这是用户在 2024-9-13 17:19 为 https://app.immersivetranslate.com/pdf-pro/62b96659-4e89-45cc-a72c-7496bcb60560 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

A Simple Method to Extract the Thermal Resistance of GaN HEMTs From De-Trapping Characteristics
从去捕获特性提取 GaN HEMT 热阻的简单方法

Benito González ^(o+){ }^{\oplus}, Luís C. Nunes ^(o+){ }^{\oplus}, Member, IEEE, João L. Gomes ^(o+){ }^{\oplus}, Graduate Student Member, IEEE,
贝尼托·冈萨雷斯 ^(o+){ }^{\oplus} ,路易斯·C·努内斯 ^(o+){ }^{\oplus} ,IEEE 会员,若昂·L·戈麦斯 ^(o+){ }^{\oplus} ,研究生会员,IEEE,
Joana C. Mendes ^(o+){ }^{\oplus}, Member, IEEE, and Jose L. Jimenez, Member, IEEE
乔安娜·C·门德斯 ^(o+){ }^{\oplus} ,IEEE 会员,和何塞·L·希门尼斯,IEEE 会员

Abstract 摘要

This letter proposes a new method for extracting the thermal resistance of GaN-based HEMTs using pulse recovery data. After the device temperature and trapping state are established from different quiescent power dissipations for several base-plate temperatures, the recovery profile of the drain current is measured. The recovery time is then used as a temperature-sensitive electrical parameter to extract the thermal resistance of the device. The proposed method has been applied to a Schottky-gate HEMT on SiC, for which a thermal resistance of 15.7 C mm / W 15.7 C mm / W 15.7^(@)C-mm//W15.7^{\circ} \mathrm{C}-\mathrm{mm} / \mathrm{W} was extracted, a value in good agreement with others reported for similar devices. Comparison with the one obtained from a step response is also done. Finally, the uncertainties of the proposed method related to the pulse width, temperature, percentage of the drain current recovery time, and averaging procedure are discussed.
这封信提出了一种使用脉冲恢复数据提取基于 GaN 的 HEMT 热阻的新方法。在为几个基板温度建立设备温度和捕获状态后,测量漏电流的恢复曲线。然后,将恢复时间用作温度敏感电气参数,以提取设备的热阻。该方法已应用于 SiC 上的肖特基栅 HEMT,提取的热阻为 15.7 C mm / W 15.7 C mm / W 15.7^(@)C-mm//W15.7^{\circ} \mathrm{C}-\mathrm{mm} / \mathrm{W} ,与其他类似设备报告的值相符。还与从阶跃响应获得的值进行了比较。最后,讨论了与脉冲宽度、温度、漏电流恢复时间百分比和平均过程相关的提议方法的不确定性。

Index Terms-Pulse recovery data, electrothermal characterization, trapping, gallium nitride, high-electronmobility transistors (HEMTs), thermal resistance.
索引词-脉冲恢复数据,电热特性,捕获,氮化镓,高电子迁移率晶体管(HEMTs),热阻。

I. INTRODUCTION 一. 引言

THERE are several techniques for measuring the thermal resistance, R th R th R_(th)R_{\mathrm{th}}, of GaN high-electron mobility transistors (HEMTs), such as pulsed characteristics [1], [2], step response [3], infrared and Raman thermography [4], [5], and AC conductance method [6]. Temperature-sensitive electrical parameters (TSEPs), such as the forward voltage drop between the gate and source [7], the channel ON-resistance [7], [8], the saturation drain current [9], and the gate metal resistance
测量氮化镓高电子迁移率晶体管(HEMTs)热阻 R th R th R_(th)R_{\mathrm{th}} 的几种技术包括脉冲特性[1],[2],阶跃响应[3],红外和拉曼热成像[4],[5],以及交流导电法[6]。温度敏感电气参数(TSEPs),如栅极与源极之间的正向电压降[7],通道导通电阻[7],[8],饱和漏电流[9],以及栅极金属电阻。
Fig. 1. Illustration of the pulse response method: the excitation waveforms and the drain current with the de-trapping recovery phenomenon and the respective channel temperature variation, together with R t h R t h R_(th)R_{t h} vs. φ φ varphi\varphi, and the extraction of R th R th  R_("th ")\mathrm{R}_{\text {th }} with the VFM.
图 1. 脉冲响应方法的示意图:激励波形和漏电流与去捕获恢复现象及相应的通道温度变化,以及 R t h R t h R_(th)R_{t h} φ φ varphi\varphi 的关系,以及使用 VFM 提取 R th R th  R_("th ")\mathrm{R}_{\text {th }}

