这是用户在 2024-9-12 13:38 为 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5766980/ 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
Skip to main content 跳转到主要内容
U.S. flag

An official website of the United States government

Access keys 访问密钥 NCBI Homepage NCBI 主页 MyNCBI Homepage 我的 NCBI 主页 Main Content 主要内容 Main Navigation 主导航
2018; 12: 2.
Published online 2018 Jan 12. doi: 10.1186/s13036-017-0093-0
2018 年 1 月 12 日在线发表。doi: 10.1186/s13036-017-0093-0
PMCID: PMC5766980
PMID: 29344085

Synthesis, secretion, function, metabolism and application of natriuretic peptides in heart failure
心力衰竭中钠利尿肽的合成、分泌、功能、代谢和应用

Associated Data 关联数据

Data Availability Statement
数据可用性声明

Abstract 摘要

As a family of hormones with pleiotropic effects, natriuretic peptide (NP) system includes atrial NP (ANP), B-type NP (BNP), C-type NP (CNP), dendroaspis NP and urodilatin, with NP receptor-A (guanylate cyclase-A), NP receptor-B (guanylate cyclase-B) and NP receptor-C (clearance receptor). These peptides are genetically distinct, but structurally and functionally related for regulating circulatory homeostasis in vertebrates. In humans, ANP and BNP are encoded by NP precursor A (NPPA) and NPPB genes on chromosome 1, whereas CNP is encoded by NPPC on chromosome 2. NPs are synthesized and secreted through certain mechanisms by cardiomyocytes, fibroblasts, endotheliocytes, immune cells (neutrophils, T-cells and macrophages) and immature cells (embryonic stem cells, muscle satellite cells and cardiac precursor cells). They are mainly produced by cardiovascular, brain and renal tissues in response to wall stretch and other causes. NPs provide natriuresis, diuresis, vasodilation, antiproliferation, antihypertrophy, antifibrosis and other cardiometabolic protection. NPs represent body’s own antihypertensive system, and provide compensatory protection to counterbalance vasoconstrictor-mitogenic-sodium retaining hormones, released by renin-angiotensin-aldosterone system (RAAS) and sympathetic nervous system (SNS). NPs play central roles in regulation of heart failure (HF), and are inactivated through not only NP receptor-C, but also neutral endopeptidase (NEP), dipeptidyl peptidase-4 and insulin degrading enzyme. Both BNP and N-terminal proBNP are useful biomarkers to not only make the diagnosis and assess the severity of HF, but also guide the therapy and predict the prognosis in patients with HF. Current NP-augmenting strategies include the synthesis of NPs or agonists to increase NP bioactivity and inhibition of NEP to reduce NP breakdown. Nesiritide has been established as an available therapy, and angiotensin receptor blocker NEP inhibitor (ARNI, LCZ696) has obtained extremely encouraging results with decreased morbidity and mortality. Novel pharmacological approaches based on NPs may promote a therapeutic shift from suppressing the RAAS and SNS to re-balancing neuroendocrine dysregulation in patients with HF. The current review discussed the synthesis, secretion, function and metabolism of NPs, and their diagnostic, therapeutic and prognostic values in HF.
作为具有多效作用的激素家族,利钠肽(NP)系统包括心房利钠肽(ANP)、B 型利钠肽(BNP)、C 型利钠肽(CNP)、树蛇利钠肽和尿利钠肽,具有 NP 受体-A(鸟苷酸环化酶-A)、NP 受体-B(鸟苷酸环化酶-B)和 NP 受体-C(清除受体)。这些肽在遗传上是不同的,但在结构和功能上相关,用于调节脊椎动物的循环稳态。在人类中,ANP 和 BNP 由染色体 1 上的 NP 前体 A(NPPA)和 NPPB 基因编码,而 CNP 由染色体 2 上的 NPPC 编码。NP 通过心肌细胞、成纤维细胞、内皮细胞、免疫细胞(中性粒细胞、T 细胞和巨噬细胞)和未成熟细胞(胚胎干细胞、肌肉卫星细胞和心脏前体细胞)通过某些机制合成和分泌。它们主要由心血管、脑和肾组织产生,以应对壁伸展和其他原因。NP 提供利尿、利尿、血管舒张、抗增殖、抗肥大、抗纤维化和其他心脏代谢保护。 NPs 代表身体自身的抗高血压系统,并提供补偿性保护以抵消由肾素-血管紧张素-醛固酮系统(RAAS)和交感神经系统(SNS)释放的血管收缩-有丝分裂原-钠潴留激素。NPs 在心力衰竭(HF)调节中发挥中心作用,并通过不仅 NP 受体 C,还有中性内肽酶(NEP)、二肽基肽酶-4 和胰岛素降解酶来失活。BNP 和 N 末端 proBNP 不仅是诊断和评估 HF 严重程度的有用生物标志物,还可指导治疗并预测 HF 患者的预后。目前的 NP 增强策略包括合成 NPs 或激动剂以增加 NP 生物活性,以及抑制 NEP 以减少 NP 降解。奈西立肽已被确认为一种可用的治疗方法,而血管紧张素受体拮抗剂 NEP 抑制剂(ARNI,LCZ696)已取得极为令人鼓舞的结果,降低了发病率和死亡率。基于 NPs 的新型药理学方法可能促进治疗策略的转变,从抑制 RAAS 和 SNS 到在 HF 患者中重新平衡神经内分泌失调。 当前的综述讨论了 NPs 的合成、分泌、功能和代谢,以及它们在 HF 中的诊断、治疗和预后价值。

Keywords: Cardiac precursor cells, Dipeptidyl peptidase-4, Heart failure, Insulin degrading enzyme, Angiotensin receptor blocker neutral endopeptidase inhibitor, micro-RNA, Natriuretic peptides, Nesiritide, Designer natriuretic peptides, Natriuretic peptide precursor
关键词: 心脏前体细胞,二肽基肽酶-4,心力衰竭,胰岛素降解酶,血管紧张素受体拮抗剂中性内肽酶抑制剂,微 RNA,利钠肽,奈西立肽,设计师利钠肽,利钠肽前体

