GALABA TRADING LIMITED
GALABA TRADING LIMITED
250 MWp GTL Solar PV Power Project – Feasibility Study Report
250 MWp GTL 太阳能光伏发电项目 - 可行性研究报告
FEASIBILITY STUDY REPORTS
可行性研究 报告
for the development of the
促进 发展
250 MWP GTL SOLAR PV POWER PROJECT
250 MWPGTL 太阳能光伏发电项目
In
在
MAZABUKA & SIAVONGA (LUSITU)
SOUTHERN PROVINCE
ZAMBIA
赞比亚
2024
EXECUTIVE SUMMARY
执行摘要
Executive Summary
执行摘要
The feasibility study for the proposed 250 MWp GTL Solar PV Power Project in the Mazabuka and Siavonga (Lusitu) Districts has been successfully completed by GTL Power Solutions. This study thoroughly evaluated the solar generation potential, technical feasibility, and economic viability of establishing a utility-scale solar photovoltaic (PV) power plant in the designated areas.
GTL Power Solutions 已成功完成了拟在马扎布卡(Mazabuka)和西亚万加(Lusitu)地区建设的 250 兆瓦 GTL 太阳能光伏发电项目的可行性研究。该研究全面评估了在指定地区建立公用事业规模太阳能光伏 (PV) 发电站的太阳能发电潜力、技术可行性和经济可行性。
Key Findings
主要发现:
1. Solar Generation Potential
1.太阳能发电潜力:
- The regions of Mazabuka and Siavonga have been identified as possessing sufficient solar generation potential to support a large-scale solar PV power plant.
- 马扎布卡(Mazabuka)和西亚文加(Siavonga)地区已被确认拥有足够的太阳能发电潜力,可支持大型太阳能光伏发电厂。
- The availability of advanced solar technology ensures that the project can be effectively implemented to harness this potential.
- 先进的太阳能技术可确保有效实施该项目,以利用这一潜力。
2. Project Cost and Tariff
2.项目成本和关税:
- The estimated total cost for the project is approximately US$ 220 million.
- 项目总成本估计约为 2.2 亿美元。
- The project is financially attractive at a tariff exceeding 8.5 US¢/kWh, making it competitive in the energy market
- 该项目的电价超过 8.5 美分/千瓦时,具有很强的经济吸引力,使其在能源市场上具有竞争力.
3. Financial Metrics
3.财务指标:
- Levelised Cost of Electricity (LCOE): Estimated at 6.7 US¢/kWh, assuming a discount rate of 12%
- 平准化电力成本 (LCOE):假定贴现率为 12%,估计为 6.7 美分/千瓦时.
- Return on Investment (ROI): Though the specific ROI value was not stated, the project demonstrates strong financial viability.
- 投资回报率(ROI):虽然没有说明投资回报率的具体数值,但该项目显示出很强的财务可行性。
- Internal Rate of Return (IRR): Calculated at 21.38%, indicating a robust return potential for investors.
- 内部收益率 (IRR):计算结果为 21.38%,表明投资者的回报潜力巨大。
- Net Present Value (NPV): Projected to be US$ 46.8 million, underscoring the project's value addition.
- 净现值 (NPV):净现值(NPV):预计为 4680 万美元,凸显了项目的增值效应。
- Payback Period: Estimated at 10.8 years, reflecting a reasonable timeline for recovering the initial investment.
- 投资回收期:投资回收期:估计为 10.8 年,反映了收回初始投资的合理期限。
The feasibility study concludes that the GTL Solar PV Power Project is both technically and economically viable. The combination of sufficient solar resources, competitive costs, and favorable financial returns supports the recommendation for further development and implementation of the project.
可行性研究的结论是,GTL 太阳能光伏发电项目在技术和经济上都是可行的。充足的太阳能资源、有竞争力的成本和有利的财务回报,这些因素都支持进一步开发和实施该项目的建议。
GTL Power Solutions recommends advancing to the next stages of project development, including securing necessary permits, finalizing financing arrangements, and initiating detailed design and construction planning. The successful execution of this project will contribute significantly to the region's renewable energy capacity and economic growth.
GTL电力解决方案公司建议推进项目开发的下一阶段,包括获得必要的许可、敲定融资安排以及启动详细设计和施工规划。该项目的成功实施将极大地促进该地区的可再生能源能力和经济增长。
Introduction
导言
GTL Power Solutions Limited is spearheading the development of a Solar PV Power Project in Mazabuka and Siavonga (Lusitu) Districts. This initiative is part of their commitment to addressing the energy deficit in Zambia and the broader region through renewable and environmentally friendly solutions. The project also aligns with the goals of Sustainable Development Goal No. 7, which focuses on ensuring access to affordable, reliable, sustainable, and modern energy for all.
GTL Power Solutions Limited 正带头在 Mazabuka 和 Siavonga(Lusitu)地区开发太阳能光伏发电项目。这一举措是他们致力于通过可再生和环保解决方案解决赞比亚和更广泛地区能源短缺问题的一部分。该项目也符合可持续发展目标 7 的目标,即确保人人都能获得负担得起、可靠、可持续的现代能源。
The Government of Zambia, through the Ministry of Energy, has granted GTL the authorization to conduct a feasibility study for the development of this solar PV power project in the Wells Spring and Siavonga (Lusitu) areas. The feasibility study will assess the proposed technical solutions and evaluate the project's viability, including financial, economic, and environmental factors, to ensure its successful implementation.
赞比亚政府已通过能源部授权 GTL 在 Wells Spring 和 Siavonga(Lusitu)地区开展太阳能光伏发电项目的可行性研究。可行性研究将评估所提出的技术解决方案,并评估项目的可行性,包括财务、经济和环境因素,以确保项目的成功实施。
Project Location
项目地点
Location
地点
The proposed Solar PV Power Project will be situated approximately 20 km east of both Mazabuka and Siavonga (Lusitu) towns. The site is about 10 km off the Lusaka-Mazabuka (T1) and Lusaka-Siavonga (Lusitu) (M15 off T2) Highways, specifically in the Wells Spring and Siavonga (Lusitu) Farm areas. The exact location of the project is depicted in Ex Fig 1 below.
拟议的太阳能光伏发电项目将位于马扎布卡镇和西亚文加(卢西图)镇以东约 20 公里处。项目地点距离卢萨卡-马扎布卡(T1)和卢萨卡-西亚文加(Lusitu)(M15 off T2)高速公路约 10 公里,特别是在 Wells Spring 和西亚文加(Lusitu)农场地区。项目的具体位置如下图 1 所示。
Ex Fig 1: Project Location
图 1:项目地点
Access to the Site
访问网站
Access to the project site is provided via the Lusaka-Mazabuka (T1) and Lusaka-Siavonga (Lusitu) (M15 off T2) Highways. From these highways, a 10 km dust road leads directly to the project location.
卢萨卡-马扎布卡(T1)高速公路和卢萨卡-西亚文加(Lusitu)(M15 off T2)高速公路是通往项目地点的必经之路。从这两条高速公路上有一条 10 公里长的尘土路可直接通往项目地点。
Scope of Study
研究范围
The Feasibility Study Report is designed to serve as a foundation for the further development of a Solar PV power plant in Mazabuka and Siavonga (Lusitu) Districts. The study evaluates the suitability of the selected project site, focusing on factors such as solar energy yield, the grid's capacity to evacuate the power generated by the plant, and an overview of potential environmental and social concerns that may arise during the project's execution. The components of this feasibility study are categorized into three key areas: technical, economic and financial, and environmental and social parameters.
该可行性研究报告旨在为进一步开发马扎布卡和西亚文加(卢西图)地区的太阳能光伏电站奠定基础。该研究评估了所选项目地点的适宜性,重点关注太阳能产量、电网疏散电站所发电量的能力等因素,以及项目实施过程中可能出现的潜在环境和社会问题。本可行性研究的内容分为三个关键领域:技术、经济和财务以及环境和社会参数。
Meteorological Data
气象数据
The meteorological information used in the assessment for the project was obtained from Meteonorm 8.1 and was based on a Typical Meteorological Year (TMY) as presented in Ex Table 1 below:
项目评估中使用的气象信息来自 Meteonorm 8.1,以典型气象年(TMY)为基础,如下表 1 所示:
Ex Table 1: Meteonorm 8.1 Site Meteorological Data
表 1:Meteonorm 8.1 场地气象数据
Latitude | -12.9859°, | |||
Longitude | 28.3037° | |||
Altitude | 1214 m | |||
Variability | 5.7% | |||
Month | GlobH | DiffH | Temp | Wind Vel |
kWh.m-² | kWh.m-² | °C | m.s-1 | |
January | 198.7 | 79.61 | 21.37 | 2.01 |
February | 178 | 70.55 | 21.23 | 2.09 |
March | 193.4 | 69.75 | 21.31 | 2.31 |
April | 187.7 | 51.37 | 20.14 | 3 |
May | 184 | 41.83 | 19.01 | 3 |
June | 169.8 | 31.34 | 16.8 | 3.1 |
July | 176.7 | 35.66 | 16.87 | 3.3 |
August | 194.1 | 40.07 | 19.6 | 3.4 |
September | 203.7 | 49.24 | 22.83 | 3.5 |
October | 221.1 | 58.25 | 25.15 | 3.41 |
November | 204.4 | 71.21 | 23.45 | 2.6 |
December | 200.1 | 74.48 | 21.85 | 2.1 |
Year | 2311.8 | 673.35 | 20.8 | 2.82 |
Preliminary Design
初步设计
General Description
一般说明
The proposed Solar PV Power Plant is planned to have a peak capacity of approximately 250 MW, consisting of 602,420 Solar PV modules, 1,200 solar inverter units, 40 smart transformer stations, and a 220/33 kV Substation. The substation at the solar PV power plant will connect to the national grid through a 12 km, 220 kV single-circuit transmission line that links to the 220/66 kV Zesco Substation.
拟建的太阳能光伏电站计划峰值发电能力约为 250 兆瓦,由 602 420 个太阳能光伏组件、1 200 个太阳能逆变器单元、40 个智能变电站和一个 220/33 千伏变电站组成。太阳能光伏发电厂的变电站将通过一条 12 千米长的 220 千伏单回路输电线路与国家电网相连,该线路与 220/66 千伏 Zesco 变电站相连。
The transmission line will utilize a double 225 mm² ACSR (2xLion) conductor set, which will be strung on standard CEC 220 kV structures.
输电线路将采用双 225 mm² ACSR(2xLion)导线组,并将在标准的 CEC 220 千伏结构上串联。
Preferred Equipment
首选设备
The preferred equipment and the respective manufacturers are shown in Ex Table 2 below:
首选设备及相关制造商见下表 2:
Ex Table 2: Preferred Equipment and Equipment Manufacturers
前表 2:首选设备和设备制造商
No. | Item | Model | Nominal Rating/Type | Manufacturer |
1. | Solar PV Module | CS3W-415P 1500V HE | 415 W, 39.3 V Polycrystalline | Canadian Solar |
2. | Solar Inverter | SUN2000-185KTL-H1 | 185 kWac/String Inverter | Huawei Technologies |
3. | Smart Transformer | STS-6000K | 6,300 kVA, 33/0.8 kV | Huawei Technologies |
Plant Layout
工厂布局
The proposed power plant will feature approximately 602,420 polycrystalline Solar PV modules, covering an area of about 250 hectares. Each module is expected to have a nominal output capacity of 415 W at 39.3V. In the setup, 28 of these Solar PV modules will be connected in a string, and 18 strings will be connected in parallel to a single inverter. The modules will be mounted on a fixed ground mounting system with two vertical module rows in a portrait configuration on each structure.
拟建电站将采用约 602,420 块多晶硅太阳能光伏组件,占地约 250 公顷。每个模块在 39.3V 电压下的额定输出功率预计为 415 W。在安装过程中,28 个太阳能光伏组件将连接成一个组串,18 个组串将并联到一个逆变器上。模块将安装在一个固定的地面安装系统上,每个结构上有两个纵向模块行。
The preferred inverter for this project is the decentralized SUN2000-185KTL-H1 Smart String Inverter by Huawei Technologies, with approximately 1,200 inverters required. The output from these inverters will be connected to a 0.8 kV busbar in a containerized Smart MV transformer. The generated power at 0.8 kV will be stepped up to 33 kV via a 6.3 MVA transformer, connected to a 33 kV bus at the project site. The Huawei STS-6000K Smart Transformer Station is recommended for this purpose.
该项目的首选逆变器是华为技术公司的分散式 SUN2000-185KTL-H1 智能组串逆变器,大约需要 1,200 台逆变器。这些逆变器的输出将连接到集装箱式智能中压变压器中的 0.8 千伏母线上。0.8 千伏的发电功率将通过一台 6.3 MVA 变压器升压至 33 千伏,并连接至项目现场的 33 千伏母线。为此,推荐使用华为 STS-6000K 智能变电站。
The 33 kV bus will then be connected to a 220 kV busbar at the project site through four 60 MVA power transformers. This 220 kV busbar will subsequently connect to the 220 kV busbar at the Zesco Substations via a 12 km single-circuit 220 kV transmission line.
然后,33 千伏母线将通过四台 60 兆伏安电力变压器连接到项目现场的 220 千伏母线。这条 220 千伏母线随后将通过一条 12 千米长的 220 千伏单回路输电线路与 Zesco 变电站的 220 千伏母线相连。
Power and Energy Generation
电力和能源生产
The hourly energy generation for a typical year ae shown in Ex Fig 2 while the annual energy generation for the life of the project are outlined in Ex Table 3 below:
典型年份的每小时发电量如图 2 所示,而项目寿命期内的年发电量如表 3 所示:e
GALABA TRADING LIMITED
250 MWp GTL Solar PV Power Project – Feasibility Study Report
250 MWp GTL 太阳能光伏发电项目 - 可行性研究报告
Ex Fig 2: Annual Hourly Generation v
Ex 图 2:年小时发电量v
GALABA TRADING LIMITED
250 MWp GTL Solar PV Power Project – Feasibility Study Reports
250 MWp GTL 太阳能光伏发电项目 - 可行性研究报告
Ex Table 3: 25-Year Annual Energy Yield for the Power Plant
前表 3:发电厂 25 年的年发电量
Year | GWh | PR (%) | PR Loss (%) |
1 | 441.1 | 73.8 | -0.19 |
2 | 439.5 | 73.53 | -0.56 |
3 | 437.6 | 73.21 | -0.99 |
4 | 435.5 | 72.86 | -1.46 |
5 | 433.2 | 72.48 | -1.98 |
6 | 430.6 | 72.04 | -2.57 |
7 | 427.7 | 71.56 | -3.22 |
8 | 424.7 | 71.05 | -3.9 |
9 | 421.6 | 70.54 | -4.6 |
10 | 418.5 | 70.02 | -5.3 |
11 | 415.6 | 69.53 | -5.97 |
12 | 412.7 | 69.06 | -6.61 |
13 | 410 | 68.6 | -7.22 |
14 | 407.4 | 68.16 | -7.82 |
15 | 404.9 | 67.74 | -8.39 |
16 | 402.7 | 67.38 | -8.88 |
17 | 400.8 | 67.06 | -9.31 |
18 | 398.9 | 66.74 | -9.74 |
19 | 396.9 | 66.41 | -10.19 |
20 | 394.7 | 66.04 | -10.69 |
21 | 391.9 | 65.57 | -11.32 |
22 | 388.6 | 65.01 | -12.07 |
23 | 385 | 64.41 | -12.89 |
24 | 381.2 | 63.77 | -13.75 |
25 | 377.2 | 63.11 | -14.64 |
Total | 10278.5 | - | - |
Average | 411.14 | 68.7872 | -7.0 |
Summary System Performance
系统性能汇总
A summary of the overall performance of the project is shown in Ex Table 4 below:
项目的总体绩效概要见下表 4:
Ex Table 4: Summary System Performance
表 4:系统性能总表
Average Electricity Exported to Grid | 411 GWh |
Specific Yield | 1,764 kWh/kWp |
Normalised Production | 1,764 kWh/kWp/yr |
Array Losses | 555 kWh/kWp/yr |
System Losses | 69.4 kWh/kWp/yr |
Performance Ratio | 73.8 % |
Capacity Factor | 18.8 % |
Power Evacuation
电力疏散
The energy generated by the plant will be fed into the national grid through the existing 220 kV Zesco Substations. A 220/33 kV substation located at the project site will connect the power plant to the Wells Spring and Siavonga (Lusitu) Substations via a 12 km, 220 kV transmission line. This transmission line will utilize double 225 mm² ACSR (2xLion) conductors, which will be strung on standard CEC 220 kV structures. The geographic representation of this setup is shown in Ex Fig 3 below.
发电厂产生的电能将通过现有的 220 千伏 Zesco 变电站输入国家电网。位于项目所在地的 220/33 千伏变电站将通过一条 12 千米长的 220 千伏输电线路将发电厂与 Wells Spring 和 Siavonga(Lusitu)变电站连接起来。该输电线路将使用双 225 mm² ACSR(2xLion)导线,并将在标准的 CEC 220 千伏结构上进行串联。该设置的地理示意图如下图 3 所示。
Ex Fig 3: Proposed Power Evacuation Option – Geographic
前图 3:拟议的电力疏散方案 - 地理位置
The single line diagram for the above works is shown in Ex Fig 4 below:
上述工程的单线图如下图 4 所示:
Ex Fig 4: Proposed Power Evacuation Option - SLD
图 4:拟议的电力疏散方案--SLD
The scope of works for evacuating power through the 220 kV network includes:
通过 220 千伏电网疏散电力的工程范围包括
i. Construction of a 220/33 kV substation at the GTL Solar PV Power Project site.
i.在 GTL 太阳能光伏发电项目现场建造一座 220/33 千伏变电站。
ii. Installation of transformers and associated infrastructure at the GTL Project site.
ii.在 GTL 项目现场安装变压器和相关基础设施。
iii. Construction of a 12 km, 220 kV transmission line from the GTL Project site to the Zesco Substations.
iii.建设一条从 GTL 项目现场到 Zesco 变电站的 12 公里 220 千伏输电线路。
iv. Extension of the 220 kV busbar at the Zesco Substations.
iv.延长 Zesco 变电站的 220 千伏母线。
v. Installation of associated infrastructure at the Zesco Substations.
v. 在 Zesco 变电站安装相关基础设施。
Project Cost and Economic Analysis
项目成本和经济分析
Project Cost
项目成本
The implementation of the 250 MWp GTL Solar PV Power Plant is projected to cost USD 220 million, which translates to a unit cost of USD 0.88 million per MWp. The project is deemed economically viable if the tariffs exceed 8.5 US¢/kWh, as the Net Present Value (NPV), Benefit-Cost (B/C) ratio, and Economic Internal Rate of Return (EIRR) are positive within the considered range of discount rates. The cost estimate is detailed in Ex Table 5 below.
GTL 250 MWp 太阳能光伏电站的实施预计耗资 2.2 亿美元,单位成本为每 MWp 0.88 万美元。如果电价超过 8.5 美分/千瓦时, 在考虑的贴现率范围内,净现值 (NPV)、效益成本 (B/C) 比率和经济内部收益率 (EIRR) 均为正值,则该项目被视为经济上可行。成本估算详见下表 5。
Ex Table 5: Project Cost Estimate
表 5:项目成本估算
No. | Cost Item | UoM | Quantity | Unit Price (US$) | Total (US$) |
A. | PV Modules |
|
|
|
|
1. | CS3W-415P 1500V HE | Ea | 602420 | 180 | 108,435,600 |
2. | Supports for Modules | Ea | 602420 | 50 | 30,121,000 |
B. | Inverters |
|
|
|
|
3. | SUN2000-185KTL-H1 | Ea | 1099 | 12,000 | 13,188,000 |
C. | Power Evacuation |
|
|
|
|
4. | 33 kV Smart Transformer | Ea | 45 | 45,000 | 2,025,000 |
5. | 33 kV Substation | Sum | 1 | 4,000,000 | 4,000,000 |
6. | 60 MVA 220/33 kV Power Transformers | Ea | 4 | 800,000 | 3,200,000 |
7. | 220 kV Substation | Sum | 1 | 10,000,000 | 10,000,000 |
8. | 220 kV Transmission Line | km | 12 | 400,000 | 4,800,000 |
9. | 220 kV Substations Works at Wells Spring & Siavonga (Lusitu) | Sum | 1 | 4,000,000 | 4,000,000 |
D. | Other Components |
|
|
|
|
10. | Accessories, Fasteners | Lot | 1 | 2,000,000 | 2,000,000 |
11. | Wiring and Cabling | Lot | 1 | 10,000,000 | 10,000,000 |
12. | Monitoring system, Display Screen | Sum | 1 | 1,500,000 | 1,500,000 |
13. | Measurement System, Pyranometer | Sum | 2 | 100,000 | 200,000 |
14. | Water Supply and Treatment | Sum | 1 | 1,200,000 | 1,200,000 |
15. | Staff Housing | Ea | 5 | 30,000 | 150,000 |
E. | Studies and Analysis |
|
|
|
|
16. | Engineering | Sum | 1 | 1,000,000 | 1,000,000 |
17. | Permitting and other admin. Fees | Sum | 1 | 1,500,000 | 1,500,000 |
18. | Environmental Studies & Other Permitting | Sum | 1 | 1,200,000 | 1,200,000 |
19. | Economic & Financial Analysis | Sum | 1 | 100,000 | 100,000 |
F. | Installation |
|
|
|
|
20. | EPC Contract | Sum | 1 | 10,000,000 | 10,000,000 |
21. | Transport | Sum | 1 | 5,000,000 | 5,000,000 |
22. | Commissioning | Sum | 1 | 1,000,000 | 1,000,000 |
G. | Land costs |
|
|
|
|
23. | Land Purchase | Sum | 1 | 2,500,000 | 2,500,000 |
24. | Land Preparation | Sum | 1 | 300,000 | 300,000 |
H. | Contingency | Sum | 1 | 2,000,000 | 2,000,000 |
| Total |
|
|
| 219,419,600 |
Economic and Financial Assumptions
经济和财务假设
The economic and financial assumption made in the study are given in Ex Table 6 below:
研究中所做的经济和财务假设如下表 6 所示:
Ex Table 6: Economic and Financial Assumptions
表 6:经济和财务假设
No. | Parameter | Assumption |
1. | Project Cost | US$ 220 million |
2. | Project Life | 25 years |
3. | PPA Duration | 25 years |
4. | Average Energy Sold to the Grid | 411 GWh pa |
5. | Commissioning Year | 2025 |
6. | Equity/Debt | 20/80 |
7. | Loan Interest Rate | 8 % |
Redeemable with Fixed Annuity | ||
10 Year Loan Tenure | ||
8. | Annual Corporate Income Tax | 10% |
9. | Annual O&M Cost | US$ 1.5 million |
10. | Annual Inflation Rate | 11 % |
12. | Discount Rate | 12 % |
Economic and Financial Outputs
经济和财政产出
Key Outputs
主要产出
Key economic and financial outputs are given in Ex Table 7 below:
主要经济和财务产出见下表 7:
Ex Table 7: Economic and Financial Outputs
前表 7:经济和财政产出
No. | Parameter | Assumption |
1. | Levelised Cost of Energy (LCOE) | US¢ 6.7/kWh |
3. | Feed in Tariff | US¢ 8.5/kWh |
4. | Payback Period | 10.8 Years |
5. | Net Present Value (NPV) | US$ 46.8 million |
6. | Return on Investment (ROI) | 21.3 % |
7. | Internal Rate of Return (IRR) | 21.38 % |
Other Outputs
其他产出
Yearly Net Profit
年度净利润
The yearly net profit for the 25 years of operating the Project is given in Ex Fig 5 below:
项目运营 25 年的年净利润见下图 5:
Ex Fig 5: Yearly Cash Flow (kUS$)
图 5:年度现金流量(千美元)
Year cashflows are expected to dimmish towards the end of the loan tenure. The flows will increase thereafter and dimmish towards the end of the project life mainly due to increased maintenance costs and replacement of power plant components.
预计在贷款期结束时,年度现金流将减少。此后,现金流将增加,并在项目期限结束时减少,这主要是由于维护成本增加和电厂部件的更换。
Cumulative Cash Flow
累计现金流
The cumulative cash flow over the life of the project is shown in Ex Fig 6 below:
项目周期内的累计现金流如下图 6 所示:
Ex Fig 6: Cumulative Cash Flow (kUS$)
图 6:累计现金流(千美元)
Cash Allocation
现金分配
The percentage cash allocation for the Year 1, Year 25 and average over project life is depicted in Ex Fig 7 below:
第 1 年、第 25 年和整个项目周期的平均现金分配比例如下图 7 所示:
Ex Fig 7: Cash Allocation
前图 7:现金分配
7.3.3. Project Benefits
7.3.3.项目效益
The benefits of the project include:
该项目的益处包括
i. Mitigation of power deficits.
i.缓解电力不足。
ii. Contribution of 411 GWh to the national grid annually.
ii.每年向国家电网供电 411 千兆瓦时。
iii. Promotion of socioeconomic development in the surrounding areas.
iii.促进周边地区的社会经济发展。
iv. Creation of both direct and indirect job opportunities.
iv.创造直接和间接就业机会。
v. Contribution to carbon emission reductions (CERs).
v.对碳减排量(CER)的贡献。
8. Conclusion and Recommendation
8.结论和建议
The feasibility study for the proposed 250 MWp GTL Solar PV Power Project in Mazabuka and Siavonga (Lusitu) Districts, conducted by GTL Power Solutions, has been successfully completed. The study confirms that the solar generation potential in these areas is adequate to support a utility-scale solar PV power plant, and the necessary technology for implementation is available.
GTL Power Solutions 在马扎布卡(Mazabuka)和西亚万加(Lusitu)地区开展的拟议 250 兆瓦 GTL 太阳能光伏发电项目的可行性研究已顺利完成。该研究证实,这些地区的太阳能发电潜力足以支持公用事业规模的太阳能光伏发电厂,并且具备必要的实施技术。
With a project cost of USD 220 million, the project is considered attractive with a tariff greater than 8.5 US¢/kWh. The Levelized Cost of Electricity (LCOE) is approximately 6.7 US¢/kWh at a 12% discount rate. The Return on Investment (ROI) is positive, the Internal Rate of Return (IRR) is 21.38%, and the Net Present Value (NPV) is USD 46.8 million. The payback period for the project is estimated at 10.8 years.
项目成本为 2.2 亿美元,电价高于 8.5 美分/千瓦时,被认为具有吸引力。按 12% 的贴现率计算,平准化电力成本 (LCOE) 约为 6.7 美分/千瓦时 。投资回报率 (ROI) 为正值,内部收益率 (IRR) 为 21.38%,净现值 (NPV) 为 4,680 万美元。该项目的投资回收期估计为 10.8 年。
Based on these findings, the project is recommended for further development and implementation.
根据这些结论,建议进一步开发和实施该项目。
GALABA TRADING LIMITED
250 MWp GTL Solar PV Power Project – Feasibility Study Report
250 MWp GTL 太阳能光伏发电项目 - 可行性研究报告
Ex Table 8: Detailed Economic Results (US$ ‘000)
表 8:详细经济成果(千美元)
Year | Electricity Sale | Own Funds | Loan Principal | Loan Interest | Run. Costs | Deprec. Allow | Taxable Income | Taxes | After Tax Profit | Self-Cons. Savings | Cumul. Profit | % Armorti. |
| - | 43,880 | - | - | - | - | - | - | - | - | -43,880 | 0% |
| 37,430 | - | 12,117 | 14,043 | 1,499 | 7,164 | 14,724 | 1,472 | 8,299 | 0 | -36,470 | 9% |
| 37,293 | - | 13,087 | 13,074 | 1,664 | 7,164 | 15,392 | 1,539 | 7,930 | 0 | -30,148 | 18% |
| 37,131 | - | 14,134 | 12,027 | 1,847 | 7,164 | 16,094 | 1,609 | 7,515 | 0 | -24,800 | 27% |
| 36,954 | - | 15,264 | 10,896 | 2,050 | 7,164 | 16,844 | 1,684 | 7,059 | 0 | -20,314 | 36% |
| 36,761 | - | 16,486 | 9,675 | 2,275 | 7,164 | 17,647 | 1,765 | 6,560 | 0 | -16,591 | 45% |
| 36,538 | - | 17,804 | 8,356 | 2,526 | 7,164 | 18,492 | 1,849 | 6,002 | 0 | -13,550 | 54% |
| 36,294 | - | 19,229 | 6,932 | 2,803 | 7,164 | 19,395 | 1,940 | 5,391 | 0 | -11,112 | 64% |
| 36,036 | - | 20,767 | 5,393 | 3,112 | 7,164 | 20,366 | 2,037 | 4,727 | 0 | -9,203 | 75% |
| 35,777 | - | 22,429 | 3,732 | 3,454 | 7,164 | 21,427 | 2,143 | 4,020 | 0 | -7,753 | 85% |
| 35,513 | - | 24,223 | 1,938 | 3,834 | 7,164 | 22,577 | 2,258 | 3,261 | 0 | -6,703 | 97% |
| 35,265 | - | - | - | 4,256 | 7,164 | 23,845 | 2,384 | 28,625 | 0 | 1,526 | 101% |
| 35,026 | - | - | - | 4,724 | 7,164 | 23,138 | 2,314 | 27,989 | 0 | 8,710 | 104% |
| 34,793 | - | - | - | 5,243 | 7,164 | 22,385 | 2,239 | 27,311 | 0 | 14,969 | 107% |
| 34,570 | - | - | - | 5,820 | 7,164 | 21,585 | 2,159 | 26,591 | 0 | 20,410 | 109% |
| 34,357 | - | - | - | 6,460 | 7,164 | 20,732 | 2,073 | 25,823 | 0 | 25,128 | 112% |
| 34,174 | - | - | - | 7,171 | 7,031 | 19,972 | 1,997 | 25,006 | 0 | 29,207 | 113% |
| 34,012 | - | - | - | 7,960 | 7,031 | 19,021 | 1,902 | 24,150 | 0 | 32,724 | 115% |
| 33,850 | - | - | - | 8,836 | 7,031 | 17,983 | 1,798 | 23,216 | 0 | 35,743 | 116% |
| 33,682 | - | - | - | 9,807 | 7,031 | 16,844 | 1,684 | 22,190 | 0 | 38,319 | 118% |
| 33,495 | - | - | - | 10,886 | 7,031 | 15,578 | 1,558 | 21,051 | 0 | 40,502 | 119% |
| 33,256 | - | - | - | 12,084 | 7,031 | 14,142 | 1,414 | 19,758 | 0 | 42,331 | 119% |
| 32,972 | - | - | - | 13,413 | 7,031 | 12,528 | 1,253 | 18,306 | 0 | 43,843 | 120% |
| 32,668 | - | - | - | 14,888 | 7,031 | 10,749 | 1,075 | 16,705 | 0 | 45,076 | 121% |
| 32,343 | - | - | - | 16,526 | 7,031 | 8,786 | 879 | 14,939 | 0 | 46,060 | 121% |
| 32,009 | - | - | - | 18,344 | 7,031 | 6,634 | 663 | 13,001 | 0 | 46,825 | 121% |
| 872,200 | 43,880 | 175,540 | 86,066 | 171,483 | 177,770 | 436,881 | 43,688 | 395,422 | 1 | 46,825 | 121% |
xii
GALABA TRADING LIMITED
250 MWp GTL Solar PV Power Project – Feasibility Study Report
250 MWp GTL 太阳能光伏发电项目 - 可行性研究报告
TABLE OF CONTENTS
目录
INTRODUCTION .................................................................................................................................................... 1
简介 ....................................................................................................................................................1
Country Perspective................................................................................................................................................... 1
国家视角...................................................................................................................................................1
Project Promoter ....................................................................................................................................................... 1
项目促进者 .......................................................................................................................................................1
Project Description ................................................................................................................................................... 2
项目说明 ................................................................................................................................................... 2
Location ...................................................................................................................................................................... 2
...................................................................................................................................................................... 2
Access to the Site ....................................................................................................................................................... 2
进入网站 ....................................................................................................................................................... 2
Objective of the Reports........................................................................................................................................... 2
报告的目标........................................................................................................................................... 2
Objectives of the Project .......................................................................................................................................... 2
项目目标 .......................................................................................................................................... 2
Scope of Study ........................................................................................................................................................... 3
研究范围 ...........................................................................................................................................................3
POWER SECTOR IN ZAMBIA ............................................................................................................................ 4
赞比亚电力部门 ............................................................................................................................4
Overview of the Energy Sector in Zambia ........................................................................................................... 4
赞比亚能源行业概览 ...........................................................................................................4
Installed Generation Capacity ................................................................................................................................. 4
发电装机容量 .................................................................................................................................4
Transmission Network ............................................................................................................................................ 4
传输网络 ............................................................................................................................................4
Power Demand .......................................................................................................................................................... 5
电力需求 ..........................................................................................................................................................5
Regional Scenario ...................................................................................................................................................... 5
Regional Scenario ......................................................................................................................................................5
National Scenario ...................................................................................................................................................... 5
国家情景 ......................................................................................................................................................5
Economic Activities in the Project Areas ............................................................................................................. 8
项目区的经济活动 .............................................................................................................8
Power Supply in the Project Areas ........................................................................................................................ 9
项目区的电力供应 ........................................................................................................................9
DEVELOPMENT OF SOLAR POWER PROJECT IN ZAMBIA ........................................................... 10
在赞比亚开发太阳能项目 ...........................................................10
Solar Energy Resource ........................................................................................................................................... 10
太阳能资源 ...........................................................................................................................................10
Policy, Legal and Regulatory Frameworks......................................................................................................... 11
政策、法律和监管框架.........................................................................................................11
Policy Direction ...................................................................................................................................................... 11
政策方向 ......................................................................................................................................................11
Vision 2030 ............................................................................................................................................................. 11
2030 愿景 .............................................................................................................................................................11
National Development Plan ................................................................................................................................. 11
国家发展计划 .................................................................................................................................11
National Energy Policy 2019 ............................................................................................................................... 12
2019 年国家能源政策 ...............................................................................................................................12
Private Sector Promotion ...................................................................................................................................... 12
私营部门促进 ......................................................................................................................................12
RE-FiT Strategy ..................................................................................................................................................... 12
RE-FiT 战略 .....................................................................................................................................................12
Legal Frameworks ................................................................................................................................................... 12
法律框架 ...................................................................................................................................................12
Electricity Act 2019 ................................................................................................................................. 12
2019 年电力法 .................................................................................................................................12
Energy Regulation Act 2019 .................................................................................................................. 13 3.2.2.3 Zambia Grid Code (ZAGC) ................................................................................................................... 13 3.2.2.4 Other Applicable Codes, Regulations and Standards ........................................................................ 13 3.2.3 Regulatory Framework ................................................................................................................................ 13 3.2.3.1 Institutional Arrangement ...................................................................................................................... 13 3.2.3.2 Permitting Process .................................................................................................................................... 14 3.3 Utility Scale Renewable Energy Initiatives in Zambia ............................................................................. 16 3.3.1 Scaling Solar Zambia (IDC) ....................................................................................................................... 16
2019 年能源管理法案》 ..................................................................................................................13 3.2.2.3 赞比亚电网规范 (ZAGC) ...................................................................................................................13 3.2.2.4 其他适用规范、法规和标准 ........................................................................13 3.2.3 监管框架 ................................................................................................................................13 3.2.3.1 体制安排 ......................................................................................................................13 3.2.3.2 许可程序 ....................................................................................................................................14 3.3 赞比亚公用事业规模可再生能源倡议 .............................................................................16 3.3.1 扩大赞比亚太阳能规模 (IDC) .......................................................................................................................16
GET FiT Zambia ................................................................................................................................................... 16
GET FiT 赞比亚 ...................................................................................................................................................16
Alternative Renewable Energy Investment Program (ARIEP) (IDC) ......................................................... 16
替代性可再生能源投资计划 (ARIEP) (IDC) .........................................................16
Private Sector Initiated Projects ........................................................................................................................... 16
Private Sector Initiated Projects ...........................................................................................................................16
PROJECT AREAS .................................................................................................................................................... 17
PROJECT AREAS ....................................................................................................................................................17
Overview ................................................................................................................................................................... 17 4.2 Physical Characteristics................................................................................................................................... 17
Overview ...................................................................................................................................................................17 4.2 物理特性...................................................................................................................................17
Relief ......................................................................................................................................................................... 17
Relief .........................................................................................................................................................................17
Drainage ....................................................................................................................................................................17
Soils ........................................................................................................................................................................... 18
Soils ...........................................................................................................................................................................18
Climate ...................................................................................................................................................................... 19
Climate ......................................................................................................................................................................19
Seasonal Variations ................................................................................................................................................ 19
Seasonal Variations ................................................................................................................................................19
Average Temperature ............................................................................................................................................. 20
平均气温 ............................................................................................................................................. 20
Sunshine ................................................................................................................................................................... 20
Cloud Cover ............................................................................................................................................................. 21
云层覆盖 ............................................................................................................................................................. 21
Humidity................................................................................................................................................................... 22
湿度................................................................................................................................................................... 22
Wind ......................................................................................................................................................................... 22
风 ......................................................................................................................................................................... 22
Rainfall in Mazabuka & Siavonga (Lusitu) ....................................................................................................... 23
Mazabuka 和 Siavonga(Lusitu)的降雨量 ....................................................................................................... 23
4.2.5 Geology ....................................................................................................................................................................... 23 4.2.6 Seismicity ...................................................................................................................................................................... 25
4.2.5 地质 ....................................................................................................................................................................... 23 4.2.6 地震 ...................................................................................................................................................................... 25
4.3 Social Economic Environment .............................................................................................................................. 26
4.3 社会经济环境 .............................................................................................................................. 26
Local Administration ............................................................................................................................................. 26
地方行政 ............................................................................................................................................. 26
SOLAR PV YIELD ASSESSMENT..................................................................................................................... 28
太阳能光伏产量评估..................................................................................................................... 28
Overview ................................................................................................................................................................... 28
概述 ................................................................................................................................................................... 28
Solar PV Technology Analysis ............................................................................................................................ 28
太阳能光伏技术分析 ............................................................................................................................ 28
PV Module Technology ....................................................................................................................................... 28
光伏组件技术 ....................................................................................................................................... 28
Inverter Technology ............................................................................................................................................... 35
变频技术 ...............................................................................................................................................35
DC and AC Cables ................................................................................................................................................. 37
直流和交流电缆 .................................................................................................................................................37
Performance of Solar PV Power Plants .............................................................................................................. 38
太阳能光伏发电站的性能 ..............................................................................................................38
Performance Ratio .................................................................................................................................................. 38
性能比 ..................................................................................................................................................38
Specific Yield ........................................................................................................................................................... 38
比产量 ...........................................................................................................................................................38
Capacity Factor........................................................................................................................................................ 38
容量系数........................................................................................................................................................38
Considerations for Solar Resource Assessment ................................................................................................ 39
太阳能资源评估考虑因素 ................................................................................................39
Variability in Solar Irradiation ............................................................................................................................. 39
太阳辐照变化 .............................................................................................................................39
Data Sources ............................................................................................................................................................ 39
数据来源 ............................................................................................................................................................39
Data Source Validation Procedures .................................................................................................................... 40
数据源验证程序 ....................................................................................................................40
Simulation ................................................................................................................................................................ 42
模拟 ................................................................................................................................................................42
PV Plant Losses ...................................................................................................................................................... 43
光伏电站损耗 ......................................................................................................................................................43
Uncertainty Estimation ......................................................................................................................................... 45 5.5 Yield Assessment for the GTL Solar PV Power Project.......................................................................... 46
不确定性估计 .........................................................................................................................................45 5.5 GTL 太阳能光伏发电项目产量评估..........................................................................46
5.5.1 Meteorological Data................................................................................................................................................. 46 5.5.2 Optimisation of Tilt and Azimuth ....................................................................................................................... 46 5.5.3 Simulation Model ....................................................................................................................................................... 47
5.5.1 气象数据.................................................................................................................................................46 5.5.2 倾角和方位角的优化 .......................................................................................................................46 5.5.3 仿真模型 .......................................................................................................................................................47
5.5.4 System Losses ............................................................................................................................................................ 47 5.5.5 Annual Performance Data ....................................................................................................................................... 48 5.5.6 Loss Diagram ............................................................................................................................................................... 49
5.5.4 系统损耗 ............................................................................................................................................................47 5.5.5 年度性能数据 .......................................................................................................................................48 5.5.6 损耗图 ...............................................................................................................................................................49
Hourly Generation Profile .................................................................................................................................... 49
每小时发电概况 ....................................................................................................................................49
Production Probability Forecast .......................................................................................................................... 51
生产概率预测 ..........................................................................................................................51
PRELIMINARY DESIGN AND PLANT LAYOUT.................................................................................... 53
初步设计和工厂布局....................................................................................53
Codes and Standards .............................................................................................................................................. 53 6.2 Technical Solution........................................................................................................................................... 53 6.2.1General............................................................................................................................................................. 53
法规和标准 ..............................................................................................................................................53 6.2 技术解决方案...........................................................................................................................................53 6.2.1 概述............................................................................................................................................................53
Solar PV Modules .................................................................................................................................................. 53
太阳能光伏组件 ..................................................................................................................................................53
Mounting Structure ................................................................................................................................................ 56 6.2.4 Areas Occupied by the Solar PV Modules .............................................................................................. 57 6.2.5 Power Inverter ............................................................................................................................................... 57
安装结构 ................................................................................................................................................56 6.2.4 太阳能光伏组件占用的区域 .............................................................................................57 6.2.5 电源 逆变器 ............................................................................................................................................... 57
6.2.6 Cable Requirements ................................................................................................................................................. 59 6.2.7 Transformer Stations ................................................................................................................................................. 59
6.2.6 电缆要求 .................................................................................................................................................59 6.2.7 变压器站 .................................................................................................................................................. 59
6.3 Output from the Plant ............................................................................................................................................. 62
6.3 工厂产出 .............................................................................................................................................62
Meteorological Data................................................................................................................................................62
气象数据................................................................................................................................................62
Energy Yield............................................................................................................................................................. 62
Energy Yield.............................................................................................................................................................62
6.4 Plant Layout ............................................................................................................................................................... 63
6.4厂房布局 ...............................................................................................................................................................63
6.4.1 Solar PV Modules .................................................................................................................................................... 63 6.4.2 Mounting Structure ................................................................................................................................................... 64
6.4.1 太阳能光伏组件 ....................................................................................................................................................63 6.4.2 安装结构 .................................................................................................................................................. 64
Power Inverters ....................................................................................................................................................... 64
电源转换器 .......................................................................................................................................................64
MV Transformers .................................................................................................................................................. 64
中压变压器 ..................................................................................................................................................64
33/0.8 kV Substations ......................................................................................................................................... 64
33/0.8 千伏变电站 .........................................................................................................................................64
220/33 kV Substations ........................................................................................................................................ 64
220/33 千伏变电站 ........................................................................................................................................64
6.5 Balance of Plant ......................................................................................................................................................... 64
6.5 设备余额 .........................................................................................................................................................64
Auxiliary Services .................................................................................................................................................... 64
辅助服务 ....................................................................................................................................................64
Communication ...................................................................................................................................................... 65
通信 ......................................................................................................................................................65
SCADA System ....................................................................................................................................................... 65
SCADA 系统 .......................................................................................................................................................65
Security System ....................................................................................................................................................... 65
安保系统 .......................................................................................................................................................65
Weather Monitoring .............................................................................................................................................. 65
天气监测 ..............................................................................................................................................65
Perimeter Fences...................................................................................................................................................... 66 6.5.7 Drainage System ........................................................................................................................................... 66
周边围栏......................................................................................................................................................66 6.5.7 排水系统 ...........................................................................................................................................66
6.6 Considerations for Construction Works ............................................................................................................ 66
6.6 建筑工程的注意事项 ............................................................................................................66
Access to Water ...................................................................................................................................................... 66
获取水 ......................................................................................................................................................66
Machinery and Labour Force ............................................................................................................................... 66
机械和劳动力 ...............................................................................................................................66
Construction Power ............................................................................................................................................... 66
建筑动力 ...............................................................................................................................................66
Transport and Logistics ........................................................................................................................................ 67
运输与物流 ........................................................................................................................................67
POWER EVACUATION....................................................................................................................................... 69
电源疏散.......................................................................................................................................69
Introduction ............................................................................................................................................................ 69
导言 ............................................................................................................................................................69
General....................................................................................................................................................................... 69
一般.......................................................................................................................................................................69
Power Generation by the Project ......................................................................................................................... 69
项目发电量 .........................................................................................................................69
Scope and Limitation of Study ............................................................................................................................ 69
研究范围和局限性 ............................................................................................................................69
Zambia National Grid ........................................................................................................................................... 70
赞比亚国家电网 ...........................................................................................................................................70
Electricity Generation in Zambia ........................................................................................................................ 70
赞比亚的发电量 ........................................................................................................................70
Transmission Network in Zambia....................................................................................................................... 70
赞比亚输电网络.......................................................................................................................70
Power Supply in the Project Areas ....................................................................................................................... 72 7.3 Power Evacuation Options ............................................................................................................................ 72
项目区的电力供应 .......................................................................................................................72 7.3 电力疏散方案 ............................................................................................................................72
7.3.1 Option 1: Single Line 220 kV Line into the 220/66 kV Zesco Substations ....................................... 73 7.3.2 Option 2: Three (03) 66 kV Lines to Wells Spring & Siavonga (Lusitu) Substations .............................. 74 7.3.3 Evaluation of the Power Evacuation Options ........................................................................................................ 75
7.3.1 方案 1:单线 220 千伏线路接入 220/66 千伏 Zesco 变电站 .......................................73 7.3.2 方案 2:三 (03) 条 66 千伏线路接入 Wells Spring 和 Siavonga (Lusitu) 变电站 ..............................74 7.3.3 电力疏散方案评估 .......................................................................................................75
7.3.4 Preferred Evacuation Option ................................................................................................................................. 75
7.3.4 首选疏散方案 .................................................................................................................................75
ENVIRONMENT ................................................................................................................................................... 76
环境 ...................................................................................................................................................76
Introduction ............................................................................................................................................................ 76
导言 ............................................................................................................................................................76
Project Description ................................................................................................................................................ 76
项目说明 ................................................................................................................................................76
Environmental Impact Assessment ..................................................................................................................... 76
环境影响评估 .....................................................................................................................76
Standards and Regulations for undertaking ESIA Studies ............................................................................. 77 8.2.1 Zambia Environmental Management Agency (ZEMA) ESIA Requirements.................................. 77 8.2.2 Equator Principles Financial Institutions (EPFIs) ESIA Requirements ........................................... 78 8.2.3 IFC Performance Standards on Social and Environmental Sustainability ........................................ 79
开展环境影响评估研究的标准和规定 .............................................................................77 8.2.1 赞比亚环境管理局(ZEMA)ESIA 要求..................................77 8.2.2 《赤道原则》金融机构 (EPFIs) 环境影响评估要求 ...........................................78 8.2.3 国际金融公司社会与环境可持续性绩效标准 ........................................79
Environmental Considerations for the Development of the Project ............................................................ 81
项目开发的环境考虑因素 ............................................................81
Scope of Works ...................................................................................................................................................... 81 8.3.2 Benefits of the Project .................................................................................................................................. 81 8.4 Anticipated Environmental and Socio Impacts of the Project ............................................................... 81
Scope of Works ......................................................................................................................................................81 8.3.2 项目的效益 ................................................................................................................................ 。81 8.4项目预期的环境和社会影响 ..............................................................81
8.4.1 Baseline Conditions .................................................................................................................................................. 82
8.4.1 基准线 条件 .................................................................................................................................................. 82
Physical Environment ............................................................................................................................................ 82
Ecological Resources ............................................................................................................................................. 83
Ecological Resources .............................................................................................................................................83
Socio-Economic and Cultural Issues .................................................................................................................. 85
Socio-Economic and Cultural Issues ..................................................................................................................85
8.4.2 Anticipated Negative Impacts ................................................................................................................................ 87
8.4.2 预期的负面 影响 ................................................................................................................................ 87
Physical Environment ............................................................................................................................................ 88
Biological Impact .................................................................................................................................................... 89
Biological Impact ....................................................................................................................................................89
Socio-Economic Impacts ...................................................................................................................................... 90
8.4.3 Proposed Mitigation Measures .............................................................................................................................. 90
8.4.3 建议的缓解措施 ..............................................................................................................................90
Physical Measures ................................................................................................................................................... 90
物理测量 ...................................................................................................................................................90
Biological Measures ................................................................................................................................................ 91
生物措施 ................................................................................................................................................91
Social Economic Measures ................................................................................................................................... 92
社会经济措施 ...................................................................................................................................92
Anticipated Positive Impacts ................................................................................................................................ 92
预期的积极影响 ................................................................................................................................92
Environmental Compliance and Permitting of the Project ............................................................................ 93
项目的环境合规和许可 ............................................................................93
Required Project compliance with IFC Performance Standards ................................................................... 93
要求项目符合国际金融中心绩效标准 ...................................................................93