[10], [11], have also been used to extract the R th R th  R_("th ")R_{\text {th }} of HEMTs. Limitations of all these techniques are addressed in [6].
[10],[11] 也被用来提取 HEMT 的 R th R th  R_("th ")R_{\text {th }} 。所有这些技术的局限性在 [6] 中得到了讨论。
Knowing that the de-trapping time is very sensitive to temperature (one order of magnitude for a 40 C 40 C 40^(@)C40{ }^{\circ} \mathrm{C} swing) [12]- [17], the main objective of this work is to take advantage of this feature and develop a simple and fast but precise thermo-electrical method, using easily accessible equipment in most RF laboratories, to extract the thermal resistance of HEMTs from pulse recovery data. Moreover, contrary to other simpler methodologies [1], [2], [3], [6], [8], [9], the proposed method does not require any separation of thermal and trapping effects. It can be applied to extract the thermal resistance of packaged devices, by simply mounting them on thermal stages and automatically repeating the procedure.
知道去捕获时间对温度非常敏感(对于 40 C 40 C 40^(@)C40{ }^{\circ} \mathrm{C} 的摆动变化一个数量级)[12]- [17],本工作的主要目标是利用这一特性,开发一种简单、快速但精确的热电方法,使用大多数射频实验室中易于获取的设备,从脉冲恢复数据中提取 HEMT 的热阻。此外,与其他更简单的方法论[1],[2],[3],[6],[8],[9]相反,所提出的方法不需要分离热效应和捕获效应。它可以通过简单地将封装设备安装在热台上并自动重复该过程来提取封装设备的热阻。
The method is described in Section II. The experimental setup and the characteristics of the tested device are detailed in Section III. The results and experimental validation are presented in Section IV. Conclusions are given in Section V.
该方法在第二节中描述。实验设置和测试设备的特性在第三节中详细说明。结果和实验验证在第四节中呈现。结论在第五节中给出。

II. PROPOSED TECHNIQUE II. 提议的技术

The new method to extract the R th R th R_(th)R_{\mathrm{th}} of GaN HEMTs is based on the dependence of the de-trapping time constant on the channel temperature, T ch T ch  T_("ch ")T_{\text {ch }}. As shown in Fig. 1, after setting the base-plate temperature, T bp T bp T_(bp)T_{\mathrm{bp}}, the measurement sequence starts by setting different quiescent gate- and drain-source voltages, V GQ V GQ V_(GQ)V_{\mathrm{GQ}} and V DQ V DQ V_(DQ)V_{\mathrm{DQ}}, respectively, to generate a quiescent drain current, I DQ I DQ I_(DQ)I_{\mathrm{DQ}}, and to consequently increase T ch T ch T_(ch)T_{\mathrm{ch}}. The initial biasing period should be sufficiently long (around 5 min ) to ensure a steady-state condition, with T ch = T ch , Q T ch = T ch , Q T_(ch)=T_(ch,Q)T_{\mathrm{ch}}=T_{\mathrm{ch}, \mathrm{Q}}. A high drain voltage, V D V D V_(D)V_{\mathrm{D}}, is then applied to induce charge trapping,
提取 GaN HEMT 的 R th R th R_(th)R_{\mathrm{th}} 的新方法基于去捕获时间常数对通道温度的依赖性 T ch T ch  T_("ch ")T_{\text {ch }} 。如图 1 所示,在设置基板温度 T bp T bp T_(bp)T_{\mathrm{bp}} 后,测量序列通过设置不同的静态栅极和漏源电压 V GQ V GQ V_(GQ)V_{\mathrm{GQ}} V DQ V DQ V_(DQ)V_{\mathrm{DQ}} 开始,以生成静态漏电流 I DQ I DQ I_(DQ)I_{\mathrm{DQ}} ,并因此增加 T ch T ch T_(ch)T_{\mathrm{ch}} 。初始偏置周期应足够长(约 5 分钟),以确保稳态条件, T ch = T ch , Q T ch = T ch , Q T_(ch)=T_(ch,Q)T_{\mathrm{ch}}=T_{\mathrm{ch}, \mathrm{Q}} 。然后施加高漏电压 V D V D V_(D)V_{\mathrm{D}} 以诱导电荷捕获,