Background 背景

As a family of hormones with pleiotropic effects, natriuretic peptide (NP) system includes atrial NP (ANP), B-type NP (BNP, also called brain NP), C-type NP (CNP), dendroaspis NP (DNP) and urodilatin, with three receptors: NP receptor-A [guanylate cyclase (GC)-A or NPR-A], NP receptor-B (GC-B or NPR-B) and NP receptor-C (clearance receptor or NPR-C) []. These peptides are genetically distinct, but structurally and functionally related for regulating circulatory homeostasis in vertebrates, and each of them has a 17-amino acid (aa) cyclic structure constructed with an disulfide bond []. In humans, ANP and BNP are encoded by NP precursor A (NPPA) and NPPB genes on chromosome 1, whereas CNP is encoded by NPPC on chromosome 2 []. NPs are synthesized and secreted through certain mechanisms by cardiomyocytes, fibroblasts, endotheliocytes, immune cells (neutrophils, T-cells and macrophages) and immature cells, such as embryonic stem cells, muscle satellite cells and cardiac precursor cells (CPCs) []. They are mainly produced by cardiovascular, brain and renal tissues in response to wall stretch and other causes. NPs provide natriuresis, diuresis, vasodilation, antiproliferation, antihypertrophy, antifibrosis and other cardiometabolic protection [, ]. More importantly, NPs represent body’s own antihypertensive system, and provide compensatory protection to counterbalance vasoconstrictor-mitogenic-sodium retaining hormones, released by renin-angiotensin-aldosterone system (RAAS) and sympathetic nervous system (SNS) []. NPs are inactivated through not only NPR-C, but also neutral endopeptidase (NEP), dipeptidyl peptidase-4 (DPP-4) and insulin degrading enzyme (IDE). There is urinary excretion of NPs as well []. The current review discussed the synthesis, secretion, function and metabolism of NPs, and their diagnostic, therapeutic and prognostic values in heart failure (HF).
作为具有多效作用的激素家族,利钠肽(NP)系统包括心房利钠肽(ANP)、B 型利钠肽(BNP,又称脑利钠肽)、C 型利钠肽(CNP)、树蛇利钠肽(DNP)和尿利钠素,具有三种受体:利钠肽受体-A [鸟苷酸环化酶(GC)-A 或 NPR-A]、利钠肽受体-B(GC-B 或 NPR-B)和利钠肽受体-C(清除受体或 NPR-C)[]。这些肽在遗传上是不同的,但在结构和功能上相关,用于调节脊椎动物的循环稳态,每种肽都有一个由 17 个氨基酸(aa)构成的环状结构,其中包含一个二硫键[]。在人类中,ANP 和 BNP 由染色体 1 上的 NP 前体 A(NPPA)和 NPPB 基因编码,而 CNP 由染色体 2 上的 NPPC 编码[]。利钠肽通过心肌细胞、成纤维细胞、内皮细胞、免疫细胞(中性粒细胞、T 细胞和巨噬细胞)和未成熟细胞(如胚胎干细胞、肌肉卫星细胞和心脏前体细胞(CPCs))通过某些机制合成和分泌[]。它们主要由心血管、脑和肾组织产生,以应对壁伸展和其他原因。 NPs 提供利尿、利尿、扩血管、抗增殖、抗肥大、抗纤维化和其他心脏代谢保护[, ]。更重要的是,NPs 代表身体自身的降压系统,并提供补偿保护以抵消由肾素-血管紧张素-醛固酮系统(RAAS)和交感神经系统(SNS)释放的血管收缩-有丝分裂原-钠潴留激素[]。NPs 不仅通过 NPR-C,还通过中性内肽酶(NEP)、二肽基肽酶-4(DPP-4)和胰岛素降解酶(IDE)被灭活。NPs 也会通过尿液排泄[]。本文综述了 NPs 的合成、分泌、功能和代谢,以及它们在心力衰竭(HF)中的诊断、治疗和预后价值。

Synthesis and secretion 合成和分泌

Synthesis and secretion of ANP
ANP 的合成和分泌

ANP is mainly produced and stored in atrial granule, and normal ventricle actually produces little ANP []. Failing ventricle secretes ANP in patients with HF, and becomes a main part of plasma ANP []. NPPA gene has the following exons: exon 1 [5’-untranslated region (5’-UTR, a 25-aa signal peptide) and 16 aa of proANP sequence], exon 2 (most of proANP sequence) and exon 3 [terminal tyrosine and 3’-untranslated region (3’-UTR)] (Fig. (Fig.1).1). Proximal 5’-flanking region (5’-FR) of NPPA gene can regulate its spatio-temporal expression []. Mechanical stretch of cardiomyocytes, exercise, hypoxia, cold, angiotensin, endothelin, vasopressin, catecholamine or glucocorticoid induces transcription factor GATA to bind promoters, suggesting an active involvement of neurohormonal system in the regulation of NP synthesis. ANP mRNA is translated to 151-aa preproANP, and 126-aa proANP is produced and stored after removing 25-aa signal peptide. ProANP is cleaved upon secretion by transmembrane serine endoprotease (corin) into the active carboxy-terminal (C-terminal) 28-aa α-ANP with relatively short half-life, which can bind to receptor and have biologic function, and the inactive 98-aa amino-terminal (N-terminal) proANP (NT-proANP) more stable with relatively long half-life []. ANP secretion is caused by atrial and ventricular wall stretch due to transmural pressure or volume overload, and also affected by age, sex, heart rate and renal function []. ANP is distributed into coronary sinus, and then to various target organs. Meanwhile, human β-ANP, an antiparallel dimer of α-ANP, is present in failing heart, and has elevated levels in patients with severe HF []. Additionally, urodilatin is a 32-aa NP of renal origin with local function in regulating renal sodium and water excretion through interacting with NPR-A. It is produced as N-terminal 4-aa-extended form of α-ANP like γ-ANP after the cleavage of proANP by an unknown protease in renal distal tubules [].
ANP 主要在心房颗粒中产生和储存,而正常心室实际上产生很少的 ANP []。在 HF 患者中,衰竭的心室分泌 ANP,并成为血浆 ANP 的主要部分 []。NPPA 基因具有以下外显子:外显子 1 [5'-非翻译区(5'-UTR,25 个氨基酸信号肽)和 16 个氨基酸的前 ANP 序列],外显子 2(大部分前 ANP 序列)和外显子 3 [末端酪氨酸和 3'-非翻译区(3'-UTR)](图 (图 1)。1)。NPPA 基因的近端 5'-上游区域(5'-FR)可以调节其时空表达 []。心肌细胞的机械拉伸、运动、缺氧、寒冷、血管紧张素、内皮素、抗利尿激素、儿茶酚胺或糖皮质激素诱导转录因子 GATA 结合启动子,表明神经荷尔蒙系统在 NP 合成调节中的积极参与。ANP mRNA 被翻译成 151 个氨基酸的前前 ANP,去除 25 个氨基酸信号肽后产生和储存 126 个氨基酸的前 ANP。 ProANP 通过跨膜丝氨酸内切蛋白酶(corin)在分泌时被切割成活性羧基末端(C-末端)28-aa α-ANP,具有相对较短的半衰期,可以结合受体并具有生物学功能,以及相对较长半衰期的无活性 98-aa 氨基末端(N-末端)proANP(NT-proANP)[]。ANP 的分泌是由于心房和心室壁的横向压力或容量过载引起的,同时也受年龄、性别、心率和肾功能的影响[]。ANP 分布到冠状窦,然后到各种靶器官。同时,人类β-ANP,α-ANP 的反平行二聚体,存在于衰竭心脏中,并且在严重 HF 患者中水平升高[]。此外,尿利钠是肾脏起源的 32-aa NP,具有通过与 NPR-A 互动调节肾脏钠和水排泄的局部功能。它在肾脏远曲小管中由未知蛋白酶切割 proANP 后产生为α-ANP 的 N-末端 4-aa 扩展形式,类似于γ-ANP[]。

An external file that holds a picture, illustration, etc.
Object name is 13036_2017_93_Fig1_HTML.jpg

Synthesis, metabolism and function of natriuretic peptides. Abbreviations: ANP: atrial natriuretic peptide; BNP: B-type natriuretic peptide; cGMP: cyclic guanosine monophosphate; CNP: C-type natriuretic peptide; DPP-4: dipeptidyl peptidase-4; GC: guanylate cyclase; GTP: guanosine triphosphate; IDE: insulin degrading enzyme; NEP: neutral endopeptidase; NPR: natriuretic peptide receptor; NT-proANP: N-terminal proANP; NT-proBNP: N-terminal proBNP; NT-proCNP: N-terminal proCNP; PDE: phosphodiesterase; PKG: protein kinase; RAAS: renin-angiotensin-aldosterone system; SNS: sympathetic nervous system
利钠肽的合成、代谢和功能。缩写词:ANP:心房利钠肽;BNP:B 型利钠肽;cGMP:环鸟苷酸单磷酸;CNP:C 型利钠肽;DPP-4:二肽基肽酶-4;GC:鸟苷酸环化酶;GTP:鸟苷三磷酸;IDE:胰岛素降解酶;NEP:中性内肽酶;NPR:利钠肽受体;NT-proANP:N 末端前 ANP;NT-proBNP:N 末端前 BNP;NT-proCNP:N 末端前 CNP;PDE:磷酸二酯酶;PKG:蛋白激酶;RAAS:肾素-血管紧张素-醛固酮系统;SNS:交感神经系统

