A rationally designed biolubricant hydrogel coating for positive anti-biocorrosion and dynamic damage repaired properties
合理设计的生物润滑剂水凝胶涂层具有积极的抗生物腐蚀和动态损伤修复性能
Yanan Lia,#, Panpan Tiana,#, Hao Caoa, Yuan Wanga
亚南·利亚、#、盼盼·蒂亚娜、#郝草阿、袁旺加,
Abstract: The polymer hydrogel is an ideal material for repairing the damage of natural articular cartilage. However, there are insufficient mechanical properties, poor lubrication performance, easy to wear and other problems, Therefore, we designed a self-healing and strong yet slippery hydrogel coating based on Schiff base bond and metal coordination bond, using dialdehyde starch (DS) and acrylamide (AM) as raw materials, adding nano-composite ZIF-8 and metal ion Fe3+. The ZIF-8/DS/AM/Fe3+ hydrogel has more excellent corrosion resistance, self-lubricating performance and self-healing performance. The lower friction coefficient and higher anti-friction properties are due to the formation of self-healing bonds (Schiff base bonds and metal coordination bonds), as well as the rhombohedral structure of the metal-organic framework ZIF-8, which enables it to roll, in addition to the addition of the composite nanomaterial ZIF-8, which forms a barrier to prevent ionic corrosion and delay the corrosion process, making it have better corrosion resistance. The designed ZIF-8/DS/AM/Fe3+ hydrogel provides potential applications for artificial joint replacement and cartilage repair, and also provides an effective idea for the development of intelligent hydrogel coatings.
摘要:高分子水凝胶是修复天然关节软骨损伤的理想材料。但其存在机械性能不足、润滑性能差、易磨损等问题,为此,以双醛淀粉(DS)和丙烯酰胺(AM)为原料,添加纳米复合材料ZIF-8和金属离子Fe3+,设计了一种基于席夫碱键和金属配位键的自修复且强韧而光滑的水凝胶涂层。ZIF-8/DS/AM/Fe3+水凝胶具有更优异的耐腐蚀性能、自润滑性能和自修复性能。 较低的摩擦系数和较高的抗摩擦性能是由于自愈键的形成(席夫碱键和金属配位键),以及金属-有机骨架ZIF-8的菱面体结构,使其能够滚动,除了复合纳米材料ZIF-8的加入,形成屏障,防止离子腐蚀,延缓腐蚀过程使其具有更好的耐腐蚀性。所设计的ZIF-8/DS/AM/Fe 3+水凝胶为人工关节置换和软骨修复提供了潜在的应用,也为智能水凝胶涂层的开发提供了有效的思路。
Key words: self-healing; ZIF-8; Bio tribology; Low friction loss; Corrosion resistance
关键词:自修复; ZIF-8;生物摩擦学;低摩擦损失;耐腐蚀性.
Introduction
介绍
Articular cartilage protects joints by reducing friction and absorbing impact on joint surfaces. Due to various factors such as age, congenital diseases, wear or trauma, cartilage will be damaged. However, articular cartilage Lack of rich vascular tissue and its ability to regenerate itself is significantly limited, leading to the occurrence of osteoarthritis. Joint replacement is considered to be an effective treatment for osteoarthritis. The commonly used artificial joint materials are mainly metal materials, ceramic materials and ultra-high molecular weight polyethylene, among them, titanium alloy has high specific strength, corrosion resistance, high strength, high fatigue, low temperature properties [1, 2, 3, 4]. It is an important material in automobile manufacturing, biomedicine and other fields. At present, in medical devices, titanium alloys have become the most developed Promising metal implants, which will gradually replace medical stainless steel as the main material for artificial bones and joints [5, 6, 7]. However, there are still some clinical problems with titanium alloys, such as
网状软骨通过减少摩擦和吸收对关节表面的冲击来保护关节。由于年龄、先天性疾病、磨损或创伤等各种因素,软骨都会受到损伤。关节软骨缺乏丰富的血管组织,其自身再生能力明显受限,导致骨关节炎的发生。关节置换术被认为是骨关节炎的有效治疗方法。 常用的人工关节材料主要有金属材料、陶瓷材料和超高分子量聚乙烯,其中钛合金具有高比强度、耐腐蚀、高强度、高疲劳、低温等特性[1,2,3,4]。它是汽车制造、生物医药等领域的重要材料。目前,在医疗器械中,钛合金已成为最具发展前景的金属植入物,将逐步取代医用不锈钢成为人工骨和关节的主要材料[5,6,7]。 然而,钛合金在临床上仍存在一些问题,如当植入物(特别是当骨和关节等)在人体内服役时,它们受到循环应力的作用,很容易造成表面磨损和剥落,从而失效。因此,有学者认为医用钛合金表面改性是改善材料表面性能的有效方法[8,9,10]。
Hydrogel coating offers new opportunities for enhancing the biocompatibility and multifunctionality of Ti6Al4V alloy surface. Hydrogels have three-dimensional (3D) porous networks that resemble the extracellular matrix (ECM) in natural tissues [11, 12, 13], providing cells with a growth environment similar to that of natural tissues, promoting cell attachment, proliferation, and differentiation, they have important applications in drug delivery, wound dressing [14, 15, 16], and bone tissue engineering. Therefore, constructing hydrogel coating on medical titanium alloys is a sound strategy for improving the surface properties of materials. The inevitable fretting injury between bone tissue and the fixed interface of artificial joint material is one of the key factors affecting the longevity of artificial joints. This will undermine its reliability and stability, limiting its practical application. Therefore, designing and manufacturing hydrogels with self-healing capabilities is both important and necessary [17, 18, 19]. Chu et al. [20] prepared cross-linked n-succinic chitosan-oxidized hyaluronic acid hydrogels loaded with exosomes from bone marrow mesenchymal stem cells. The results indicated that the cross-linked n-succinic chitosan-oxidized hyaluronic acid hydrogels loaded with bone marrow mesenchymal stem cell exosomes could promote bone formation, angiogenesis, and bone regeneration in rat cranial defects. Luo et al. [21] prepared an intelligent response hydrogel composed of carboxymethyl chitosan (CMCS), dextran (DEX), 4-formylphenyl boric acid (4-FPBA) and MOF (containing magnesium and garlic acid). In vivo and in vitro experiments verified that this hydrogel can inhibit the expression of inflammation related genes and egg white to promote periodontal bone regeneration.
水凝胶涂层为增强Ti6Al4V合金表面的生物相容性和多功能性提供了新的机会。水凝胶具有三维(3D)多孔网络,类似于天然组织中的细胞外基质(ECM)[11,12,13],为细胞提供类似于天然组织的生长环境,促进细胞附着、增殖和分化,在药物输送、伤口敷料[14,15,16]和骨组织工程中具有重要应用。因此,在医用钛合金表面构建水凝胶涂层是改善材料表面性能的一种有效方法。骨组织与人工关节材料固定界面之间不可避免的微动损伤是影响人工关节寿命的关键因素之一。这将破坏其可靠性和稳定性,限制其实际应用。因此,设计和制造具有自我修复能力的水凝胶是重要和必要的[17,18,19]。Chu等 [20]制备的负载有来自骨髓间充质干细胞的外来体的交联的N-琥珀酸壳聚糖-氧化的透明质酸水凝胶。结果表明,负载骨髓间充质干细胞外泌体的交联N-琥珀酸壳聚糖-氧化透明质酸水凝胶可促进大鼠颅骨缺损的骨形成、血管生成和骨再生。Luo等人[21]制备了一种由羧甲基壳聚糖(CMCS)、葡聚糖(DEX)、4-甲酰苯基硼酸(4-FPBA)和MOF(含镁和大蒜酸)组成的智能响应水凝胶。 体内外实验证实,该水凝胶可抑制炎症相关基因的表达和鸡蛋白色促进牙周骨再生。
The imine bond is formed by the reversible Schiff base reaction between aldehyde ketone group and amino group, which is a dynamic and reversible chemical bond [22, 23].
亚胺键是通过醛酮基与氨基之间的可逆席夫碱反应形成的,是一种动态可逆的化学键[22,23]。当网络在摩擦过程中受损时,这些连接会重新组合并恢复原来的水凝胶状态。Schiff碱反应由于其快速和温和的性质而广泛用于水凝胶[24,25,26]。Yan等[27]以海藻酸钠和羧甲基壳聚糖为原料,通过丙烯酰胺聚合制备了基于席夫碱键的自修复水凝胶。 该水凝胶具有良好的抗压强度(60%应变时间≤ 50 kPa)和抑菌效果,对大肠杆菌和金黄色葡萄球菌的抑菌率分别达到99.89%和99.88%。li等人[28]以氧化灵芝多糖(OGLP)、海藻酸钠(SA)和羧甲基壳聚糖(CMC)为原料合成了OGLP-CMC/SA水凝胶。水凝胶对·OH的清除率为51.66 ± 3.03%,对·O2-的清除率为抗坏血酸的90.38%。 因此,本文制备了一种基于席夫碱键、配位键和氢键的自修复水凝胶。如果出现轻微损坏,骨骼表面构建的水凝胶涂层可以快速修复。在许多天然水凝胶材料中,双醛淀粉(DS)是一种含有大量活性醛基的高分子聚合物,其特征在于其安全性和无刺激性[29]。双醛淀粉中的醛基不仅能与丙烯酰胺上的氨基形成Schiffer碱键,还能与金属离子(Fe3+)形成配位键,提高水凝胶的交联密度。 Fe3+对醛基具有较新的结合亲和力,醛基与Fe 3+形成的配位键在断裂时耗散了大量能量,这使得水凝胶具有自修复性能和减摩作用。但这种水凝胶具有高摩擦和不令人满意的抗磨性能。
Zeolitic Imidazolate Framework-8 (ZIF-8) exhibits high crystallinity, a large specific surface area, excellent durability under harsh thermo-chemical conditions, high ionic conductivity, and low polarity and density. It is widely applied in drug delivery, biosensors, gas adsorption. Because of its excellent properties, it has become one of the current hot topics in scientific research [30, 31, 32]. Additionally, the imidazole-bridged structure of ZIF-8 nanoparticles imparts remarkable crystal flexibility and a wide pore size, resulting in outstanding abrasion and wear resistance [33, 34, 35]. Not only that, ZIF-8 also has excellent corrosion resistance [36]. Shi et al. [37] assembled hexagonal boron nitride (h-BN) with the nanomaterials ZIF-8 and benzimidazole (BI) to create an anti-corrosion filler (h-BN/ZIF-8@BI) with extremely strong shielding performance. EIS testing showed that the corrosion inhibition efficiency of h-BN/ZIF-8@BI was as high as 81.8%. Duan et al. [38] prepared ZIF-8 modified epoxy coatings with different additive amount, and finding that introduction of ZIF-8 enhances the cross-linking density of the coating, thereby hindering the passage of corrosive media through the coating, prolonging the corrosion path, and making it have outstanding corrosion performance.
