45. 45
    Yamashita, T.; Vannice, A. N2O decomposition over manganese oxides. J. Catal. 1996, 161, 254262,  DOI: 10.1006/jcat.1996.0183
  46. 46
    Smeets, P.; Sels, B.; Vanteeffelen, R.; Leeman, H.; Hensen, E.; Schoonheydt, R. The catalytic performance of Cu-containing zeolites in N2O decomposition and the influence of O2, NO and H2O on recombination of oxygen. J. Catal. 2008, 256, 183191,  DOI: 10.1016/j.jcat.2008.03.008
  47. 47
    Wu, L.; Qin, W.; Hu, X.; Ju, S.; Dong, C.; Yang, Y. Decomposition and reduction of N2O on CaS (100) surface: A theoretical account. Surf. Sci. 2015, 632, 8387,  DOI: 10.1016/j.susc.2014.09.014

Cited By

Click to copy section linkSection link copied!

This article is cited by 48 publications.

  1. Zhuoyi Zhang, Yunshuo Wu, Yuxin Sun, Haiqiang Wang, Zhongbiao Wu, Xuanhao Wu. Dispersed Pr on Nickel Oxide for Efficient Nitrous Oxide Direct Decomposition in Simulated Nitric Acid Exhaust. ACS ES&T Engineering 2024, 4 (10) , 2542-2552. https://doi.org/10.1021/acsestengg.4c00314IF 7.4
  2. Zhe Li, Yunshuo Wu, Haiqiang Wang, Zhongbiao Wu, Xuanhao Wu. High-Efficiency Electrocatalytic Reduction of N2O with Single-Atom Cu Supported on Nitrogen-Doped Carbon. Environmental Science & Technology 2024, 58 (20) , 8976-8987. https://doi.org/10.1021/acs.est.4c00765环境科学与生态学TOPEI检索SCI升级版 环境科学与生态学1区SCI基础版 环境科学与生态学1区IF 10.8SWJTU A++SWUFE A
  3. Ying-Fei Huo, Lei Zhou, Wei Li, Tong-Liang Hu. Theoretical Study of Intermetallic Compound Nanoalloys for Direct Conversion of Methane to Methanol. ACS Applied Nano Materials 2024, 7 (6) , 6253-6261. https://doi.org/10.1021/acsanm.3c06184EI检索SCI升级版 材料科学2区SCI基础版 工程技术2区IF 5.3
  4. Bingzhi Li, Xiaoxiao Duan, Ting Zhao, Ben Niu, Ganggang Li, Zeyu Zhao, Zhenwen Yang, Dongmei Liu, Fenglian Zhang, Jie Cheng, Zhengping Hao. Boosting N2O Catalytic Decomposition by the Synergistic Effect of Multiple Elements in Cobalt-Based High-Entropy Oxides. Environmental Science & Technology 2024, 58 (4) , 2153-2161. https://doi.org/10.1021/acs.est.3c09741环境科学与生态学TOPEI检索SCI升级版 环境科学与生态学1区SCI基础版 环境科学与生态学1区IF 10.8SWJTU A++SWUFE A
  5. Yuanyu Gong, Zhisong Liu, Zihao Li, Caixia Liu, Naiqiang Yan, Lei Ma. Boosting N2O Decomposition by Fabricating the Cs–O–Co Structure over Co3O4 with Single-Layer Atoms of Cs. Environmental Science & Technology 2024, 58 (1) , 906-914. https://doi.org/10.1021/acs.est.3c06940环境科学与生态学TOPEI检索SCI升级版 环境科学与生态学1区SCI基础版 环境科学与生态学1区IF 10.8SWJTU A++SWUFE A
  6. Peipei Xiao, Kengo Nakamura, Yao Lu, Jun Huang, Lizhuo Wang, Ryota Osuga, Maiko Nishibori, Yong Wang, Hermann Gies, Toshiyuki Yokoi. One-Pot Synthesized Fe-AEI Zeolite Catalysts Contribute to Direct Oxidation of Methane. ACS Catalysis 2023, 13 (24) , 16168-16178. https://doi.org/10.1021/acscatal.3c04675化学TOPEI检索SCI升级版 化学1区SCI基础版 化学1区IF 11.3
  7. Hao Liu, Shan Yang, Guimin Wang, Haiyan Liu, Yue Peng, Chuanzhi Sun, Junhua Li, Jianjun Chen. Strong Electronic Orbit Coupling between Cobalt and Single-Atom Praseodymium for Boosted Nitrous Oxide Decomposition on Co3O4 Catalyst. Environmental Science & Technology 2022, 56 (22) , 16325-16335. https://doi.org/10.1021/acs.est.2c06677环境科学与生态学TOPEI检索SCI升级版 环境科学与生态学1区SCI基础版 环境科学与生态学1区IF 10.8SWJTU A++SWUFE A
  8. Feilin Zhao, Dongdong Wang, Xing Li, Yimeng Yin, Chizhong Wang, Lei Qiu, Jie Yu, Huazhen Chang. Enhancement of Cs on Co3O4 for N2O Catalytic Decomposition: N2O Activation and O2 Desorption. Industrial & Engineering Chemistry Research 2022, 61 (37) , 13854-13862. https://doi.org/10.1021/acs.iecr.2c01955EI检索SCI升级版 工程技术3区SCI基础版 工程技术3区IF 3.8SWJTU A+
  9. Yong Liao, Zhisong Liu, Zihao Li, Guanqun Gao, Leipeng Ji, Haomiao Xu, Wenjun Huang, Zan Qu, Naiqiang Yan. The Unique CO Activation Effects for Boosting NH3 Selective Catalytic Oxidation over CuOx–CeO2. Environmental Science & Technology 2022, 56 (14) , 10402-10411. https://doi.org/10.1021/acs.est.2c02612环境科学与生态学TOPEI检索SCI升级版 环境科学与生态学1区SCI基础版 环境科学与生态学1区IF 10.8SWJTU A++SWUFE A
  10. Jinru Sun, Lu Wang, Lu Zhang, Yu Zhao, Yaoling Chi, Hong Wang, Cuiqing Li, Jixing Liu, Jian Liu. Taming the Redox Property of A0.5Co2.5O4 (A = Mg, Ca, Sr, Ba) toward High Catalytic Activity for N2O Decomposition. ACS Applied Energy Materials 2021, 4 (8) , 8496-8505. https://doi.org/10.1021/acsaem.1c01690EI检索SCI升级版 材料科学3区SCI基础版 工程技术2区IF 5.4