Synthesis and secretion of BNP
BNP 的合成和分泌

Firstly discovered in porcine brain, BNP is stored in atrial granule with ANP, but not in granule in ventricle []. BNP is mainly secreted by normal atrium []. However, as a hallmark for maladaptive remodeling of left ventricle (LV), BNP is mainly secreted in ventricle when LV function is insufficient and cardiac wall is stretched due to transmural pressure or volume overload []. BNP has more obviously elevated levels than ANP in patients with HF []. NPPB gene has the following exons: exon 1 (5’-UTR, a 26-aa signal peptide, and 15 aa of proBNP sequence), exon 2 (most of proBNP sequence) and exon 3 (terminal tyrosine and 3’-UTR) (Fig. (Fig.1).1). Various causes, such as tissue hypoxia, transmural pressure or volume overload, induce the transcription of NPPB gene in endoplasmic reticulum to produce 134-aa preproBNP []. Pro-inflammatory cell factors, including interleukin-1β, interleukin-6 and tumor necrosis factor-α, induce BNP synthesis in cardiomyocytes, suggesting an active involvement of immune system in the regulation of NP synthesis []. Repeated AUUUA in 3’-UTR of BNP mRNA make it easier to be degraded than ANP mRNA. After removing 26-aa signal peptide, 108-aa proBNP is produced and then cleaved upon secretion by furin (or corin) into the active BNP1-32 (or BNP4-32), and the inactive 76-aa N-terminal proBNP (NT-proBNP) [].
首次在猪脑中发现,BNP 与 ANP 一起储存在心房颗粒中,但不在心室颗粒中[]。BNP 主要由正常心房分泌[]。然而,作为左心室(LV)不适应性重塑的标志,当 LV 功能不足且心脏壁由于透壁压力或容积过载而伸展时,BNP 主要在心室中分泌[]。患有 HF 的患者中,BNP 的水平明显高于 ANP[]。NPPB 基因具有以下外显子:外显子 1(5'-UTR,26 个氨基酸信号肽和 15 个 proBNP 序列氨基酸),外显子 2(大部分 proBNP 序列)和外显子 3(末端酪氨酸和 3'-UTR)(图(图 1)。1)。各种原因,如组织缺氧、透壁压力或容积过载,诱导内质网中 NPPB 基因的转录,产生 134 个氨基酸的前蛋白 BNP[]。 促炎细胞因子,包括白细胞介素-1β,白细胞介素-6 和肿瘤坏死因子-α,在心肌细胞中诱导 BNP 合成,表明免疫系统在 NP 合成调节中的积极参与[]。BNP mRNA 的 3'-UTR 中重复的 AUUUA 使其比 ANP mRNA 更容易被降解。去除 26-aa 信号肽后,产生 108-aa proBNP,然后通过 furin(或 corin)在分泌时被切割成活性 BNP1-32(或 BNP4-32),以及不活性的 76-aa N-末端 proBNP(NT-proBNP)[]。

BNP-32 and proBNP-108 BNP-32 和 proBNP-108

Not only proBNP and O-Glycosylated proBNP, but also BNP and NT-proBNP, are present in blood []. Current immunoassays for BNP-32 also recognize proBNP-108, and plasma BNP in HF rather includes proBNP-108 and O-Glycosylated proBNP-108 []. There is an elevated ProBNP-108/BNP-32 ratio in patients with HF []. ProBNP-108/BNP-32 ratio increases in response to ventricular overload rather than atrial overload in patients with HF []. Moreover, proBNP-108 has much less ability to induce the synthesis of cyclic guanosine monophosphate (cGMP) than BNP-32 in vascular smooth muscle and endothelial cells []. Despite high levels of plasma BNP, there is an attenuation of BNP bioactivity in patients with HF []. In mild to moderate HF, plasma cGMP levels increase in proportion to HF severity. However, plasma cGMP levels have an attenuated increase relative to disease state, and no longer correlate with BNP levels in severe HF []. Even relatively small increase in proBNP-108/BNP-32 ratio, if it lasts for a long time, can sufficiently reduce total potential of cGMP production and attenuate compensatory benefit of plasma BNP, thereby leading to HF progression.
不仅有 proBNP 和 O-糖基化的 proBNP,还有 BNP 和 NT-proBNP 存在于血液中[]。目前的 BNP-32 免疫测定也能识别 proBNP-108,并且 HF 患者血浆中的 BNP 主要包括 proBNP-108 和 O-糖基化的 proBNP-108[]。HF 患者中 ProBNP-108/BNP-32 比值升高[]。在 HF 患者中,ProBNP-108/BNP-32 比值增加是对室壁过载的反应,而不是对心房过载的反应[]。此外,与 BNP-32 相比,proBNP-108 在血管平滑肌和内皮细胞中诱导环鸟苷酸单磷酸(cGMP)合成的能力要低得多[]。尽管血浆中 BNP 水平较高,但在 HF 患者中 BNP 的生物活性有所减弱[]。在轻度至中度 HF 中,血浆 cGMP 水平与 HF 严重程度成比例增加。然而,在疾病状态下,血浆 cGMP 水平的增加相对较小,并且不再与严重 HF 中的 BNP 水平相关[]。 即使 proBNP-108/BNP-32 比值略微增加,如果持续时间较长,也足以显著降低 cGMP 产生的总潜力,并减弱血浆 BNP 的代偿益处,从而导致 HF 的进展。

O-Glycosylation and proBNP-108
O-糖基化和 proBNP-108

O-Glycosylated proBNP-108 levels correlate with HF severity []. Within Golgi apparatus of ventricular myocytes, proBNP-108 is post-translationally glycosylated to various extent at seven sites of N-terminal region: threonine (Thr)36, serine (Ser)37, Ser44, Thr48, Ser53, Thr58 and Thr71 []. Within trans-Golgi network, O-Glycosylated proBNP-108 is cleaved into BNP-32 and NT-proBNP []. O-Glycosylation has potential effect on the secretion and processing of proBNP-108. Thr71 is near to cleavage site of proBNP-108, and O-Glycosylation at Thr71 inhibits processing of proBNP-108 in human embryonic kidney (HEK) 293 cells and human leukemia 1 cells [, ]. Mechanisms governing cardiac secretion and peripheral metabolism of proBNP-108 remain unclear in patients with severe HF []. Venous furin-like enzyme activity has been proposed to correlate with NTproBNP/proBNP-108 ratio, and cleave proBNP-108 into BNP-32 and NT-proBNP in peripheral blood of patients with acute HF []. However, it has also been reported that proBNP-108 has similar levels between peripheral vein and artery, and is unlikely to be metabolized in peripheral blood and tissue. These inconsistent results may be caused by the diversity between in vivo and in vitro settings, between glycosylated and non-glycosylated proBNP-108, and between clinical status of patients with HF [].
O-糖基化的 proBNP-108 水平与 HF 严重程度相关[]。在室壁肌细胞的高尔基体内,proBNP-108 在 N-末端区域的七个位点(苏氨酸(Thr)36、丝氨酸(Ser)37、Ser44、Thr48、Ser53、Thr58 和 Thr71)后翻译地糖基化到不同程度[]。在转高尔基网中,O-糖基化的 proBNP-108 被切割成 BNP-32 和 NT-proBNP[]。O-糖基化可能影响 proBNP-108 的分泌和加工。Thr71 靠近 proBNP-108 的切割位点,Thr71 处的 O-糖基化抑制了 HEK 293 细胞和人类白血病 1 细胞中 proBNP-108 的加工[]。在严重 HF 患者中,控制心脏分泌和外周代谢 proBNP-108 的机制仍不清楚[]。静脉 furin 样酶活性被认为与 NTproBNP/proBNP-108 比值相关,并在急性 HF 患者外周血中切割 proBNP-108 成 BNP-32 和 NT-proBNP[]。 然而,也有报道称,proBNP-108 在外周静脉和动脉之间的水平相似,并且不太可能在外周血液和组织中代谢。这些不一致的结果可能是由于体内和体外环境之间的差异,糖基化和非糖基化的 proBNP-108 之间的差异,以及患有 HF 的患者的临床状况之间的差异[]。