Required Project compliance with ZEMA ........................................................................................................ 93
要求项目符合 ZEMA ........................................................................................................93
Other Environmental and Natural Resources Permits .................................................................................... 93
其他环境和自然资源许可证 ....................................................................................93
SCHEDULE ............................................................................................................................................................... 97
时间表 ...............................................................................................................................................................97
Schedule Assumptions ........................................................................................................................................... 97
附表假设 ...........................................................................................................................................97
Key Milestones ........................................................................................................................................................ 97
重要里程碑 ........................................................................................................................................................97
COST ESTIMATES ................................................................................................................................................. 98
费用估算 .................................................................................................................................................98
General....................................................................................................................................................................... 98
一般.......................................................................................................................................................................98
Solar PV Plant Capital Cost ................................................................................................................................. 98
太阳能光伏电站资本成本 .................................................................................................................................98
Cost of Solar PV Modules .................................................................................................................................... 98
太阳能光伏组件的成本 ....................................................................................................................................98
Balance of System Cost (BOS) ............................................................................................................................. 99
系统平衡成本 (BOS) .............................................................................................................................99
PV Installation Costs ............................................................................................................................................. 99
光伏安装成本 .............................................................................................................................................99
Estimation of Power Evacuation Costs .............................................................................................................. 99
电力疏散成本估算 ..............................................................................................................99
Estimating Costs for Transmission Line and Associated Grid reinforcements ......................................... 99
输电线路及相关电网加固工程成本估算 .........................................99
Substationss.............................................................................................................................................................. 99
变电站s..............................................................................................................................................................99
Key Cost Assumptions............................................................................................................................................ 99
主要成本假设............................................................................................................................................99
Estimated Project Capital Costs .......................................................................................................................... 99
项目资本成本估算 ..........................................................................................................................99
ECONOMIC ANALYSIS .................................................................................................................................... 101
经济分析 ....................................................................................................................................101
Introduction .......................................................................................................................................................... 101
简介 ..........................................................................................................................................................101
General.................................................................................................................................................................... 101 11.1.2 Assumptions ............................................................................................................................................. 102 11.1.3 Evaluation Criteria .................................................................................................................................. 102 11.1.4 Sensitivity Analysis .................................................................................................................................. 102 11.2 Project Cost (Capital Cost) ...................................................................................................................... 102
一般....................................................................................................................................................................101 11.1.2 假设 .............................................................................................................................................102 11.1.3 评估标准 ..................................................................................................................................102 11.1.4 敏感性分析 ..................................................................................................................................102 11.2 项目成本(资本成本)......................................................................................................................102
11.3 Energy Value and Tariff ...................................................................................................................................... 102 11.4 Key Economic and Financial Outputs .............................................................................................................. 102 11.4.1 Annual Operation and Maintenance Costs ..................................................................................................... 102
11.3 能源价值和关税 ......................................................................................................................................102 11.4 关键经济和财务产出 ..............................................................................................................102 11.4.1 年度运营和维护成本 .....................................................................................................102
Payback Period ..................................................................................................................................................... 103
投资回收期 .....................................................................................................................................................103
Levelised Cost of Electricity (LCOE) .............................................................................................................. 103
平准化电力成本(LCOE) ..............................................................................................................103
Return on Investment .......................................................................................................................................... 103 11.4.5 Internal Rate of Return .......................................................................................................................... 103 11.4.6 Net Present Value.................................................................................................................................... 104 11.4.7 Other Economic and Financial Outputs ............................................................................................. 104
投资回报率 ..........................................................................................................................................103 11.4.5 内部收益率..........................................................................................................................103 11.4.6 净现值....................................................................................................................................104 11.4.7 其他经济和财务产出 .............................................................................................104
Cash Flows .................................................................................................................................................. 104
现金流量 ..................................................................................................................................................104
Cumulative Cash Flow .............................................................................................................................. 104 11.4.7.3 Cash Allocation .......................................................................................................................... 105
Cumulative Cash Flow ..............................................................................................................................104 11.4.7.3Cash Allocation ........................................................................................................................... 105
11.5 Economic Analysis Summary .............................................................................................................................. 105
11.5 经济分析摘要 ..............................................................................................................................105
CONCLUSION AND RECOMMENDATIONS........................................................................................ 107
结论和建议........................................................................................107
Conclusion ............................................................................................................................................................. 107
Conclusion .............................................................................................................................................................107
Power and Energy Generation ........................................................................................................................... 107
电力和能源生产 ...........................................................................................................................107
Power Evacuation ................................................................................................................................................. 107
Power Evacuation .................................................................................................................................................107
Project Cost and Economic Analysis ................................................................................................................ 107
项目成本和经济分析 ................................................................................................................107
Project Benefits ..................................................................................................................................................... 107
Recommendations ............................................................................................................................................... 107
REFERENCES ....................................................................................................................................................................... 108
GALABA TRADING LIMITED
250 MWp GTL Solar PV Power Project – Feasibility Study Report
250 MWp GTL 太阳能光伏发电项目 - 可行性研究报告
LIST OF FIGURES
图表目录
Fig 1: Project Location.................................................................................................................................................................. 2
Fig 2: Electricity Demand Forecast for Zambia ..................................................................................................................... 7
图 2:赞比亚电力需求预测 .....................................................................................................................7
Fig 3: Wells Spring & Siavonga (Lusitu) Primary School .................................................................................................. 8
图 3:Wells Spring & Siavonga (Lusitu)Primary School ................................................................................................. 8
Fig 4: Mine Operations at Baluba Mine ................................................................................................................................... 8
图 4:Baluba 的采矿作业 Mine ................................................................................................................................... 8
Fig 5: Electricity Supply Network around Wells Spring & Siavonga (Lusitu) ............................................................... 9
图 5:Wells Spring 和 Siavonga(Lusitu)周围的供电网络 ..............................................................9
Fig 6: Zambia Global Horizontal Irradiation (Solar GIS, 2019) ..................................................................................... 10
图 6:赞比亚全球水平辐照(太阳地理信息系统,2019 年) .....................................................................................10
Fig 7: Relief in the Project Site ................................................................................................................................................. 17
图 7:项目地点的浮雕 .................................................................................................................................................17
Fig 8: Drainage in the Project Areas ........................................................................................................................................ 18
图 8:项目区的排水系统 ........................................................................................................................................18
Fig 9: Characteristic Soils of the Project Areas ..................................................................................................................... 18
图 9:项目区的土壤特性 .....................................................................................................................18
Fig 10: Zambia Agro-Ecologic Zones .................................................................................................................................... 19
图 10:赞比亚农业生态区 ....................................................................................................................................19
Fig 11: Annual Hourly Average Temperatures ..................................................................................................................... 20
图 11:全年每小时平均气温 ..................................................................................................................... 20
Fig 12: Sun's Elevation and Azimuth at the Project Site for the Year 2023 ................................................................. 21
图 12:2023 年项目地点的太阳高度和方位角 ................................................................. 21
Fig 13: Average Hourly Wind Direction at the Project Site ............................................................................................. 22
图 13:项目地点的每小时平均风向 ............................................................................................. 22
Fig 14: Simplified Structural Map of Zambia showing the position of the Lufilian Arc ........................................... 23
图 14:显示卢菲利亚弧位置的赞比亚简化结构图 ........................................... 23
Fig 15: Geology of the Zambian Copperbelt ........................................................................................................................ 24
图 15:赞比亚铜带地质 ........................................................................................................................ 24
Fig 16: Seismic Events Around the Project Areas ................................................................................................................ 26
图 16:项目区周围的地震事件 ................................................................................................................ 26
Fig 17: Linguistic Map of Zambia ........................................................................................................................................... 27
图 17:赞比亚语言地图 ........................................................................................................................................... 27
Fig 18: Description of Array Orientation .............................................................................................................................. 32
图 18:阵列方向说明 ..............................................................................................................................32
Fig 19: Solar PV Fixed Mounting Structure ......................................................................................................................... 32
图 19:太阳能光伏固定安装结构 .........................................................................................................................32
Fig 20: Fixed Tilt Solar PV Fixed Mounting Structure (with Adjustable Members) ................................................. 33
图 20:固定倾斜式太阳能光伏固定安装结构(带可调节构件) .................................................33
Fig 21: Single-Axis Tracking Structure .................................................................................................................................. 34
图 21:单轴跟踪结构 ..................................................................................................................................34
Fig 22: Dual-Axis Tracking Structure .................................................................................................................................... 34
图 22:双轴跟踪结构 ....................................................................................................................................34
Fig 23: Benefit of Dual Axis Tracking System ...................................................................................................................... 35
图 23:双轴跟踪系统的优势 ......................................................................................................................35
Fig 24: Variation in Meteorological Data by Resource ...................................................................................................... 42
图 24:按资源分列的气象数据差异 ......................................................................................................42
Fig 25: Tilt and Azimuth Optimisation ................................................................................................................................. 46
图 25:倾斜和方位角优化 .................................................................................................................................46
Fig 26: PVSyst Loss Diagram .................................................................................................................................................. 49
图 26:PVSyst 损耗图 ..................................................................................................................................................49
Fig 27: Annual Hourly Generation ......................................................................................................................................... 50
图 27:年每小时发电量 .........................................................................................................................................50
Fig 28: Probability Distribution .............................................................................................................................................. 51
图 28:概率分布 ..............................................................................................................................................51
Fig 29: Ns,max Algorithm for Calculation PV Modules Per Inverter ................................................................................. 54
图 29:计算每个逆变器光伏组件的 N,max 算法 .................................................................................54
Fig 30: Canadian Solar CS3W-415P 1500V HE PV Module ....................................................................................... 55
图 30:阿特斯太阳能 CS3W-415P 1500V HE 光伏模块 .......................................................................................55
Fig 31: IV Characteristics of the CS3W-415P 1500V HE ............................................................................................. 56
图 31:CS3W-415P 1500V HE 的 IV 特性 .............................................................................................56
Fig 32: Proposed Mounting Structure .................................................................................................................................... 56
图 32:建议的安装结构 ....................................................................................................................................56
Fig 33: Proposed Panel Arrangement ..................................................................................................................................... 57
图 33:建议的面板布置 .....................................................................................................................................57
Fig 34: Huawei SUN2000-185KTL-H1 Inverter .............................................................................................................. 58
图 34:华为 SUN2000-185KTL-H1 逆变器 ..............................................................................................................58
Fig 35: Huawei Fusion-Solar ITS Smart PV Solution ....................................................................................................... 59
图 35:华为 Fusion-Solar ITS 智能光伏解决方案 .......................................................................................................59
Fig 36: Huawei STS-3000K Smart Transformer Station .................................................................................................. 60
图 36:华为 STS-3000K 智能变电站 ..................................................................................................60
Fig 37: Graphical View of the Huawei STS-3000K smart transformer Station .......................................................... 60
图 37:华为 STS-3000K 智能变电站图形图像 ..........................................................60
Fig 38: SLD of the Huawei STS-3000K Smart Transformer Station ............................................................................ 61
图 38:华为 STS-3000K 智能变电站的 SLD ............................................................................61
Fig 39: Arrangement of Solar PV Cell, Module and String .............................................................................................. 63
图 39:太阳能光伏电池、模块和组串的排列 ..............................................................................................63
Fig 40: Array Layout Design for Project ................................................................................................................................ 64
图 40:项目阵列布局设计 ................................................................................................................................64
Fig 41: 11 kV Line for Construction Power ......................................................................................................................... 66
图 41:11 千伏建筑电力线路 .........................................................................................................................66
Fig 42: GTL Solar PV Transport Route Options .............................................................................................................. 67
图 42:GTL 太阳能光伏发电运输路线选择 ..............................................................................................................67
Fig 43: Electricity Supply Network around Wells Spring & Siavonga (Lusitu) ........................................................... 72
图 43:Wells Spring 和 Siavonga(Lusitu)周围的供电网络 ...........................................................72
Fig 44: Extension of the 220 kV busbar at the 220/66 kV Wells Spring & Siavonga (Lusitu) Substations ....... 73
图 44:220/66 千伏 Wells Spring 和 Siavonga(Lusitu)变电站 220 千伏母线扩展 .......73
Fig 45: Single Line Drawing for the Evacuation Option at 220 kV ............................................................................... 73
图 45:220 千伏疏散方案单线图 ...............................................................................73
Fig 46: Extension of the 66 kV busbar at the 220/66 kV Wells Spring & Siavonga (Lusitu) Substations ......... 74
图 46:扩展 220/66 千伏 Wells Spring 和 Siavonga(Lusitu)变电站的 66 千伏母线 .........74
Fig 47: Single Line Drawing for the Evacuation Option at 66 kV .................................................................................. 75
图 47:66 千伏疏散方案单线图 ..................................................................................75
Fig 48: Extent of the Project Areas for ESIA Studies ......................................................................................................... 76
图 48:环境影响评估研究的项目区范围 .........................................................................................................76
Fig 49: Outlook of the Project Site ......................................................................................................................................... 84
图 49:项目地点展望 .........................................................................................................................................84
Fig 50: No Sign of Wildlife ...................................................................................................................................................... 85
图 50:没有野生动物的迹象 ......................................................................................................................................................85
Fig 51: Local Administration of the Project Site ................................................................................................................. 86
图 51:项目所在地的地方管理机构 .................................................................................................................86
Fig 52: Solar energy effectors for utility-scale solar energy technologies (Hernandez R.R et al, 2013) ................. 87 Fig 53: Yearly Cash Flow (kUS$) ........................................................................................................................................ 104 Fig 54: Cumulative Cash Flow (kUS$) ............................................................................................................................... 104
图 52:公用事业规模太阳能技术的太阳能效应器(Hernandez R.R et al,2013 年) .................87 图 53:年度现金流(千美元) ........................................................................................................................................104 图 54:累计现金流(千美元) ...............................................................................................................................104
Fig 55: Cash Allocation ........................................................................................................................................................... 105
图 55:现金分配 ...........................................................................................................................................................105
LIST OF TABLES
表格清单
Table 1: National Installed Generation Capacity in MW, 2020 – 2021 ........................................................................ 6
表 1:2020-2021 年全国发电装机容量(兆瓦) ........................................................................6
Table 2: National Consumption by Economic Sector, 2019 and 2020 .......................................................................... 6
表 2:2019 年和 2020 年按经济部门分列的国民消费情况 ..........................................................................6
Table 3: Peak Demand Projections for Zambia...................................................................................................................... 7
表 3:赞比亚高峰需求预测......................................................................................................................7
Table 4: Average Monthly Temperatures .............................................................................................................................. 20
表 4:月平均气温 .............................................................................................................................. 20
Table 5: Average Monthly Sunshine Hours .......................................................................................................................... 21
表 5:月平均日照时数 .......................................................................................................................... 21
Table 6: Annual Percentage of Time Cloud Cover .............................................................................................................. 22
表 6:每年云层覆盖的时间百分比 .............................................................................................................. 22
Table 7: Monthly Average Wind Speeds at the Project Site ............................................................................................. 22
表 7:项目地点的月平均风速 ............................................................................................. 22
Table 8: Monthly Average Rainfall in Mazabuka & Siavonga (Lusitu) .......................................................................... 23
表 8:Mazabuka 和 Siavonga(Lusitu)的月平均降雨量 ......................................................................... 23
Table 9: Seismic Events Around the Project Areas .............................................................................................................. 25
表 9:项目区周围的地震事件 .............................................................................................................. 25
Table 10: Characteristics of Some PV Technology Classes .............................................................................................. 29
表 10:部分光伏技术类别的特点 .............................................................................................. 29
Table 11: Applicable Standards in Solar PV Industry ........................................................................................................ 31
表 11:太阳能光伏产业的适用标准 ........................................................................................................31
Table 12: Inverter Technology Types .................................................................................................................................... 36
表 12:变频器技术类型 ....................................................................................................................................36
Table 13: Applicable Inverter Standards ................................................................................................................................ 37
表 13:适用的变频器标准 ................................................................................................................................37
Table 14: Characteristics of Meteorological Data ............................................................................................................... 40
表 14:气象数据的特点 ...............................................................................................................40
Table 15: Average Annual Global Horizontal Irradiation (kWh.m-2) ............................................................................. 41
表 15:全球年平均水平辐照度(千瓦时/平方米-2) .............................................................................41
Table 16: Relative Difference in Average Annual Global Horizontal Irradiation ........................................................ 42
表 16:全球年平均水平辐照度的相对差异 ........................................................42
Table 17: Monthly Error Analysis for Long Term Averaged Data (vs Meteonorm 8.1) ........................................... 42
表 17:长期平均数据的月误差分析(与 Meteonorm 8.1 对比) ...........................................42
Table 18: Horizontal Irradiation and temperature values (Meteonorm 8.1) ................................................................. 46
表 18:水平辐照度和温度值(Meteonorm 8.1) .................................................................46
Table 19: PVSyst Model Set Up ............................................................................................................................................. 47
表 19:PVSyst 型号设置 .............................................................................................................................................47
Table 20: Loss Estimates for the GTL Solar PV Power Project ..................................................................................... 47
表 20:GTL 太阳能光伏发电项目的损失估计 .....................................................................................47
Table 21: Annual Performance Results for the GTL Solar PV Power Project ............................................................ 48
表 21:GTL 太阳能光伏发电项目的年度绩效结果 ............................................................48
Table 22: Annual Energy Production ..................................................................................................................................... 51
表 22:年度能源生产 .....................................................................................................................................51
Table 23: 25-Year Annual Energy Yield for the Power Plant .......................................................................................... 52
表 23:发电厂 25 年的年发电量 ..........................................................................................52
Table 24: Summary of PVSyst Simulation ............................................................................................................................ 52
表 24:PVSyst 仿真摘要 ............................................................................................................................52
Table 25: PV Module Characteristics .................................................................................................................................... 56
表 25:光伏组件特性 ....................................................................................................................................56
Table 26: Specifications of the SUN2000-185KTL-H1 .................................................................................................. 59
表 26:SUN2000-185KTL-H1 的规格 ..................................................................................................59
Table 27: Typical Specifications of the Huawei STS-3000K Smart Transformer Station ....................................... 61
表 27:华为 STS-3000K 智能变电站的典型规格 .......................................61
Table 28: List of Generation Plants in Zambia .................................................................................................................... 70
表 28:赞比亚发电厂清单 ....................................................................................................................70
Table 29: Frequency Load Shedding Settings ....................................................................................................................... 72
表 29:频率甩负荷设置 .......................................................................................................................72
Table 30: Comparisons of Key Operational Safeguards for Multilateral Banks ........................................................... 80
表 30:多边银行主要业务保障措施的比较 ...........................................................80
Table 31: Summary of Possible Impacts of the 250 MWp GTL Solar PV Power Plant ......................................... 94
表 31:250 MWp GTL 太阳能光伏电站可能产生的影响汇总 .........................................94
Table 32: Project Compliance with IFC Performance Standards ..................................................................................... 95
表 32:项目遵守国际金融公司绩效标准的情况 .....................................................................................95
Table 33: Feasibility Assessment Cost Estimates ................................................................................................................. 98
表 33:可行性评估成本估算 .................................................................................................................98
Table 34: Project Cost Estimates for Project ...................................................................................................................... 100
表 34:...................................................................................................................... 项目费用估算100
Table 35: Project Cost Estimates for Project ...................................................................................................................... 103
表 35:...................................................................................................................... 项目费用估算103
Table 36: Summary of Economic Analysis ......................................................................................................................... 105
表 36:经济分析概要 .........................................................................................................................105
Table 37: Detailed Economic Results (US$ ‘000) ............................................................................................................ 106
表 37:详细经济结果(千美元) ............................................................................................................106
LIST OF UNITS
单位一览表
Units | Wording |
A | Ampere |
cm | Centimetres |
g | Peak ground acceleration |
Ga | Giga annum (1 billion years) |
GWh | Gigawatt Hour |
Ha | Hectare |
Hz | Hertz |
j/kg | Joules per kilogram |
km | Kilo-metre |
km2 | Square kilometre |
kV | kilovolt |
kW | kilowatt |
kVA | Kilo volt Ampere |
Ma | Mega-annum (1 million years) |
MPa | Mega Pascal |
MVA | Mega-volt Ampere |
MW | Megawatt |
MWh | Megawatt Hour |
m | Metres |
absl | Above Sea Level |
mm | Milli-metre |
m3.s-1 | Cubic Metres per Second |
Pa | Pascal (Unit of Pressure) |
% | Percent |
rpm | Revolutions per minute |
s | Second |
t.s-1 | Turns per second |
ton-m2 | Ton (metric) square metre (Moment of inertia unit) |
tC02e | Tonnes of Carbon dioxide Emission |
US¢ | United States Cent |
US$ | United States Dollar (USD) |
US¢/kWh | United States Cents per Kilowatt Hour |
US$M | Million United States Dollar |
yr | Year |
ZMW | Zambian Kwacha |
LIST OF ACRONYMS
简称表
Abbreviation | Full Wording |
B/C | Benefit to Cost Ratio |
CEC | Copperbelt Energy Corporation |
CER | Carbon Emission Reduction |
EARS | East African Rift System |
ESIA | Environmental and Social Impact Assessment |
EIRR | Economic Internal Rate of Return |
ERB | Energy Regulation Board |
ESMAP | Environmental Social Management Action Plan |
ESU | Environmental and Social Unit |
GIS | Geographical Information System |
GPS | Global Positioning System |
GHG | Greenhouse Gas |
GRZ GTL | Government of the Republic of Zambia Galaba Trading Limited |
HV | High Voltage |
IEEE |
|
IPP | Independent Power Producer |
LCOE | Levelised Cost of Electricity |
LV | Low Voltage |
MCE | Maximum Credible Earthquake |
NERC |
|
NPV | Net Present Value |
OBE | Operating Basis Earthquake |
OPPPI | Office for Promoting Private Power Investment |
PGA | Peak Ground Acceleration |
PID | Proportional Integral Derivative |
REA | Rural Electrification Authority |
RMSE | Root Mean Square Error |
RTK | Real Time Kinematic |
SAPP | Southern African Power Pool |
USGS | United States Geological Survey |
UTM | Universal Transverse Mercator |
WARMA | Water Resource Management Authority |
WGS84 | World Geodetic System 1984 |
ZEMA | Zambia Environmental Management Agency |
GALABA TRADING LIMITED
250 MWp GTL Solar PV Power Project – Feasibility Study Report
250 MWp GTL 太阳能光伏发电项目 - 可行性研究报告
1. | INTRODUCTION |
1.1 Country Perspective
1.1 国家视角
Zambia, a country in Southern Africa, covers an area of 753,000 km² and serves as a crucial link between Southern, East, and Central Africa. The northernmost point of Zambia is located near Lake Tanganyika at approximately -8.2333° latitude, while the southernmost point is along the border with Zimbabwe at -18.0833° latitude. The western extremity of Zambia is at a longitude of 32.8333° on the Angola border, and the eastern extremity is on the Malawi border at a longitude of 22.0000°.
赞比亚是非洲南部的一个国家,面积 75.3 万平方公里,是连接南部非洲、东部非洲和中部非洲的重要纽带。赞比亚最北端位于坦噶尼喀湖附近,纬度约为-8.2333°,最南端与津巴布韦接壤,纬度为-18.0833°。赞比亚的最西端位于安哥拉边境,经度为 32.8333°,最东端位于马拉维边境,经度为 22.0000°。
The main industrial sectors in Zambia include mining, services, and agriculture. Mining and agriculture are predominantly concentrated in the Southern Province and extend into various districts, including S……, L……, and K……. New mining activities are emerging in Luapula and Central Provinces due to commercially viable manganese prospects. Gold exploitation has increased recently, particularly in Kasenseli and Mumbwa, while small-scale mining activities for gold and rare earth metals are found in Eastern and Western Provinces. Precious stones like emeralds and sugilite are mined in Lufwanyama and Mansa, respectively.
赞比亚的主要工业部门包括采矿业、服务业和农业。采矿业和农业主要集中在南部省,并延伸到多个地区,包括 S......、L...... 和 K....... 。由于锰矿前景具有商业可行性,卢阿普拉省和中央省正在出现新的采矿活动。金矿开采最近有所增加,特别是在卡森塞利和蒙布瓦,而在东部省和西部省也有小规模的金矿和稀土金属开采活动。祖母绿和燧石等宝石分别在卢夫万亚马和曼萨开采。
The service industry in Zambia encompasses banking, utilities, consultancy services, and labor hire, with Lusaka, the national capital, being the hub for these activities. Agriculture is practiced at both commercial and subsistence levels, with subsistence farming largely undertaken by poorer households on small plots.
赞比亚的服务业包括银行业、公用事业、咨询服务和劳动力雇佣,国家首都卢萨卡是这些活动的中心。农业既有商业性耕作,也有自给性耕作,自给性耕作主要由贫困家庭在小块土地上进行。
Energy is vital for sustaining economic activities in Zambia, but the sector, primarily reliant on hydropower, is currently facing electricity supply deficits due to recent extended drought conditions. This over-reliance on hydro-generation has led to unreliable electricity supply and poor service ratings for the state utility. To address these issues, the Zambian Government has implemented policy measures aimed at:
能源对于维持赞比亚的经济活动至关重要,但由于最近持续干旱,主要依赖水力发电的赞比亚电力部门目前正面临电力供应不足的问题。对水力发电的过度依赖导致电力供应不可靠,国家公用事业的服务评级较低。为解决这些问题,赞比亚政府实施了政策措施,旨在:
1. Increasing installed generation capacity.
1.增加发电装机容量。
2. Diversifying the power generation mix by incorporating various resources and geographical locations.
2.通过整合各种资源和地理位置,使发电组合多样化。
3. Enacting an open access regime.
3.制定开放获取制度。
4. Promoting renewable and alternative energy sources.
4.推广可再生能源和替代能源。
5. Encouraging energy efficiency technologies and practices.
5.鼓励节能技术和做法。
If the measures proposed by the National Energy Policy of 2019 are successfully implemented, Zambia is well-positioned to become a regional hub in transportation, telecommunications, and energy among its eight neighboring countries.
如果《2019 年国家能源政策》提出的措施能够顺利实施,赞比亚完全有能力成为八个邻国中的交通、电信和能源区域枢纽。
1.2 Project Promoter
1.2 项目推动者
The development of the project will be led by GTL and its partners. In response to the ongoing power deficit in the country, GTL aims to address this issue by establishing a solar PV power project in Mazabuka and Siavonga (Lusitu) Districts.
该项目的开发将由 GTL 及其合作伙伴主导。为应对该国持续存在的电力短缺问题,GTL 旨在通过在马扎布卡和西亚文加(卢西图)地区建立太阳能光伏发电项目来解决这一问题。
Project Description
项目说明
Location
地点
The proposed project will be situated approximately 20 km east of Mazabuka and Siavonga (Lusitu) towns. It is located about 10 km off the Lusaka-Mazabuka (T1) and Lusaka-Siavonga (Lusitu) (M15 off T2) Highways, specifically in the Wells Spring and Siavonga (Lusitu) Farm areas.
拟建项目位于 Mazabuka 镇和 Siavonga(Lusitu)镇以东约 20 公里处。它位于卢萨卡-马扎布卡(T1)和卢萨卡-西亚文加(卢西图)(M15-T2)高速公路附近约 10 公里处,特别是在 Wells Spring 和西亚文加(卢西图)农场地区。
Fig 1: Project Location
图 1:项目地点
Access to the Site
访问网站
Access to the site is via the Lusaka-Mazabuka (T1) and Lusaka-Siavonga (Lusitu) (M15 off T2) Highways. A 10 km dust road branches off from T1 and M15, leading directly to the project site.
卢萨卡-马扎布卡公路(T1)和卢萨卡-西瓦翁加(卢西图)公路(M15,T2 出口)是通往工地的必经之路。从 T1 号公路和 M15 号公路有一条 10 公里长的尘土路分支,直接通往项目地点。
1.4 Objective of the Reports
1.4 报告的目的
The General objectives of this report are to:
本报告的总体目标是
1. Assess the power potential of the project concept.
1.评估项目概念的动力潜力。
2. Evaluate the technical, environmental, and economic viability of the project.
2.评估项目在技术、环境和经济方面的可行性。
3. Develop preliminary design parameters for the project.
3.制定项目的初步设计参数。
1.5 Specific objectives of the Project
1.5 项目的具体目标
The objectives of establishing the 250 MWp GTL Solar PV Power Plant are
建立 250 MWp GTL 太阳能光伏电站的目标是:
1. To contribute to the diversification of Zambia's generation mix.
1.促进赞比亚发电组合的多样化。
2. To provide a renewable energy resource as a climate change mitigation measure.
2.提供可再生能源,作为减缓气候变化的措施。
3. To produce 200 MW for the national grid.
3.为国家电网生产 200 兆瓦。
4. To stimulate socio-economic development in the surrounding areas.
4.促进周边地区的社会经济发展。
1.6 Scope of Study
1.6研究范围。
This Feasibility Study Report is designed to serve as a foundation for the further development of a Solar PV power plant at Wells Spring and Siavonga (Lusitu) in Mazabuka and Siavonga (Lusitu) Districts. The study evaluates the suitability of the selected project site with regard to solar energy yield, the grid's capability to evacuate the power generated, and provides an overview of potential environmental and social concerns associated with the project. The feasibility study addresses the following components, categorized into technical, economic and financial, and social and environmental parameters:
本可行性研究报告旨在为进一步开发位于马扎布卡区(Mazabuka)和西亚冯加区(Lusitu)的 Wells Spring 和西亚冯加(Lusitu)太阳能光伏电站奠定基础。该研究评估了所选项目地点在太阳能产量、 电网疏散所发电能方面的适用性,并概述了与该项目相关的潜在环境和社会问题。可行性研究涉及以下内容,分为技术、经济和财务以及社会和环境参数:
a. Technical Parameters
a.技术参数
i. Assess the suitability of the proposed project site and identify potential locations for major plant structures.
i.评估拟议项目场地的适宜性,确定主要厂房结构的潜在位置。
ii. Determine the solar energy yield at the selected project location.
ii.确定选定项目地点的太阳能产量。
iii. Evaluate energy losses and propose mitigation measures.
iii.评估能源损失并提出缓解措施。
iv. Develop a preliminary plant layout.
iv.制定初步的工厂布局。
v. Create preliminary designs for major structures, including solar panels, panel layouts, substations, and transmission structures.
v.创建主要结构的初步设计,包括太阳能电池板、电池板布局、变电站和输电结构。
vi. Recommend typical machinery and equipment for the project.
vi.为项目推荐典型的机械设备。
vii. Suggest equipment suppliers.
vii.建议设备供应商。
viii. Provide power evacuation options for the project.
viii.为项目提供电力疏散方案。
b. Economic and Financial Parameters
b.经济和财务参数
i. Estimate the cost of the power plant.
i.估算发电厂的成本。
ii. Conduct a cash flow analysis.
ii.进行现金流分析。
iii. Determine the economic factors of the project.
iii.确定项目的经济因素。
iv. Perform a sensitivity analysis on the project.
iv.对项目进行敏感性分析。
c. Social and Environmental Parameters
c.社会和环境参数
i. Assess the anticipated impacts of the project on the existing ecological balance.
i.评估项目对现有生态平衡的预期影响。
ii. Identify key performance standards for Solar PV projects under the International Finance Corporation (IFC PS) and outline how concerns will be addressed.
ii.确定国际金融公司 (IFC PS) 太阳能光伏发电项目的主要绩效标准,并概述如何解决有关问题。
iii. Evaluate the potential socio-economic benefits and implications of the project.
iii.评估项目的潜在社会经济效益和影响。
iv. Examine potential resettlement and compensation issues.
iv.审查潜在的重新安置和补偿问题。
v. Address public health, occupational health, and safety issues related to the project.
v.解决与项目有关的公共卫生、职业健康和安全问题。
2. | POWER SECTOR IN ZAMBIA |
2.1 Overview of the Energy Sector in Zambia
2.1赞比亚能源部门概况
The electricity sector in Zambia is overseen by the Ministry of Energy (MOE), which provides policy guidance as outlined in Government Gazette Notice No. 7039 of 2021. The MOE is responsible for various areas, including:
赞比亚的电力部门由能源部(MOE)监管,该部提供 2021 年第 7039 号政府公报公告中概述的政策指导。能源部负责多个领域,包括
- Development of Renewable Energy Sources
- 开发可再生能源
- Electricity
- 电力
- Energy Policy
- 能源政策
- Nuclear Energy Policy
- 核能政策
- Oil Pipelines and Refineries
- 石油管道和炼油厂
- Petroleum
- 石油
- Petroleum Storage and Pricing
- 石油储存和定价
The MOE's technical departments include the Department of Energy, the Department of Petroleum, and the Office of Private Public Partnerships (OPPPI), which promotes private sector investments. The sector is governed by the National Energy Policy of 2019 (NEP 2019) and is implemented through the Electricity Act of 2019, the Energy Regulation Act of 2019, and other statutory instruments and strategies.
能源部的技术部门包括能源部、石油部和促进私营部门投资的私营公共合作伙伴关系办公室(OPPPI)。该部门受《2019 年国家能源政策》(NEP 2019)管辖,并通过《2019 年电力法》、《2019 年能源管理法》以及其他法定文书和战略加以实施。
The Energy Regulation Board (ERB) regulates the energy sector, responsible for licensing, tariff setting, and monitoring supply quality and service standards. The ERB safeguards stakeholder interests in accordance with the Energy Regulation Act of 2019.
能源监管局(ERB)对能源行业进行监管,负责发放许可证、制定收费标准、监督供应质量和服务标准。能源监管局根据《2019 年能源监管法》保障利益相关者的利益。
Key statutory institutions under the MOE involved in the electricity sector are:
涉及电力部门的教育部下属主要法定机构有
- Rural Electrification Authority (REA): Established under the Rural Electrification Act No. 20 of 2003, REA focuses on increasing electricity access in rural areas.
- 农村电气化管理局(REA): 农村电气化管理局根据 2003 年第 20 号《农村电气化法》成立,致力于提高农村地区的用电率。
- ZESCO Limited: Established under the Electricity Act of 2005, ZESCO is responsible for the generation, transmission, and distribution of electricity in Zambia.
- ZESCO 有限公司:ZESCO 根据 2005 年《电力法》成立,负责赞比亚的发电、输电和配电业务。
ZESCO Limited is the dominant player in the energy sector, managing the generation, transmission, and distribution of power. Current legislation allows Independent Power Producers (IPPs) to export power across Zambia’s borders, but this requires prior approval from the Minister of Energy. The open access regime, still under development, aims to reduce risks associated with energy project development and financing for power off-takers other than ZESCO.
ZESCO Limited 是能源行业的主导企业,负责管理发电、输电和配电业务。现行法律允许独立电力生产商 (IPP) 跨越赞比亚边境出口电力,但这需要事先获得能源部长的批准。开放式准入制度仍在制定中,其目的是降低与能源项目开发和赞比亚能源公司(ZESCO)以外的电力承购商融资相关的风险。
Private sector participation in Zambia's energy sector is exemplified by companies such as Copperbelt Energy Corporation, Lunsemfwa Hydropower Company, Maamba Collieries, and Itezhi-Tezhi Power Generation Company.
铜带能源公司、Lunsemfwa 水电公司、Maamba Collieries 和 Itezhi-Tezhi 发电公司等公司是私营部门参与赞比亚能源行业的典范。
2.2 Installed Generation Capacity
2.2 发电装机容量
Zambia’s electricity supply is predominantly from hydropower, accounting for approximately 80% of the total generation. The remaining 20% comes from alternative and renewable sources, including Heavy Fuel Oil (HFO) (105 MW), coal (300 MW), and solar (86+ MW). The total installed capacity is around 3,318.4 MW, with an energy generation of approximately 17,636 GWh. Hydroelectric generation alone contributes 16,072.9 GWh.
赞比亚的电力供应主要来自水力发电,约占总发电量的 80%。其余 20% 来自替代能源和可再生能源,包括重油(105 兆瓦)、煤炭(300 兆瓦)和太阳能(86+ 兆瓦)。总装机容量约为 3,318.4 兆瓦, 发电量约为 17,636 千兆瓦时。仅水力发电就贡献了 16,072.9 千兆瓦时。
2.3 Transmission Network
2.3 传输网络
The transmission network includes lines and substations at various voltage levels: 330 kV, 220 kV, 132 kV, 88 kV, and 66 kV. The majority of the transmission network is owned, operated, and maintained by ZESCO Limited. Additionally, Copperbelt Energy Corporation (CEC) operates parts of the 66 kV and 220 kV networks, while Lunsemfwa Hydro Power Company Ltd operates parts of the 66 kV network. The network connects radially to Tanzania and Botswana at 66 kV, Namibia and Congo DR at 220 kV, and Zimbabwe at 330 kV.
输电网络包括不同电压等级的线路和变电站:330 千伏、220 千伏、132 千伏、88 千伏和 66 千伏。大部分输电网络由 ZESCO 有限公司拥有、运营和维护。此外,铜带能源公司(Copperbelt Energy Corporation,简称 CEC)负责运营 66 千伏和 220 千伏输电网络的部分线路,Lunsemfwa 水电有限公司负责运营 66 千伏输电网络的部分线路。该电网以 66 千伏的电压辐射连接坦桑尼亚和博茨瓦纳,以 220 千伏的电压辐射连接纳米比亚和刚果民主共和国,以 330 千伏的电压辐射连接津巴布韦。
As stated above, the Zambian Power Grid is based on five Transmission Voltage levels: 330 kV (2,241 km), 220 kV (571 km), 132 kV (202 km), 88 kV (734 km) and 66 kV (1,037 km). The Distribution Voltages are: 33 kV, 11 kV and 0.4 kV.
如上所述,赞比亚电网基于五个输电电压等级:330 千伏(2 241 千米)、220 千伏(571 千米)、132 千伏(202 千米)、88 千伏(734 千米)和 66 千伏(1 037 千米)。配电电压为33 千伏、11 千伏和 0.4 千伏。
2.4 Power Demand
2.4电力需求
2.4.1 Regional Scenario
2.4.1 地区方案
The Zambian electricity power system is integrated into the Southern Africa Power Pool (SAPP), a network encompassing twelve countries. SAPP manages an installed capacity of 80,923 MW, with an operating capacity of 65,198 MW. The current demand and reserve stand at 55,235 MW, resulting in an excess generation capacity of 9,963 MW, predominantly in South Africa (7,959 MW) and Angola (2,261 MW) (SAPP, 2022).
赞比亚电力系统被纳入南部非洲电力联营(SAPP),该网络覆盖 12 个国家。SAPP 管理的装机容量为 80,923 兆瓦,运行容量为 65,198 兆瓦。目前的需求和储备为 55,235 兆瓦,过剩发电能力为 9,963 兆瓦,主要集中在南非(7,959 兆瓦)和安哥拉(2,261 兆瓦)(SAPP,2022 年)。
This excess capacity increase is largely attributed to the expanded generation capacity of Eskom in South Africa and reduced demand due to COVID-19 restrictions. However, post-COVID-19, operational challenges and the impacts of climate change on hydro-based generation have diminished this surplus. As of 2023, many SAPP countries, including South Africa and Zambia, have been experiencing load shedding. The available capacity is also influenced by plant breakdowns and planned maintenance, which affect real-time excess or deficit conditions in the SAPP region.
产能过剩的主要原因是南非 Eskom 公司扩大了发电能力,以及 COVID-19 限制措施导致需求减少。然而,在 COVID-19 之后,运营挑战和气候变化对水力发电的影响减少了这一过剩。截至 2023 年,包括南非和赞比亚在内的许多 SAPP 国家都出现了负荷削减。可用发电能力还受到电厂故障和计划检修的影响,从而影响到 SAPP 地区的实时过剩或不足状况。
2.4.2 National Scenario
2.4.2 国家方案
The electricity sector in Zambia heavily relies on hydropower generation. However, due to climate change, Zambia has faced erratic rainfall patterns, leading to reduced water flows into major power generation stations. This has resulted in a shortage of power supply. The exact duration and extent of these erratic rainfall patterns are still under investigation, but their impacts are evident: there is a continuous and unmet demand for power, putting persistent pressure on the country’s economy and suppressing socioeconomic activities.
赞比亚的电力部门严重依赖水力发电。然而,由于气候变化,赞比亚的降雨模式不稳定,导致流入主要发电站的水量减少。这导致电力供应短缺。这些反复无常的降雨模式的确切持续时间和范围仍在调查之中,但其影响是显而易见的:电力需求持续得不到满足,给国家经济造成了持续的压力,并压制了社会经济活动。
Access to Electricity
用电
In Zambia, electricity access is estimated at 31.4% of the total population, with approximately 67.3% of the urban population and 4.4% of the rural population having access (GRZ, 2019). The Government of the Republic of Zambia has set a target to achieve 100% electrification in urban areas and 51% access in rural areas by 2030 (GRZ, 2010).
在赞比亚,用电率估计占总人口的 31.4%,其中约 67.3%的城市人口和 4.4%的农村人口用上了电(GRZ,2019 年)。赞比亚共和国政府制定了到 2030 年实现城市地区 100%电气化和农村地区 51%电气化的目标(GRZ,2010 年)。
Power Generation
发电
According to the ERB (2022), the national installed capacity in Zambia saw a significant increase in 2021 due to the commissioning of two 150 MW units at the Kafue Gorge Lower Hydroelectric Power Plant. This raised the total capacity to 3,318.4 MW, up from 3,011.12 MW in 2020. Additionally, 6 MW out of a planned 15 MW was commissioned at the Lusiwasi Upper Hydroelectric Power Plant during the same period. As a result, the share of hydroelectric generation in the national energy mix increased to approximately 81.5%, up from 79.6% in 2020.
根据经济研究局(2022 年)的数据,由于卡富埃峡谷下游水电站两台 150 兆瓦机组的投产,赞比亚全国装机容量在 2021 年出现大幅增长。这使总装机容量从 2020 年的 311.12 兆瓦增至 3318.4 兆瓦。此外,卢西瓦西上水电站计划发电 15 兆瓦,同期投产了 6 兆瓦。因此,水力发电在国家能源结构中所占比例从 2020 年的 79.6%增至约 81.5%。
Once the remaining machines are commissioned at KGL the installed capacity in Zambia are projected as shown in Table 1 below:
一旦其余机器在 KGL 投产,赞比亚的装机容量预计如下表 1 所示:
Table 1: National Installed Generation Capacity in MW, 2020 – 2021
表 1:2020 - 2021 年全国发电装机容量(兆瓦
No | Technology | 2020 | 2021 | 2023 |
1. | Hydro | 2,398.50 | 2,704.50 | 3,1545.5 |
2. | Coal | 330.00 | 330.00 | 330.00 |
3. | Diesel | 83.60 | 84.80 | 84.80 |
4. | Heavy Fuel Oil | 110.00 | 110.00 | 110.00 |
5. | Solar | 89.13 | 89.13 | 89.13 |
| Grand Total | 3,011.23 | 3,318.43 | 3,768.43 |
Energy Consumption
能源消耗
Between the year 2020 and 2021, electricity generation in Zambia increased by 16.3 percent from 15,159GWh in 2020 to 17,636 GWh in 2021 while the total electricity consumption recorded an increase by 12 percent from 11,481 GWh to 12,832GWh in the same period. The disaggregated energy consumption by sector for the period 2020 – 2021 is given by the ERB as shown in Table 2 below:
2020年至2021年期间,赞比亚的发电量增加了16.3%,从2020年的15159千兆瓦时增加到2021年的17636千兆瓦时,而同期的电力消费总量增加了12%,从11481千兆瓦时增加到12832千兆瓦时。下表 2 列出了 2020-2021 年期间按行业分列的能源消耗情况:
Table 2: National Consumption by Economic Sector, 2019 and 2020
表 2:2019 年和 2020 年按经济部门分列的国民消费情况
Economic Sub-Sector | 2020 (GWh) | 2021 (GWh) | Movement (GWh) | Percentage (%) |
Mines | 5,806 | 5,980 | 174 | 3 |
Domestic | 3,867 | 4,477 | 610 | 16 |
Manufacturing | 450 | 436 | -14 | -3 |
Quarrying | 257 | 572 | 315 | 123 |
Construction | 8 | 9 | 1 | 13 |
Agriculture | 261 | 294 | 32 | 12 |
Finance, Trade and Property | 710 | 918 | 209 | 29 |
Energy and Water | 93 | 114 | 211 | 22 |
Transport | 29 | 32 | 3 | 11 |
Total Consumed | 11,481 | 12,831 | 1,351 | 12 |
Total Generated | 15,159 | 17,636 | 2,477 | 16 |
Electricity Consumption Changes by Sector Post-COVID
COVID 后各行业的用电量变化
Quarrying Sector: Noted the largest increase in electricity consumption, up by 123%.
采石部门: 注意到用电量增幅最大,达 123%。
Finance, Trade & Property Sector: Saw a 29% rise in electricity use.
金融、贸易和房地产行业: 用电量上升了 29%。
Other Sectors: Experienced varying increases in consumption, ranging from 3% to 22%.
其他部门:消费增幅不一,从 3% 到 22% 不等。
Manufacturing Sector: Recorded a 3% decline in electricity consumption.
制造业:用电量下降 3%。
Power Exports and Imports
电力进出口
As a member of the Southern Africa Power Pool (SAPP), ZESCO participates in power trading through various trade protocols. Due to the increase in electricity generation, exports grew by 60% from 1,340 GWh in 2020 to 2,150 GWh in 2021. This growth was driven by rising demand in South Africa, Zimbabwe, Angola, the Democratic Republic of Congo (DRC), Namibia, and Botswana.
作为南部非洲电力联营(SAPP)的成员,ZESCO 通过各种贸易协议参与电力贸易。由于发电量的增加,出口量增长了 60%,从 2020 年的 13.40 亿千瓦时增至 2021 年的 21.50 亿千瓦时。这一增长是由南非、津巴布韦、安哥拉、刚果民主共和国(DRC)、纳米比亚和博茨瓦纳不断增长的需求驱动的。
Despite this increase in electricity generation, Zambia continued to import low voltage electricity for border towns off the national grid, specifically Lusaka, Chirundu, and Mkushi, which are served by ZESCO via a 66 kV network
尽管发电量增加了,赞比亚继续为国家电网以外的边境城镇进口低压电力,特别是卢萨卡奇龙杜和姆库什,这些城镇由赞比亚电力公司通过 66 千伏电网供电。.
Demand Forecast
需求预测
According to the Zambia Development Agency (ZDA), the demand for electricity in Zambia was projected to grow at an average rate of 4.4% annually, or between 150 and 200 MW each year (ZDA, 2016). In 2021, the maximum demand recorded was approximately 2,238 MW on November 17th at around 19:50 hours, compared to a peak generation of about 2,358.8 MW during the same period. The highest power deficit recorded in the second week of 2021 was about 200 MW, attributed to reduced generation primarily due to low water levels in major reservoirs. As of January 2023, the peak demand was recorded at around 2,361 MW, with 2,039 MW served by ZESCO and 322 MW by CEC (SAPP, 2023). Projections by various government agencies indicate peak demand in Zambia could range between 3,000 MW and 5,500 MW by 2030.
根据赞比亚发展署(ZDA)的预测,赞比亚的电力需求将以年均 4.4% 的速度增长,即每年增长 150 到 200 兆瓦(ZDA,2016 年)。2021 年,11 月 17 日 19 时 50 分左右记录的最大需求量约为 2238 兆瓦,而同期的最高发电量约为 2358.8 兆瓦。2021 年第二周录得的最高电力缺口约为 200 兆瓦,主要原因是主要水库水位较低导致发电量减少。截至 2023 年 1 月,记录的高峰需求约为 2361 兆瓦,其中津巴布韦电力公司提供 2039 兆瓦,中国电力公司提供 322 兆瓦(SAPP,2023 年)。各政府机构的预测表明,到 2030 年,赞比亚的峰值需求可能在 3 000 兆瓦至 5 500 兆瓦之间。
Under the Rural Electrification Master Plan for Zambia (REMP), the peak demand for the year 2030 is projected to be 3,295 MW (REA, 2009). Meanwhile, the Power System Development Master Plan for Zambia (PSDMP) estimates peak demand as follows:
根据赞比亚农村电气化总体规划(REMP),2030 年的峰值需求预计为 3295 兆瓦(REA,2009 年)。同时,赞比亚电力系统发展总体规划(PSDMP)对峰值需求的估计如下:
- Base Case: 4,066 MW
- 基础案例:4,066 兆瓦
- High Case: 5,406 MW
- 最高情况:5 406 兆瓦
- Low Case: 3,544 MW (GRZ, 2010)
- 低值情况:3,544 兆瓦(GRZ,2010 年)
A comparison of these peak demand estimates for Zambia is provided in Table 3 below:
下表 3 对赞比亚的这些峰值需求估算进行了比较:
Table 3: Peak Demand Projections for Zambia
表 3:赞比亚高峰需求预测
Year | ZDA | REMP | PSDMP | Actual Installed Capacity | |||
Low | High |
| Base | High | Low | ||
2010 | 1750 | 1800 | 1818 | 1801 | 1940 | 1797 | 1971.4 |
2015 | 2500 | 2800 | 2108 | 2504 | 2857 | 2443 | 2411.1 |
2020 | 3250 | 3800 | 2448 | 2893 | 3432 | 2733 | 2980 |
2023 | - | - | - | - | - | - | 3,768 |
2030 | 4750 | 5800 | 3295 | 4066 | 5406 | 3544 | 5180 |
While standing at an installed capacity of 3,768 MW and expected power developments such as the 250MW from GET FiT, IPPs under OPPPI, ZESCO and IDC, the installed capacity by 2030 would be around 5,180 MW. These predictions may be graphically depicted as shown in Fig 2.
目前的装机容量为 3,768 兆瓦,加上预期的电力发展,如 GET FiT 的 250 兆瓦、OPPPI 下的 IPP、ZESCO 和 IDC,到 2030 年的装机容量将达到约 5,180 兆瓦。如图 2 所示,这些预测可以用图形表示。
Fig 2: Electricity Demand Forecast for Zambia
图 2:赞比亚电力需求预测
It can be seen that as at 2023, the high cases under the ZDA and the PSDMP assumptions are a more reliable basis for the development of the Zambian power system and can be relied upon for the year 2030. Despite the sector showing an un-uniform development, its development trends are within the manageable margins predicted by ZDA and the PSDMP.
可以看出,截至 2023 年,赞比亚电力发展署(ZDA)和《赞比亚电力发展计划》(PSDMP)假设的高案例是赞比亚电力系统发展的一个更可靠的基础,可以作为 2030 年的依据。尽管该部门的发展并不均衡,但其发展趋势仍在 ZDA 和 PSDMP 预测的可控范围内。
2.5 Economic Activities in the Project Areas
2.5 项目区的经济活动
The project is situated in a small holding farming area with isolated commercial farms surrounding the site. Originally, the project site was a commercial farm owned by Mr. Wells Spring & Siavonga (Lusitu). Notably, Mr. Wells Spring & Siavonga (Lusitu) also established the Wells Spring & Siavonga (Lusitu) Primary School, which serves as the major educational facility in the area.
该项目位于一个小型农场区,周围是一些孤立的商业农场。项目所在地最初是 Wells Spring & Siavonga(Lusitu)先生所有的商业农场。值得一提的是,Wells Spring & Siavonga (Lusitu) 先生还建立了 Wells Spring & Siavonga (Lusitu) 小学,作为该地区的主要教育设施。
Fig 3: Wells Spring & Siavonga (Lusitu) Primary School
图 3:Wells Spring & Siavonga (Lusitu) 小学
Fig 4: Mine Operations at Munali Nickle Mine
图 4:穆纳利镍矿的采矿作业 Mine
About 5 km southeast of the project site, mining activities are being conducted by Mazabuka & Siavonga (Lusitu) Nickel Mines (N…) at the Munali Nickel Mines.
在项目所在地东南约 5 公里处,Mazabuka & Siavonga (Lusitu) 镍矿公司(N...)正在 Munali 镍矿进行采矿活动。
The B….. mine site is an underground mining operation first discovered in 1929, with initial production commencing in 1973. The ore extracted from this site includes pyrite, carrollite, and chalcocite. The ore body is extensive, with a mass and dissemination form reaching 1.5 km in length, 5 km in width, and 27 m in thickness.
B.....矿 址是一个地下采矿场,最早发现于 1929 年,1973 年开始投产。该矿区开采的矿石包括黄铁矿、卡罗来石和方铅矿。矿体范围很广,呈块状和散布状,长度达 1.5 公里,宽度达 5 公里,厚度达 27 米。
The mine operations feature two distinct underground workings with four shafts and two inclines. The subsurface depth reaches a maximum of 415 meters and extends about 28,000 meters in length.
矿场有两个不同的地下巷道,包括四个竖井和两个斜井。地下最深处达 415 米,全长约 28,000 米。
Adjacent to B…….. Mine is the M…….. Mine operated by C………… Metals Corporation (C…MC).
毗邻 B........矿是 M........矿,由 C............ Metals Corporation (C...MC) 经营。
2.5.1 Power Supply in the Project Areas
2.5.1 项目区的电力供应
The project areas is traversed by major electricity infrastructure as shown in Fig 5 below:
项目 区域 被 主要电力基础设施穿越,如下图 5 所示:
Fig 5: Electricity Supply Network around Wells Spring & Siavonga (Lusitu)
图 5:水井泉和西亚冯加(卢西图)周围的供电网络
The four (04) 330 kV Northern Backbone Network running between K…… and K….., and the two (02) 220 kV lines between Kitwe and Wells Spring & Siavonga (Lusitu) are about 14 km north of the Project Site. An 11 kV line emanating from the Luangwa 66/11 kV Substations traverses the Project site.
在 K...... 和 K..... 之间运行的四 (04) 条 330 千伏北部 Backbone 电网。 以及基特韦和 Wells Spring & Siavonga (Lusitu) 之间的两 (02) 条 220 千伏线路位于项目地点以北约 14 公里处。一条来自 Luangwa 66/11 千伏 变电站 的 11 千伏线路穿过项目地点。
Evacuation of power from the project site would consider cutting into the Northern Backbone Network or a direct line into the 220/66 kV Zesco Substations which is 8 km east of the project site
从项目现场撤出电力将考虑切入北部主干网或直接接入 220/66 千伏 Zesco 变电站 ,该站位于项目现场以东 8 千米 。
3. | DEVELOPMENT OF SOLAR POWER PROJECT IN ZAMBIA |
3.1 Solar Energy Resource
3.1 太阳能资源
Solar energy is the ultimate source of energy available on Earth. Solar technology is particularly attractive due to its use of a free and abundant resource. However, making effective investment and technical decisions in solar power requires detailed and validated solar and meteorological data. Such data is essential for the cost-effective operation of solar power plants and for managing solar energy within transmission and distribution grids.
太阳能是地球上的终极能源。由于太阳能技术利用的是免费的丰富资源,因此特别具有吸引力。然而,要对太阳能发电做出有效的投资和技术决策,需要详细、有效的太阳能和气象数据。这些数据对于太阳能发电厂的成本效益运营以及在输电和配电网中管理太阳能至关重要。
Today, high-quality solar resource and meteorological data are available, derived from modern satellite observations, atmospheric models, and meteorological services. The solar resource directly influences the amount of electricity that can be generated by solar power plants. Additional meteorological parameters, such as wind, precipitation, and temperature, determine the optimal operating conditions for these plants and are crucial for accurate energy simulation.
如今,人们可以从现代卫星观测、大气模型和气象服务中获得高质量的太阳能资源和气象数据。太阳能资源直接影响太阳能发电厂的发电量。其他气象参数,如风、降水和温度,决定了这些发电厂的最佳运行条件,对于精确的能源模拟至关重要。
The most critical parameter for evaluating solar PV power generation is Global Horizontal Irradiance (GHI). GHI represents the sum of direct and diffuse radiation received on a horizontal plane and is essential for calculating radiation on tilted surfaces. The combination of diffuse and direct components of GHI determines the performance characteristics of PV technology.
评估太阳能光伏发电的最关键参数是全球水平辐照度(GHI)。GHI 表示水平面上接收到的直接辐射和漫射辐射之和,对于计算倾斜表面上的辐射量至关重要。GHI 的漫射和直射部分的组合决定了光伏技术的性能特征。
In Zambia, solar insolation ranges between 1,800 and 2,300 kWh/m²/year, with approximately 3,000 sunshine hours annually, indicating strong potential for solar photovoltaic applications. A solar energy resource assessment for Zambia is illustrated in Fig 6 below.
在赞比亚,太阳能日照介于 1,800 到 2,300 kWh/m² /年之间,年日照时数约为 3,000 小时, 显示出太阳能光伏应用的巨大潜力。赞比亚的太阳能资源评估如下图 6 所示。
Fig 6: Zambia Global Horizontal Irradiation (Solar GIS, 2019)
图 6:赞比亚全球水平辐照(太阳地理信息系统,2019 年)
3.2 Policy, Legal and Regulatory Frameworks
3.2政策、法律和监管框架
3.2.1 Policy Direction
3.2.1 政策方向
The Government of Zambia has indeed recognized the critical role of renewable energy in its future energy strategy. The Vision 2030 document, National Energy Policy 2019, and National Development Plan emphasize the need to diversify the energy generation mix and expand electricity access across the country. Despite regulatory frameworks allowing Independent Power Producers (IPPs) to contribute to the grid since 1995, challenges such as low electricity prices and the financial constraints faced by ZESCO have limited private sector investment. Currently, ZESCO, the state-owned utility, remains the dominant player in both power generation and grid operations.
赞比亚政府确实认识到可再生能源在其未来能源战略中的关键作用。2030 年远景规划》文件、《2019 年国家能源政策》和《国家发展计划》都强调,必须使能源发电组合多样化,并在全国范围内扩大电力供应。尽管自 1995 年以来,监管框架允许独立电力生产商 (IPP) 向电网供电,但低电价和 ZESCO 面临的财务制约等挑战限制了私营部门的投资。目前,国有公用事业公司 ZESCO 在发电和电网运营方面仍占主导地位。
3.2.1.1 Vision 2030
Vision 2030 is a government document that articulates possible long-term alternative development policy scenarios at different points which would contribute to the attainment of the desirable social economic indicators by the year 2030. Zambia's Vision 2030 (2006-2030) aims at transforming Zambia into a prosperous middle-income nation by 2030 and to create a new Zambia which is a “strong and dynamic middle-income industrial nation that provides opportunities for improving the well-being of all, embodying values of socio-economic justice (GRZ, 2006).
2030 年远景规划》是一份政府文件,阐述了不同阶段可能的长期替代发展政策设想,这将有助于在 2030 年之前实现理想的社会经济指标。赞比亚的《2030 年远景规划》(2006-2030 年)旨在到 2030 年将赞比亚转变为一个繁荣的中等收入国家,并创建一个新的赞比亚,即一个 "强大而有活力的中等收 入工业国家,为改善所有人的福祉提供机会,体现社会经济公正的价值观(赞比亚政府, 2006 年)"。
The Vision 2030 identifies energy as one of the important driving forces behind the development of the Zambian economy. Under Vision 2030, energy is classified as a driver of Economic Growth and Wealth Creation. Zambia will therefore, endeavour to provide universal access to clean, reliable and affordable energy at the lowest total economic, financial, social and environmental cost consistent with national development goals by 2030. The targets/goals include:
2030 年远景规划》将能源确定为赞比亚经济发展的重要推动力之一。根据《2030 年远景规划》,能源被列为经济增长和财富创造的驱动力。因此,赞比亚将努力在 2030 年之前,以符合国家发展目标的最低经济、财政、社会和环境总成本,普及清洁、可靠和负担得起的能源。具体目标/目的包括
i. Abundant and reliable supply of affordable energy to both urban and rural areas; ii. Increased renewable alternative sources of energy;
i. 向城市和农村地区s 提供丰富可靠、价格合理的能源; ii 增加可再生替代能源;i.
iii. Export led energy industry; and
iii.以出口为主导的能源工业;以及
iv. Reduce the share of wood fuel to 40 percent by 2030.
