李强 、孙志芳 、尹春阳 、陈扬 、潘定杰 、于炳哲 、张毅 Ting He , Shaowei Chen 中南大学化学化工学院微纳材料界面科学湖南省重点实验室,庐山932号 中国湖南省长沙市岳麓区岳麓南路 邮编:410083 加利福尼亚大学化学与生物化学系,地址:1156 High Street, Santa Cruz, CA 95064, USA 湘潭大学材料科学与工程学院,湖南湘潭 411105
A R T I C L E I N F O
关键词:
超薄石墨烯气凝胶
双功能氧电催化剂
分水
锌-空气电池
摘要
A B S T R A C T 低成本、高性能的氧催化剂对于电化学水分离和金属-空气电池至关重要。本文以氯化钠晶体阵列为模板,从水凝胶前驱体中热解得到了以几层石墨烯为骨架的碳气凝胶,这种气凝胶具有很高的导电性(869 )和超低的质量密度( )。镍铁层状双氢氧化物(NiFeLDH)纳米胶体的沉积使气凝胶对氧还原/进化反应(ORR/ OER)都具有活性,在碱性和中性介质中的性能与商业基准非常接近。操作拉曼光谱测量和第一原理计算的结果表明,铁 胶体促进了 的氧化,从而将OER的能垒降至0.42 eV,而掺氮碳气凝胶则对ORR活性起作用。将这种复合材料作为双功能氧催化剂用于电化学水分离和可充电锌-空气电池,其在碱性和中性介质中的性能明显优于基于商用 和 混合物的催化剂。这项研究的结果凸显了超薄石墨烯气凝胶在开发电化学能源设备的有效催化剂方面的独特优势。
碳骨架的结构在决定 ORR 和 OER 性能方面起着至关重要的作用。单层石墨烯的表面积可高达 [14]。因此,为了最大限度地增加碳气凝胶的可接触表面积,骨架最好采用超薄石墨烯壁。然而,过薄的石墨烯层可能会影响碳框架的机械强度和结构完整性[15]。因此,需要精心设计结构,在碳骨架厚度和材料性能之间取得良好平衡。在结构框架中包含几层石墨烯的碳气凝胶可以实现这一目标。目前,石墨烯气凝胶的制备方法主要有化学气相沉积法(CVD),即将石墨烯沉积到选定的支撑基底(如金属泡沫)上[16];以及通过凝胶溶胶[17]、冷冻铸造[18]、泡沫涂层[19]、喷雾放电[20]等方法自组装氧化石墨烯(GO)纳米片。前者需要相当复杂的仪器和苛刻的条件,而后者由于官能团的存在和 GO 的厚层,一般只能表现出非理想的导电性[21]。据我们所知,尽管取得了一些进展,但要用少层石墨烯构建具有相互连接的三维结构和高导电性的碳气凝胶仍是一项艰巨的挑战,而这正是促进电催化反应 所需的关键特性。
决定电催化性能的另一个重要因素是活性位点的内在活性。正如理论和实验研究[3,6,24-26]所证明的,单一物种的活性位点不可能同时在不同反应(如 ORR 和 OER)中表现出高性能。例如,碳基材料在有意掺杂某些金属和非金属杂原子(如 N、P、B、Fe、Co 等)时,由于电子结构的操纵和丰富边缘缺陷的形成,可作为有效的 ORR 催化剂[27-30];而已知 NiFe(氧)氢氧化物对 OER 很有效,尽管其机理仍有争议,而且活性会受到金属(氧)氢氧化物的堆叠和不良导电性的影响[31-35]。因此,可以通过将这些材料集成到先进的纳米复合材料中来构建双功能氧电催化剂,从而同时实现 ORR 和 OER [36-39]。然而,迄今为止,其性能仍未达到可充电 ZAB 和水电解槽的要求。
在本研究中,我们介绍了一种用于制造超薄碳气凝胶的对接方法,这种气凝胶由骨架中的几层石墨烯组成,骨架中装载有镍铁层双氢氧化物(NiFe-LDH)胶体。这种碳气凝胶是以NaCl晶体阵列作为牺牲模板,通过对明胶水凝胶前体进行受控热解而制备的 。然后将 NiFe-LDH 胶体吸附到气凝胶表面。这种纳米复合材料具有很高的导电性(高达 ),在碱性/中性介质中对 ORR 和 OER 具有显著的电催化活性,明显优于基于贵金属的商用基准。吡啶/石墨化 N 掺杂物、边缘缺陷和氧空位共同作用于 ORR 活性,而 NiFe-LDH 则作为 OER 的活性位点,其中表面吸附的 胶体促进了 的氧化,这可能是由于电子析出效应(电子结构的改变)。密度泛函理论(DFT)计算进一步表明, 胶体通过调节反应中间产物的形成和降低关键反应步骤的能垒,提高了镍铁合金-LDH 在 OER 中的性能。最佳样品在达到 电流密度所需的 ORR 半波电位( )和 OER 电位( )之间显示出 仅为 0.61 V 的超低电位差,可用作水分离和可充电液体/柔性碱性和液体中性 ZAB 中有效的双功能氧电催化剂。