New forms of BNP BNP 的新形式

Many new plasma forms of BNP with low molecular mass are present, but BNP-32 is nearly absent in patients with HF []. DPP-4 cleaves N-terminal serine-proline dipeptide from BNP1-32 in blood to produce BNP3-32 and BNP5-32, which are more rapidly degraded and have much less abilities to induce beneficial responses than BNP1-32 []. DPP-4 also cleaves N-terminal histidine-proline dipeptide from proBNP1-108 to produce proBNP3-108. Current immunoassays can not distinguish these forms in blood []. Patients using DPP-4 inhibitors have exhibited an increased risk of HF hospitalization in Saxagliptin Assessment of Vascular Outcomes Recorded in patients with diabetes mellitus-Thrombolysis in Myocardial Infarction (SAVOR-TIMI) trial []. However, other studies have not confirmed an association between DPP-4 inhibitors and HF hospitalization and shown adverse prognosis in patients with HF using DPP-4 inhibitors []. Previous meta-analyses can not rule out the concern that DPP-4 inhibitors have cardioprotective roles by affecting BNP1-32/BNP3-32 ratio [].
许多低分子量的新 BNP 等离子形式存在,但在 HF 患者中 BNP-32 几乎不存在[]。DPP-4 在血液中从 BNP1-32 中切除 N-末端丝氨酸-脯氨酸二肽,产生 BNP3-32 和 BNP5-32,这些形式降解更快,且比 BNP1-32 具有更少的诱导有益反应的能力[]。DPP-4 还从 proBNP1-108 中切除 N-末端组氨酸-脯氨酸二肽,产生 proBNP3-108。目前的免疫测定无法区分这些形式在血液中[]。使用 DPP-4 抑制剂的患者在糖尿病患者血管结果评估-心肌梗死溶栓治疗(SAVOR-TIMI)试验中表现出 HF 住院风险增加[]。然而,其他研究未证实 DPP-4 抑制剂与 HF 住院之间的关联,并显示使用 DPP-4 抑制剂的 HF 患者预后不良[]-[]。先前的荟萃分析无法排除 DPP-4 抑制剂通过影响 BNP1-32/BNP3-32 比例具有心脏保护作用的担忧[]-[]。

Synthesis and secretion of CNP
CNP 的合成和分泌

As the most abundant NP in brain, CNP is also synthesized in atrium, ventricle, kidney, chondrocyte, endothelium and blood cells. NPPC gene has the following exons: exon 1 (5’-UTR, a 23-aa signal peptide, and 7 aa of proCNP sequence), exon 2 (most of proCNP sequence) and exon 3 (3’-UTR) (Fig. (Fig.1).1). After removing 23-aa signal peptide from 126-aa preproCNP, 103-aa proCNP is produced and then cleaved upon secretion into 53-aa CNP by intracellular serine endoprotease (furin) []. CNP expression is up-regulated by shear stress []. Transforming growth factor-β stimulates CNP production and secretion in endotheliocytes []. CNP-53 is then cleaved into 22-aa CNP, and CNP-53 and CNP-22 are equipotent []. Although CNP-22 and CNP-53 have similar activity and function, CNP-53 predominates in heart, endothelium and brain, whereas CNP-22 predominates in cerebral spinal fluid and plasma [].
作为大脑中最丰富的 NP,CNP 也在心房、心室、肾脏、软骨细胞、内皮细胞和血细胞中合成。NPPC 基因具有以下外显子:外显子 1(5'-UTR,一个 23-aa 信号肽和 7 个 aa 的 proCNP 序列),外显子 2(大部分 proCNP 序列)和外显子 3(3'-UTR)(图(图 1)。1)。从 126-aa 前前 CNP 中去除 23-aa 信号肽后,产生 103-aa proCNP,然后通过细胞内丝氨酸内切蛋白酶(furin)分泌成 53-aa CNP[]。CNP 表达受剪切应力上调[]。转化生长因子-β刺激内皮细胞中 CNP 的产生和分泌[]。CNP-53 然后被切割成 22-aa CNP,CNP-53 和 CNP-22 具有相同的效力[]。尽管 CNP-22 和 CNP-53 具有相似的活性和功能,但 CNP-53 在心脏、内皮和大脑中占主导地位,而 CNP-22 在脑脊液和血浆中占主导地位[]。