while the gate voltage, V G V G V_(G)V_{\mathrm{G}}, is simultaneously pulsed down to avoid temperature spikes. These pulses must be narrow enough ( 1 μ s ) ( 1 μ s ) (1mus)(1 \mu \mathrm{s}) to prevent a significant decrease of T ch T ch T_(ch)T_{\mathrm{ch}}, while, at the same time, ensuring considerable trapping. With this, we can assume that, immediately after the pulse is stepped down, right when the de-trapping process is about to start, T ch T ch , Q T ch T ch , Q T_(ch)~~T_(ch,Q)T_{\mathrm{ch}} \approx T_{\mathrm{ch}, \mathrm{Q}}.
在此期间,栅电压 V G V G V_(G)V_{\mathrm{G}} 同时被脉冲降低,以避免温度峰值。这些脉冲必须足够窄 ( 1 μ s ) ( 1 μ s ) (1mus)(1 \mu \mathrm{s}) ,以防止 T ch T ch T_(ch)T_{\mathrm{ch}} 的显著下降,同时确保相当的捕获。这样,我们可以假设,在脉冲降低后立即,正当去捕获过程即将开始时, T ch T ch , Q T ch T ch , Q T_(ch)~~T_(ch,Q)T_{\mathrm{ch}} \approx T_{\mathrm{ch}, \mathrm{Q}}
During the de-trapping process, the drain current, I D I D I_(D)I_{\mathrm{D}}, recovers from an initial value, I Do I Do I_(Do)I_{\mathrm{Do}}, to I DQ I DQ I_(DQ)I_{\mathrm{DQ}}, where the channel temperature is again T ch , Q T ch , Q T_(ch,Q)T_{\mathrm{ch}, \mathrm{Q}}. Thus, with a percentage of I DQ I o I DQ I o I_(DQ)-I_(o)I_{\mathrm{DQ}}-I_{\mathrm{o}}, φ φ varphi\varphi, as a criterion, the drain current recovery time, τ φ τ φ tau_(varphi)\tau_{\varphi}, given by:
在去捕获过程中,漏电流 I D I D I_(D)I_{\mathrm{D}} 从初始值 I Do I Do I_(Do)I_{\mathrm{Do}} 恢复到 I DQ I DQ I_(DQ)I_{\mathrm{DQ}} ,此时通道温度再次为 T ch , Q T ch , Q T_(ch,Q)T_{\mathrm{ch}, \mathrm{Q}} 。因此,以 I DQ I o I DQ I o I_(DQ)-I_(o)I_{\mathrm{DQ}}-I_{\mathrm{o}} 的百分比 φ φ varphi\varphi 作为标准,漏电流恢复时间 τ φ τ φ tau_(varphi)\tau_{\varphi} 为:
τ φ ( T ch , Q ) = Δ t | Δ I D Δ I DQ = φ 100 = Δ t | I D I Do I DQ I Do = φ 100 τ φ T ch , Q = Δ t Δ I D Δ I DQ = φ 100 = Δ t I D I Do I DQ I Do = φ 100 tau_(varphi)(T_(ch,Q))= Delta t|_((DeltaI_(D))/(DeltaI_(DQ))=(varphi)/(100))= Delta t|_((I_(D)-I_(Do))/(I_(DQ)-I_(Do)))=(varphi)/(100)\tau_{\varphi}\left(T_{\mathrm{ch}, \mathrm{Q}}\right)=\left.\Delta t\right|_{\frac{\Delta I_{\mathrm{D}}}{\Delta I_{\mathrm{DQ}}}=\frac{\varphi}{100}}=\left.\Delta t\right|_{\frac{I_{\mathrm{D}}-I_{\mathrm{Do}}}{I_{\mathrm{DQ}}-I_{\mathrm{Do}}}}=\frac{\varphi}{100}
could be used as a TSEP with T ch , Q T ch , Q T_(ch,Q)T_{\mathrm{ch}, \mathrm{Q}} (see Fig. 1).
可以用作 TSEP 与 T ch , Q T ch , Q T_(ch,Q)T_{\mathrm{ch}, \mathrm{Q}} (见图 1)。