然后,通过 X 射线光电子能谱 (XPS) 测量检测了样品的元素组成和价态。在 C 1 s 光谱(图 S4a)中, 和 峰在所有 样品中都很容易分辨出来,这表明水凝胶前体的石墨化和 N 在碳骨架中的掺杂取得了成功((NiFe-LDH)/GA 复合材料的结果与此一致,图 S5a)[52]。在相应的 N 1 s 光谱(图 2g)中,吡啶 N、吡咯烷 N、石墨 N 和氧化 N 可分别在 398.5、400.0、401.0 和 402.9 eV 处解旋[53]。根据综合峰面积,估计 的 和 的吡啶 N 和石墨 N 的含量分别为 2.0,与 ( ) 和 ( 1.2 at%, 1.6 at%) 的含量相当(表 S1-S2)。在 01 s 光谱(图 S4b、S5b 和表 S3)中,可以很容易地识别出(NiFe 中的金属-O 物种,但在不含金属的 样品中则没有[7]。
从图 中可以看出,(NiFe-LDH) 的 Ni 2 p 电子由两个双电子组成,分别位于 855.2/872.9 和 856.5/874.3 eV,分别对应于 的 电子和 的 电子,以及 和 ,而在镍胶体中只发现了 (855.1/872.8 eV)[55]。在铁 2 p 光谱(图 2i)中, 和 物种可以从(NiFe-LDH) 和铁胶体中解卷 [56,57], 双特在 和 712.2/725.2 eV,而 Fe 胶体则分别为 710.0/723.6 和 712.0/725.4 eV,对应的 / 比为 和 ((i) 中的虚线为 Ni LMN 光谱[58])。与单独的单金属镍和铁胶体相比,可以看到(镍铁合金-LDH) 中的镍和铁结合能分别出现了正移和负移,这表明电子从 有效地转移到了 中的 。众所周知,缺电子的镍中心对于形成关键的 OER 中间体(O * 和 OO*)至关重要,而电子丰富的 位点则通过降低从 到 的能垒来促进 OER。如下文所述,(NiFe-LDH) 中 和 之间的这种协同作用很可能是增强 OER 活性的原因。请注意,在(NiFe-LDH) 中,镍(3.1 at%)与铁(3.0 at )的原子比接近 1:1(表 S1),这与样品制备过程中的初始进料比一致。
图 2:(a) 吸附/解吸等温线,(b) 孔径分布,(c) 样品的拉曼光谱。在(d)无聚四氟乙烯粘合剂和(e)有聚四氟乙烯粘合剂的情况下,用标准四探针法测量的 GA 样品在 30 兆帕斯卡压力下的电导率。(f) Ni 胶体、Fe 胶体、NiFe 胶体、(NiFe-LDH) 和 样品的 XRD 图样。(g) 和 样品的 N 1 s 电子的高分辨率 XPS 光谱。(h) Ni 胶体、Fe 胶体和(NiFe-LDH) 的 (h) Ni 2 p 和 (i) Fe 2 p 电子的高分辨率 XPS 光谱。
图 S17 描述了铁和镍位点的局部态密度 (LDOS)。与原始的 NiFe-LDH 相比,Fe 改性的 FeNi-LDH 的 Fe 位点的 d 带变得更低,而 Ni 位点的 d 带则正向移动。这充分说明,较高的 d 带中心有利于提高氧中间体(如 )的结合能。也就是说, 胶体吸附到 NiFe-LDH 表面可优化 的结合,从而增强 OER 活性 [80]。也就是说,Fe (OH) 3 胶体在 Ni Fe-LDH表面的吸附可以优化 OH*的结合, 从而
[1] R. Chen, X. Xu, S. Peng, J. Chen, D. Yu, C. Xiao, Y. Li, Y. Chen, X. Hu, M. Liu, H. Yang, I. Wyman, X. Wu, A Flexible and Safe Aqueous Zinc-Air Battery with a Wide Operating Temperature Range from-20 to 70 degrees C, ACS Sustain.Chem.Eng.8 (2020) 11501-11511.