四、到 2030 年将木质燃料的比例降至 40%。
The 250 MWp GTL Solar PV Power Project is expected to participate in realising all the four energy goals under Vision 2030 by:
250 MWp GTL 太阳能光伏发电项目预计将通过以下方式参与实现《2030 年远景规划》中的所有四个能源目标:
Providing affordable energy into the National Grid;
为国家电网提供负担得起的能源;
Increasing the share of Solar Power energy into the National Grid;
提高太阳能在国家电网中的比例;
Providing sufficient power into the Grid thereby enabling the country to export surplus power; and
为电网提供充足的电力,从而使国家能够出口剩余电力;以及
By displacing firewood that is currently being used in the rural areas where the power plant will be set up and other areas that shall be connected to the grid as a result of the availability of sufficient power in the Zambian System.
通过取代目前在将建立发电厂的农村地区和其他areas,这些地区将在赞比亚系统提供充足电力后并入电网。
3.2.1.2 National Development Plan
3.2.1.2国家发展计划
The Eighth National Development Plan (8NDP) is indeed a crucial framework for Zambia’s socio-economic transformation. It builds on the goals of Vision 2030 by focusing on strategies and programs designed to improve livelihoods and drive economic growth.
第八个国家发展计划(8NDP)确实是赞比亚社会经济转型的重要框架。该计划以《2030 年远景规划》的目标为基础,重点关注旨在改善民生和推动经济增长的战略和计划。
3.2.1.3 National Energy Policy 2019
3.2.1.32019 年国家能源政策
The NEP 2019 builds on previous policies of 1994 and 2008 and is anchored on the Vision 2030 and the subsequent National Development Plans. The Policy provides guidance for the development of electricity generation, transmission and distribution in the country. The NEP 2019 aims to facilitate the development and deployment of renewable and alternative energy, and promoting security of energy supply through diversification of energy sources at cost reflective pricing which in turn promotes new investment in the sector, consequently scaling up access to energy services in rural and urban areas. The NEP 2019 also considers climate change mitigation and adaptation while advancing sustainable development of the sector.
2019 年国家电力政策》以 1994 年和 2008 年的政策为基础,以《2030 年远景规划》和随后的《国家发展计划》为依托。该政策为该国发电、输电和配电的发展提供了指导。2019 年国家电力政策》旨在促进可再生能源和替代能源的开发和应用,并通过以反映成本的价格实现能源来源多样化来促进能源供应安全,这反过来又会促进对该部门的新投资,从而扩大农村和城市地区获得能源服务的机会。2019 年国家能源计划》还考虑了减缓和适应气候变化问题,同时推进该部门的可持续发展。
3.2.1.4 Private Sector Promotion
3.2.1.4促进私营部门发展
The establishment of the Office for Promoting Private Power Investment (OPPPI), the PPP Department, and initiatives for Public-Private Sector Dialogue underscores the Zambian government's commitment to fostering private sector investment in the energy sector. These efforts are crucial for:
促进私人电力投资办公室 (OPPPI)、公私伙伴关系部和公私部门对话倡议的成立,凸显了赞比亚政府对促进私营部门投资能源行业的承诺。这些努力对于以下方面至关重要
1. Encouraging Investment: By creating dedicated units and promoting dialogue, the government aims to create a more favorable environment for private investments in energy projects.
1.鼓励投资:通过设立专门部门和促进对话,政府旨在为私人投资能源项目创造更有利的环境。
2. Facilitating Public-Private Partnerships (PPPs): The OPPPI and PPP Department work to streamline processes and address challenges associated with public-private collaborations, ensuring that investments in power infrastructure are efficient and effective.
2. 促进公私合作伙伴关系(PPP):PPPI 办公室和 PPP 部门致力于简化流程,解决与公私合作相关的挑战,确保电力基础设施投资的效率和效益。
3. Supporting Sector Development: These units help in advancing policies and frameworks that support the growth and development of the energy sector, aligning with the broader goals of the National Energy Policy and Vision 2030.
3.支持部门发展: 这些部门帮助推进支持能源部门增长和发展的政策和框架,与国家能源政策和《2030 年远景规划》的更广泛目标保持一致。
4. Enhancing Transparency and Communication: They provide a platform for dialogue between the public and private sectors, ensuring that stakeholders can address concerns, share insights, and collaborate on energy projects.
4.增强透明度和沟通: 它们为公共和私营部门之间的对话提供了一个平台,确保利益相关者能够解决关切问题、分享见解并就能源项目开展合作。
5. Driving Sector Innovation: By encouraging private sector involvement, the government aims to introduce innovative technologies and solutions that can enhance energy production, distribution, and consumption.
5.推动部门创新:通过鼓励私营部门参与,政府旨在引入创新技术和解决方案,从而提高能源生产、分配和消费。
3.2.1.5 RE-FiT Strategy
3.2.1.5RE-FiT 战略
The Renewable Energy Feed-in Tariff (RE-FiT) Strategy is a government power sector initiative to accelerate private investments in small- and medium sized renewable energy projects of up to 20 MW. The strategy is aimed at increasing access to clean energy services and supplements other government’s power generation investment programs contained in the Power Systems Development Master Plan and other plans.
可再生能源上网电价(RE-FiT)战略是政府电力部门的一项举措,旨在加速私人投资 20 兆瓦以下的中小型可再生能源项目。该战略旨在提高清洁能源服务的可及性,并补充政府电力系统发展总体规划和其他规划中的发电投资计划。
The Strategy is a guide to Government’s intention of developing the Renewable Energy subsector to supplement the large hydro energy sources which have been negatively affected by changes in the climatic trends, levels and patterns in the recent past.
该战略指导政府打算发展可再生能源分部门,以补充近期受气候趋势、水平和模式变化负面影响的大型水力能源。
3.2.2 Legal Frameworks
3.2.2 法律框架
3.2.2.1 Electricity Act 2019
3.2.2.12019 年电力法
The Electricity Act of 2019 in Zambia was enacted to replace the previous Electricity Act of 1995, aiming to improve and modernize the electricity sector. Key features and objectives of the Electricity Act of 2019 include:
赞比亚颁布的《2019年电力法》 取代了之前的《1995年电力法》,旨在改善电力部门并使其现代化。2019 年《电力法》的主要特点和目标包括:
Roles and Responsibilities
角色与责任:
Clearly defines the roles and responsibilities of various stakeholders in the electricity sector, including generators, transmitters, distributors, and suppliers.
明确界定电力部门各利益相关方(包括发电商、输电商、配电商和供应商)的角色和责任。
Investment Facilitation
投资便利化:
Establishes frameworks to encourage and facilitate adequate levels of investment in the electricity sector, supporting infrastructure development and sector growth.
建立框架,鼓励和促进对电力部门的适当投资,支持基础设施发展和部门增长。
Tariff Adjustment
关税调整:
Introduces a multi-year tariff adjustment framework, allowing for regular updates and adjustments to electricity tariffs based on market conditions, operational costs, and investment needs.
引入多年期电价调整框架,允许根据市场条件、运营成本和投资需求定期更新和调整电价。
Transparency and Risk Management
透明度和风险管理:
Aims to promote transparency in the identification and allocation of risks, costs, and revenues among participants in the electricity sector. This ensures fair practices and clear understanding of financial and operational responsibilities.
旨在提高电力部门参与者在确定和分配风险、成本和收入方面的透明度。这将确保公平的做法,以及对财务和运营责任的明确理解。
Consumer Protection and Safety
消费者保护与安全:
Ensures the protection and safety of electricity consumers and the general public by setting standards and regulations that safeguard their interests.
通过制定保障电力消费者和公众利益的标准和法规,确保电力消费者和公众的保护和安全。
Overall, the Electricity Act of 2019 is designed to enhance the efficiency, sustainability, and reliability of Zambia's electricity sector, aligning with broader national energy goals and policies.
总体而言,2019 年《电力法》旨在提高赞比亚电力部门的效率、可持续性和可靠性,与更广泛的国家能源目标和政策保持一致。
3.2.2.2 Energy Regulation Act 2019
3.2.2.2《2019 年能源监管法》
The Act was established to provide for the regulation of the energy sector. The energy sector is composed of the electricity and petroleum subsectors. The Energy Regulation Act of 2019 was established to:
该法的制定是为了对能源部门进行监管。能源部门由电力和石油两个分部门组成。制定《2019 年能源管理法》的目的是:
provide for the licensing of enterprises in the energy sector;
为能源部门的企业颁发许可证;
provide for the continued existence of the Energy Regulation Board and re-define its functions;
规定能源管理委员会继续存在,并重新界定其职能;
re-constitute and revise the functions of the Board;
重新组建并修订理事会的职能;
repeal and replace the Energy
废除和取代能源法案
Regulation Act of 1995; and
1995 年管理法》;以及
provide for any other matters connected with the above.
提供与上述有关的任何其他事项。
3.2.2.3 Zambia Grid Code (ZAGC)
3.2.2.3 赞比亚网格代码 (ZAGC)
The ZAGC was approved by the Energy Regulation Board in 2007, and was gazette in August 2013, through Statutory Instrument No. 79 of 2013 (SI 79 of 2013 – Electricity (Grid Code) Regulations, 2013). The ZAGC is aimed at facilitating open and non-discriminatory access to the transmission system and enhancing efficiency and rapid electrification of the country.
ZAGC 于 2007 年获得能源监管委员会批准,并于 2013 年 8 月通过 2013 年第 79 号法定文书(2013 年第 79 号 SI - 2013 年《电力(电网代码)条例》)在公报上公布。ZAGC 旨在促进输电系统的开放和非歧视性使用,并提高效率和国家的快速电气化。
3.2.2.4 Other Applicable Codes, Regulations and Standards
3.2.2.4其他适用的规范、规定和标准。
The Companies Act of 1994 governs the registration and administration of companies in Zambia. The Zambia Development Agency Act provides a wide range of incentives, allowances, and exemptions and concessions to companies. It defines investor protections and additionally governs issues related to land use, development, and ownership. Additional laws and regulations affecting foreign investment include the Customs and Excise Act, the Income Tax Act, the Value Added Tax Act, Employment Act, and the Immigration and Deportation Act.
1994 年《公司法》规定了赞比亚公司的注册和管理。赞比亚发展机构法》为公司提供了广泛的激励、津贴、豁免和优惠。该法规定了对投资者的保护,并对与土地使用、开发和所有权相关的问题进行了补充规定。影响外国投资的其他法律法规包括《海关和消费税法》、《所得税法》、《增值税法》、《就业法》以及《移民和驱逐出境法》。
3.2.3 Regulatory Framework
3.2.3 监管框架
3.2.3.1 Institutional Arrangement
3.2.3.1 体制安排
Ministry of Energy
能源部
The Ministry of Energy (MOE) is responsible for the development and management of energy resources in a sustainable manner. The MOE is responsible for the formulation and implementation of the national energy policy, coordination of stakeholders in the sector, the development of a national energy strategy and plan, the monitoring and evaluation of current policies, and the development of new energy programs. The Ministry of Energy supervises the following statutory bodies: Energy Regulation Board (ERB); Zambezi River Authority (ZRA); and Rural Electrification Authority (REA).
能源部(MOE)负责以可持续的方式开发和管理能源资源。能源部负责制定和实施国家能源政策,协调该部门的利益相关者,制定国家能源战略和计划,监督和评估现行政策,以及制定新的能源计划。能源部监管以下法定机构:能源管理委员会(ERB)、赞比西河管理局(ZRA)和农村电气化管理局(REA)。
Office for Promoting Private Power Investment (OPPPI)
关闭促进私人电力投资办公室(OPPPI)
The OPPPI is a Unit under the Ministry of Energy. The OPPPI is mandated to promote private investment in the generation and transmission.
公共政策促进办公室是能源部下属的一个单位。该办公室的任务是促进发电和输电领域的私人投资。
Energy Regulation Board (ERB)
能源监管局(ERB)
The Energy Regulatory Board was established under the Energy Regulation Act Chapter 436 of the Laws of Zambia. The continued existence of the ERB has been echoed in the Energy Regulation Act of 2019. The ERB is mandated to regulate the energy sector in order to ensure the efficient provision of reliable and quality energy services and products. ERB regulates the energy sector is achieved through issuance of appropriate licences.
能源监管委员会是根据《赞比亚法律》第436章《能源监管法》成立的。2019年的《能源监管法》也重申了能源监管局的继续存在。能源监管局的任务是监管能源行业,以确保有效提供可靠和优质的能源服务和产品。ERB通过发放适当的许可证对能源部门进行监管。
ZESCO Limited
ZESCO 有限公司
ZESCO Limited was established as the Zambia Electricity Supply Corporation in 1970. Arising from the energy sector reforms of 1994, ZESCO was transformed to ZESCO Limited. Currently, ZESCO is a member of the Industrial Development Corporation. ZESCO owns and operates the majority of electricity grid and is responsible for much of the country’s power generation.
ZESCO 有限公司成立于 1970 年,当时名为赞比亚电力供应公司。1994 年能源部门改革后,ZESCO 更名为 ZESCO 有限公司。目前,ZESCO 是工业发展公司的成员。ZESCO 拥有并运营着大部分电网,并负责全国的大部分发电量。
Industrial Development Corporation (IDC)
工业发展公司(IDC)
The IDC was established in 2014 to create and maximise long-term shareholder value as an active investor and shareholder of successful state-owned enterprises, as well as undertake industrialisation and rural development activities through the creation of new industries.
IDC 成立于 2014 年,旨在作为成功国有企业的积极投资者和股东,创造和最大化长期股东价值,并通过创建新产业开展工业化和农村发展活动。
The IDC’s corporate strategy of 2017 outlines the company’s strategic focus during the next five years. It also outlines the role the IDC will play in the industrialisation agenda for the country. Using this plan, the IDC will position itself to be Government’s principal special purpose vehicle for industrialisation and investment acceleration. The IDC is spearheading the diversification of country’s energy mix by establishing alternative sources of power such as solar.
IDC 2017 年企业战略概述了公司未来五年的战略重点。它还概述了 IDC 将在国家工业化议程中发挥的作用。根据这一计划,IDC 将把自己定位为政府促进工业化和加快投资的主要特殊目的机构。IDC 正在通过建立太阳能等替代能源,带头实现国家能源结构的多样化。
Zambia Development Agency (ZDA)
赞比亚发展署(ZDA)
Established in 2006, the Zambia Development Agency is an important contact point for foreign investors. Its mandate includes the promotion of trade and investments, and the agency acts as a platform connecting investors with information and services supporting market entry. The agency supports investors in the acquisition of land, the subscription to and procurement of water, electricity and communication as well as transportation, application for legal immigration status, and application for sector-specific licenses. The ZDA recognizes the importance of investment in energy and employs a specific expert for investments in energy.
赞比亚发展署成立于 2006 年,是外国投资者的重要联络点。该机构的任务包括促进贸易和投资,是一个将投资者与支持市场进入的信息和服务联系起来的平台。该机构支持投资者获得土地,订购和采购水、电、通信和运输,申请合法移民身份,以及申请特定行业的许可证。ZDA 认识到能源投资的重要性,并专门聘请了一位能源投资专家。
Zambia Revenue Authority (ZRA)
赞比亚税务局(ZRA)
The Zambia Revenue Authority is they key agency governing domestic and customs taxes, including considerations of VAT, import tariffs, and business taxes.
赞比亚税务局是管理国内税和关税的主要机构,包括增值税、进口关税和营业税。
Zambia Environmental Management Agency (ZEMA)
赞比亚环境管理局(ZEMA)
The Zambia Environmental Management Agency advises on environmental policy formulation, makes recommendations for the sustainable management of the environment, ensures the integration of environmental concerns in overall national planning, reviews environmental impact assessment (EIA) and strategic environmental assessment (SEA) Reports, and facilitates public access to environmental information in the Country.
赞比亚环境管理局就环境政策的制定提供咨询意见,就环境的可持续管理提出建议,确保将环境问题纳入国家总体规划,审查环境影响评估(EIA)和战略环境评估(SEA)报告,并为公众获取国家环境信息提供便利。
3.2.3.2 Permitting Process
3.2.3.2 许可程序
Zambia Development Agency Investment License
赞比亚发展署投资许可证
Until recently, the Zambia Development Agency (ZDA) used to issue Investment Promotion and Protection Agreements (IPPA) that offered protection of the investments in Zambia. The IPPA has since been replaced with an investment licence that is renewed annually.
直到最近,赞比亚发展署(ZDA)还在签发《投资促进和保护协议》(IPPA),为在赞比亚的投资提供保护offered protection of the investments in Zambia.此后,《投资保护协定》被每年更新的投资许可证所取代。
The licenses issued by ZDA carries investment protection and incentives applicable to respective sectors. Power developers are required to register with ZDA at an early stage to unlock the subsequent services offered by Government.
ZDA 颁发的许可证具有 适用于各行业的投资保护和激励措施。电力开发商必须尽早在 ZDA 注册,以获得政府提供的后续服务off 。
ERB Construction License
ERB 建筑执照
The enactment of the Energy Regulation Act No.12 of 2019 replaced the Investment Endorsement Licence by the Energy Regulation Board (ERB) with a Construction License for the establishment of an energy infrastructure prior to the issuance of an operating licence. This Permit assures the developer that once the facility is built in accordance with the design specifications and in compliance with national technical standards, the ERB would issue the substantive licence for generation, distribution or transmission, as the case may be.
2019 年第 12 号《能源监管法》的颁布,用 "建设许可证 "取代了能源监管局(ERB)的 "投资认可许可证",用于在颁发运营许可证之前建立能源基础设施。该许可证向开发商保证,一旦设施按照设计规范和国家技术标准建成,能源管理委员会将视情况颁发发电、配电或输电的实质性许可证。
ERB Operational Licenses
ERB 运行许可证
Power developers in Zambia are required to obtain operating licenses for the operation power infrastructure in the country. The developer will in most cases be required to submit proof that an environmental impact assessment has been approved, business registration completed and proof of the financial viability of the project as evidenced by a business plan, power purchase agreement, tariff model, and
赞比亚的电力开发商必须获得运营该国电力基础设施的经营许可证。在大多数情况下,开发商需要提交环境影响评估已获批准的证明、已完成商业注册的证明,以及项目财务可行性的证明,如商业计划、购电协议、电价模式和其他相关文件。
The Environmental Compliance - Zambia Environmental Management Agency (ZEMA)
环境合规 - 赞比亚环境管理局(ZEMA)
The Environment Management Act No. 12 0f 2011 and the Environmental Impact Assessment (EIA) Regulations, Statutory Instrument No. 28 of 1997, makes it mandatory to obtain environmental clearance for projects listed under the First and Second Schedules of the (EIA) Regulations. The EIA Regulations classifies projects into two categories. Projects under the First
2011 年第 12 号《环境管理法》和 1997 年第 28 号法定文书《环境影响评估(EIA)条例》规定,《(EIA)条例》附表 1 和附表 2 所列项目必须获得环境许可。环境影响评估条例》将项目分为两类。第一类项目
Schedule require that an Environmental Project Brief (EPB) is prepared while projects under the Second Schedule require an Environmental Impact Statement (EIS). ZEMA confirmed that the project falls under the First Schedule.
附表要求编制环境项目简介(EPB),而附表二中的项目则要求编制环境影响报告书(EIS)。ZEMA 证实,该项目属于附表一。
Local Planning Authority: Building Permit
当地规划局:建筑许可
The developer is required by Law under the Town and Country Planning Act and the Public Health (Building) Regulations to obtain Planning Permission to develop land and a Building permit from the Local Authority to erect a structure. The submitted building plans are scrutinized by the City/Town Council before recommendations to a committee for either outright approval, approval with conditions or disapproval. This is followed by Full Council ratification of grant of Planning Permission to develop and a Building Permit is issued.
根据《城乡规划法》和《公共卫生(建筑)条例》,开发商在开发土地时必须获得规划许可,在建造建筑物时必须获得地方当局的建筑许可。提交的建筑图纸先由市/镇议会进行审查,然后向委员会提出完全批准、有条件批准或不批准的建议。随后,全会批准授予开发规划许可,并颁发建筑许可证。
Building Permit allows the developers to start developing within six (6) months failure to which the permit elapses and has to be renewed. Construction should be completed within eighteen (18) months from the date it is granted. Building Permit can only be obtained after approval of the projects from ZEMA.
建筑许可证允许开发商在六(6)个月内开始开发,否则许可证失效,必须续期。建筑工程应在获得许可证之日起十八((18) 个月内完成。只有在项目获得 ZEMA 批准后,才能获得建筑许可证。
3.3 Utility Scale Renewable Energy Initiatives in Zambia
3.3赞比亚公用事业规模可再生能源倡议
The impact of climate change has significantly impacted Zambia’s electricity industry which is predominantly hydro dependent. The Government of Zambia has embarked initiatives to procure renewable energy-based power, namely, Scaling Solar Zambia, Zambia REFiT Program (GET FiT small hydro and GET FiT solar) and other private sector driven initiatives. These initiatives constitute efforts to mitigate impact of climate change on the electricity industry. Significant local and international private sector participation in the electricity sector is encouraged with necessary support from government agencies available to facilitate development of electrical energy infrastructure in the country.
气候变化的影响对赞比亚的电力行业产生了重大影响,因为赞比亚的电力行业主要依赖水力发电。赞比亚政府已开始采取采购可再生能源电力的举措,即:赞比亚太阳能升级计划、赞比亚可再生能源和碳交易计划(GET FiT 小水电和 GET FiT 太阳能)以及其他私营部门推动的举措。这些举措努力减轻气候变化对电力行业的影响。在政府机构的必要支持下,鼓励当地和国际私营部门大力参与电力部门,以促进该国电力能源基础设施的发展。
Scaling Solar Zambia (IDC)
扩大赞比亚太阳能规模(IDC)
Scaling Solar is an open and competitive approach that facilitates the rapid development of privately owned, utility-scale solar PV projects in Sub-Saharan Africa. Through appropriate risk mitigation measures and multilateral financial guarantees, Scaling Solar enables governments and utilities to procure solar power at the lowest possible cost.
Scaling Solar 是一种开放和竞争的方法,有助于在撒哈拉以南非洲快速开发私人拥有的公用事业规模太阳能光伏发电项目。通过适当的风险缓解措施和多边财政担保,Scaling Solar 使政府和公用事业部门能够以尽可能低的成本采购太阳能电力。
The 86 MW Solar Power plants at the Lusaka South Multi Facility Economic Zone (LS MFEZ) were a result of the Scaling Solar Zambia Program under the IDC.
卢萨卡南部多设施经济区(LS MFEZ)的 86 兆瓦太阳能发电厂是 IDC 的 "扩大赞比亚太阳能计划 "的成果。
GET FiT Zambia
赞比亚 GET FiT
The Global Energy Transfer Feed in Tariff (GET FiT) is a program under the RE FiT Strategy that is managing the procurement of RE FiT sized energy project.
全球能源转让上网电价(GET FiT)是可再生能源上网电价战略下的一项计划,负责管理可再生能源上网电价规模能源项目的采购。
Alternative Renewable Energy Investment Program (ARIEP) (IDC)
替代性可再生能源投资计划(ARIEP)(IDC)
The Alternative Renewable Energy Investment Program is a mechanism under the IDC aimed at attracting Renewable energy developers for investment by the IDC. IDC is an investment holding established by the Zambian Government in order to enhance industrial development. Currently, IDC is the investment holding company for all state-owned enterprises, on behalf of the Minister of Finance.
替代性可再生能源投资计划是 IDC 的一项机制,旨在吸引可再生能源开发商参与 IDC 的投资。IDC 是赞比亚政府为促进工业发展而设立的投资控股公司。目前,IDC 是代表财政部长管理所有国有企业的投资控股公司。
Private Sector Initiated Projects
私营部门发起的项目
In Zambia, the private sector is at liberty to pursue the development of power development projects through mechanisms under the Ministry of Energy, ZESCO, PPP Unit and IDC. The 250 MWp GTL Solar PV Power Plant is one of the projects that has been initiated by the private sector through the facilitation of the Ministry of Energy.
在赞比亚,私营部门可以通过能源部、赞比亚能源公司(ZESCO)、公私伙伴关系部门和国际开发公司(IDC)的机制自由开发电力开发项目。250 MWp GTL 太阳能光伏电站就是私营部门在能源部的推动下启动的项目之一。
4. | PROJECT AREAS |
Overview
概述
The proposed 250 MWp GTL Solar PV Power Project will be located at Wells Spring & Siavonga (Lusitu) in Mazabuka & Siavonga (Lusitu) Districts. The project areas is in extent of 1,200 Ha.
拟建的 250 MWp GTL 太阳能光伏发电项目将位于 Wells Spring &;Siavonga (Lusitu) in Mazabuka &;Siavonga (Lusitu)Districts.项目区 面积为 1 200 公顷。
Physical Characteristics
物理特征
Relief
救济
The project areas lies at elevation of about 994 absl and there is minimal change in ground elevation owing to the small size of the plot. Nonetheless, a gradual slope is evident towards the southern end of the site. In the distant southern part of the areas are hills of about 1077 – 1097 m absl which form part of the Munali hills. The 330kV transmission line from Kariba North Bank Power Station traverses through these hills.
项目 区 位于 海拔约 994 absl 处,由于地块面积较小,地面标高变化极小。不过,地块南端有一个明显的渐变斜坡。在 地区 南部的远处,是海拔约 1077 米至 1097 米的山丘,是 Munali 山丘的一部分。来自卡里巴北岸发电站的 330 千伏输电线路穿过这些山丘。
Fig 7: Relief in the Project Site
图 7:项目地点的浮雕
Drainage
排水
The drainage at the project site is largely influenced by the Baluba Stream which itself is a tributary to the Kafue River. The Baluba Stream is on the southern edge of the GTL project site.
项目所在地的排水系统主要受到巴卢巴溪流的影响,而巴卢巴溪流本身就是卡富埃河的一条支流。巴卢巴溪流位于GTL 项目场地的南部边缘。
In the proximity of the site, water drainage systems head south west before joining the Baluba Stream. The Baluba Stream moves southwards at its source near Kaniki Bible College in Ndola and assumes a western flow around the project site. Drainage in the project areas is shown in Fig 8 below:
在工地附近,排水系统向西南方向延伸,然后汇入巴卢巴溪流。巴卢巴溪流在恩多拉卡尼基圣经学院附近的源头向南流动,并在项目地点周围形成西流。项目区的排水情况 如下图 8 所示:
Fig 8: Drainage in the Project Areas
图 8:项目区的排水系统
Soils
土壤
Soils in the project areas consists clayey soils (Fig 9).
项目 区 的土壤由粘性土壤组成(图 9)。
Fig 9: Characteristic Soils of the Project Areas
图 9:项目区的土壤特性
Clayey soil comprises of very fine mineral particles and not much organic material and has a high capacity for water holding. Wet clay soil is very sticky and contains very little air and in clay, the size of soil particles is less than 0.2mm, and inorganic matter in clayey soil is rich.
粘性土壤由非常细的矿物颗粒组成,有机物质不多,具有很强的保水能力。潮湿的粘土非常粘稠,空气含量极少,在粘土中,土壤颗粒的大小小于 0.2 毫米,粘土中的无机物含量丰富。
Climate
气候
The climate for the project areas is Agro-Ecological Zone III as shown in Fig 10 below:
项目区域的气候为农业生态区 III,如下图 10 所示:
Fig 10: Zambia Agro-Ecologic Zones
图 10:赞比亚农业生态区
Agro-Ecological Zone III forms the northern half of Zambia with prolific rainfalls compared to the southern half (Zones I, II and IIa). The Zone receives about 1000 – 1500 mm of rainfall annually and is viable for most subsistence and commercial crops.
第三农业生态区位于赞比亚的北半部,与南半部(第一、第二和第二a区)相比雨量充沛。该区年降雨量约为 1000-1500 毫米,适合种植大多数生计作物和经济作物。
The climate at the GTL Solar PV Project mainly that of Mazabuka & Siavonga (Lusitu) Districts. The site is however centrally located on the Copperbelt Province, with Ndola, 33 km on the east, Mazabuka & Siavonga (Lusitu), 22 km on the south and Kitwe 23 km in the north west.
GTL 太阳能光伏项目的气候主要是Mazabuka &;Siavonga (Lusitu)Districts.不过,该地点位于铜带省的中心位置,东面 33 公里处是恩多拉,南面 22 公里处是马扎布卡和amp; Siavonga (Lusitu) ,西北面 23 公里处是基特韦。
Mazabuka & Siavonga (Lusitu) like most parts of the Copperbelt Province is subjected to seasonal variations with the wet season being muggy and overcast, the dry season, windy and mostly clear. The place is generally warm throughout the year. Over the course of the year, the temperature typically varies from 9°C to 34°C and is rarely below 7°C or above 37°C.
Mazabuka & Siavonga (Lusitu) 与铜带省的大部分地区一样,这里也存在季节性变化,雨季闷热阴沉,旱季多风,大部分时间晴空万里。这里全年气候温暖。全年气温通常在 9°C 至 34°C 之间,很少低于 7°C 或高于 37°C。
4.2.4.1 Seasonal Variations
4.2.4.1 季节性变化
The project areas has a tropical and sub-tropical climate with two main seasons: the rainy season (October to April) and the dry season (May to September). The dry season is subdivided into the cool and dry season (May to August), and the warm and dry season (September to October).
项目 地区 属 热带和亚热带气候,有两个主要季节:雨季(10 月至次年 4 月)和旱季(5 月至 9 月)。旱季又分为凉爽干燥季(5 月至 8 月)和温暖干燥季(9 月至 10 月)。
4.2.4.2 Average Temperature
4.2.4.2 平均温度
The hot season in Mazabuka & Siavonga (Lusitu) lasts for 2 months, from September 13 to November 12, with an average daily high temperature above 32°C. The hottest month of the year is October, with an average high of 34°C and low of 18°C.
Mazabuka & Siavonga(卢西图) 的热季从 9 月 13 日持续到 11 月 12 日,为期 2 个月,日平均最高气温超过 32°C。一年中最热的月份是 10 月,平均最高气温 34°C,最低气温 18°C。
The cool season lasts for 7.2 months, from December 23 to July 30, with an average daily high temperature below 27°C. The coldest month of the year in Mazabuka & Siavonga (Lusitu) is June, with an average low of 10°C and high of 25°C. The average monthly temperatures for the project site are shown in Table 4 below:
冷季从 12 月 23 日至 7 月 30 日,长达 7.2 个月,日平均最高气温低于 27°C。Mazabuka & Siavonga (Lusitu) 一年中最冷的月份是 6 月,平均最低气温为 10°C,最高气温为 25°C。项目地点的月平均气温如下表 4 所示:
Table 4: Average Monthly Temperatures
表 4:月平均气温
Average | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
High | 26°C | 26°C | 26°C | 27°C | 26°C | 25°C | 26°C | 29°C | 33°C | 34°C | 32°C | 27°C |
Temp. | 21°C | 21°C | 21°C | 20°C | 18°C | 17°C | 17°C | 20°C | 24°C | 26°C | 25°C | 22°C |
Low | 17°C | 17°C | 17°C | 15°C | 12°C | 10°C | 9°C | 12°C | 15°C | 18°C | 19°C | 18°C |
A compact characterisation of the annual hourly average temperatures during the course of the year are shown in Fig 11. The horizontal axis is the day of the year, the vertical axis is the hour of the day, while the colour is the average temperature for that hour and day.
图 11 显示了全年每小时平均气温的紧凑特征 。横轴是一年中的一天,纵轴是一天中的一小时,而颜色则是这一小时和一天的平均气温。
Fig 11: Annual Hourly Average Temperatures
图 11:全年每小时平均气温
4.2.4.3 Sunshine
Sunshine Hours
阳光时间
In 2023, the shortest day is expected to be June 21 which had 11 hours, 21 minutes of daylight while the longest day will be December 22, with 12 hours, 54 minutes of daylight (Weather Spark, 2023).
2023 年,预计最短的一天是 6 月 21 日,日照时间为 11 小时 21 分钟;最长的一天是 12 月 22 日,日照时间为 12 小时 54 分钟(Weather Spark,2023 年)。
Table 5 below shows the average monthly sunshine hours in Mazabuka & Siavonga (Lusitu) for the year 2023.
下表 5 显示了 2023 年马扎布卡和西亚冯加(卢西图)的月平均日照时数。
Table 5: Average Monthly Sunshine Hours
表 5:月平均日照时数
Month | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
Hours of Daylight | 12.8 | 12.5 | 12.2 | 11.8 | 11.5 | 11.4 | 11.4 | 11.7 | 12.0 | 12.4 | 12.7 | 12.9 |
Sunrise and Sunset
日出日落
The earliest sunrise in 2023 in Mazabuka & Siavonga (Lusitu) is expected at 5:29 AM on November 21, and the latest sunrise is 1 hour, 1 minute later at 6:29 AM on July 12. The earliest sunset is at 5:46 PM on May 30, and the latest sunset is 54 minutes later at 6:40 PM on January 23.
2023年Mazabuka & Siavonga(Lusitu)最早的日出时间为11月21日早上5:29,最晚的日出时间为1小时1分钟后的7月12日早上6:29。最早日落时间为 5 月 30 日下午 5:46,最晚日落时间为 54 分钟后的 1 月 23 日下午 6:40。
A compact representation of the sun's elevation (the angle of the sun above the horizon) and azimuth (its compass bearing) for every hour of every day in the year 2023 is shown in Fig 9 below:
2023 年每天每小时的太阳仰角(太阳与地平线的夹角)和方位角(太阳的罗盘方位)的紧凑表示法如下图 9 所示:
Fig 12: Sun's Elevation and Azimuth at the Project Site for the Year 2023
图 12:2023 年项目地点的太阳高度和方位角
The horizontal axis is the day of the year and the vertical axis is the hour of the day. For a given day and hour of that day, the background colour indicates the azimuth of the sun at that moment. The black isolines are contours of constant solar elevation.
横轴为一年中的某一天,纵轴为一天中的某一小时。对于某一天的某一时刻,背景颜色表示该时刻的太阳方位角。黑色等值线表示恒定的太阳高度。
The background colour fills indicate the azimuth (the compass bearing) of the sun. The lightly tinted areass at the boundaries of the cardinal compass points indicate the implied intermediate directions (northeast, southeast, southwest, and northwest).
背景色填充表示太阳的方位角(指南针方位)。区域位于指南针红心点边界的浅色调表示隐含的中间方向(东北、东南、西南和西北)。
4.2.4.4 Cloud Cover
4.2.4.4 云封面
The clearer part of the year in Mazabuka & Siavonga (Lusitu) begins around April 7 and lasts for 6.5 months, ending around October 24. The clearest month of the year in Mazabuka & Siavonga (Lusitu) is July, during which on average the sky is clear, mostly clear, or partly cloudy 89% of the time.
Mazabuka & Siavonga (Lusitu) 一年中 最晴朗的部分大约从 4 月 7 日开始,持续 6 个半月,大约在 10 月 24 日结束。Mazabuka & Siavonga(Lusitu) 一年中最晴朗的月份是 7 月,平均 89% 的时间天空晴朗、基本晴朗或部分多云。
The cloudier part of the year begins around October 24 and lasts for 5.5 months, ending around April 7. The cloudiest month of the year in Mazabuka & Siavonga (Lusitu) is January, during which on average the sky is overcast or mostly cloudy 86% of the time. The percentage of time spent in each cloud cover band, categorized by the percentage of the sky covered by clouds is given in Table 6 below:
一年中云量较多的时期大约从 10 月 24 日开始,持续 5.5 个月,大约在 4 月 7 日结束。Mazabuka & Siavonga (Lusitu) 一年中云量最多的月份是一月,平均有 86% 的时间天空阴沉或多云。根据云层覆盖天空的百分比划分的各云层段所占时间百分比见下表 6:
Table 6: Annual Percentage of Time Cloud Cover
表 6:每年云层覆盖的时间百分比
Fraction | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
Cloudier | 86% | 81% | 67% | 41% | 23% | 12% | 11% | 15% | 21% | 42% | 67% | 83% |
Clearer | 14% | 19% | 33% | 59% | 77% | 88% | 89% | 85% | 79% | 58% | 33% | 17% |
4.2.4.5 Humidity
4.2.4.5 湿度
The muggier period in the year 2023 would last for 4.7 months, from November 21 to April 12, during which time the comfort level is muggy, oppressive, or miserable at least 11% of the time. The month with the most muggy days in Mazabuka & Siavonga (Lusitu) is January, with 12.6 days that are muggy or worse. The least muggy day of the year is July 23, when muggy conditions are essentially not present.
2023年的闷热期将持续4.7个月,从11月21日到4月12日,在此期间,至少有11%的时间舒适度是闷热、压抑或痛苦的。 最闷热 的月份是 1 月份,有 12.6天闷热或更糟糕。一年中最不闷热的日子是 7 月 23 日,基本上没有闷热天气。
4.2.4.6 Wind
Wind Speed
风速
The windier part of the year lasts for 5.4 months, from June 3 to November 15, with average wind speeds of more than 14.1 km.h-1 per hour. The windiest month of the year in Mazabuka & Siavonga (Lusitu) is September, with an average hourly wind speed of 18.5 km.h-1. The calmer time of year lasts for 6.6 months, from November 15 to June 3. The calmest month of the year in Mazabuka & Siavonga (Lusitu) is February, with an average hourly wind speed of 9.5 km.h-1. The monthly average wind speeds at the project site are shown in Table 7 below
全年风力最大的时段为 6 月 3 日至 11 月 15 日,长达 5.4 个月,平均风速 超过 14.1 km.h-1 每小时 。Mazabuka & Siavonga (Lusitu) 一年中风力最大的月份是 9 月份,平均每小时风速 为 18.5 km.h-1 。一年中较平静的时间持续 6.6 个月,从 11 月 15 日到 6 月 3 日。Mazabuka & Siavonga (Lusitu) 一年中最平静的月份是二月份,平均每小时风速 为 9.5 km.h-1 。项目所在地的月平均风速见下表 7。
Table 7: Monthly Average Wind Speeds at the Project Site
表 7:项目地点的月平均风速
Month | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
Wind Speed (km.h-1) | 9.6 | 9.5 | 11.2 | 13.6 | 13.9 | 14.7 | 15.9 | 17.3 | 18.5 | 18 | 13.9 | 10.3 |
Wind Direction
风向
The predominant average hourly wind direction at the project site is from the east throughout the year as shown in Fig 13 below:
如下图 13 所示,项目所在地全年平均每小时的主要风向为东风:
Fig 13: Average Hourly Wind Direction at the Project Site
图 13:项目地点的每小时平均风向
The percentage of hours in which the mean wind direction is from each of the four cardinal wind directions, excluding hours in which the mean wind speed is less than 1.6 km.h-1. The lightly tinted areass at the boundaries are the percentage of hours spent in the implied intermediate directions (northeast, southeast, southwest, and northwest)
平均风向来自四个基本风向的小时数百分比,不包括平均风速小于 1.6 km.h 的小时数-1。边界上浅色的区域是在隐含的中间方向(东北、东南、西南和西北)上花费的时间百分比。
4.2.4.7 Rainfall in Mazabuka & Siavonga (Lusitu)
4.2.4.7 马扎布卡和西亚文加(卢西图)的降雨量
Like the most parts of Zambia, rainfall over Mazabuka & Siavonga (Lusitu) and the Project Site is derived mainly from a lowpressure system caused by the convergence of the Trade Winds known as the Inter Tropical Convergence Zone (ITCZ).
与赞比亚大部分地区一样,Mazabuka &;Siavonga (Lusitu) 和项目地点的降雨主要来自被称为热带辐合带(ITCZ)的信风辐合造成的低压系统。
The rainy period of the year lasts for 6.4 months, from October 13 to April 27, with a sliding 31-day rainfall of at least 13 millimeters. The month with the most rain in Mazabuka & Siavonga (Lusitu) is January, with an average rainfall of 242 millimeters. The rainless period of the year lasts for 5.6 months, from April 27 to October 13. The month with the least rain in Mazabuka & Siavonga (Lusitu) is July, with an average rainfall of 0 millimeters. The monthly average rainfall in Kafue is given in Table 8 below:
每年的雨季从 10 月 13 日到次年 4 月 27 日,持续 6.4 个月,31 天的滑动降雨量至少为 13 毫米。Mazabuka & Siavonga (Lusitu) 雨量最多的月份是一月,平均降雨量为 242 毫米。全年无雨期为 5.6 个月,从 4 月 27 日到 10 月 13 日。Mazabuka & Siavonga (Lusitu) 降水最少的月份是 7 月,平均降雨量为 0 毫米。卡富埃的月平均降雨量见下表 8:
Table 8: Monthly Average Rainfall in Mazabuka & Siavonga (Lusitu)
表 8:马扎布卡和西亚文加(卢西图)的月平均降雨量
Month | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
Rainfall (mm) | 241.8 | 221.2 | 110.8 | 26.9 | 3.2 | 0.1 | 0.1 | 0.2 | 0.9 | 15.1 | 82.6 | 211.0 |
4.2.5 Geology
4.2.5 地质学
The structure of the Zambian Copperbelt formed mainly in response to the Lufilian Orogeny (circa 600 Ma). The Copperbelt occupies an areas which is about 160 kilometres long at the southern extremity of the 800 km long Lufilian fold belt (Fig 14).
赞比亚铜带的结构主要是在卢菲勒造山运动(约 600 Ma)的作用下形成的。 地区 长约 160 公里,位于 800 公里长的卢菲利亚褶皱带的最南端(图 14)。
Fig 14: Simplified Structural Map of Zambia showing the position of the Lufilian Arc
图 14:显示卢菲利亚弧位置的赞比亚简化结构图
The Lufilian belt is an arcuate system of folds which was formed by pressure acting northwards or northeastwards. It stretches from Angola through northwestern Zambia, the Shaba region of the democratic republic of Congo (DRC) and then back into Zambia. The Lufilian Arc is flanked by the Kibaride fold belt and the Kasai shield on the west and by the Bangweulu block and the Irumide fold belt on the east. It is separated from the Zambezi fold belt in the south by the Mwembeshi dislocation. Accounts of the relationship between the Lufilian fold belt and the Copperbelt structure and coppercobalt mineralisation are given in various publications (Brock, 1963; Ramsay and Ridgeway, 1977; Raybould, 1978; Unrug, 1989). The Copperbelt sediments have been subjected to relatively mild flexural folding (Perry and Wiik, 1972).
卢菲利亚带是一个弧形褶皱系统,由向北或向东北的压力作用形成。它从安哥拉延伸到赞比亚西北部、刚果民主共和国(刚果(金))的沙巴地区,然后回到赞比亚。卢菲利亚弧的西侧是基巴里德褶皱带和卡萨伊盾,东侧是邦圭卢地块和伊鲁米德褶皱带。它与南部的赞比西河褶皱带被姆文贝希错位隔开。关于卢菲利亚褶皱带与铜带结构和铜钴矿化之间关系的描述见各种出版物(Brock,1963 年;Ramsay 和 Ridgeway,1977 年;Raybould,1978 年;Unrug,1989 年)。铜带沉积物经历了相对温和的褶皱(Perry 和 Wiik,1972 年)。
The local basement complex is composed of Palaeoproterozoic (~2.05 to 1.85 Ga) Lufubu System schists, largely quartz-biotite, biotite and chlorite schists, with minor feldspathic quartzites. The Lufubu Schists in the vicinity of the Roan-Muliashi basin are almost universally mineralised with sparsely disseminated pyrite, and locally chalcopyrite and pyrrhotite. These schists are intruded by large masses of granite, which are locally pink to grey, medium grained alkali granites. Both the Lufubu System and granites are unconformably overlain by the Mesoproterozoic Muva System quartzites and schists. The almost pure Muva quartzites are up to several hundred metres thick, separated by intercalated schists and schistose quartzites. The dominantly quartzite central section of the sequence is over- and underlain by light grey-green quartz-mica schist with abundant kyanite, local magnetite, and local quartzite intercalations (Fleischer et al., in Wolf (Ed.), 1976).
当地的基底复合体由古新生代(约 2.05 至 1.85 Ga)的卢布布系片岩组成,主要是石英-生物岩、生物岩和绿泥石片岩,以及少量的长石石英岩。罗安-木里亚希盆地附近的卢布布片岩几乎都有矿化现象,其中有稀疏散布的黄铁矿,局部还有黄铜矿和黄铁矿。这些片岩被大块花岗岩侵入,这些花岗岩局部为粉红色至灰色的中粒碱性花岗岩。卢福布系和花岗岩均被中新生代穆瓦系石英岩和片岩不整合地覆盖。几乎纯粹的穆瓦石英岩厚达数百米,被夹层片岩和片状石英岩隔开。该岩系以石英岩为主的中心部分上覆和下覆浅灰绿色石英云母片岩,其中有丰富的闪长岩、局部磁铁矿和局部石英岩夹层(Fleischer 等人,见 Wolf(编辑),1976 年)。
Fig 15: Geology of the Zambian Copperbelt
图 15:赞比亚铜带的地质情况
4.2.6 Seismicity
4.2.6 抗震性
Zambia lies in the interior of the African plate that is considered relatively aseismic. However, the presence of the East Africa Rift System with its various sectors influences seismic activity in the region.
赞比亚位于非洲板块内部,该板块被认为是相对非地震带。然而,东非大裂谷系统及其各个板块的存在影响了该地区的地震活动。
The seismotectonic set up of Zambia is composed of a general earthquake faulting pattern related to the East African Rift System and extends on the component called the southern-western branch. The proposed project site lies on a relatively suitable land safe from the more active regions of the East African Seismic System. Document review carried out on the Itezhi Tezhi Dam shows a number of earthquakes experienced in the past in the vicinity of the dam as presented in Table 9.
赞比亚的地震构造是由与东非大裂谷系统有关的一般地震断层模式组成的,并延伸到被称为西南分支的部分。拟议的项目选址位于相对合适的地段,远离东非地震系统较活跃的地区。对 Itezhi Tezhi 大坝进行的文件审查显示,大坝附近过去曾发生过多次地震,如表 9 所示。
Table 9: Seismic Events Around the Project Areas
表 9:项目区周围的地震事件
Date | Time | Magnitude | Lat. | Long. | Region | Distance | Direction |
1-Feb-74 | 15:49 | 5.2 | -17.882 | 26.05 | Livingstone | 594 km | SW |
1-May-09 | 18:23 | 4 | -18.816 | 23.907 | Maun | 800 km | SW |
2-Dec-68 | 2:33 | 6 | -13.9 | 23.8 | Kabompo | 500 km | W |
2-Oct-13 | 14:23 | 4.5 | -13.4 | 31.8 | Mfuwe | 384 km | E |
3-Nov-14 | 18:25 | 5.3 | -10.97 | 29.69 | Lubwe | 272 km | NE |
9-Jan-16 | 3:05 | 4.6 | -16.05 | 28.55 | Chirundu | 342 km | S |
10-May-91 | 1:12 | 4.8 | -17.35 | 24.98 | Mwandi | 604 km | SW |
11-Oct-52 | 1:24 | 5.8 | -19.612 | 23.27 | Maun | 910 km | SW |
11-Sep-52 | 8:23 | 5.9 | -19.628 | 23.258 | Maun | 912 km | SW |
12-Aug-59 | 4:05 | 5.5 | -14.925 | 26.472 | Mumbwa | 292 km | SW |
12-Aug-69 |
| 5.2 | -15 | 26.5 | Mumbwa | 297 km | SW |
13-Dec-10 | 11:34 | 7.1 | -8 | 31 | Lake Tanganyika | 626 km | NE |
13-Dec-42 | 13:40 | 6.7 | -11.4 | 34.5 | Lake Malawi | 696 km | E |
13-Feb-10 | 16:00 | 5.3 | -13.4 | 30.84 | Serenje | 280 km | E |
15-May-68 | 7:51 | 5.6 | -15.9 | 26.5 | Namwala | 379 km | SW |
17-Feb-87 | 11:00 | 4.9 | -17.227 | 24.95 | Mwandi | 595 km | SW |
18-Jan-11 | 16:31 | 5.7 | -8.6 | 31.74 | Mbala | 615 km | NE |
18-Jul-86 | 15:07 | 5.4 | -16.36 | 28.48 | Siavonga (Lusitu) | 375 km | S |
18-Sep-87 | 2:05 | 4.2 | -17.749 | 25.561 | Kazungula | 605 km | SW |
19-Aug-15 | 0:15 | 5.1 | -9.66 | 28.61 | Mbereshi | 372 km | N |
21-Jul-11 | 15:55 | 5.2 | -15.96 | 25.98 | Itezhi-Tezhi | 414 km | SW |
23-Sep-63 |
| 5.8 | -16.6 | 28.8 | Lake Kariba | 404 km | S |
25-Sep-63 |
| 5.8 | -16.7 | 28.7 | Lake Kariba | 414 km | S |
25-Sep-63 | 7:03 | 6.4 | -16.73 | 28.4 | Lake Kariba | 416 km | S |
30-Jun-80 | 6:03 | 4.4 | -18.027 | 25.85 | Victoria Falls | 618 km | SW |
The above data is cartographically depicted in Fig 16 below.
上述数据的图示如下图 16 所示。
Works undertaken by Mileji and Mulenga (2020) shows that there is sufficient level of earthquake activity to warrant consideration of earthquake effects in the design of structures in Zambia and that even with the limited history of earthquake event documentation, there are a number of events that should compel engineers to consider seismic loading in the design of structures.
Mileji 和 Mulenga(2020 年)所做的工作表明,在赞比亚,地震活动的频繁程度足以使其在结构设计中考虑地震的影响,而且即使地震事件的历史记录有限,也有许多事件迫使工程师在结构设计中考虑地震荷载。
According to EN 1998-1, the design seismic action is generally expressed in terms of the seismic action associated with a 10% probability of exceedance in 50years or a reference return period of 475 years. The existing records of only around 100 years in Zambia cannot be relied upon to dismiss the occurrence of destructive earthquakes anywhere within Zambia.
根据 EN 1998-1,设计地震作用通常是指 50 年内 10%的超限概率或 475 年的参考重现期相关的地震作用。赞比亚现有的记录只有约 100 年,不能据此否定赞比亚境内任何地方都会发生破坏性地震。
Fig 16: Seismic Events Around the Project Areas
图 16:项目区周围的地震事件
4.3 Social Economic Environment
4.3 社会经济环境
The project areas is administered by Mazabuka & Siavonga (Lusitu) Town Council. The project site however is in close proximity with Ndola (33 km east) and Kitwe (23 km northwest).
该项目 地区 是 由Mazabuka &;Siavonga (Lusitu) 镇委员会管理。不过,项目地点毗邻恩多拉(东面 33 公里)和基特韦(西北面 23 公里)。
4.3.1 Local Administration
4.3.1 本地管理
Like all the places in Zambia, the local administration of Wells Spring & Siavonga (Lusitu) areas and Mazabuka & Siavonga (Lusitu) is split into Government Institutions (or Central Government) and Traditional Administration.
与赞比亚所有地方一样,Wells Spring &;Siavonga (Lusitu) 地区 和Mazabuka &;Siavonga (Lusitu) 分为政府机构(或中央政府)和传统行政机构。
Government Institutions
政府机构
The institutional government structures are generally identical across all provinces in Zambia. The province is headed by a minister appointed by the republican president and then the various government ministries have provincial officers representing them. The technocratic day-to day running of the Ministries at the Province level is the responsibility of the Provincial Permanent Secretary (PS) and heads of other government ministries, departments, agencies and authorities present in the province. On the other hand, Districts Commissioners are appointed by the Republican President to carryout executive and administrative functions within a Districts
赞比亚各省的政府体制结构大致相同。各省由共和国总统任命的一名部长领导,然后政府各部委由省级官员代表。省一级部委的日常管理由省常务秘书(PS)和省内其他政府部委、部门、机构和当局的负责人负责。另一方面,县专员由共和国总统任命,在县内履行行政和管理职能。.
The government stipulates different functions for the councils with the majority of them being infrastructure management and local administration. Councils are mandated to maintain each of their community centres, zoos, local parks, drainage system, playgrounds, cemeteries, caravan sites, libraries, museums and art galleries. They also work along with specific government departments for helping in agriculture, conservation of natural resources, postal service, establishing and maintaining hospitals, schools and colleges. The councils prepare schemes that encourage community participation.
政府为议会规定了不同的职能,其中大部分是基础设施管理和地方行政管理。议会的任务是维护各自的 社区中心、动物园、地方公园、排水系统、游乐场、墓地、房车营地、图书馆、博物馆和美术馆。它们还与特定的政府部门合作,在农业、自然资源保护、邮政服务、建立和维护医院、学校和学院等方面提供帮助。议会制定计划,鼓励社区参与。
Traditional Administration
传统行政管理
Traditional influence around the projects site is significantly suppressed or non-existent. However, traditional leadership of the Lima-Lamba people of Copperbelt Province (Fig 17) would lay a claim over the areas
项目所在地周围的传统影响力受到严重压制或根本不存在。不过,铜带省利马-兰巴人(图 17)的传统领导层会对这些地区提出权利要求。.
Fig 17: Linguistic Map of Zambia
图 17:赞比亚语言地图
Lamba people are a Bantu ethnolinguistic group mainly located in the Central, Copperbelt, and NorthWestern provinces of Zambia. Lamba people speak the Lamba language, with Lamba and Lima the major dialects recognized. Lamba is ‘the act of humbling oneself ‘and Lambas are generally expected to be very humble in nature. Nonetheless, they are practically born orators with their language remarkably rich in folklore and proverbs.