Function 功能

Receptors of NPs NPs 的受体

NP system has significant autocrine, paracrine and endocrine function. As two of five transmembrane GC receptors in humans, NPR-A and NPR-B induce pathophysiologic functions of NP system (Fig. (Fig.1).1). NPR-A is activated by ANP and BNP, and NPR-B is activated by CNP []. NPRs are present in heart, brain, kidney, adrenal, liver, pancreas, vascular and gastrointestinal smooth muscle, adipocytes, chondrocytes, fibroblasts and platelets []. NPR-A is highly present in kidney, adrenal, lung, terminal ileum, aorta and adipose. NPR-B is highly present in fibroblasts []. They have an extracellular ligand-binding and membrane-spanning region, an intracellular particulate GC region and an intracellular cGMP-dependent protein kinase (PKG) region []. Activated NPRs catalyze conversion of guanosine triphosphate (GTP) to cGMP. As an intracellular second messenger, cGMP activates PKG and phosphodiesterase (PDE) to regulate various pathways including ion channels, protein phosphorylation, nuclear translocation and gene expression, all of which exert biologic effects [, ]. NPR-C is highly present in atrium, kidney, adrenal, lung, mesentery, placenta, cerebral cortex, cerebellum, aorta and vein []. NPR-C has a disulfide-bonding dimer homologous to extracellular region of NPR-A and NPR-B and intracellular 37 aa for potential signaling functions. NPR-C is a clearance receptor for ANP, BNP and CNP []. Although NPR-C has no GC activity, it induces pathophysiologic functions, such as affecting cell growth, through adenylate cyclase, inhibitory guanine nucleotide-regulatory protein (G-protein) and phospholipase C []. Modulation of NPR expression in target organ may be determinant for local bioavailability and regulation of NPs. Therefore, NP resistance may be caused by NPR-C upnregulation or NPR-A downregulation. In early stage of HF, NPs provide compensatory actions including not only natriuresis, diuresis and vasodilation, but also RAAS and SNS inhibition. In severe HF, NPs have attenuated effects despite high plasma NP levels assessed by current immunoassays. Several possible explanations include increased NP degradation, reduced NP bioactivity, increased secretion of inactive NP forms, increased cGMP degradation and reduced NPR-A activity due to receptor dephosphorylation and degradation []. However, limited information is available regarding bioactivity change in NPR and its clinical significance in HF.
NP 系统具有显著的自分泌、旁分泌和内分泌功能。作为人类五种跨膜 GC 受体中的两种,NPR-A 和 NPR-B 诱导 NP 系统的病理生理功能(图(图 1)。1)。ANP 和 BNP 激活 NPR-A,CNP 激活 NPR-B[]。NPRs 存在于心脏、大脑、肾脏、肾上腺、肝脏、胰腺、血管和胃肠平滑肌、脂肪细胞、软骨细胞、成纤维细胞和血小板[]。NPR-A 在肾脏、肾上腺、肺、末端回肠、主动脉和脂肪中高度存在。NPR-B 在成纤维细胞中高度存在[]。它们具有细胞外配体结合和跨膜区域、细胞内颗粒 GC 区域和细胞内 cGMP 依赖性蛋白激酶(PKG)区域[]。激活的 NPRs 催化三磷酸鸟苷(GTP)转化为 cGMP。 作为细胞内第二信使,cGMP 激活 PKG 和磷酸二酯酶(PDE)来调节包括离子通道、蛋白磷酸化、核移位和基因表达在内的各种途径,所有这些途径产生生物效应[, ]。NPR-C 在心房、肾脏、肾上腺、肺、肠系膜、胎盘、大脑皮层、小脑、主动脉和静脉中高度存在[]。NPR-C 具有二硫键二聚体,与 NPR-A 和 NPR-B 的细胞外区域同源,并具有 37 个氨基酸的细胞内区域,用于潜在的信号功能。NPR-C 是 ANP、BNP 和 CNP 的清除受体[]。尽管 NPR-C 没有 GC 活性,但它通过腺苷酸环化酶、抑制性鸟苷酸调节蛋白(G 蛋白)和磷脂酶 C 等途径诱导病理生理功能,如影响细胞生长[]。在靶器官中调节 NPR 表达可能决定局部生物可用性和 NPs 的调节。因此,NPR-C 的上调或 NPR-A 的下调可能导致 NP 抵抗。 在 HF 的早期阶段,NPs 提供补偿性作用,包括利尿、利尿和血管舒张,还包括 RAAS 和 SNS 的抑制。在严重 HF 中,尽管通过当前的免疫测定评估高血浆 NP 水平,但 NPs 的作用减弱。一些可能的解释包括 NP 降解增加,NP 生物活性降低,非活性 NP 形式分泌增加,cGMP 降解增加以及由于受体去磷酸化和降解导致 NPR-A 活性降低。然而,关于 NPR 生物活性变化及其在 HF 中的临床意义的信息有限。

Function of ANP ANP 的功能

ANP boosts natriuresis and diuresis. Na+ reabsorption in inner medullary collecting ducts depends mainly on the apical amiloride-sensitive Na+ channel (cyclic nucleotidegated ion channel) and basolateral Na+-K+-adenosine triphosphatase (Na+-K+-ATPase). Apical amiloride-sensitive Na+ channel allows passive Na+ entry from renal tubular lumen. Basolateral Na+-K+-adenosine triphosphatase helps Na+-K+-2Cl- cotransporter actively pump Na+ out of epithelial cell into peritubular space and eventually bloodstream. ANP inhibits apical Na+ channel and basolateral Na+-K+-ATPase activity, resulting in decreased Na+ reabsorption from inner medullary collecting ducts and increased Na+ excretion from urine known as natriuresis []. ANP induces cGMP to inhibit Na+ channel by a mechanism of activating PKG independent of phosphorylation []. ANP inhibits basolateral Na+-K+-ATPase through PKG-induced phosphorylation in a cGMP-dependent manner []. ANP inhibits RAAS with reduced angiotensin II-induced sodium and water transport in renal proximal tubules []. ANP suppresses renin secretion from juxtaglomerular (granular) cells in a cGMP-dependent manner without changing intracellular Ca2+. ANP also suppresses aldosterone synthesis in adrenal glomerulosa (adrenocorticotropic hormone-induced, angiotensin-II-induced and basic aldosterone), which enhances natriuretic effect and reduces extracellular volume []. ANP/NPR-A activity induces natriuresis and diuresis, but appears to be downregulated in HF with RAAS activation []. Although conflicting studies exist, ANP may suppress angiotensin-II-induced secretion of vasopressin from posterior pituitary without blood-brain barrier, and inhibit V2 receptor-mediated effect of vasopressin on water reabsorption in collecting ducts []. ANP increases glomerular filtration rate (GFR) through its direct vasodilative effect on afferent arterioles. ANP also reverses norepinephrine-induced vasoconstriction of afferent arterioles []. Vasodilative effect of ANP on vascular smooth muscle may involve following mechanisms: reducing Ca2+ influx, enhancing Ca2+ extrusion, and inhibiting Ca2+ release from sarcoplasmic reticulum []. ANP directly relaxes contractile intraglomerular mesangial cells and expands glomerular capillary surface area available for filtration. ANP also inhibits angiotensin-II-induced constriction of mesangial cells []. There have been controversies on vasoconstrictive effect of ANP on efferent arterioles: some have observed no change in diameter of efferent arterioles, whereas others have reported the dilatation of afferent arterioles and constriction of efferent arterioles [].
ANP 增加尿钠和利尿。内髓集合管中的 Na+重吸收主要取决于顶端的敏感于米诺地尔的 Na+通道(环核苷酸门控离子通道)和基底的 Na+-K+-腺苷三磷酸酶(Na+-K+-ATP 酶)。顶端的敏感于米诺地尔的 Na+通道允许来自肾小管腔的被动 Na+进入。基底的 Na+-K+-腺苷三磷酸酶帮助 Na+-K+-2Cl-共转运蛋白将 Na+主动泵出上皮细胞进入周围管腔空间,最终进入血液循环。ANP 抑制顶端 Na+通道和基底 Na+-K+-ATP 酶活性,导致内髓集合管中 Na+重吸收减少,尿液中 Na+排泄增加,即所谓的尿钠作用[]。ANP 诱导 cGMP 通过激活 PKA 独立于磷酸化的机制抑制 Na+通道[]。 ANP 通过 PKG 诱导的 cGMP 依赖性磷酸化抑制基底侧 Na+-K+-ATP 酶[]。ANP 通过减少肾近曲小管中血管紧张素 II 诱导的钠和水转运来抑制 RAAS[]。ANP 以 cGMP 依赖的方式抑制球旁(颗粒)细胞中的肾素分泌,而不改变细胞内 Ca2+。ANP 还抑制肾上腺球状区(促肾上腺皮质激素诱导、血管紧张素 II 诱导和基础醛固酮)的醛固酮合成,增强利尿作用并减少细胞外容积[]。ANP/NPR-A 活性诱导利尿和利尿,但在 RAAS 激活的 HF 中似乎被下调[]。尽管存在矛盾的研究,但 ANP 可能抑制后垂体没有血脑屏障的血管紧张素 II 诱导的抗利尿素分泌,并抑制 V2 受体介导的抗利尿素对集合管中水重吸收的作用[]。ANP 通过对肾小球入球小动脉的直接扩张作用增加肾小球滤过率(GFR)。 ANP 还可以逆转去甲肾上腺素诱导的肾小球入球小动脉收缩[]。ANP 对血管平滑肌的扩张作用可能涉及以下机制:减少 Ca2+的流入,增强 Ca2+的外排,以及抑制来自肌浆网的 Ca2+释放[]。ANP 直接放松具有收缩性的肾小球系膜细胞,并扩展可供过滤的肾小球毛细血管表面积。ANP 还抑制了血管紧张素 II 诱导的系膜细胞收缩[]。关于 ANP 对出球小动脉的收缩作用存在争议:有些人观察到出球小动脉直径无变化,而其他人报告了入球小动脉扩张和出球小动脉收缩[]。