[2] Y. Li, J. Lu, Metal-air batteries: will they be the future electrochemical energy storage device of choice?ACS Energy Lett. 2 (2017) 1370-1377.
[3] Y. Xue, Y. Guo, Q. Zhang, Z. Xie, J. Wei, Z. Zhou, MOF-Derived Co and Fe Species Loaded on N-Doped Carbon Networks as Efficient Oxygen Electrocatalysts for Zn Air Batteries, Nano-Micro Lett 14 (2022) 162.
[6] Y. Guo, S. Yao, L. Gao, A. Chen, M. Jiao, H. Cui, Z. Zhou, Boosting bifunctional electrocatalytic activity in S and N co-doped carbon nanosheet for high-efficiency Zn-air batteries, J. Mater. Chem.Chem.A 8 (2020) 4386-4395.
[7] L. Wang, L. Zhang, W. Ma, H. Wan, X. Zhang, X. Zhang, S. Jiang, J.Y. Zheng, Z. Zhou, In Situ Anchoring Massive Isolated Pt Atoms at Cationic Vacancies of -NixFe1-x(OH)2 to Regulate Electronic Structure for Overall Water Splitting, Adv.Funct.Mater.32 (2022) 2203342.
[8] J. Ge, J.Y. Zheng, J. Zhang, S. Jiang, L. Zhang, H. Wan, L. Wang, W. Ma, Z. Zhou, R. Ma, Controlled atomic defect engineering in layered NixFe1-x(OH)2 nanosheet for electrochemical overall water splitting, J. Mater.Chem.A 9 (2021) .
[9] Z. Cai, L. Li, Y. Zhang, Z. Yang, J. Yang, Y. Guo, L. Guo, Amorphous Nanocages of Cu-Ni-Fe Hydr(oxy)oxide Prepared by Photocorrosion For Highly Efficient OxygeI Evolution, Angew.Chem.Int.Ed.58 (2019) 4189-4194.
[10] N. Xu,J. Qiao,用于锌-空气电池的双功能催化剂的最新进展,J Electrochem 26 (2020) 531-562。
[11] Y. Wang, Y. Zhao, L. Liu, W. Qin, S. Liu, J. Tu, Y. Qin, J. Liu, H. Wu, D. Zhang, A. Chu, B. Jia, X. Qu, M. Qin, Mesoporous Single Crystals with Fe-Rich Skin for Ultralow Overpotential in Oxygen Evolution Catalysis, Adv.Qin, Mesoporous Single Crystals with Fe-Rich Skin for Ultralow Overpotential in Oxygen Evolution Catalysis, Adv. Mater.34 (2022) e2200088.
[12] P. Prabhu, J.M. Lee, Metallenes as functional materials in electrocatalysis, Chem.Soc. Rev. 50 (2021) 6700-6719.
[13] H. Wang,J. Li,K. Li,Y. Lin,J. Chen,L. Gao,V. Nicolosi,X. Xiao,J.M. Lee,Transition metal nitrides for electrochemical energy applications,Chem.Soc. Rev 50 (2021) 1354-1390
[14] Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, R.S. Ruoff, Carbonbased supercapacitors produced by activation of graphene, Science 332 (2011) .