兰巴人是一个班图族语言群体,主要分布在赞比亚的中央省、铜带省和西北省。兰巴人使用兰巴语,兰巴语和利马语是公认的主要方言。兰巴语的意思是 "谦卑的行为",兰巴人一般都非常谦卑。然而,他们实际上是天生的演说家,他们的语言中蕴含着丰富的民间传说和谚语。
Lambas are described as hunting agriculturists just like their close neighbours, the Kaondes,
兰巴人被描述为狩猎农业者,就像他们的近邻考恩德人(Kaondes)一样、
5. | SOLAR PV YIELD ASSESSMENT |
Overview
概述
Solar energy is the ultimate source of energy form available in the solar system. The technologies that are currently available to convert solar energy directly to electricity are called photovoltaics due to the photovoltaic effect on which they are based.
太阳能是太阳系中的最终能源形式。目前可将太阳能直接转化为电能的技术被称为光伏技术,因为这些技术是以光伏效应为基础的。
The photovoltaic (PV) effect is the phenomenon in which an electrical potential is developed between two dissimilar materials when their common junction is illuminated with radiation of photons (Mukund, 2006). The French physicist Alexandre-Edmond Becquerel discovered the PV effect in 1839 and in 1954 Bell Laboratories produced the first silicon cell.
光生伏打效应(PV)是指当两种不同材料的共同结点受到光子辐射照射时,它们之间产生电势的现象(Mukund,2006 年)。法国物理学家亚历山大-埃德蒙德-贝克勒尔于 1839 年发现了光伏效应,贝尔实验室于 1954 年生产出第一块硅电池。
The assessment of the viability of the GTL Solar PV Power Project was built around commercially available solar technologies.
GTL 太阳能光伏发电项目的可行性评估是围绕商用太阳能技术展开的。
Solar PV Technology Analysis
太阳能光伏技术分析
Solar PV technology includes the modules used for converting solar energy into dc electricity, inverters that converter dc electricity to ac and the structures on which they are mounted. Solar PV modules convert solar radiation directly into electricity through the photovoltaic effect in a silent and clean process that requires no moving parts. The PV effect is a semiconductor effect whereby solar radiation falling onto the semiconductor PV cells generates electron movement. The output from a solar PV cell is a DC form of electricity and will require appropriate technologies to convert it to the commonly used AC form. A typical Solar PV power plant contains many cells connected together in modules and many modules connected together in strings to produce the required power output.
太阳能光伏技术包括用于将太阳能转换为直流电的模块、将直流电转换为交流电的逆变器以及安装模块的结构。太阳能光伏组件通过光伏效应将太阳辐射直接转化为电能,整个过程安静、清洁,不需要移动部件。光伏效应是一种半导体效应,太阳辐射落在半导体光伏电池上会产生电子运动。太阳能光伏电池输出的是直流电,需要采用适当的技术将其转换为常用的交流电。典型的太阳能光伏发电厂包含许多以模块形式连接在一起的电池,以及许多以组串形式连接在一起的模块,以产生所需的电力输出。
This section discusses module technologies, mounting systems, inverters and methods of quantifying plant performance. It provides an overview of current commercially available technologies used in utility scale solar PV projects.
本节讨论模块技术、安装系统、逆变器和量化电站性能的方法。本节概述了目前用于公用事业规模太阳能光伏发电项目的商用技术。
5.2.1 PV Module Technology
5.2.1PV 模块技术
The current PV market offers a number of different module technologies, which can be broadly classified as either crystalline or thin-film.
目前的光伏市场关闭了许多不同的模块技术,大致可分为晶体和薄膜两种。
Crystalline silicon (c-Si) cells provide high efficiency modules. Crystalline silicon cells are sub-divided into mono-crystalline silicon (mono-c-Si) or multi-crystalline silicon (multi-c-Si). Mono-c-Si cells are generally the most efficient, but are also more costly than multi-c-Si.
晶体硅(c-Si)电池可提供高效模块。晶体硅电池又分为单晶硅(Mono-c-Si)和多晶硅(Multi-c-Si)。单晶硅电池通常效率最高,但成本也高于多晶硅。
Thin-film cells provide a cheaper alternative, but are less efficient. There are three main types of thin film cells:
薄膜电池是一种更便宜的替代品,但效率较低。薄膜电池主要有三种类型:
Cadmium Telluride (CdTe);
碲化镉(CdTe);
Copper Indium Selenide (CIS);
硒化铟铜 (CIS);
Copper Indium (Gallium) Di-Selenide (CIGS/CIS); and – Amorphous Silicon (a-Si).
铜铟(镓)二硒化物(CIGS/CIS);以及 - 非晶硅(a-Si)。
i. PV Module Classifications
i.光伏组件分类
Crystalline Silicon Technology
晶体硅技术
The crystalline silicon (c-Si) technology was the first type of technology to be widely commercialised and is the most proven. C-Si modules consist of PV cells connected together and encapsulated between a transparent front (usually glass) and a backing material (usually plastic or glass). Based on the type and size of the crystalline cells, from which they are manufactured, c-Si modules are categorised as either Mono-crystalline silicon or Poly crystalline (or multi-crystalline) silicon.
晶体硅(C-Si)技术是第一种广泛商业化的技术,也是最成熟的技术。晶体硅组件由连接在一起的光伏电池组成,并封装在透明正面(通常是玻璃)和背衬材料(通常是塑料或玻璃)之间。根据晶体电池的类型和尺寸,晶体硅组件可分为单晶硅和多晶硅(或多晶硅)。
Mono-c-Si wafers are sliced from a large single crystal ingot in a relatively expensive process while the cheaper, multi-c-Si wafers may be made by a variety of techniques. One of the technologies involves the carefully controlled casting of molten multi-silicon, which is then sliced into wafers. These can be much larger than monocrystalline wafers. Multi-crystalline cells produced in this way are currently cheaper, but the end product is generally not as efficient as mono-crystalline technology.
单晶硅晶圆是通过相对昂贵的工艺从大型单晶硅锭上切下来的,而价格较低的多晶硅晶圆则可以通过各种技术制造。其中一种技术是对熔融多晶硅的浇铸进行严格控制,然后将其切成晶片。这些晶片可能比单晶硅晶片大得多。用这种方法生产的多晶电池目前比较便宜,但最终产品的效率通常不如单晶技术。
Thin Film Technology
薄膜技术
Thin-film technology comprises of a thin semiconductor layer deposited on a low-cost substrate, such as glass or plastic. The lower consumption of material involved in the production of thinfilm panels, as opposed to c-Si modules, reduces the manufacturing costs considerably. However, in the construction of PV plants, this reduction is counterbalanced by the increased amount of system components which is required due to the generally lower efficiency of the thin-film technology compared to the crystalline silicon technology.
薄膜技术包括沉积在玻璃或塑料等低成本基板上的半导体薄层。与晶体硅模块相比,生产薄膜面板所需的材料消耗更少,从而大大降低了制造成本。然而,在光伏电站的建设中,由于薄膜技术的效率普遍低于晶体硅技术,因此需要增加系统组件的数量,从而抵消了成本的降低。
ii. Technical Specifications
ii.技术规范
Key features determining the performance of PV modules are:
决定光伏组件性能的主要特征包括
Efficiency or Conversion Factor
效率或转换系数
Solar cell efficiency refers to the portion of solar energy in the form of sunlight that can be converted through the photovoltaic effect into electricity by the solar cell. High efficiency solar technologies are more costly to manufacture, and less efficient modules require a larger areas to produce the same nominal power.
太阳能电池效率是指太阳能电池通过光生伏打效应将太阳光能转化为电能的部分。高效太阳能技术的制造成本较高,而效率较低的模块需要更大的面积才能产生相同的额定功率。
While efficiency technologies are more costly to manufacture, less efficient modules require a larger areas to produce the same nominal power. As a result, the cost advantages gained at the module level may be offset by the cost incurred in providing additional power system infrastructure (cables and mounting frames) and the cost of land for a larger module areas
虽然高效技术的制造成本较高,但效率较低的模块需要更大的面积才能产生相同的额定功率。因此,在模块层面上获得的成本优势可能会被提供额外的电力系统基础设施(电缆和安装架)所产生的成本以及更大模块面积所需的土地成本所抵消。.
Table 10: Characteristics of Some PV Technology Classes
表 10:部分光伏技术类别的特点
Technology | Crystalline Silicon | Amorphous Silicon | Cadmium Telluride | Copper Indium Gallium Di-Selenide |
Category | c-Si | a-Si | CdTe | CIGS/CIS |
Approximate Current Commercial Efficiency | 13 - 21 % | 6 - 9 % | 8 - 16 % | 8 - 14 % |
Typical Temperature Coefficient for Power | -0.45 %/oC | -0.21 %/oC | -0.25 %/oC | -0.35 %/oC |
Temperature Behaviour
温度行为
This refers to the reduction of the power output of a panel when its temperature rises above 25°C, expressed as a percentage over its maximum power output, for each 1°C rise in the panel’s temperature.
这是指面板温度每升高 1°C 时,当温度超过 25°C 时,面板输出功率的减少量,以最大输出功率的百分比表示。
Degradation
退化
Efficiency of solar cells and solar panels are known to decrease over time, outputting less energy every year. This is due to a variety of factors including UV exposure, effects of humidity, temperature, solar irradiation and voltage bias effects. The extent and nature of degradation varies among module technologies. For crystalline modules, the degradation rate is typically higher in the first year upon initial exposure to light and then stabilises.
众所周知,太阳能电池和太阳能电池板的效率会随着时间的推移而降低,每年输出的能量也会减少。这是由多种因素造成的,包括紫外线照射、湿度影响、温度、太阳辐照和电压偏置效应。不同组件技术的衰减程度和性质各不相同。就晶体组件而言,在最初暴露于光线的第一年,降解率通常较高,然后趋于稳定。
The initial irreversible light induced degradation (LID) occurs due to defects that are activated on initial exposure to light. It can be caused by the presence of boron, oxygen or other chemicals left behind by the screen printing or etching process of cell production. LID degradation can be up to 10% I the first month after installation. In order to avoid this, manufacturers add an LID treatment process at the end of the cell production line. However, even after going through this process, the effect of LID is not eliminated from all cells. Some module manufacturers have adopted new cuttingedge technology to reduce oxygen and metal content in silicon wafers. This has led to breakthroughs of LID degradation values of up to 1 %.
最初的不可逆光诱导降解(LID)是由于最初暴露在光下时被激活的缺陷造成的。造成这种现象的原因可能是电池生产过程中丝网印刷或蚀刻留下的硼、氧或其他化学物质。安装后的第一个月,LID 的降解率可达 10%。为了避免这种情况,制造商在电池生产线的末端增加了一个 LID 处理过程。然而,即使经过了这一工序,也不能消除所有电池片的 LID 影响。一些组件制造商采用了新的尖端技术来减少硅片中的氧气和金属含量。这使得 LID 降解值突破性地达到了 1%。
Additional degradation for both amorphous and crystalline technologies occur at the module level (Potential Induced Degradation-PID) and may be caused by:
非晶和晶体技术的额外降解发生在模块级(潜在诱导降解-PID),可能由以下原因造成:
Effect of the environment on the surface of the module (for example, pollution);
环境对模块表面的影响(如污染);
Discolouration or haze of the encapsulant or glass;
封装材料或玻璃变色或雾化;
Lamination defects;
层压缺陷;
Mechanical stress and humidity on the contacts – Cell contact breakdown – Wiring degradation.
触点上的机械应力和湿度 - 电池触点击穿 - 接线退化。
Reputable PV module and PV cell manufacturers are optimizing their production processes to eliminate leakage currents (cause of PID) both at cell and module level.
知名的光伏组件和光伏电池制造商正在优化其生产流程,以消除电池和组件级的漏电流(PID 的起因)。
The median degradation rate has been found to be around 0.5% per year (Jordan and Kutz, 2012). This means that after 25 years of operation a solar panel originally rated for 300 watts of power output will only produce about 260 watts on average. Degradation in the first year of operation can also be much more profound, at around 2.5% (Donev et al, 2018).
中位降解率约为每年 0.5%(Jordan 和 Kutz,2012 年)。这意味着,一块额定输出功率为 300 瓦的太阳能电池板在运行 25 年后,平均只能输出约 260 瓦的功率。运行第一年的衰减也会更严重,约为 2.5%(Donev 等人,2018 年)。
Typical Module Manufacturers
典型模块制造商
Financial institutions often keep lists of Solar PV module manufacturers they consider bankable. While there is no definitive and accepted list of modules that are considered “bankable”, Bloomberg New Energy Finance runs an annual survey of EPC contractors, debt lenders and independent technical consultants, and summarises which manufacturers are considered “bankable” by the respondents. Most financial institutions agree that the key parameters in qualifying a manufacturer as bankable are financial strength and manufacturing capacity. Based on these 2 parameters, the following four (4) manufacturers have been given AA-rating according to PV-Tech (www.pvhttp://www.pv-tech.org/tech.org)
金融机构通常会列出他们认为银行可担保的太阳能光伏组件制造商名单。虽然目前还没有被认为 "银行可担保 "的组件的明确和公认的清单,但彭博新能源财经每年都会对 EPC 承包商、债务贷款人和独立技术顾问进行调查,并总结受访者认为哪些制造商 "银行可担保"。大多数金融机构都认为,制造商是否符合银行要求的关键参数是财务实力和制造能力。根据这两个参数,PV-Tech(www.pvhttp://www.pv-tech.org/tech.或g):
Jinko Solar
晶科太阳能
Canadian Solar
阿特斯太阳能
LONGi Solar
隆基太阳能
First Solar
第一太阳能公司
Manufacturer lists can be obtained from various sources and will depict various hierarchies depending of the specific criteria however the above four will most likely be on every top ten list as they control significant percentage of the market.
制造商名单可以从各种渠道获得,并会根据具体标准划分不同的等级,但上述四家制造商很可能会出现在每一份前十名名单中,因为它们控制着相当大比例的市场。
Certification of Solar PV Modules
太阳能光伏组件认证
Solar module certification is centred around quality assurance and involves testing and evaluating solar cells and Solar Panels to ensure set quality requirements are met. Typically, solar modules (or panels) are expected to have a long service life between 20 and 40 years, constantly and consistently delivering the expected power. In addition, modules are exposed to a wide array of weather conditions along with usage in differ climates. Therefore, it is critical to determine if a module is capable of performing over many decades with exposure to differing conditions. Solar modules can be tested through a combination of physical tests, laboratory studies, and numerical analyses.
太阳能组件认证以质量保证为中心,涉及对太阳能电池和太阳能电池板的测试和评估,以确保达到设定的质量要求。通常情况下,太阳能电池组件(或太阳能电池板)的使用寿命应在 20 至 40 年之间,并能持续稳定地提供预期功率。此外,太阳能电池组件会暴露在各种天气条件下,并在不同的气候条件下使用。因此,确定组件是否能够在不同条件下使用几十年至关重要。太阳能组件可以通过物理测试、实验室研究和数值分析相结合的方式进行测试。
The International Electrotechnical Commission (IEC) issues internationally accepted standards for PV modules. Technical Committee 82, “Solar photovoltaic energy systems,” is responsible for writing all IEC standards pertaining to photovoltaics. PV modules will typically be tested for durability and reliability according to these standards. Some of the applicable standards in the Solar PV modules are shown in Table 11 below:
国际电工委员会 (IEC) 发布国际公认的光伏组件标准。技术委员会 82 "太阳能光伏能源系统 "负责制定所有与光伏相关的 IEC 标准。光伏组件通常根据这些标准进行耐久性和可靠性测试。太阳能光伏组件的部分适用标准见下表 11:
Table 11: Applicable Standards in Solar PV Industry
表 11:太阳能光伏产业的适用标准
Test | Description | Comment |
IEC 61215 | Crystalline silicon (c-Si) terrestrial PV modules - Design qualification and type approval | Includes tests for thermal cycling, humidity and freezing, mechanical stress and twist and hail resistance. The standard certification uses a 2,400Pa pressure. Modules in heavy snow locations may be tested under more stringent 5,400Pa conditions. |
IEC 61646 | Thin-film terrestrial PV modules - Design qualification and type approval | Very similar to the IEC 61215 certification, but an additional test specifically considers the additional degradation of thin-film modules. |
EN/IEC 61730 | PV module safety qualification | Part 2 of the certification defines three different Application Classes: Safety Class O - Restricted access applications; Safety Class II - General applications; Safety Class III - Low voltage (LV) applications. |
IEC 60364-4-41 | Protection against electric shock | Module safety assessed based on: Durability; High dielectric strength; Mechanical stability; and Insulation thickness and distances. |
IEC 61701 | Resistance to salt mist and corrosion | Required for modules being installed near the coast or for maritime applications. |
IEC 61853-1 | Photovoltaic Module Performance Testing and Energy Rating | Describes the requirements for evaluating PV module performance in terms of power rating over a range of irradiances and temperatures. |
IEC 62804 (Pending) | System voltage durability test for c-Si modules | Describes the test procedure and conditions for conducting a PID test. The PV module will be deemed to be PID resistant if power loss is less than 5% following testing. |
Conformité Européenne (EC) | The certified product conforms to the European Union (EU) health, safety and environmental requirements. | Mandatory in the European Economic Areas |
UL 1703 | Comply with the National Electric Code, Occupational Safety and Health Administration and the National Fire Prevention Association. The modules perform to at least 90% of the manufacturer’s nominal power. | Underwriters Laboratories Inc. (UL) is an independent U.S. based product safety testing certification company which is a Nationally Recognised Testing Laboratory (NRTL). Certification by an NRTL is mandatory in the U.S. |
iii. Mounting Structure Technology
iii.安装结构技术
PV modules must be mounted on a structure to keep them oriented in the correct direction and to provide them with structural support and protection. They can be installed on either fixed structures or solar tracking structures. Fixed tilt arrays are typically tilted away from the horizontal plane in order to maximise the annual irradiation they receive. The optimum tilt angle is dependent on the latitude of the site location. The direction the system is facing is referred to as its orientation or azimuth. The ideal azimuth for a system in the northern hemisphere is geographic south, and in the southern hemisphere it is geographic north. A description of the orientation of a solar PV array is shown in Fig 18 below:
光伏组件必须安装在结构上,以保持其正确方向,并为其提供结构支撑和保护。它们可以安装在固定结构或太阳能跟踪结构上。固定倾斜阵列通常偏离水平面,以最大限度地提高每年的辐照度。最佳倾斜角度取决于现场位置的纬度。系统朝向的方向称为方位角。北半球系统的理想方位角是地理南向,南半球系统的理想方位角是地理北向。太阳能光伏阵列的方位说明如下图 18 所示:
Fig 18: Description of Array Orientation
图 18:阵列方向说明
The orientation and tilt of modules on fixed structures does not vary with the movements of the sun, while a solar tracker allows the array of PV modules to follow the sun’s pathway; this can result in a significant increase in the solar irradiation captured. The choice of the mounting structure depends on numerous factors, including costs, site weather conditions, land constraints and PV module properties.
固定结构上组件的方向和倾斜度不会随太阳的移动而变化,而太阳能跟踪器可使光伏组件阵列跟随太阳的轨迹移动;这可显著增加所捕获的太阳辐照。安装结构的选择取决于多种因素,包括成本、现场天气条件、土地限制和光伏组件特性。
Fixed Structure Systems
固定结构系统
In fixed structure systems the arrays of PV modules are mounted on a stationary base; the plane of the arrays is defined by fixed tilt angle and orientation (Azimuth Angle) which are usually chosen to optimise the capture of solar irradiation. Tilt angle and orientation are determined by taking into account the geographical location, the solar profile at the site and the availability of land. A fixed mounting structure is shown in Fig 19 below:
在固定结构系统中,光伏组件阵列安装在一个固定的基座上;阵列的平面由固定的倾角和方位(方位角)确定,通常选择倾角和方位是为了优化太阳能辐照的捕获。倾角和方位的确定要考虑地理位置、现场的太阳剖面和可用土地。固定安装结构如下图 19 所示:
Fig 19: Solar PV Fixed Mounting Structure
图 19: 太阳能光伏固定安装结构
Fixed structures typically accommodate from two to four rows of panels and are commonly used in utility scale PV plants. Foundation options for ground-mounted PV systems include:
固定结构通常可容纳两到四排电池板,常用于公用事业规模的光伏电站。地面光伏系统的基础选项包括
Concrete piers cast in-situ;
现浇混凝土桥墩;
Pre-cast concrete ballasts;
预制混凝土镇流器;
Driven piles;
打桩;
Earth screws; and
接地螺丝;以及
Bolted steel baseplates
螺栓连接钢制底板
Fixed tilt mounting systems are simpler, cheaper and have lower maintenance requirements than tracking systems. They are the preferred option for countries with a nascent solar market and limited indigenous manufacturing of tracking technology. A fixed tilt mounting structure is shown in Fig 20 below:
与跟踪系统相比,固定倾斜安装系统更简单、更便宜,维护要求也更低。对于太阳能市场刚刚起步、本土跟踪技术制造能力有限的国家来说,它们是首选。固定倾斜安装结构如下图 20 所示:
Fig 20: Fixed Tilt Solar PV Fixed Mounting Structure (with Adjustable Members)
图 20:固定倾斜式太阳能光伏固定安装结构(带可调节构件)
Solar Tracking Systems
太阳能跟踪系统
A solar tracking system is used to orient an array of solar panels towards the Sun. These devices change their orientation throughout the day to follow the sun’s path to maximize energy capture. Trackers achieve this by minimising the angle of incidence between the incoming sunlight and the photovoltaic panel, sometimes known as the cosine error. Reducing this angle increases the amount of energy produced from a fixed amount of installed power generating capacity.
太阳能跟踪系统用于将太阳能电池板阵列朝向太阳。这些设备全天都会跟随太阳的轨迹改变方向,以最大限度地捕获能量。跟踪器通过最小化入射太阳光与光电板之间的入射角(有时称为余弦误差)来实现这一目的。减小入射角可以增加固定发电量所产生的能量。
The main benefit of solar tracking structures, as opposed to fixed structures, is the harvest of the solar irradiation with a more accurate alignment with the sun position, which results mainly in an increased collection of solar energy in the early mornings and late afternoons. Tracking systems are preferred in locations with high proportion of direct solar irradiation. While fixed systems are very reliable and robust, requiring minimum maintenance, tracking systems are more prone to failures and need frequent maintenance. Solar tracking structures include:
与固定结构相比,太阳能跟踪结构的主要优点是能更精确地对准太阳位置收集太阳辐照,这主要导致在清晨和傍晚收集更多的太阳能。在太阳直射比例较高的地方,跟踪系统更受青睐。固定式系统非常可靠和坚固,只需最少的维护,而跟踪系统则更容易出现故障,需要经常维护。太阳能跟踪结构包括
Single-axis Tracking
单轴跟踪
Single-axis solar trackers rotate on one axis moving back and forth in a single direction. Different types of single-axis trackers include horizontal, vertical, tilted, and polar aligned, which rotate as the names imply.
单轴太阳能跟踪器在一个轴上旋转,沿单一方向来回移动。不同类型的单轴跟踪器包括水平跟踪器、垂直跟踪器、倾斜跟踪器和极对准跟踪器。
Single-axis trackers vary either the azimuth or the tilt angle of the PV arrays. The most common solution for utility scale PV plants is the Horizontal Single Axis Tracker (HSAT), for which the axis of rotation of the modules is horizontal with respect to the ground and is aligned along the North-South direction and, correspondingly, the modules rotate east to west throughout the day, modifying their tilt angle. The angular range of motion is usually in range from ±45° to ±60° from the horizontal plane. A single-axis tracking system can increase the annual energy yield of a plant by 15% - 30% in comparison to a fixed structure.
单轴跟踪器可改变光伏阵列的方位角或倾斜角。在公用事业规模的光伏电站中,最常见的解决方案是水平单轴跟踪器(HSAT),其模块的旋转轴相对于地面是水平的,沿南北方向排列,相应地,模块全天自东向西旋转,改变其倾斜角。运动角度范围通常在水平面 ±45° 至 ±60° 之间。与固定结构相比,单轴跟踪系统可将发电厂的年发电量提高 15%-30%。
The use of tracking systems can increase the shading losses between adjacent rows of panels. These losses can be kept under control by the use of a backtracking algorithm which adjusts the angles of panel rows individually in order to minimise the shadowing effects. Although the backtracking feature can minimise the shading effects in respect to the direct irradiation, the shading effects due to diffuse irradiation could still be expected, which normally also depends on the diffuse irradiation component at the site location. A single-axis tracking structure mechanism is shown in Fig 21.
使用跟踪系统会增加相邻电池板行之间的遮光损失。这些损失可通过使用反向跟踪算法加以控制,该算法可单独调整面板行的角度,以最大限度地减少阴影效应。单轴跟踪结构机制如图 21 所示。
a. b.
a. b.
Fig 21: Single-Axis Tracking Structure
图 21:单轴跟踪结构
2) Dual-axis Tracking
2) 双轴跟踪
Dual-axis trackers move in two different directions (horizontal and Vertical) and therefore continually face the sun. Dual-axis tracking structures can modify both the azimuth and tilt angle of the PV arrays and therefore can track the sun’s pathway more precisely and capture higher total annual irradiation levels. A dual-axis tracking structure is shown in Fig 22 below:
双轴跟踪器在两个不同的方向(水平方向和垂直方向)移动,因此可以持续面向太阳。双轴跟踪结构可以同时改变光伏阵列的方位角和倾斜角,因此可以更精确地跟踪太阳的轨迹,获取更高的年总辐照水平。双轴跟踪结构如下图 22 所示:
a. Dual-Axis Trackers b. Motion of a Dual-Axis Tracker
a.双轴跟踪器 b. 双轴跟踪器的运动
Fig 22: Dual-Axis Tracking Structure
图 22:双轴跟踪结构
Dual-axis tracking systems are typically used in places with high irradiation variations and they can increase the annual energy yield of a plant up to 45 %, compared to the fixed system. Depending on the site and precise characteristics of the solar irradiation, trackers may increase the annual energy yield by up to 27 percent for single-axis and 45 percent for dual-axis trackers. Tracking also produces a smoother power output plateau as shown in Fig 23 below:
双轴跟踪系统通常用于辐照变化大的地方,与固定系统相比,可将发电厂的年发电量提高 45%。根据现场情况和太阳辐照的精确特性,单轴跟踪器可将年发电量提高 27%,双轴跟踪器可提高 45%。如下图 23 所示,跟踪还能产生更平滑的高功率输出:
Fig 23: Benefit of Dual Axis Tracking System
图 23:双轴跟踪系统的优势
However, adding a solar tracking system means added more equipment, moving parts and gears, that will require regular maintenance and repair or replacement of broken parts. Further, if the solar tracker system breaks down when the solar panels are at an extreme angle, the loss of production until the system is functional again can be substantial. Generally, solar trackers are more prone to be damage in a storm than the actual panels.
然而,增加太阳能跟踪系统意味着增加更多的设备、活动部件和齿轮,这将需要定期维护、修理或更换损坏的部件。此外,如果太阳能跟踪器系统在太阳能电池板处于极端角度时发生故障,那么在系统恢复功能之前,生产损失可能会很大。一般来说,太阳能跟踪器比太阳能电池板更容易在暴风雨中损坏。
c. Certification of Mounting Structures
c. 安装结构认证
Support structures should adhere to country-specific standards and regulations, and manufacturers should conform to ISO 9001:2000. This specifies requirements for a quality management system that meets quality regulations and end-user satisfaction.
支持结构应遵守特定国家的标准和法规,制造商应符合 ISO 9001:2000 标准。这明确规定了质量管理系统的要求,以满足质量法规和最终用户的满意度。
5.2.2 Inverter Technology
5.2.2 变频器技术
Inverters are solid state electronic (high frequency) devices that convert DC electricity generated by the PV modules into AC electricity. Inverters perform a variety of other functions to maximise the output of the plant. Such functions include optimising the voltage across the strings, monitoring string performance, data logging and providing protection and isolation in case of irregularities in the grid or with the PV modules.
逆变器是一种固态电子(高频)设备,可将光伏组件产生的直流电转换为交流电。逆变器还具有其他多种功能,以最大限度地提高电站的输出功率。这些功能包括优化组串电压、监控组串性能、数据记录以及在电网或光伏组件出现异常时提供保护和隔离。
Types of Inverters
逆变器类型
The output from an inverter is fed into one or two transformers (low frequency devices) modifying the voltage and transmitting the solar energy captured by the panels into the grid. There are three different inverter design concepts: central, string and micro inverters. The technical characteristics of each technology are summarized in Table 12 below:
逆变器的输出被送入一个或两个变压器(低频设备),改变电压并将太阳能电池板获取的太阳能输送到电网。有三种不同的逆变器设计理念:集中式、组串式和微型逆变器。下表 12 总结了每种技术的技术特点:
Table 12: Inverter Technology Types
表 12:逆变器技术类型
Technology | Advantages | Disadvantages |
Central Inverter | Low capital price per watt; High efficiency; Low self-consumption; Comparative ease of installation; and Remote system monitoring capabilities | Large in Size; Noisy; A single potential point of a major system failure; and Higher mismatch losses. |
String Inverter | Robust system design as inverters can be replaced quickly; Enable high design flexibility; Low Maintenance costs; and Remote system monitoring capabilities High efficiency | – Higher price for a plant that has the same capacity with one that has central inverter |
Micro Inverter | Panel level monitoring; Allows for increased design flexibility; Increase system availability – a single malfunctioning panel will not have such an impact on the entire array; and Enable the use different makes/models of modules in one system | Higher costs in terms of price per watt, currently up to double the cost compared to string inverters; Increased complexity in installation; Given their positioning in an installation, some micro inverters may have issues in extreme heat; and – Increased maintenance costs. |
Central inverters and string inverters are generally used in MW-scale PV plants, string inverters may also be used in kW-scale projects while micro inverters are used for small or domestic purposes. String inverter technology is proven for plants greater than 400 MW and is able to provide a clean and dynamic system performance, ensuring optimum plant performance.
集中式逆变器和组串式逆变器通常用于兆瓦级光伏电站,组串式逆变器也可用于千瓦级项目,而微型逆变器则用于小型或家用用途。组串式逆变器技术已在超过 400 兆瓦的电厂中得到验证,能够提供清洁、动态的系统性能,确保电厂达到最佳性能。
Conversion Efficiency
转换效率
The conversion efficiency is a measure of the losses experienced during the conversion from DC to AC. These losses are due to multiple factors such as the presence of a transformer and the associated magnetic and copper losses, inverter self-consumption, and losses in the power electronics.
转换效率是衡量从直流到交流转换过程中的损耗。这些损耗是由多种因素造成的,例如变压器的存在及其相关的磁损和铜损、逆变器的自耗以及电力电子设备的损耗。
A number of different types of efficiencies have been defined for inverters. These describe and quantify the efficiency of different aspects of an inverter’s operation but generally, conversion efficiency is defined as the ratio of the fundamental component of the AC power output from the inverter, divided by the DC power input (IFC, 2015).
逆变器有多种不同的效率定义。它们描述并量化了逆变器不同方面的运行效率,但一般来说,转换效率被定义为逆变器输出的交流电的基本分量除以输入的直流电的比率(IFC,2015)。
PAC
Con= =
PDC DCPowerInput
The conversion efficiency is not constant, but depends on the DC power input, the operating voltage, and the weather conditions, including ambient temperature and irradiance. The variance in irradiance during a day causes fluctuations in the power output and maximum power point (MPP) of a PV array. As a result, the inverter is continuously subjected to different loads, leading to varying efficiency. The voltage at which inverters reach their maximum efficiency is an important design variable, as it allows system planning and optimisation of system wiring.
转换效率并非恒定不变,而是取决于直流输入功率、工作电压和天气条件,包括环境温度和辐照度。一天中辐照度的变化会导致光伏阵列的功率输出和最大功率点 (MPP) 波动。因此,逆变器会持续承受不同的负载,导致效率变化。逆变器达到最大效率时的电压是一个重要的设计变量,因为它允许进行系统规划和优化系统布线。
Certification of Inverters
逆变器认证
Inverter have to comply with a number of standards in order to guarantee a high level of quality and performance. Table 13 below presents some of the standards applicable in inverter certification.
变频器必须符合一系列标准,以保证高水平的质量和性能。下表 13 列出了适用于逆变器认证的一些标准。
Table 13: Applicable Inverter Standards
表 13:适用的逆变器标准
EN 61000-6-1: 2007 | Electromagnetic compatibility (EMC). Generic standards. Immunity for residential, commercial and light-industrial environments. |
EN 61000-6-2: 2005 | EMC. Generic standards. Immunity for industrial environments. |
EN 61000-6-3: 2007 | EMC. Generic standards. Emission standard for residential, commercial and light industrial environments. |
EN 61000-6-4: 2007 | EMC. Generic standards. Emission standard for industrial environments |
EN 55022: 2006 | Information technology equipment. Radio disturbance characteristics. Limits and methods of measurement. |
EN 50178: 1997 | Electronic equipment for use in power installations. |
IEC 61683: 1999 | Photovoltaic systems—Power conditioners—Procedure for measuring efficiency. |
IEC 61721: 2004 | Characteristics of the utility interface. |
IEC 62109-1&2: 20112012 | Safety of power converters for use in photovoltaic power systems. |
IEC 62116: 2008 | Islanding prevention measures for utility-interconnected photovoltaic inverters. |
5.2.3 DC and AC Cables
5.2.3 直流和交流电缆
Aggregation of power being generated by the Solar PV power plant is undertaken via a network of direct current (DC) and alternating Current (AC) cables.
太阳能光伏电站产生的电力通过直流(DC)和交流(AC)电缆网络汇集。
a. DC Cables
a. 直流电缆。
DC cables connect the PV modules between them and with the inverters.
直流电缆连接光伏组件之间以及光伏组件与逆变器之间。
b. AC Cables
b. 交流电缆
AC cables connect the rest of the electrical equipment inside the PV plant.
交流电缆连接光伏电站内的其他电气设备。
The cables installed in a solar plant are expected to meet international and local requirements. Generally, there are three main parameters defining the selection criteria for cables:
太阳能发电厂安装的电缆必须符合国际和当地的要求。一般来说,有三个主要参数决定了电缆的选择标准:
Cable Voltage Rating
电缆额定电压
The cable selected must withstand the voltage of the PV modules connected. For this calculation open circuit voltage of the PV modules is used;
所选电缆必须能承受所连接光伏组件的电压。计算时使用光伏组件的开路电压;
Current carrying capacity of the cable
电缆的载流量
The cable must be sized in order to withstand the current for the worst case possible;
电缆的大小必须能够承受最坏情况下的电流;
Minimization of voltage drop
最小化电压降
Reduce the energy losses is a key aspect which can determine the viability of a PV plant project; therefore, it is important to reduce the voltage drop in the cables. An acceptable voltage drop value would be 3%, but 1% or less of cable losses can be achieved.
减少能量损耗是决定光伏电站项目可行性的关键因素,因此,必须减少电缆中的电压降。可接受的电压降值为 3%,但也可以达到 1%或更低的电缆损耗。
The cables installed in a specific PV solar plant should be adequately protected for the site conditions.
安装在特定光伏太阳能发电站中的电缆应根据现场条件进行适当保护。
Some of the properties of commercial cables complying with standards are; ozone resistant, weather and UV resistant, halogen-free, resistant to acid and bases, flame-resistant, abrasion resistant, resistant to short-circuits up to 200ºC, 25 years lifespan and hydrolysis and ammoniac resistant.
符合标准的商用电缆的部分特性包括:耐臭氧、耐候、耐紫外线、无卤素、耐酸碱、阻燃、耐磨、耐 200ºC 短路、25 年使用寿命、耐水解和氨化。
5.3 Performance of Solar PV Power Plants
5.3太阳能光伏发电站的性能
The performance of Solar PV Plant is predominantly measured by three parameters: Performance Ratio, Specific Yield and Capacity Factor. The performance of a PV power plant is expected to fall during its lifetime, especially in the second and third decade of its life as modules continue to degrade and plant components age.
太阳能光伏发电站的性能主要由三个参数来衡量:性能比、特定产量和容量系数。光伏电站的性能预计会在其生命周期内下降,尤其是在其生命周期的第二和第三个十年,因为组件会不断退化,电站组件也会老化。
5.3.1 Performance Ratio
5.3.1 性能比
The Performance Ratio provides a benchmark to compare Solar PV power plants over a given time independent of plant capacity or solar resource. A plant with a high Performance Ratio is more efficient at converting solar irradiation into useful energy.
性能比提供了一个基准,用于在特定时间内比较太阳能光伏电站,而与电站容量或太阳能资源无关。性能比高的电站将太阳辐照转化为有用能源的效率更高。
Performance Ratio (PR) is defined as the ratio between the exported AC yield and the theoretical yield that would be generated by the plant if the modules converted the irradiation received into useful energy according to their rated capacity (IFC, 2015). The full definition of PR is given in IEC 61724 “Photovoltaic system performance monitoring—Guidelines for measurement data exchange and analysis.” It may be expressed as:
性能比 (PR) 的定义是,如果组件按照其额定容量将接收到的辐照转化为有用的能量,则输出交流电产量与电站理论产量之间的比率(IFC,2015 年)。IEC 61724 "光伏系统性能监测--测量数据交换和分析指南 "给出了 PR 的完整定义。它可以表示为
AC Yield (kWh) x 1(kW/m )2
AC 产量(千瓦时) x 1(kW/m )2
PR=
2 x 100%DC Installed Capacity (kWp) x Plane of Array Irradiation (kWh/m )
DC 安装容量 (kWp) x 阵列辐照平面 (kWh/m )
PR quantifies the overall effect of system losses on the rated capacity, including losses caused by modules, temperature, low light efficiency reduction, inverters, cabling, shading and soiling.
PR 对系统损耗对额定容量的总体影响进行量化,包括组件、温度、弱光效率降低、逆变器、电缆、遮阳和脏污造成的损耗。
5.3.2 Specific Yield
5.3.2 具体产量
Specific Yield, given in kWh/kWp, is the total energy generated per kWp installed per period under consideration i.e., per day, per month or per year. It is often used to help determine the financial value of a plant and compare operating results from different technologies and systems. The specific yield of a plant depends on:
单位为 kWh/kWp 的特定产量是指在所考虑的时间段内,即每天、每月或每年,每千瓦时安装的发电设备所产生的总能量。它通常用于帮助确定发电厂的财务价值,并比较不同技术和系统的运行结果。发电厂的具体发电量取决于
The total irradiation falling on the collector plane. This can be increased by optimally tilting the modules or employing tracking technology;
落在集热器平面上的总辐照度。通过优化组件倾斜度或采用跟踪技术,可以提高总辐照度;
The performance of the module, including sensitivity to high temperatures and low light levels; and
模块的性能,包括对高温和弱光的敏感度;以及
System losses including inverter downtime.
系统损失,包括逆变器停机时间。
5.3.3 Capacity Factor
5.3.3 容量系数
The capacity factor of a PV power plant is the ratio of the actual output over a period of a year and its output if it had operated at nominal power the entire year. The relationship is summarised below:
光伏电站的容量因子是指一年内的实际输出功率与全年以额定功率运行时的输出功率之比。两者之间的关系概述如下:
Energy Generated Per Annum (kWh)
能源 年发电量(千瓦时)
CF=
8760 (hours/annum) x Installed Capacity (kWp)
8760(小时/年) x 装机容量(千瓦时)
Capacity factor is a term less commonly used in the solar power industry than specific yield. Capacity factor and specific yield are simply related by the factor 8760. The capacity factor of a fixed tilt PV plant can vary from 12 percent to 24 percent depending on the solar resource and the performance ratio of the plant (IFC, 2015).
在太阳能发电行业中,容量因子是一个不如比发电量常用的术语。容量因子和比收益率之间的简单关系是系数 8760。固定倾角光伏电站的容量因子从 12% 到 24% 不等,取决于太阳能资源和电站的性能比(国际金融公司,2015 年)。
5.4 Considerations for Solar Resource Assessment
5.4太阳能资源评估的考虑因素
The energy yield of a PV plant is dependent on the on-site weather conditions, mainly the irradiation (Direct normal, Global Horizontal and Diffuse Horizontal) and the ambient temperature.
光伏电站的发电量取决于现场的天气条件,主要是辐照度(直接正常辐照、全球水平辐照和扩散水平辐照)和环境温度。
Direct Normal Irradiation (DNI) is the solar beam energy component received on a unit areas of surface directly facing the sun at all times. The DNI is of particular interest for solar installations mounted on trackers;
直接法线辐照(DNI)是指在任何时候都直接面对太阳的单位 表面上接收到的太阳光束能量成分 区域 。对于安装在跟踪器上的太阳能装置来说,DNI 尤为重要;
Diffuse Horizontal Irradiation (DHI) is the energy received on a unit areas of horizontal surface from radiation that is scattered off the atmosphere or surrounding areas
弥散水平辐照 (DHI) 是指在单位面积的水平表面上从大气或周围地区散射的辐射中接收到的能量。.
Global Horizontal Irradiation (GHI) is the total solar energy received on a unit areas of a horizontal surface. It includes energy from the sun that is received in a direct beam (the horizontal component of the DNI) and the DHI. The yearly sum of the GHI is of particular relevance for PV power plants, such as bifacial solar power plants, which are able to make use of both the diffuse and beam components of solar irradiation.
全球水平辐照度(GHI)是单位 水平表面 区域 接收到的太阳能总量。它包括以直接光束接收的太阳能量(DNI 的水平分量)和 DHI。GHI 的年总和与光伏发电厂(如双面太阳能发电厂)特别相关,因为后者能够同时利用太阳辐照的漫射和光束分量。
In practice solar modules are mounted at an angle tilted from the horizontal. The amount of irradiation received thus is quantified by the global tilted irradiation (GTI). The GTI includes direct beam and diffuse components and the long-term annual GTI average is of major importance to the GTL Solar PV Power Plant.
实际上,太阳能电池组件的安装位置与水平面成一定角度倾斜。因此,接收到的辐照量由全球倾斜辐照(GTI)来量化。GTI 包括直接光束和漫射部分,长期的年度 GTI 平均值对 GTL 太阳能光伏电站非常重要。
The optimal tilt angle for GTI varies primarily with latitude and may also depend on local weather patterns and plant layout configurations. Calculations for GTI will consider the ground reflectance (albedo). The ground reflectance or albedo is highly site dependent. Fresh grass has an albedo factor of 0.26, reducing down to a minimum of approximately 0.15 when dry. In this case 0.15 albedo for dry grass implies that 15 % of the irradiation is reflected by dry grass.
GTI的最佳倾斜角度主要随纬度而变化,也可能取决于当地的天气模式和工厂布局配置。GTI 的计算将考虑地面反射率(反照率)。地面反射率或反照率与地点有很大关系。新草的反照系数为 0.26,干草的反照系数最低约为 0.15。在这种情况下,0.15 的干草反照率 意味着 15% 的辐照被干草反射。
The representative geographical coordinates assumed for the project site in solar resource assessment are latitude -12.9859°, longitude 28.3037° and altitude of 1214 m absl. This point represents a central point on the project site based on the boundary coordinates in 1.3.1 above.
在太阳能资源评估中,项目地点的代表性地理坐标假定为:纬度 -12.9859°,经度 28.3037°,海拔 1214 米。根据上述 1.3.1 中的边界坐标,该点代表项目地点的中心点。
Variability in Solar Irradiation
太阳辐照的变化
Solar resource is inherently intermittent: in any given year, the total annual global irradiation on a horizontal plane varies from the long-term average due to weather fluctuations. It is important to quantify the limits of such year-by-year variability, or inter-annual variation. Ten (10) years of data assessments is usually sufficient.
太阳能资源本身具有间歇性:在任何一年中,由于天气波动,水平面上的全球年辐照总量都与长期平均值不同。量化这种逐年变化或年际变化的限度非常重要。通常十(10)年的数据评估就足够了。
Data Sources
数据来源
For determining the plant’s yield, it is essential to use reliable sources of long-term data. The world class data sources available for the project site and their characteristics are presented in Table 14 below:
要确定工厂的产量,必须使用可靠的长期数据来源。下表 14 列出了项目所在地可用的世界级数据源及其特点:
Table 14: Characteristics of Meteorological Data
表 14:气象数据的特征
Parameter | SolarGIS | NASA SSE | Meteonorm 8.1 | PVGIS | Helioclim-1 |
Description | Provides average monthly values of solar irradiation and meteorological parameters, derived from satellite images (Meteosat PRIME) and atmospheric parameters
An independent Expert Survey identified SolarGIS as one of the best databases in the market, in terms of accuracy, reliability and data representativeness, when compared with ground stations located in 23 sites in Europe, North Africa and Middle East. | Provides average monthly values of solar irradiation and meteorological data derived from satellite images | Meteonorm gives full set of meteorological data. Developed from ground measurements by interpolation for solar energy and applied meteorology. | PVGIS provides a large and accurate solar radiation free database for Europe, Africa Mediterranean Basin and South-West Asia Data are based on calculations from satellite images | HelioClim-1 is a database which provides daily global horizontal irradiance. |
Type of Origin | Satellite based | Satellite based | Mainly ground based but also with combination of satellite and ground | Satellite based | Satellite based |
Spatial resolution / distance | 90x90m | 110kmx110km | 8kmx8km | 3kmx3km | 20kmx20km |
Data Source Validation Procedures
数据源验证程序
In order to compare the goodness of fit between the meteorological data sources the following statistical parameters can be used:
为了比较气象数据源之间的拟合优劣,可以使用以下统计参数:
Root Mean Square Error (RMSE)
均方根误差 (RMSE)
The RMSE gives the deviation between the reference value and the other meteorological data source value. The RMSE should be as close to zero as possible and it is calculated as follows:
RMSE 表示参考值与其他气象数据源值之间的偏差。均方根误差应尽可能接近于零,其计算方法如下:
1 N 2
RMSE
Where,
在哪里?
Hn = the measured value
Hn = 测量值。
Fn = the estimated meteorological data source value n = the number of periods i.e. months in this case
Fn = 估计的气象数据源值n = 周期数,在本例中为月数。
Mean Absolute Deviation (MAD)
平均绝对偏差 (MAD)
The MAD parameter is used to measure the statistical dispersion and is calculated as follows:
MAD 参数用于测量统计离散度,计算公式如下:
1 N
MAD=Nn=1 H Fn − n
Mean Absolute Percentage Deviation (MAPD)
平均绝对百分比偏差 (MAPD)
The mean absolute percentage difference (MAPD) also known as the Mean Absolute Percentage Error (MAPE), is used to assess the accuracy of the other meteorological data sources compared to the reference data, it is calculated as follows:
平均绝对百分比差 (MAPD) 也称为平均绝对百分比误差 (MAPE),用于评估其他气象数据源与参考数据相比的准确性,其计算方法如下:
MAPE=N1 nN=1 H FnH−n n .100%
The MBE provides long term performance information of the deviation between the reference Hn and other estimated Fn meteorological data values. It is calculated as a percentage as follows:
MBE提供了参考Hn 和其他估计Fn 气象数据值之间的偏差。其百分比计算方法如下:
MBE= 1 N H FnH−n n.100%
N n=1
Considering the above characteristics, data from three (03) different sources was analysed. The global irradiation values from the datasets are presented in Table 15 below:
考虑到上述特点,我们对来自三(03)个不同来源的数据进行了分析。数据集的全球辐照值见下表 15:
Table 15: Average Annual Global Horizontal Irradiation (kWh.m-2)
表 15:全球年平均水平辐照度(千瓦时/米-2)
Month | Meteonorm 8.1 | NASA SSE | PVGIS |
January | 198.7 | 155.3 | 159.6 |
February | 178 | 143.1 | 153.4 |
March | 193.4 | 168.3 | 193.1 |
April | 187.7 | 171 | 178.3 |
May | 184 | 177.3 | 172.3 |
June | 169.8 | 167.7 | 166.4 |
July | 176.7 | 180.4 | 181.3 |
August | 194.1 | 196.9 | 202.1 |
September | 203.7 | 197.4 | 210.9 |
October | 221.1 | 201.8 | 214.7 |
November | 204.4 | 177 | 191.3 |
December | 200.1 | 161.2 | 160.9 |
Year | 2311.7 | 2097.4 | 2184.3 |
The most conservative meteorological data is from NASA while the most optimist is from Meteonorm 8.1. The variations in the meteorological data by resource are shown in Fig 24 below:
最保守的气象数据来自 NASA,而最 乐观的 气象数据来自 Meteonorm 8.1。各资源气象数据的变化情况如下图 24 所示:
Fig 24: Variation in Meteorological Data by Resource
图 24:按资源分列的气象数据差异
Relative difference between averages of the annual GHI values has been presented in Table 16 below. Specific year and long term averaged solar radiation data from the other sources under investigation agree among themselves within 10% of each other.
表 16 列出了各年 GHI 平均值之间的相对差异。其他调查来源的特定年份和长期平均太阳辐射数据之间的差异在 10%以内。
Table 16: Relative Difference in Average Annual Global Horizontal Irradiation
表 16:全球年平均水平辐照度的相对差异
Source | Meteonorm 8.1 | NASA SSE | PVGIS |
Meteonorm 8.1 | 0.0% | 9.3% | 5.5% |
NASA SSE | -10.2% | 0.0% | -4.1% |
PVGIS | -5.8% | 4.0% | 0.0% |
The results of the statistical parameters are:
统计参数的结果是
Table 17: Monthly Error Analysis for Long Term Averaged Data (vs Meteonorm 8.1)
表 17:长期平均数据的月误差分析(与 Meteonorm 8.1 比较)
Source | RMSE | MAD | MAPE | MBE |
NASA SSE | 23.73 | 18.94 | 9.7 % | 9.1 % |
PVGIS | 18.83 | 13.91 | 7.2 % | 5.5 % |
Meteo data sets from Meteonorm 8.1 were used for purposed of this feasibility assessment. Meteonorm is a hybrid of ground date interpolated with satellite data.
本次可行性评估使用了 Meteonorm 8.1 中的气象数据集。Meteonorm 是地面日期与卫星数据的混合插值。
5.4.4 Simulation
5.4.4 模拟
To accurately estimate the energy produced from a PV power plant, irradiance and weather information acquired from the meteorological sources in 5.4.2 is combined with the plant layout and technical specifications of the plant components and simulated in special software packages.
为了准确估算光伏电站的发电量,需要将从 5.4.2 中的气象资料来源获取的辐照度和天气信息与电站布局和电站组件的技术规格相结合,并在专用软件包中进行模拟。
There are several solar PV modelling software packages available on the market, which are useful analytical tools for different phases of a project’s life. These packages include PVSyst, PV*SOL, RETScreen, HOMER, INSEL, Archelios and Polysun, among others.
市场上有多种太阳能光伏建模软件包,它们是项目生命周期不同阶段的有用分析工具。这些软件包包括 PVSyst、PV*SOL、RETScreen、HOMER、INSEL、Archelios 和 Polysun 等。
In the analysis for Solar PV Yield for the GTL Solar PV Power project, PVSyst was used.
在对GTL 太阳能光伏发电项目的太阳能光伏发电量进行分析时,使用了 PVSyst。
5.4.5 PV Plant Losses
5.4.5 光伏电站损耗
The results of the solar PV energy yield simulation should provide an estimation of the losses that could affect the power plant during operation. Depending on specific site characteristics and plant design, energy yield losses may be caused by any of the factors:
太阳能光伏发电量模拟的结果应能估算出发电厂在运行过程中可能受到的损失。根据具体的场地特征和电站设计,能量产出损失可能由以下任何因素造成:
Near Shading
近阴影
This loss occurs only when the height of the sun is such that the incident angle of solar beams on collectors is lower than a critical value, depending on the distance between collectors. For this reason, the collectors will be arranged with sufficient separation distance in order to minimize mutual interference between collector rows.
只有当太阳高度使得太阳光束入射到集热器上的角度小于临界值(取决于集热器之间的距离)时,才会产生这种损耗。因此,在布置集热器时应保持足够的间距,以尽量减少各排集热器之间的相互干扰。
Far Shadings / Horizon
远影/地平线
This is the shading loss that occurs due to the terrain surrounding a site. During design, the terrain elevation around the site should be calculated in order to create a 360-degree view of hills and mountains nearby. This simulates the obstruction of both direct irradiance and a proportion of diffuse irradiance.
这是由于场地周围地形造成的遮阳损失。在设计过程中,应计算场地周围的地形高程,以创建附近山丘的 360 度视角。这就模拟了直射辐照和一定比例的漫射辐照的阻挡情况。
Electrical Shading
电气遮阳
The effect of partial shadings on electrical production of the PV plant is non-linear and is modelled through partitioning of the strings of modules. Modules installed in landscape configuration for an orientation towards the equator will typically experience less electrical shading losses than modules installed in portrait configuration due to the connection of diodes. Similarly, some types of thin-film technology are less impacted than crystalline PV modules. Electrical shading effects can typically be set within the modelling software. This will be quantified differently depending on module configuration, chosen technology and the system type (i.e., tracking or fixed).
部分遮阳对光伏电站发电量的影响是非线性的,并通过组件串的分区来模拟。由于二极管的连接,朝向赤道的横向安装的组件通常比纵向安装的组件受到的遮光损失要小。同样,某些类型的薄膜技术受到的影响也小于晶体光伏组件。电遮阳效应通常可在建模软件中进行设置。根据组件配置、所选技术和系统类型(如跟踪式或固定式)的不同,电遮阳效应的量化方式也不同。
IAM Factor
IAM 因子
The loss of power associated with the angle of incidence occurs when the light falls on the module at an angle other than 90 degrees. Losses are due to reflection of the light and to spectral reflectance (the current generated by the modules is varying with the factor (Incident Angle Modifier).
当光线以 90 度以外的角度落在模块上时,会出现与入射角相关的功率损耗。损失的原因是光的反射和光谱反射(模块产生的电流随系数(入射角修正器)变化)。
Losses due to Irradiance Level
辐照度造成的损失
Usually, module efficiency decreases with decreasing light intensity. The extent of these losses depends on module characteristics and site conditions.
通常,组件效率会随着光照强度的降低而降低。这些损失的程度取决于组件的特性和现场条件。
Losses due to Temperature
温度造成的损失
The efficiency of a crystalline silicon PV cell decreases non-linearly with the module's temperature. The characteristics of a PV module are determined at standard temperature conditions of 25 ˚C. For every degree rise in Celsius temperature above this standard, crystalline silicon modules reduce in efficiency, generally by around 0.5 %. In high ambient temperatures under strong irradiance, module temperatures can rise appreciably.