沸石咪唑骨架-8(ZIF-8)表现出高结晶度、大比表面积、在苛刻热化学条件下的优异耐久性、高离子电导率以及低极性和密度。它在药物输送、生物传感器、气体吸附等方面有着广泛的应用。由于其优异的性能,它已成为当前科学研究的热点之一[30,31,32]。此外,ZIF-8纳米颗粒的咪唑桥连结构赋予了显著的晶体柔性和宽孔径,从而产生出色的耐磨性[33,34,35]。不仅如此,ZIF-8还具有优异的耐腐蚀性[36]。Shi等人 [37]将六方氮化硼(h-BN)与纳米材料ZIF-8和苯并咪唑(BI)组装在一起,形成具有极强屏蔽性能的防腐蚀填料(h-BN/ZIF-8@BI)。电化学阻抗测试表明,h-BN/ZIF-8@BI复合材料的缓蚀率高达81.8%。Duan等人[38]制备了不同添加量的ZIF-8改性环氧涂料,发现ZIF-8的引入增强了涂层的交联密度,从而阻碍腐蚀介质通过涂层,延长腐蚀路径,使其具有优异的腐蚀性能。
Herein, in this study, the Schiff base bond formed by dialdehyde starch and acrylamide was selected as the first network of the hydrogel, and Fe3+ and dialdehyde starch were added to form the second ion interaction cross-linking network to enhance the mechanical properties of the hydrogel. At the same time, ZIF-8 was added to reduce friction [35]. The prepared ZIF-8/DS/AM/Fe3+ composite hydrogel has good lubrication, load bearing, self-healing and biocompatibility and anti-wear properties. It is worth noting that
本研究选择双醛淀粉与丙烯酰胺形成的席夫碱键作为水凝胶的第一网络,加入Fe3+与双醛淀粉形成第二离子相互作用交联网络,以提高水凝胶的力学性能。同时,添加ZIF-8以减少摩擦[35]。所制备的ZIF-8/DS/AM/Fe3+复合水凝胶具有良好的润滑、承载、自修复、生物相容性和耐磨性能。 值得注意的是,当ZIF-8的加入量为1000 ppm时,1000 ppm ZIF-8/DS/AM/Fe 3+水凝胶涂层的平均摩擦系数(ACOF)为0.104,磨损率比钛合金降低了82.43%,并且在10 min内即可愈合,耐腐蚀性提高了79.63%。它是一种多功能水凝胶涂层,具有良好的生物相容性、耐腐蚀性、自愈合性能和耐摩擦性,解决了骨关节高摩擦和不可再修复的问题。
2. Results and discussion
二、结果和讨论
2.1 Design Rationale and Characterization of ZIF-8/DS/AM/Fe3+ Hydrogel
2.1 ZIF-8/DS/AM/Fe3+水凝胶的设计原理和表征
Figure 1a shows the process of synthesis of ZIF-8/DS/AM/Fe3+ hydrogel and the molecular structure of the required ingredients. ZIF-8/DS/AM/Fe3+ hydrogel is a hydrogel with low wear resistance, corrosion resistance, and self-healing properties. First, we prepared ZIF-8, which is made of Zn (NO3)2 6H2O and 2-methylimidazole, through a series of experimental processes. For details, refer to the supporting information. After it is evenly dispersed in water, add dialdehyde starch, and gelatinize at 80 ℃ for 20 min, adjust the pH with sodium hydroxide to provide an alkaline environment. Add acrylamide, cross-linking agent and initiator, and finally pour it into the mold. Using vacuum dried at 60 °C about 2 hours. The ZIF-8/DS/AM/Fe3+ hydrogels were successfully prepared. The specific experimental steps of the hydrogel coating are detailed in supporting information. Figure 1b illustrates the anti-friction
图1a显示了ZIF-8/DS/AM/Fe 3+水凝胶的合成过程和所需成分的分子结构。ZIF-8/DS/AM/Fe 3+水凝胶是一种具有低耐磨性、耐腐蚀性和自修复性能的水凝胶。首先,我们通过一系列的实验过程制备了由Zn(NO3)2·6 H2O和2-甲基咪唑组成的ZIF-8。有关详细信息,请参阅支持信息。在水中分散均匀后,加入双醛淀粉,在80 ℃下糊化20 min,用氢氧化钠调节pH值以提供碱性环境。加入丙烯酰胺、交联剂和引发剂,最后倒入模具中。使用真空在60 °C下干燥约2小时。成功制备了ZIF-8/DS/AM/Fe ~(3+)水凝胶。 水凝胶涂层的具体实验步骤详见支持资料图1b说明了ZIF-8/DS/AM/Fe 3+水凝胶的减摩机理,这主要是由于两个原因,一方面,ZIF-8咪唑桥连结构[39]独特的柔韧性使ZIF-8能够承受显著的变形来桥接摩擦间隙,防止摩擦副之间的直接接触,从而减少摩擦和磨损。另一方面,ZIF-8/DS/AM/Fe 3+水凝胶含有动态席夫碱键、螯合和氢键,这赋予其自修复特性,并在摩擦和磨损过程中实现快速自修复。从而减少摩擦和磨损,使其具有较低的摩擦系数和磨损率。平均摩擦系数降低0.104,磨损率降低78.33%。图1c CCK-8方法评价了样品上骨髓间充质干细胞的细胞活力。 具体结论见图9.
Figure 1 (a) Synthesis of ZIF-8/DS/AM/Fe3+ hydrogel; (b) Self-healing
图1(a)ZIF-8/DS/AM/Fe3+水凝胶的合成;(B)ZIF-8/DS/AM/Fe3+水凝胶的自愈合机制;(c)CCK-8方法测试样品上骨髓间充质干细胞的细胞活力。(d)ZIF-8/DS/AM/Fe3+水凝胶对金黄色葡萄球菌和大肠杆菌的抑菌率。
The morphology and structure of ZIF-8 were characterized and shown in Figure 2; scanning electron microscopy (SEM) reveals that ZIF-8 has a typical rhombic dodecahedral structure (Figure 2a). The mean dimension of ZIF-8 nanoparticles is 200 nm [40]. Zinc element that can also be detected on ZIF-8 powder. Moreover, the flourier transform infrared spectroscopy spectra of ZIF-8, DS/AM/Fe3+ hydrogel and 1000ppmZIF-8/DS/AM/Fe3+ hydrogel are shown in Figure 2d, the characteristic absorption bands associated with ZIF-8 are as follows: C=N stretching at approximately 1597 cm⁻¹, C-H in imidazole aromatic at 3243 cm⁻¹, and Zn-N at 505 cm⁻¹ [41]. Figure 2f is the Raman spectrum, because of the stretching of the imidazole ring, the three characteristic peaks of ZIF-8 are situated at 691, 1189, and 1385 cm⁻¹, which is consistent with the literature [42]. Figure 2d shown the FTIR spectra the pure of DS/AM/Fe3+, 1000ppmZIF-8/DS/AM/Fe3+ hydrogels, the imine vibration at 1663 cm-1 confirms the presence of Schiff base between DS and AM [23, 29]. The characteristic peak of DS/AM/Fe3+ hydrogel appears at 1414 cm⁻¹, representing the overlapping stretching vibrations of the amide groups. In the infrared spectrum of the 1000ppmZIF-8/DS/AM/Fe3+ hydrogel, the peak at 1451 cm⁻¹ represents the symmetric stretching vibrations of the amine groups [27, 43]. Moreover, hydroxyl bond peak shows a red shift from 3190 cm−1 for DS/AM/Fe3+ to 3329 cm−1 for 1000ppmZIF-8/DS/AM/Fe3+, it is because a large number of intermolecular hydrogen bonds have been formed among ZIF-8 and DS, PAM, Fe3+, thus constituting dynamic noncovalent network. Figure 1b is the XRD pattern of ZIF-8, which perfectly matches the standard ZIF-8 pattern from the reference literature. [41, 44, 45], In addition, it can be seen from the XRD spectrum that 1000ppmZIF-8/DS/AM/Fe3+ hydrogel has a typical peak of ZIF-8 at diffraction peak 7.38 (110) compared with DS/AM/Fe3+ hydrogel, which shows that ZIF-8 was successfully dispersed into DS/AM/Fe3+ hydrogel [46]
ZIF-8的形态和结构被表征并显示在图2中。扫描电子显微镜(SEM)显示ZIF-8具有典型的菱形十二面体结构(图2a)。ZIF-8纳米颗粒的平均尺寸为200nm[40]。锌元素也可以在ZIF-8粉末上检测到。此外,ZIF-8、DS/AM/Fe3+水凝胶和1000 ppmZIF-8/DS/AM/Fe3+水凝胶的红外变换光谱如图2d所示,与ZIF-8相关的特征吸收带如下:C=N伸缩约1597cm,咪唑芳族中的C-H在3243cm,Zn-N在505 cm[41]。 图2f为拉曼光谱,由于咪唑环的拉伸,ZIF-8的三个特征峰位于691、1189和1385cm-1处,这与文献[42]一致。图2d为FTIR光谱,DS/AM/Fe3+1000 ppmZIF-8/DS/AM/Fe3+水凝胶的纯度为1663 cm-1<span id=90>证实了DS和AM之间存在Schiff碱[23,29]DS/AM/Fe3+水凝胶的特征峰出现在1414 cm ²处,代表酰胺基团的重叠伸缩振动。在1000 ppmZIF-8/DS/AM/Fe 3+水凝胶的红外光谱中,1451 cm ²处的峰代表胺基的对称伸缩振动[27,43]。 此外,羟基键峰从DS/AM/Fe3+的3190 cm-1红移到1000 ppmZIF-8/DS/AM/Fe3+的3329 cm-1,这是因为ZIF-8与DSPAMFe3+之间形成了大量的分子间氢键,从而构成了动态非共价网络。ZIF-8的图案,其完全匹配来自参考文献的标准ZIF-8图案。此外,从XRD图谱中可以看出,1000 ppmZIF-8/DS/AM/Fe3+水凝胶在衍射峰7处具有ZIF-8的典型峰。38(110)与DS/AM/Fe3+水凝胶相比,这表明ZIF-8成功地分散到DS/AM/Fe3+水凝胶中[46]。.
Fig. 2 (a-c) SEM images surface and EDX element mapping of ZIF-8; (d) FTIR spectra of ZIF-8, DS/AM/Fe3+ hydrogel, and 1000ppmZIF-8/DS/AM/Fe3+ hydrogel; (c) XRD patterns; (d) Raman spectra
图2(a-c)ZIF-8的SEM图像表面和EDX元素绘图;(d)ZIF-8、DS/AM/Fe 3+水凝胶和1000 ppmZIF-8/DS/AM/Fe 3+水凝胶的FTIR光谱;(c)XRD图案;(d)拉曼光谱.
Figure 3 shows SEM images surface and EDX element mapping of DS/AM/Fe3+, ZIF-8/DS/AM/Fe3+ hydrogels after lyophilization. With the increase in ZIF-8 content, the number of network structures increases, indicating that the addition of ZIF-8 enhances the crosslinking density of the hydrogel. More pore structures provide additional crosslinking sites, forming more hydrogen bonds and thereby increasing the hydrogel’s strength. EDS mapping of Zn distribution confirms the successful dispersion of ZIF-8 in the DS/AM/Fe3+ hydrogel. Additionally, elemental spectroscopy characterization of Fe3+ distribution shows that Fe3+ is evenly distributed throughout the hydrogel.
图3显示了DS/AM/Fe3+、ZIF-8/DS/AM/Fe3+水凝胶冻干后的表面SEM图像和EDX元素图谱随着ZIF-8含量的增加,网络结构的数量增加,表明ZIF-8的添加增强了水凝胶的交联密度。更多的孔结构提供额外的交联位点,形成更多的氢键,从而增加水凝胶的强度。 Zn分布的EDS绘图证实了ZIF-8在DS/AM/Fe 3+水凝胶中的成功分散。此外,Fe 3+分布的元素光谱表征表明,Fe3+是均匀分布在整个水凝胶。
Fig. 3 SEM images and EDS mappings of hydrogels; (a) DS/AM/Fe3+;(b) 500ppmZIF-8/DS/AM/Fe3+; (c) 1000ppmZIF-8/DS/AM/Fe3+; (d) 1250ppmZIF-8/DS/AM/Fe3+
图3水凝胶的SEM图像和EDS图;(a)DS/AM/Fe 3+(B)500 ppmZIF-8/DS/AM/Fe 3+(c)1000 ppmZIF-8/DS/AM/Fe 3+(d)1250 ppmZIF-8/DS/AM/Fe 3 +
2.2 Characterization of ZIF-8/DS/AM/Fe3+ hydrogels
2.2 ZIF-8/DS/AM/Fe3+水凝胶的表征
During the friction process, if the hydrogel coating does not have strong adhesion to Ti6Al4V alloy, the coating is prone to peeling off. Adhesion tests can effectively evaluate the bonding strength between the hydrogel coating and the Ti6Al4V alloy (Figure 4). The adhesion performance of the coating can be assessed based on the normal force at coating detachment (critical load), acoustic emission signals, and friction fluctuations [38]. Figure 4 shows the results of the adhesion test, the critical loads of those samples have the following sequence: DS/AM/Fe3+ (14.92 N) < 500ppmZIF-8/DS/AM/Fe3+ (16.83 N) < 1000ppmZIF-8/DS/AM/Fe3+ (23.15 N) < 1250ppmZIF-8/DS/AM/Fe3+ (23.85 N). According to data analysis, it can be concluded that the interfacial bonding strength between the hydrogel coating and the Ti6Al4V alloy matrix was obviously improved after adding ZIF-8. This may be due to the increased number of ZIF-8 nanoparticles, which form strong hydrogen bonds with the amino groups on dopamine. Therefore, the 1250ppmZIF-8/DS/AM/Fe3+ hydrogel have the highest bonding strength with dopamine and the strongest adhesion to the Ti6Al4V alloy surface.