[16] L. Kong, X. Yin, M. Han, X. Yuan, Z. Hou, F. Ye, L. Zhang, L. Cheng, Z. Xu, J. Huang, Macroscopic bioinspired graphene sponge modified with in-situ grown carbon nanowires and its electromagnetic properties, Carbon 111 (2017) 94-102.
[17] H. Sun, L. Mei, J. Liang, Z. Zhao, C. Lee, H. Fei, M. Ding, J. Lau, M. Li, C. Wang X. Xu, G. Hao, B. Papandrea, I. Shakir, B. Dunn, Y. Huang, X. Duan, Three dimensional holey-graphene/niobia composite architectures for ultrahighrate energy storage, Science 356 (2017) 599-604.
[18] L. Qiu, J.Z. Liu, S.L. Chang, Y. Wu, D. Li, Biomimetic superelastic graphene-based cellular monoliths, Nat.3 (2012) 1241.3 (2012) 1241.
[19] X. Zhang, D. Zhang, Z. Xu, K. Zhang, Y. Zhang, M. Jing, L. Liu, Z. Zhang, N. Pu, J. Liu, C. Yan, A pioneering melamine foam-based electrode via facile synthesis as prospective direction for vanadium redox flow batteries, Chem.J. 439 (2022).J. 439 (2022), 135718
[21] B. Yaru, W. Hao, H. Jintang, L. Bowen, L. Dong, D. Liming, Nitrogen-rich holey graphene for efficient oxygen reduction reaction, Carbon 162 (2020) 66-73.
[22] L. Dos Santos-Gomez、J.R. Garcia、M.A. Montes-Moran、J.A. Menendez、S. GarciaGranda、A. Arenillas,《具有极高导电性的超轻石墨烯气凝胶》,Small 17 (2021) e2103407。
[23] W. Niu, L. Li, X. Liu, N. Wang, J. Liu, W. Zhou, Z. Tang, S. Chen, Mesoporous Ndopped carbons prepared with thermally removable nanoparticle templates: an efficient electrocatalyst for oxygen reduction reaction, J. Am. Chem.Chem.137 (2015) 5555-5562.
[24] X.Qin, S. Zhu, L. Zhang, S. Sun, M. Shao, Theoretical Studies of Metal-N-C for Oxygen Reduction and Hydrogen Evolution Reactions in Acid and Alkaline Solutions, J Electrochem 27 (2021) 185-194.
[25] X. Hu, Y. Chen, M. Zhang, G. Fu, D. Sun, J. -M.Lee, Y. Tang, Alveolate porous carbon aerogels supported Co9S8 derived from a new hybrid hydrogel for bifunctional oxygen electrocatalysis, Carbon 144 (2019) 557-566.
[26] J. Chen, C. Fan, X. Hu, C. Wang, Z. Huang, G. Fu, J.M. Lee, Y. Tang, Hierarchically Porous Co/Cox My ( as an Efficient Mott-Schottky Electrocatalyst for Oxygen Evolution in Rechargeable Zn-Air Batteries, Small 15 (2019) e1901518.
[27] X. Jiang, K. Liu, Q. Li, M. Liu, M. Yang, X. Chen, B-doped Core-Shell Fe@BC Nanozyme: Active Site Identification and Bacterial Inhibition, Chem.Chem.57 (2021) 1623-1626
[28] V. Jose, J.M.V. Nsanzimana, H. Hu, J. Choi, X. Wang, J.M. Lee, Highly Efficient Oxygen Reduction Reaction Activity of N-Doped Carbon-Cobalt Boride Heterointerfaces, Adv. Energy Mater.11 (2021) 2100157.
[29] T. He, Y. Chen, Q. Liu, B. Lu, X. Song, H. Liu, M. Liu, Y.N. Liu, Y. Zhang, X. Ouyang, S. Chen, Theory-Guided Regulation of FeN4 Spin State by Neighboring Cu Atoms for Enhanced Oxygen Reduction Electrocatalysis in Flexible Metal-Air Batteries, Angew.Chem.Int.Ed.61 (2022) e202201007.