晶体硅光伏电池的效率随组件温度的升高而非线性降低。光伏组件的特性是在 25 ˚C 的标准温度条件下确定的。温度每升高 1 摄氏度,晶体硅组件的效率就会降低 0.5%左右。在强辐照的高温环境下,组件温度会明显升高。
Array Soiling Loss
阵列污损
Although the modules' coatings are dust repellent, they will invariably collect dirt over their lifetime which will restrict the sunlight available to the cell and cause a small loss when compared to rated power.
虽然组件的涂层具有防尘功能,但在使用过程中难免会收集灰尘,这将限制电池获得的阳光,并导致与额定功率相比的微小损耗。
Module Quality Loss
模块质量损失
Most PV modules do not exactly match the manufacturer’s nominal specifications. Modules are sold with a nominal peak power (Wp) and a guarantee of actual power within a given tolerance range. The module quality loss quantifies the impact on the energy yield due to divergences in actual module characteristics from the specifications.
大多数光伏组件并不完全符合制造商的标称规格。组件在销售时标有额定峰值功率(Wp ),并保证实际功率在给定的公差范围内。模块质量损失量化了由于实际模块特性与规格不符而对发电量造成的影响。
Typically, the module output power at STC is greater than the nominal power specified in the datasheets. As such, a positive quality factor can be applied to the energy yield.
通常情况下,模块在 STC 时的输出功率大于数据表中规定的额定功率。因此,可以对能量产量采用正品质因数。
Module Degradation
模块退化
The performance of a PV module decreases with time. If no independent testing has been conducted on the modules being used, then a generic degradation rate depending on the module technology may be assumed.
光伏组件的性能会随着时间的推移而降低。如果没有对正在使用的模块进行独立测试,则可根据模块技术假设一个通用的衰减率。
Alternatively, a maximum degradation rate that conforms to the module performance warranty may be considered as a conservative estimate. Datasheets provide an indicative a positive tolerance on the modules (0/+3%), such losses can be neglected.
另外,符合模块性能保证的最大降解率也可视为保守估计。数据表提供了模块的指示性正公差(0/+3%),此类损耗可忽略不计。
Light Induced Degradation (LID)
光诱导降解(LID)
Silicon PV modules have a natural degradation due to the physical reactions (electrons flow) through the p-n junctions of a module. This initial degradation occurred when modules are exposed to sunlight.
硅光伏组件会因物理反应(电子流)通过组件的 p-n 结而自然降解。当组件暴露在阳光下时,就会发生最初的降解。
Array Mismatch
阵列不匹配
Losses due to the mismatching of modules are associated with a difference in performance of each single module, due to the electrical parameters of cells not being identical, tolerances in the manufacturing process and non-uniformity of the radiation over a string of modules. Cells and modules are connected in series, with the result that strings and modules work at the power level of the worst cell and module in that string.
模块不匹配造成的损失与每个单个模块的性能差异有关,其原因包括电池的电气参数不完全相同、制造过程中的公差以及模块串上辐射的不均匀性。电池和模块是串联连接的,其结果是组串和模块以该组串中最差电池和模块的功率水平工作。
DC Electrical Losses
直流电损
Resistance losses have to be considered for the DC cables from the panel to inverter of the entire PV plant.
必须考虑整个光伏电站从电池板到逆变器的直流电缆的电阻损耗。
Inverter Performance
逆变器性能
Correctly sizing the inverters is very important to minimize inverter losses. The main inverter roles in a photo-voltaic plant are:
正确确定逆变器的大小对于最大限度地减少逆变器损耗非常重要。逆变器在光伏电站中的主要作用包括
– Tracking of maximum power point; – DC/AC conversion.
- 最大功率点跟踪; -DC/AC 转换。
Curtailment of Tracking
中断跟踪
For solar PV tracking installations, yield losses can occur due to high winds enforcing the stow mode of tracking systems so that the PV modules are not optimally orientated.
对于太阳能光伏跟踪装置来说,大风会强制跟踪系统采用收起模式,从而使光伏组件无法获得最佳方向,从而造成产量损失。
Transformation losses
转换损失
Transformer losses are usually quantified in terms of iron and resistive/inductive losses, which can be calculated based on the transformer’s no-load and full-load characteristics.
变压器损耗通常以铁损和阻损/电感损来量化,可根据变压器的空载和满载特性来计算。
Ohmic or Cable Losses
欧姆损耗或电缆损耗
The cable losses have to be considered when the length of the line between the inverter and the delivery point is significant and the resulting losses are no longer negligible.
当逆变器和输电点之间的线路长度很大,由此产生的损耗不再可以忽略时,就必须考虑电缆损耗。
Auxiliary System Consumption
辅助系统消耗量
The auxiliary system losses are the ones related to the energy supply of the auxiliary systems. Auxiliary systems may include security systems, tracking motors, monitoring equipment and lighting and, for the GTL Solar PV Power Plant, water treatment plant, housing and social amenities within the power plant. This power is normally metered before the delivery point.
辅助系统损耗是指与辅助系统能源供应有关的损耗。辅助系统可能包括安全系统、跟踪电机、监控设备和照明,对于 GTL 太阳能光伏发电厂,还包括水处理厂、发电厂内的住房和社会福利设施。这些电力通常在交付点之前计量。
Downtime
停机时间
Downtime is a period when the plant does not generate due to failure. The downtime periods will depend on the quality of the plant components, design, environmental conditions, diagnostic response time, and repair response time.
停机时间是指发电站因故障而无法发电的时间段。停机时间取决于发电厂部件的质量、设计、环境条件、诊断响应时间和维修响应时间。
Grid Availability and Disruption
电网可用性和中断
The ability of a PV power plant to export power is dependent on the availability of the Transmission Grid which is operated by another party. Unless the detailed operational information is available, this loss is typically based on an assumption that the local grid will not be operational for a given number of hours/days in any one year, and that it will occur during periods of average production.
光伏电站出口电力的能力取决于由另一方运营的输电网的可用性。除非有详细的运行信息,否则这种损失通常是基于这样一种假设,即在任何一年中,当地电网在一定小时/天数内不运行,而且这种损失会在平均生产期间发生。
Grid Compliance Loss
电网合规性损失
Excessive loading of local transmission or distribution network equipment such as overhead lines or power transformers may lead to grid instability. In this case, the voltage and frequency of the grid may fall outside the operational limits of the inverters and plant downtime may result. In less developed regional networks, the risk of downtime caused by grid instability can have serious impacts on project economics.
当地输电或配电网络设备(如架空线路或电力变压器)负载过重可能会导致电网不稳定。在这种情况下,电网的电压和频率可能会超出逆变器的工作极限,从而导致电厂停机。在欠发达地区的电网中,电网不稳定造成的停机风险可能会严重影响项目的经济效益。
Generation Curtailment
削减发电量
Generation curtailment occurs when the transmission system operator directs the solar PV plant operator to generate a reduced amount of energy. This may be due to various factors such as grid constraints, load management etc. This leads to loss of generation and consequently loss of revenue. Curtailment rules need to be outlined in order to model an appropriate financial and economic case for the project
当输电系统运营商指示太阳能光伏电站运营商减少发电量时,就会出现发电缩减。这可能是由于电网限制、负荷管理等各种因素造成的。这会导致发电量损失,进而造成收入损失。需要概述缩减规则,以便为项目建立适当的财务和经济案例模型
5.4.6 Uncertainty Estimation
5.4.6 不确定性估计
For the calculation of the total uncertainty of the plant and therefore to the standard deviation to be applied to the irradiance values, different contributions need to be considered: the first one relating to the software and to the software uncertainty, while the second one relating to the irradiation data.
为了计算设备的总不确定性,从而计算辐照度值的标准偏差,需要考虑不同的因素:第一个因素与软件和软件的不确定性有关,第二个因素与辐照数据有关。
Model and Software
模型和软件
This uncertainty is composed by an uncertainty of the model applied for the calculation of the inclined irradiation starting from the horizontal one.
这种不确定性由用于计算从水平方向开始的倾斜辐照度的模型的不确定性构成。
Irradiation Data
辐照数据
The standard deviation is a value related to the Gaussian distribution of the irradiation data (Interannual distribution) and to the measurement uncertainty and it indicates how much the real values can deviate from the ones assumed for the calculation.
标准偏差是一个与辐照数据的高斯分布(年际分布)和测量不确定性相关的值,它表明实际值与计算时假设的值之间的偏差有多大。
Further contributions
其他贡献
Other contributions have been taken into account, basing on datasheets. The resulting uncertainty considered for the overall project is equal to the quadratic sum of each single uncertainty.
根据数据表,还考虑了其他因素。整个项目的不确定性等于每个单一不确定性的二次总和。
5.5 Yield Assessment for the GTL Solar PV Power Project
5.5 GTL 太阳能光伏发电项目收益评估 GTL 太阳能光伏发电项目收益评估
Meteorological Data
气象数据
Representative data for the average monthly Global Horizontal Irradiation, Diffuse Horizontal Irradiation and some selected weather condition data for the Power Plant are presented in Table 18 below:
下文表 18 列出了发电厂每月平均全球水平辐照度、漫射水平辐照度的代表性数据以及一些选定的天气条件数据:
Table 18: Horizontal Irradiation and temperature values (Meteonorm 8.1)
表 18:水平辐照度和温度值(Meteonorm 8.1)
Month | Horizontal Global kWh.m-2 | Horizontal Diffuse kWh.m-2 | Global Inc. in Coll. Plane kWh.m-2 | Temperature OC | Wind Velocity m.s-1 |
January | 198.7 | 79.61 | 176.3 | 21.37 | 2.01 |
February | 178 | 70.55 | 167.5 | 21.23 | 2.09 |
March | 193.4 | 69.75 | 195.8 | 21.31 | 2.31 |
April | 187.7 | 51.37 | 206.1 | 20.14 | 3 |
May | 184 | 41.83 | 218.2 | 19.01 | 3 |
June | 169.8 | 31.34 | 210 | 16.8 | 3.1 |
July | 176.7 | 35.66 | 214.8 | 16.87 | 3.3 |
August | 194.1 | 40.07 | 221 | 19.6 | 3.4 |
September | 203.7 | 49.24 | 213.9 | 22.83 | 3.5 |
October | 221.1 | 58.25 | 213.1 | 25.15 | 3.41 |
November | 204.4 | 71.21 | 183.5 | 23.45 | 2.6 |
December | 200.1 | 74.48 | 173.7 | 21.85 | 2.1 |
Year | 2311.8 | 673.35 | 2394 | 20.8 | 2.82 |
Optimisation of Tilt and Azimuth
倾角和方位角的优化
Using PVSyst, the orientation of the panels was optimised at an Azimuth of -10o and an inclination of 22.2o as shown in Fig 25 below:
利用 PVSyst,将电池板的方位优化为方位角 -10o 和倾角 22。2o 如下图 25 所示:
Fig 25: Tilt and Azimuth Optimisation
图 25:倾角和方位角优化
Simulation Model
模拟模型
In PVSyst, the simulation model as set up as summarised in Table 19 below:
在 PVSyst 中,模拟模型的设置如下表 19 所示:
Table 19: PVSyst Model Set Up
表 19:PVSyst 模型设置
Project Location | |
Country, Region | Zambia, Africa |
Lat, Lon: Altitude: | -12.9859°, 28.3037° 1214 m absl |
Reference Data | |
Data Source | Meteonorm 8.1 |
Time Period | Typical Meteorological Year |
Solar PV Module | |
Module Technology | Polycrystalline Silicon |
Manufacturer | Canadian Solar |
Model | CS3W-415P 1500V HE |
Nominal Power | 415 Wp |
Number of Modules | 602,420 Series Modules: 28, Parallel Strings: 21,515 |
Mounting Structure Technology | |
Structure | Fixed |
Tilt | 22.2o |
Azimuth | -10o |
Inverter Technology | |
Type | String Inverter |
Manufacturer | Huawei Technologies |
Model | SUN2000-185KTL-H1@40C |
Nominal Power | 175 kWac |
Number of Units | 1,200 |
Power Generation | |
DC Installed Power | 250 MWDC |
Power Exported to Grid | 200 MWAC |
System Losses
系统损耗
The corresponding system losses were as estimated in Table 20 below:
相应的系统损耗估计如下表 20 所示:
Table 20: Loss Estimates for the GTL Solar PV Power Project
表 20:GTL 太阳能光伏发电项目的损失估计
Stage | Loss Description | Loss Value |
Irradiance | Global Horizontal Irradiation | 2,312 kWh.m-2 |
Global Incidence in Collector Plane | 3.4 % | |
Far Shading/Horizon | -0.3 % | |
IAM factor on Global | -1.5 % | |
Soiling Loss Factor | -2.5 % | |
| Array Nominal Energy at STC, η = 18.79% | 571,935 MWh |
Module | Module Degradation Loss (for Year 1) | -0.2 % |
Losses due to irradiance level | -0.4 % | |
Losses due to temperature | -10.4 % | |
Spectral Correction | -0.6 % | |
Module Quality Loss | 0.3 % | |
Light Induced Degradation (LID) | -2.0 % | |
Array Mismatch Loss | -3.6 % | |
Ohmic Wiring Loss | -5.9 % | |
| Array Virtual Energy at MPP | 458,679 MWh |
Inverter | Inverter Loss during operation (efficiency) | -1.8 % |
Inverter Loss Over Nominal Inv. Power (efficiency) | - | |
Inverter Loss due to Voltage Threshold | - | |
| Available Energy at Inverter Output | 450,485 MWh |
System | Inverter Auxiliaries Losses (fans, other) | -0.2 % |
System unavailability | -1.9 % | |
Unused Energy (Grid Limitation) | - | |
| Active Energy Injected into the Grid | 440,699 MWh |
Annual Performance Data
年度绩效数据
The expected main monthly performance results for the project are shown in Table 21:
表 21 列出了该项目的预期主要月度绩效结果:
Table 21: Annual Performance Results for the GTL Solar PV Power Project
表 21:GTL 太阳能光伏发电项目 的年度绩效结果
| GlobHor | T_Amb | EArray | EffInvR | InvLoss | E_User | E_Grid | EReGrid | EApGrid | PR Ratio |
| kWh.m-² | °C | MWh | % | MWh | MWh | MWh | MVAh | MVAh | |
January | 198.7 | 21.37 | 33,762 | 98.2 | 593 | 74 | 31,017 | 4,710 | 31,372 | 0.714 |
February | 178 | 21.23 | 32,095 | 98.2 | 566 | 67 | 31,429 | 4,477 | 31,746 | 0.76 |
March | 193.4 | 21.31 | 37,364 | 98.2 | 673 | 74 | 36,585 | 5,211 | 36,954 | 0.752 |
April | 187.7 | 20.14 | 39,330 | 98.2 | 729 | 72 | 38,510 | 5,484 | 38,899 | 0.747 |
May | 184 | 19.01 | 42,550 | 98.2 | 761 | 74 | 41,682 | 5,934 | 42,103 | 0.757 |
June | 169.8 | 16.8 | 41,615 | 98.2 | 733 | 72 | 40,777 | 5,805 | 41,189 | 0.767 |
July | 176.7 | 16.87 | 42,430 | 98.2 | 747 | 74 | 41,575 | 5,919 | 41,994 | 0.766 |
August | 194.1 | 19.6 | 42,478 | 98.2 | 760 | 74 | 41,609 | 5,924 | 42,028 | 0.749 |
September | 203.7 | 22.83 | 39,943 | 98.2 | 726 | 72 | 36,316 | 5,569 | 36,740 | 0.679 |
October | 221.1 | 25.15 | 39,352 | 98.2 | 713 | 74 | 34,878 | 5,487 | 35,307 | 0.66 |
November | 204.4 | 23.45 | 34,580 | 98.2 | 612 | 72 | 33,860 | 4,823 | 34,202 | 0.749 |
December | 200.1 | 21.85 | 33,153 | 98.3 | 580 | 74 | 32,462 | 4,625 | 32,790 | 0.762 |
Year | 2311.8 | 20.8 | 458,654 | 98.2 | 8,194 | 876 | 440,699 | 63,969 | 445,317 | 0.738 |
Legend
图例:
GlobHor Horizontal global irradiation
GlobHor 全球水平辐照度
T_Amb Ambient Temperature
T_Amb 环境温度
EArray Effective energy at the output of the array GlobInc Global incident in coll. Plane
EArray 阵列输出端的有效能量 GlobInc 以 coll.平面
GlobEff Effective Global, corr. for IAM and shadings
GlobEff Effective Global, corr.
EffInvR Inverter Operating Efficiency
EffInvR 逆变器运行效率
InvLoss Inverter Losses
InvLoss 逆变器损耗
E_User Energy Supplied to the User
E_User 向用户提供的能量
E_Grid Energy injected into grid
E_Grid 注入电网的能量
EReGrid Reactive Power Injected into the Grid
EReGrid 注入电网的无功功率
EApGrid Apparent Power Injected into the Grid
EApGrid 注入电网的表观功率
PR Performance Ratio
PR 性能比
5.5.6 Loss Diagram
5.5.6 损耗图
The yield calculations obtained are summarized in the loss diagram presented in Fig 26 below:
下图 26 中的损耗图概括了得出的产量计算结果:
Fig 26: PVSyst Loss Diagram
图 26: PVSyst 损耗图
5.5.7 Hourly Generation Profile
5.5.7每小时发电概况
The hourly generation profiles for each month depicted in Fig 27.
图 27 显示了每个月的每小时发电量曲线。
GALABA TRADING LIMITED
250 MWp GTL Solar PV Power Project – Feasibility Study Reports
250 MWp GTL 太阳能光伏发电项目 - 可行性研究报告
Fig 27: Annual Hourly Generation
图 27:全年每小时发电量
50
GALABA TRADING LIMITED
250 MWp GTL Solar PV Power Project – Feasibility Study Report
250 MWp GTL 太阳能光伏发电项目 - 可行性研究报告
5.5.8 Production Probability Forecast
5.5.8 生产概率预测
The probability distribution of the system production forecast for different years was mainly dependent on the meteo data used for the simulation. The following choices were considered:
不同年份系统产量预测的概率分布主要取决于模拟所使用的气象数据。我们考虑了以下选择
Meteonorm 8.1 for a Typical Meteorological Year
典型气象年的气象orm 8.1
Specified Deviation Climate Change of 0 %
指定偏差 气候变化为 0
Year-to-year variability Variance of 5.5 %
年与年之间的差异 差异为 5.5
The probability distribution variance also considered the following system parameter uncertainties:
概率分布方差还考虑了以下系统参数的不确定性:
Specified Deviation
指定偏差
PV module modelling/parameters of 1.0 %
1.0 % 的光伏组件建模/参数
Inverter efficiency uncertainty of 0.5 %
逆变器效率不确定性为 0.5
Soiling and mismatch uncertainties of 1.0 %
脏污和错配的不确定性为 1.0
Degradation Uncertainty of 1.0 %
退化不确定性为 1.0
Global Variability (meteo + system)
全球变异性(气象+系统)
• Variance of 5.8 % (quadratic sum)
-方差为 5.8 %(二次总和)
With the above set conditions, the energy production is depicted in the probability distribution shown in Fig 23 below:
在上述设定条件下,能量产生的概率分布如下图 23 所示:
Fig 28: Probability Distribution
图 28:概率分布
From Fig 28 above, the identified energy productions are stated in Table 22.
根据上述图 28,表 22 列出了已确定的能源生产。
Table 22: Annual Energy Production
表 22:年度能源生产
Variability | 25.5 GWh |
P50 | 441 GWh |
P90 | 408 GWh |
P95 | 399 GWh |
The energy exported to the grid over the 25-year operational life of the project is given in Table 23.
表 23 列出了该项目在 25 年运营期内向电网输出的能量。
Table 23: 25-Year Annual Energy Yield for the Power Plant
表 23:发电厂 25 年的年发电量
Year | GWh | PR (%) | PR Loss (%) |
1 | 441.1 | 73.8 | -0.19 |
2 | 439.5 | 73.53 | -0.56 |
3 | 437.6 | 73.21 | -0.99 |
4 | 435.5 | 72.86 | -1.46 |
5 | 433.2 | 72.48 | -1.98 |
6 | 430.6 | 72.04 | -2.57 |
7 | 427.7 | 71.56 | -3.22 |
8 | 424.7 | 71.05 | -3.9 |
9 | 421.6 | 70.54 | -4.6 |
10 | 418.5 | 70.02 | -5.3 |
11 | 415.6 | 69.53 | -5.97 |
12 | 412.7 | 69.06 | -6.61 |
13 | 410 | 68.6 | -7.22 |
14 | 407.4 | 68.16 | -7.82 |
15 | 404.9 | 67.74 | -8.39 |
16 | 402.7 | 67.38 | -8.88 |
17 | 400.8 | 67.06 | -9.31 |
18 | 398.9 | 66.74 | -9.74 |
19 | 396.9 | 66.41 | -10.19 |
20 | 394.7 | 66.04 | -10.69 |
21 | 391.9 | 65.57 | -11.32 |
22 | 388.6 | 65.01 | -12.07 |
23 | 385 | 64.41 | -12.89 |
24 | 381.2 | 63.77 | -13.75 |
25 | 377.2 | 63.11 | -14.64 |
Total | 10278.5 | - | - |
Average | 411.14 | 68.7872 | -7.0 |
The summary for the evaluation of production using PVSyst is shown in Table 24 below:
使用 PVSyst 进行的生产评估摘要见下表 24:
Table 24: Summary of PVSyst Simulation
表 24:PVSyst 模拟摘要
Average Electricity Exported to Grid | 411 GWh |
Specific Yield | 1,764 kWh/kWp |
Normalised Production | 1,764 kWh/kWp/yr |
Array Losses | 555 kWh/kWp/yr |
System Losses | 69.4 kWh/kWp/yr |
Performance Ratio | 73.8 % |
Capacity Factor | 18.8 % |
6. | PRELIMINARY DESIGN AND PLANT LAYOUT |
6.1 Codes and Standards
6.1 规范和标准
Solar PV power plants are expected to be designed according to standards and regulations applicable in grid connected applications in Zambia. These standards and regulations include:
太阳能光伏发电厂的设计应符合适用于赞比亚并网应用的标准和规定。这些标准和规定包括
i. Statutory Instrument Number 73 of 2013 The Electricity (Grid Code) Regulation ii. IEC 60904-1: Photovoltaic Devices
i.2013 年第 73 号法定文书《电力(电网规范)条例》ii.IEC 60904-1:光伏设备
iii. IEC 61683: Photovoltaic systems - Power conditioners - Procedure for measuring efficiency iv. IEC 61727: Photovoltaic (PV) systems - Characteristics of the utility interface;
iii.IEC 61683:IEC 61683:光伏系统-功率调节器-测量效率的程序 ivIEC 61727:光伏(PV)系统-市电接口的特性;
v. IEC 61730: Photovoltaic (PV) module safety qualification
vIEC 61730:光伏 (PV) 模块安全鉴定
vi. IEC 62093: Balance-of-system components for photovoltaic systems - Design qualification natural
六、IEC 62093:光伏系统的系统平衡部件--自然设计资格IEC 62093:光伏系统的系统平衡部件--自然设计资格
Environments
环境
vii. IEC 61557-1: Electrical safety in low voltage distribution systems up to 1000 Va.c. and 1500 Vd.c viii. IEC 61558: Specification for safety of power transformers, power supply units and similar apparatus ix. IEC 61173: Over-voltage protection for photovoltaic (PV) power generating systems
vii.IEC 61557-1:1000 V 及以下低压配电系统的电气安全a.c.and 1500 Vd.c viii.IEC 61558:电力变压器、电源单元和类似装置的安全规范 ixIEC 61173:光伏(PV)发电系统的过压保护IEC 61173:光伏(PV)发电系统的过压保护IEC 61173:光伏(PV)发电系统的过压保护
x. IEC 61194: Characteristic parameters of stand-alone photovoltaic (PV) systems
xIEC 61194:独立光伏(PV)系统的特性参数
IEC 61724: Photovoltaic system performance monitoring - Guidelines for measurement, data exchange and analysis
IEC 61724:光伏系统性能监测--测量、数据交换和分析指南
IEC 62446: Grid connected photovoltaic systems - Minimum requirements for system documentation, commissioning tests and inspection
IEC 62446:并网光伏系统--系统文件、调试测试和检查的最低要求
ISO 9355-1: Ergonomic requirements for the design of displays and control actuators
ISO 9355-1:显示器和控制执行器设计的人体工学要求
6.2 Technical Solution
6.2技术解决方案
The analysis for the engineering design and project layout is based on the available technology and the yield analysis established in Chapter 5 correlated with the site conditions observed in Chapter 4 above.
对工程设计和项目布局的分析是基于现有技术和第 5 章建立的产量分析,并与上文第 4 章观察到的现场条件相关联。
General
一般情况
The general layout of the project is envisioned as a Solar PV Power plant based on Polycrystalline Solar PV Panels connected to the Zambian National Grid via the 220/66 kV Zesco Substations in Mazabuka & Siavonga (Lusitu). Construction works will include support structures for the solar panels, civil and mechanical works for the local transformers, Substations and transmission lines. Mechanical works will include erection of support structures and installation of solar PV panels.
项目的总体布局设想为一个基于多晶硅太阳能光伏板的太阳能光伏电站,通过 220/66 千伏 ZescoSubstations in Mazabuka &;Siavonga (Lusitu)。建筑工程将包括太阳能电池板的支撑结构、本地变压器的土建和机械工程、 变电站 和输电线路。机械工程将包括架设支撑结构和安装太阳能光伏板。
Solar PV Modules
太阳能光伏组件
The development of a solar PV power plant is to a greater extended dependent of the selected Solar PV module. Factors that influence a PV module are cost, land required per unit power production, performance efficiency, maintenance requirement, market reputation etc.
太阳能光伏电站的发展在很大程度上取决于所选择的太阳能光伏组件。影响光伏组件的因素包括成本、单位发电量所需土地、性能效率、维护要求、市场声誉等。
In the absence of PVSyst Simulation Packages, the manual computations for the design and layout of Solar PV modules are presented below:
在没有 PVSyst 仿真软件包的情况下,下文介绍了太阳能光伏组件设计和布局的手动计算:
Total Number of Solar PV Panels
太阳能光伏电池板总数
Depending on the module technology selected for the PV plant the total number of PV panels required in the system will vary. This number is given by:
根据光伏电站所选模块技术的不同,系统所需的光伏电池板总数也不同。这个数字由以下公式得出
Pdesign 10x 6
P 设计 10x6
NPV =
PM STC,
Where, 𝑃𝑑𝑒𝑠𝑖𝑔𝑛 [MW] is the design power plant capacity and 𝑃𝑀, [W] is the power rating for the PV module at Standard Test Conditions. The final value of NPV is determined after fixing the number of inverters.
哪里、𝑃𝑑𝑒𝑠𝑖𝑔𝑛[MW] 是发电厂的设计容量,𝑃𝑀、[W] 是光伏组件在标准测试条件下的额定功率。NPV 的最终值在确定逆变器数量后确定。
Number of PV modules in Series (Ns,max) and in Parallel (Np,max)
串联(Ns,max)和并联(Np,max )的光伏组件数量
In a typical Solar PV power plant, a given number of PV modules are connected in series to achieve a given voltage at the inverter input. The so connected series arrangement is commonly known as a string. Strings are thereafter connected in parallel to achieve a given current at the inverter input.
在典型的太阳能光伏电站中,一定数量的光伏组件串联在一起,以在逆变器输入端达到一定的电压。这种串联方式通常称为组串。组串随后并联,以在逆变器输入端达到给定的电流。
Arising from the above, it therefore follows that the calculations for the maximum number of PV modules in a string (Ns,max) and maximum number of parallel strings will entirely depend on the specifications of the inverter selected.
由此可见,组串中光伏组件最大数量(Ns,max )和并联组串最大数量的计算完全取决于所选逆变器的规格。
Number of modules in a string (Ns,max)
字符串中的模块数(Ns,max)
Using an appropriate computer application, the algorithm that can be used for the calculation of the maximum number of PV modules in series per inverter is shown in Fig 29 below:
利用适当的计算机应用程序,可用于计算每个逆变器串联光伏组件最大数量的算法如下图 29 所示:
Fig 29: Ns,max Algorithm for Calculation PV Modules Per Inverter
图 29:Ns,max每个逆变器的光伏组件计算算法
where, the specifications of the inverter are:
其中,逆变器的规格为:
Vi,max is the DC input maximum MPP voltage,
V,max 为直流输入最大 MPP 电压,
Vi,min is the DC input minimum MPP voltage; and
V,min 是直流输入最小 MPP 电压;以及
VDC,max is the maximum permissible DC input voltage;
VDC,max 为允许的最大直流输入电压;
and the specifications of the PV module are: Vm,max maximum MPP voltage; and Voc,max maximum open-circuit voltage.
和 光伏组件的规格为:Vm,max 最大 MPP 电压;以及 Voc,max 最大开路电压。
Number of strings in parallel (Np,max)
并行字符串数(Np,max)
The number of strings in parallel is calculated using the values of current from each string (IS,max) and the input current to the inverter (IDC,max). Using an appropriate computer application, the algorithm that can be used for the calculation of the maximum number of parallel strings is given below:
并联组串的数量是根据每个组串的电流值(IS、max)和逆变器的输入电流(IDC,max)。使用适当的计算机应用程序,可用于计算最大并联串数的算法如下:
IDC,max
Np,max = floor
Np、max= floor
Recommended Solar PV Modules
推荐的太阳能光伏组件
The 250 MWp GTL Solar PV Power Plant is expected to utilise the CS3W-415P 1500V HE PV module supplied by Canadian Solar Inc. The CS3W-415P 1500V HE PV module is shown in Fig 30 below:
250 MWp GTL 太阳能光伏发电站er 电站预计将采用阿特斯太阳能公司提供的 CS3W-415P 1500V HE 光伏组件。CS3W-415P 1500V HE 光伏模块如下图 30 所示:
Fig 30: Canadian Solar CS3W-415P 1500V HE PV Module
图 30:阿特斯太阳能 CS3W-415P 1500V HE 光伏组件
The CS3W-415P 1500V HE has an output of 415 W, 39.3 V at STC. The module has a total of 144 Solar PV cells arranged in a 2 x (12 X 6) configuration. The 2108 x 1048 x 40 mm module has a cell (effective) areas of 1.984 mm2 and weighs about 24.9 kg.
CS3W-415P 1500V HE 的输出功率为 415 W,STC 电压为 39.3 V。该组件采用 2 x (12 X 6) 配置,共有 144 块太阳能光伏电池。2108 x 1048 x 40 毫米模块的电池(有效)面积1.984 mm2 重约 24.9 kg。
The IV characteristics of the CS3W-415P 1500V HE at different irradiance and different temperature are shown in Fig 31 (a) and (b) below:
CS3W-415P 1500V HE 在不同辐照度和不同温度下的 IV 特性如下图 31 (a) 和 (b) 所示:
Fig 31: IV Characteristics of the CS3W-415P 1500V HE
图 31:CS3W-415P 1500V HE 的 IV 特性
Specifications of the CS3W-415P 1500V HE Solar PV module are shown in Table 25 below:
CS3W-415P 1500V HE 太阳能光伏组件的规格如下表 25 所示:
Table 25: PV Module Characteristics
表 25:光伏组件特性
Description | Value | Unit |
Technology | Polycrystalline | - |
Peak Power (Pmax ) | 415 | Wp |
Maximum power point voltage at STC (Vmpp) | 39.3 | V |
Maximum power point current at STC (Impp) | 10.56 | A |
Open Circuit Voltage at STC (VOC) | 47.8 | V |
Short Circuit Current at STC (ISC) | 11.14 | A |
Temperature coefficient Pmax | -.37 | %/oC |
Maximum system voltage | 1500 | V |
Dimensions (length x width x height) | 2108 x 1048 x 40 | mm |
Weight | 24.9 | kg |
6.2.3 Mounting Structure
6.2.3安装结构
In order to provide support and appropriate orientation, the solar PV modules will be mounted on a fixed structure similar to Fig 32 below:
为了提供支撑和适当的朝向,太阳能光伏组件将安装在一个固定结构上,如下图 32 所示:
Fig 32: Proposed Mounting Structure
图 32:拟议的安装结构
The solar panels will be arranged in portrait with a 2 x n configuration. The plane of orientation will have a 22.20 tilt at an Azimuth of -100. About 602,420 panels will be required to generate a dc capacity of 250 MW by the power plant. A typical arrangement is shown in Fig 33 below:
太阳能电池板将以 2 x n 的纵向配置排列。定向平面将有 22.20 倾角为方位角-100 。发电厂需要大约 602 420 块电池板来产生 250 兆瓦的直流电。典型布置如下图 33 所示:
Fig 33: Proposed Panel Arrangement
图 33:建议的面板布置
6.2.4 Areas Occupied by the Solar PV Modules
6.2.4 太阳能光伏组件占用的区域
The areas covered by solar PV panels is given by the simple relationship:
太阳能光伏电池板覆盖的 面积 是 由简单的关系给出的:
Sarray =S Npv. pv final, 10x −4
Sarray =S Npvpv final 10x -4
The above formula is simplistic and considers the overall dimensions of the PV modules only. However, the actual land required by the solar PV panels will be subjected to land restrictions, requirements for access ways, construction challenges and considerations etc.
上述公式比较简单,只考虑了光伏组件的整体尺寸。然而,太阳能光伏板实际所需的土地将受到土地限制、通道要求、施工挑战和考虑因素等因素的制约。
Normally, solar panels are laid at an incline to the horizontal, the ground coverage then has to be projected from the inclined plane to the horizontal. Secondly, an appropriate pitch is applied to adjacent arrays to avoid shading.
通常情况下,太阳能电池板的铺设会向水平面倾斜, 然后,地面覆盖面必须从倾斜面投影到水平面。其次,对相邻阵列采用适当的间距,以避免遮挡。
6.2.5 Power Inverter
6.2.5 电源逆变器
Inverters perform a variety of other functions to maximise the output of a Solar PV power plant. These functions include DC-to-AC power conversion, optimising the voltage across the strings, monitoring string performance, data logging and providing protection, isolation in case of irregularities in the grid or within the PV modules and power flow controls between the solar plant and the interconnected grid.
逆变器还具有其他多种功能,可最大限度地提高太阳能光伏电站的输出功率。这些功能包括直流-交流电源转换、优化组串电压、监控组串性能、数据记录、提供保护、在电网或光伏组件出现异常时进行隔离,以及太阳能电站与互联电网之间的功率流控制。
Number of inverters (Ni)
逆变器数量 (N)
The number of inverters required for a typical solar PV Power Plant is given by:
典型太阳能光伏发电站所需的逆变器数量为
NPV
Ni =Ceil
N NS . P
NNSP
In which case, NS = NS,max and NP = NP,max
在这种情况下,NS = NS,max 和 NP = NP,max
Final number of PV Modules and Final Installed Capacity
光伏组件的最终数量和最终安装容量
Since Ni does not always result in a whole number, a certain level of judgement backed by experience is used to adjust the final values of NS and NP. This results in a different value of Solar PV modules unlike the value computed in 6.2.2 above.
由于 Ni 并不总是整数,因此需要根据经验做出一定程度的判断,以调整 NS 和 NP 的最终值。 这导致 太阳能光伏组件的值与上述 6.2.2 中计算的值不同。
The revised number of Solar PV modules will thus be given by:
因此,修订后的太阳能光伏组件数量为
N pv final, =N N NS . P.
N pv final、=N N NS P 。i
While the revised installed capacity will be given by:
而修订后的装机容量将通过以下方式给出:
Pinstalled =N pv final, .PM STC
P已安装 =N pv finalPM STC,
Recommended Inverter Type
推荐的逆变器类型
The 250 MWp GTL Solar PV Power Plant is expected to utilise the decentralised SUN2000185KTL-H1 smart string inverter manufactured by Huawei Technologies shown in Fig 34 below:
250 MWp GTL 太阳能光伏电站预计将采用华为技术公司生产的分散式 SUN2000185KTL-H1 智能组串逆变器,如下图 34 所示:
Fig 34: Huawei SUN2000-185KTL-H1 Inverter
图 34:华为 SUN2000-185KTL-H1 逆变器
The SUN2000-185KTL-H1 has a DC input of 500 - 1500 V, Maximum MPPT current of 26 A. It has 9 MPP trackers with 18 inputs. The AC output Characteristics of the SUN2000-185KTL-H1 are 185 kW at unity power factor and maximum efficiency of 99.03%. The maximum output current is 134.9 A while the nominal output voltage is 800 V, 3W + PE with an adjustable power factor of 0.8 lagging and 0.8 leading.
SUN2000-185KTL-H1 的直流输入电压为 500 - 1500 V,最大 MPPT 电流为 26 A。它有 9 个 MPP 跟踪器,18 个输入。SUN2000-185KTL-H1 的交流输出特性为 185 kW,功率因数为 1,最大效率为 99.03%。最大输出电流为 134.9 A,额定输出电压为 800 V,3W + PE,可调功率因数为 0.8 滞后和 0.8 超前。
The GTL power plant is expected to have 1,200 units of the SUN2000-185KTL-H1 inverter. The specifications of the SUN2000-185KTL-H1 inverter are shown in Table 26 below:
GTL 电站预计将安装 1,200 台 SUN2000-185KTL-H1 逆变器。SUN2000-185KTL-H1 逆变器的规格如下表 26 所示:
Table 26: Specifications of the SUN2000-185KTL-H1
表 26:SUN2000-185KTL-H1 的规格
Inverter Type | String Inverter |
Manufacturer | Huawei Technologies |
Model | SUN2000-185KTL-H1 |
Inverter Max Efficiency | 99.03% |
Inverter Output Power (kW) | 185 |
Inverter Max. Input Voltage (V) | 1500 |
Inverter Nominal Input Voltage (V) | 1080 |
Inverter Max Input Current per MPPT | 26 |
No. of Inverter MPP Trackers | 9 |
Inverter Nominal AC Active Power @40oC (kW) | 175 |
Inverter Nominal Output Current @40oC (A) | 126.3 |
Inverter Max AC Active Power @ Unity Power Factor (kW) | 185 |
Inverter Maximum Output Current (A) | 134.9 |
Inverter Power Factor Characteristics | +/- 0.8 |
6.2.6 Cable Requirements
6.2.6 电缆要求
Standard cable for high voltage and low voltage are available in Zambia. These cables can be obtained from Metal Fabricator of Zambia Plc (ZAMEFA) and other distributors.
赞比亚有用于高压和低压的标准电缆。这些电缆可从 Metal Fabricator of Zambia Plc (ZAMEFA) 和其他经销商处购买。
6.2.7 Transformer Stations
6.2.7 变压器站
The setup for aggregating and integrating the output power from the solar PV plant will involve several key components:
太阳能光伏电站输出电力的汇集和整合装置将涉及几个关键组件:
1. Inverters:
1.变频器:
- The solar power generated will first be converted from DC to AC by the inverters.
- 太阳能发电首先由逆变器将直流电转换为交流电。
2. Containerized MV Transformers:
2.集装箱式中压变压器:
- The output power from the inverters will be aggregated through containerized Medium Voltage (MV) transformers.
- 逆变器的输出功率将通过集装箱式中压变压器汇集。
3. Ring Main Units (RMUs):
3.环形主单元(RMU):
- These units will further aggregate the power through High Tension (HT) transformers.
- 这些设备将通过高压(HT)变压器进一步汇聚电力。
4. 33 kV Interconnection:
4.33 千伏互联:
- The aggregated power will be connected to the National Grid via a 33 kV interconnection.
- 汇集的电力将通过 33 千伏互联线路与国家电网相连。
To ensure system compatibility and reduce risks, the project will utilize the **Huawei Fusion-Solar ITS Smart PV Solution**. This comprehensive package includes:
为确保系统兼容性并降低风险,该项目将采用**华为 Fusion-Solar ITS 智能光伏解决方案**。这套综合解决方案包括
- Inverters: Converts DC power from the solar panels to AC power.
- 逆变器: 将太阳能电池板的直流电转换为交流电。
- Transformers: Steps up the voltage for grid integration.
- 变压器: 升压并网。
- Array Controller Units: Manages the performance and operation of the solar arrays.
- 阵列控制器单元:管理太阳能电池阵列的性能和运行。
- Data Loggers: Monitors and records system performance and data.
- 数据记录器:监控和记录系统性能和数据。
The Huawei Fusion-Solar ITS Smart PV Solution aims to streamline integration and enhance operational efficiency by providing a unified solution for all key components. This approach minimizes compatibility issues and simplifies the management of the solar power system, depicted in Fig 35 below:
华为 Fusion-Solar ITS 智能光伏解决方案旨在通过为所有关键组件提供统一的解决方案来简化集成和提高运行效率。这种方法最大限度地减少了兼容性问题,简化了太阳能发电系统的管理,如下图 35 所示:
Fig 35: Huawei Fusion-Solar ITS Smart PV Solution
图 35: 华为 Fusion-Solar ITS 智能光伏解决方案
The project will utilise the Huawei STS-3000K smart transformers. The Huawei STS-3000K smart transformer is a containerised, pre wired offer which includes a power transformer complete with accessories. The physical appearance and single line diagram of the Huawei STS-3000K smart transformer station are shown in Fig 36, Fig 37 and Fig 38 below, respectively:
该项目将使用华为 STS-3000K 智能变压器。华为 STS-3000K 智能变压器是一种集装箱式预接线offer ,其中包括一个电源变压器和完整的附件。华为 STS-3000K 智能变电站的外形和单线图分别如下图 36、图 37 和图 38 所示:
Fig 36: Huawei STS-3000K Smart Transformer Station
图 36:华为 STS-3000K 智能变电站
Fig 37: Graphical View of the Huawei STS-3000K smart transformer Station
图 37:华为 STS-3000K 智能变电站图示
Fig 38: SLD of the Huawei STS-3000K Smart Transformer Station
图 38:华为 STS-3000K 智能变电站的 SLD
Key
钥匙
Low-Voltage Room (LV) (8) Auxiliary transformer
低压室 (LV) (8)辅助变压器
Transformer Room (TR) (9) Double-swing screen door for the transformer room
变压器室(TR)(9)变压器室的双摆动屏蔽门
Medium-Voltage Room (MV) (10) AC input cable hole (LV PANEL B)
中压室 (MV) (10) 交流输入电缆孔(LV 面板 B)
Distributed power system (UPS) (11) Manhole entrance
分布式电源系统(UPS) (11) 人孔入口
Position for the Smart Array Controller (SACU) (12) AC input cable hole (LV PANEL A)
智能阵列控制器 (SACU) 的位置 (12) 交流输入电缆孔(LV 面板 A)
Double-Swing Door of the MV Room (13) Single-swing door for the LV room
MV 厅双扇旋转门 (13) LV 厅单扇旋转门
Ring Main Unit (14) Double-swing door for the LV room
环形主装置 (14)低压室双扇旋转门
Typical specifications of the Huawei STS-3000K smart transformer are shown in Table 27 below:
华为 STS-3000K 智能变压器的典型规格如下表 27 所示:
Table 27: Typical Specifications of the Huawei STS-3000K Smart Transformer Station
表 27:华为 STS-3000K 智能变电站的典型规格
Input |
|
Available Inverters | SUN2000-185KTL-H1 |
AC Power | 3,150 kVA @40°C / 2,880 kVA @50°C [1] |
Max. Inverters Quantity | 18 |
Rated Input Voltage | 800 V |
Max. Input Current at Nominal Voltage | 2,428 A |
LV Main Switches | ACB (2500 A / 800 V / 3P, 1*1 pcs), MCCB (250 A / 800 V / 3P, 1*18 pcs) |
Output |
|
Rated Output Voltage | 23 kV (±10%) |
Frequency | 50 Hz |
Transformer Type | Oil-immersed, Conservator Type |
Tappings | ± 2 x 2.5% |
Transformer Oil Type | Mineral Oil (PCB Free) |
Transformer Vector Group | Dy11 |
Minimum Peak Efficiency Index | 99.506%, in accordance with EN 50588-1 |
Transformer Load Losses | 27.5 kW |
Transformer No-load Losses | 2.2 kW |
Impedance | 7% (0 ~ +10%) @3,150 kVA |
MV Switchgear Type | SF6 Gas Insulated, 3 Units |
Auxiliary Transformer | 5 kVA, Dyn11, 0.8/0.4 kV |
Protection |
|
Transformer Monitoring & Protection | Oil level, oil temperature, oil pressure and buchholz |
Protection Degree of MV & LV Room | IP 54 |
Internal Arcing Fault MV Switchgear | IAC A 20 kA 1s |
MV Surge Arrester for MV Circuit Breaker | Equipped |
LV Overvoltage Protection | Type I+II |
General |
|
Dimensions (W x H x D) | 6,058 x 2,896 x 2,438 mm (20’ HC Container) |
Weight | < 15 t |
Operating Temperature Range | -25°C ~ 60°C [2] |
Relative Humidity | 0% ~ 95% |
Max. Operating Altitude | 2,000 m |
Enclosure Colour | RAL 9003 |
Communication | Modbus 485, Preconfigured with Smartlogger3000B |
Applicable Standards | IEC 60076, IEC 62271-200, IEC 62271-202, EN 50588-1, IEC 61439-1 |
6.3 Output from the Plant
6.3 工厂产出
The energy yield from the power plant was analysed in Chapter 5 above.
上文第 5 章分析了发电厂的发电量。
Meteorological Data
气象数据
The meteorological information used in the assessment for the project was obtained from Meteonorm 8.1 and was based on a Typical Meteorological Year (TMY). The data is presented in Table 18 above.
项目评估中使用的气象信息来自 Meteonorm 8.1,以典型气象年为基础。数据见上表 18。
Energy Yield
能源产量
The PVSyst Loss Diagram for the power plant was presented in Fig 26 while the main performance results were presented in Table 21 which is replicated below:
发电厂的 PVSyst 损耗图见图 26,主要性能结果见表 21,复制如下:
Table 21: Annual Performance Results for the GTL Solar PV Power Project
表 21:GTL 太阳能光伏发电项目 的年度绩效结果
| GlobHor | T_Amb | EArray | EffInvR | InvLoss | E_User | E_Grid | EReGrid | EApGrid | PR Ratio |
| kWh.m-² | °C | MWh | % | MWh | MWh | MWh | MVAh | MVAh | |
January | 198.7 | 21.37 | 33,762 | 98.2 | 593 | 74 | 31,017 | 4,710 | 31,372 | 0.714 |
February | 178 | 21.23 | 32,095 | 98.2 | 566 | 67 | 31,429 | 4,477 | 31,746 | 0.76 |
March | 193.4 | 21.31 | 37,364 | 98.2 | 673 | 74 | 36,585 | 5,211 | 36,954 | 0.752 |
April | 187.7 | 20.14 | 39,330 | 98.2 | 729 | 72 | 38,510 | 5,484 | 38,899 | 0.747 |
May | 184 | 19.01 | 42,550 | 98.2 | 761 | 74 | 41,682 | 5,934 | 42,103 | 0.757 |
June | 169.8 | 16.8 | 41,615 | 98.2 | 733 | 72 | 40,777 | 5,805 | 41,189 | 0.767 |
July | 176.7 | 16.87 | 42,430 | 98.2 | 747 | 74 | 41,575 | 5,919 | 41,994 | 0.766 |
August | 194.1 | 19.6 | 42,478 | 98.2 | 760 | 74 | 41,609 | 5,924 | 42,028 | 0.749 |
September | 203.7 | 22.83 | 39,943 | 98.2 | 726 | 72 | 36,316 | 5,569 | 36,740 | 0.679 |
October | 221.1 | 25.15 | 39,352 | 98.2 | 713 | 74 | 34,878 | 5,487 | 35,307 | 0.66 |
November | 204.4 | 23.45 | 34,580 | 98.2 | 612 | 72 | 33,860 | 4,823 | 34,202 | 0.749 |
December | 200.1 | 21.85 | 33,153 | 98.3 | 580 | 74 | 32,462 | 4,625 | 32,790 | 0.762 |
Year | 2311.8 | 20.8 | 458,654 | 98.2 | 8,194 | 876 | 440,699 | 63,969 | 445,317 | 0.738 |
A summary of the performance indicators for the power plant were summarised in Table 24 hereby replicated as below:
表 24 汇总了发电厂的性能指标,现复制如下:
Table 24: Summary of PVSyst Simulation
表 24:PVSyst 模拟摘要
Average Electricity Exported to Grid | 411 GWh |
Specific Yield | 1,764 kWh/kWp |
Normalised Production | 1,764 kWh/kWp/yr |
Array Losses | 555 kWh/kWp/yr |
System Losses | 69.4 kWh/kWp/yr |
Performance Ratio | 73.8 % |
Capacity Factor | 18.8 % |
6.4 Plant Layout
6.4厂房布局
The conceptual layout of the 250 MWp GTL Solar PV power plant consists of a group of polycrystalline Solar PV modules mounted on a fixed north-facing tilted structure. The PV modules are connected in series to achieve adequate voltage and a group of series connected modules (strings) are connected to a string inverter.
250 MWp GTL 太阳能光伏发电 厂 的概念布局包括一组安装在固定的朝北倾斜结构上的多晶硅太阳能光伏组件。光伏组件串联以获得足够的电压,串联组件(组串)连接到组串逆变器。
The suggested plant configuration consists of a single power generation unit complete with inverters, cabling, transformer etc.
建议的发电站配置包括一个发电装置,配有逆变器、电缆、变压器等。
6.4.1 Solar PV Modules
6.4.1 太阳能光伏组件
The proposed power plant will have about 602,420 Polycrystalline Solar PV modules spread over an areas of about 250 hectares. The solar PV modules are expected to have a nominal output capacity of 415 W at 39.3V each. Twenty-eight (28) such solar PV modules will be connected in a string and 18 strings will be connected in parallel to a single inverter.
拟建电站将安装约 602420 块多晶硅太阳能光伏组件,占地约 250 公顷 。太阳能光伏组件的额定输出功率预计为 415 W,电压为 39.3V。二十八(28)个这样的太阳能光伏组件将连接成一串,18 串将并联到一个逆变器上。
Fig 39: Arrangement of Solar PV Cell, Module and String
图 39:太阳能光伏电池、组件和组串的排列方式
6.4.2 Mounting Structure
6.4.2安装结构
The Plant will utilise a fixed ground mounting system with two (2) vertical module rows in portrait configuration installed on each single structure (Table or Rack).
发电厂将采用固定式地面安装系统,在每个单体结构(台式或架式)上安装两(2)个纵向配置的垂直模块行。
Fig 40: Array Layout Design for Project
图 40:项目的阵列布局设计
6.4.3 Power Inverters
6.4.3 电源逆变器
The Solar PV modules will a single generating unit with an installed capacity of 250 MWp. The preferred inverter for the power project is the decentralised SUN2000-185KTL-H1 Smart String Inverter by Huawei Technologies and about 1200 such inverters will be required. The output from the inverters shall be connected to a 0.8 kV busbar in a containerised MV transformer.
太阳能光伏组件将是一个装机容量为 250 兆瓦的单个发电装置。该发电项目首选的逆变器是华为技术公司生产的分散式 SUN2000-185KTL-H1 智能组串逆变器,大约需要 1200 个这样的逆变器。逆变器的输出将连接到集装箱式中压变压器中的 0.8 千伏母线上。
6.4.4 MV Transformers
6.4.4MV 变形金刚
The power generated at 0.8 kV will be stepped up to 33 kV through an array of 6.3 MVA 33/0.8 kV transformers. The Huawei Fusion STS-6000K Smart Transformer Station is recommended. The plant is expected to have just one 40 units of the Huawei Fusion STS-6000K smart transformer.
0.8 千伏产生的电力将通过 6.3 MVA 33/0.8 千伏变压器阵列升压至 33 千伏。推荐使用华为 Fusion STS-6000K 智能变电站。该电站预计仅需 1 40 台华为 Fusion STS-6000K 智能变压器。
6.4.5 33/0.8 kV Substations
6.4.5 33/0.8 千伏变电站
Power from the 33/0.8 kV smart transformers is first expected to be injected into an intermediary busbar at 33 kV. This Substations will be connected to the Zesco Substations via a 220 kV busbar at site.
来自 33/0.8 千伏智能变压器的电力预计将首先注入 33 千伏的中间母线。该分站将连接到 Zesco 分站 将通过现场的 220 千伏母线连接。
6.4.6 220/33 kV Substations
6.4.6 220/33 千伏变电站
The project is expected to evacuate the power through the 220 kV network at the 220/66 Zesco Substations. The 33 kV and 220 kV busbar at the site will be connected through appropriate power transformers while the power plant will be connected to the Wells Spring & Siavonga (Lusitu) Substations. Power evacuation options are discussed in Chapter 7.
预计该项目将通过 220/66 Zesco 变电站 的 220 千伏电网疏散电力。现场的 33 千伏和 220 千伏母线将通过适当的电力变压器连接,而发电厂将连接到 Wells Spring & Siavonga (Lusitu)Substations 。第 7 章将讨论电力疏散方案。
6.5 Balance of Plant
6.5厂房平衡
Balance of Plant (BOP) is a general reference to all the supporting components and auxiliary systems of a power plant needed to deliver the energy, other than the generating unit itself. These systems may include transformers, inverters, supporting structures, transmission lines, access roads and drainage system, communications system, security system etc. Power inverters, power cables, power transformers and auxiliary transformers have been addressed in the sections above. The following subsections will discuss the remaining components under the Balance of Plant.
电厂平衡 (BOP) 泛指发电厂除发电机组本身之外的所有配套组件和辅助系统。这些系统可能包括变压器、逆变器、支撑结构、输电线路、通道和排水系统、通信系统、安全系统等。逆变器、电力电缆、电力变压器和辅助变压器已在上述章节中讨论过。以下各小节将讨论设备平衡项下的其余组成部分。
6.5.1 Auxiliary Services
6.5.1辅助服务。
The power plant will be supplied with 0.4 kV from the auxiliary transformer and will be connected to a common busbar with a battery system for auxiliary services such as security lighting, CCTV, automation and communication equipment.
发电厂将由辅助变压器提供 0.4 千伏的电压,并将与电池系统的公共母线相连,用于安全照明、闭路电视、自动化和通信设备等辅助服务。
6.5.2 Communication
6.5.2 通信
Communication between transformer stations, switchgear and computers networks will be ensured by a loop of multimode optic fibre to the control room. For each transformer station, there will be an Areas Box, to monitor the trackers and a data logger to communicate with the inverters.