  11. Wenhao Yang, Ya Wang, Weinan Yang, Hao Liu, Zhenguo Li, Yue Peng, Junhua Li. Surface In Situ Doping Modification over Mn2O3 for Toluene and Propene Catalytic Oxidation: The Effect of Isolated Cuδ+ Insertion into the Mezzanine of Surface MnO2 Cladding. ACS Applied Materials & Interfaces 2021, 13 (2) , 2753-2764. https://doi.org/10.1021/acsami.0c19972材料科学TOPEI检索SCI升级版 材料科学2区SCI基础版 工程技术1区IF 8.3SWJTU A++
  12. Shuaiqi Zhao, Xiaojing Jin, Peng Wu, Yun Zhao, Guangxu Chen, Yifei Li, Anqi Li, Daiqi Ye, Yongcai Qiu. Cu2+-Decorated Porous Co3O4 Nanosheets for Photothermocatalytic Oxidation of Toluene. ACS Applied Nano Materials 2020, 3 (10) , 10454-10461. https://doi.org/10.1021/acsanm.0c02347EI检索SCI升级版 材料科学2区SCI基础版 工程技术2区IF 5.3
  13. Ruifang Wu, Qian Wang, Ruirui Wang, Xiangqian Lin, Hui Dang, Linmao Li, Shize Hu, Minxia Yang, Ke Zheng, Liangliang Zhang, Yongzhao Wang, Yongxiang Zhao. Investigation of Nonmetal F‐doped Co 3 O 4 as Catalyst for N 2 O Catalytic Decomposition. ChemCatChem 2024, 565 https://doi.org/10.1002/cctc.202401659EI检索SCI升级版 化学3区SCI基础版 化学2区IF 3.8SWJTU A++
  14. Hui Dang, Linmao Li, Huading Sun, Ruifang Wu, Liangliang Zhang, Chengming Zhang, Ke Zheng, Yongzhao Wang, Zhenxing Ren, Yongxiang Zhao. Highly active Mn-VO-Co sites by cobalt doping on cryptomethane for enhanced catalytic decomposition of N2O. Journal of Colloid and Interface Science 2024, 547 https://doi.org/10.1016/j.jcis.2024.11.096化学TOPEI检索SCI升级版 化学1区SCI基础版 化学1区IF 9.4SWJTU A++
  15. Qiang Wang, Ying Tang, Yanqin Li, Tiantian Li, Chuanyi Wang, Feng Yu. 2D/2D SnOx/TiO2 Z-scheme heterojunction with oxygen vacancies for boosted photocatalytic performance and mechanistic insight. Applied Surface Science 2024, 668 , 160436. https://doi.org/10.1016/j.apsusc.2024.160436材料科学TOPEI检索SCI升级版 材料科学2区SCI基础版 工程技术2区IF 6.3SWJTU A+
  16. Hermawan Prajitno, Jeongtak Kim, Min Hye Jeong, Sun A Choi, Sun-Mi Hwang, Soon Kwan Jeong. Effects of Zn loading on Zn Co1−Co2O4 spinel catalysts for low-temperature catalytic decomposition of N2O in the presence of inhibitors. Fuel 2024, 371 , 132053. https://doi.org/10.1016/j.fuel.2024.132053工程技术TOP中科院预警 引用操纵EI检索SCI升级版 工程技术1区SCI基础版 工程技术2区IF 6.7SWUFE B
  17. Cheolwoong Park, Yonghyun Choi, Gyeongtae Park, Ilpum Jang, Minki Kim, Yongrae Kim, Young Choi. Investigation on the reduction in unburned ammonia and nitrogen oxide emissions from ammonia direct injection SI engine by using SCR after-treatment system. Heliyon 2024, 10 (18) , e37684. https://doi.org/10.1016/j.heliyon.2024.e37684SCI升级版 综合性期刊3区IF 3.4
  18. Xuanhao Wu, Jiaxin Du, Yanxia Gao, Haiqiang Wang, Changbin Zhang, Runduo Zhang, Hong He, Gaoqing (Max) Lu, Zhongbiao Wu. Progress and challenges in nitrous oxide decomposition and valorization. Chemical Society Reviews 2024, 53 (16) , 8379-8423. https://doi.org/10.1039/D3CS00919J化学TOPEI检索SCI升级版 化学1区SCI基础版 化学1区IF 40.4
  19. Xiaobo Hu, Jingyun Meng, Linyan Feng, Yan Gao, Yongzhao Wang, Yongxiang Zhao. Facile Synthesis of N-doped Co3O4 Catalyst for Catalytic Decomposition of N2O under Simulated Real Tail Gases. Catalysis Letters 2024, 154 (8) , 4367-4377. https://doi.org/10.1007/s10562-024-04669-zEI检索SCI升级版 化学4区SCI基础版 化学3区IF 2.3
  20. Haibiao Yu, Shanshan Qin, Xingkun Qi, Keyi Wang, Yanan Li, Yuanting Du, Xiaogeng Feng, Weijun Shan, Ying Xiong. P123-assisted synthesis of Co3O4 catalyst for efficiently catalyzing N2O decomposition under simulated real tail-gases. Molecular Catalysis 2024, 565 , 114378. https://doi.org/10.1016/j.mcat.2024.114378EI检索SCI升级版 化学2区SCI基础版 化学2区IF 3.9
  21. Bin Kang, Mengfei Guo, Haotian Wu, Xiaonan Guo, Zhaoying Di, Ying Wei, Jingbo Jia, Zhou-jun Wang, Runduo Zhang. Effect of alkali/alkaline-earth-metal doping on the Co 3 O 4 spinel structure and N 2 O decomposition. Catalysis Science & Technology 2024, 14 (10) , 2825-2837. https://doi.org/10.1039/D4CY00400KEI检索SCI升级版 化学3区SCI基础版 化学2区IF 4.4
  22. He Wang, Xiaoqing Dang, Yu Huang, Wei Wang, Dongjie Yan, Xin Yu, Yitong Ren, Jiaxin Qu. Research progress of Cu-based and Ce-based catalysts for the selective catalytic reduction of NO with CO. Surfaces and Interfaces 2024, 48 , 104310. https://doi.org/10.1016/j.surfin.2024.104310SCI升级版 材料科学2区SCI基础版 工程技术2区IF 5.7