Lowering blood pressure 降低血压

ANP induces hypovolemia and decreases blood pressure (BP). ANP lowers BP with increased permeability of capillaries and fluid efflux from blood []. ANP decreases cardiac load by shifting intravascular fluid into interstitial space. ANP stimulates Ca2+/calmodulin-dependent endothelial nitric oxide (NO) synthase in aorta, ventricle and kidney to produce more NO for relaxing vascular smooth muscle cells by binding to either NPR-A or NPR-C, causing a decrease in BP levels []. ANP decreases vascular resistance also by inhibiting RAAS []. Thus, ANP/NPR-A activity reduces basic BP levels through its combined effects on vascular relaxation and intravascular volume. Moreover, ANP relaxes air passages and blood vessels in lung []. ANP and BNP have elevated levels due to wall stretch of right ventricle, and inhibit pulmonary hypertension caused by chronic hypoxia [].
ANP 诱导低血容量并降低血压(BP)。ANP 通过增加毛细血管通透性和血液从血液中流出来降低 BP[]。ANP 通过将血管内液体转移到间质空间来降低心脏负荷。ANP 刺激主动脉、心室和肾脏中的 Ca2+/钙调蛋白依赖性内皮一氧化氮(NO)合酶产生更多 NO,通过结合到 NPR-A 或 NPR-C 来使血管平滑肌细胞松弛,从而导致 BP 水平降低[]。ANP 还通过抑制 RAAS 来降低血管阻力[]。因此,ANP/NPR-A 活性通过对血管松弛和血管内容量的综合影响降低基本 BP 水平。此外,ANP 放松肺部气道和血管[]。由于右心室壁伸展,ANP 和 BNP 的水平升高,并抑制由慢性缺氧引起的肺动脉高压[]。

Counteracting sympathetic activity
对抗交感神经活动

ANP not only modulates baroreflex mechanism, but also inhibits sympathetic activity and enhances vagal afferent. SNS is inhibited in peripheral vessels, perhaps by lowering activation threshold of baroreceptors, by decreasing catecholamine release from nerve endings, and by reducing sympathetic outflow []. It lowers activation threshold of vagal afferent, reflex tachycardia and vascular constriction, and causes a sustained decrease in mean arterial pressure []. ANP decreases sympathetic outflow by modulating ganglionic neurotransmission rather than increasing discharge from cardiac mechanoreceptors with inhibitory vagal afferent [].
ANP 不仅调节压力感受机制,还抑制交感神经活动并增强迷走神经传入。SNS 在外周血管中受到抑制,可能是通过降低压力感受器的激活阈值,减少神经末梢的儿茶酚胺释放,以及减少交感神经输出。它降低迷走神经传入的激活阈值,反射性心动过速和血管收缩,并导致平均动脉压持续下降。ANP 通过调节节后神经传递而不是增加心脏机械感受抑制性迷走神经传入来降低交感神经输出。

Inhibiting cardiac hypertrophy
抑制心肌肥大

Both prolonged exposure to systemic hypertension and lacking the inhibition of heart growth lead to cardiac hypertrophy [, ]. Moreover, ANP has direct effects on heart, and inhibits cardiac hypertrophy and fibrosis []. ANP induces cardiomyocyte apoptosis and inhibits fibroblast growth []. ANP suppresses fibroblast migration and proliferation by counteracting angiotensin-II, aldosterone and endothelin-1, as well as inflammatory reaction including pro-inflammatory factor and macrophage infiltration [, ]. ANP inhibits stress-activated protein kinase and extracellular-regulated kinase-2 induced by platelet-derived growth factor []. ANP exhibits antimitogenic and antineoplastic properties by reducing cell adhesion and inflammatory reaction through p38 mitogen-activated protein kinase []. ANP attenuates the growth of cardiomyocytes and fibroblasts by inhibiting norepinephrine-induced Ca2+ influx in a cGMP-mediated manner []. Meanwhile, ANP and BNP reduce systemic and pulmonary BP, and inhibit cardiac hypertrophy in HF []. ANP and CNP exert direct effects on vessels by reducing adhesion molecules of endotheliocytes (P-selectin and monocyte chemotactic protein-1) and inflammatory infiltration on atheromatous plaques [].
长期暴露于全身高血压和缺乏心脏生长抑制会导致心肌肥厚[, ]。此外,ANP 对心脏有直接影响,抑制心肌肥厚和纤维化[]。ANP 诱导心肌细胞凋亡并抑制成纤维细胞生长[]。ANP 通过抵消血管紧张素-II、醛固酮和内皮素-1,以及包括促炎因子和巨噬细胞浸润在内的炎症反应,抑制成纤维细胞迁移和增殖[, ]。ANP 通过抑制血小板源性生长因子诱导的应激激活蛋白激酶和细胞外调节激酶-2 来抑制细胞增殖[]。ANP 通过减少细胞粘附和通过 p38 丝裂原活化蛋白激酶抑制炎症反应来表现抗有丝分裂和抗肿瘤特性[]。ANP 通过抑制去甲肾上腺素诱导的 Ca2+通量来减弱心肌细胞和成纤维细胞的生长,这是一种 cGMP 介导的方式[]。同时,ANP 和 BNP 降低全身和肺动脉血压,并在 HF 中抑制心肌肥厚[]。 ANP 和 CNP 通过降低内皮细胞的粘附分子(P-选择素和单核细胞趋化蛋白-1)以及动脉粥样硬化斑块上的炎症浸润,对血管产生直接影响[]。

Regulating energy homeostasis
调节能量平衡

ANP stimulates exercise-induced lipolysis through cGMP and PKG in primates with an increased NPR-A/NPR-C ratio []. ANP affects the conversion from white to brown fat through mitochondrial uncoupling protein-1 and p38 mitogen-activated protein kinase []. BNP may also have hypoglycemic effect and regulate energy homeostasis []. ANP and BNP stimulate oxidative ability of skeletal muscle and lipolytic action in subcutaneous adipose []. ANP and BNP induce hormone-sensitive lipase of adipocytes in a cGMP-mediated manner [].
ANP 通过 cGMP 和 PKG 在具有增加的 NPR-A/NPR-C 比例的灵长类动物中刺激运动诱导的脂解作用[]。ANP 通过线粒体解耦联蛋白-1 和 p38 丝裂原活化蛋白激酶影响白色脂肪向棕色脂肪的转化[]。BNP 可能还具有降糖作用并调节能量稳态[]。ANP 和 BNP 刺激骨骼肌的氧化能力和皮下脂肪的脂解作用[]。ANP 和 BNP 以 cGMP 介导的方式诱导脂肪细胞的激素敏感性脂解酶[]。