变电站、开关设备和计算机网络之间的通信将通过连接到控制室的多模光纤环路来确保。每个变电站都有一个区域 盒,用于监控跟踪器,还有一个数据记录器,用于与逆变器通信。
6.5.3 SCADA System
6.5.3SCADA 系统
It will be possible to control/check/monitor the whole solar PV Park remotely through integrated SCADA system, giving access to real times values and information from the inverters, transformers, sensors etc.
通过集成的 SCADA 系统,可以远程控制/检查/监测整个太阳能光伏园,获取来自逆变器、变压器、传感器等的实时数值和信息。
6.5.4 Security System
6.5.4 安全系统
The security system for a Solar PV Power Plant may be split into Internal Security and External Security.
太阳能光伏发电厂的安保系统可分为内部安保和外部安保。
Internal Security
内部安全
Internal security refers to the controls within the power plant that is aimed at the safety and security of personnel and equipment within the plant. This level of security will be enhanced by way of a combination of the following systems:
内部 安全是指发电厂内的控制措施,旨在确保发电厂内人员和设备的安全和安保。这一安全级别将通过以下系统的组合得到加强:
SCADA System;
SCADA 系统;
Security cameras;
安全摄像头;
Access Control; and
访问控制;以及
Onsite Security Guards
现场保安
External Security
外部安全
External Site Security refers to the protection of the power plant from external entities and vice versa. The project will be installed in an areas of low electricity access rates and therefore due to the portability of the Solar PV modules, the plant may be subjected to un authorised salvage activities by the locals. Efforts to ensure site security include:
外部场地安全是指保护发电厂不受外部实体的影响,反之亦然。该项目将安装在用电率低的 地区 ,因此由于太阳能光伏组件的便携性,电站可能会受到当地人 未经 授权的打捞活动的影响。确保现场安全的工作包括
i. Reducing the visibility of some of the portable power plant components; ii. Installation of a wire mesh fence with anti-climb protection (6.5.6);
i.降低部分移动式发电厂组件的能见度; ii. 安装带防攀爬保护的铁丝网围栏(6.5.6);
Installation of security cameras, lights and microwave sensors with GSM and TCP/IP transmission of alarms and faults to a security company as an option;
安装监控摄像头、照明灯和微波传感器,并可选择通过 GSM 和 TCP/IP 将警报和故障信息传送给安保公司;
Using anti-theft module mounting bolts. This involves applying synthetic resin after the bolts have been tightened. Removal of the bolts will require heating the resin up to 300°C;
使用防盗模块安装螺栓。这需要在拧紧螺栓后涂抹合成树脂。拆卸螺栓时需要将树脂加热到 300°C;
Using anti-theft module fibre systems. Anti-theft fibre systems involve the looping of a plastic fibre through all the modules in a string. If any of the modules is removed, the plastic fibre is broken triggering an alarm;
使用防盗模块纤维系统。防盗模块纤维系统是指将塑料纤维绕过一串模块中的所有模块。如果任何一个模块被拆除,塑料纤维就会断裂,从而触发警报;
Deployment of security guards around the power plant; and
在发电厂周围部署警卫;以及
A permanent guarding station with security guard providing the level of security required in the insurance policy.
配备保安人员的永久看守所,提供保险单所要求的安全级别。
Weather Monitoring
天气监测
The 250 MWp GTL Solar PV Power project is expected to have at least two (02) weather stations for monitoring and forecasting weather conditions. This will enable time-to-time prediction and forecasting of energy yields by the power plant.
250 MWp GTL 太阳能光伏发电项目预计至少有两(02)个气象站,用于监测和预报天气情况。这将有助于及时预测和预报发电厂的发电量。
Perimeter Fences
周边围栏
The installation a perimeter fence with anti-climb and anti-burrowing protection recommended for safety reasons and may be part of the grid code requirements for public safety. For purposes of Solar PV power plants, a wire mesh fence is sufficient.
出于安全考虑,建议安装具有防攀爬和防啃咬保护功能的围栏,这可能是电网规范对公共安全要求的一部分。就太阳能光伏电站而言,安装铁丝网围栏即可。
Drainage System
排水系统
In order to drain water from the power plant, a network of drainage systems will be constructed. The drainage system will follow the orientation of the roads at an appropriate slope.
为了将水从发电厂排出,将建造一个排水系统网络。排水系统将沿着道路的走向,保持适当的坡度。
6.6 Considerations for Construction Works
6.6建筑工程的考虑因素
The following are some of the considerations for construction works for the Solar PV Power Project.
以下是太阳能光伏发电项目施工工程的一些注意事项。
Access to Water
获取水资源
During construction, the project shall source its water from the borehole to be sunk.
在施工期间,项目的水源应来自即将打下的井眼。
Machinery and Labour Force
机械和劳动力
The Project is located near the major industrial areass including mining. Machinery and skilled labour can be accessed from Lusaka, Kafue, Mazabuka & Siavonga (Lusitu) and surrounding areas. Workshops around the Mazabuka, Chikankata, Kafue, Chirundu and Siavonga (Lusitu) will be able to provide services technical services to the power plant.
项目位于主要工业区附近,包括采矿业。可以从卢萨卡、卡富埃 、 马扎布卡和坎普 等地获得机械和技术工人 ;Siavonga (Lusitu) 及周边 地区 马扎布卡周边的车间、Chikankata, Kafue, Chirundu 和Siavonga (Lusitu) 将能够为发电厂提供技术服务。
Construction Power
建筑动力
Since power tools will be used on site, and that the site camp shall require electricity to support social amenities, construction power can be obtained from the existing 11 kV line that runs into the project site.
由于现场将使用电动工具,而且现场营地需要电力来支持社会福利设施,因此可从通往项目现场的现有 11 千伏线路获得施工用电。
Fig 41: 11 kV Line for Construction Power
图 41:11 千伏施工用电线路
Transport and Logistics
运输与物流
The Solar PV Power Project can be accesses via the T1 & M15 OFF T2 (Ndola-Kitwe Dual Carriage). Given the geographic position of Zambia, four (04) different harbour options should be further investigated as shown in Fig 42 below:
太阳能光伏发电项目可通过T1 & M15 OFF T2 (恩多拉-基特韦双向运输)进入。鉴于赞比亚的地理位置,应进一步研究四(04)种不同的港口方案,如下图 42 所示:
Fig 42: GTL Solar PV Transport Route Options
图 42:GTL 太阳能光伏运输路线选项
Dar es Salaam (Tanzania)
达累斯萨拉姆(坦桑尼亚)
The port of Dar es Salaam is located in Tanzania which is sufficiently equipment and has adequate capacity to handle the expected machinery and equipment. The route from Dar es salaam would cover a stretch of over 1,865 km (via Kapiri Mposhi) or 1760 km (via Kasama-Mansa). Both routes from are bituminous and regularly maintained except for sections around Serenje-Mpika and Mansa-Mokambo.
坦桑尼亚的达累斯萨拉姆港设备齐全,有足够的能力处理预期的机械设备。从达累斯萨拉姆 萨拉姆 出发的路线全长超过 1865 公里(途经卡皮里姆波希)或 1760 公里(途经卡萨马-曼萨)。除了 Serenje-Mpika 和 Mansa-Mokambo 附近的路段外,这两条路线都铺设了沥青,并定期进行维护。
Beira (Mozambique)
贝拉(莫桑比克)
The port of Beira in Mozambique has a road distance of 1,414 km to the project site. The port is sufficiently equipped to handle the expected cargo for the project. It is nearest to the Project site however language barrier in Mozambique and political uncertainty makes this option inferior to the Dar es Salaam (Tanzania) route.
莫桑比克的贝拉港到项目所在地的公路距离为 1,414 公里。该港口的设备足以处理项目的预期货物。该港口距离项目地点最近,但莫桑比克的语言障碍和政治不确定性使该方案不如达累斯萨拉姆(坦桑尼亚)路线。
Durban (South Africa)
德班(南非)
The port of Durban in South Africa has a road distance of 2,500 km to the project site. The port has the highest-capacity and is sufficiently equipped to handle the expected cargo for the project.
南非德班港到项目所在地的公路距离为 2,500 公里。该港口的吞吐能力最高,设备齐全,足以处理项目的预期货物。
The road network for the Durban-Kafue transportation option is bituminous and regularly maintained and therefore has no road condition challenges. However, this route has multiple border points (South Africa-Zimbabwe, Zimbabwe-Zambia) resulting in lost time and additional expenses.
德班-卡富埃运输方案的公路网为沥青路面,定期维护,因此不存在路况问题。不过,这条路线有多个边境点(南非-津巴布韦、津巴布韦-赞比亚),会造成时间损失和额外费用。
Walvis Bay (Namibia)
沃尔维斯湾(纳米比亚)
The port of Walvis Bay in Namibia is sufficiently equipped to handle the cargo to be transported. The option has a road distance of about 2,428 km (via Livingstone-Lusaka) and 2,527 km (Mongu-Solwezi) to the project site.
纳米比亚的沃尔维斯湾港口有足够的设备处理要运输的货物。该方案到项目地点的公路距离约为 2,428 公里(经利文斯通-卢萨卡)和 2,527 公里(蒙 古-索尔维齐)。
The route from Walvis Bay Dar es salaam would cover a stretch of over 1,865 km (via Kapiri Mposhi) or 1760 km (via Kasama-Mansa). Both routes from are bituminous and regularly maintained except for sections around Serenje-Mpika and Mansa-Mokambo.
从沃尔维斯湾达累斯萨拉姆出发的路线 全长超过 1865 公里(途经卡皮里-姆波希)或 1760 公里(途经卡萨马-曼萨)。除了 Serenje-Mpika 和 Mansa-Mokambo 附近的路段外,这两条路线都铺设了沥青,并定期进行维护。
The best route for importation of equipment for the project would be Dar es Salaam considering the source and proximity to the Project. However, all the possible transportation routes will need to invested through a detailed logistics study to ascertain the cost saving opportunity on all the options.
考虑到项目设备的来源和距离,最佳的进口路线是达累斯萨拉姆。不过,所有可能的运输路线都需要进行详细的物流研究,以确定所有选择方案的成本节约机会。
7. | POWER EVACUATION |
7.1 Introduction
7.1 引言
General
一般情况
Power evacuation is a critical component in the development of any power generation plant allowing the generated power to be immediately evacuated into the grid for consumption. A grid connection of sufficient capacity is required to enable the export of such power.
电力输送是任何发电厂发展过程中的一个关键环节,发电后的电力可以立即输送到电网中消费。需要有足够容量的电网连接,才能实现电力输出。
The viability of the grid connection will depend on factors such as grid capacity, grid stability, grid availability, proximity to the grid and Right of Way (ROW) among others. Power System Studies ought to be conducted for the grid in the areas where the plant is to be constructed (shallow integration) as well the impact of such a plant on the interconnected grid (deep integration).
电网连接的可行性取决于电网容量、电网稳定性、 电网 可用性、距离电网的远近和路权(ROW)等因素。应针对拟建电厂所在 地区的电网 进行电力系统研究(浅层整合),并研究该电厂对互联电网的影响(深度整合)。
Where a grid connection study is neglected, unforeseen grid connection costs could seriously impact the overall viability of the project.
如果忽视并网研究,不可预见的并网成本可能会严重影响项目的整体可行性。
Power Generation by the Project
项目发电量
The PV model used to assess the yield for the 250 MWp GTL Solar PV Power Plant was based on irradiance data provided by Meteonorm 8.1. A summary of yield assessment for the project is shown Table 24 is here replicated.
用于评估 250 MWp GTL 太阳能光伏电站产量的光伏模型是基于 Meteonorm 8.1 提供的辐照度数据。该项目的产量评估摘要如表 24 所示。
Table 24: Summary of PVSyst Simulation
表 24:PVSyst 模拟摘要
Average Electricity Exported to Grid | 411 GWh |
Specific Yield | 1,764 kWh/kWp |
Normalised Production | 1,764 kWh/kWp/yr |
Array Losses | 555 kWh/kWp/yr |
System Losses | 69.4 kWh/kWp/yr |
Performance Ratio | 73.8 % |
Capacity Factor | 18.8 % |
For analysing the evacuation of power from the Project to the national grid, results from PVSyst 7.4 were used together with DIGSilent 15.2.
为了分析从项目向国家电网输送电力的情况,使用了 PVSyst 7.4 和 DIGSilent 15.2 的结果。
Scope and Limitation of Study
研究范围和局限性
This Reports presents a desk study for the evacuation of 250 MWp into the national grid by the Project. The study is mainly based on concepts by the project development team and will require collaboration with the Transmission System Operator – ZESCO Ltd during the detailed grid integration study.
本 报告 介绍了该项目向国家电网输送 250 兆瓦电力的案头研究。该研究主要基于项目开发团队的概念,在详细的并网研究中需要与输电系统运营商 - ZESCO 有限公司合作。
7.2 Zambia National Grid
7.2 赞比亚国家电网
That's correct. ZESCO Limited is the primary state-owned utility in Zambia responsible for the entire electricity value chain, including generation, transmission, distribution, and supply. Copperbelt Energy Corporation (CEC) also plays a significant role, particularly in the transmission and distribution of electricity, mainly serving the Copperbelt region and some parts of the country.
没错。ZESCO Limited 是赞比亚主要的国有公用事业公司,负责整个电力价值链,包括发电、输电、配电和供电。铜带能源公司(Copperbelt Energy Corporation,简称 CEC)也发挥着重要作用,尤其是在电力传输和分配方面,主要服务于铜带地区和国内部分地区。
Electricity Generation in Zambia
赞比亚的发电情况
Summary of Electricity Generation in Zambia (2020-2021)
赞比亚发电量概要(2020-2021 年)
As of 2021, Zambia's national installed capacity continued to be predominantly supported by hydroelectric generation. Hydropower accounted for 81.5% of the total installed capacity, up from 79.6% in 2020. This increase reflects Zambia's significant reliance on hydro resources for electricity production.
截至 2021 年,赞比亚的全国装机容量仍以水力发电为主。水力发电占总装机容量的 81.5%,高于 2020 年的 79.6%。这一增长反映出赞比亚的电力生产严重依赖水力资源。
Electricity Generation:
发电:
- Total Generation Sent Out:
- 发送的总发电量:
- 2020: 15,159 GWh
- 2020 年:15,159 千兆瓦时
- 2021: 17,636 GWh
- 2021 年:17,636 千兆瓦时
- Growth: 16.3%
- 增长:16.3
- Hydropower Generation
- 水力发电:
- 2020: 14,210.71 GWh
- 2020 年:14,210.71 千兆瓦时
- 2021: 16,072.9 GWh
- 2021 年:16,072.9 千兆瓦时
- Growth: 13.1%
- 增长:13.1
The increase in generation was attributed to improved rainfall patterns during the 2020/2021 season, which positively impacted water availability for hydroelectric generation, alongside the expansion of installed capacity. A list of the major power generation plants in Zambia is given in Table 28 below:
发电量的增加归功于2020/2021年雨季降雨模式的改善,这对水力发电的水源供应产生了积极影响,同时也扩大了装机容量。
Table 28: List of Generation Plants in Zambia
表 28:赞比亚发电厂清单
No. | Station | Type | No. of Units | Installed Capacity |
1. | Kariba North | Hydro | 6 x 120 MW | 1080 MW |
2. | Kafue Gorge | Hydro | 4 x 120 MW | 990 MW |
3. | Maamba Coal | Coal Fired | 2 x 150 MW | 300 MW |
4. | Itezhi Tezhi | Hydro | 2 x 60 MW | 120 MW |
5. | Victoria Falls | Hydro | 2 x 1 MW 2 x 3 MW 6 x 10 MW 4 x 10 MW | 108 MW |
6. | Lunsemfwa | Hydro | 31 MW | 31 MW |
7. | Mulungushi | Hydro | x 2.5 MW x 6.25 MW 1 x 8 MW | 25 MW |
8. | Lusiwasi | Hydro | 4 x 3 MW | 12 MW |
9. | Chishimba Falls | Hydro | 2 x 1.5 MW 2 x 1 MW | 6 MW |
10. | Musonda Falls | Hydro | 4 x 1.2 MW | 10 MW |
11. | CEC Standby GTA | Diesel | 4 x 20 MW Standby Power Only | 80 MW
|
12. | IDC Ngonye | Solar PV | 34 MW | 34 MW |
13. | IDC Bangweulu | Solar PV | 56 MW | 56 MW |
14. | Kafue Gorge Lower | Hydro | Commissioned 5 x 150 MW | 750 MW |
Transmission Network in Zambia
赞比亚的输电网络
The transmission network is used to transfer bulk quantities of power from the generation stations to load centres across the country.
输电网络用于将大量电力从发电站输送到全国各地的负荷中心。
Network Arrangement
网络安排
The transmission system in Zambia is characterised as follows:
赞比亚输电系统的特点如下:
Standard transmission voltage levels of 330 kV, 220 kV, 132 kV, 88 kV and 66 kV which are further stepped-down to 33 kV and 11 kV for distribution at Substationss;
标准输电电压等级为 330 千伏、220 千伏、132 千伏、88 千伏和 66 千伏,在 分站 S 配电时进一步降压至 33 千伏和 11 千伏;
330 kV transmission lines forming the backbone of the transmission network;
330 千伏输电线路构成输电网络的主干;
220kV transmission lines forms part of the backbone system and is mainly connects the mining towns of the Copperbelt Province. Following some legacy agreements, the 220 kV Copperbelt network is owned and operated by Copperbelt Energy Corporation giving (CEC) monopoly of supply to mining sites. Other 220 kV transmission lines run between Victoria Falls and Sesheke.
220 千伏输电线路是主干系统的一部分,主要连接铜带省的采矿城镇。根据一些遗留协议,220 千伏铜带电网由铜带能源公司(Copperbelt Energy Corporation)拥有和运营,该公司垄断了对矿区的供电。其他 220 千伏输电线路在维多利亚瀑布和 Sesheke 之间运行。
The Victoria Falls – Kafue Town 220 kV transmission lines have since been upgraded to 330 kV;
维多利亚瀑布 - 卡富埃镇 220 千伏输电线路已 升级为 330 千伏;
132kV for regional supply. This mainly found around Lusaka and is earmarked to replace the 88 kV
132 千伏用于地区供电。它主要分布在卢萨卡周围, 专用于取代 88 千伏。
power supply network through the World Bank funded Lusaka Transmission and Distribution Rehabilitation Project;
电力 供应网络,通过世界银行资助的卢萨卡输配电修复项目;
v. 88kV and 66kV transmission lines for local supply. 66 kV is extensively used in Lusaka
v. 为当地供电的 88 千伏和 66 千伏输电线路。66 千伏输电线路在卢萨卡广泛使用,
Copperbelt and Southern Provinces;
铜带和南部 省;
vi. Interconnections to neighbouring countries as part of the Southern African Power Pool (SAPP). Plans are underway to interconnect with Malawi, Mozambique, Angola, Tanzania, and ultimately connect the East African Network with the Southern Africa Network;
六、作为南部非洲电力联营(SAPP)的一部分与邻国联网。正在计划与马拉维、莫桑比克、安哥拉和坦桑尼亚联网,并最终将东非网络与南部非洲网络连接起来;
Operational and Regulatory Requirements
运行和监管要求
Since the Zambia National Grid is interconnected with SAPP system, the SAPP planning criteria was adopted as the governing operational and regulatory requirements.
由于赞比亚国家电网与 SAPP 系统互联,因此采用 SAPP 规划标准作为运营和监管要求。
The SAPP system is designed to satisfy the NERC N-1 criteria. Using the NERC N-1 criterion and in conformity with the IEEE 1453-2004 standard, the Zambian system is designed to uphold the following:
SAPP 系统的设计符合 NERC N-1 标准。根据 NERC N-1 标准和 IEEE 1453-2004 标准,赞比亚系统的设计应坚持以下几点:
i. Following the tripping of any network component (overhead lines, transformers, generators);
i.任何网络组件(架空线路、变压器、发电机)跳闸后;
• No overload must appear on any of the remaining components;
- 不得在任何其余组件上出现过载;
– Thermal ratings of equipment should not be exceeded during the outage. Whatever the situation, operational limits must be respected;
-停电期间不应超过设备的热额定值。无论在什么情况下,都必须遵守运行限制;
ii. In normal condition;
ii处于正常状态;
The flows must be kept below the thermal rating of each network element;
流量必须低于每个网络元件的热额定值;
The voltage at each bus bar must be kept within 95% and 105% of its nominal value.
每个母线上的电压必须保持在额定值的 95% 和 105% 之间。
The generators must operate within their reactive capabilities (generation and absorption).
发电机必须在其无功能力(发电和吸收)范围内运行。
iii. In emergency situation (outage of one element);
iii.紧急情况下(一个元素中断);
The thermal rating of any equipment should not be exceeded;
不得超过任何设备的热额定值;
The voltage should be kept within 95 % and 105 % of its nominal value;
电压应保持在额定值的 95 % 至 105 % 之间;
A 15% over-voltage will be acceptable during 5 s and a 20 % over-voltage will be acceptable during 1s or 2s;
5 秒内可接受 15%的过电压,1 秒或 2 秒内可接受 20%的过电压;
iv. In transient state;
四处于暂存状态;
• The power system must remain stable following a three-phase fault cleared within 100 ms. This time includes the current transformer errors, protection relay response and the breaker operating time.
-三相故障排除后,电力系统必须在 100 毫秒内保持稳定。该 时间包括电流互感器误差、保护继电器响应和断路器运行时间。
Spinning reserve
纺纱储备
Spinning or primary reserve corresponds to the power delivered by generators due to the action of their speed governor following a decline of the system frequency (when there is a deficit of power to satisfy the load).
旋转储备或一次储备是指在系统频率下降时(当电力不足以满足负载时),发电机在调速器的作用下输出的电力。
All the units may participate to the primary reserve. The primary reserve for the Zambian system in island mode is around 180 MW, corresponding to loss of one large unit at Kariba North Bank or Kafue Gorge power stations.
所有机组均可参与一级储备。在岛屿模式下,赞比亚系统的一级储备约为 180 兆瓦,相当于卡里巴北岸或卡富埃峡谷发电站损失一个大型机组。
Under frequency load shedding
欠频甩负荷
The following under frequency load shedding settings are used.
使用以下频率下甩负荷设置。
Table 29: Frequency Load Shedding Settings
表 29:频率甩负荷设置
Stage | Under Frequency Settings (Hz) | Time Delay (ms) |
1 | 48.75 | 700 |
2 | 48.5 | 1000 |
3 | 48 | 1200 |
4 | 47.75 | 2000 |
7.2.3 Power Supply in the Project Areas
7.2.3 项目区的电力供应
The project areas is traversed by major electricity infrastructure as shown in Fig 43 below:
项目 区域 被 主要电力基础设施穿越,如下图 43 所示:
Fig 43: Electricity Supply Network around Wells Spring & Siavonga (Lusitu)
图 43:水井泉和 Siavonga(卢西图)周围的供电网络
The four (04) 330 kV Northern Backbone Network running between Kariba and Lusaka, and the two (02) 220 kV lines between Livingstone and Lusaka are about ….. km north of the Project Site. An 11 kV line emanating from the Luangwa 66/11 kV Substations traverses the Project site.
卡里巴和卢萨卡之间的四(04)条 330 千伏北部 Backbone 电网 、以及利文斯通 和 卢萨卡之间的两条 (02) 220千伏线路约....km 项目工地以北。一条来自 Luangwa 66/11 千伏 变电站 的 11 千伏线路穿过项目地点。
Evacuation of power from the project site would consider cutting into the Northern Backbone Network or a direct line into the 220/66 kV Zesco Substations which is 8 km east of the project site
从项目现场撤出电力将考虑切入北部主干网或直接接入 220/66 千伏 Zesco 变电站 ,该站位于项目现场以东 8 千米 。
7.3 Power Evacuation Options
7.3 电力疏散选项
Two options for the evacuation of power from the GTL Power Plant have been identified:
从 GTL 发电厂疏散电力的两个方案已经确定:
7.3.1 Option 1: Single Line 220 kV Line into the 220/66 kV Zesco Substations
7.3.1 方案 1:单线 220 千伏线路接入 220/66 千伏 Zesco 变电站
This option seeks to utilise the space on the western edge of the 220 kV busbar at the Zesco Substations as shown in Fig 44 below:
该方案旨在利用 Zesco 变电站 220 千伏母线西侧的空间,如下图 44 所示:
Fig 44: Extension of the 220 kV busbar at the 220/66 kV Wells Spring & Siavonga (Lusitu) Substations
图 44:220/66 千伏 Wells Spring 和 Siavonga(Lusitu)变电站 220 千伏母线扩建工程
The option involves the construction of a 12 km single line 220 kV line from the project site to Wells Spring & Siavonga (Lusitu) Substations. The single line diagram is depicted in Fig 45 below:
该方案涉及建设一条从项目现场到Wells Spring & Siavonga (Lusitu) 变电站 的 12 千米 220 千伏单线线路。单线图如下图 45 所示:
Fig 45: Single Line Drawing for the Evacuation Option at 220 kV
图 45:220 千伏疏散方案单线图
Scope of Works for Power Evacuation through the 220 kV Network
通过 220 千伏电网输送电力的工程范围
1. Construction of 220/33 kV Substation:
1.建设 220/33 千伏变电站:
- Build a new 220/33 kV substation at the GTL Solar PV Power Project site to step down the voltage from the 220 kV to 33 kV for integration with the project’s infrastructure.
- 在 GTL 太阳能光伏发电项目现场新建一座 220/33 千伏变电站,将 220 千伏电压降至 33 千伏,以便与项目的基础设施相结合。
2. Installation of Transformers and Infrastructure:
2.安装变压器和基础设施:
- Install necessary transformers and associated infrastructure at the GTL Solar PV Power Project site to manage the power conversion and distribution within the site.
- 在 GTL 太阳能光伏发电项目场址安装必要的变压器和相关基础设施,以管理场址内的电力转换和分配。
3. Construction of 220 kV Transmission Line:
3.建设 220 千伏输电线路:
- Construct a 12 km long 220 kV transmission line from the GTL Solar PV Power Project site to the ZESCO substation. This line will be equipped with double 225 mm² ACSR (2xLion) conductors, which are typically used by CEC for high-capacity transmission.
- 建设一条从 GTL 太阳能光伏发电项目所在地到 ZESCO 变电站的 220 千伏输电线路,全长 12 千米。该线路将配备双 225 mm² ACSR(2xLion)导线,CEC 通常使用这种导线进行大容量输电。
4. Extension of 220 kV Busbar at ZESCO Substations:
4.延长 ZESCO 变电站的 220 千伏母线:
- Extend the existing 220 kV busbar at the ZESCO substations to accommodate the additional power from the GTL Solar PV Power Project.
- 延长 ZESCO 变电站现有的 220 千伏母线,以容纳 GTL 太阳能光伏发电项目的额外电力。
5. Installation of Associated Infrastructure at ZESCO Substations:
5.在 ZESCO 变电站安装相关基础设施结构: 5.
- Install necessary infrastructure at the ZESCO substations to integrate the new power line and ensure seamless connection to the national grid.
- 在 ZESCO 变电站安装必要的基础设施,以整合新的输电线路,确保与国家电网无缝连接。
7.3.2 Option 2: Three (03) 66 kV Lines to Wells Spring & Siavonga (Lusitu) Substations
7.3.2 方案 2:三 (03) 条 66 千伏线路至 Wells Spring 和 Siavonga(Lusitu)变电站
This option involves the construction of three (03) 12 km 66 kV transmission lines from the 250 MWp GTL Solar PV Power Project to the 220/66/kV Zesco Substations as shown in Fig 47.
该方案涉及建设三(03)条 12 千米长的 66 千伏输电线路,从 250 兆瓦/秒GTL 太阳能光伏发电项目到 220/66/kV Zesco 变电站 的三条(03)公里长的 66 千伏输电线路,如图 47 所示。
Fig 46: Extension of the 66 kV busbar at the 220/66 kV Wells Spring & Siavonga (Lusitu) Substations
图 46:220/66 千伏 Wells Spring 和 Siavonga(Lusitu)变电站 66 千伏母线扩建工程
Scope of Works for Power Evacuation through the 66 kV Network
通过 66 千伏电网输送电力的工程范围
Construction of 66/33 kV Substation:
建设 66/33 千伏变电站:
Build a new 66/33 kV substation at the GTL Solar PV Power Project site to step down the voltage from the 66 kV to 33 kV, facilitating integration with the project's infrastructure.
在 GTL 太阳能光伏发电项目现场新建一座 66/33 千伏变电站,将 66 千伏电压降至 33 千伏,以方便与项目基础设施的整合。
Installation of Transformers and Infrastructure:
安装变压器和基础设施:
Install necessary transformers and related infrastructure at the GTL Solar PV Power Project site to manage the power conversion and distribution within the site.
在 GTL 太阳能光伏发电项目场址安装必要的变压器和相关基础设施,以管理场址内的电力转换和分配。
Construction of 66 kV Transmission Lines:
建设 66 千伏输电线路:
Construct three (03) 12 km long 66 kV transmission lines from the GTL Solar PV Power Project site to the ZESCO substations. Each line will use single 250 mm² ACSR (1xBear) conductors, which are commonly used by CEC for 66 kV networks.
建设三(03)条 12 千米长的 66 千伏输电线路,从 GTL 太阳能光伏发电项目现场到 ZESCO 变电站。每条线路将使用单根 250 mm² ACSR(1xBear)导线,这是 CEC 在 66 千伏网络中常用的导线。
Extension of 66 kV Busbar at ZESCO Substations:
延长 ZESCO 变电站的 66 千伏母线:
Extend the existing 66 kV busbar at the ZESCO substations to accommodate the additional power from the GTL Solar PV Power Project.
延长 ZESCO 变电站现有的 66 千伏母线,以容纳 GTL 太阳能光伏发电项目的额外电力。
Installation of Associated Infrastructure at ZESCO Substations:
在 ZESCO 变电站安装相关基础设施:
Install the necessary infrastructure at the ZESCO substations to integrate the new 66 kV transmission lines and ensure a seamless connection to the national grid.
在 ZESCO 变电站安装必要的基础设施,整合新的 66 千伏输电线路,确保与国家电网无缝连接。
The single line diagram is depicted in Fig 47 below:
单线图如下图 47 所示:
Fig 47: Single Line Drawing for the Evacuation Option at 66 kV
图 47:66 千伏疏散方案单线图
7.3.3 Evaluation of the Power Evacuation Options
7.3.3对电力疏散方案的评估
Comparative analysis of the two options for power evacuation from the GTL Solar PV Power Project:
C对 GTL 太阳能光伏发电项目两种电力输送方案的比较分析:
Option 1: Evacuation Using the 220 kV Network
方案 1:利用 220 千伏网络进行疏散
Advantages:
优势
Stiffer Connection Point:
更坚硬的连接点:
Provides a robust and high-capacity connection, ensuring full evacuation of power from the plant.
提供坚固耐用的大容量连接,确保电厂电力的充分输送。
Reduced Turnaround Time:
缩短周转时间:
Single 220 kV line construction minimizes the time required for setup compared to multiple lines.
单条 220 千伏线路 建设 与多条线路相比,最大限度地缩短了安装时间。
Lower Transportation and Storage Costs:
降低运输和仓储成本:
Handling and transporting fewer materials can lead to cost savings.
处理和运输更少的材料可以节约成本。
Available Space:
可用空间:
Sufficient space is available on the western edge of the 220 kV busbar for the required infrastructure.
220 千伏母线西侧有足够的空间来建设所需的基础设施。
Disadvantages:
缺点
High Initial Cost:
初始成本高:
Interconnection at 220 kV involves higher initial construction costs due to the complexity of the infrastructure.
由于基础设施的复杂性,220 千伏的互联涉及较高的初始建设成本。
Future Expansion:
未来的扩展:
Although a single 220 kV line may be sufficient with waivers from ERB, an additional line will be required in the future to meet N-1 reliability requirements, adding to long-term costs.
虽然一条 220 千伏线路在获得电力局豁免后可能就足够了,但将来还需要增加一条线路以满足 N-1 的可靠性要求,这将增加长期成本。
Option 2: Evacuation Using the 66 kV Network
方案 2:利用 66 千伏网络进行疏散
Advantages:
优势
Offloading Transformers:
卸载变压器:
Evacuating power through 66 kV lines would offload the four 80 MVA 220/66 kV transformers at Wells Spring & Siavonga (Lusitu), optimizing the existing infrastructure.
通过 66 千伏线路输送电力将卸载 Wells Spring 和 Siavonga(Lusitu)的四台 80 兆伏安 220/66 千伏变压器,优化现有基础设施。
Potential Cost Distribution:
潜在成本分配:
While individual line construction might be costlier, the overall impact on existing infrastructure could balance out costs.
虽然单条线路的建设成本可能较高,但对现有基础设施的总体影响可以平衡成本。
Disadvantages:
缺点
Multiple Lines Requirement:
多线要求:
Requires the construction of three 66 kV lines, leading to increased wayleave requirements and more materials to handle and store.
需要建设三条 66 千伏线路,从而增加了让路要求,并需要处理和储存更多材料。
Increased Overall Cost:
总体成本增加:
The need for multiple lines and handling additional materials may increase overall construction costs, potentially making it less competitive compared to a single 220 kV network.
由于需要多条线路和处理额外的材料,可能会增加总体建设成本,与单个 220 千伏电网相比,竞争力可能会降低。
Space Constraints:
空间限制:
Limited space around 66 kV substations may pose challenges for construction and future expansions.
66 千伏变电站周围有限的空间可能会给施工和未来扩建带来挑战。
Observations
O 意见
Option 1 (220 kV Network): Offers a robust and high-capacity solution with reduced construction time and costs related to material handling. However, it involves higher initial costs and requires future expansion for reliability.
方案 1(220 千伏网络): 提供了一个坚固耐用的大容量解决方案,减少了施工时间和材料处理相关成本。但是,该方案的初始成本较高,而且需要在未来进行扩展以确保可靠性。
Option 2 (66 kV Network): Offloads existing infrastructure and might be cost-effective in balancing the load but involves higher construction complexity and potential space constraints.
方案 2(66 千伏网络): 卸载现有基础设施,在平衡负载方面可能具有成本效益,但涉及较高的施工复杂性和潜在的空间限制。
The choice between these options will depend on balancing the immediate and long-term costs, space availability, and the project's operational requirements.
如何在这些方案中做出选择,将取决于对近期和长期成本、空间可用性和项目运行要求之间的平衡。
7.3.4 Preferred Evacuation Option
7.3.4 首选撤离方案
The recommendation for Option 1 highlights a strategic choice for power evacuation based on comprehensive analysis of space, construction logistics, and overall costs. Choosing Option 1, which involves the 220 kV network, provides a more straightforward approach with fewer lines and potentially lower logistical complexity, though it requires careful monitoring to ensure that it integrates smoothly with existing networks.
方案 1 的建议强调了在对空间、施工物流和总体成本进行全面分析的基础上,对电力疏散做出的战略性选择。选择方案 1(涉及 220 千伏网络)提供了一种更直接的方法,线路更少,可能的后勤复杂性更低,但需要仔细监测,以确保与现有网络顺利整合。
Monitoring the impact on the 220 kV CEC Network and the 330 kV ZESCO Backbone Network will be crucial to maintain grid stability and performance. This approach aligns well with the goal of ensuring reliable and efficient power evacuation from the GTL Solar PV Power Project.
监测对 220 千伏 CEC 电网和 330 千伏 ZESCO 主干网的影响对于保持电网稳定和性能至关重要。这种方法与确保 GTL 太阳能光伏发电项目可靠、高效的电力输送的目标不谋而合。
8. | ENVIRONMENT |
8.1 Introduction
8.1 引言
8.1.1 Project Description
8.1.1 项目说明
The development of the 250 MWp GTL Solar PV Power Plant in Wells Spring & Siavonga (Lusitu) areas of Mazabuka & Siavonga (Lusitu) Districts represents a significant investment in renewable energy. The project involves:
在 Mazabuka 和 Siavonga(Lusitu)区的 Wells Spring 和 Siavonga(Lusitu)地区开发的 250 MWp GTL 太阳能光伏电站是对可再生能源的重大投资。该项目包括
Installation of Solar PV Modules: Approximately 602,420 polycrystalline solar PV modules.
太阳能光伏组件的安装:约 602,420 块多晶硅太阳能光伏组件。
Inverters: 1,200 solar inverters.
逆变器: 1 200 台太阳能逆变器。
Transformers: 40 smart transformers.
变压器: 40 个智能变压器。
Power Monitoring and Control Infrastructure: Comprehensive systems for efficient operation and management of the solar power plant.
电力监测和控制基础设施:用于高效运行和管理太阳能发电厂的综合系统。
Substation Construction: Building a 220/33 kV substation.
变电站建设: 建设一座 220/33 千伏变电站。
Transmission Line: Construction of a 12 km 220 kV transmission line connecting the solar plant to the 220/66 kV Zesco Substations.
输电线路 :建造一条 12 千米长的 220 千伏输电线路,将太阳能发电厂与 220/66 千伏 Zesco 变电站连接起来。
The environmental and social impact assessment will cover the entire scope of the project, including:
环境和社会影响评估将涵盖整个项目范围,包括
Solar PV Power Plant Location: Detailed examination of the area where the solar plant will be installed.
太阳能光伏电站位置:将安装太阳能电站的区域的详细检查。
Transmission Line Route: Assessment of the 12 km route for the 220 kV transmission line.
输电线路路线:评估 220 千伏输电线路的 12 公里线路。
Construction Works: Analysis of the impacts associated with construction at the 220/66 kV Wells Spring & Siavonga (Lusitu) Substations.
建筑工程:分析与 220/66 千伏 Wells Spring & Siavonga (Lusitu) 变电站施工相关的影响。
The project aims to significantly contribute to Zambia's renewable energy capacity and is crucial for meeting the country's energy goals and Vision 2030 objectives., as outlined in Fig 48 below:
该项目旨在显著提高赞比亚的可再生能源能力,对于实现赞比亚的能源目标和《2030 年远景规划》目标至关重要。如下图 48 所示:
Fig 48: Extent of the Project Areas for ESIA Studies
图 48:项目范围 区域 用于环境影响评估研究的区域
8.1.2 Environmental Impact Assessment
8.1.2环境影响评估。
For the 250 MWp GTL Solar PV Power Project in Zambia, the Environmental and Social Impact Assessment (ESIA) is crucial for ensuring that the project aligns with both national and international standards. Here’s an overview of how the ESIA will be approached:
对于赞比亚 250 MWp GTL 太阳能光伏发电项目而言,环境和社会影响评估 (ESIA) 对于确保项目符合国家和国际标准至关重要。下面将概述如何进行 ESIA:
Regulatory and Standards Framework
监管和标准框架
Zambian Regulations:
赞比亚法规:
Zambia Environmental Management (ZEMA) Act No. 12 of 2011: This act mandates that utility-scale power projects must undertake full ESIA to evaluate potential environmental and social impacts.
赞比亚 环境管理 (ZEMA) Act No.2011 年第 12 号法案: 该法案规定公用事业规模的电力项目必须进行全面的环境影响评估,以评估潜在的环境和社会影响。
International Standards:
国际标准:
Equator Principles: These are a set of environmental and social risk management guidelines for project finance that must be adhered to for international lending institutions.
Equator Principles: 这是一套国际贷款机构必须遵守的项目融资环境和社会风险管理准则。
IFC Performance Standards on Social and Environmental Sustainability: These standards provide a framework for managing environmental and social risks and impacts in a manner that is consistent with international best practices.
IFC 社会和环境可持续性绩效标准: 这些标准为以符合国际最佳实践的方式管理环境和社会风险及影响提供了一个框架。
Preliminary Assessments
初步评估
Baseline Assessments: Initial studies have been conducted to understand the existing environmental and social conditions in Mazabuka & Siavonga (Lusitu) Districts.
基线评估: 为了解 Mazabuka & Siavonga(Lusitu)地区的现有环境和社会状况,已经开展了初步研究。
Anticipated Impacts: The preliminary scoping identifies both positive and negative impacts associated with the solar PV project. These may include effects on local ecosystems, community displacement, and changes in land use.
预期影响: 初步范围界定确定了与太阳能光伏项目相关的积极和消极影响。这些影响可能包括对当地生态系统的影响、社区迁移和土地使用的变化。
Impact Qualification and Mitigation Measures
影响鉴定和缓解措施
Environmental Management Act of 2011: Compliance with this act will involve implementing measures to minimize negative impacts and enhance positive effects.
《2011 年环境管理法》:遵守该法案将涉及采取措施,最大限度地减少负面影响并增强积极效果。
IFC Performance Standards: Adopting these standards involves detailed planning to address potential risks, including community engagement, labor conditions, and environmental protection.
IFC 绩效标准 :采用这些标准需要进行详细规划,以应对潜在风险,包括社区参与、劳动条件和环境保护。
Permits
许可证
Environmental Clearance and Permitting: Based on the findings, recommendations will be made for obtaining the necessary environmental clearance and permits. This ensures that the project proceeds with the appropriate approvals and adherence to legal and environmental obligations.
环境审核和许可:根据研究结果,将就获得必要的环境审核和许可提出建议。这将确保项目在获得适当批准并遵守法律和环境义务的情况下进行。
In all, the ESIA chapter will outline the findings from the preliminary scoping, detailing the anticipated impacts and the corresponding mitigation measures. It will also provide guidance on obtaining the required environmental clearances and permits to ensure compliance with both Zambian regulations and international standards.
总之,环境影响评估章节将概述初步范围界定的结果,详细说明预期影响和相应的缓解措施。它还将为获得所需的环境审批和许可提供指导,以确保符合赞比亚法规和国际标准。
This approach will ensure that the project is developed in a manner that is environmentally sustainable and socially responsible, meeting the expectations of stakeholders and regulatory bodies.
这种方法将确保项目的开发具有环境可持续性和社会责任感,满足利益相关者和监管机构的期望。
8.2 Standards and Regulations for undertaking ESIA Studies
8.2进行环境影响评估研究的标准和条例
Understanding the legal and regulatory landscape is critical for the successful development of a solar PV power plant. In Zambia, the regulatory procedures for establishing a solar PV power plant are comprehensive and involve several key steps and requirements. Here’s a detailed overview of the regulatory procedures required:
了解法律和监管情况对于成功开发太阳能光伏电站至关重要。在赞比亚,建立太阳能光伏电站的监管程序非常全面,涉及多个关键步骤和要求。以下是所需监管程序的详细概述:
1. Regulatory Framework
1.监管框架
1.1 Environmental and Social Impact Assessment (ESIA):
1.1 环境和社会影响评估(ESIA):
Environmental Management Act No. 12 of 2011: Requires a full ESIA to assess potential environmental and social impacts of the project.
2011 年第 12 号《环境管理法》: 要求进行全面的环境影响评估,以评估项目对环境和社会的潜在影响。
Zambia Environmental Management Agency (ZEMA): Responsible for reviewing and approving the ESIA report. The process involves scoping, impact assessment, public consultations, and mitigation planning.
赞比亚环境管理局(ZEMA): 负责审查和批准环境影响评估报告。该过程包括范围界定、影响评估、公众咨询和缓解规划。
1.2 Licensing and Permits:
1.2 许可证和执照:
Energy Regulation Board (ERB): Regulates the electricity sector in Zambia, including licensing of power generation facilities. A generation license from ERB is required.
能源监管局(ERB): 监管赞比亚的电力部门,包括为发电设施颁发许可证。必须获得能源监管局颁发的发电许可证。
Building and Construction Permits: Local authorities and the Ministry of Local Government will issue permits related to construction, land use, and infrastructure development.
建筑和施工许可证: 地方当局和地方政府部将颁发与建筑、土地使用和基础设施开发相关的许可证。
1.3 Grid Connection:
1.3 电网连接:
ZESCO Limited: As the primary utility, ZESCO is responsible for the transmission and distribution of electricity. A grid connection agreement with ZESCO is necessary for integrating the solar power plant into the national grid.
ZESCO Limited: 作为主要的公用事业公司,ZESCO 负责电力的传输和分配。要将太阳能发电厂并入国家电网,必须与 ZESCO 签订并网协议。
Copperbelt Energy Corporation (CEC): For regions served by CEC, agreements for grid connection and power evacuation might also be required.
Copperbelt Energy Corporation (CEC): 对于由 CEC 提供服务的地区,可能还需要签订电网连接和电力输送协议。
1.4 Land Acquisition and Use:
1.4 土地征用和使用:
Land Act: Requires compliance with land acquisition and use regulations. The project may need to secure land rights or leases for the installation of solar PV modules and associated infrastructure.
土地法: 要求遵守土地征用和使用法规。项目可能需要获得土地权或租约,以安装太阳能光伏组件和相关基础设施。
Local Communities: Engaging with local communities and obtaining their consent is essential for land use and to address any potential social impacts.
当地社区: 与当地社区接触并征得他们的同意对于土地利用和解决任何潜在的社会影响至关重要。
2. Compliance with International Standards
2.遵守国际标准
2.1 Equator Principles:
2.1 赤道原则:
Projects financed by international institutions must adhere to the Equator Principles, which focus on environmental and social risk management.
国际机构资助的项目必须遵守《赤道原则》,该原则侧重于环境和社会风险管理。
2.2 IFC Performance Standards:
2.2 国际金融公司绩效标准:
Compliance with IFC Performance Standards is required to address issues such as labor practices, community health and safety, and environmental management.
需要遵守国际金融公司的绩效标准,以解决劳工实践、社区健康与安全以及环境管理等问题。
3. Project Financing and Investment
3.项目融资和投资
3.1 Project Finance:
3.1 项目融资:
For projects financed through loans or investments, the ESIA and compliance with international standards will be critical in securing funding.
对于通过贷款或投资资助的项目,环境影响评估以及是否符合国际标准将是获得资金的关键。
3.2 Cost-Reflective Tariffs:
3.2成本-反映关税:
The National Energy Policy (NEP) 2019 emphasizes cost-reflective pricing to promote investment in the energy sector. Negotiating tariffs and power purchase agreements (PPAs) will be necessary for financial viability.
2019 年国家能源政策》(NEP)强调通过反映成本的定价来促进能源行业的投资。为了实现财务可行性,有必要就电价和购电协议(PPA)进行谈判。
4. Construction and Operation
4.施工和运行
4.1 Construction Standards:
4.1 施工标准:
Compliance with Zambian construction standards and regulations, including safety and quality control, is mandatory during the construction phase.
在施工阶段,必须遵守赞比亚的施工标准和法规,包括安全和质量控制。
4.2 Operational Permits:
4.2 运营许可证:
Once operational, the plant will require ongoing permits and compliance checks to ensure that it meets environmental and safety regulations.
一旦投入运营,该工厂将需要持续的许可和合规检查,以确保其符合环境和安全法规。
5. Monitoring and Reporting
5.监测和报告
5.1 Regular Reporting:
5.1 定期报告:
The project will be required to provide regular reports to ZEMA, ERB, and other regulatory bodies on environmental performance, safety, and operational issues.
该项目需要定期向 ZEMA、ERB 和其他监管机构提交有关环境绩效、安全和运营问题的报告。
5.2 Impact Monitoring:
5.2 影响监测:
Continuous monitoring of environmental and social impacts is necessary to ensure compliance with mitigation measures and to address any emerging issues.
有必要对环境和社会影响进行持续监测,以确保遵守缓解措施并解决任何新出现的问题。
In total, navigating the regulatory requirements for establishing a solar PV power plant in Zambia involves a multi-faceted approach, including adherence to local regulations, obtaining necessary permits and licenses, and ensuring compliance with international standards. Effective engagement with stakeholders and regulatory bodies is essential to the successful development and operation of the project.
总的来说,在赞比亚建立太阳能光伏电站的监管要求涉及多个方面,包括遵守当地法规、获得必要的许可证和执照以及确保符合国际标准。与利益相关者和监管机构的有效合作对于项目的成功开发和运营至关重要。
8.2.1 Zambia Environmental Management Agency (ZEMA) ESIA Requirements
8.2.1 赞比亚环境管理局(ZEMA)环境影响评估要求
ZEMA, formerly the Environmental Council of Zambia (ECZ), is the primary environmental regulatory agency in Zambia. Established in 1991 through the Environmental Protection and Pollution Control Act (EPPCA) Cap 204 of 1990, ZEMA’s role was further strengthened with the enactment of the Environmental Management Act No. 12 of 2011. This legislation not only replaced the EPPCA but also led to the rebranding of ECZ to ZEMA, enhancing the agency's mandate and promoting greater public participation in environmental management and pollution control across the country.
赞比亚环境管理局(ZEMA)的前身是赞比亚环境理事会(ECZ),是赞比亚主要的环境监管机构。ZEMA 于 1991 年通过 1990 年《环境保护和污染控制法》(EPPCA)第 204 章成立,2011 年第 12 号《环境管理法》的颁布进一步加强了 ZEMA 的作用。该法不仅取代了《环境保护和污染控制法》,还将赞比亚环境和自然保护委员会更名为赞比亚环境管理署,从而加强了该机构的职责,并促进公众更多地参与全国的环境管理和污染控制工作。
Mandate of ZEMA
ZEMA 的任务
Under the Environmental Management Act No. 12 of 2011, ZEMA is tasked with implementing measures to protect the environment and control pollution. These measures are aimed at safeguarding the health and welfare of people, animals, plants, and the overall environment in Zambia.
根据 2011 年第 12 号《环境管理法》,赞比亚环境管理局负责实施保护环境和控制污染的措施。这些措施旨在保护赞比亚人民、动物、植物和整体环境的健康和福利。
Environmental and Social Impact Assessment (ESIA) Regulations
环境和社会影响评估(ESIA)条例
The guidelines for conducting Environmental and Social Impact Assessments (ESIA) for all development projects in Zambia are detailed in the Environmental Impact Assessment (EIA) Regulations, stipulated in Statutory Instrument No. 28 of 1997. These regulations categorize projects based on the expected magnitude of their environmental impacts, determining the level of assessment required.
1997 年第 28 号法定文书规定的《环境影响评估条例》详细阐述了对赞比亚所有发 展项目进行环境和社会影响评估的指导方针。这些条例根据项目对环境影响的预期程度对项目进行分类,确定所需的评估水平。
Categories under the EIA Regulations:
《环境影响评估条例》规定的类别:
First Schedule: Projects expected to have minimal environmental impacts. These projects require the preparation of an Environmental Project Brief (EPB) Report.
第一时间表: 预计对环境影响最小的项目。这些项目需要编制环境项目简介(EPB)报告。
Second Schedule: Projects anticipated to have significant environmental impacts. These projects must undergo a full Environmental and Social Impact Assessment (ESIA), resulting in an ESIA Report.
第二个时间表: 预计会对环境产生 重大影响的项目。这些项目必须经过全面的环境和社会影响评估 (ESIA),并形成一份环境和社会影响评估报告。
ZEMA retains the discretion to require a full ESIA for projects initially categorized under the First Schedule if the project site is deemed ecologically sensitive.
如果项目地点被视为生态敏感区域,泽马岛管理局保留酌情权,可要求最初归入附表 1 的项目进行全面的环境影响评估。
ESIA Process
环境影响评估程序
For projects like the GTL Solar PV Power Project, which falls under the Second Schedule, a full ESIA is mandatory. The development of a full ESIA involves a comprehensive ten-stage process:
对于 GTL 太阳能光伏发电项目这样的项目(属于附表 2),必须进行全面的环境影响评估。制定全面的环境影响评估需要经过十个阶段:
Preliminary Actions: Initial steps to outline the scope and plan for the ESIA.
初步行动:概述环境影响评估范围和计划的初步步骤。
Scoping: Identification of potential environmental and social impacts.
范围界定: 确定潜在的环境和社会影响。
Baseline Study: Collection of data to establish the existing environmental and social conditions.
基线研究: 收集数据以确定现有的环境和社会条件。
Impact Evaluation: Assessment of the potential impacts identified during scoping.
影响评估: 评估范围界定过程中确定的潜在影响。
Public Participation: Engaging with the public to gather input and address concerns related to the project.
公众参与: 与公众接触,收集意见并解决与项目有关的问题。
Identification of Mitigation Measures: Proposing measures to mitigate identified adverse impacts.
确定减缓措施: 提出减缓已确定不利影响的措施。
Assessment of Alternatives: Evaluating different project options to identify the most sustainable and least harmful approach.
替代方案评估: 评估不同的项目方案,以确定最可持续和危害最小的方法。
Decision Making by the Developer: Choosing the best course of action based on the assessment.
决策 由开发人员做出 : 根据评估结果选择最佳行动方案。
Submission of the ESIA Report to ZEMA: Presenting the findings and recommendations for review.
向 ZEMA 提交环境影响评估报告: 提出审查结果和建议。
Decision Making by ZEMA: Final decision on whether the project can proceed, based on the ESIA Report.
由 ZEMA 做出决定: 根据环境影响评估报告最终决定项目是否可以继续进行。
This rigorous ESIA process ensures that the development of power plants and other large-scale projects in Zambia is conducted responsibly, with due consideration for environmental protection and social welfare.
这一严格的环境影响评估程序确保赞比亚发电厂和其他大型项目的开发以负责任的方式进行,并充分考虑到环境保护和社会福利。
8.2.2 Equator Principles Financial Institutions (EPFIs) ESIA Requirements
8.2.2量化原则金融机构(EPFIs)ESIA 要求
The Equator Principles (EPs), developed by the Equator Principles Financial Institutions (EPFIs), serve as a globally recognized risk management framework used by financial institutions to evaluate and manage environmental and social risks in large-scale projects. This framework establishes a minimum standard for due diligence and monitoring to ensure that projects are executed responsibly, with proper consideration for potential impacts on the environment and communities.
由赤道原则金融机构(EPFIs)制定的《赤道原则》(EPs)是全球公认的风险管理框架,供金融机构用于评估和管理大型项目的环境和社会风险。该框架确立了尽职调查和监督的最低标准,以确保项目以负责任的方式执行,并适当考虑对环境和社区的潜在影响。
Key Principles of the Equator Principles:
《赤道原则》的主要原则:
EP1 - Review and Categorisation:
EP1 - 审查和分类:
Objective: EPFIs categorize projects based on the magnitude of their potential environmental and social risks and impacts.