在摩擦过程中,如果水凝胶涂层与Ti6Al4V合金的附着力不强,则涂层容易剥落。附着力测试可有效评价水凝胶涂层与Ti6Al4V合金之间的结合强度(图4)。涂层的粘附性能可以基于涂层分离时的法向力(临界载荷)、声发射信号和摩擦波动来评估[38]。图4显示了粘附测试的结果,这些样品的临界载荷具有以下顺序:92N)<500 ppmZIF-8/DS/AM/Fe3+(16.83N)<1000 ppmZIF-8/DS/AM/Fe3+(23.15N)<1250 ppmZIF-8/DS/AM/Fe3+(23.85N)。根据数据分析可以得出结论,加入ZIF-8后,水凝胶涂层与Ti6 Al 4V合金基体之间的界面结合强度明显提高,这可能是由于ZIF-8纳米颗粒的数量增加,其与多巴胺上的氨基形成强氢键。 因此,1250 ppmZIF-8/DS/AM/Fe3+水凝胶与多巴胺的结合强度最高,与Ti6 Al 4V合金表面的粘附力最强。
Figure 4 (a) Adhesion of alloy 1000ppmDS/AM/Fe3+ hydrogel coating on titanium ; (b) Film thickness test of 1000ppmZIF-8/DS/AM/Fe3+; (c) Swelling properties of all hydrogels at 25℃; (d) 1250ppmZIF-8/DS/AM/Fe3+;(d-e) Nanoindentation test; (f) Wetting properties of hydrogels
图4(a)合金1000 ppmDS/AM/Fe3+水凝胶涂层在钛上的附着力;(B)1000 ppmZIF-8/DS/AM/Fe3+的膜厚度测试;(c)所有水凝胶在25℃下的膨胀性能(d)1250 ppmZIF-8/DS/AM/Fe3+;(d-e)纳米压痕测试;(f)水凝胶的润湿性能
Figure 4d shows the load-displacement curve of the indentation sample. The planar elastic modulus of the measured sample is calculated using the nanoindentation method. can be calculated by the following formula:
图4d示出了压痕样品的载荷-位移曲线。使用纳米压痕法计算测量样品的平面弹性模量 。 可以通过以下公式计算:
Where is the elastic modulus of the indenter, while is Poisson's ratios of the indenter. is determination of plane strain modulus, is determination of reduced modulus,. can be calculated by the following formula:
其中 是压头的弹性模量,而 是压头的泊松比。 是平面应变模量的测定, 是折合模量的测定。 可通过以下公式计算:
=
=
Different from the immediate response of Ti6Al4V load retraction in the figure, the load-displacement curve shows that the displacement is still increasing after unloading, and a "nose shape" phenomenon appears, reflecting the viscoelasticity of the hydrogel coating, which is consistent with the existing indentation experimental observations. Under the same load,
与图中Ti6 Al 4V载荷回缩的即时响应不同,载荷-位移曲线显示,卸载后位移仍在增加,并出现“鼻形”现象,反映了水凝胶涂层的粘弹性,这与已有的压痕实验观察结果一致。在相同载荷下,当ZIF-8的加入量为1000 ppm时,1000 ppmZIF-8/DS/AM/Fe 3+水凝胶的压入深度最小,这是由于纳米ZIF-8的加入量增加,使ZIF-8/DS/AM/Fe 3+水凝胶形成了更致密的交联弹性网络。
The swelling ratio of the hydrogel was tested in PBS solution at pH = 7.4 and a temperature of 25°C. As the content of ZIF-8 increased, both the swelling ratio and equilibrium swelling ratio of all hydrogels decreased (Figure 4c). This is because compared to hydrogels without ZIF-8 NPs, the swelling rate of the hydrogels doped with ZIF-8 NPs was reduced, which may be due to the well-dispersed ZIF-8 nanoparticles acting as cross-linking points, providing additional physical crosslinking within the covalent cross-linked hydrogel network. In the system with 1000ppm ZIF-8 NPs addition, the hydrogel has the lowest swelling rate, and too high addition rate leads to agglomeration of nanoparticles, which destroys the cooperative stable cross-linking system formed by ZIF-8 NPs and iron ions in the double network.
在pH = 7.4和25°C的温度下在PBS溶液中测试水凝胶的溶胀比。随着ZIF-8含量的增加,所有水凝胶的溶胀比和平衡溶胀比都降低(图4c)。这是因为与没有ZIF-8 NP的水凝胶相比,掺杂有ZIF-8 NP的水凝胶的溶胀速率降低,这可能是由于良好分散的ZIF-8纳米颗粒充当交联点,在共价交联的水凝胶网络内提供额外的物理交联。在添加1000 ppm ZIF-8 NPs的体系中,水凝胶具有最低的溶胀速率,过高的添加速率导致纳米颗粒团聚,这破坏了由ZIF-8 NPs和铁离子在双网络中形成的协同稳定交联体系。
The surface wettability of the hydrogel coating significantly affects its tribological performance. As shown in the Figure 4f, compared with the blank titanium alloy, the contact angle value of DS/AM/Fe3+, ZIF-8/DS/AM/Fe3+ hydrogel surface has increased. With the increase of ZIF-8 nanoparticles, the contact angle of ZIF-8/DS/AM/Fe3+ hydrogel has also gradually increased [47]. This may be because ZIF-8 nanoparticles are hydrophobic materials [48, 49, 50, 51]. ZIF-8 forms many hydrogen bonds with the PAM chain and DS chain on the hydrogel. However, exposed ZIF-8 is hydrophobic, and as the ZIF-8 content increases, it enhances the hydrogel’s wettability, leading to a larger contact angle.
水凝胶涂层的表面润湿性显著影响其摩擦学性能。如图4f所示,与空白钛合金相比,DS/AM/Fe 3+、ZIF-8/DS/AM/Fe 3+水凝胶表面的接触角值有所增加。随着ZIF-8纳米颗粒的增加,ZIF-8/DS/AM/Fe 3+水凝胶的接触角也逐渐增加[47]。这可能是因为ZIF-8纳米颗粒是疏水性材料[48,49,50,51]。ZIF-8与水凝胶上的PAM链和DS链形成许多氢键。然而,暴露的ZIF-8是疏水性的,并且随着ZIF-8含量的增加,其增强了水凝胶的润湿性,导致更大的接触角。
A hydrogel coating was applied to the titanium alloy plate, and its hardness data are shown in Figure S2, Supporting information. Compared to the blank Ti6Al4V alloy (249.53 HV), the hardness of the hydrogel coating on the titanium alloy surface is significantly reduced. The hardness sequence is as follows: DS/AM/Fe3+ (24.18 HV) < 500ppmZIF-8/DS/AM/Fe3+ (31.58 HV) < 1000ppmZIF-8/DS/AM/Fe3+ (32.95 HV) < 1250ppmZIF-8/DS/AM/Fe3+ (36.31 HV). The data indicate that as the ZIF-8 content increases, the hardness of the DS/AM/Fe3+ hydrogel coating slightly increases, likely due to the highly ordered and stable topology of ZIF-8, which allows the material to withstand external forces without easily deforming [47]. Therefore, the 1250ppmZIF-8/DS/AM/Fe3+ hydrogel sample exhibit the highest microhardness
将水凝胶涂层应用于钛合金接骨板,其硬度数据见图S2,支持性信息。与空白Ti6 Al 4V合金(249.53 HV)相比,钛合金表面水凝胶涂层的硬度显著降低。ZIF-8/DS/AM/Fe 3+(32.95 HV)<1250 ppmZIF-8/DS/AM/Fe 3+(36.31 HV)。数据表明,随着ZIF-8含量的增加,DS/AM/Fe 3+水凝胶涂层的硬度略有增加,可能是由于ZIF-8的高度有序和稳定的拓扑结构,这使得材料能够承受外力而不容易变形[47]。因此,1250 ppmZIF-8/DS/AM/Fe 3+水凝胶样品表现出最高的显微硬度.
2.3 Self-Healing and Rheology
2.3自愈和流变学
Self-healing can address deformations, wear, and even damage caused by external forces, thereby improving artificial joints and extending their lifespan. [13]. Figure 5 explores the trends in the storage modulus and loss modulus of the rheological properties under different strains, frequencies, and temperatures, thereby evaluating the rheological performance of ZIF-8/DS/AM/Fe3+ hydrogels [52]. Figure 3a shows the strain amplitude sweep of the hydrogel. The storage modulus (G′) is significantly higher than the loss modulus (G″) and remains steady as strain increases. The curves intersect at the threshold strain (200%) (Figure 5a), indicating that the hydrogel structure completely breaks down
自我修复可以解决外力造成的变形、磨损甚至损坏,从而改善人工关节并延长其使用寿命。[13]第10段。图5探索了在不同应变、频率和温度下流变性质的储能模量和损耗模量的趋势,从而评估ZIF-8/DS/AM/Fe3+水凝胶的流变性能[52]。图3a示出了水凝胶的应变幅度扫描。储能模量(G′)显著高于损耗模量(G″),并且随着应变增加而保持稳定。 曲线在阈值应变(200%)处相交(图5a),表明当应变超过200%时,水凝胶结构完全分解。随后,使用1%至200%的连续应变循环评价水凝胶的流变恢复行为,每个步骤持续70秒。 如图5B所示,在高应变(200%)下,水凝胶结构塌陷(G“> G”),而在低应变(1%)下,水凝胶立即恢复到其原始结构(G“> G”)。G“和G”值与初始交替循环中的值几乎相同(图S4),证明DS/AM/Fe3+和ZIF-8/DS/AM/Fe3+水凝胶具有优异的自修复能力[53].
As shown in Figure 5d, with the increase in ZIF-8 concentration in the hydrogel, the crosslinking density rises, resulting in an increase in the storage modulus of all hydrogels. However, the increase in ZIF-8 also leads to poorer dispersion. Compared to the 1000 ppm ZIF-8/DS/AM/Fe3+ sample, the G′ of the 1250 ppm ZIF-8/DS/AM/Fe3+ sample shows a slight decrease. The self-healing phenomenon is also confirmed in macroscopic experiments. As shown in Figure 5e, after aligning the incision of the crystal violet-stained and unstained samples and letting it set for ten minutes, the complete sample can be lifted from one side. Figure S5, Supporting information displays the macroscopic self-healing behavior of DS/AM/Fe3+, 500ppmZIF-8/DS/AM/Fe3+, and 1250ppmZIF-8/DS/AM/Fe3+ hydrogels. This indicates that the hydrogel structure is stable and that the reformation of dynamic bonds achieves efficient self-healing.
如图5d所示,随着水凝胶中ZIF-8浓度的增加,交联密度上升,导致所有水凝胶的储能模量增加。然而,ZIF-8的增加也导致更差的分散。与1000 ppm ZIF-8/DS/AM/Fe3+样品相比,1250 ppm ZIF-8/DS/AM/Fe 3+样品的G′显示出略微降低。在宏观实验中也证实了自愈合现象。如图5e所示,将结晶紫染色和未染色样品的切口对齐并放置10分钟后,可以从一侧提起完整的样品。图S5,支持信息显示DS/AM/Fe3+、500 ppmZIF-8/DS/AM/Fe3+和1250 ppmZIF-8/DS/AM/Fe3+水凝胶的宏观自修复行为。这表明水凝胶结构是稳定的,并且动态键的重新形成实现了有效的自修复。
Dynamic frequency test (Figure 5c) and dynamic temperature test (Fig. 5d) proved that DS/AM/Fe3+ and ZIF-8/DS/AM/Fe3+ hydrogels showed excellent impact resistance and thermal stability. Figure 5c illustrates the curves of G′ and G″ as functions of frequency for different hydrogels. At higher frequencies (10 Hz), the storage modulus (G′) remains stable, reflecting the hydrogels' impact resistance. As the frequency increases, the storage modulus stays consistent, while the loss modulus (G″) increases [54]. This behavior indicates that the hydrogels have a good energy storage structure and can dissipate more energy under impact, thus counteracting the applied force.
动态频率测试(图5c)和动态温度测试(图5dIG。5d)证明DS/AM/Fe3+和ZIF-8/DS/AM/Fe3+水凝胶具有优异的抗冲击性和热稳定性。图5c示出了不同水凝胶的G′和G″随频率变化的曲线。在较高频率(10 Hz)下,储能模量(G′)保持稳定,反映了水凝胶的抗冲击性。随着频率的增加,储能模量保持一致,而损耗模量(G″)增加[54]。 这种行为表明水凝胶具有良好的储能结构,并且在冲击下可以耗散更多的能量,从而抵消所施加的力。
Figure 5 Rheological and Self-healing properties of hydrogels. (a) Strain amplitude scan test at a fixed angular frequency (10 rad/s) at 25°C (γ = 0.1 ~ 1000%).(b) Rheological behavior of all hydrogels:(A) DS/AM/Fe3+;(B) 500ppmZIF-8/DS/AM/Fe3+; (C) 1000ppmZIF-8/DS/AM/Fe3+. (D) 1250ppmZIF-8/DS/AM/Fe3+;(c)Frequency sweep curves; (d) Temperature sweep curve; (e) Macroscopic self-healing behavior of 1000ppmZIF-8/DS/AM/Fe3+ hydrogel.
图5水凝胶的流变性能和自愈合性能。(a)在25°C(γ = 0.1 ~ 1000%)下以固定角频率(10 rad/s)进行应变振幅扫描试验。(b)所有水凝胶的流变行为:(A)DS/AM/Fe3+;(B)500 ppmZIF-8/DS/AM/Fe3+;(C)1000 ppmZIF-8/DS/AM/Fe3+。(D)(c)频率扫描曲线;(d)温度扫描曲线;(e)1000 ppmZIF-8/DS/AM/Fe 3+水凝胶的宏观自修复行为。
当温度在25°C ~ 45°C范围内时,G′和G″均保持相对恒定,表明所有水凝胶在高温下均具有良好的热稳定性。图5d中的曲线表明G′和G″随温度升高(25°C-45°C)保持稳定,表明水凝胶在高温下保持良好的粘弹性能。 尽管升高温度可导致水凝胶内的液相逐渐蒸发,潜在地损害其内部结构并导致弹性模量降低和粘性模量增加,但此处采用的动态非共价交联策略可维持水凝胶的结构。这为适应生理环境的温度范围提供了强有力的支持[55]综上所述,流变恢复和宏观自修复测试证明了水凝胶良好的自修复能力和高的自修复效率,双醛淀粉上的醛基和丙烯酰胺上的氨基形成动态共价席夫碱键,双醛淀粉与Fe3+之间的离子相互作用,以及许多氢键[56].