Function of BNP BNP 的功能

In addition to the well documented natriuresis, diuresis and vasodilation, BNP also has direct effects on heart []. BNP may provide compensatory protection, such as inhibiting myocardial apoptosis and necrosis and reducing cardiac hypertrophy and fibrosis [, ]. BNP may also modulate immune and inflammatory reaction to cardiac injury. BNP depletes monocytes, B lymphocytes and natural killer cells in peripheral blood []. BNP regulates the chemotaxis of monocytes and production of inflammatory molecules by macrophages []. BNP may promote cardiac neutrophil infiltration and metalloprotease-9 expression after myocardial infarction (MI), and also have direct effects on matrix remodeling and wound healing [].
除了已经有记录的利尿、利尿和血管舒张作用外,BNP 还对心脏有直接影响[]。BNP 可能提供补偿保护,如抑制心肌凋亡和坏死,减少心肌肥大和纤维化[]。BNP 还可能调节免疫和炎症反应以应对心脏损伤。BNP 耗尽外周血液中的单核细胞、B 淋巴细胞和自然杀伤细胞[]。BNP 调节单核细胞的趋化作用和巨噬细胞产生炎症分子[]。BNP 可能促进心脏中性粒细胞浸润和心肌梗死(MI)后金属蛋白酶-9 表达,并对基质重塑和伤口愈合产生直接影响[]。

Affecting cardiac embryogenesis
影响心脏胚胎发育

BNP plays significant roles in cardiac embryogenesis. There are high BNP levels in embryonic heart during the midgestation, and peaks of BNP secretion correlate with cardiac development []. Plasma BNP levels in humans are high at birth, progressively declining thereafter, to stabilize at around ten years of age to the levels found in adults []. ANP and BNP may regulate cardiomyocyte differentiation and proliferation in the developing embryo []. Embryonic stem cells express high levels of BNP, which are crucial for their proliferation and differentiation []. BNP may also be involved in the process of angiogenesis following skeletal muscle ischemia []. BNP secretion by vascular satellite cells has been found to activate the regeneration of adjacent endothelium in a paracrine manner. Moreover, BNP has been addressed in cardiac regeneration by evaluating the relationships between cardiac precursor cells (CPCs) and BNP in neonatal and adult mice. Firstly, all forms of proBNP are more abundant in neonatal heart than in adult heart []. Secondly, CPCs express NPR-A and NPR-B, supporting that CPCs can respond to BNP []. NPR-A contributes to self-renewal and maintenance of CPC pluripotency, whereas NPR-B is involved in CPC proliferation []. ANP, BNP and CNP stimulate CPC proliferation and differentiation into new cardiomyocytes by NPR-B binding, cGMP increase and PKG activation []. Thirdly, exogenous BNP has increased proliferating CPCs and new cardiomyocytes, which are associated with improved cardiac function and remodeling after MI []. Finally, CPCs stain positive for BNP, suggesting that CPCs can also synthesize and secrete BNP in an autocrine manner to regulate their proliferation and differentiation into new cardiomyocytes. Thus, BNP and CPCs may be useful therapies for HF and MI [].
BNP 在心脏胚胎发育中发挥重要作用。在中期妊娠期间,胚胎心脏中的 BNP 水平很高,BNP 分泌的高峰与心脏发育相关[]。人类血浆中的 BNP 水平在出生时很高,之后逐渐下降,稳定在约十岁时达到成人水平[]。ANP 和 BNP 可能调节发育中胚胎心肌细胞的分化和增殖[]。胚胎干细胞表达高水平的 BNP,这对它们的增殖和分化至关重要[]。BNP 也可能参与骨骼肌缺血后血管生成的过程[]。已发现血管卫星细胞分泌的 BNP 以旁分泌方式激活相邻内皮的再生。此外,通过评估新生儿和成年小鼠心脏前体细胞(CPCs)与 BNP 之间的关系,已经探讨了 BNP 在心脏再生中的作用。首先,所有形式的 proBNP 在新生儿心脏中比成年心脏中更丰富[]。 其次,CPCs 表达 NPR-A 和 NPR-B,支持 CPCs 可以对 BNP 做出反应[]。NPR-A 有助于 CPC 的自我更新和多能性维持,而 NPR-B 参与 CPC 的增殖[]。ANP、BNP 和 CNP 通过 NPR-B 结合、cGMP 增加和 PKG 激活刺激 CPC 的增殖和分化为新的心肌细胞[]。第三,外源性 BNP 增加了增殖的 CPC 和新的心肌细胞,这与 MI 后心功能和重塑的改善有关[]。最后,CPC 对 BNP 呈阳性染色,表明 CPC 也可以自分泌和分泌 BNP,以调节其增殖和分化为新的心肌细胞。因此,BNP 和 CPC 可能是 HF 和 MI 的有用疗法[]。

Function of CNP CNP 的功能

All of ANP, BNP and CNP provide cardiorenal protection, although CNP has the most antifibrotic and least renal effects []. CNP is a vasodilator mainly secreted from endothelial cells in response to vascular injury. Patients with HF have minimally increased CNP levels, and HF severity is significantly relevant to CNP levels []. Although CNP dose not predominantly behave as a cardiac hormone, it has cardiovascular actions as well, such as re-endothelialization, hyperpolarization, antithrombosis and antifibrosis [, ]. CNP inhibits proliferation and migration of coronary artery smooth muscle cells mediated by oxidized low-density lipoprotein in a cGMP-dependent manner []. CNP inhibits platelet aggregation and thrombosis formation by suppressing plasminogen activator inhibitor-1, perhaps through NPR-C []. As an endothelium-derived hyperpolarizing factor, CNP may regulate several vasodilative factors, including prostacyclin and NO []. CNP inhibits cardiac hypertrophy and fibrosis in autocrine and paracrine manners within myocardium []. CNP has antifibrotic effect by regulating PKG-derived phosphorylation of Smad3 and transforming growth factor-β-derived nuclear translocation []. CNP may have compensatory actions in HF in a cAMP-dependent manner, which are incompletely understood. CNP-dependent NPR-B activity is about half of ANP-dependent NPR-A activity in normal ventricle. ANP-dependent NPR-A activity is unaltered or reduced, and CNP-dependent NPR-B activity is mildly or significantly elevated in failing ventricle [, ]. Failing ventricle has increased fibroblasts, and NPR-B is highly present in cardiac fibroblasts []. Additionally, CNP inhibits pulmonary hypertension and fibrosis in a similar manner in HF []. Fibroblast growth factor receptor 3 (FGFR3) is an important regulator of bone formation. Its gene gain-of-function mutations activate mitogen-activated protein kinase pathway and result in achondroplasia. CNP acts as a key regulator of longitudinal bone growth by downregulating mitogen-activated protein kinase pathway [].
所有 ANP、BNP 和 CNP 均提供心肾保护,尽管 CNP 具有最强的抗纤维化作用和最轻微的肾脏效应[]。CNP 是一种血管扩张剂,主要由内皮细胞分泌,以应对血管损伤。HF 患者的 CNP 水平略有增加,HF 严重程度与 CNP 水平显著相关[]。尽管 CNP 并非主要表现为心脏激素,但它也具有心血管作用,如再内皮化、超极化、抗血栓形成和抗纤维化[]。CNP 通过 cGMP 依赖的方式抑制氧化低密度脂蛋白介导的冠状动脉平滑肌细胞的增殖和迁移[]。CNP 通过抑制纤溶酶原激活物抑制剂-1 来抑制血小板聚集和血栓形成,可能通过 NPR-C[]。作为内皮源性超极化因子,CNP 可能调节几种血管舒张因子,包括前列环素和 NO[]。CNP 通过自分泌和旁分泌方式在心肌内抑制心肌肥大和纤维化[]。 CNP 通过调节 PKG 衍生的 Smad3 磷酸化和转化生长因子-β衍生的核转位具有抗纤维化作用[]。CNP 可能以 cAMP 依赖的方式在 HF 中具有补偿作用,但尚未完全理解。正常心室中,CNP 依赖的 NPR-B 活性约为 ANP 依赖的 NPR-A 活性的一半。HF 中,ANP 依赖的 NPR-A 活性未改变或减少,而 CNP 依赖的 NPR-B 活性在衰竭心室中轻微或显著升高[, ]。衰竭心室中纤维细胞增多,NPR-B 在心脏纤维细胞中高度存在[]。此外,CNP 以类似的方式抑制 HF 中的肺动脉高压和纤维化[]。纤维母细胞生长因子受体 3(FGFR3)是骨形成的重要调节因子。其基因增强功能突变激活丝裂原活化蛋白激酶途径,并导致软骨发育不全症。CNP 通过下调丝裂原活化蛋白激酶途径,作为纵向骨生长的关键调节因子[]。