[30] J. Liu, Z. Gong, C. Allen, W. Ge, H. Gong, J. Liao, J. Liu, K. Huang, M. Yan, R. Liu, G. He, J. Dong, G. Ye, H. Fei, Edge-hosted Fe-N sites on a multiscale porous carbon framework combining high intrinsic activity with efficient mass transport for oxygen reduction, Chem Catal 1 (2021) 1291-1307.
[31] L. Trotochaud、S.L. Young、J.K. Ranney、S.W. Boettcher,《镍铁氧氢氧化物氧进化电催化剂:有意和无意铁掺入的作用》,J. Am.Chem.136 (2014) 6744-6753.
[32] D.Y. Chung P.P. Lopes P. Farinazzo Bergamo Dias Martins、H. He、T. Kawaguchi、P. Zapol、H. You、D. Tripkovic、D. Strmcnik、Y. Zhu、S. Seifert、S. Lee、V.R. Stamenkovic、N.M. Markovic,氧进化反应中氢氧化物活性位点的动态稳定性,Nat Energy 52020222230
[33] J. Shah, Q. Xie, Z. Kuang, R. Ge, W. Zhou, D. Liu, A.I. Rykov, X. Li, J. Luo, J. Wang, In-Situ/Operando57Fe Mössbauer Spectroscopic Technique and Its Applications in NiFe-based Electrocatalysts for Oxygen Evolution Reaction, J Electrochem 28 (2022), 210854.
[34] X. Zhang, Y. Zhao, Y. Zhao, R. Shi, G.I.N. Waterhouse, T. Zhang, A Simple Synthetic Strategy toward Defect-Rich Polorous Monolayer NiFe-Layered Double Hydroxide Nanosheets for Efficient Electrocatalytic Water Oxidation, Adv. Energy Mater.9 (2019) 1900881
[35] B.Z. Lu, Q.M. Liu, C.Y. Wang, Z. Masood, D.J. Morris, F. Nichols, R. Mercado, P. Zhang, Q.F. Ge, H.L.L. Xin, S.W. Chen, Ultrafast Preparation of Nonequilibrium FeNi Spinels by Magnetic Induction Heating for Unprecedented Oxygen Evolution Electrocatalysis, Research 2022 (2022) 9756983.
[36] X. Xie, L. Shang, R. Shi, G.I.N. Waterhouse, J. Zhao, T. Zhang, Tubular assemblies of N -doped carbon nanotubes loaded with NiFe alloy nanoparticles as efficien bifunctional catalysts for rechargeable zinc-air batteries, Nanoscale 12 (2020) .
[37] G. Fu, X. Yan, Y. Chen, L. Xu, D. Sun, J.M. Lee, Y. Tang, Boosting Bifunctiona Oxygen Electrocatalysis with 3D Graphene Aerogel-Supported Ni/MnO Particles, Adv. Mater.30 (2018) 1704609
[38] G. Fu, J. Wang, Y. Chen, Y. Liu, Y. Tang, J.B. Goodenough, J.-M.Lee, Exploring Indium-Based Ternary Thiospinel as Conceivable High-Potential Air-Cathode for Rechargeable Zn-Air Batteries, Adv. Energy Mater.8 (2018) 1802263
[39] D. Zhou, Z. Cai, X. Lei, W. Tian, Y. Bi, Y. Jia, N. Han, T. Gao, Q. Zhang, Y. Kuang, J. Pan, X. Sun, X. Duan, NiCoFe-Layered Double Hydroxides/N-Doped Graphene Oxide Array Colloid Composite as an Efficient Bifunctional Catalyst for Oxygen Electrocatalytic Reactions, Adv. Energy Mater.8 (2018) 1701905.
[40] W.H. Niu, L.G. Li, N. Wang, S.B. Zeng, J. Liu, D.K. Zhao, S.W. Chen, Volatilizable template-assisted scalable preparation of honeycomb-like porous carbons fo efficient oxygen electroreduction, J. Mater. Chem.Chem.A 4 (2016) 10820-10827.