  23. Xiyue Gong, Zheng Liu, Jingxian Mou, Jiaying Wang. Effect of Physico-Chemical Properties Induced by N, P Co-Doped Biomass Porous Carbon on Nitrous Oxide Adsorption Performance. Sustainability 2024, 16 (10) , 4120. https://doi.org/10.3390/su16104120SCI升级版 环境科学与生态学3区SCI基础版 环境科学与生态学3区IF 3.3
  24. Sixuan Li, Jingchen Zhao, Zhaozheng Song, Hong Wang, Tao Zhang, Jian Liu, Qingzhe Jiang. New insights into the effect of polyvinyl alcohol on Co3O4 spinel oxide catalyst for N2O decomposition. Fuel 2024, 362 , 130745. https://doi.org/10.1016/j.fuel.2023.130745工程技术TOP中科院预警 引用操纵EI检索SCI升级版 工程技术1区SCI基础版 工程技术2区IF 6.7SWUFE B
  25. Qian Wang, Weiwei Yang, Hui Dang, Linmao Li, Ruifang Wu, Yongzhao Wang, Yongxiang Zhao. Enhancement of N2O decomposition performance by co-doping of Ni and Y to Co3O4 catalyst. Journal of Environmental Chemical Engineering 2024, 12 (2) , 112463. https://doi.org/10.1016/j.jece.2024.112463工程技术TOPEI检索SCI升级版 工程技术2区SCI基础版 工程技术2区IF 7.4SWJTU B+
  26. Hongchun Sun, Hui Wang, Cui Dong, Zhenping Qu. Efficient Cu-Co Dual-Site promotes selective catalytic oxidation of ammonia over cobalt based catalysts. Chemical Engineering Journal 2024, 485 , 149629. https://doi.org/10.1016/j.cej.2024.149629工程技术TOPEI检索SCI升级版 工程技术1区SCI基础版 工程技术1区IF 13.3SWJTU A++
  27. Zhongqi Zhuang, Bin Guan, Junyan Chen, Chunzheng Zheng, Jiefei Zhou, Tianxu Su, Yujun Chen, Chenyu Zhu, Xuehan Hu, Sikai Zhao, Jiangfeng Guo, Hongtao Dang, Yaoyao Zhang, Yuheng Yuan, Chao Yi, Chengze Xu, Bingyu Xu, Wenbo Zeng, Yuan Li, Kuangyi Shi, Yang He, Zhihao Wei, Zhen Huang. Review of nitrous oxide direct catalytic decomposition and selective catalytic reduction catalysts. Chemical Engineering Journal 2024, 486 , 150374. https://doi.org/10.1016/j.cej.2024.150374工程技术TOPEI检索SCI升级版 工程技术1区SCI基础版 工程技术1区IF 13.3SWJTU A++
  28. Ningqiang Zhang, Chenxi He, Yuan Jing, Yucheng Qian, Takashi Toyao, Ken-ichi Shimizu. Enhanced N2O decomposition on Rh/ZrO2 catalysts through the promotional effect of palladium. Surfaces and Interfaces 2024, 46 , 104120. https://doi.org/10.1016/j.surfin.2024.104120SCI升级版 材料科学2区SCI基础版 工程技术2区IF 5.7
  29. Sixuan Li, Junli Wang, Rui Shang, Jingchen Zhao, Qingsheng Xu, Hong Wang, Jian Liu. Multiple cobalt species on HZSM-5 cooperative catalyzing N2O decomposition. Molecular Catalysis 2024, 552 , 113706. https://doi.org/10.1016/j.mcat.2023.113706EI检索SCI升级版 化学2区SCI基础版 化学2区IF 3.9
  30. Wenqiang Qu, Chunlei Wang, Penglu Wang, Yongjie Shen, Jiebing He, Dengsong Zhang. Insights into reaction pathway induced by d orbital occupancy on cobalt supported boron nitride for N2O catalytic decomposition. Applied Surface Science 2023, 636 , 157792. https://doi.org/10.1016/j.apsusc.2023.157792材料科学TOPEI检索SCI升级版 材料科学2区SCI基础版 工程技术2区IF 6.3SWJTU A+
  31. Yanling Sun, Xiaotong Wang, Yongli Dong, Xiaoyu Niu, Yujun Zhu. Enhanced low-temperature catalytic combustion of toluene over Cu and Mn co-modified α-MnO2 with flower spheres. Journal of Environmental Chemical Engineering 2023, 11 (5) , 110670. https://doi.org/10.1016/j.jece.2023.110670工程技术TOPEI检索SCI升级版 工程技术2区SCI基础版 工程技术2区IF 7.4SWJTU B+
  32. Ye Li, Xinping Wang, Chuan Shi. The catalytic performance of Ba-Ce-Cu catalysts for N2O decomposition. Journal of Environmental Chemical Engineering 2023, 11 (3) , 109970. https://doi.org/10.1016/j.jece.2023.109970工程技术TOPEI检索SCI升级版 工程技术2区SCI基础版 工程技术2区IF 7.4SWJTU B+
  33. Seongmin Choi, Ki Bok Nam, Heon Phil Ha, Dong Wook Kwon. Enhancement of catalytic N2O decomposition by modulating oxygen vacancies over Cu/Ce1-XYX catalysts. Journal of Industrial and Engineering Chemistry 2023, 121 , 462-471. https://doi.org/10.1016/j.jiec.2023.02.001EI检索SCI升级版 工程技术3区SCI基础版 工程技术2区IF 5.9
  34. Young-Kwon Park, Beom-Sik Kim. Catalytic removal of nitrogen oxides (NO, NO2, N2O) from ammonia-fueled combustion exhaust: A review of applicable technologies. Chemical Engineering Journal 2023, 461 , 141958. https://doi.org/10.1016/j.cej.2023.141958工程技术TOPEI检索SCI升级版 工程技术1区SCI基础版 工程技术1区IF 13.3SWJTU A++
  35. Jinru Sun, Aolei Song, Yu Tian, Hua Zhan, Jianlin Deng, Hong Wang, Ming Ke. Unravelling the Effect of Alkali Metal Deposition on Co 3 O 4 for Catalytic Decomposition of N 2 O. ChemCatChem 2023, 15 (5) https://doi.org/10.1002/cctc.202201449EI检索SCI升级版 化学3区SCI基础版 化学2区IF 3.8SWJTU A++