The de-trapping process can be physically described by the Shockley-Read-Hall model, where the emission time constant, τ e τ e tau_(e)\tau_{\mathrm{e}}, is given by A 1 T ch 2 exp ( E A / ( K B T ch ) ) A 1 T ch 2 exp E A / K B T ch A^(-1)T_(ch)^(-2)exp(E_(A)//(K_(B)T_(ch)))A^{-1} T_{\mathrm{ch}}^{-2} \exp \left(E_{\mathrm{A}} /\left(K_{\mathrm{B}} T_{\mathrm{ch}}\right)\right), with E A E A E_(A)E_{\mathrm{A}} and K B K B K_(B)K_{\mathrm{B}} being the trap activation energy and Boltzmann constant, respectively, and A A AA incorporates the remaining temperature independent parameters [18]. In a steady-state regime, τ φ τ φ tau_(varphi)\tau_{\varphi} in (1) is directly proportional to τ e τ e tau_(e)\tau_{\mathrm{e}}. Then, considering a small range of channel temperature variation (typically 40 C 40 C 40^(@)C40^{\circ} \mathrm{C} of variation), δ T ch = δ T bp + R th × δ P DQ δ T ch = δ T bp + R th × δ P DQ deltaT_(ch)=deltaT_(bp)+R_(th)xx deltaP_(DQ)\delta T_{\mathrm{ch}}=\delta T_{\mathrm{bp}}+R_{\mathrm{th}} \times \delta P_{\mathrm{DQ}}, with P DQ = I DQ V DQ P DQ = I DQ V DQ P_(DQ)=I_(DQ)V_(DQ)P_{\mathrm{DQ}}=I_{\mathrm{DQ}} V_{\mathrm{DQ}} being the quiescent power dissipation, ln τ φ ln τ φ ln tau_(varphi)\ln \tau_{\varphi} can be easily linearized without significantly increasing the error. That is,
去捕获过程可以通过肖克利-里德-霍尔模型进行物理描述,其中发射时间常数 τ e τ e tau_(e)\tau_{\mathrm{e}} A 1 T ch 2 exp ( E A / ( K B T ch ) ) A 1 T ch 2 exp E A / K B T ch A^(-1)T_(ch)^(-2)exp(E_(A)//(K_(B)T_(ch)))A^{-1} T_{\mathrm{ch}}^{-2} \exp \left(E_{\mathrm{A}} /\left(K_{\mathrm{B}} T_{\mathrm{ch}}\right)\right) 给出, E A E A E_(A)E_{\mathrm{A}} K B K B K_(B)K_{\mathrm{B}} 分别是陷阱激活能和玻尔兹曼常数,而 A A AA 包含剩余的温度无关参数[18]。在稳态条件下,(1)中的 τ φ τ φ tau_(varphi)\tau_{\varphi} τ e τ e tau_(e)\tau_{\mathrm{e}} 成正比。然后,考虑到通道温度变化的小范围(通常为 40 C 40 C 40^(@)C40^{\circ} \mathrm{C} 的变化), δ T ch = δ T bp + R th × δ P DQ δ T ch = δ T bp + R th × δ P DQ deltaT_(ch)=deltaT_(bp)+R_(th)xx deltaP_(DQ)\delta T_{\mathrm{ch}}=\delta T_{\mathrm{bp}}+R_{\mathrm{th}} \times \delta P_{\mathrm{DQ}} ,其中 P DQ = I DQ V DQ P DQ = I DQ V DQ P_(DQ)=I_(DQ)V_(DQ)P_{\mathrm{DQ}}=I_{\mathrm{DQ}} V_{\mathrm{DQ}} 是静态功耗, ln τ φ ln τ φ ln tau_(varphi)\ln \tau_{\varphi} 可以很容易地线性化,而不会显著增加误差。也就是说,
ln τ φ a o a 1 × T chQ a o a 1 × ( T bp + R th × P DQ ) ln τ φ a o a 1 × T chQ a o a 1 × T bp + R th × P DQ ln tau_(varphi)~~a_(o)-a_(1)xxT_(chQ)~~a_(o)-a_(1)xx(T_(bp)+R_(th)xxP_(DQ))\ln \tau_{\varphi} \approx a_{\mathrm{o}}-a_{1} \times T_{\mathrm{chQ}} \approx a_{\mathrm{o}}-a_{1} \times\left(T_{\mathrm{bp}}+R_{\mathrm{th}} \times P_{\mathrm{DQ}}\right)