2.4 Electrochemical corrosion properties
24电化学腐蚀性能
Corrosion resistance has a pivotal aspect effect on the useful life of coatings.
耐蚀性是影响涂层使用寿命的关键因素。当涂层具有良好的耐腐蚀性时,它可以有效地承受各种腐蚀介质,这有助于保持其完整性和稳定性,从而延长其使用寿命[33,57]。因此,研究了Ti 6Al 4V、DS/AM/Fe3+、5 0 0 ppmZIF 8/DS/AM/Fe3+、1 0 0 0 ppmZIF 8/DS/AM/Fe3+、1 2 5 0 ppmDS/AM/Fe3+水凝胶在模拟体液中的耐蚀性能。电化学阻抗谱(EIS)是研究涂层腐蚀行为的有效技术。 通过测量涂层在不同频率下的阻抗,可以获得有关涂层电阻和电容的信息,这有助于评估其耐腐蚀性[58,59]。涂层在模拟体液(SBF)溶液中的Nyquist曲线和Bode曲线如图6所示。与空白Ti 6Al 4V合金相比,ZIF-8/DS/AM/Fe 3+涂层的低频斜率更高。随着ZIF-8含量的增加,ZIF-8DS/AM/Fe 3+水凝胶涂层在低频下的斜率进一步增大,表明ZIF-8/DS/AM/Fe3+水凝胶涂层的耐蚀性得到了增强。高频曲率半径的大小顺序为:1000 ppm ZIF-8/DS/AM/Fe3+>1250 ppmZIF-8/DS/AM/Fe3+>500 ppmZIF-8/DS/AM/Fe3+>DS/AM/Fe3 +>Ti 6 Al 4 V。曲率半径随ZIF-8含量的增加先增大后减小,其中10 00ppm ZIF-8/DS/AM/Fe3+样品的曲率半径最大。 结果表明,基于ZIF-8/DS/AM/Fe 3+的水凝胶样品对Ti6 Al 4V基材具有积极的保护作用[36,37],特别是1000 ppm/DS/AM/Fe3+涂层。波特阻抗图(图6 b)、相位图(图6c)和塔菲尔曲线(图6d)也显示了类似的结果。
Figure 6b displays the sequence of resistance values for the hydrogel coatings as follows: Ti6Al4V (7.430×103 Ω•cm2) < DS/AM/Fe3+ (1.065×104 Ω•cm2), 500ppmZIF-8/DS/AM/Fe3+ < (1.474×104 Ω•cm2) < 1250ppmZIF-8/DS/AM/Fe3+ (1.997×104 Ω•cm2) < 1000ppmZIF-8/DS/AM/Fe3+ (1.339×105 Ω•cm2). The impedance numerical value of 1000ppmZIF-8/DS/AM/Fe3+ is the maximum, demonstrating the best corrosion resistance. The Tafel curves (Figure 6d) displays a comparable tendency. The corrosion potentials and corrosion current densities for all hydrogel samples were fitted; Table 1 presents the corresponding data conclusions. The order of size for the values of ICorr is: 1000ppmZIF-8/DS/AM/Fe3+ (0.2469×10-8 A/cm-2) < 1250ppmZIF-8/DS/AM/Fe3+ (0.3667×10-8 A/cm-2) < 500ppmZIF-8/DS/AM/Fe3+ (0.5243×10-8 A/cm-2) < DS/AM/Fe3+ (0.0692×10-7 A/cm-2) < Ti6Al4V (0.1212×10-7 A/cm-2). From the results in Table 1, it is evident that the corrosion current density values for Ti6Al4V samples are significantly reduced, 1000ppmZIF-8/DS/AM/Fe3+ hydrogel had the lowest ICorr value (0.2469×10-8 A/cm-2) than other hydrogels; this hydrogel demonstrates outstanding chemical stability and forms a dense protective film, which contributes to its enhanced corrosion resistance. Formula 2 pertains to the calculation of release efficiency (η %) (2) [58]
图6 b显示了水凝胶涂层的电阻值的顺序如下:Ti 6Al 4V(7.430×103Ω·cm2)%3 C DS/AM/Fe3+(1.0 6 5×104Ω·cm2),5 0 0 ppmZIF-8/DS/AM/Fe3+%3 C(1. 0 0 × 10 4 Ω·cm 2)。cm2)<1250ppmZIF-8/DS/AM/Fe3+(1.997×104Ω·cm2)<1000ppmZIF-8/DS/AM/Fe3+(1.339×105Ω·cm2)。1000ppmZIF-8/DS/AM/Fe 3+体系的阻抗值最大,耐蚀性最好。 塔菲尔曲线(图6d)显示出相当的趋势。拟合所有水凝胶样品的腐蚀电位和腐蚀电流密度;表1给出了相应的数据结论。I Corr值的大小顺序为:1000 ppmZIF-8/DS/AM/Fe3+(0.2469×10- 8A/cm-2)<1250ppmZIF-8/DS/AM/Fe3+(0.3667×10-8A/cm-2)<500ppmZIF-8/DS/AM/Fe3+(0.5243×10- 8A/cm-2)<DS/AM/Fe3+(0.0692×10- 7A/cm-2)<Ti6Al4V(0.0692×10 - 7A/cm-2)。1212×10- 7A/cm-2)。从表1中的结果可以看出,Ti6 Al 4V样品的腐蚀电流密度值显著降低,1000 ppmZIF-8/DS/AM/Fe3+水凝胶具有比其他水凝胶最低的ICorr值(0.2469×10- 8A/cm-2);该水凝胶显示出优异的化学稳定性,并形成致密的保护膜,这有助于其增强的耐腐蚀性。 2 . 第 2 章 效率 的 计算 方法 ( 下 )η %)( 2 ))【 58 】.
(2)
( 2 )
In addition, based on the EIS results, the equivalent circuit model shown in Figure 6e, f was fitted to estimate the protective performance of the coating. Here, Rs represents the solution resistance, while Rs, Rp, RH, and Rct denote the corrosion resistance of the solution, titanium plate's passivation film, hydrogel coating, and charge transfer, respectively. Qp and QH represent the capacitance between the solution and the coating. Qct denotes the capacitance between the coating and Ti6Al4V alloy. Lower values of Qp and Qct suggest less penetration of the corrosive medium into the ZIF-8/DS/AM/Fe3+ hydrogel coating, while higher values of Rc and Rct indicate better shielding performance of the ZIF-8/DS/AM/Fe3+ hydrogel coating [36, 60]. This conclusion was generally uniform with the study conclusion of Wang et al [61]. According to the data results, the retarding efficiency of 1000ppmZIF-8/DS/AM/Fe3+ hydrogel coating can arrive at 79.63% (Table 1). This demonstrates that the 1000ppmZIF-8/DS/AM/Fe³⁺ hydrogel coating exhibits superior corrosion resistance compared to other samples [37, 38, 62]
此外,基于EIS结果,拟合图6e、f中所示的等效电路模型以估计涂层的保护性能。在此,Rs表示耐溶液性,而Rs、Rp、RH和Rct分别表示溶液、钛板钝化膜、水凝胶涂层和电荷转移的耐腐蚀性。Qp和QH表示溶液和涂层之间的电容。 Qct表示涂层与Ti6 Al 4V合金之间的电容。较低的Qp和Qct值表明腐蚀性介质较少渗透到ZIF-8/DS/AM/Fe3+水凝胶涂层中,而较高的Rc和Rct值表明ZIF-8/DS/AM/Fe3+水凝胶涂层的屏蔽性能更好[36,60]。 该结论与Wang等人的研究结论基本一致[61]。根据数据结果,1000 ppmZIF-8/DS/AM/Fe3+水凝胶涂层的缓凝效率可达到79.63%(表1)。这表明,与其他样品相比,1000 ppmZIF-8/DS/AM/Fe 3水凝胶涂层具有上级耐腐蚀性[37,38,62].
The Rct value of DS/AM/Fe3+, ZIF-8/DS/AM/Fe3+ hydrogels coatings were obviously higher than Ti6Al4V (6754 Ω·cm2), this suggests that the hydrogel coating creates a physical barrier, with its network structure preventing ions from penetrating the substrate. Additionally, with the increase in the amount of ZIF-8, the Rct of ZIF-8/DS/AM/Fe³⁺ shows an increasing trend. This is because ZIF-8 has a blocking effect on the electronic transfer at the surface of the hydrogel samples [37, 60]. On the other hand, the RH of hydrogels coatings were also higher than Rp (432.8 Ω·cm2) of Ti6Al4V, and the value of RH was enhanced,
DS/AM/Fe3+、ZIF-8/DS/AM/Fe3+水凝胶涂层的Rct值明显高于Ti6Al 4V(6754Ω·cm2),这表明水凝胶涂层产生了物理屏障,其网络结构阻止离子渗透基底。此外,随着ZIF-8用量的增加,ZIF-8/DS/AM/Fe³ O复合材料的Rct呈增加趋势。 这是因为ZIF-8对水凝胶样品表面的电子转移具有阻断作用[37,60]。另一方面,ZIF-8/DS/AM/Fe 3+水凝胶涂层的RH也高于Ti 6Al 4V的Rp(432.8Ω·cm2),且加入ZIF-8后,RH值有所提高。 很明显,WH出现在ZIF-8/DS/AM/Fe 3+水凝胶涂层上,并且ZIF-8的增加促进了ZIF-8/DS/AM/Fe 3+水凝胶涂层中的WH。因此,结论解释了将ZIF-8并入水凝胶涂层中显著改善了Ti6 Al 4V合金的阻抗,并且阻抗值越高,涂层的耐腐蚀性越好。
Fig. 6 Electrochemical corrosion properties of titanium alloy with hydrogel coatings. (a) Nyquist diagrams; (b) Bode diagrams; (c) Phase diagrams; (d) Tafel diagrams; (e-f) Quivalent electrical circuits of coating. (g-h) Corrosion protection
图6水凝胶涂层钛合金的电化学腐蚀性能。(a)奈奎斯特图;(B)伯德图;(c)相图;(d)塔菲尔图;(e-f)涂层等效电路。(g-h)DS/AM/Fe ~(3+)和ZIF-8/DS/AM/Fe ~(3+)涂层的防腐蚀机理.
Table 1 Electrochemical parameters of Ti6Al4V, DS/AM/Fe3+, 500ppmZIF-8/DS/AM/Fe3+ 1000ppmZIF-8/DS/AM/Fe3+, and 1250ppmZIF-8/DS/AM/Fe3+ hydrogel in SBF solution.
表1 Ti6 Al 4V、DS/AM/Fe 3 + 500 ppmZIF-8/DS/AM/Fe 3 + 1000 ppmZIF-8/DS/AM/Fe 3+和1250 ppmZIF-8/DS/AM/Fe 3+水凝胶在SBF溶液中的电化学参数
Samples | Corrosion potential (mV) | Corrosion current density (A/cm2) | Inhibition efficiency (η %) |
Ti6Al4V | -134.8 | 0.1212×10-7 | — |
DS/AM/Fe3+ | -151.3 | 0.0692×10-7 | 42.90% |
500ppmZIF-8/DS/AM/Fe3+ | -165.9 | 0.5243×10-8 | 56.74% |
1000ppmZIF-8/DS/AM/Fe3+ | -196.3 | 0.2469×10-8 | 79.63% |
1250ppmZIF-8/DS/AM/Fe3+ | -187.7 | 0.3667×10-8 | 69.74% |
Table 2. Electrochemical parameters of Ti6Al4V, DS/AM/Fe3+, 500ppmZIF-8/DS/AM/Fe3+ 1000ppmZIF-8/DS/AM/Fe3+ and 1250ppmZIF-8/DS/AM/Fe3+ in SBF solution.