  36. Zhichao Chen, Shan Ren, Xiangdong Xing, Xiaodi Li, Lin Chen, Mingming Wang. Unveiling the inductive strategy of different precipitants on MnFeO catalyst for low-temperature NH3-SCR reaction. Fuel 2023, 335 , 126986. https://doi.org/10.1016/j.fuel.2022.126986工程技术TOP中科院预警 引用操纵EI检索SCI升级版 工程技术1区SCI基础版 工程技术2区IF 6.7SWUFE B
  37. Feilin Zhao, Chizhong Wang, Dongdong Wang, Yimeng Yin, Jie Yu, Jinchi Han, Jie Zeng, Huazhen Chang. Efficient catalytic decomposition of N2O over Cd-doped NiO in the presence of O2. Applied Catalysis A: General 2023, 649 , 118946. https://doi.org/10.1016/j.apcata.2022.118946EI检索SCI升级版 化学2区SCI基础版 化学2区IF 4.7
  38. Seongmin Choi, Ki Bok Nam, Heon Phil Ha, Dong Wook Kwon. Enhancement of Catalytic N2o Decomposition by Modulating of Oxygen Vacancies Over Cu/Ce1-Xyx Catalysts. SSRN Electronic Journal 2022, 28 https://doi.org/10.2139/ssrn.4137489
  39. Haibo Yin, Zhen Chen, Shangchao Xiong, Jianjun Chen, Chizhong Wang, Rong Wang, Yasutaka Kuwahara, Jingshan Luo, Hiromi Yamashita, Yue Peng, Junhua Li. Alloying effect-induced electron polarization drives nitrate electroreduction to ammonia. Chem Catalysis 2021, 1 (5) , 1088-1103. https://doi.org/10.1016/j.checat.2021.08.014IF 11.5
  40. Phuoc Hoang Ho, Magdalena Jabłońska, Giada Beltrami, Annalisa Martucci, Thomas Cacciaguerra, Werner Paulus, Francesco Di Renzo, Giuseppe Fornasari, Angelo Vaccari, Patricia Benito, Regina Palkovits. Promotion effect of rare earth elements (Ce, Nd, Pr) on physicochemical properties of M-Al mixed oxides (M = Cu, Ni, Co) and their catalytic activity in N2O decomposition. Journal of Materials Science 2021, 56 (27) , 15012-15028. https://doi.org/10.1007/s10853-021-06245-xEI检索SCI升级版 材料科学3区SCI基础版 工程技术3区IF 3.5SWJTU A+
  41. Ming Li, Runduo Zhang, Hao Wang, Hongxia Chen, Ying Wei. Role of the exposure facets upon diverse morphologies of cobalt spinels on catalytic deN2O process. Catalysis Today 2021, 376 , 177-187. https://doi.org/10.1016/j.cattod.2020.06.042EI检索SCI升级版 化学2区SCI基础版 化学2区IF 5.2
  42. Hao Liu, Jianjun Chen, Ya Wang, Shangchao Xiong, Ziang Su, Yun Wang, Wenhao Yang, Xuefeng Chu, Weinan Yang, Yue Peng, Wenzhe Si, Junhua Li. Boosting nitrous oxide direct decomposition performance based on samarium doping effects. Chemical Engineering Journal 2021, 414 , 128643. https://doi.org/10.1016/j.cej.2021.128643工程技术TOPEI检索SCI升级版 工程技术1区SCI基础版 工程技术1区IF 13.3SWJTU A++
  43. Xiaobo Hu, Yongzhao Wang, Ruifang Wu, Yongxiang Zhao. N-doped Co3O4 catalyst with a high efficiency for the catalytic decomposition of N2O. Molecular Catalysis 2021, 509 , 111656. https://doi.org/10.1016/j.mcat.2021.111656EI检索SCI升级版 化学2区SCI基础版 化学2区IF 3.9
  44. Zhicheng Xu, Yuran Li, Huimin Shi, Yuting Lin, Yan Wang, Qiang Wang, Tingyu Zhu. Application Prospect of K Used for Catalytic Removal of NOx, COx, and VOCs from Industrial Flue Gas: A Review. Catalysts 2021, 11 (4) , 419. https://doi.org/10.3390/catal11040419SCI升级版 化学3区SCI基础版 化学3区IF 3.8SWJTU A+
  45. Xiaobo Hu, Yongzhao Wang, Ruifang Wu, Yongxiang Zhao. Graphitic carbon nitride-supported cobalt oxides as a potential catalyst for decomposition of N2O. Applied Surface Science 2021, 538 , 148157. https://doi.org/10.1016/j.apsusc.2020.148157材料科学TOPEI检索SCI升级版 材料科学2区SCI基础版 工程技术2区IF 6.3SWJTU A+
  46. Lyumeng Ye, Peng Lu, Xiongbo Chen, Ping Fang, Yue Peng, Junhua Li, Haibao Huang. The deactivation mechanism of toluene on MnOx-CeO2 SCR catalyst. Applied Catalysis B: Environmental 2020, 277 , 119257. https://doi.org/10.1016/j.apcatb.2020.119257化学TOPEI检索SCI升级版 化学1区SCI基础版 化学1区IF 20.2
  47. Xuhui Wei, Yongzhao Wang, Xiao Li, Ruifang Wu, Yongxiang Zhao. Co3O4 supported on bone-derived hydroxyapatite as potential catalysts for N2O catalytic decomposition. Molecular Catalysis 2020, 491 , 111005. https://doi.org/10.1016/j.mcat.2020.111005EI检索SCI升级版 化学2区SCI基础版 化学2区IF 3.9
  48. Sylwia Wójcik, Gabriela Grzybek, Paweł Stelmachowski, Zbigniew Sojka, Andrzej Kotarba. Bulk, Surface and Interface Promotion of Co3O4 for the Low-Temperature N2O Decomposition Catalysis. Catalysts 2020, 10 (1) , 41. https://doi.org/10.3390/catal10010041SCI升级版 化学3区SCI基础版 化学3区IF 3.8SWJTU A+