[41] W.H. Niu, L.G. Li, S.W. Chen, Recent Progress in Template-Assisted Synthesis of Nitrogen-Doped Porous Carbons for Oxygen Electreroduction, J Electrochem 23 (2017) 110-122.
[42] Q. Li, T. He, X. Jiang, Y. Lei, Q. Liu, C. Liu, Z. Sun, S. Chen, Y. Zhang, Boosting oxygen evolution activity of nickel iron hydroxide by iron hydroxide colloida particles, J Colloid Interf Sci 606 (2022) 518-525.
[43] Z. Wang, L. Xu, F. Huang, L. Qu, J. Li, K.A. Owusu, Z. Liu, Z. Lin, B. Xiang, X. Liu, K. Zhao, X. Liao, W. Yang, Y.B. Cheng, L. Mai, Copper-Nickel Nitride Nanosheets as Efficient Bifunctional Catalysts for Hydrazine-Assisted Electrolytic Hydrogen Production, Adv. Energy Mater.9 (2019) 1900390.
[44] D. Guan, W. Zhou, Z. Shao, Rational Design of Superior Electrocatalysts for Wate Oxidation:晶体结构还是非晶结构?小科学 1 (2021) 2100030
[45] L. Zhou, L. Fox, M. Włodek, L. Islas, A. Slastanova, E. Robles, O. Bikondoa, R. Harniman, N. Fox, M. Cattelan, W.H. Briscoe, Surface structure of few layer graphene, Carbon 136 (2018) 255-261
[47] A.R. Soleymani、S.M. Rafigh、M. Hekmati,RGO/Ag 的绿色合成:As evidence for the production of uniform mono-dispersed nanospheres using microfluidization, Appl.518 (2020), 146264.
[48] L.G. Cancado, A. Jorio, E.H. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M. V. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, Quantifying defects in graphene via Raman spectroscopy at different excitation energies, Nano Lett.11 2011) 3190-3196.
[49] X. Chen, D. Lai, B. Yuan, M.-L. Fu, Fabrication of superelastic and highly conductive graphene aerogels by precisely "unlocking" the oxygenated groups on graphene oxide sheets, Carbon 162 (2020) 552-561
[50] D. Deng, J. Qian, X. Liu, H. Li, D. Su, H. Li, H. Li, L. Xu, Non-Covalent Interaction of Atomically Dispersed Cu and Zn Pair Sites for Efficient Oxygen Reduction Reaction, Adv.Funct.Mater.32 (2022) 2203471.
[52] S. Wu、D. Deng、E. Zhang、H. Li、L. Xu,CoN 纳米粒子锚定在超薄 N 掺杂石墨烯上作为高稳定性锌-空气电池的氧还原电催化剂,Carbon 196 (2022) 347-353。
[53] Q. Li, T. He, Y.Q. Zhang, H.Q. Wu, J.J. Liu, Y.J. Qi, Y.P. Lei, H. Chen, Z.F. Sun, C. Peng, L.Z. Yi, Y. Zhang, Biomass Waste-Derived 3D Metal-Free Porous Carbon as a Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries, ACS Sustain.Chem.Chem.7 (2019) 17039-17046
[54] R. Shalvoy, Characterization of coprecipitated nickel on silica methanation catalysts by X-ray photoelectron spectroscopy, J. Catal.56 (1979) 336-348.
[55] L. Zhang, H. Chuai, H. Liu, q. Fan, S. Kuang, S.S. Zhang, X. Ma, Facet Dependent Oxygen Evolution Activity of Spinel Cobalt Oxides, J Electrochem, 28 (2022) 2108481
[56] N.S. McIntyre, D.G. Zetaruk, 铁氧化物的 X 射线光电子能谱研究,Anal.Chem.49 (2002) 1521-1529.
[57] K. Zhao, Z. Zhang, Y. Feng, S. Lin, H. Li, X. Gao, Surface oxygen vacancy modified Bi2MoO6/MIL-88B(Fe) heterostructure with enhanced spatial charge separation at the bulk & interface, Appl Catal B: Environ 268 (2020), 118740.