表2. Ti 6Al 4V、DS/AM/Fe 3 + 500 ppmZIF-8/DS/AM/Fe 3 + 1000 ppmZIF-8/DS/AM/Fe 3+和1250 ppmZIF-8/DS/AM/Fe 3+在SBF溶液中的电化学参数。
Samples | Rp/RH (Ω⋅cm 2 ) | Qp/QH (F⋅cm2 ) | WH (Ω⋅cm 2 ) | n1 | Rct (Ω⋅cm2 ) | Qct (F⋅cm2 ) | n2 |
Ti6Al4V | 432.8 | 1.588×10-5 | - | 0.76 | 6754 | 1.626×10-5 | 0.76 |
DS/AM/Fe3+ | 28613 | 6.867×10-6 | 1.339×10-5 | 0.83 | 37125 | 1.865×10-6 | 0.84 |
500ppmZIF-8/ DS/AM/Fe3+ | 53624 | 6.171×10-6 | 1.499×10-5 | 0.89 | 50969 | 1.971×10-6 | 0.86 |
1000ppmZIF-8/DS/AM/Fe3+ | 58473 | 6.206×10-6 | 1.354×10-5 | 0.76 | 52321 | 1.987×10-6 | 0.89 |
1250ppmZIF-8/DS/AM/Fe3+ | 63865 | 6.923×10-6 | 1.675×10-5 | 0.88 | 57968 | 2.053×10-6 | 0.85 |
In SBF solution, Cl⁻ and SO₄²⁻ can easily react with hydroxylated
在 SBF 溶液 中 , Cl 和 SO ˇ 可以 很 容易 地 与 羟基 化 反应Ti
Ti . i, potentially corroding Ti6Al4V alloy. After grafting a hydrogel coating onto Ti6Al4V, it acts as a physical barrier against ion corrosion, blocking chloride and sulfate ions from corroding the Ti6Al4V alloy. The network structure of the hydrogel creates a tortuous path for ion diffusion, significantly increasing the difficulty for corrosive ions to reach the substrate, thereby enhancing the corrosion resistance of the Ti6Al4V alloy [35-37]. With the introduction of ZIF-8 into the DS/AM/Fe³⁺ coating (Fig
,潜在地腐蚀Ti6 Al 4V合金。将水凝胶涂层接枝到Ti6 Al 4V上后,它可作为防止离子腐蚀的物理屏障,阻止氯离子和硫酸根离子腐蚀Ti6 Al 4V合金。水凝胶的网络结构为离子扩散创造了曲折的路径,显著增加了腐蚀性离子到达基材的难度,从而增强了Ti6 Al 4V合金的耐腐蚀性[35-37]。随着ZIF-8引入到DS/AM/Fe 3+涂层中(图ure 11b), the inhibition efficiency of the DS/AM/Fe³⁺ hydrogel coating is 42.90%, while the inhibition efficiency of the 1000ppmZIF-8/DS/AM/Fe³⁺ hydrogel coating increases to 79.63%.
11b)时,DS/AM/Fe 3+水凝胶涂层的缓蚀效率为42.90%,而1000 ppmZIF-8/DS/AM/Fe 3+水凝胶涂层的缓蚀效率增加到79.63%。 Compared to the DS/AM/Fe³⁺ hydrogel, the inhibition efficiency of the ZIF-8/DS/AM/Fe³⁺ coatings increased from 42.90% to 79.63% (Table 1)
与DS/AM/Fe 3 O 4水凝胶相比,ZIF-8/DS/AM/Fe 3 O 4涂层的抑制效率从42.90%增加到79.63%(表1)。. This is because ZIF-8 has a unique porous structure that forms a physical barrier in the hydrogel coating. This barrier prevents corrosive media (such as moisture, oxygen, and ions) from penetrating the protected Ti6Al4V alloy surface, thus slowing down corrosion
这是因为ZIF-8具有独特的多孔结构,在水凝胶涂层中形成物理屏障。该屏障可防止腐蚀性介质(如水分、氧气和离子)渗透受保护的Ti6 Al 4V合金表面,从而减缓腐蚀[36, 56, 58]. On the other hand, the hydrogel’s strong water absorption can form a hydrated layer by absorbing large amounts of moisture, where water molecules interact with corrosive ions, reducing their activity and mobility
.另一方面,水凝胶的强吸水性可以通过吸收大量的水分形成水合层,水分子在此与腐蚀性离子相互作用,降低其活性和流动性 [37, 60, 62]
[37、60、62]. Additionally, ZIF-8 can participate in the self-repair process of the coating, forming more hydrogen bonds with DS and PAM.
.此外,ZIF-8可以参与涂层的自修复过程,与DS和PAM形成更多的氢键。当水凝胶涂层经历局部损伤时,增加的ZIF-8量增强了涂层的自我修复功能,恢复其阻隔性能并防止进一步腐蚀 [63, 64]
[63、第六十四节]. Therefore, the 1000ppmZIF-8/DS/AM/Fe³⁺ hydrogel coating shows outstanding anti-corrosion effects on the Ti6Al4V alloy substrate. The corrosion inhibition efficiency of the
.因此,1000 ppmZIF-8/DS/AM/Fe 3+水凝胶涂层在Ti6 Al 4V合金基体上显示出优异的防腐蚀效果。缓蚀剂的缓蚀效率1250ppmZIF-8/DS/AM/Fe³⁺ coating decreases, which may be due to the uneven dispersion of ZIF-8 in the hydrogel coating.
1250 ppmZIF-8/DS/AM/Fe 3+涂层中的ZIF-8含量降低,这可能是由于ZIF-8在水凝胶涂层中的不均匀分散。
2.5 Tribological properties and Dynamic damage repaired
25摩擦学性能和动态损伤修复机制
Figure 7a illustrates the schematic of hydrogel testing with silicon nitride spheres using a friction wear testing machine (UMT), with test conditions of 1N, 30 minutes, forming a wear depth of 2
说明了使用摩擦磨损试验机(UMT)用氮化硅球进行水凝胶试验的示意图,试验条件为1 N,30分钟,形成2 mm. Fig
毫米图ure 7b shows the variation in the coefficient of friction (C
图7 b示出了摩擦系数(C)的变化OF) of the hydrogel samples over time in SBF solution. Within the first 50 seconds, the friction coefficient of the Ti6Al4V alloy increases due to the higher surface roughness of the mating surface at the beginning of the friction process, which increases the actual contact area. After running in, the C
F)的水凝胶样品在SBF溶液中随时间的变化。在最初的50秒内,由于摩擦过程开始时配合面的表面粗糙度较高,因此Ti6 Al 4V合金的摩擦系数增加,从而增加了实际接触面积。经过磨合,OF values stabilize. Fig
F值稳定。图ure 7b also shows the average coefficient of friction (ACOF) of these hydrogel coatings, ranked as follows: Ti6Al
图7 b还显示了这些水凝胶涂层的平均摩擦系数(ACOF),排名如下:4V (0.592) > DS/AM/Fe³⁺ (0.25) > 500ppmZIF-8/DS/AM/Fe³⁺ (0.206) > 1250ppmZIF-8/DS/AM/Fe³⁺ (0.194) > 1000ppmZIF-8/DS/AM/Fe³⁺
V(0.592)> DS/AM/Fe³氧化物(0.25)> 500 ppmZIF-8/DS/AM/Fe³氧化物(0.206)> 1250 ppmZIF-8/DS/AM/Fe³氧化物(0.194)> 1000 ppmZIF-8/DS/AM/Fe³氧化物 (0.104). The ACOF of the hydrogel coating samples is significantly lower than that of the bare Ti6Al4V alloy. During friction, the hydrogel coating acts as a buffer, absorbing and dispersing the pressure and impact from the
(0.104)。水凝胶涂层样品的ACOF显著低于裸Ti6 Al 4V合金。在摩擦期间,水凝胶涂层充当缓冲器,吸收和分散来自摩擦的压力和冲击。Si₃N
Si N₄ spheres, thereby reducing the friction coefficient. As the ZIF-8 content increases, the ACOF gradually decreases, with the 1000ppm ZIF-8/DS/AM/Fe³⁺ hydrogel showing the lowest ACOF, 82.43% lower than that of Ti6Al4V (0.592), indicating that ZIF-8 effectively reduces the friction coefficient of the hydrogel coating
微球,从而降低摩擦系数。随着ZIF-8含量的增加,ACOF逐渐降低,其中1000 ppm ZIF-8/DS/AM/Fe 3+水凝胶显示出最低的ACOF,比Ti6 Al 4V(0.592)低82.43%,表明ZIF-8有效地降低了水凝胶涂层的摩擦系数 [39, 65]
[39,65]. Fig
.图ure 7c calculates the wear rate on the Ti6Al4V alloy surface, with the wear rate of the hydrogel coatings lower than that of Ti6Al4V.
图7 c计算了Ti6 Al 4V合金表面的磨损率,水凝胶涂层的磨损率低于Ti6 Al 4V。 Compared to the DS/AM/Fe³⁺ hydrogel, the wear rate of the 1000 ppm ZIF-8/DS/AM/Fe³⁺ hydrogel coating decreased by 32.94%
与DS/AM/Fe 3+水凝胶相比,1000 ppm ZIF-8/DS/AM/Fe 3+水凝胶涂层的磨损率降低了32.94%。, after adding ZIF-8
加入ZIF-8后, this indicates that the 1000ppmZIF-8/DS/AM/Fe³⁺ hydrogel coating enhances the wear resistance of the Ti6Al4V alloy and
这表明,1000 ppmZIF-8/DS/AM/Fe 3+水凝胶涂层提高了Ti6 Al 4V合金的耐磨性,Si₃N
Si N₄ sphere friction system.
球面摩擦系统This is due
这是由于to the unique imidazole bridging
独特的咪唑桥structure, which can accommodate significant deformation to bridge the friction gaps, preventing direct contact
结构,该结构可以适应显著的变形以桥接摩擦间隙,防止直接接触between the
之间Si₃N
Si N₄ spheres and the hydrogel coating
微球和水凝胶涂层 [39, 66]
[39,第66页], thus reducing friction wear.
从而减少摩擦磨损。 Moreover, the dynamic bonds formed between the aldehyde groups of DS and the amino groups of AM create Schiff base bonds. The aldehyde groups of DS also form coordination bonds with Fe³⁺, and numerous hydrogen bonds are formed between ZIF-8 and DS/AM. These interactions enhance the self-healing capability of the hydrogel, allowing it to quickly repair its structure and performance, maintain good wear resistance, and extend its service life.
此外,DS的醛基和AM的氨基之间形成的动态键产生Schiff碱键。DS的醛基还与Fe 3+形成配位键,ZIF-8与DS/AM之间形成大量氢键。这些相互作用增强了水凝胶的自我修复能力,使其能够快速修复其结构和性能,保持良好的耐磨性,并延长其使用寿命。 Among these hydrogel coatings, the 1000ppmZIF-8/DS/AM/Fe³⁺ hydrogel coating shows the lowest wear rate, significantly improving the wear and abrasion resistance of the titanium alloy. However,
在这些水凝胶涂层中,1000 ppmZIF-8/DS/AM/Fe 3+水凝胶涂层显示出最低的磨损率,显著提高了钛合金的耐磨性和耐磨性。然而,当ZIF-8含量超过1250 ppm时,磨损率增加,可能是由于ZIF-8的不均匀分散,导致积聚和稀疏区域,导致1250 ppmZIF-8/DS/AM/Fe的磨损率和摩擦系数更高³⁺ coating
涂层 [32, 59]
[32,59].
Fig. 7 (a) The friction coefficient curve of the hydrogel samples. (b) The average COF. (c) Friction wear rate of the hydrogel coating. (d-e) SEM images and EDX results of wear scars on the Ti6Al4V and 1000ppmZIF-8/DS/AM/Fe3+ hydrogel. (f) A schematic diagram illustrating the tribological performance of hydrogel coatings and Si3N4 balls and Illustration of the tribological
图7(a)水凝胶样品的摩擦系数曲线(B)水凝胶涂层的平均C/F(c)摩擦磨损率。(d-e)Ti6 Al 4V和1000 ppmZIF-8/DS/AM/Fe3+水凝胶上的磨痕的SEM图像和EDX结果。 (f)说明水凝胶涂层和Si3N4球的摩擦学性能的示意图和水凝胶涂层的摩擦学机制的说明。
Figure 7 d, e) shows the surface wear morphology and chemical composition analysis of the hydrogel coating. The wear surface of Ti6Al4V alloy exhibits prominent wear scars with a width of 330 µm. As shown in Figure 7d1, d3, the wear surface of the Ti6Al4V plate has severe wear debris and deep plowing grooves, demonstrating a significant abrasive wear
图7 d、e)显示了水凝胶涂层的表面磨损形态和化学组成分析。Ti6 Al 4V合金的磨损表面显示出宽度为330 µm的显著磨痕。如图7 d1、d3所示,Ti6 Al 4V钢板的磨损表面具有严重的磨屑和深的犁沟,证明了显著的磨粒磨损机制[67]。DS/AM/Fe3+水凝胶的磨损表面显示出明显的磨损划痕和裂纹(图1A)。 S5 a)该观察表明,在摩擦过程中发生撕裂,可能是由于机械强度不足。然而,没有犁削槽,表明改善的耐磨性。随着ZIF-8的加入,ZIF-8/DS/AM/Fe3+水凝胶的磨损表面显示出最小的磨损,磨损宽度不是非常明显,尤其是对于1000 ppmZIF-8/DS/AM/Fe3+水凝胶。在这些表面上,仅观察到少量碎片并且几乎没有犁削凹槽,这表明在添加ZIF-8之后研磨行为的降低。 1000 ppmZIF-8/DS/AM/Fe3+水凝胶上的划痕最浅,进一步证实了1000 ppmZIF-8/DS/AM/Fe3+水凝胶涂层显著提高了摩擦系统的耐磨性。根据图7 d3、e3中的成分分析,在所有样品的表面上观察到Si元素的存在,表明Si 3 N4中的元素已经转移,从而验证了粘着磨损机制[68]。ZIF-8/DS/AM/Fe3+水凝胶涂层中的Si含量降低,其中Si含量最低(0.结果表明,ZIF-8/DS/AM/Fe3+水凝胶能够降低Ti6 Al 4V的粘着磨损性能,尤其是1000 ppmZIF-8/DS/AM/Fe 3+水凝胶的粘着磨损性能.