目标: EPFI 根据潜在环境和社会风险及影响的大小对项目进行分类。
Categories:
类别
Category A: Projects with significant adverse impacts.
A类: 具有重大不利影响的项目。
Category B: Projects with limited adverse impacts.
B类: 负面影响有限的项目。
Category C: Projects with minimal or no adverse impacts.
C类:不利影响极小或没有不利影响的项目。
EP2 - Environmental and Social Assessment:
EP2 - 环境与社会评估:
Objective: Developers must conduct an assessment to identify and address the relevant environmental and social risks and impacts of the project.
目标:开发商必须进行评估,以确定并解决项目的相关环境和社会风险及影响。
Focus: The assessment should include proposed measures to minimize and mitigate negative impacts.
重点: 评估应包括最大限度减少和减轻负面影响的建议措施。
EP3 - Applicable Environmental and Social Standards:
EP3 - 适用的环境和社会标准:
Objective: Ensure that the project complies with the host country's environmental and social laws, regulations, and permits.
目标: 确保项目符合东道国的环境和社会法律、法规和许可。
Additional Requirement: For projects in non-High-Income Organization for Economic Cooperation and Development (OECD) countries, the assessment must also align with the International Finance Corporation (IFC) Performance Standards.
附加要求: 对于非高收入经济合作与发展组织(OECD)国家的项目,评估还必须符合国际金融公司(IFC)的绩效标准。
EP4 - Environmental and Social Management System and Equator Principles Action Plan:
EP4 - 环境与社会管理系统和赤道原则行动计划:
Objective: For Category A and B projects, developers must establish an Environmental and Social Management System (ESMS) and an Environmental and Social Management Plan (ESMP).
目标: 对于 A 类和 B 类项目,开发商必须建立环境和社会管理系统 (ESMS) 以及环境和社会管理计划 (ESMP)。
Action Plan: The developer and EPFI agree on an Equator Principles Action Plan (EPAP) to address identified risks and impacts.
行动计划: 开发商和 EPFI 就《赤道原则行动计划》(EPAP)达成一致,以应对已识别的风险和影响。
EP5 - Stakeholder Engagement:
EP5 - 利益相关者的参与:
Objective: Developers must demonstrate ongoing and culturally appropriate engagement with affected communities, workers, and other stakeholders throughout the project lifecycle.
目标:开发人员必须在整个项目生命周期内展示与受影响社区、工人和其他利益相关者持续且文化上适当的接触。
Requirement: Effective stakeholder engagement is critical for Category A and B projects.
要求: 有效的利益相关者参与对于 A 类和 B 类项目至关重要。
EP6 - Grievance Mechanism:
EP6 - 申诉机制:
Objective: Establish a mechanism to receive and resolve concerns and grievances regarding the project’s environmental and social performance.
目标:建立一个机制,接收并解决与项目的环境和社会绩效有关的问题和投诉。
Applicability: Required for all Category A projects and, as appropriate, for Category B projects.
适用性: 所有A 类 项目以及适当情况下的 B 类项目均需。
EP7 - Independent Review:
EP7 - 独立审查:
Objective: An Independent Environmental and Social Consultant conducts an independent review of the project’s assessment process, ESMP, ESMS, and stakeholder engagement documentation.
目标: 独立环境和社会顾问对项目评估过程、ESMP、ESMS 和利益相关者参与文件进行 独立审查。
Purpose: To assist EPFIs in determining compliance with the Equator Principles.
目的:协助 EPFI 确定是否符合《赤道原则》。
EP8 - Covenants:
EP8 - 圣约
Objective: EPFIs work with developers to remediate any non-compliance with environmental and social covenants during the project’s lifecycle.
目标: EPFI 与开发商合作,对项目生命周期内任何不遵守环境和社会契约的情况进行补救。
Action: Developers must bring the project back into compliance when issues arise.
行动: 开发人员必须在出现问题时使项目重新符合要求。
EP9 - Independent Monitoring and Reporting:
EP9 - 独立监测和报告:
Objective: Monitor and report on project compliance with the Equator Principles post-Financial Close and throughout the loan term.
目标:在财务结算后及整个贷款期内,监测并报告项目是否符合《赤道原则》。
Applicability: EPFIs may consider monitoring conducted by multilateral, bilateral financial institutions, or OECD Export Credit Agencies.
适用性: EPFI 可以考虑由多边、双边金融机构或经合组织出口信贷机构进行监测。
EP10 - Reporting and Transparency:
EP10 - 报告与透明度:
Objective: Ensure transparency by making a summary of the Environmental and Social Impact Assessment (ESIA) publicly accessible, including information on human rights and climate change risks.
目标: 公开环境和社会影响评估(ESIA)摘要,包括有关人权和气候变化风险的信息,从而确保透明度。
Requirement: For projects emitting over 100,000 tonnes of CO2 equivalent annually, the client must publicly report greenhouse gas (GHG) emissions levels during the operational phase on an annual basis.
要求: 对于年二氧化碳当量排放量超过 10 万吨的项目,客户必须每年公开报告运营阶段的温室气体(GHG)排放水平。
By adhering to these principles, financial institutions and developers can ensure that projects are implemented in a socially and environmentally responsible manner, mitigating risks and fostering sustainable development.
通过遵守这些原则,金融机构和开发商可以确保以对社会和环境负责的方式实施项目,降低风险,促进可持续发展。
8.2.3 IFC Performance Standards on Social and Environmental Sustainability
8.2.3 国际金融公司的社会和环境可持续性绩效标准
The International Finance Corporation (IFC) Performance Standards (PS) are globally recognized guidelines that outline how to assess and manage the environmental and social risks associated with development projects, especially in countries not classified as High-Income OECD members. These standards serve as a benchmark for both developers and financial institutions, ensuring that projects are executed responsibly with minimal adverse impacts on communities and the environment.
国际金融公司(IFC)绩效标准(PS)是全球公认的指导方针,概述了如何评估和管理与开发项目相关的环境和社会风险,尤其是在未被归类为经合组织高收入成员国的国家。这些标准是开发商和金融机构的基准,可确保以负责任的方式执行项目,将对社区和环境的不利影响降至最低。
Key IFC Performance Standards:
国际金融公司的主要绩效标准:
PS 1: Assessment and Management of Environmental and Social Risks and Impacts
PS 1:评估和管理环境与社会风险和影响
Objective: To ensure projects are conducted with a comprehensive understanding of their environmental and social impacts, and to engage effectively with affected communities throughout the project cycle.
目标:确保在开展项目时全面了解项目对环境和社会的影响,并在整个项目周期内与受影响社区进行有效接触。
Key Actions: Development of a coordinated grievance mechanism to address concerns and promote improved environmental and social performance.
关键行动: 建立协调的申诉机制,以解决关切问题并促进改善环境和社会绩效。
PS 2: Labour and Working Conditions
PS 2:劳动和工作条件
Objective: To promote fair treatment, non-discrimination, equal opportunity, and safe working conditions.
目标: 促进公平待遇、非歧视、平等机会和安全的工作条件。
Key Actions: Ensuring workers’ rights are protected, and working environments are safe and healthy.
关键行动: 确保工人的权利得到保护,工作环境安全健康。
PS 3: Resource Efficiency and Pollution Prevention
PS 3:资源效率和污染预防
Objective: To minimize the adverse impacts on human health and the environment by reducing pollution from project activities and promoting the sustainable use of resources.
目标: 通过减少项目活动产生的污染和促进资源的可持续利用,最大限度地减少对人类健康和环境的不利影响。
Key Actions: Implementing measures to reduce project-related greenhouse gas (GHG) emissions and encouraging efficient use of energy and water.
关键行动: 采取措施减少与项目有关的温室气体(GHG)排放,并鼓励有效利用能源和水。
PS 4: Community Health, Safety, and Security
PS 4:社区健康、安全和安保
Objective: To anticipate, avoid, and mitigate any adverse impacts on the health, safety, and security of affected communities.
目标: 预测、避免和减轻对受影响社区的健康、安全和安保的任何不利影响。
Key Actions: Safeguarding both the community and the project’s personnel and property throughout the project lifecycle.
关键行动: 在整个项目生命周期内保护社区和项目人员及财产的安全。
PS 5: Land Acquisition and Involuntary Resettlement
PS 5:土地征用和非自愿重新安置
Objective: To avoid, or when unavoidable, minimize adverse social and economic impacts related to displacement, land acquisition, or restrictions on land use.
目标:避免或在不可避免的情况下尽量减少与迁移、土地征用或土地使用限制有关的不利社会和经济影响。
Key Actions: Providing fair compensation for the loss of assets and ensuring that affected persons are adequately supported.
关键行动:为资产损失提供公平补偿,并确保受影响人员得到充分支持。
PS 6: Biodiversity Conservation and Sustainable Management of Living Natural Resources
PS 6:生物多样性保护和自然资源的可持续管理
Objective: To protect biodiversity, maintain ecosystem services, and promote sustainable management of natural resources.
目标: 保护生物多样性,维护生态系统服务,促进自然资源的可持续管理。
Key Actions: Conservation efforts should be integrated into project planning and implementation.
关键行动: 应将保护工作纳入项目规划和实施。
PS 7: Indigenous Peoples
PS 7:原住民
Objective: To avoid adverse impacts on indigenous peoples and to respect their human rights, dignity, aspirations, culture, and natural resource-based livelihoods.
目标: 避免对土著人民产生不利影响,尊重他们的人权、尊严、愿望、文化和以自然资源为基础的生计。
Key Actions: Engaging with indigenous communities to ensure their inclusion and protection throughout the project.
关键行动: 与土著社区接触,确保在整个项目期间将他们纳入其中并对他们进行保护。
PS 8: Cultural Heritage
PS 8:文化遗产
Objective: To protect cultural heritage from the adverse impacts of project activities, support its preservation, and promote the equitable sharing of benefits from its use.
目标:保护文化遗产,使其免受项目活动的不利影响,支持对其进行保护,并促进公平分享文化遗产利用所带来的惠益。
Key Actions: Projects should be designed to avoid or mitigate impacts on cultural heritage sites and ensure that any benefits from the use of cultural heritage are shared equitably.
关键行动: 项目的设计应避免或减轻对文化遗址的影响,并确保公平分享文化遗产利用所带来的任何惠益。
Comparison with Other Multilateral Development Banks:
与其他多边开发银行的比较:
Other major multilateral development banks, such as the African Development Bank (AfDB), World Bank (WB), European Investment Bank (EIB), European Bank for Reconstruction and Development (EBRD), Inter-American Development Bank (IADB), and Asian Development Bank (AsDB), have developed their own operational safeguards that align closely with the IFC's Performance Standards. These safeguards cover key areas such as environmental protection, social impacts, labor rights, community engagement, and resource management.
其他主要的多边开发银行,如非洲开发银行 (AfDB)、世界银行 (WB)、欧洲投资银行 (EIB)、欧洲复兴开发银行 (EBRD)、美洲开发银行 (IADB) 和亚洲开发银行 (AsDB),都制定了与国际金融公司《绩效标准》密切配合的自身运营保障措施。这些保障措施涵盖了环境保护、社会影响、劳工权利、社区参与和资源管理等关键领域。
The similarities in operational safeguards among these institutions highlight a consensus on the importance of managing environmental and social risks in development projects. While each institution may have specific nuances in their approach, the core principles remain consistent, ensuring that projects financed by these banks are socially and environmentally sustainable. The key areas of the operational safeguards for the various multilateral banks are compared in Table 30
这些机构在业务保障措施方面的相似之处凸显了对发展项目中环境和社会风险管理重要性的共识。虽然每个机构在方法上可能有具体的细微差别,但核心原则保持一致,确保这些银行资助的项目在社会和环境方面具有可持续性。表 30 比较了各多边银行业务保障措施的关键领域.
Table 30: Comparisons of Key Operational Safeguards for Multilateral Banks
表 30:多边银行主要业务保障措施的比较
Areas | IFC | WB | EBRD | EIB | AfDB | AsDB | IADB |
Environmental and social assessment | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Involuntary resettlement | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Pollution control | Yes | Yes | Yes | Yes | Yes | (in ESIA) | Yes |
Biodiversity | Yes | Yes | Yes | Yes | Yes | (in ESIA) | Yes |
Community impacts | Yes | No | Yes | Yes | (in ESIA) | (in ESIA) | No |
Labour conditions | Yes | No | Yes | Yes | Yes | (in ESIA) | No |
Indigenous peoples | Yes | Yes | Yes | Yes | (in ESIA) | Yes | Yes |
Cultural heritage | Yes | Yes | Yes | Yes | (in ESIA) | (in ESIA) | Yes |
Environmental flow | No | Yes | No | No | (in Biod.) | No | No |
8.3 Environmental Considerations for the Development of the Project
8.3 项目开发的环境因素
8.3.1 Scope of Works
8.3.1 工程范围
The scope of works for the development of the 250 MWp GTL Solar PV Power Project will involve bush clearing and vegetation removal for the creation of a solar power plant, mounting of Solar PV panels, construction of a Substations, construction of a 12 km high voltage transmission line and the installation of support equipment.
250 MWp GTL 太阳能光伏发电项目的开发工程范围包括清除灌木和植被,以建立太阳能发电厂、安装太阳能光伏板、建造一个 太阳能光伏发电站 、铺设一条 12 公里长的高压输电线路以及安装辅助设备。
The transmission line works will involve the clearing and removal of vegetation a wayleave, conducting of line pegging depending on spacing and foundation spots excavated; assembling of tower structures and equipment erection; conductor stringing and installation of counterpoise. The proposed project shall consist of the following main activities:
输电线路工程将包括清理和移除植被,开辟道路,根据间距和开挖的地基位置进行线路挂接;组装塔架结构和设备安装;导线串接和安装反压。拟议项目应包括以下主要活动:
Construction of Solar PV Power plant that shall accommodate 602,420 Polycrystalline Solar PV modules, 1200 solar inverters, 40 smart transformers and other associated power monitoring and control infrastructure
建设太阳能光伏电站,安装 602 420 块多晶体太阳能光伏组件、1200 台太阳能逆变器、40 台智能变压器和其他相关的电力监测和控制基础设施
Construction of a 33 kV Substations complete with busbars, switchgear, and protection equipment;
建造一座 33 千伏 变电站,并配备母线、开关设备和保护设备;
Installation of transformers and associated infrastructure at the GTL Solar PV Power Project site;
在 GTL 太阳能光伏发电项目现场安装变压器和相关基础设施;
Construction of a 12 km 220 kV line from the GTL Project to the Zesco Substations
建设一条从 GTL 项目到 Zesco 变电站的 12 公里 220 千伏线路;
Extension of the 220 kV busbar at Zesco Substations; and
延长Zesco 变电站 的 220 千伏母线;以及
Installation of associated infrastructure at the Zesco Substations
在 Zesco 变电站安装相关基础设施.
Extraction of water from the B…….. Stream to supply water to the power plant;
Ext 从 B........ 溪流取水向发电厂供水;
8.3.2 Benefits of the Project
8.3.2项目的益处
The main benefits of the proposed project include the following:
拟议项目的主要益处如下:
Increased capacity of the power system to satisfy long-term demand growth in Zambia;
提高电力系统的能力,以满足赞比亚的长期需求增长;
Mitigation of the energy deficit in the country;
缓解国家能源短缺问题;
Steer socio-economic development in Wells Spring & Siavonga (Lusitu) areas, and Mazabuka & Siavonga (Lusitu) Districts
引导 Wells Spring 和 Siavonga(Lusitu)地区以及 Mazabuka 和 Siavonga(Lusitu)地区的社会经济发展;
Job Creation during and after construction; and
在施工期间和之后创造就业机会;以及
To contribute to the Nationally Intended Contributions (NDCs) through carbon emission reduction in Zambia by providing clean energy.
通过提供清洁能源,减少赞比亚的碳排放量,从而为实现国家预期贡献(NDCs)做出贡献。
8.4 Anticipated Environmental and Socio Impacts of the Project
8.4项目的预期环境和社会影响
Utility scale solar PV power project are expected to have environmental and social impacts during construction as well as during the operational life of the project. This entails that the approval process for the GTL Solar PV Power Plant shall include the preparation and approval of the Environmental and Social Impact Assessment Reports and an Environmental Management Plan by ZEMA and other stakeholders.
公用事业规模的太阳能光伏发电项目预计会在施工期间和项目运营期内对环境和社会产生影响。因此,GTL 太阳能光伏电站的审批程序应包括编制环境和社会影响评估 报告 以及由 ZEMA 和其他利益相关者批准的环境管理计划。
This study forms the preliminary stages for the fulfilment of the approval requirements by ZEMA and as governed by the Environmental Management Act No. 12 of 2011 and the Environmental Impact Assessment (EIA) Regulations, Statutory Instrument No. 28 of 1997 of the Laws of Zambia and the approval requirements by the Ministry of Energy for the development of power Project in Zambia. In order to satisfy financing requirements, the Equator Principles and the IFC Performance Standards are referenced.
本研究为满足赞比亚环境管理局(ZEMA)的审批要求和赞比亚法律中 2011 年第 12 号《环境管理法》和 1997 年第 28 号《法定文书》中的《环境影响评估(EIA)条例》以及能源部对赞比亚电力项目开发的审批要求提供了初步依据。为满足融资要求,参考了《赤道原则》和《国际金融公司绩效标准》。
8.4.1 Baseline Conditions
8.4.1 基准条件
8.4.1.1 Physical Environment
8.4.1.1 物理环境
Climate
气候
As discussed in 4.2.4 above, the project areas has a tropical and sub-tropical climate with two main seasons: the rainy season (October to April) and the dry season (May to September). The dry season is subdivided into the cool and dry season (May to August), and the warm and dry season (September to October). The place is generally warm throughout the year. Over the course of the year, the temperature typically varies from 9°C to 34°C and is rarely below 7°C or above 37°C.
如上文 4.2.4 所述,项目 地区 属热带和亚热带气候,主要有两个季节:雨季(10 月至次年 4 月)和旱季(5 月至 9 月)。旱季又分为凉爽干燥季(5 月至 8 月)和温暖干燥季(9 月至 10 月)。该地区全年气候温暖。全年气温一般在 9°C 至 34°C 之间,很少低于 7°C 或高于 37°C。
The hot season in Mazabuka & Siavonga (Lusitu) lasts for 2 months, from September 13 to November 12, with an average daily high temperature above 32°C. The hottest month of the year is October, with an average high of 34°C and low of 18°C. The cool season lasts for 7.2 months, from December 23 to July 30, with an average daily high temperature below 27°C. The coldest month of the year in Mazabuka & Siavonga (Lusitu) is June, with an average low of 10°C and high of 25°C.
热季在Mazabuka & Siavonga(Lusitu) 持续 2 个月,从 9 月 13 日到 11 月 12 日,日平均最高气温在 32°C 以上。一年中最热的月份是 10 月,平均最高气温 34°C,最低气温 18°C。冷季从 12 月 23 日至次年 7 月 30 日,持续 7.2 个月,日平均最高气温低于 27°C。Mazabuka & Siavonga (Lusitu) 一年中最冷的月份是 6 月,平均最低气温为 10°C,最高气温为 25°C。
Like the most parts of Zambia, rainfall over Mazabuka & Siavonga (Lusitu) and the Project Site is derived mainly from a low-pressure system caused by the convergence of the Trade Winds known as the Inter Tropical Convergence Zone (ITCZ). The rainy period of the year lasts for 6.4 months, from October 13 to April 27, with a sliding 31-day rainfall of at least 13 millimeters. The month with the most rain in Mazabuka & Siavonga (Lusitu) is January, with an average rainfall of 242 millimeters. The rainless period of the year lasts for 5.6 months, from April 27 to October 13. The month with the least rain in Mazabuka & Siavonga (Lusitu) is July, which has no recorded rainfall.
与赞比亚大部分地区一样,Mazabuka &;Siavonga (Lusitu) 和项目所在地的降雨量主要来自被称为热带辐合带(ITCZ)的信风辐合造成的低压系统。每年的雨季从 10 月 13 日至次年 4 月 27 日,长达 6.4 个月,31 天的滑动降雨量至少为 13 毫米。Mazabuka & Siavonga (Lusitu) 雨量最多的月份是 1 月份,平均降雨量为 242 毫米。全年无雨期为 5.6 个月,从 4 月 27 日到 10 月 13 日。Mazabuka & Siavonga (Lusitu) 雨量最少的月份是 7 月,没有降雨记录。
Wind
风
The predominant average hourly wind direction at the project site is from the east throughout the year. The windier part of the year lasts for 5.4 months, from June 3 to November 15, with average wind speeds of more than 14.1 km.h-1 per hour. The windiest month of the year in Mazabuka & Siavonga (Lusitu) is September, with an average hourly wind speed of 18.5 km.h-1. The calmer time of year lasts for 6.6 months, from November 15 to June 3. The calmest month of the year in Mazabuka & Siavonga (Lusitu) is February, with an average hourly wind speed of 9.5 km.h-1
项目所在地全年平均每小时的主要风向为东风。全年风力最大的月份为 6 月 3 日至 11 月 15 日,长达 5.4 个月,平均风速 超过 14.1 公里/小时-1 每小时 。Mazabuka & Siavonga (Lusitu) 一年中风力最大的月份是 9 月份,平均每小时风速 为 18.5 km.h-1 。一年中较平静的时间持续 6.6 个月,从 11 月 15 日到 6 月 3 日。Mazabuka & Siavonga (Lusitu) 一年中最平静的月份是二月份,平均每小时风速 为 9.5 km.h-1.
Air Quality
空气质量
No air quality data is available for the Wells Spring & Siavonga (Lusitu) Areas however, mining operations at Munali Nickle Mine are expected to have an effect on the air quality of the project areas. Due to the predominate easterly winds, it is expected that such influence is marginal and this was confirmed by field observations which indicated that the air quality in the project areas is generally good.
没有Wells Spring &;Siavonga (Lusitu)Areashowever、 穆纳利镍矿 的采矿作业预计将对项目 地区 的空气质量产生影响。由于 地区主要吹 东风,预计这种影响很小,实地观察也证实了这一点,即项目 地区 的空气质量总体良好。
Despite the observation above, seasonal variation as well as localised and temporal deterioration in air quality does occur. Grassland and forest fires, charcoal burning and traditional Chitemene slash and burn agriculture during the dry season generates smoke and dust. This air pollution hangs over the areas and forms a distinctive haze. The haze layer is mainly visible from the air and worst during the coolest months (June and July) when temperature inversions tend to trap the smoke near ground level. The haze lasts until the arrival of the rains in November. Localised and temporal air quality deterioration is also associated with village domestic fires. Exhaust emissions from vehicles travelling along the T1 & M15 OFF T2 main road disperse rapidly and are localised. The T-3 road is the major outlet for mining products from the mineral rich copperbelt of Zambia and Katanga in Democratic republic of Congo.
尽管有上述观察结果,但空气质量的季节性变化以及局部和时间性恶化还是时有发生。旱季的草原和森林火灾、木炭燃烧以及传统的奇特梅内刀耕火种都会产生烟尘。这些空气污染笼罩着地区,形成独特的烟雾。雾霾层主要从空中可见,在最凉爽的月份(6 月和 7 月)最严重,因为此时气温的逆转往往会将烟雾阻挡在地面附近。雾霾会一直持续到 11 月雨季到来。局部和时间性的空气质量恶化还与村庄的家庭火灾有关。沿T1 & M15 OFF T2 主干道行驶的车辆排放的废气会迅速扩散,而且是局部性的。T-3 公路是赞比亚矿产丰富的铜矿带和刚果民主共和国加丹加省矿产品的主要出口。
Geology
地质学
The formation of the Southern Province of Zambia and Zimbabwe is mainly a response to the L….. Orogeny (circa 600 Ma). The belt occupies an areas which is about 160 kilometres long at the southern extremity of the 800 km long L……. fold (Fig 14). The L……. belt is an arcuate system of folds which was formed by pressure acting northwards or northeastwards. It stretches from Zimbabwe through northwestern Zambia, the S…….. region of the democratic republic of ……… and then back into Zambia. The L…… Arc is flanked by the K……. fold belt and the K…… shield on the west and by the Bangweulu block and the Irumide fold belt on the east. It is separated from the Zambezi fold belt in the south by the Mwembeshi dislocation. Accounts of the relationship between the L…….. fold belt and the Southern Province structure and …………. mineralisation are given in various publications. The Southern Province sediments have been subjected to relatively mild flexural folding
赞比亚和津巴布韦南部省的形成 是对 L.....造山运动(约600Ma)。该带占据了 个 地区 ,位于 800 公里长的 L....... 褶皱的最南端,长约 160 公里 (图 14)。L.......带是一个弧形褶皱系统,由向北或向东北方向的压力作用形成。它从津巴布韦 一直延伸到 赞比亚西北部、S........。region of the Democratic Republic of Of ......... and then back into Zambia.L...... 弧形地块西侧为 K....... 褶皱带和 K...... 地盾,东侧为 Bangweulu 地块和 Irumide 褶皱带。它与南部的赞比西河褶皱带被姆文贝希错位带分隔开来。关于L........。 褶皱 带与南方省的结构和............. 矿化之间的关系在不同的 出版物中有所介绍。南方省的沉积物经历了相对温和的挠曲褶皱 。
The local basement complex is composed of Palaeoproterozoic (~2.05 to 1.85 Ga) Kafue System schists, largely quartz-biotite, biotite and chlorite schists, with minor feldspathic quartzites. The K……… in the vicinity of the Kafue basin are almost universally mineralised with sparsely disseminated pyrite, and locally chalcopyrite and pyrrhotite. These schists are intruded by large masses of granite, which are locally pink to grey, medium grained alkali granites. Both the Kafue System and granites are unconformably overlain by the Mesoproterozoic Muva System quartzites and schists. The almost pure Muva quartzites are up to several hundred metres thick, separated by intercalated schists and schistose quartzites. The dominantly quartzite central section of the sequence is over- and underlain by light grey-green quartz-mica schist with abundant kyanite, local magnetite, and local quartzite intercalations
当地的基底复合体由古生代(约 2.05 至 1.85 Ga)卡富埃系片岩组成,主要是石英-生物岩、生物岩和绿泥石片岩,以及少量长石石英岩。卡富埃 盆地附近的K......... 几乎都是黄铁矿稀疏散布的矿化物,局部还有黄铜矿和黄铁矿。这些片岩被大量花岗岩侵入,这些花岗岩局部为粉红色至灰色的中粒碱花岗岩。卡富埃系和花岗岩均被中新生代穆瓦系石英岩和片岩不整合地覆盖。几乎纯粹的穆瓦石英岩厚达数百米,被夹层片岩和片状石英岩隔开。该岩系以石英岩为主的中心部分上覆和下覆浅灰绿色石英云母片岩,其中有丰富的闪长岩、局部磁铁矿和局部石英岩夹层。
Soils
土壤
From 4.2.3, soils in the project areas consists clayey soils. Clayey soil comprises of very fine mineral particles and not much organic material and has a high capacity for water holding. Wet clay soil is very sticky and contains very little air and in clay, the size of soil particles is less than 0.2mm, and inorganic matter in clayey soil is rich.
根据 4.2.3,项目区的土壤由粘性土组成。粘性土由非常细的矿物颗粒和不多的有机物质组成,具有很强的保水能力。潮湿的粘性土壤非常粘稠,空气含量极低,在粘土中,土壤颗粒的大小小于 0.2 毫米,粘性土壤中的无机物含量丰富。
Drainage
排水
The drainage at the project site is largely influenced by the K…… River which is a tributary to the Kafue River. In the proximity of the site, water drainage systems head south east before joining K…... The K…… runs for about 3 km before it drains into the Kafue Gorge Lower reservoir right at the intake of the power station.
项目工地的排水系统 主要受 K...... 河的影响,该河是卡富埃河的一条支流。 在工地附近,排水系统向东南方向延伸 然后汇入 K......。K...... 流经约 3 公里后,在发电站进水口处汇入卡富埃峡谷下水库。
8.4.1.2 Ecological Resources
8.4.1.2生态资源。
Flora
植物
The project is located on an abandoned farm once belonging to a Wells Spring Farms & Mr. L. Zulu from whom the local areas draws its name. due to previous farming activities, the site is mainly cleared and characterised by grasslands with scattered trees and areas of Munga (regeneration) woodland.
该项目位于一个废弃的农场 曾经属于 Wells Spring Farms & Mr. 当地的 地区 就是由此得名 。 由于 以前的耕作活动,该地点主要被开垦为草地,零星分布着树木和 区 孟嘎(再生)林地。
a.
b.
Fig 49: Outlook of the Project Site
图 49:项目工地的外观。
Fauna
动物
The ecosystem of the project areas is highly modified due to previous farming activities. During the field visit, there were no signs of wildlife with permanent habitat within the project site. However, transit birds and other subterranean fauna such as insects, mice and snakes can be found on site.
项目区的生态系统由于以前的耕作活动而发生了很大变化。在实地考察期间,项目场地内没有野生动物永久栖息地的迹象。不过,在现场可以发现过境鸟类和其他地下动物,如昆虫、老鼠和蛇。
Fig 50: No Sign of Wildlife
图 50:没有野生动物的踪迹
8.4.1.3 Socio-Economic and Cultural Issues
8.4.1.3 社会经济和文化问题
Land Tenure System
土地使用权制度
All land in Zambia is vested in the President who holds it in trust for the Zambian people. However, land has since time immemorial been held under customary tenure, until the 1960s when freehold and leasehold tenure systems were introduced. Of the total land mass of the country, customary land is estimated to cover over 85 %. Leasehold tenure is usually held on land that is also known as state land. Under these two categories, there is reserve land that is allocated to nature, forest, and wildlife sanctuaries. Land administration in Zambia is governed by several Acts:
赞比亚的所有土地都归总统所有,由总统托管给赞比亚人民。然而,自古以来,土地都是按习惯保有的,直到 20 世纪 60 年代才开始实行自由保有和租赁保有制度。据估计,在全国土地总面积中,传统土地占 85% 以上。租赁保有权通常也被称为国有土地。在这两类土地中,还有分配给自然、森林和野生动物保护区的储备土地。赞比亚的土地管理受若干法案管辖:
Land Act, Chapter 184 of the Laws of Zambia
赞比亚法律第 184 章《土地法》
The Land Act provides for the allocation and alienation of land into state, local authority and traditional land. The land within the project areas falls is on title (state leasehold) but the general project areas is governed by her Royal Highness Chief Mwanachingwala & Chief …………
《土地法》规定了国家、地方当局和传统土地的分配和转让。项目区内的土地属于国有土地(国家租赁),但一般项目区由姆万纳清瓦拉酋长殿下和 ............ 酋长管理。.
Land Acquisition Act
土地征用法
The land Acquisition Act provides for the compulsory acquisition of land where the President is of the opinion that it is desirable or expedient in the interests of the Republic to compulsorily acquire any property of any description. Where any property is acquired by the President under the Act, Government awards appropriate compensation for the property so acquired.
《土地征用法》规定,如果总统认为为了共和国的利益,强制征用任何类型的财产是可取或有利的,则可强制征用土地。如果总统根据该法征用了任何财产,政府将对征用的财产给予适当补偿。
Local Government Act
地方政府法
The Local Government Act provides for control of land by Local Authorities or city or municipalities.
《地方政府法》规定由地方当局或市政府控制土地。
Built Environment
建筑环境
The project is within the jurisdiction of the town council of Mazabuka & Siavonga (Lusitu). The land is owned on title and the project has already procured the land for the project.
该项目位于Mazabuka & Siavonga (Lusitu) 镇委员会的管辖范围内。土地所有权归项目所有,项目已为项目采购了土地。
The project site is subdivided by M……….., V………., C……… and ……….. wards (Fig 51) and obviously will require considerable stakeholder engagements to successfully implement the project.
项目场地 由 M........... 、 V..........、C......... 和 .......... 细分。.之后(图 51),显然需要大量利益相关者的参与才能成功实施项目。
Fig 51: Local Administration of the Project Site
图 51:项目所在地的地方行政机构
The nearest schools are ……… Basic School within the project site, ……. Middle Basic School and ……… Primary School. ……….. Basic and ……… Basic schools. The nearest clinic is at ……… at the Mazabuka & Siavonga (Lusitu) Turnoff
最近的学校是项目工地内的 ......... 基础学校、....... 初级中学和 ....... 小学。初中基础学校和 ......... 小学。...........基础学校和 ......... 基础学校。最近的诊所位于 Mazabuka 和 Siavonga(Lusitu)岔路口的 .........。.
8.4.2 Anticipated Negative Impacts
8.4.2预期的负面影响
As a requirement by Equatorial Principles, IFC Standards and the Zambia Environmental Management Agency, this section seeks to identify the preliminary potential environmental and social impacts of the 250 MWp GTL Solar PV Power Plant.
根据《赤道原则》、国际金融公司标准和赞比亚环境管理局的要求,本节旨在确定 250 MWp GTL 太阳能光伏电站的初步潜在环境和社会影响。
Identification of potential project environmental and social impacts is based on the preliminary design of the Solar PV Power plant, preliminary Environmental Baseline Study extrapolated with prudent industry experience. Negative impacts generally relate to the possible physical disturbance of the land, surface and groundwater contamination, air pollution, soil contamination, noise, public and worker safety, plant spills and accidental releases, handling spills and issues related to waste management and sewage treatment/disposal. The typical environmental impacts associated with solar technologies is summarised in Fig 52.
项目对环境和社会的潜在影响是根据太阳能光伏电站的初步设计、初步环境基线研 究和审慎的行业经验推断出来的。负面影响一般涉及对土地可能造成的实际干扰、地表水和地下水污染、空气污染、土壤污染、噪音、公众和工人安全、工厂泄漏和意外排放、处理泄漏以及与废物管理和污水处理/处置有关的问题。图 52 概括了太阳能技术对环境的典型影响。
It should be noted that a classification of negative does not necessarily imply a long-term adverse effect on the environment. It may well indicate an irreversible change to the physical environment from original conditions. In some cases, these irreversible changes can result in favourable long-term effects.
应该指出的是,负面分类并不一定意味着会对环境造成长期不利影响。它很可能表明自然环境与原来的状况相比发生了不可逆转的变化。在某些情况下,这些不可逆转的变化可能会产生有利的长期影响。
Fig 52: Solar energy effectors for utility-scale solar energy technologies (Hernandez R.R et al, 2013)
图 52:公用事业级太阳能技术的太阳能效应器(Hernandez R.R et al,2013 年)
8.4.2.1 Physical Environment
8.4.2.1 物理环境
Noise
噪音
Noise pollution is anticipated to occur during the construction phase mainly from heavy machinery as well as traffic from utility vehicles. However, during operation and maintenance, the utility vehicles will produce minimal noise due to routine maintenance.
预计在施工阶段会产生噪声污染,主要来自重型机械以及公用事业车辆的交通。不过,在运营和维护期间,由于日常维护,公用事业车辆产生的噪音将很小。
Type of Impact: negative, low, direct, short term and reversible impact.
影响类型:负面、低度、直接、短期和可逆影响。
Exploitation of Water Resources
水资源开发
Water will be required during construction and operations of the Solar PV Power Plant. The major uses of the water will include construction civil works, drinking water for the workers as well as for sewage conveyance and treatment purposes. Additionally, cleaning of solar panels will be done once every 6 months using water.
太阳能光伏发电厂在施工和运营期间需要用水。水的主要用途包括土建工程施工用水、工人饮用水、污水输送和处理用水。此外,还将每 6 个月用水清洗一次太阳能电池板。
Type of Impact: negative, medium, direct, long term and reversible impact.
影响类型:负面、中度、直接、长期和可逆影响。
Water Pollution
水污染
Effluent discharged from cleaning of solar panel will increase the turbidity of the receiving waters/aquatic environment. This will include the disposal of raw and treated sewage into the nearby water courses and will possibly increase the biological oxygen demand and nutrients (nitrate, ammonium, nitrite and phosphates).
清洗太阳能电池板排放的污水会增加受纳水体/水生环境的浑浊度。这包括将未经处理的污水排入附近的水道,并可能增加生物需氧量和养分(硝酸盐、铵、亚硝酸盐和磷酸盐)。
Type of Impact: negative, medium, direct, long term and reversible impact.
影响类型:负面、中度、直接、长期和可逆影响。
Air Pollution
空气污染
During the construction phase, particulate emissions will be the major environmental concern to the nearby vegetation. This is because the accumulation of particulates on the leaves could result in the reduction in light required for photosynthesis and an increase in leaf temperature due to changed surface optical. Additionally, the particulates especially the PM2.5 are likely to cause respiratory infections to the workers and surrounding communities. On the other hand, insignificant volumes of gaseous pollutants (e.g CO2, SOx and NOx) are likely to be emitted by heavy duty equipment and vehicles. Carbon dioxide will have minimal impacts on climate change while Sulphur dioxide (SO2) and oxides of nitrogen (NOx) will have no effect on the vegetations and human health.
在施工阶段,微粒排放将成为附近植被的主要环境问题。这是因为颗粒物在叶片上的积累会导致光合作用所需的光照减少,并且由于表面光学的变化而导致叶片温度升高。此外,颗粒物尤其是可吸入颗粒物2.5 很可能导致工人和周围社区的呼吸道感染。另一方面,微量的气态污染物(如 COg CO2、SOx 和 NOx )可能会由重型设备和车辆排放。二氧化碳对气候变化的影响微乎其微,而二氧化硫(SO2 )和氮氧化物(NOx )则不会对植被和人类健康造成影响。
Type of Impact of Particulates on Vegetation: negative, medium, direct, short term and reversible impact.
微粒对植被的影响类型:负面、中等、直接、短期和可逆影响。
Type of Impact of Particulates on Workers and Surrounding Community: negative, medium, direct, short term and reversible impact.
微粒对工人和周围社区的影响类型:负面、中等、直接、短期和可逆影响。
Type of Impact of Gaseous Pollutants: negative, low, direct, long term and reversible impact.
气态污染物的影响类型:负面、低度、直接、长期和可逆影响。
e. Solid and Hazardous Waste
e.固体废物和危险废物。
Solid waste will be generated during construction and operation of the Solar PV Power Plant. This will also include used solar panel at the end of life. Adding to that household waste will be generated from the housing units for the workers.
太阳能光伏发电厂在建设和运营期间会产生固体废物。其中还包括报废时使用过的太阳能电池板。此外,工人住房也会产生生活垃圾。
On the other hand, used oil is likely to accumulate during construction phase, while transformer oil leakages would pose a serious environmental health and public health hazard.
另一方面,废油很可能在施工阶段积聚,而变压器油泄漏则会对环境卫生和公共健康造成严重危害。
Type of Impact of solid waste on workers and community: negative, low, direct, long term and reversible impact.
固体废物对工人和社区的影响类型:负面、低度、直接、长期和可逆影响。
Type of Impact on Hazardous Waste including used Solar Modules: negative, medium, direct, long term and reversible impact.
对包括废旧太阳能电池组件在内的危险废物的影响类型:负面、中等、直接、长期 和可逆影响。
8.4.2.2 Biological Impact
8.4.2.2生物影响。
Aquatic Life
水生生物
Silt from eroded soils will alter the hydro-morphological characteristics of the water courses near the project site and consequently disturb the aquatic ecosystem balance including spawning site and fish shelter. Further, an increase in turbidity of water will reduce light penetration with depth as well as disturb the free movements of midrange migrant fish.
侵蚀土壤产生的淤泥会改变项目工地附近水道的水文形态特征,从而扰乱水生生态系 统平衡,包括产卵场和鱼类栖息地。此外,水的浑浊度增加会降低光的穿透深度,并干扰中程洄游鱼类的自由活动。
On the other hand, the discharge of untreated sewage into the water courses would lead proliferation of water weeds which will inhibit the light penetration and increase the oxygen deficit thereby endangering aquatic life.
另一方面,将未经处理的污水排放到水道中会导致水草大量繁殖,抑制光的穿透,增加缺氧,从而危及水生生物。
Type of Impact: negative, medium, indirect, long term and reversible impact.
影响类型:负面、中度、间接、长期和可逆影响。
Flora
植物
The construction activities which will consist of the installation of solar PV modules, Substations, housing units and other associated on-site ancillary facilities will result in the clearance of the woodland and excavations. For this reason, vegetation loss would be anticipated to have a medium terrestrial ecological impact, and consequently lead to loss of biodiversity.
施工活动包括安装太阳能光伏组件、分站、住房单元和其他相关的现场附属设施,将导致林地清理和挖掘。因此,预计植被损失将对陆地生态产生中等程度的影响,从而导致生物多样性的丧失。
Type of Impact: negative, medium, direct, long term and reversible impact.
影响类型:负面、中度、直接、长期和可逆影响。
Fauna
动物
Fauna species are likely to be affected by the noise pollution and vegetation clearance during construction stage. Key fauna species that have been identified to be affected include rodents, tortoise, snakes, birds and the fish. These species are sensitive to noise as they use noise for communication for both navigation and reproduction.
在施工阶段,动物物种可能会受到噪声污染和植被清理的影响。已确定受影响的主要动物物种包括啮齿动物、龟、蛇、鸟类和鱼类。这些物种对噪声很敏感,因为它们利用噪声进行导航和繁殖交流。
Type of Impact: negative, low, direct, long term and reversible impact.
影响类型:负面、低度、直接、长期和可逆影响。
8.4.2.3 Socio-Economic Impacts
8.4.2.3 社会经济影响
Local Economy
地方经济
The project will have no negative impact on the social economy. However, positive impacts are anticipated.
该项目不会对社会经济产生负面影响。不过,预计会产生积极影响。
Type of Impact: insignificant impacts.
影响类型:微小影响。
Migration and Community Health
移民与社区健康
The anticipated booming local economy will result in demographic changes as result of the influx of workers at the solar power plant. Adding to that, it would be possible for sex workers to migrate into the Wells Spring & Siavonga (Lusitu) areas of Mazabuka & Siavonga (Lusitu) Districts. Consequently, this is likely to result in deterioration of social cohesion and cultural alterations coupled with change in sexual behaviours of the local community.
由于太阳能发电厂的工人大量涌入,预计当地经济的蓬勃发展将导致人口结构的变化。此外,性工作者也有可能迁移到威尔斯春天住宅区;Siavonga (Lusitu)areas of Mazabuka &;Siavonga (Lusitu)DistrictsConsequently, this is likely to result in deterioration of social cohesion and cultural alterations coupled with change in sexual behaviours of the local community.
Type of Impact: negative, low, direct, long term and reversible impact.
影响类型:负面、低度、直接、长期和可逆影响。
8.4.3 Proposed Mitigation Measures
8.4.3建议的缓解措施。
The anticipated negative impacts of the 250 MWp GTL Solar PV Power Project on the physical, biological and socio-economic environment will be mitigated in accordance with the IFC Performance Standards and the national environmental regulatory requirements (Environmental Management Act of 2011 and EIA Statutory Instrument No. 28 of 1997).
250 MWp GTL 太阳能光伏发电项目对物理、生物和社会经济环境的预期负面影响将根据国际金融公司绩效标准和国家环境监管要求(2011 年《环境管理法》和 1997 年第 28 号《环境影响评估法定文件》)予以缓解。
8.4.3.1 Physical Measures
8.4.3.1物理测量
Topography
地形
Soil erosion and mudslides in the project areas would be prevented by landscaping of the open areas which will be occupied by solar panels. Additionally, the use of environmentally friendly slope stabilization methodologies such as grassing and stone pitching will be used instead of concreting. All the run-off will be collected in two under water reservoirs to be recycled for watering the grass. Furthermore, the use of heavy equipment on slopes shall be limited or prescribed to avoid soil erosion on slopes. For this reason, the hydro-morphological characteristics of the areas will be maintained without any form of excessive artificial siltation.
项目 区 的土壤侵蚀和泥石流将通过对太阳能电池板占用的空地 区 进行绿化来防止。此外,还将采用植草和砌石等环保的斜坡加固方法,而不是使用混凝土。所有的径流 径流 都将被收集到两个水下蓄水池中,循环用于浇灌草地。此外,应限制或规定在斜坡上使用重型设备,以避免斜坡上的水土流失。因此,地区的水文地貌特征 将得到保持,不会出现任何形式的过度人工淤积。
Noise
噪音
High noise levels from construction worksite would be reduced by using commonly accepted engineering and administrative controls to protect the workers and surrounding communities. Examples of engineering controls will include substituting existing equipment with quieter equipment; retrofitting existing equipment with damping materials, mufflers, or enclosures; erecting barriers; and maintenance. While administrative controls would consist of moving workers away from the noise source; restricting access to noisy areass; rotating workers performing noisy tasks; and shutting down noisy equipment when not needed.
将采用普遍接受的工程和行政控制措施来降低施工现场的高噪音水平,以保护工人和周围社区。工程控制措施的例子包括用更安静的设备替代现有设备;用减震材料、消声器或外壳改装现有设备;设置屏障;以及进行维护。而行政控制措施则包括:让工人远离噪声源;限制进入高噪声区域;轮换执行高噪声任务的工人;以及在不需要时关闭高噪声设备。
Additionally, the use of noise protectors e.g. earplugs by the workers will be the last resort to reduce their exposure to residual noise (as stipulated in the Factories Act and other relevant construction and labour related legislation).
此外,工人使用耳塞等噪声保护器将是减少他们暴露于残余噪声的最后手段(如《工厂法》和其他相关的建筑和劳工立法所规定的)。
Exploitation of Water Resources
水资源开发
A significant about of water required by Project for non-consumptive purposes during the construction of the project. The waste water will be treated before discharged into the surrounding areass. This will facilitate for the natural replenishing of the ground water, thereby reducing groundwater overexploitation and depletion.
在项目施工期间,项目需要大量的水用于非消耗性用途。 废水将经过处理后排放到周围的地区s 。这将有利于地下水的自然补充,从而减少地下水的过度开采和枯竭。
Water Pollution
水污染
The effluent discharged from cleaning of solar panel and domestic sewer will be treated in a centralized wastewater treatment facility to be constructed within the project areas. All the final effluent discharged into the nearby water courses will be licensed by ZEMA in accordance with the Environmental Management (Licensing) Regulations (SI No. 112) of 2013.
清洗太阳能电池板和家庭下水道所排放的污水将在项目 区域 内建造的集中废水处理设施中进行处理。根据 2013 年《环境管理(许可)条例》(SI 第 112 号),所有最终排入附近水道的污水都将获得 ZEMA 的许可。
Air pollution
空气污染
During the construction phase, particulate emissions will be abated by providing misting water sprays sufficient to reduce airborne dusting from construction work; use of additional water for dust suppression will be applied during dry weather; and avoiding dust-generating work must be avoided on high wind days. On the other hand, all the workers working in dusty locations will be compelled to wear appropriate PPEs.
在施工阶段,将通过雾化喷水来减少颗粒物排放,雾化喷水足以减少施工产生的空气扬尘;在天气干燥时,将使用额外的水进行抑尘;在大风天,必须避免进行产生扬尘的工作。另一方面,所有在尘土飞扬的地方工作的工人都必须穿戴适当的个人防护设备。
Emission gaseous pollutants will be reduced by routine maintenance of heavy-duty equipment and vehicles.
重型设备和车辆的日常维护将减少气体污染物的排放。
Solid waste and hazardous waste
固体废物和危险废物
Onsite solid waste and hazardous waste management for the Project will be based on the waste management hierarchy in accordance with the Solid Waste Regulation and Management Act No. 20 of 2018, Extended Producer Responsibility (EPR) Regulation SI No. 65 of 2018. This implies the priority intervention will be waste avoidance, reduce, reuse, recycle and rot. Additionally, applicable solid waste management and hazardous waste management shall be obtained from the Zambia Environmental Management Agency (ZEMA) and the Mazabuka & Siavonga (Lusitu) Town Councils
项目现场固体废物和危险废物管理将根据 2018 年第 20 号《固体废物监管和管理法》、2018 年第 65 号《生产者延伸责任(EPR)条例》(SI)的废物管理等级制度进行。这意味着优先干预措施将是避免废物产生、减少、再利用、再循环和腐烂。此外,应从赞比亚环境管理局(ZEMA)和 Mazabuka & Siavonga(Lusitu)镇委员会获得适用的固体废物管理和危险废物管理规定。.
For this reason, a designated solid waste dumpsite shall be identified and used in close consultation with the Zambia Environmental Management Agency and Mazabuka & Siavonga (Lusitu) Town Councils. Additionally, oil spills will be avoided from the machinery, camp sites and workshops, appropriate oil containment facilities such as oil interceptors or drums shall be used.
为此,应与赞比亚环境管理局和Mazabuka &;Siavonga (Lusitu) Town Councils.此外,应避免油污从机械、营地和 车间溢出, 应使用适当的油污隔离设施,如油污拦截器或油桶。
8.4.3.2 Biological Measures
8.4.3.2 生物措施
The constructions and operational activities of the solar PV are likely to have negative impacts on the terrestrial and aquatic ecosystem. The proposed mitigation measures are outlined below.
太阳能光伏发电站的建设和运营活动可能会对陆地和水生生态系统产生负面影响。建议的缓解措施概述如下。
Aquatic Life
水生生物
Siltation of the surrounding water courses by the eroded soils will be prevented by grassing and stone pitching will be used instead of concreting coupled with the construction of two sedimentation units before the run-off water will be discharged into the water body.
将通过植草防止侵蚀土壤对周围水道造成淤积,将使用石块沥青而不是混凝土,并在径流断流水排入水体之前建造两个沉淀池。
On the other hand, all the raw sewage and other effluents will be adequately treated before being discharged into the surrounding water courses. Further, samples of the treated effluent will be analysed on a routine basis and submitted to ZEMA to ensure compliance.
另一方面,所有未经处理的污水和其他废水都将经过充分处理后再排入周围的水道。此外,还将对处理后的污水进行例行取样分析,并提交给 ZEMA,以确保符合要求。
Flora
植物
The construction activities of the transmission line, installation of solar panels, sub-station, housing and other associated on-site ancillary facilities will result in the clearance of the woodland and excavations. Vegetation loss is anticipated to have a medium terrestrial ecological impact within the Project site, and consequently loss of biodiversity.
输电线路、太阳能电池板安装、变电站、房屋和其他相关现场附属设施的施工活动将导致林地清理和挖掘。预计植被损失将对项目场地内的陆地生态产生中等程度的影响,进而导致生物多样性的丧失。
Fauna
动物
Terrestrial fauna species which would be excavated and/or exposed to the surface during the construction stage shall be captured and released into the near-by woodland ecosystem. Additionally, any endangered species found during constructions shall be taken back into the terrestrial ecosystem with guidance from ZEMA and the Department of National Parks and Wildlife (DNPW) under the Ministry of Tourism.
在施工阶段挖掘出和/或暴露在地表的陆生动物物种将被捕捉并放归附近的林地生态系统。此外,在施工过程中发现的任何濒危物种都应在 ZEMA 和旅游部下属的国家公园与野生动物部 (DNPW) 的指导下带回陆地生态系统。
The reduction of noise intensity during construction lead to harmony of the terrestrial and aquatic faunas around the project site.
降低施工期间的噪声强度可使项目工地周围的陆生和水生动物和谐相处。
8.4.3.3 Social Economic Measures
8.4.3.3 社会经济措施
Socio-Economic Impacts
社会经济影响
The project will seek to address negative impacts on the local economy and foster positive impacts.
该项目将努力消除对当地经济的负面影响,并促进产生积极影响。
Demographic
人口统计
The anticipated demographic changes will be negligible, and the minor social disruptions as result of the influx of workers for Solar PV Project would be minimized through public health promotion campaigns and family support programs.
预期的人口变化微乎其微,通过公共卫生宣传活动和家庭支持计划,太阳能光伏项目工人的涌入对社会造成的轻微干扰将被降至最低。
Land Use
土地利用
To enhance community ownership and acceptance of the project, traditional leaders and key residents will be fully consulted during the development of ESIA. Further, the afforestation program will employ community-based forestry management principles and practices.
为加强社区对项目的自主权和接受度,在制定《环境影响评估》时,将充分征求传统领袖和主要居民的意见。此外,造林计划将采用以社区为基础的林业管理原则和做法。
Health
健康
Public health promotion activities shall be conducted amongst the workers by health personnel to prevent the spreading of communicable diseases especially sexually transmitted Infections (STIs) e.g., HIV/ AIDS and non-communicable diseases. Additionally, First Aid and Safety trainings shall be given to the workers and First Aid kits shall be available on site for emergencies.
医务人员应在工人中开展公共卫生宣传活动,以防止传染病,特别是性传播感染 (STI),如艾滋病毒/艾滋病和非传染性疾病的传播。此外,还应为工人提供急救和安全培训,并在现场准备急救包,以备不时之需。
8.4.4 Anticipated Positive Impacts
8.4.4预期的积极影响。
The positive impacts associated with the project are mainly of social nature. They relate to social aspects, such as the diversification of jobs in the nearby villages, use of a local workforce and contractors, expansion of the local economy through diversification and improvement of healthcare for the workforce and local population. The positive impacts associated with the project also focus on displacement of fossil fuel-based power generation thereby reducing the countries carbon footprint.
与该项目有关的积极影响主要是社会影响。这些影响涉及社会方面,如附近村庄的就业多样化、使用当地劳动力和承包商、通过多样化扩大当地经济以及改善劳动力和当地居民的医疗保健。与该项目相关的积极影响还集中在取代化石燃料发电,从而减少国家的碳足迹。
8.4.5 Environmental Compliance and Permitting of the Project
8.4.5项目的环境合规性和许可
8.4.5.1 Required Project compliance with IFC Performance Standards
8.4.5.1要求项目符合 IFC 性能标准。
The implementation of the 250 MWp GTL Solar PV Project will require compliance with both the international environmental and social consideration requirement by IFC Performance Standards and Equator Principles. At international level, the Project falls under Category A of the Equator Principles (EP 01) based on the potential environmental and social risks and impacts.