Environmental Science & Technology

Cite this: Environ. Sci. Technol. 2019, 53, 17, 10379–10386
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.est.9b02892
Published August 5, 2019
Copyright © 2019 American Chemical Society

Article Views

2372

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. (a) N2O decomposition performance of the Co3O4, CuxCoy, and CuO catalysts. (b) N2O decomposition performance of Cu2Co1 under different conditions. Reaction conditions: [N2O] = 1000 ppm, [O2] = 2% (when used), [NO] = 200 ppm (when used), [H2O] = 0.5% (when used), catalyst mass = 100 mg, flow rate = 100 mL min–1, and GHSV = 60 000 cm3 g–1 h–1.

    Figure 2

    Figure 2. (a) H2-TPR profiles of the Co3O4, CuxCoy, and CuO catalysts. (b) Initial H2 consumption rates of the CuxCoy and CuO catalysts in the H2-TPR study.

    Figure 3

    Figure 3. (a) AES spectra of the CuxCoy and CuO catalysts for the spectral region of the Cu LMM. (b) XPS spectra of the Co3O4 and CuxCoy catalysts for the spectral region of the Co 2p3/2.

    Figure 4

    Figure 4. Model structures of N2O adsorbed on: (a) CuO, (b) CuO with an oxygen vacancy, (c) Co3O4, and (d−f) Co3O4 with an oxygen vacancy. The white balls represent N, red balls represent O, blue balls represent Cu, and navy-blue balls represent Co. (g) N2O desorption amounts during N2O-TPD over Co3O4, CuxCoy, and CuO catalysts.

    Figure 5

    Figure 5. N2O decomposition rate constants of the Co3O4, CuxCoy, and CuO catalysts.

    Scheme 1

    Scheme 1. Key Roles of CuO and Co3O4 in the CuxCoy Catalysts for N2O Decomposition
  • References


    This article references 47 other publications.