where a 0 a 0 a_(0)a_{0} and a 1 a 1 a_(1)a_{1} are fitting parameters that can be extracted using least squares to minimize the mean quadratic error with respect to the measured data. The accuracy of this method lies in the use of multiple base-plate temperatures and power dissipations, resulting in an average R th R th R_(th)R_{\mathrm{th}}. Additionally, R th R th R_(th)R_{\mathrm{th}} could be extracted for a wide range of T ch T ch T_(ch)T_{\mathrm{ch}} (varying T bp T bp T_(bp)T_{\mathrm{bp}} and P DQ ) P DQ {:P_(DQ))\left.P_{\mathrm{DQ}}\right), by dividing it into small consecutive ranges for which ln τ φ ln τ φ ln tau_(varphi)\ln \tau_{\varphi} can be linearized.
其中 a 0 a 0 a_(0)a_{0} a 1 a 1 a_(1)a_{1} 是可以通过最小二乘法提取的拟合参数,以最小化与测量数据的均方误差。该方法的准确性在于使用多个基板温度和功率耗散,从而得到平均值 R th R th R_(th)R_{\mathrm{th}} 。此外, R th R th R_(th)R_{\mathrm{th}} 可以在广泛的 T ch T ch T_(ch)T_{\mathrm{ch}} 范围内提取(变化的 T bp T bp T_(bp)T_{\mathrm{bp}} P DQ ) P DQ {:P_(DQ))\left.P_{\mathrm{DQ}}\right) ),通过将其划分为小的连续范围,使得 ln τ φ ln τ φ ln tau_(varphi)\ln \tau_{\varphi} 可以线性化。
In our case, during the pulse, and certainly during the de-trapping process, some thermal dynamics can be excited, which leads the slight decrease of T ch T ch T_(ch)T_{\mathrm{ch}}, as it is illustrated in Fig. 1. Nevertheless, for high percentages of the drain current recovery time, T ch T ch  T_("ch ")T_{\text {ch }} tends to the original value, T chQ T chQ  T_("chQ ")T_{\text {chQ }}, imposed by T bp + R th × P DQ T bp + R th × P DQ T_(bp)+R_(th)xxP_(DQ)T_{\mathrm{bp}}+R_{\mathrm{th}} \times P_{\mathrm{DQ}}, when (2) is valid. As Fig. 1 shows, where the dependence of the extracted thermal resistance on φ φ varphi\varphi is represented (measured data with solid squares and their trend with a dashed line), a percentage of between 90 95 % 90 95 % 90-95%90-95 \% turns out to be reasonable. For φ < 90 % φ < 90 % varphi < 90%\varphi<90 \%, an unrealistic overestimated R th R th R_(th)R_{\mathrm{th}} would be obtained due to excited de-trapping and thermal dynamics and, for φ φ varphi\varphi at nearly 100 % , I D 100 % , I D 100%,I_(D)100 \%, I_{\mathrm{D}} tends to plateau and the uncertainty in the extracted recovery time increases.
在我们的案例中,在脉冲期间,尤其是在去捕获过程中,一些热动力学可以被激发,这导致 T ch T ch T_(ch)T_{\mathrm{ch}} 的轻微下降,如图 1 所示。然而,对于高比例的漏电流恢复时间, T ch T ch  T_("ch ")T_{\text {ch }} 趋向于由 T bp + R th × P DQ T bp + R th × P DQ T_(bp)+R_(th)xxP_(DQ)T_{\mathrm{bp}}+R_{\mathrm{th}} \times P_{\mathrm{DQ}} 施加的原始值 T chQ T chQ  T_("chQ ")T_{\text {chQ }} ,当(2)有效时。如图 1 所示,提取的热阻与 φ φ varphi\varphi 的依赖关系(用实心方块表示的测量数据及其趋势用虚线表示),在 90 95 % 90 95 % 90-95%90-95 \% 之间的百分比被认为是合理的。对于 φ < 90 % φ < 90 % varphi < 90%\varphi<90 \% ,由于激发的去捕获和热动力学,将获得不切实际的高估 R th R th R_(th)R_{\mathrm{th}} ,而对于 φ φ varphi\varphi 在接近 100 % , I D 100 % , I D 100%,I_(D)100 \%, I_{\mathrm{D}} 时趋于平稳,提取的恢复时间的不确定性增加。