[58] F. Song, M.M. Busch, B. Lassalle-Kaiser, C.S. Hsu, E. Petkucheva, M. Bensimon, H M. Chen, C. Corminboeuf, X. Hu, An Unconventional Iron Nickel Catalyst for the Oxygen Evolution Reaction, ACS Cent.5 (2019) 558-568
[59] F. Dionigi、Z.H. Zeng、I. Sinev、T. Merzdorf、S. Deshpande、M.B. Lopez、S. Kunze I. Zegkinoglou、H. Sarodnik、D.X. Fan、A. Bergmann、J. Drnec、J.F. de Araujo M. Gliech、D.Teschner, J. Zhu, W.X. Li, J. Greeley, B.R. Cuenya, P. Strasser, In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxide during oxygen evolution, Nat.Commun.11 (2020) 2522
[60] C. Tang, H.F. Wang, X. Chen, B.Q. Li, T.Z. Hou, B. Zhang, Q. Zhang, M.M. Titirici, F. Wei, Topological Defects in Metal-Free Nanocarbon for Oxygen Electrocatalysis Adv. Mater.28 (2016) 6845-6851.
[61] S. Yasuda、L. Yu、J. Kim、K. Murakoshi,用于氧还原反应的石墨烯中选择性氮掺杂,Chem.Chem.49 (2013) 9627-9629.
[62] L. Yao, N. Zhang, Y. Wang, Y. Ni, D. Yan, C. Hu, Facile formation of 2D microsheets through in-situ toptactic conversion and surface corrosion:面向整体水分离的双功能电催化剂,J. Power Sources 374 (2018) 142-148
[63] M. Arif、G. Yasin、M. Shakeel、M.A. Mushtaq、W. Ye、X. Fang、S. Ji、D. Yan,分散在石墨烯纳米片上的 NiVB 纳米颗粒的高活性位点实现了高效和 pH 值通用的整体水分离,J Energy Chem 58 (2021)
[65] K. Zhou, W.J. Zhou, X.J. Liu, Y. Wang, J.Q. Wan, S.W. Chen, Nitrogen Self-Doped Porous Carbon from Surplus Sludge as Metal-Free Electrocatalysts for Oxygen Reduction Reactions, Acs Appl Mater Inter 6 (2014) 14911-14918.
[66] M. Liu, K.A. Min, B. Han, L.Y.S. Lee, Interfacing or Doping?铈在镍钴层双氢氧化物高促进水氧化中的作用》,Adv. Energy Mater 11 (2021) 2101281
[67] X. Liu, J. Meng, J. Zhu, M. Huang, B. Wen, R. Guo, L. Mai, Comprehensive Understanding into Complete Reconstruction of Precatalysts:Synthesis, Applications, and Characterizations, Adv Mater 33 (2021) 2007344
[68] J.F. Zhang, J.Y. Liu, L.F. Xi, Y.F. Yu, N. Chen, S.H. Sun, W.C. Wang, K.M. Lange, B. Zhang, Single-Atom Au/NiFe Layered Double Hydroxide Electrocatalyst:探究氧进化反应活性的起源》,J. Am.Chem.Soc 140 (2018) 3876-3879
[69] O. Diaz-Morales、D. Ferrus-Suspedra、M.T.M. Koper,氢氧化镍去质子化对其电化学水氧化活性的重要性,Chem.7 (2016) 2639-2645.
[70] K. Juodkazis, J. Juodkazytė, R. Vilkauskaitė, V. Jasulaitienė, Nickel surface anodic oxidation and electrocatalysis of oxygen evolution, J. Solid State Electrochem.12 (2008) 1469-1479.
[71] L. Bai, S. Lee, X. Hu, Spectroscopic and Electrokinetic Evidence for a Bifunctional Mechanism of the Oxygen Evolution Reaction, Angew.Chem.Int.Ed.60 (2021) 3095-3103.