    1. 1
      Hungate, B. A.; Dukes, J. S.; Shaw, M. R.; Luo, Y.; Field, C. B. ATMOSPHERIC SCIENCE: Nitrogen and Climate Change. Science 2003, 302, 15121513,  DOI: 10.1126/science.1091390
    2. 2
      Li, L.; Xu, J.; Hu, J.; Han, J. Reducing nitrous oxide emissions to mitigate climate change and protect the ozone layer. Environ. Sci. Technol. 2014, 48, 52905297,  DOI: 10.1021/es404728s
    3. 3
      Zabilskiy, M.; Djinović, P.; Erjavec, B.; Dražić, G.; Pintar, A. Small CuO clusters on CeO2 nanospheres as active species for catalytic N2O decomposition. Appl. Catal., B 2015, 163, 113122,  DOI: 10.1016/j.apcatb.2014.07.057
    4. 4
      Ravishankara, A. R.; Daniel, J. S.; Portmann, R. W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 2009, 326, 123125,  DOI: 10.1126/science.1176985
    5. 5
      Dandekar, A.; Vannice, M. A. Decomposition and reduction of N2O over copper catalysts. Appl. Catal., B 1999, 22, 179200,  DOI: 10.1016/s0926-3373(99)00049-1
    6. 6
      Liu, Z.; He, F.; Ma, L.; Peng, S. Recent advances in catalytic decomposition of N2O on noble metal and metal oxide catalysts. Catal. Surv. Asia 2016, 20, 121132,  DOI: 10.1007/s10563-016-9213-y
    7. 7
      Komvokis, V. G.; Marti, M.; Delimitis, A.; Vasalos, I. A.; Triantafyllidis, K. S. Catalytic decomposition of N2O over highly active supported Ru nanoparticles (≤3nm) prepared by chemical reduction with ethylene glycol. Appl. Catal., B 2011, 103, 6271,  DOI: 10.1016/j.apcatb.2011.01.009
    8. 8
      Kawi, S.; Liu, S. Y.; Shen, S.-C. Catalytic decomposition and reduction of N2O on Ru/MCM-41 catalyst. Catal. Today 2001, 68, 237244,  DOI: 10.1016/s0920-5861(01)00283-8
    9. 9
      Parres-Esclapez, S.; Illán-Gómez, M. J.; de Lecea, C. S.-M.; Bueno-López, A. On the importance of the catalyst redox properties in the N2O decomposition over alumina and ceria supported Rh, Pd and Pt. Appl. Catal., B 2010, 96, 370378,  DOI: 10.1016/j.apcatb.2010.02.034
    10. 10
      Rutkowska, M.; Piwowarska, Z.; Micek, E.; Chmielarz, L. Hierarchical Fe-, Cu- and Co-Beta zeolites obtained by mesotemplate-free method. Part I: Synthesis and catalytic activity in N2O decomposition. Microporous Mesoporous Mater. 2015, 209, 5465,  DOI: 10.1016/j.micromeso.2014.10.011
    11. 11
      Jíša, K.; Novakova, J.; Schwarze, M.; Vondrova, A.; Sklenak, S.; Sobalik, Z. Role of the Fe-zeolite structure and iron state in the N2O decomposition: Comparison of Fe-FER, Fe-BEA, and Fe-MFI catalysts. J. Catal. 2009, 262, 2734,  DOI: 10.1016/j.jcat.2008.11.025
    12. 12
      Pirngruber, G.; Pieterse, J. The positive effect of NO on the N2O decomposition activity of Fe-ZSM-5: A combined kinetic and in situ IR spectroscopic study. J. Catal. 2006, 237, 237247,  DOI: 10.1016/j.jcat.2005.11.012
    13. 13
      Yao, X.; Tang, C.; Gao, F.; Dong, L. Research progress on the catalytic elimination of atmospheric molecular contaminants over supported metal-oxide catalysts. Catal. Sci. Technol. 2014, 4, 28142829,  DOI: 10.1039/c4cy00397g
    14. 14
      Konsolakis, M.; Sgourakis, M.; Carabineiro, S. A. C. Surface and redox properties of cobalt–ceria binary oxides: On the effect of Co content and pretreatment conditions. Appl. Surf. Sci. 2015, 341, 4854,  DOI: 10.1016/j.apsusc.2015.02.188
    15. 15
      Konsolakis, M. Recent advances on nitrous oxide (N2O) decomposition over non-noble-metal oxide catalysts: Catalytic performance, mechanistic considerations, and surface chemistry aspects. ACS Catal. 2015, 5, 63976421,  DOI: 10.1021/acscatal.5b01605
    16. 16
      Pasha, N.; Lingaiah, N.; Babu, N.; Reddy, P.; Prasad, P. Studies on cesium doped cobalt oxide catalysts for direct N2O decomposition in the presence of oxygen and steam. Catal. Commun. 2008, 10, 132136,  DOI: 10.1016/j.catcom.2008.06.006
    17. 17
      Xue, L.; Zhang, C.; He, H.; Teraoka, Y. Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst. Appl. Catal., B 2007, 75, 167174,  DOI: 10.1016/j.apcatb.2007.04.013
    18. 18
      Russo, N.; Fino, D.; Saracco, G.; Specchia, V. N2O catalytic decomposition over various spinel-type oxides. Catal. Today 2007, 119, 228232,  DOI: 10.1016/j.cattod.2006.08.012