In [19] a simple thermally activated trapping model based on SRH model was proposed. In this model, the trapping dynamics induces a threshold voltage shift modeled by the charging (for capture) and discharging (for emission) of a capacitor through the corresponding R-C linear system. By incorporating self-heating effects using a first-order thermal network, as in [13] and [19], the proposed method could be reproduced without a significant deviation of the extracted R th R th  R_("th ")R_{\text {th }} from the thermal network, showing its consistency.
在[19]中,提出了一种基于 SRH 模型的简单热激活捕获模型。在该模型中,捕获动态引起的阈值电压偏移通过相应的 R-C 线性系统中电容器的充电(用于捕获)和放电(用于发射)进行建模。通过使用一阶热网络结合自加热效应,如[13]和[19]所示,所提出的方法可以在提取的 R th R th  R_("th ")R_{\text {th }} 与热网络之间没有显著偏差的情况下重现,显示出其一致性。
Alternatively, as Fig. 1 shows, a linear relationship, F F FF, between ln τ 90 % ln τ 90 % ln tau_(90%)\ln \tau_{90 \%} and P DQ P DQ P_(DQ)P_{\mathrm{DQ}} can be extracted for a base-plate temperature T bp a T bp a T_(bp-a)T_{\mathrm{bp}-\mathrm{a}} (with, at least, three quiescent power dissipations). Then, for a given pair of [ T bp b , P DQ b ] T bp b , P DQ b [T_(bp-b),P_(DQ-b)]\left[T_{\mathrm{bp}-\mathrm{b}}, P_{\mathrm{DQ}-\mathrm{b}}\right] with τ 90 % b τ 90 % b tau_(90%-b)\tau_{90 \%-\mathrm{b}}, the necessary quiescent power dissipation for producing the same channel temperature at T bp a T bp a T_(bp-a)T_{\mathrm{bp}-\mathrm{a}} results in
或者,如图 1 所示,可以提取出基板温度 T bp a T bp a T_(bp-a)T_{\mathrm{bp}-\mathrm{a}} ln τ 90 % ln τ 90 % ln tau_(90%)\ln \tau_{90 \%} P DQ P DQ P_(DQ)P_{\mathrm{DQ}} 之间的线性关系 F F FF (至少需要三个静态功耗)。然后,对于给定的 [ T bp b , P DQ b ] T bp b , P DQ b [T_(bp-b),P_(DQ-b)]\left[T_{\mathrm{bp}-\mathrm{b}}, P_{\mathrm{DQ}-\mathrm{b}}\right] τ 90 % b τ 90 % b tau_(90%-b)\tau_{90 \%-\mathrm{b}} ,在 T bp a T bp a T_(bp-a)T_{\mathrm{bp}-\mathrm{a}} 下产生相同通道温度所需的静态功耗为
Fig. 2. Diagram of the experimental setup.
图 2. 实验装置示意图。
Fig. 3. Percentage of the recovered drain current (lines) vs. recovery time, for different P D Q P D Q P_(DQ)P_{D Q} and T b p = 25 C T b p = 25 C T_(bp)=25^(@)CT_{b p}=25^{\circ} \mathrm{C}. The inset shows analogously the same dependency for different T bp T bp T_(bp)\mathrm{T}_{\mathrm{bp}} with V GQ = 2 V V GQ = 2 V V_(GQ)=-2V\mathrm{V}_{\mathrm{GQ}}=-2 \mathrm{~V}. In both cases, the 90 % 90 % 90%90 \% criterion for the drain current recovery time is indicated with horizontal and vertical lines.
图 3. 不同 P D Q P D Q P_(DQ)P_{D Q} T b p = 25 C T b p = 25 C T_(bp)=25^(@)CT_{b p}=25^{\circ} \mathrm{C} 的恢复漏电流百分比(线)与恢复时间的关系。插图同样显示了不同 T bp T bp T_(bp)\mathrm{T}_{\mathrm{bp}} V GQ = 2 V V GQ = 2 V V_(GQ)=-2V\mathrm{V}_{\mathrm{GQ}}=-2 \mathrm{~V} 的相同依赖关系。在这两种情况下,漏电流恢复时间的 90 % 90 % 90%90 \%