Figure 7e illustrates the friction and wear
图7 e示出了ZIF-8/DS/AM/Fe 3 O 4水凝胶的摩擦和磨损机制。一方面,DS、AM和Fe 3+之间形成的动态Schiff碱键使得在磨损过程中能够快速自修复。另一方面,ZIF-8独特的咪唑桥接结构允许其适应显著的变形以桥接摩擦间隙。ZIF-8的钻石形十二面体结构有助于在摩擦过程中发挥滚动减摩作用[66,67].
2.9 In Vitro cellular assays
2.9体外细胞测定
To evaluate the antibacterial activity of ZIF-8/DS/AM/Fe3+ hydrogel, representative bacteria, Staphylococcus aureus and Escherichia coli, were tested. The inhibition zones around the samples are shown in Figure 8a, b, and the antibacterial rates are shown in Figure 8d, e. The ZIF-8/DS/AM/Fe3+ hydrogel demonstrated strong antibacterial activity against both Staphylococcus aureus and Escherichia coli. As the content of ZIF-8 increased, the inhibition rate against Escherichia coli gradually improved. This may be due to the large specific surface area and porous structure of ZIF-8, which can adsorb bacteria and restrict their activity, thus exhibiting antimicrobial effects [69, 70]. Additionally, ZIF-8 can release metal ions, such as zinc ions, which can disrupt bacterial cell membranes and interfere with bacterial metabolic processes, leading to bacterial death. The DS/AM/Fe3+ and ZIF-8/DS/AM/Fe3+ hydrogels exhibit strong antibacterial activity against Staphylococcus aureus. This may be due to the high aldehyde group content in DS, as aldehyde groups have inherent antimicrobial activity and can damage the cell structure [71, 72]
为评价ZIF-8/DS/AM/Fe3+水凝胶的抗菌活性,对代表性细菌金黄色葡萄球菌和大肠杆菌进行了测试。样品周围的抑菌圈如图8a、B所示,抗菌率如图8d、e所示。ZIF-8/DS/AM/Fe3+水凝胶对金黄色葡萄球菌和大肠杆菌均有较强的抗菌活性。随着ZIF-8含量的增加,对大肠杆菌的抑制率逐渐提高。这可能是由于ZIF-8的大比表面积和多孔结构,可以吸附细菌并限制其活性,从而表现出抗菌作用[69,70]。 此外,ZIF-8可以释放金属离子,如锌离子,这可以破坏细菌细胞膜并干扰细菌代谢过程,导致细菌死亡。DS/AM/Fe3+和ZIF-8/DS/AM/Fe3+水凝胶对金黄色葡萄球菌具有较强的抗菌活性。 这可能是由于DS中的高醛基含量,因为醛基具有固有的抗微生物活性,并且可能破坏细胞结构[71,72]。.
The cell viability of bone marrow mesenchymal stem cells on hydrogel coatings was evaluated by CCK-8 method (Figure 8c). The results demonstrated that with the extension of culture time, the number of BMSCs on the surface of hydrogel coatings continuously increases, indicating ZIF-8/DS/AM/Fe3+ hydrogel coating had good biocompatibility. The higher cell proliferation behavior of ZIF-8/DS/AM/Fe3+ hydrogel coating than the Ti6Al4V alloy group was displayed. In addition,
通过CCK-8方法评价水凝胶涂层上骨髓间充质干细胞的细胞活力(图8 c)。结果表明,随着培养时间的延长,ZIF-8/DS/AM/Fe 3+水凝胶涂层表面的BMSCs数量不断增加,表明ZIF-8/DS/AM/Fe3+水凝胶涂层具有良好的生物相容性。ZIF-8/DS/AM/Fe 3+水凝胶涂层的细胞增殖能力明显高于Ti6 Al 4V合金组。此外,当将ZIF-8纳米颗粒添加到水凝胶涂层中时,水凝胶涂层的钛合金细胞活力显著提高。 随着ZIF-8纳米粒子用量的增加,BMSC的增殖行为更加明显,表明ZIF-8/DS/AM/Fe3+水凝胶涂层能够显著增强BMSC在Ti6 Al 4V合金基体表面的增殖能力。
Fig.8 (a-b) Antibacterial activity of ZIF-8/DS/AM/Fe3+ hydrogel against Staphylococcus aureus and Escherichia coli. (c-d) Bacteriostasis rate of ZIF-8/DS/AM/Fe3+ hydrogel against S.aureus and E.coli. (e) Cell viability of BMSCs by the CCK-8 assay after 24 and 72 hours of culture on five different specimens
图8(a-b)ZIF-8/DS/AM/Fe 3+水凝胶对金黄色葡萄球菌和大肠杆菌的抗菌活性。(c-d)ZIF-8/DS/AM/Fe 3+水凝胶对金黄色葡萄球菌和大肠杆菌的抑菌率。(e)通过CCK-8测定在5种不同标本上培养24和72小时后BMSC的细胞活力.
3. Conclusion
3 .第三章。结论
Using ammonium persulfate as the initiator and N’N-methylenebisacrylamide as the cross linker, a Schiff base network was formed with natural polymers DS and PAM as the first network. Multiple DS chains were connected through Fe3+ chelation, and nanocomposite ZIF-8 was added to enhance the hardness of the hydrogel, resulting in a ZIF-8/DS/AM/Fe3+ hydrogel with excellent biocompatibility. This hydrogel exhibits strong corrosion resistance, with a corrosion inhibition rate of up to 79.63% for the 1000ppmZIF-8/DS/AM/Fe3+ hydrogel coating, as well as exceptional friction resistance, with the friction coefficient reduced to 82.43% and the wear rate decreased by 32.94%. Additionally, the ZIF-8/DS/AM/Fe3+ hydrogel has rapid healing capabilities, and this new method shows promise for biomedical or engineering applications.
以过硫酸铵为引发剂,N ′-N-亚甲基双丙烯酰胺为交联剂,以天然高分子DS和PAM为第一网络形成席夫碱网络。通过Fe 3+螯合作用将多个DS链连接起来,并加入纳米复合材料ZIF-8以提高水凝胶的硬度,得到具有良好生物相容性的ZIF-8/DS/AM/Fe3+水凝胶。该水凝胶具有较强的耐腐蚀性,对10 0 0 ppmZIF 8/DS/AM/Fe 3+水凝胶涂层的缓蚀率高达79.6 3%,同时具有优异的耐摩擦性,摩擦系数降低到82.4 3%,磨损率降低32.94%。 此外,ZIF-8/DS/AM/Fe3+水凝胶具有快速愈合能力,这种新方法显示出生物医学或工程应用的前景。
Experimental Section
实验部分
Materials: The Ti6Al4V plate was washed in 150w acetone ultrasonic bath for 1h, and then washed with distilled water for 3 times. Silicon nitride ball (Si3N4) was purchased from Ningbo Baiyue Hardware Accessories Co. The chemicals, such as dialdehyde starch (DS, aldehyde degree: 95%, aldehyde group content was provided by Jinshan Modified Starch Co., Ltd. (Shandong, China), Zn(NO3)2 6H2O (99.0%, China National Pharmaceutical Chemical Reagent Co., Ltd.). 2-methylimidazole (98%), methanol (99.5%, ammonium persulfate (APS,98%),acrylamide (99%),N,N′-Methylenebisacrylamide (MBA, 99%), 3-amino-propyltriethoxysilane (APTES), dopamine (DA), KOH (85%), NaOH (98%), crystal violet (95%), FeCl3 (99.99%), tri (hydroxymethyl) aminomethane were purchased from Shanghai Titan Technology Co., Ltd
材料:将Ti6Al4V钛板在150W丙酮超声浴中清洗1h,然后用蒸馏水清洗3次。氮化硅球(Si3N4)购自宁波百越五金配件有限公司。化学品,如双醛淀粉(DS,醛度:95%,醛基含量由金山变性淀粉有限公司提供,Ltd.(中国山东)、Zn(NO3)26H2O(99.0%,中国医药化学试剂有限公司,Ltd.)的产品。2-甲基咪唑(98%)、甲醇(99.5% 、 5% 、过 硫酸 铵(APS.98%),丙烯 酰胺 ( acrylamide )(99%),N , N , N“ ” “ ” “ ”甲基 比 丙烯 酰胺 ( ylenebisacryl)( MBA , 99% ) , 3 - 氨基 丙基 三 ( AP) , 多巴胺 ( DA ) , ( 85% ) ,NaOH(98% 。)结晶 紫 ( 95% ) , FeCl3( 99.99% ) ,3 . ( )hydroxymethyl) 氨 甲 环 酸were sed from上海 泰坦 科技 有限 公司, Ltd . , Ltd .
Synthesis of ZIF-8/DS/AM/Fe3+ hydrogels:The hydrogel preparation process is shown in Fig. 1. 6.5ml of deionized water was added ZIF-8, sonicate and disperse for 20 minutes. Adding bisaldehyde starch (DS, 0.6 g) to 6.5 mL of deionized water dispersed with ZIF-8, and slowly stirs at 80 ℃ for 20 minutes until a paste is formed. After complete dissolution, place the transparent gelatin solution at 40 ℃. Stir DS (10 g/100 mL) in a boiling water bath until it becomes a paste, then acrylamide (AM, 4g)was slowly added to the DS solution, followed by adding 0.5ml of 0.1 mol/L NaOH solution to adjust the pH to around 8. Gently stir, then add 0.02g anhydrous ferric chloride powder, 0.015 g crosslinking agent N’N-dimethylbisacrylamide, 0.02 g initiator ammonium persulfate, stir to form a clear yellow transparent mixture solution, then pour into the mold and react in a vacuum drying oven at 60 ℃ for 2 hours. Cool the prepared hydrogel to room temperature (25 ℃). The hydrogels were labeled DS/AM/Fe3+, 500ppmZIF-8/DS/AM/Fe3+, 1000ppmZIF-8/DS/AM/Fe3+, 1250ppmZIF-8/DS/AM/Fe3+, which respectively indicate that no ZIF-8 was added, 3.5 mg ZIF-8 was added, 7 mg ZIF-8 was added, and 8.75 mg ZIF-8 was added.
ZIF-8/DS/AM/Fe 3+水凝胶的合成:水凝胶制备过程如图1所示。向6.5ml去离子水中加入ZIF-8,超声处理并分散20分钟。将双醛淀粉(DS,0.6g)加入到分散有ZIF-8的6.5mL去离子水中,并在80 ° C下缓慢搅拌20分钟直至形成糊状物。完全溶解后,将透明明胶溶液置于40 ℃。在沸水浴中搅拌DS(10 g/100 mL)直至其变成糊状物,然后向DS溶液中缓慢加入丙烯酰胺(AM,4g),随后加入0.5ml 0.1 mol/L NaOH溶液以将pH调节至约8。 轻轻搅拌,然后加入0.02g无水氯化铁粉末、0.015g交联剂NN-二甲基双丙烯酰胺、0.02g引发剂过硫酸铵,搅拌形成澄清的黄色透明混合溶液,然后倒入模具中,在60 ℃真空干燥箱中反应2小时。将制备的水凝胶冷却至室温(25 ℃)。将水凝胶标记为DS/AM/Fe3+、500 ppmZIF-8/DS/AM/Fe3+、1000 ppmZIF-8/DS/AM/Fe3+、1250 ppmZIF-8/DS/AM/Fe3+,其分别指示未添加ZIF-8、添加3.5mg ZIF-8、添加7 mg ZIF-8和添加8.75mg ZIF-8。
Supporting Information
支持信息
Supporting Information is available from the Wiley Online Library or from the author.
支持信息可从Wiley在线图书馆或作者处获得。
Acknowledgements
确认
This work is grateful for the support of “ChenGuang” project (22CGA75) supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation and Shanghai "Science and Technology Innovation Action Plan" Morning Star Cultivation (Sailing Program 22YF1447500) and Shanghai Jiaotong University “Jiaotong University Star” Project Medical-Industrial Cross-Research Fund (Grant No. YG2021QN98), and Talent scientific research start-up project from Shanghai Institute of Technology (YJ2022–10).
本工作感谢上海市教委、上海市教育发展基金会资助的“晨光“项目(22 CGA 75)、上海市“科技创新行动计划”晨间星星培育(扬帆计划22 YF 1447500)、上海交通大学“交大之星星星”项目医产交叉研究基金(批准号:YG 2021 QN 98)、上海理工大学人才科研启动项目(YJ 2022 -10)的支持。
References
引用
[1] C. Wang, K. Zhu, Y. Gao, S. Han, J. Ju, T. Ren, X. Zhao, Tribology International 2023, 184.