    19. 19
      Piskorz, W.; Zasada, F.; Stelmachowski, P.; Kotarba, A.; Sojka, Z. DFT modeling of reaction mechanism and ab initio microkinetics of catalytic N2O decomposition over alkaline earth oxides: From molecular orbital picture account to simulation of transient and stationary rate profiles. J. Phys. Chem. C 2013, 117, 1848818501,  DOI: 10.1021/jp405459g
    20. 20
      Piskorz, W.; Zasada, F.; Stelmachowski, P.; Kotarba, A.; Sojka, Z. Decomposition of N2O over the surface of cobalt spinel: A DFT account of reactivity experiments. Catal. Today 2008, 137, 418422,  DOI: 10.1016/j.cattod.2008.02.027
    21. 21
      Zhou, H.; Huang, Z.; Sun, C.; Qin, F.; Xiong, D.; Shen, W.; Xu, H. Catalytic decomposition of N2O over CuxCe1–xOy mixed oxides. Appl. Catal., B 2012, 125, 492498,  DOI: 10.1016/j.apcatb.2012.06.021
    22. 22
      Zabilskiy, M.; Djinović, P.; Tchernychova, E.; Tkachenko, O. P.; Kustov, L. M.; Pintar, A. Nanoshaped CuO/CeO2 materials: Effect of the exposed ceria surfaces on catalytic activity in N2O decomposition reaction. ACS Catal. 2015, 5, 53575365,  DOI: 10.1021/acscatal.5b01044
    23. 23
      Kapteijn, F.; Marbán, G.; Rodriguez-Mirasol, J.; Moulijn, J. A. Kinetic Analysis of the Decomposition of Nitrous Oxide over ZSM-5 Catalysts. J. Catal. 1997, 167, 256265,  DOI: 10.1006/jcat.1997.1581
    24. 24
      Obalová, L.; Fíla, V. Kinetic analysis of N2O decomposition over calcined hydrotalcites. Appl. Catal., B 2007, 70, 353359,  DOI: 10.1016/j.apcatb.2005.11.031
    25. 25
      Liu, X.; Qiu, G.; Li, X. Shape-controlled synthesis and properties of uniform spinel cobalt oxide nanocubes. Nanotechnology 2005, 16, 30353040,  DOI: 10.1088/0957-4484/16/12/051
    26. 26
      Shojaee, K.; Montoya, A.; Haynes, B. S. Insight into oxygen stability and vacancy formation on Co3O4 model slabs. Comput. Mater. Sci. 2013, 72, 1525,  DOI: 10.1016/j.commatsci.2013.02.001
    27. 27
      Maimaiti, Y.; Nolan, M.; Elliott, S. D. Reduction mechanisms of the CuO(111) surface through surface oxygen vacancy formation and hydrogen adsorption. Phys. Chem. Chem. Phys. 2014, 16, 30363046,  DOI: 10.1039/c3cp53991a
    28. 28
      Yang, B.-X.; Ye, L.-P.; Gu, H.-J.; Huang, J.-H.; Li, H.-Y.; Luo, Y. A density functional theory study of CO oxidation on CuO1-x(111). J. Mol. Model. 2015, 21, 195,  DOI: 10.1007/s00894-015-2726-x
    29. 29
      Zasada, F.; Piskorz, W.; Sojka, Z. Cobalt spinel at various redox conditions: DFT+U investigations into the structure and surface thermodynamics of the (100) facet. J. Phys. Chem. C 2015, 119, 1918019191,  DOI: 10.1021/acs.jpcc.5b05136
    30. 30
      Xiong, S.; Xiao, X.; Liao, Y.; Dang, H.; Shan, W.; Yang, S. Global kinetic study of NO reduction by NH3 over V2O5-WO3/TiO2: Relationship between the SCR performance and the key factors. Ind. Eng. Chem. Res. 2015, 54, 1101111023,  DOI: 10.1021/acs.iecr.5b03044
    31. 31
      Xiong, S.; Weng, J.; Liao, Y.; Li, B.; Zou, S.; Geng, Y.; Xiao, X.; Huang, N.; Yang, S. Alkali metal deactivation on the low temperature selective catalytic reduction of NOx with NH3 over MnOx-CeO2: A mechanism study. J. Phys. Chem. C 2016, 120, 1529915309,  DOI: 10.1021/acs.jpcc.6b05175
    32. 32
      Wang, D.; Peng, Y.; Xiong, S.-c.; Li, B.; Gan, L.-n.; Lu, C.-m.; Chen, J.-j.; Ma, Y.-l.; Li, J.-h. De-reducibility mechanism of titanium on maghemite catalysts for the SCR reaction: An in situ DRIFTS and quantitative kinetics study. Appl. Catal., B 2018, 221, 556564,  DOI: 10.1016/j.apcatb.2017.09.045
    33. 33
      Pérez-Ramírez, J.; Kapteijn, F.; Schöffel, K.; Moulijn, J. A. Formation and control of N2O in nitric acid production. Appl. Catal., B 2003, 44, 117151,  DOI: 10.1016/s0926-3373(03)00026-2
    34. 34
      Zabilskiy, M.; Djinović, P.; Tchernychova, E.; Pintar, A. N2O decomposition over CuO/CeO2 catalyst: New insights into reaction mechanism and inhibiting action of H2O and NO by operando techniques. Appl. Catal., B 2016, 197, 146158,  DOI: 10.1016/j.apcatb.2016.02.024