250 MWp GTL 太阳能光伏发电项目的实施需要遵守国际金融公司绩效标准和赤道原则的国际环境和社会考虑要求。在国际层面上,根据潜在的环境和社会风险及影响,该项目属于《赤道原则》(EP 01)的 A 类。
8.4.5.2 Required Project compliance with ZEMA
8.4.5.2要求项目符合 ZEMA 标准。
At national level, the Project will comply with the environmental and social requirements of the Zambia
在国家层面,该项目将遵守《赞比亚环境与社会宪章》的环境与社会要求。
Environmental Management Act of 2011 which is implemented by the Zambia Environmental Management Agency (ZEMA). The project falls under the Second Schedule of the EIA Regulation and because of the nature of the activities to be undertaken under the project as shown in Table 31. In that respect, the Project will require the following environmental clearances from ZEMA;
赞比亚环境管理局(ZEMA)负责实施 2011 年《环境管理法》。如表 31 所示,由于项目活动的性质,本项目属于《环境影响评估条例》附表 2 的范畴。在这方面,项目将需要赞比亚环境管理局的以下环境许可;
i. An ESIA Reports
i.环境影响评估报告
ii. An Environmental and Social Policy (ESP)
ii.环境心理和社会政策(ESP)ii.
iii. An Environmental and Socio-Economic Impacts Management Plan (ESIMP) iv. A Forestry/Carbon Inventory
iii.An Environmental and Socio-economic Iimpacts Management Plan (ESIMP) ivA Forestry/Carbon Inventory
v. An Afforestation Strategy
五.植树造林战略 v.
vi. Solid Waste Management License
vi. 固体废物管理许可证
vii. Hazardous Water License for storing used oil, obsolete solar panels, modules, electronic waste and other hazardous chemicals
七.储存废油、废旧太阳能电池板、组件、电子废物和其他危险化学品的危险用水许可证
8.4.5.3 Other Environmental and Natural Resources Permits
8.4.5.3其他环境和自然资源许可
Additional permitting required by the project will include the following:
项目所需的额外许可包括以下内容:
Water Permit
水许可证
The water permit is issued by the Water Resources Management Authority (WARMA) which regulates the abstraction, allocation, use, development and management of water resources in Zambia. Additionally, it was a requirement by WARMA that all the new boreholes are registered country-wide before the actual drilling.
水资源许可证由水资源管理局(WARMA)颁发,该局负责管理赞比亚水资源的提取、分配、使用、开发和管理。此外,水资源管理局还要求所有新钻井在实际钻探之前都要在全国范围内进行登记。
Clearance by the National Heritage Conservation Commission (NHCC)
获得国家遗产保护委员会(NHCC)批准
The NHCC is a statutory body under the Ministry of Tourism and Arts charged with the responsibility of conserving Zambia’s natural and cultural heritage for research, sustainable tourism development, education and enjoyment of all the people now in the future in accordance with the National Heritage and Conservation Commission Act of 1994.
根据 1994 年《国家遗产和保护委员会法》,国家遗产和保护委员会是旅游和艺术部下属的一个法定机构,负责保护赞比亚的自然和文化遗产,供研究、可持续旅游发展、教育和现在及未来的所有人享用。
Civil Aviation Authority (CAA)
民航局(CAA)
The project will be required to be cleared by the Civil Aviation Authority.
该项目必须获得民航局的批准。
GALABA TRADING LIMITED
250 MWp GTL Solar PV Power Project – Feasibility Study Reports
250 MWp GTL 太阳能光伏发电项目 - 可行性研究报告
Table 31: Summary of Possible Impacts of the 250 MWp GTL Solar PV Power Plant
表 31:250 MWp GTL 太阳能光伏电站 可能产生的影响摘要
Environmental Component | Impacts during contractions and operation phase of the Solar PV Plant | Nature (N) and Significance (S) of Impacts | |||||
Construction Phase | Operational Phase | ||||||
N | S0 (Without mitigation) | S1 (With mitigation) | N | S0 (Without mitigation) | S1 (With mitigation) | ||
Biological / Ecological Impacts
| Impact on vegetation / forestry | (-) | Very high | Medium | (-) | Very high | Low |
Impact on terrestrial ecosystem | (-) | High | Low | (-) | High | Low | |
Impact on aquatic ecosystem | (-) | Medium | Low | (-) | Medium | Very Low | |
Impact on ecosystem benefits | (-) | Low | Very Low | (-) | Low | Very Low | |
Impact on fish | (-) | Medium | Very Low | (-) | Medium | Very Low | |
Impact on grazing animals | (-) | Low | Very Low | (-) | Very Low | Very Low | |
Impact on tortoise | (-) | Medium | Very Low | (-) | Medium | Very Low | |
Physiochemical Impacts | Impact on local climate | (-) | Medium | Low | (-) | Medium | Low |
Impacts on soil erosion and siltation of water courses | (-) | Medium | Low | (-) | Medium | Very Low | |
Impact of noise pollution | (-) | Low | Low | (-) | Low | Low | |
Impact on surface water pollution and contamination | (-) | Medium | Low | (-) | Medium | Very Low | |
Impact on groundwater depletion | (-) | Low | Very Low | (-) | Medium | Low | |
Impact of groundwater contamination | (-) | Medium | Low | (-) | Medium | Very Low | |
Impact of gaseous emissions | (-) | Medium | Low | (-) | Low | Very Low | |
Impact of solid waste and hazardous waste | (-) | Low | Low | (-) | Low | Very Low | |
Impact of particulate emissions | (-) | Low | Low | (-) | Low | Very Low | |
Socio- Economic Impacts | Impact on community health and safety | (-) | Medium | Low | (-) | Medium | Very Low |
Impact on cultural heritage | (0) | Insignificant | (0) | Insignificant | |||
Impact on land-use and livelihoods | (-) | Medium | Low | (-) | Medium | Low | |
Impact on community social cohesion | (-) | Medium | Very Low | (-) | Medium | Very Low | |
Impact of local culture | (0) | Insignificant | (0) | Insignificant | |||
Impact on visual amenities | (-) | High | Low | (-) | Low | Very Low | |
Impact on occupational health and safety | (-) | Medium | Very Low | (-) | Low | Low | |
Impact on migration | (-) | Medium | Low | (-) | Medium | Very Low | |
Impact on resettlements | (0) | Insignificant | (0) | Insignificant | |||
Impact on farmland displacement / relocation | (-) | Low | Very Low | (-) | Low | Very Low | |
Impact on local economy | (+) | High | Very High | (+) | Medium | High |
Table 32: Project Compliance with IFC Performance Standards
表 32:项目遵守国际金融公司绩效标准的情况
IFC Performance Standard | Equator Principles | Anticipated Impacts and Mitigation Measures – GTL Solar PV Power Project | |
Project’s Status and Anticipated Impact | Measures to mitigate the Project impact | ||
PS01: Assessment and Management of Environmental and Social Risks and Impacts | EP1 - Review and Categorisation EP2 - Environment and Social Assessment EP3 - Applicable Environmental and Social Standards EP4 - Environmental and Social Management System and Equator Principles Action Plan
| Project classified as Category A Preliminary project impact on physical and biological environmental including terrestrial and aquatic ecosystems were identified Impacts on social economic status of Mazabuka & Siavonga (Lusitu) Districts | • Preliminary mitigation measures identified and more details to be quantified through the ESIA, ESMS, Forestry Inventory and Environmental Policy |
PS02: Labour and Working Conditions |
| • The project will provide a safe working environment for all
| • To comply with the Zambian Employment Act and other related legislations |
PS03: Resource Efficiency and Pollution Prevention |
| The project is likely to have negative impact on the overexploitation of water resources and vegetation Water pollution is anticipated | Water reuse and recycling measures will be implemented to alleviate over-exploitation of surface/groundwater Measures will be implemented to treat wastewater generated from the power plant and housing units to prevent water and soil pollution
|
PS04: Community Health, Safety, and Security |
| • The project is anticipated to have minor community health and security impacts | • Community health outreach programmes will be conducted by the SHEQ Officer periodically
|
IFC Performance Standard | Equator Principles | Anticipated Impacts and Mitigation Measures – GTL Solar PV Power Project | |
Project’s Status and Anticipated Impact | Measures to mitigate the Project impact | ||
PS05: Land Acquisition and Involuntary Resettlement |
| Privately owned land already procured No involuntary resettlement was required Minor farmland displaced anticipated primarily for construction of access roads
| • Only the required land size will be secured for this project for efficient land-use and avoid land grabbing by the project
|
PS06: Biodiversity Conservation and Sustainable Management of Living Natural Resources |
| • 1200 hectares of land already cleared as part of the farming activities undertaken by previous land owner. | Carbon/Forestry Inventory to be conducted A robust community-driven reforestation program for the lost vegetation
|
PS07: Indigenous Peoples | EP5 - Stakeholder Engagement EP6 - Grievance Mechanism EP8 – Covenants
| • Lenje and Twa People residing around the project areas | • Effective community engagement through disclosure of project-related information and consultation with local communities on matters that directly affect them |
PS08: Cultural Heritage |
| • Project site does not fall in a cultural heritage site
| • Clearance will be sought from the Nation Heritage Conservation Commission (NHCC) |
| EP7 - Independent Review EP9 - Independent Monitoring and Reportsing EP10 - Reportsing and Transparency
| • The Developer engaged an Independent Consultant (El-Elyon) to undertake a Feasibility Study | • All technical undertakings including ESIA must be done by Independent Consultant firms. |
GALABA TRADING LIMITED
250 MWp GTL Solar PV Power Project – Feasibility Study Report
250 MWp GTL 太阳能光伏发电项目 - 可行性研究报告
9. | SCHEDULE |
9.1 Schedule Assumptions
9.1计划假设
The following assumptions were made for the preparation of the schedule:
在编制时间表时作了如下假设:
The contracting model will be a single Engineering, Procurement and Construction (EPC) contract;
承包模式将是单一的工程、采购和施工(EPC)合同;
The total construction schedule is estimated to be twelve (12) months. Schedule contingency of 5 % has been included in the schedule estimate.
施工总工期估计为十二(12)个月。工期估算中包括 5% 的意外开支。
9.2 Key Milestones
9.2 关键里程碑
Key milestones without contingency in the schedule for planning and implementation of GTL Solar PV Power Project are stated below:
规划和实施GTL 太阳能光伏发电项目时间表中不包含意外事件的主要里程碑如下:
No. | Milestone | Milestone Date |
1. | Acquisition of Government Approvals | 31st July, 2024 |
2. | Power Purchase Agreement Signing | 30th September, 2024 |
3. | Financial Close and Contracts Effective | 30th November, 2024 |
4. | Procurement of EPC Contractor | 31st January, 2025 |
5. | Mobilisation by EPC Contractor | 31st March, 2025 |
6. | Main Civil Works Completed | 30th June, 2025 |
7. | Project Completion and Commissioning | 31st December, 2025 |
8. | Acquisition of Generation License | 31st January, 2026 |
9. | Commercial Operation Date (COD) | 30th March, 2026 |
10. | COST ESTIMATES |
General
一般情况
The cost of the electricity generated by a PV system is determined by the capital cost (CAPEX), variable costs (OPEX), the level of solar irradiation and the efficiency of the solar cells. IRENA (2012), recognises that of these parameters, the capital cost, the cost of finance and efficiency of the components are the most critical and improvements in these parameters provide the largest opportunity for overall cost reductions. IRENA suggests that nurtured by the right regulatory frameworks and policy, the solar energy sector can achieve huge reductions in cost bringing the global average price per kilowatt hour (kWh) to between US$0.05 - US$0.06 (IRENA, 2016). This has been evidenced in Zambia under the IDC Scaling Solar Zambia Programme and GET FiT Zambia Solar Programme where government interventions resulted in reduced on-grid tariffs in the margin of US$ 0.07 for the Scaling Solar (2017) and US$ 0.04 for the GET FiT (2019).
光伏系统的发电成本由资本成本(CAPEX)、可变成本(OPEX)、太阳辐照水平和太阳能电池的效率决定。国际可再生能源机构(2012 年)认为,在这些参数中,资本成本、融资成本和组件的效率最为关键,而这些参数的改善为总体成本的降低提供了最大的机会。国际可再生能源机构建议,在正确的监管框架和政策的扶持下,太阳能行业可以实现成本的大幅降低,使全球每千瓦时(kWh)的平均价格降至 0.05 - 0.06 美元(国际可再生能源机构,2016 年)。这一点在赞比亚的 IDC 赞比亚太阳能扩展计划和 GET FiT 赞比亚太阳能计划中得到了证明,政府的干预使太阳能扩展计划(2017 年)的并网电价降低了 0.07 美元,GET FiT 计划(2019 年)的并网电价降低了 0.04 美元。
This chapter presents a discussion on the prevailing mechanisms for estimating the costs of a utility scale Solar PV power plant. The cost of the 250 MWp GTL Solar PV Power Project will thereafter be estimated.
本章讨论了估算公用事业规模太阳能光伏电站成本的现行机制。随后将估算 250 MWp GTL 太阳能光伏发电项目的成本。
Solar PV Plant Capital Cost
太阳能光伏电站资本成本
The capital cost of a PV system is composed of the PV module cost and the Balance of system (BOS) cost. The PV module is the interconnected array of PV cells and its cost is determined by raw material costs, notably silicon prices, cell processing/manufacturing and module assembly costs. BOS is a build of all plant support requirements and structures other than the Solar PV modules.
光伏系统的资本成本由光伏组件成本和系统平衡(BOS)成本组成。光伏组件是光伏电池的互连阵列,其成本由原材料成本决定,特别是硅价格、电池加工/制造和组件组装成本。BOS 是指除太阳能光伏组件之外的所有工厂支持要求和结构。
The cost estimates for this project generally aligns with Class 4 (feasibility assessment) in Table 33 below.
本项目的费用估算与下表 33 中的第 4 类(可行性评估)基本一致。
Table 33: Feasibility Assessment Cost Estimates
表 33:可行性评估成本估算
| Primary Characteristic |
| Secondary Characteristic |
|
Estimate Class | Maturity Level | End Usage | Methodology | Accuracy Range |
Class 5 | 0% to 2% | Concept Screening | Capacity factored, parametric models, judgement, or analogy | L: -20% to -50% H: +30% to +100% |
Class 4 | 1% to 15% | Study Feasibility | Equipment Factored or Parametric models | L: -15% to -30% H: +20% to +50% |
Class 3 | 10% to 40% | Budget Authorisation or Control | semi-detailed unit costs with assembly level line items | L: -10% to -20% H: +10% to +30% |
Class 2 | 30% to 75% | Control or bid/tender | detailed unit cost with forced detailed take-off | L: -5% to -15% H: +5% to +20% |
Class 1 | 65% to 100% | Check Estimate or bid/tender | detailed unit cost with detailed take-off | L: -3% to -10% H: +3% to +15% |
Cost of Solar PV Modules
太阳能光伏组件的成本
The cost of Solar PV modules has been estimated by IRENA to be between 34 % and 50 % of the total capital cost of a PV system (IRENA, 2016), while the IFC has estimated that cost to be just over 60 % of the Total Project Cost depending on the size of the project and the type of PV module.
据国际可再生能源机构(IRENA)估计,太阳能光伏组件的成本占光伏系统总资本成本的 34% 至 50%(IRENA,2016 年),而国际金融公司(IFC)估计,根据项目规模和光伏组件类型的不同,该成本略高于项目总成本的 60%。
Balance of System Cost (BOS)
系统平衡成本 (BOS)
The BOS cost includes items, such as (1) the cost of the structural system (e.g. structural installation, racks, site preparation and other attachments), (2) the electrical system costs (e.g. the inverter, transformer, wiring and other electrical installation costs) and (3) the battery or other storage system cost depending on the application.
BOS 成本包括以下项目:(1) 结构系统成本(如结构安装、支架、场地准备和其他附件);(2) 电气系统成本(如逆变器、变压器、电线和其他电气安装成本);(3) 电池或其他存储系统成本(视应用而定)。
PV Installation Costs
光伏安装成本
For a Solar PV Power Plant, the Total Project Cost is summation of the costs for the module, BOS and Installation. For this reason, attenuation of the installation costs may lead to a lower cost of the project and thereby offering a competitive on-grid tariff on the market. The overall cost is dependent on the EPC Contractor engaged.
对于太阳能光伏电站而言,项目总成本是组件、BOS 和安装成本的总和。因此,安装成本的降低可能会降低项目成本,从而降低在市场上提供有竞争力的并网电价。总成本取决于所聘用的 EPC 承包商。
GTL Power Solutions Limited and its partners have construction equipment and relevant personnel to implement some components of the installation costs. This has significant effect in reducing the installation costs.
GTL Power Solutions Limited 及其合作伙伴拥有建筑设备和相关人员来执行安装成本的某些部分。这对降低安装成本有很大作用。
10.3 Estimation of Power Evacuation Costs
10.3电力疏散成本估算
Power evacuation is a critical function that allows power generated from any power plant to be immediately evacuated into the grid for distribution. The cost associated with the development of a power evacuation system is comprised of (1) the Substations, (2) transmission line, (3) equipment for external grid reinforcement and (4) cost of undertaking grid integration studies.
电力疏散是一项关键功能,可将任何发电厂产生的电力立即疏散到电网中进行分配。开发电力疏散系统的相关成本包括:(1) 分站 ,(2) 输电线路,(3) 外部电网加固设备,以及 (4) 进行电网整合研究的成本。
Estimating Costs for Transmission Line and Associated Grid reinforcements
输电线路及相关电网加固的成本估算
Transmission line cost estimates are sub-divided into four categories: (1) land and right-of-way; (2) structures & foundations; (3) conductor, OPGW & shield wire; (4) professional services and overheads.
输电线路成本估算细分为四类:(1) 土地和路权;(2) 结构和地基;(3) 导线、OPGW 和屏蔽线;(4) 专业服务和间接费用。
Substationss
子站s
Substations cost estimates are sub-divided in to four cost categories: (1) land and site work; (2) equipment and foundations; (3) protection and control; (4) professional services and overhead.
分站 费用估算细分为四个费用类别:(1) 土地和场地工程;(2) 设备和地基;(3) 保护和控制;(4) 专业服务和间接费用。
10.4 Key Cost Assumptions
10.4 主要成本假设
The methodology for estimating the costs for the project was adopted from the MISO with adjustments to suit the prevailing economic situation in Zambia. The following key economic assumptions were considered:
估算项目成本的方法采用了 MISO 的方法,并根据赞比亚当前的经济形势进行了调整。主要经济假设如下
Cost estimate and financial analyses are based on the US Dollar as at 1st June, 2024: US $ 1.00 = ZMK 24
成本估算和财务分析以 2024 年 6 月 1 日的美元汇率为基础:1.00 美元=24赞比亚克瓦查
Cost estimates have been made at the price level of June, 2024
费用概算按 2024 年 6 月的价格水平计算
10.5 Estimated Project Capital Costs
10.5预计项目资本成本
The 250 MWp GTL Solar PV Power Plant is expected to have a total cost of US$ 220 million as broken down in Table 34 below:
250 MWp GTL 太阳能光伏电站的总成本预计为 2.2 亿美元,细目见下表 34:
Table 34: Project Cost Estimates for Project
表 34:项目成本估算
No. | Cost Item | UoM | Quantity | Unit Price (US$) | Total (US$) |
A. | PV Modules |
|
|
|
|
1. | CS3W-415P 1500V HE | Ea | 602420 | 180 | 108,435,600 |
2. | Supports for Modules | Ea | 602420 | 50 | 30,121,000 |
B. | Inverters |
|
|
|
|
3. | SUN2000-185KTL-H1 | Ea | 1099 | 12,000 | 13,188,000 |
C. | Power Evacuation |
|
|
|
|
4. | 33 kV Smart Transformer | Ea | 45 | 45,000 | 2,025,000 |
5. | 33 kV Substations | Sum | 1 | 4,000,000 | 4,000,000 |
6. | 60 MVA 220/33 kV Power Transformers | Ea | 4 | 800,000 | 3,200,000 |
7. | 220 kV Substations | Sum | 1 | 10,000,000 | 10,000,000 |
8. | 220 kV Transmission Line | km | 12 | 400,000 | 4,800,000 |
9. | 220 kV Substations Works at Wells Spring & Siavonga (Lusitu) | Sum | 1 | 4,000,000 | 4,000,000 |
D. | Other Components |
|
|
|
|
10. | Accessories, Fasteners | Lot | 1 | 2,000,000 | 2,000,000 |
11. | Wiring and Cabling | Lot | 1 | 10,000,000 | 10,000,000 |
12. | Monitoring system, Display Screen | Sum | 1 | 1,500,000 | 1,500,000 |
13. | Measurement System, Pyranometer | Sum | 2 | 100,000 | 200,000 |
14. | Water Supply and Treatment | Sum | 1 | 1,200,000 | 1,200,000 |
15. | Staff Housing | Ea | 5 | 30,000 | 150,000 |
E. | Studies and Analysis |
|
|
|
|
16. | Engineering | Sum | 1 | 1,000,000 | 1,000,000 |
17. | Permitting and other admin. Fees | Sum | 1 | 1,500,000 | 1,500,000 |
18. | Environmental Studies & Other Permitting | Sum | 1 | 1,200,000 | 1,200,000 |
19. | Economic & Financial Analysis | Sum | 1 | 100,000 | 100,000 |
F. | Installation |
|
|
|
|
20. | EPC Contract | Sum | 1 | 10,000,000 | 10,000,000 |
21. | Transport | Sum | 1 | 5,000,000 | 5,000,000 |
22. | Commissioning | Sum | 1 | 1,000,000 | 1,000,000 |
G. | Land costs |
|
|
|
|
23. | Land Purchase | Sum | 1 | 2,500,000 | 2,500,000 |
24. | Land Preparation | Sum | 1 | 300,000 | 300,000 |
H. | Contingency | Sum | 1 | 2,000,000 | 2,000,000 |
| Total |
|
|
| 219,419,600 |
11. | ECONOMIC ANALYSIS |
11.1 Introduction
11.1 引言
The development of the solar PV power project in the Wells Spring & Siavonga (Lusitu) areas of Mazabuka & Siavonga (Lusitu) Districts is a concept by GTL Power Solutions which seeks to participate in the mitigation of the energy deficit in the country and the region through renewable and environmentally friendly energy options.
在Wells Spring &;Siavonga (Lusitu)areas of Mazabuka &;Siavonga (Lusitu)Districts 是 GTL Power Solutions 提出的概念,旨在通过可再生和环保能源选择,参与缓解国家和地区的能源短缺问题。
The technical viability of the project has been ascertained in 5, 6 and 7 above while the cost of the project has been established in 10. This chapter provides the financial and economic assessment to ascertain the viability of establishing a solar PV power project in Zambia.
项目的技术可行性已在上文第 5、6 和 7 节中确定,项目成本已在第 10 节中确定。本章提供了财务和经济评估,以确定在赞比亚建立太阳能光伏发电项目的可行性。
11.1.1 General
11.1.1 常规
Analysis of the economic viability of the project was based on a grid restricted power injection of 200MWac applied at the point of common coupling (PCC). In such a case the average energy sold to the grid in the during the life of the project would be 411 GWh per annum as shown in Table 23 repeated here for purposes of analysis.
对项目经济可行性的分析是基于共同耦合点 (PCC) 200MWac 的电网限制功率注入。在这种情况下,项目寿命期内平均每年向电网出售的电量为 411 千兆瓦时,如表 23 所示,为便于分析,在此重复。
Table 23: 25-Year Annual Energy Yield for the Power Plant
表 23:发电厂 25 年的年发电量
Year | GWh | PR (%) | PR Loss (%) |
1 | 441.1 | 73.8 | -0.19 |
2 | 439.5 | 73.53 | -0.56 |
3 | 437.6 | 73.21 | -0.99 |
4 | 435.5 | 72.86 | -1.46 |
5 | 433.2 | 72.48 | -1.98 |
6 | 430.6 | 72.04 | -2.57 |
7 | 427.7 | 71.56 | -3.22 |
8 | 424.7 | 71.05 | -3.9 |
9 | 421.6 | 70.54 | -4.6 |
10 | 418.5 | 70.02 | -5.3 |
11 | 415.6 | 69.53 | -5.97 |
12 | 412.7 | 69.06 | -6.61 |
13 | 410 | 68.6 | -7.22 |
14 | 407.4 | 68.16 | -7.82 |
15 | 404.9 | 67.74 | -8.39 |
16 | 402.7 | 67.38 | -8.88 |
17 | 400.8 | 67.06 | -9.31 |
18 | 398.9 | 66.74 | -9.74 |
19 | 396.9 | 66.41 | -10.19 |
20 | 394.7 | 66.04 | -10.69 |
21 | 391.9 | 65.57 | -11.32 |
22 | 388.6 | 65.01 | -12.07 |
23 | 385 | 64.41 | -12.89 |
24 | 381.2 | 63.77 | -13.75 |
25 | 377.2 | 63.11 | -14.64 |
Total | 10278.5 | - | - |
Average | 411.14 | 68.7872 | -7.0 |
Under this analysis, the following four (04) economic indicators were investigated.
根据这一分析,对以下四(04)项经济指标进行了调查。
Net Present Value (NPV);
净现值 (NPV);
Internal Rate of Return;
内部收益率;
Return on Investment Ratio (ROI); and
投资回报率(ROI);以及
Levelised Cost of Electricity (LCOE).
平准化电力成本 (LCOE)。
11.1.2 Assumptions
11.1.2 假设
The NPV, IRR, ROI and LCOE were generated in PVSyst 7.4 with the following basic data inputs:
净现值(NPV)、内部收益率(IRR)、投资回报率(ROI)和总拥有成本(LCOE)是在 PVSyst 7.4 中通过以下基本数据输入生成的:
Installed Capacity – 250 MWDC
装机容量 - 250 MWDC
Grid Power Restriction – 200 MWac
电网限电 - 200 兆瓦ac
Avg Annual Energy Exported to the Grid – 411 GWh, (Year 1 - 441, Year 25 – 377 GWh);
平均每年向电网输出的能量 - 4.11 亿千瓦时,(第 1 年 - 4.41 亿千瓦时,第 25 年 - 3.77 亿千瓦时);
Capital Cost – US$ 220 million
资本成本 - 2.2 亿美元
Operational Costs – US$1.5 million
业务费用 - 150 万美元
Construction Period – 12 months;
施工期 - 12 个月;
Years of Operation – 25 Years;
运营年限 - 25 年;
Commissioning Year – 2025;
投入使用年份 - 2025 年;
Tariff Range - US 8.5 ¢/kWh ± 1 for sensitivity analysis of tariff; and
电价范围 - 8.5 美分/千瓦时 ± 1,用于电价敏感性分析;以及
Discount rate - 10% ± 2 for sensitivity analysis of discount rate.
贴现率 - 10% ± 2,用于贴现率敏感性分析。
Inflation Rate – 12% ± 2 for sensitivity analysis of inflation.
通货膨胀率 - 12% ± 2,用于通货膨胀敏感性分析。
Corporate Income Tax – 10% (to be finalised with the Ministry of Finance)
企业所得税 - 10%(有待与财政部最终确定)
Loan – 8% Interest Rate, 10 years at redeemable with Fixed Annuity
贷款 - 利率 8%,10 年期,可通过固定年金赎回
11.1.3 Evaluation Criteria
11.1.3 评估标准
A project can be considered to be economically viable if it meets the following criteria:
如果一个项目符合以下标准,就可以认为它在经济上是可行的:
The net present value (NPV) must be equal or greater than zero (NPV≥0);
净现值 (NPV) 必须等于或大于零(NPV≥0);
Internal Rate of Return (IRR) must be greater than Discount Rate (IRR>Discount Rate)
内部收益率 (IRR) 必须大于贴现率 (IRR>Discount Rate)
The Return on Investment must be within the applicable range in the solar industry; and
投资回报率必须在太阳能行业的适用范围内;以及
The LCOE must be lower than the market on grid tariff (LCOE<Tariff).
LCOE 必须低于市场上网电价(LCOE<Tariff)。
11.1.4 Sensitivity Analysis
11.1.4 敏感性分析
Sensitivity tests were applied to the base case economic evaluation to test the robustness of the project. This was achieved by varying one parameter while keeping the rest unchanged.
对基础经济评估进行了敏感性测试,以检验项目的稳健性。具体方法是在其他参数不变的情况下,改变一个参数。
11.2 Project Cost (Capital Cost)
11.2项目成本(资本成本)
The cost of the project was estimated by summing its total development cost and its annual operation and maintenance costs. The costs were allocated to the year of expenditure and expressed as constant prices. The total cost of the project is approximated at US$ 220 million as at 1st July, 2023.
项目的成本是通过总开发成本与年度运行和维护成本的总和来估算的。这些费用分配到支出年份,并以不变价格表示。截至 2023 年 7 月 1st 日,项目总成本约为 2.2 亿美元。
11.3 Energy Value and Tariff
11.3能源价值和电价
The principal benefit of the project is the revenue generated from its energy sale. The viability of the project will be dependent on a Tariff of US 8.5 ¢/kWh or better. This figure was estimated from the average annual energy of 411 GWh to be generated over the lifetime of the project.
该项目的主要收益是其能源销售收入。该项目的可行性取决于 8.5 美分/千瓦时或更高的电价。这一数字是根据该项目在整个生命周期内平均每年产生 411 千兆瓦时的能量估算出来的。
11.4 Key Economic and Financial Outputs
11.4 主要经济和金融产出
11.4.1 Annual Operation and Maintenance Costs
11.4.1年度运行和维护费用
The operations and maintenance (O&M) of the project was estimated at US$1.5 million per annum as detailed in Table 35 below:
如下表 35 所示,该项目的运营和维护费用估计为每年 150 万美元:
Table 35: Project Cost Estimates for Project
表 35:项目费用估算
No. | Cost Item | Total (US$) |
A. | Maintenance |
|
1. | Provision for Inverter Replacement | 1,318,800.00 |
2. | Repairs | 20,000.00 |
B. | Salaries |
|
3. | Engineer | 100,000.00 |
4. | Operators | 50,000.00 |
5. | Administrative Staff | 10,000.00 |
| Total (OPEX) | 1,498,800.00 |
11.4.2 Payback Period
11.4.2 付还期
At a tariff of US 8.5 ¢/kWh, the simple payback period for the Project is expected at 10.8 years.
按 8.5 美分/千瓦时的电价计算,该项目的简单投资回收期预计为 10.8 年。
11.4.3 Levelised Cost of Electricity (LCOE)
11.4.3 平准化电力成本 (LCOE)
LCOE is the breakeven value of the price (tariff) of electricity delivered. Electricity tariffs above LCOE would yield a greater return on capital whilst tariffs below LCOE results in a loss. The LCOE for the Project was recorded at US 6.7 ¢/kWh.
LCOE 是输电价格(电价)的盈亏平衡值。高于 LCOE 的电价将产生更大的资本回报,而低于 LCOE 的电价则会导致亏损。据记录,该项目的 LCOE 为 6.7 美分/千瓦时。
11.4.4 Return on Investment
11.4.4 投资回报
Return on Investment (ROI) is a performance measure used to evaluate the efficiency of an investment or compare the efficiency of a number of different investments. ROI tries to directly measure the amount of return on a particular investment, relative to the investment’s cost. To calculate ROI, the benefit (or return) of an investment is divided by the cost of the investment. The result is expressed as a percentage or a ratio.
投资回报率(ROI)是一种绩效衡量标准,用于评估一项投资的效率或比较多项不同投资的效率。投资回报率试图直接衡量特定投资相对于投资成本的回报额。要计算投资回报率,需要用投资效益(或回报)除以投资成本。结果用百分比或比率表示。
ROI is a popular metric because of its versatility and simplicity. Essentially, ROI can be used as a rudimentary gauge of an investment’s profitability. In this case, the ROI was computed at 21.3 %.
投资回报率因其通用性和简便性而成为一种常用指标。从根本上说,投资回报率可以作为衡量投资盈利能力的基本标准。在本案例中,投资回报率被计算为 21.3%。
Although ROI is a quick and easy way to estimate the success of an investment, it has some serious limitations. For instance, ROI fails to reflect the time value of money, and it can be difficult to meaningfully compare ROIs because some investments will take longer to generate a profit than others. For this reason, investors tend to use other metrics, such as net present value (NPV) or the internal rate of return (IRR).
虽然投资回报率是估算投资成功与否的一种快速简便的方法,但它也有一些严重的局限性。例如,投资回报率不能反映资金的时间价值,而且很难对投资回报率进行有意义的比较,因为有些投资比其他投资需要更长的时间才能产生利润。因此,投资者倾向于使用其他指标,如净现值(NPV)或内部收益率(IRR)。
11.4.5 Internal Rate of Return
11.4.5内部收益率
IRR is a discount rate that makes the net present value (NPV) of all cash flows equal to zero in a discounted cash flow analysis. The ultimate goal of IRR is to identify the rate of discount, which makes the present value of the sum of annual nominal cash inflows equal to the initial net cash outlay for the investment. If the IRR on a project or investment is lower than the cost of capital, then the best course of action may be to reject it.
内部收益率是一种贴现率,在现金流贴现分析中使所有现金流的净现值(NPV)等于零。内部收益率的最终目标是确定贴现率,使每年名义现金流入总和的现值等于投资的初始净现金支出。如果一个项目或投资的内部收益率低于资本成本,那么最好的做法可能是拒绝该项目或投资。
The IRR for the Project was estimated at 21.38 %.
项目的内部收益率估计为 21.38%。
11.4.6 Net Present Value
11.4.6 净现值
Net Present Value (NPV) is an Opportunity Cost concept that highlights the time value of money. The NPV for the project as obtained in PVSyst was US$46.8 million.
净现值 (NPV) 是一个机会成本概念,强调资金的时间价值。PVSyst 系统得出的项目净现值为 4,680 万美元。
11.4.7 Other Economic and Financial Outputs
11.4.7 其他经济和金融产出
11.4.7.1 Cash Flows
11.4.7.1 现金流量
The yearly cash flow over the 25-year operation of the Project is given in Fig 53 below:
项目 25 年运营期间的年度现金流见下图 53:
Fig 53: Yearly Cash Flow (kUS$)
图 53:年度现金流量(千美元)
Cash flows are expected to increase after the loan tenure is exhausted.
贷款期满后,现金流预计会增加。
11.4.7.2 Cumulative Cash Flow
11.4.7.2 累计现金流
The cumulative cash flow over the life of the project is shown in Fig 54 below:
整个项目周期的累计现金流如下图 54 所示:
Fig 54: Cumulative Cash Flow (kUS$)
图 54:累计现金流(千美元)
11.4.7.3 Cash Allocation
11.4.7.3现金分配。
The percentage cash allocations for the Year 1, Year 25 and average over project life are depicted in Fig 55 below:
第 1 年、第 25 年和整个项目周期的平均现金分配百分比见下图 55:
Fig 55: Cash Allocation
图 55:现金分配
The detailed financial performance for the project over the 25-year life span is shown in Table 37.
表 37 详细列出了该项目在 25 年使用期内的财务业绩。
11.5 Economic Analysis Summary
11.5 经济分析摘要
A summary of the Economic Analysis for the 250 MWp GTL Solar PV Power Plant is presented in Table 36 below:
250 MWp GTL 太阳能光伏电站的经济分析摘要见下表 36:
Table 36: Summary of Economic Analysis
表 36:经济分析概要
Installed Capacity | Annual Generation (GWh/yr) | LCOE (US¢/kWh) | Construction (Months) | Year of Commission |
2.6 MWDC | 411 | 6.7 | 12 | 2025 |
Investment Cost: | ||||
Capital Cost | US$ 220 million | |||
Cost/MWp | US$ 0.88 million | |||
Equity/Debt | 20/80 | |||
Tariff Benefit: | ||||
Net Present Value | US$ 46.8 million | |||
Return on Investment | 23.3 % | |||
Internal Rate of Return | 21.38 % | |||
Payback Period (Years) | 10.8 Years | |||
Proposed Tariff (US¢/kWh) | US 8.5 ¢/kWh |
GALABA TRADING LIMITED
250 MWp GTL Solar PV Power Project – Feasibility Study Report
250 MWp GTL 太阳能光伏发电项目 - 可行性研究报告
Table 37: Detailed Economic Results (US$ ‘000)
表 37:详细经济成果(千美元)
Year | Electricity Sale | Own Funds | Loan Principal | Loan Interest | Run. Costs | Deprec. Allow | Taxable Income | Taxes | After Tax Profit | Self-Cons. Savings | Cumul. Profit | % Armorti. |
| - | 43,880 | - | - | - | - | - | - | - | - | -43,880 | 0% |
| 37,430 | - | 12,117 | 14,043 | 1,499 | 7,164 | 14,724 | 1,472 | 8,299 | 0 | -36,470 | 9% |
| 37,293 | - | 13,087 | 13,074 | 1,664 | 7,164 | 15,392 | 1,539 | 7,930 | 0 | -30,148 | 18% |
| 37,131 | - | 14,134 | 12,027 | 1,847 | 7,164 | 16,094 | 1,609 | 7,515 | 0 | -24,800 | 27% |
| 36,954 | - | 15,264 | 10,896 | 2,050 | 7,164 | 16,844 | 1,684 | 7,059 | 0 | -20,314 | 36% |
| 36,761 | - | 16,486 | 9,675 | 2,275 | 7,164 | 17,647 | 1,765 | 6,560 | 0 | -16,591 | 45% |
| 36,538 | - | 17,804 | 8,356 | 2,526 | 7,164 | 18,492 | 1,849 | 6,002 | 0 | -13,550 | 54% |
| 36,294 | - | 19,229 | 6,932 | 2,803 | 7,164 | 19,395 | 1,940 | 5,391 | 0 | -11,112 | 64% |
| 36,036 | - | 20,767 | 5,393 | 3,112 | 7,164 | 20,366 | 2,037 | 4,727 | 0 | -9,203 | 75% |
| 35,777 | - | 22,429 | 3,732 | 3,454 | 7,164 | 21,427 | 2,143 | 4,020 | 0 | -7,753 | 85% |
| 35,513 | - | 24,223 | 1,938 | 3,834 | 7,164 | 22,577 | 2,258 | 3,261 | 0 | -6,703 | 97% |
| 35,265 | - | - | - | 4,256 | 7,164 | 23,845 | 2,384 | 28,625 | 0 | 1,526 | 101% |
| 35,026 | - | - | - | 4,724 | 7,164 | 23,138 | 2,314 | 27,989 | 0 | 8,710 | 104% |
| 34,793 | - | - | - | 5,243 | 7,164 | 22,385 | 2,239 | 27,311 | 0 | 14,969 | 107% |
| 34,570 | - | - | - | 5,820 | 7,164 | 21,585 | 2,159 | 26,591 | 0 | 20,410 | 109% |
| 34,357 | - | - | - | 6,460 | 7,164 | 20,732 | 2,073 | 25,823 | 0 | 25,128 | 112% |
| 34,174 | - | - | - | 7,171 | 7,031 | 19,972 | 1,997 | 25,006 | 0 | 29,207 | 113% |
| 34,012 | - | - | - | 7,960 | 7,031 | 19,021 | 1,902 | 24,150 | 0 | 32,724 | 115% |
| 33,850 | - | - | - | 8,836 | 7,031 | 17,983 | 1,798 | 23,216 | 0 | 35,743 | 116% |
| 33,682 | - | - | - | 9,807 | 7,031 | 16,844 | 1,684 | 22,190 | 0 | 38,319 | 118% |
| 33,495 | - | - | - | 10,886 | 7,031 | 15,578 | 1,558 | 21,051 | 0 | 40,502 | 119% |
| 33,256 | - | - | - | 12,084 | 7,031 | 14,142 | 1,414 | 19,758 | 0 | 42,331 | 119% |
| 32,972 | - | - | - | 13,413 | 7,031 | 12,528 | 1,253 | 18,306 | 0 | 43,843 | 120% |
| 32,668 | - | - | - | 14,888 | 7,031 | 10,749 | 1,075 | 16,705 | 0 | 45,076 | 121% |
| 32,343 | - | - | - | 16,526 | 7,031 | 8,786 | 879 | 14,939 | 0 | 46,060 | 121% |
| 32,009 | - | - | - | 18,344 | 7,031 | 6,634 | 663 | 13,001 | 0 | 46,825 | 121% |
| 872,200 | 43,880 | 175,540 | 86,066 | 171,483 | 177,770 | 436,881 | 43,688 | 395,422 | 1 | 46,825 | 121% |
106
GALABA TRADING LIMITED
250 MWp GTL Solar PV Power Project – Feasibility Study Report
250 MWp GTL 太阳能光伏发电项目 - 可行性研究报告
12. | CONCLUSION AND RECOMMENDATIONS |
12.1 Conclusion
12.1结论
The development of the GTL Solar PV Power Project in Mazabuka & Siavonga (Lusitu) Districts is a concept supported by GTL Power Solutions Limited. The feasibility assessment was successfully undertaken from which the technical, financial, economic and environmental parameters of the Project were identified and presented in this Reports. A summary of the findings is as follows:
GTL 太阳能光伏发电项目在Mazabuka &;Siavonga (Lusitu)Districts 是由 GTL Power Solutions Limited 支持的一个概念。可行性评估已成功进行,并确定了项目的技术、财务、经济和环境参数,在本 报告 中进行了介绍。调查结果概述如下:
12.1.1 Power and Energy Generation
12.1.1电力和能源生产
The Project will have an installed capacity of 250 MWp and will have a grid restriction of 200 MWac applied at the point of common coupling (PCC). The project will be able to inject an average annual energy of about 411 GWh over its 25-year operational lifetime.
该项目装机容量为 250 兆瓦,共用耦合点(PCC)的电网限制为 200 兆瓦。在 25 年的运营期内,该项目平均每年可注入约 4.11 亿千瓦时的电能。
12.1.2 Power Evacuation
12.1.2 电力疏散
The energy produced by the plant will be injected into the national grid through the existing 220 kV Zesco Substations. A 220/33 kV at the project site will connect the power plant to the Wells Spring & Siavonga (Lusitu) Substations via a 12 km 220 kV transmission line. Double 225 mm2 ACSR (2xLion) conductors will be strung on standard CEC 220 kV structures.
发电厂生产的能源将通过现有的 220 千伏 Zesco 变电站 输入国家电网。项目现场的 220/33 千伏将通过一条 12 千米长的 220 千伏输电线路将发电厂与Wells Spring & Siavonga (Lusitu)Substations 连接起来。双 225 mm2 ACSR(2xLion)导线将串接在标准的 CEC 220 千伏结构上。
12.1.3 Project Cost and Economic Analysis
12.1.3项目成本和经济分析
The cost of the project was estimated at US$ 220 million giving a unit cost of US$ 0.88 million/MWp. The project is economically viable at tariffs greater than US 8.5 ¢/kWh as NPV and ROI are positive within the range of discount rate considered.
项目成本估计为 2.2 亿美元,单位成本为 88 万美元/MWp。在考虑的贴现率范围内,由于净现值和投资回报率均为正值,因此在电价高于 8.5 美分/千瓦时的情况下,该项目在经济上是可行的。
12.1.4 Project Benefits
12.1.4项目效益。
The benefits to be realised by the Project would include:
该项目可实现的效益包括
Mitigation of Power Deficits;
缓解电力不足;
Contribution of 411 GWh to the national grid per annum;
每年向国家电网供电 411 千兆瓦时;
Foster socioeconomic development in the areas
促进这些地区的社会经济发展;
Creation of direct and indirect jobs; and
创造直接和间接就业机会;以及
Contribute to Carbon Emission Reductions (CERs).
有助于减少碳排放(CER)。
12.2 Recommendations
12.2 建议
Based on the findings of the Feasibility study, it is recommended that the project be implemented with the following considerations:
根据可行性研究的结果,建议在实施该项目时考虑以下因素:
Undertake a detailed design to derive the BOQ tender;
进行详细设计,以得出 BOQ 标书;
Undertake a detailed Environmental and Socio Impact Study in accordance with ZEMA and internationally accepted standards.
根据 ZEMA 和国际公认的标准,开展详细的环境和社会影响研究。
Commence engagements with policy and regulatory agencies for the approval and licensing of the project.
开始与政策和监管机构接触,以获得项目的批准和许可。
107
REFERENCES
参考文献
108
GALABA TRADING LIMITED
250 MWp GTL Solar PV Power Project – Feasibility Study Report
250 MWp GTL 太阳能光伏发电项目 - 可行性研究报告
Version 7.4.0
PVsyst - Simulation Reports
PVsyst--模拟报告
Grid-Connected System
并网系统
250 MW GTL Solar PV Power Project
250 MW GTL 太阳能光伏发电项目
GTL Solar PV Power Project
GTL 太阳能光伏发电项目
3D scene, shadings TBA
3D 场景,阴影待定
System power: 250.0 MWp
系统功率: 250.0 兆瓦
Wells Spring & Siavonga (Lusitu) - Zambia
Wells Spring & Siavonga (Lusitu) - 赞比亚
Project summary
项目摘要
Geographical Site Wells Spring & Siavonga (Lusitu) Zambia Meteo data Wells Spring & Siavonga (Lusitu) Meteonorm 8.1 (1991-2005), Sat=100% - Syntheti | Situation Latitude Longitude Altitude Time zone c | -12.99 °S 28.30 °E 1214 m UTC+2 | Project settings Albedo | 0.20 |
System summary
系统概要
Grid-Connected System Simulation for year no 1 | 3D scene, shadings TBA | ||
PV Field Orientation Fixed plane Tilt/Azimuth 22.2 / -10 ° | Near Shadings No Shadings | User's needs Fixed constant load 100 kW Global 876 MWh/Year | |
System information PV Array Nb. of modules Pnom total | 602420 units 250.0 MWp | Inverters Nb. of units Pnom total Grid power limit Grid lim. Pnom ratio | 1099 units 192.3 MWac 200.0 MWac 1.250 |
Results summary
成果概要
Produced Energy Used Energy Apparent energy | 441118166 kWh/year 876000 kWh/year 445318366 kVAh/year | Specific production 1764 kWh/kWp/year | Perf. Ratio PR Solar Fraction SF | 73.80 % 47.74 % |
Table of contents
目录
General parameters
一般参数
Grid-Connected System | 3D scene, shadings TBA | ||
PV Field Orientation Orientation Fixed plane Tilt/Azimuth | 22.2 / -10 ° | Sheds configuration No 3D scene defined | Models used Transposition Perez Diffuse Perez, Meteonorm Circumsolar separate |
Horizon Average Height | 2.4 ° | Near Shadings No Shadings | User's needs Fixed constant load 100 kW Global 876 MWh/Year |
Grid injection point Grid power limitation Active power Pnom ratio | 200.0 MWac 1.250 | Power factor Cos(phi) (leading) 0.990 |
PV Array Characteristics
光伏阵列特性
PV module Manufacturer Model (Original PVsyst database Unit Nom. Power Number of PV modules Nominal (STC) Modules At operating cond. (50°C) Pmpp U mpp I mpp | CSI Solar CS3W-415P 1500V HE ) 415 Wp 602420 units 250.0 MWp 21515 Strings x 28 In series 226.8 MWp 996 V 227695 A | Inverter Manufacturer Model (Original PVsyst database) Unit Nom. Power Number of inverters Total power Operating voltage Max. power (=>30°C) Pnom ratio (DC:AC) Power sharing within this inverter | Huawei Technologies SUN2000-185KTL-H1 175 kWac 1099 units 192325 kWac 550-1500 V 185 kWac 1.30 |
Total PV power Nominal (STC) Total Module areas Cell areas | 250004 kWp 602420 modules 1330857 m² 1195394 m² | Total inverter power Total power Max. power Number of inverters Pnom ratio PNom limit forced to active power | 192325 kWac 203315 kWac 1099 units 1.30 |
Array losses
阵列损耗
Array Soiling Losses Loss Fraction 2.5 % | Thermal Loss factor Module temperature according to irradiance Uc (const) 20.0 W/m²K Uv (wind) 0.0 W/m²K/m/s | DC wiring losses Global array res. Loss Fraction | 0.35 mΩ 7.2 % at STC |
LID - Light Induced Degradation Loss Fraction 2.0 % | Module Quality Loss Loss Fraction -0.3 % | Module mismatch losses Loss Fraction 2.0 % at MPP | |
Strings Mismatch loss Loss Fraction 0.1 % | Module average degradation Year no 1 Loss factor 0.4 %/year Mismatch due to degradation Imp RMS dispersion 0.4 %/year Vmp RMS dispersion 0.4 %/year |
IAM loss factor Incidence effect (IAM): User defined profile
|
Array losses System losses
阵列损耗 系统损耗
Unavailability of the system Time fraction 2.0 % 7.3 days, 3 periods | Auxiliaries loss constant (fans) 100.0 kW 0.0 kW from Power thresh. Night aux. cons. 100.0 kW |
Project: 250MWp_GTL_Solar
Variant: GTL Project
变体:GTL 项目
PVsyst V7.4.0
VC0, Simulation date: 05/18/24 21:08 with v7.4.0
VC0,模拟日期:05/18/24 21:08,版本 7.4.0
Horizon definition
Albedo Factor 0.86
Albedo 因子 0.86
Albedo Fraction 100 %
反照率 100%。
Horizon profile
地平线简介
Project: 250MWp_GTL_Solar
Variant: GTL Project
变体:GTL 项目
PVsyst V7.4.0
VC0, Simulation date: 05/18/24 21:08 with v7.4.0
VC0,模拟日期:05/18/24 21:08,版本 7.4.0
Main results
主要成果
System Production Produced Energy (P50)441118166 kWh/year Specific production (P50) 1764 kWh/kWp/year Perf. Ratio PR 73.80 % Produced Energy (P90)408379338 kWh/year Specific production (P90) 1633 kWh/kWp/year Solar Fraction SF 47.74 % Produced Energy (P95)399167906 kWh/year Specific production (P95) 1597 kWh/kWp/year Apparent energy 445318366 kVAh/year Economic evaluation Investment Yearly cost LCOE Global 219,419,600.00 USD Annuities 26,160,636.45 USD/yr Energy cost 0.07 USD/kWh Specific 0.88 USD/Wp Run. costs 6,859,306.60 USD/yr Payback period 10.8 years Normalized productions (per installed kWp) Performance Ratio PR Balances and main results
Legends GlobHor Global horizontal irradiation EArray Effective energy at the output of the array DiffHor Horizontal diffuse irradiation E_User Energy supplied to the user T_Amb Ambient Temperature E_Solar Energy from the sun GlobInc Global incident in coll. plane E_Grid Energy injected into grid GlobEff Effective Global, corr. for IAM and shadings EFrGrid Energy from the grid |
Loss diagram
Project: 250MWp_GTL_Solar
Variant: GTL Project
变体:GTL 项目
PVsyst V7.4.0
VC0, Simulation date: 05/18/24 21:08 with v7.4.0
VC0,模拟日期:05/18/24 21:08,版本 7.4.0
Project: 250MWp_GTL_Solar
Variant: GTL Project
变体:GTL 项目
PVsyst V7.4.0
VC0, Simulation date:
VC0,模拟日期:
05/18/24 21:08
with v7.4.0
Aging Tool
Project: 250MWp_GTL_Solar
Variant: GTL Project
变体:GTL 项目
PVsyst V7.4.0
VC0, Simulation date:
VC0,模拟日期:
05/18/24 21:08
with
Aging Parameters Time span of simulation 25 years Module average degradation Mismatch due to degradation Loss factor 0.4 %/year Imp RMS dispersion 0.4 %/year Vmp RMS dispersion 0.4 %/year Meteo used in the simulation Wells Spring & Siavonga (Lusitu) MN81 SYN Years reference year
|
Aging Tool
老化工具
Project: 250MWp_GTL_Solar
Variant: GTL Project
变体:GTL 项目
PVsyst V7.4.0
VC0, Simulation date: 05/18/24 21:08 with v7.4.0
VC0,模拟日期:05/18/24 21:08,版本 7.4.0
P50 - P90 evaluation
Simulation and parameters uncertainties
模拟和参数的不确定性
PV module modelling/parameters 1.0 % Inverter efficiency uncertainty 0.5 %
PV 模块建模/参数 1.0 % 逆变器效率不确定性 0.5 %
Soiling and mismatch uncertainties 1.0 %
玷污和错配的不确定性 1.0 %
5.5 % Degradation uncertainty 1.0 %
5.5 % 降解不确定性 1.0%。
0.0 %
Annual production probability
年产量概率
5.8 % Variability 25.5 GWh
5.8 % 可变性 25.5 GWh
P50 441.1 GWh
P90 408.4 GWh
P95 399.2 GWh
Probability distribution
概率分布
Project: 250MWp_GTL_Solar
Variant: GTL Project
变体:GTL 项目
PVsyst V7.4.0
VC0, Simulation date: 05/18/24 21:08 with v7.4.0
VC0,模拟日期:05/18/24 21:08,版本 7.4.0
Cost of the system
系统成本
Installation costs
Operating costs
|
Cost of the system
系统成本
System summary Total installation cost Operating costs (incl. inflation 11.00%/year) Unused energy Energy sold to the grid Cost of produced energy (LCOE) | 219,419,600.00 USD 6,859,306.60 USD/year 418 MWh/year 440700 MWh/year 0.067 USD/kWh |
Project: 250MWp_GTL_Solar
Variant: GTL Project
变体:GTL 项目
PVsyst V7.4.0
VC0, Simulation date: 05/18/24 21:08 with v7.4.0
VC0,模拟日期:05/18/24 21:08,版本 7.4.0
Financial analysis
财务分析
Simulation period Project lifetime 25 years Start year 2025 Income variation over time Inflation 11.00 %/year Production variation (aging) Aging tool results Discount rate 12.00 %/year Income dependent expenses Income tax rate 10.00 %/year Other income tax 0.00 %/year Dividends 0.00 %/year Depreciable assets
Financing Own funds 43,879,600.00 USD Loan - Redeemable with fixed annuity - 10 years 175,540,000.00 USD Interest rate: 8.00%/year Electricity sale Feed-in tariff 0.0850 USD/kWh Duration of tariff warranty 25 years Annual connection tax 0.00 USD/kWh Annual tariff variation 0.0 %/year Feed-in tariff decrease after warranty 0.00 % Self-consumption Consumption tariff 0.0001 USD/kWh Tariff evolution 0.0 %/year Return on investment Payback period 10.8 years Net present value (NPV) 46,824,951.26 USD Internal rate of return (IRR) 21.38 % Return on investment (ROI) 21.3 % |
Detailed economic results (kUSD)
|
Project: 250MWp_GTL_Solar
Variant: GTL Project
变体:GTL 项目
PVsyst V7.4.0
VC0, Simulation date: 05/18/24 21:08 with v7.4.0
VC0,模拟日期:05/18/24 21:08,版本 7.4.0
CO₂ Emission Balance