[1]C. Wang,K. Zhu,Y. Gao,S. Han,J. Ju,T. Ren,X.赵,《国际摩擦学》,2023年,第184页。
[2] M. Dong, C. Wang, X. Cui, Y. Wang, G. Jin, Journal of Materials Science 2023, 58, 7794.
[2]M。东角,澳-地Wang,X. Cui,Y. Wang,G. Jin,材料科学杂志2023,58,7794.
[3] J. Huang, W. Zhang, W. Fang, Y. Yi, Tribology International 2023, 185.
[3]J. Huang,W. Zhang,W. Fang,Y. Yi,Tribology International2023,185.
[4] X. Liang, P. Du, S. Li, C. Zhang, Tribology International 2022, 167.
[4]X. Liang,P. Du,S. Li,C. Zhang,Tribology International2022,167.
[5] J. Andrade Del Olmo, J. M. Alonso, V. Saez-Martinez, S. Benito-Cid, R. Perez-Gonzalez, J. L. Vilas-Vilela, L. Perez-Alvarez, Carbohydr Polym 2023, 301, 120366.
[5]J. Andrade Del Olmo,J. M. Alonso,V. Saez-Martinez,S.贝尼托-西德河佩雷斯-冈萨雷斯维拉斯-维莱拉湖Perez-Alvarez,Carbohydr Polym2023,301,120366。
[6] J. Andrade Del Olmo, L. Perez-Alvarez, V. Saez Martinez, S. Benito Cid, L. Ruiz-Rubio, R. Perez Gonzalez, J. L. Vilas-Vilela, J. M. Alonso, Int J Biol Macromol 2023, 231, 123328.
[6]J. Andrade Del Olmo,L. Perez-Alvarez,V. Saez Martinez,S.贝尼托·西德湖鲁伊斯鲁比奥河佩雷斯·冈萨雷斯Vilas-Vilela,J. M. Alonso,Int J Biol Macromol2023,231,123328.
[7] Q. Chen, X. Zhang, S. Liu, K. Chen, C. Feng, X. Li, J. Qi, Y. Luo, H. Liu, D. Zhang, Friction 2022, 11, 1177.
[7]Q. Chen,X. Zhang,S. Liu,K. Chen C.,马缨丹属Feng,X. Li,J. Qi,Y. Luo,H. Liu,L.等,中国粘蝇D. Zhang,Friction2022,11,1177.
[8] L. Cui, Y. Lu, C. Gong, H. Li, J. Huang, D. Xiong, Tribology International 2023, 189.
[8]L。Cui,Y. Lu,C.龚,H. Li,J. Huang,D.中国植物志,2003 - 12 - 13(1):15 - 16. Xiong,Tribology International2023,189.
[9] Z. Jing, W. Yuan, J. Wang, R. Ni, Y. Qin, Z. Mao, F. Wei, C. Song, Y. Zheng, H. Cai, Z. Liu, Bioact Mater 2024, 33, 223.
[9]Z. Jing,W. Yuan,J. Wang,R. Ni,Y.秦、Z。毛氏F.魏角,澳-地宋,Y。郑惠南蔡氏Z. Liu,Bioact Mater2024,33,223.
[10] Y. Li, P. Tian, H. Cao, Y. Wang, X. Zhao, S. Han, C. Wang, Tribology International 2024, 192.
[10]Y.李平田,H. Cao,Y. Wang,X. Zhao,S.汉角,澳-地王,国际摩擦学2024,192。
[11] X. He, Z. Li, J. Li, D. Mishra, Y. Ren, I. Gates, J. Hu, Q. Lu, Small 2021, 17, e2103521.
[11]X.他,Z。Li,J. Li,D.米什拉湾伦岛,智-地Gates,J. Hu,Q. Lu,Small2021,17,e2103521.
[12] G. Zhong, P. Lei, P. Guo, Q. Yang, Y. Duan, J. Zhang, M. Qiu, K. Gou, C. Zhang, Y. Qu, R. Zeng, Small 2024, 20, e2309568.
[12]G.钟沛雷,郭沛,Q. Yang,Y.张俊,张文斌. Qiu,K.古角,澳-地 Zhang, Y.库河,巴西-地曾,小2024,20,e2309568.
[13] Q. Zhang, W. Chen, G. Li, Z. Ma, M. Zhu, Q. Gao, K. Xu, X. Liu, W. Lu, W. Zhang, Y. Wu, Z. Shi, J. Su, Small 2024, 20, e2306389.
[13]问。Zhang,W. Chen,G. Li,Z.妈,M。朱,加-地Gao,K. Xu,X. Liu,W. Lu,W. Zhang, Y. Wu,Z.施建苏,小2024,20,e2306389.
[14] J. Park, T. Y. Kim, Y. Kim, S. An, K. S. Kim, M. Kang, S. A. Kim, J. Kim, J. Lee, S. W. Cho, J. Seo, Adv Sci (Weinh) 2023, 10, e2303651.
[14]第十四话Y.金,Y。Kim,S. An、K. S.金,M。康,S. A. Kim,J. Kim,J. Lee,S. W. Cho,J.Seo,Adv Sci(Weinh)2023,10,e2303651.
[15] S. K. Das, T. Parandhaman, M. D. Dey, Green Chemistry 2021, 23, 629.
[15]S. K.达斯,T. Parandhaman,M. D. Dey,绿色化学2021,23,629.
[16] X. Liu, Y. Sun, J. Wang, Y. Kang, Z. Wang, W. Cao, J. Ye, C. Gao, Bioact Mater 2024, 34, 269.
[16] X. Liu, Y. Sun, J. Wang, Y. Kang, Z. Wang, W. Cao, J. Ye, C. Gao, Bioact Mater2024, 34, 269.
[17] Y. Chen, M. Gao, K. Chen, H. Sun, H. Xing, X. Liu, W. Liu, H. Guo, Small 2024, DOI: 10.1002/smll.202400593e2400593.
[17]Y. Chen,M. Gao,K. Chen,H.孙,H. Xing、X. Liu,W. Liu,H.郭,小号2024,DOI:10.1002/smll.202400593e2400593。
[18] Y. Liang, X. Zhao, T. Hu, B. Chen, Z. Yin, P. X. Ma, B. Guo, Small 2019, 15, e1900046.
[18]Y. Liang,X. Zhao,T. Hu,B. Chen,Z. Yin,P. X.妈,B。郭,小2019,15,e1900046。
[19] Y. Deng, M. Huang, D. Sun, Y. Hou, Y. Li, T. Dong, X. Wang, L. Zhang, W. Yang, ACS Appl Mater Interfaces 2018, 10, 37544.
[19]第十九话邓,M. Huang,黄氏拟谷盗D.太阳,Y。Hou,Y. Li,T. Dong,X.王湖,加-地Zhang,W. Yang,ACS Appl Mater Interfaces2018,10,37544.
[20] X.-y. Chu, K. Yang, X. He, K.-t. Yu, Y.-y. Luan, Q.-b. He, Z.-l. Li, Y.-l. Xiang, H. Chen, Y. Zeng, Y.-Z. Li, D.-l. Zhang, Materials & Design 2024, 241.
[20]第二十章y. Chu,K. Yang,X.他,K。- t.余,Y.- y.卢安,Q.- B.他,Z- L.李,Y. L. Xiang,H. Chen,Y.曾玉Z.李,D.- L. Zhang,Materials& Design2024,241.
[21] Q. Luo, Y. Yang, C. Ho, Z. Li, W. Chiu, A. Li, Y. Dai, W. Li, X. Zhang, J Nanobiotechnology 2024, 22, 287.
[21]Q. Luo,Y.杨角,澳-地霍,Z。Li,W. Chiu,A. Li,Y.戴,W. Li,X. Zhang,J Nanobiotechnology2024,22,287.
[22] A. Martorana, M. Lenzuni, M. Contardi, F. S. Palumbo, S. Cataldo, A. Pettignano, V. Catania, D. Schillaci, M. Summa, A. Athanassiou, C. Fiorica, R. Bertorelli, G. Pitarresi, ACS Appl Mater Interfaces 2024, DOI: 10.1021/acsami.4c00657.
[22]A.马尔托拉纳湾Lenzuni,M. F.康塔尔迪S. Palumbo,S.卡托尔多A. Pettignano,V. Catania,D. Schillaci,M. Summa,A.阿萨纳西乌角菲奥里卡河贝尔托雷利湾Pitarresi,ACS Appl Mater Interfaces2024,DOI:10.1021/acsami.4c00657。
[23] Y. Li, Y. Qiu, H. Hou, G. Zhang, H. Hao, J. Bi, Foods 2023, 12.
[23]Y. Li,Y. Qiu,H. Hou,G. Zhang,H. Hao,J. Bi,Foods2023,12.
[24] W. Zhang, X. L. Sun, Q. Yang, Y. Guo, Y. Cui, Y. Xiang, B. Hu, J. Wei, P. Tu, Int J Biol Macromol 2024, 256, 128355.
[24]第二十四话Zhang,X. L.孙角,澳-地Yang,Y. Guo,Y. Cui,Y.翔,B。Hu,J. Wei,P. Tu,Int J Biol Macromol2024,256,128355.
[25] P. Kuchaiyaphum, C. Chotichayapong, N. Butwong, W. Bua-ngern, Macromolecular Research 2020, 28, 844.
[25]P. Kuchaiyaphum,C. Chotichayapong,N. Butwong,W. Bua-ngern,《高分子研究》2020,28,844。
[26] F. A. Ngwabebhoh, O. Zandraa, R. Patwa, N. Saha, Z. Capakova, P. Saha, Int J Biol Macromol 2021, 167, 1468.
[26]F. A.恩瓜贝博岛赞德拉河Patwa,N.萨哈角,巴西-地Capakova,P. Saha,Int J Biol Macromol2021,167,1468.
[27] M. Yan, S. Y. Hu, Z. G. Wang, R. Hong, X. Peng, M. Kuzmanovic, M. Yang, R. Dai, Y. Wang, J. Gou, K. Li, J. Z. Xu, Z. M. Li, Biomacromolecules 2024, 25, 2438.
[27]M. Yan,S. Y. Hu,Z. G.王河,巴西-地洪,X.彭,M.库扎诺维奇,M.扬河,巴西-地戴,Y. Wang,J. Gou,K.李建宗<英>来华传教士。Xu,Z. M. Li,Biomacromolecules2024,25,2438.
[28] F. Li, T. Liu, X. Liu, C. Han, L. Li, Q. Zhang, X. Sui, Int J Biol Macromol 2024, 260, 129682.
[ 28 ]F . F . F李 , T 。刘 , X 。Liu , C . Han , L 。李 , Q 。张 , X 。苏 , 苏 ,INT J Biol Macromol2024260 , 129682 。
[29] F. Valipour, E. Z. Rahimabadi, H. Rostamzad, Int J Biol Macromol 2023, 253, 126704.
[ 29 ] 。F . F . F Valipour , E . Z . Z ., H 。罗斯坦 扎德 ,INT J Biol Macromol2023, 253 , 126704 。
[30] G. Xiang, B. Wang, W. Zhang, Y. Dong, J. Tao, A. Zhang, R. Chen, T. Jiang, X. Zhao, Acta Biomater 2024, 182, 245.
[ 30 ]G . G . G Xiang , B .王 , W 。张 , Y 。Dong , J. Tao , A . Zhang , R .陈 , T . Jiang , X .赵 先生 ,Acta 生物 材料2024182 , 245 。
[31] S. Ma, H. Li, J. Fei, C. Li, Composites Part B: Engineering 2023, 258.
[ 31 ]S . S .妈 , H . Li , J. Fei , C .李 ,ites Part B : Engineering2023258 . 258
[32] T. Sui, L. Li, B. Lin, Y. Zhang, B. Zhang, S. Yan, Front Chem 2021, 9, 802375.
[32]T.苏伊湖,加-地李,B。Lin,Y. Zhang,B. Zhang,S. Yan,Front Chem2021,9,802375。
[33] S. Ma, H. Li, Q. Huang, J. Fei, J Colloid Interface Sci 2024, 653, 777.
【 33 】S . S .妈 , H .李 , Q 。黄 , J.Fei ,J Colloid 界面 科学2024653 , 777 。
[34] P. Wang, B. He, X. Zhang, S. Liu, Q. Ye, F. Zhou, W. Liu, ACS Appl Mater Interfaces 2023, 15, 56192.
[ 34 ]P . 王 , B .他 , X 。Zhang , S .刘 , Q 。是 的 , F 。周 , W 。刘 ,ACS Appl Mater 接口2023, 15 , 56192 。
[35] H. Zhang, Z. Wang, Tribology Transactions 2022, 65, 1122.
【 35 】H . H . Zhang , Z .王 某 ,摩擦 学 交易 ( Tribology Transactions )202265 , 1122 。
[36] X. Yin, P. Mu, Q. Wang, J. Li, ACS Appl Mater Interfaces 2020, 12, 35453.