    35. 35
      Pasha, N.; Lingaiah, N.; Siva Sankar Reddy, P.; Sai Prasad, P. S. An investigation into the effect of Cs promotion on the catalytic activity of NiO in the direct decomposition of N2O. Catal. Lett. 2007, 118, 6468,  DOI: 10.1007/s10562-007-9146-1
    36. 36
      Perezalonso, F.; Meliancabrera, I.; Lopezgranados, M.; Kapteijn, F.; Fierro, J. Synergy of FexCe1–xO2 mixed oxides for N2O decomposition. J. Catal. 2006, 239, 340346,  DOI: 10.1016/j.jcat.2006.02.008
    37. 37
      Bloemen, P. J. H.; van de Vorst, M. T. H.; Johnson, M. T.; Coehoorn, R.; de Jonge, W. J. M. Magnetic layer thickness dependence of the interlayer exchange coupling in (001) Co/Cu/Co. J. Appl. Phys. 1994, 76, 70817083,  DOI: 10.1063/1.358034
    38. 38
      Konsolakis, M.; Carabineiro, S. A. C.; Papista, E.; Marnellos, G. E.; Tavares, P. B.; Moreira, J. A.; Romaguera-Barcelay, Y.; Figueiredo, J. L. Effect of preparation method on the solid state properties and the deN2O performance of CuO–CeO2 oxides. Catal. Sci. Technol. 2015, 5, 37143727,  DOI: 10.1039/c5cy00343a
    39. 39
      Svintsitskiy, D. A.; Kardash, T. Y.; Stonkus, O. A.; Slavinskaya, E. M.; Stadnichenko, A. I.; Koscheev, S. V.; Chupakhin, A. P.; Boronin, A. I. In situ XRD, XPS, TEM, and TPR study of highly active in CO oxidation CuO nanopowders. J. Phys. Chem. C 2013, 117, 1458814599,  DOI: 10.1021/jp403339r
    40. 40
      Timmermans, B.; Reniers, F.; Hubin, A.; Buess-Herman, C. Chemical effects in the Auger spectrum of copper-oxygen compounds. Appl. Surf. Sci. 1999, 144–145, 5458,  DOI: 10.1016/s0169-4332(98)00764-8
    41. 41
      Fierro, G.; Lo Jacono, M.; Inversi, M.; Dragone, R.; Porta, P. TPR and XPS study of cobalt-copper mixed oxide catalysts: evidence of a strong Co-Cu interaction. Top. Catal. 2000, 10, 3948,  DOI: 10.1023/a:1019151731177
    42. 42
      Grzybek, G.; Stelmachowski, P.; Gudyka, S.; Indyka, P.; Sojka, Z.; Guillén-Hurtado, N.; Rico-Pérez, V.; Bueno-López, A.; Kotarba, A. Strong dispersion effect of cobalt spinel active phase spread over ceria for catalytic N2O decomposition: The role of the interface periphery. Appl. Catal., B 2016, 180, 622629,  DOI: 10.1016/j.apcatb.2015.07.027
    43. 43
      Piskorz, W.; Zasada, F.; Stelmachowski, P.; Diwald, O.; Kotarba, A.; Sojka, Z. Computational and experimental investigations into N2O decomposition over MgO nanocrystals from thorough molecular mechanism to ab initio microkinetics. J. Phys. Chem. C 2011, 115, 2245122460,  DOI: 10.1021/jp2070826
    44. 44
      Liu, X.; Yang, Z.; Li, Y.; Zhang, F. Theoretical study of N2O decomposition mechanism over binuclear Cu-ZSM-5 zeolites. J. Mol. Catal. A: Chem. 2015, 396, 181187,  DOI: 10.1016/j.molcata.2014.09.039
    45. 45
      Yamashita, T.; Vannice, A. N2O decomposition over manganese oxides. J. Catal. 1996, 161, 254262,  DOI: 10.1006/jcat.1996.0183
    46. 46
      Smeets, P.; Sels, B.; Vanteeffelen, R.; Leeman, H.; Hensen, E.; Schoonheydt, R. The catalytic performance of Cu-containing zeolites in N2O decomposition and the influence of O2, NO and H2O on recombination of oxygen. J. Catal. 2008, 256, 183191,  DOI: 10.1016/j.jcat.2008.03.008
    47. 47
      Wu, L.; Qin, W.; Hu, X.; Ju, S.; Dong, C.; Yang, Y. Decomposition and reduction of N2O on CaS (100) surface: A theoretical account. Surf. Sci. 2015, 632, 8387,  DOI: 10.1016/j.susc.2014.09.014
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.est.9b02892.

    • N2O decomposition performances of Co3O4, Cu1Co2, and CuO under different conditions; XRD patterns of the Co3O4, CuxCoy, and CuO catalysts; XPS spectra of the CuxCoy and CuO catalysts for the spectral region of Cu 2p3/2; TCD signals of N2O-TPD profiles over Co3O4, CuxCoy, and CuO catalysts; MS spectra of N2O, O2, NO, and N2 over Co3O4, CuxCoy, and CuO during N2O-TPD; N2 and NO desorption amounts during N2O-TPD over Co3O4, CuxCoy, and CuO catalysts; and dependence of the N2O decomposition rate on the N2O concentration over the Co3O4, CuxCoy, and CuO catalysts at 350–500 °C (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.