[72] J. Chen, F. Zheng, S.-J. Zhang, A. Fisher, Y. Zhou, Z. Wang, Y. Li, B.-B. Xu, J.-T.Xu, J.-T. Li, S.-G.Li, S.-G. Sun, Interfacial Interaction.Sun, Interfacial Interaction between FeOOH and Ni-Fe LDH to Modulate the Local Electronic Structure for Enhanced OER Electrocatalysis, ACS Catal.8 (2018) .
[73] M. Kuang, J. Zhang, D. Liu, H. Tan, K.N. Dinh, L. Yang, H. Ren, W. Huang, W. Fang, J. Yao, X. Hao, J. Xu, C. Liu, L. Song, B. Liu, Q. Yan, Amorphous/Crystalline Heterostructured Cobalt-Vanadium-Iron (Oxy)hydroxides for Highly Efficient Oxygen Evolution Reaction, Adv. Energy Mater.10 (2020) 2002215.
[74] X. Lu, C. Zhao, Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities, Nat.6 (2015) 6616.6 (2015) 6616.
[75] C. Kuai, Y. Zhang, D. Wu, D. Sokaras, L. Mu, S. Spence, D. Nordlund, F. Lin, X.W. Du, Fully Oxidized Ni-Fe Layered Double Hydroxide with Exposed Active Sites for Catalyzing Oxygen Evolution Reaction, ACS Catal.9 (2019) 6027-6032.
[76] S. Chen, Z. Kang, X. Zhang, J. Xie, H. Wang, W. Shao, X. Zheng, W. Yan, B. Pan, Y. Xie, Highly Active Fe Sites in Ultrathin Pyrrhotite Fe7S8 Nanosheet Realizing Efficient Electrocatalytic Oxygen Evolution, ACS Cent.3 (2017) 1221-1227.
[77] Z. Cai, P. Wang, J. Zhang, A. Chen, J. Zhang, Y. Yan, X. Wang, Reinforced Layered Double Hydroxide Oxygen-Evolution Electrocatalysts:A Polyoxometallic Acid WetEtching Approach and Synergistic Mechanism, Adv. Mater.34 (2022) e2110696
[78] Z. He, J. Zhang, Z. Gong, H. Lei, D. Zhou, N. Zhang, W. Mai, S. Zhao, Y. Chen, Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis, Nat.Commun.13 (2022) 2191
[79] N. Yu、W. Cao、M. Huttula、Y. Kayser、P. Hoenicke、B. Beckhoff、F. Lai、R. Dong、H. Sun、B. Geng,用于氧进化反应的性能增强型铁镍氢氧化物双壳纳米管阵列的制备,Appl Catal B: Environ 261 (2020),118193。
[80] C. Zhou, X. Chen, S. Liu, Y. Han, H. Meng, Q. Jiang, S. Zhao, F. Wei, J. Sun, T. Tan, R. Zhang, Superraduble Bifunctional Oxygen Electrocatalyst for High-Performance Zinc-Air Batteries, J. Am. Chem.Chem.144 (2022) 2694-2704.
[81] D. Yan, Y. Li, J. Huo, R. Chen, L. Dai, S. Wang, Defect Chemistry of NonpreciousMetal Electrocatalysts for Oxygen Reactions, Adv. Mater.29 (2017) 1606459.
[82] A. Grimaud, O. Diaz-Morales, B. Han, W.T. Hong, Y.L. Lee, L. Giordano, K A. Stoerzinger, M.T.M. Koper, Y. Shao-Horn, Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution, Nat.Chem.9 (2017)
[83] J. Yin, Y. Li, F. Lv, M. Lu, K. Sun, W. Wang, L. Wang, F. Cheng, Y. Li, P. Xi, S. Guo, Oxygen Vacancies Dominated Interface Porous Nanowires for Portable Zn-Air Batteries Driven Water Splitting Devices, Adv. Mater.29 (2017) 1704681.
[84] X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Hydrogenated TiO2 nanotube arrays for supercapacitors, Nano Lett.12 (2012) 1690-1696
通讯作者中南大学化学与化工学院微纳材料界面科学湖南省重点实验室,湖南省长沙市岳麓区麓山南路932号,邮编:410083(T. He)。美国加州大学化学与生物化学系,地址:1156 High Street, Santa Cruz, CA 95064(S. Chen)。