[ 36 ]X . X . X Yin , P. Mu , Q .王 , 李 ,ACS Appl Mater 接口2020, 12 , 35453 。
[37] N. Shi, H. Li, X. Li, H. Luo, J. Jin, J. Wang, S. Li, Progress in Organic Coatings 2023, 183.
[ 37 ]N . N . Shi , H .李 , X 。李 , H 。罗 , J. Jin , J. Wang , S .李 ,有机 涂料 的 进展 情况2023, 183 。
[38] S. Duan, B. Dou, X. Lin, S. Zhao, W. Emori, J. Pan, H. Hu, H. Xiao, Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021, 624.
[38]美国。段湾,B-地Dou,X. Lin,S. Zhao,W.放大图片作者:张建民Hu,H.肖,胶体和表面A:物理化学和工程方面,2021,624。
[39] Q. Tian, X. Jia, J. Yang, S. Wang, Y. Li, D. Shao, H. Song, Applied Surface Science 2022, 578.
[39]问。Tian、X.贾建杨S. Wang,Y. Li,D. Shao,H.宋,应用表面科学2022,578。
[40] L. Jiao, J. Li, L. L. Richard, Q. Sun, T. Stracensky, E. Liu, M. T. Sougrati, Z. Zhao, F. Yang, S. Zhong, H. Xu, S. Mukerjee, Y. Huang, D. A. Cullen, J. H. Park, M. Ferrandon, D. J. Myers, F. Jaouen, Q. Jia, Nat Mater 2021, 20, 1385.
[40]L.焦建,李,L. L.理查德角,澳-地孙,T.斯特拉琴斯基,E。Liu,M. T.苏格拉蒂Z Zhao,F. Yang,S. Zhong,H. Xu,S.穆克吉湾Huang,黄氏拟谷盗D. A.卡伦,J. H.帕克,M。费兰登,D. J.迈尔斯,F.雅万角,智-地贾,《国母》2021年,第20期,第1385页。
[41] F.-F. Wang, Z. Liu, Z.-L. Cheng, Materials Letters 2019, 248, 222.
[41]F. F. Wang, Z.刘志- L.程,《材料快报》2019年,第248页,第222页。
[42] G. Kumari, K. Jayaramulu, T. K. Maji, C. Narayana, J Phys Chem A 2013, 117, 11006.
<跨度 id=0>[42]<跨度 id=1><跨度 id=2> G. Kumari, K. Jayaramulu, T.K. Majhi, C. Narayana, <跨度 id=3>J Fischem A<跨度 id=4>2013<跨度 id=5>, 117, 11006.
[43] C. Xu, W. Zhan, X. Tang, F. Mo, L. Fu, B. Lin, Polymer Testing 2018, 66, 155.
[43]C. Xu,W. Zhan,X.唐氏F.莫湖,澳-地Fu,B. Lin,Polymer Testing2018,66,155.
[44] Y. Jing, Q. Lei, C. Xia, Y. Guan, Y. Yang, J. He, Y. Yang, Y. Zhang, M. Yan, RSC Adv 2020, 10, 698.
[44]I'm sorry.京角,澳-地莱角,澳-地Xia,Y.关,Y. Yang,J. He,Y. Yang,Y. Zhang,M. Yan,RSC Adv2020,10,698.
[45] H. Liu, X. Zhu, H. Guo, H. Huang, S. Huang, S. Huang, W. Xue, P. Zhu, R. Guo, Applied Materials Today 2020, 20.
[45]H. Liu,X. Zhu,H. Guo,H. Huang,S. Huang,S.黄,W. Xue,P. Zhu,R.郭,应用材料今天2020,20。
[46] D.-Y. Gao, Z. Liu, Z.-L. Cheng, Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021, 610.
[46]I'm sorry. Y. Gao,Z.刘志- L. Cheng,Colloids and Surfaces A:Physicochemical and Engineering Aspects2021,610.
[47] S. Zhu, T. Lu, Z. Wang, D. Peng, L. Wang, Y. Huang, H. Yang, Materials Letters 2024, 360.
[47]S. Zhu,T. Lu、Z. Wang,中国山杨D.彭湖,澳-地Wang,Y. Huang,H.杨,材料快报2024,360。
[48] C. Ji, J. Zhang, R. Jia, W. Zhang, L. Lv, B. Pan, Chemical Engineering Journal 2021, 414.
[48]C. Ji,J. Zhang,R.贾,W.张丽吕,B。潘,化学工程杂志2021,414.
[49] M. Yang, W. Xu, Z. Chen, M. Chen, X. Zhang, H. He, Y. Wu, X. Chen, T. Zhang, M. Yan, J. Bai, C. McAlinden, K. M. Meek, J. Yu, S. Ding, R. Gao, J. Huang, X. Zhou, Adv Mater 2022, 34, e2109865.
[49]I'm sorry.杨,W. Xu,Z. Chen,M. Chen,X. Zhang,H.他,Y. Wu,X. Chen,T. Zhang,M. Yan,J. Bai,C. McAlinden,K. M. Meek,J. Yu,S.丁河,巴西-地黄杰,高进,X. Zhou,Adv Mater2022,34,e2109865.
[50] X. G. Yang, J. R. Zhang, X. K. Tian, J. H. Qin, X. Y. Zhang, L. F. Ma, Angew Chem Int Ed Engl 2023, 62, e202216699.
[50]第十章G.杨小刚Zhang,X. K.田继华<英>来华传教士。Qin、X. Y.张丽F. Ma,Angew Chem Int艾德英格兰2023,62,e202216699。
[51] X. Yao, G. Zhu, P. Zhu, J. Ma, W. Chen, Z. Liu, T. Kong, Advanced Functional Materials 2020, 30.
[51]第五章Yao,G. Zhu,P. Zhu,J. Ma,W. Chen,Z. Liu,T. Kong,Advanced Functional Materials2020,30.
[52] K. Yang, J. Yang, R. Chen, Q. Dong, H. Yang, S. Gu, Y. Zhou, Int J Biol Macromol 2024, 256, 128320.
[52]I'm sorry.杨,J.杨R.陈角,澳-地Dong,H.在中国的分布Yang,S. Gu,Y. Zhou,Int J Biol Macromol2024,256,128320.
[53] Q. Liu, C. Wang, M. Cheng, L. Hu, Z. Zhang, Q. Sun, S. Wang, Y. Fan, P. Pan, J. Chen, ACS Appl Mater Interfaces 2024, 16, 30776.
[53]Q. Liu,C. Wang,M.澄湖,澳-地Hu,Z.张,智-地孙习Wang,Y. Fan,P. Pan,J. Chen,ACS Appl Mater Interfaces2024,16,30776。
[54] Q. Feng, D. Li, Q. Li, H. Li, Z. Wang, S. Zhu, Z. Lin, X. Cao, H. Dong, ACS Appl Mater Interfaces 2022, 14, 15653.
” ( 54 )Q 。冯 , D 。李 , Q 。李 , H 。李 , Z 。王 , S 。朱 , Z 。林 , X 。曹 , H 。唐 ,ACS Appl Mater Interfaces 使用 教程2022, 15653 。
[55] Y. Qin, J. Mo, Y. Liu, S. Zhang, J. Wang, Q. Fu, S. Wang, S. Nie, Advanced Functional Materials 2022, 32.
[55]Y. Qin,J. Mo,Y. Liu,S.张建,王健,Q. Fu,S. Wang,S. Nie,Advanced Functional Materials2022,32.
[56] M. Li, Y. Liang, J. He, H. Zhang, B. Guo, Chemistry of Materials 2020, 32, 9937.
[56]I'm sorry. Li,Y.梁建和,H. Zhang,B.郭,材料化学2020,32,9937。
[57] C. Mu, H. Chen, X. Sun, G. Liu, K. Yan, Progress in Organic Coatings 2021, 161.
[57]C. Mu,H. Chen,X.孙,G. Liu,K.严,有机涂料进展2021,161。
[58] X. Huang, J. Huang, D. Yang, P. Wu, Adv Sci (Weinh) 2021, 8, e2101664.
[58]第五章Huang,J. Huang,D.黄氏D. Yang,P.Wu,Adv Sci(Weinh)2021,8,e2101664.
[59] S. Ma, H. Li, C. Li, H. Tian, M. Tao, J. Fei, L. Qi, Nanoscale 2021, 13, 20234.
[59]S. Ma,H. Li,C. Li,H.田,M. Tao,J. Fei,L. Qi,Nanoscale2021,13,20234。
[60] K. Wei, Y. Wei, Y. Zhang, V. Kasneryk, M. Serdechnova, H. Wang, Z. Zhang, Y. Yuan, C. Blawert, M. L. Zheludkevich, F. Chen, Corrosion Science 2024, 227.
[60]K. Wei,Y. Wei,Y.张,V.卡斯纳里克,M.谢尔代赫诺瓦Wang, Z. Zhang, Y.袁角,澳-地布拉维特,M。L.热卢德克维奇·F. Chen,腐蚀科学2024,227。
[61] J. Wang, M. Wu, J. Huang, Y. Wang, X. Miao, Y. Chen, D. Bian, Y. Zhao, ACS Appl Mater Interfaces 2024, 16, 26768.
[61]王杰,M.吴杰,黄玉. Wang,X.苗,Y. Chen,中国粘蝇D.卞,Y.赵,ACS应用软件接口2024,16,26768。
[62] L. Xiong, M. Yu, Y. Li, X. Kong, S. Li, J. Liu, Progress in Organic Coatings 2020, 142.
[62]L. Xiong,M. Yu,Y. Li,X.孔,S.李杰,刘杰,有机涂料进展2020,142。
[63] J. Liu, H. Yu, W. Huang, Z. Zhang, W. Shang, J. Jiang, Y. Wen, Materials Chemistry and Physics 2024, 318.
[63]刘杰,H.余,W. Huang,Z. Zhang,W.张建民,张建民.温,材料化学与物理2024,318。
[64] M. Kiani, M. Javidi, Journal of Solid State Chemistry 2024, 338.
[64]美国。基亚尼,M。Javidi,固体化学杂志2024,338。
[65] P. Gong, M. Wang, J. Wang, J. Li, B. Wang, X. Bai, J. Liu, Z. Liu, D. Wang, W. Liu, J Colloid Interface Sci 2024, 672, 589.
[65]第65话,我的意思是:作者简介:王建,王建,李建,B. Wang,X.作者简介:李志,王志. Liu,L.等,中国粘蝇D. Wang,W.刘军,胶体界面科学,2024,672,589。
[66] Z. Shan, H. Fan, Q. Tian, X. Jia, H. Song, Tribology International 2024, 192.
[66]Z.山,H.范角,澳-地Tian,X. Jia,H.宋,国际摩擦学2024,192。
[67] H. Ma, W. Wu, H. Zhang, Z. Wang, Industrial Lubrication and Tribology 2022, 74, 531.
[67]H.马,W。Wu,H. Zhang,Z. Wang,工业润滑与摩擦学,2022,74,531。
[68] M. Liu, Z. Zhang, Y. Wang, P. Li, M. Yang, J. Yuan, Composites Communications 2022, 31.
[68]美国。Liu,Z. Zhang, Y.王,李P.,M.杨建源,复合材料通讯2022,31。
[69] M. Taheri, D. Ashok, T. Sen, T. G. Enge, N. K. Verma, A. Tricoli, A. Lowe, D. R. Nisbet, T. Tsuzuki, Chemical Engineering Journal 2021, 413.
[69]I'm sorry. Taheri,D. Ashok,T. Sen,T. G. Enge,N. K. Verma,A. Tricoli,A.洛,D. R.尼斯贝特,T. Tsuzuki,化学工程杂志2021,413。
[70] J. He, W. Qu, Y. Feng, J. Jiang, J. Luo, Y. Wu, L. Peng, Chemical Engineering Journal 2024, 493.
[70]J. He,W. Qu,Y. Feng,J. Jiang,J. Luo,Y.吴湖,加-地彭,化学工程学报2024,493.
[71] X. Yuan, Y. Zhou, Y. Wang, L. Liu, G. Yang, Carbohydr Polym 2024, 326, 121619.
[71]第三章Yuan,Y. Zhou,Y.王湖,加-地Liu,G. Yang,Carbohydr Polym2024,326,121619。
[72] M. F. Valdez‐Valdés, F. J. Enríquez‐Medrano, A. Zugasti‐Cruz, C. A. Sierra‐Rivera, E. I. Martínez‐Mora, G. d. J. Sosa‐Santillán, E. Oyervides‐Muñoz, Polymer International 2024, DOI: 10.1002/pi.6689.
[72]M. F.巴尔德斯-巴尔德斯,F. J.恩里克斯-梅德拉诺,A. Zugasti-Cruz,C. A.塞拉-里维拉,E. I.马丁内斯-莫拉,G. D. J.索萨-桑蒂兰,E. Oyervides-Muñoz,聚合物国际2024,DOI:10.1002/pi.6689。