Metabolism 新陈代谢

Mechanisms of metabolism 新陈代谢机制

Main mechanisms are in the following: 1) NPR-C-derived and clathrin-mediated endocytosis, lysosomal ligand hydrolysis and ligand-free receptor recycling; and 2) NEP (neprilysin), a zinc-dependent exoenzyme with broad substrates []. ANP is degraded effectively in most organs, and more effectively in some than others. Although 30%–50% of ANP has been shown to be degraded in kidney, liver or lower limbs rather than lung, subsequent studies have reported that 19%-24% of ANP is degraded in lung (lung > liver > kidney) [, ]. Degradation of BNP and CNP have been discussed previously []. BNP binds to NPR-C 7% as tightly as ANP, and BNP has long half-life due to less degradation by NPR-C []. With a part of aa sequence similar to NPs, osteocrin (also known as musclin) is an important decoy ligand for NPR-C, and acts to increase plasma levels of NPs [].
主要机制如下:1)NPR-C 衍生和衣壳介导的内吞作用,溶酶体配体水解和无配体受体回收;和 2)NEP(神经肽酶),一种依赖锌的广谱底物外酶[]。ANP 在大多数器官中有效降解,在某些器官中更有效。尽管已经显示 30%–50%的 ANP 在肾脏、肝脏或下肢而不是肺部中被降解,但随后的研究报告称 19%-24%的 ANP 在肺部被降解(肺部 > 肝脏 > 肾脏)[, ]。BNP 和 CNP 的降解已经在先前讨论过[]。BNP 与 NPR-C 结合的紧密程度为 ANP 的 7%,由于 NPR-C 的降解较少,BNP 具有较长的半衰期[]。与 NPs 的一部分 aa 序列相似,骨肌素(也称为肌肽)是 NPR-C 的重要诱饵配体,并且有助于增加 NPs 的血浆水平[]。

NEP and IDE NEP 和 IDE

NEP is a dominant enzyme for NP degradation. In heart, NEP is expressed on membrane of cardiomyocytes, fibroblasts, vascular smooth muscle and endothelial cells []. Although expressed in many epithelial tissues, NEP levels are particularly high at the luminal side of renal proximal tubules []. Initial attack of breaking ring and inactivating peptide occurs between cysteine and phenylalanine (Fig. (Fig.1)1) []. Cleavage sites in ring structure are crucial for degradation []. ANP and CNP have differences of zero or one aa between species, and are similarly degraded by NEP. BNP differs obviously between species, and is species-specifically degraded by NEP []. BNP is a worse substrate than ANP and CNP, and human NEP cleaves BNP at three sites []. Most BNP is degraded by NEP in rat renal membrane, but NEP dose not degrade all BNP in human renal membrane []. IDE, a zinc-dependent protease with broad substrates, degrades not only insulin, but also ANP [, ].
NEP 是降解 NP 的主要酶。在心脏中,NEP 表达在心肌细胞、成纤维细胞、血管平滑肌和内皮细胞的膜上[]。尽管在许多上皮组织中表达,但 NEP 水平在肾近曲小管腔侧尤为高[]。环和肽的失活的初始攻击发生在半胱氨酸和苯丙氨酸之间(图(图 1)1)[]。环结构中的裂解位点对降解至关重要[]。ANP 和 CNP 在物种之间差异为零或一个氨基酸,被 NEP 类似地降解。BNP 在物种之间明显不同,并且被 NEP 物种特异性地降解[]。BNP 是比 ANP 和 CNP 更差的底物,人类 NEP 在三个位点裂解 BNP[]。大部分 BNP 在大鼠肾膜中被 NEP 降解,但 NEP 在人类肾膜中并不降解所有 BNP[]。IDE 是一种具有广泛底物的锌依赖性蛋白酶,不仅降解胰岛素,还降解 ANP[, ]。

Roles of NPR-C NPR-C 的作用

Relative effects of NPR-C and NEP degradation on NP levels are still controversial and unclear []. Under normal condition, NPR-C-blocking peptides affect physiologic roles of ANP mildly more than or equally to NEP inhibitors, and ANP has maximal roles with both NPR-C-blocking peptides and NEP inhibitors []. Under pathologic condition, NEP inhibitors become important due to elevated NP levels and possible NPR-C saturation [].
相对于 NPR-C 和 NEP 降解对 NP 水平的影响仍然存在争议和不清楚[]。在正常情况下,NPR-C 阻断肽对 ANP 的生理作用影响比 NEP 抑制剂更轻微或相等,并且 ANP 在 NPR-C 阻断肽和 NEP 抑制剂的作用下发挥最大作用[]。在病理条件下,由于 NP 水平升高和可能的 NPR-C 饱和,NEP 抑制剂变得重要[]。

Genetic regulation 遗传调控

Genetic variants 遗传变异

Not only there are genetic variants in NPs and NPRs in humans, but also they have significant associations with cardiometabolic phenotypes []. NPPA gene has many variants in promoter, intronic, coding and 3’-UTR []. C-664G variant has been related to lower ANP levels, higher BP levels and more LV hypertrophy in Italian and Japanese populations []. Rs5063 variant has been related to lower BP levels in American and Chinese populations []. Rs5065 variant has been related to less hypertension and more MI []. However, lots of candidate genes have not been confirmed in big-sample population genetic studies and Genome Wide Association Studies. In a big-sample and genome-wide meta-analysis, rs5068 variant in 3’-UTR has been inversely regulated by micro-RNA (miR)-425 and related to higher ANP levels, lower BP levels and less LV hypertrophy []. Rs5068 variant has also been correlated with lower anthropometric indices, lower C-reactive protein, higher high density lipoprotein, as well as less susceptibility to HF []. In NPPB gene, rs198388 and 198389 variants have been related to lower BP levels, reduced LV remodeling, improved LV function and less diabetes mellitus [, ]. Variants in NPPC and NPR-B gene remain unclear []. Variants in NPR-C gene have been related to hypertension in Genome Wide Association Studies of Caucasian and Asian populations []. Variants in corin gene have been related to higher BP levels and more LV hypertrophy in African-American population [].
不仅人类中存在 NPs 和 NPRs 的遗传变体,而且它们与心脏代谢表型有显著关联[]。NPPA 基因在启动子、内含子、编码和 3'-UTR 中有许多变体[]。C-664G 变体与意大利和日本人群中较低的 ANP 水平、较高的 BP 水平和更多的 LV 肥厚有关[]。Rs5063 变体与美国和中国人群中较低的 BP 水平有关[]-[]。Rs5065 变体与较少的高血压和更多的心肌梗死有关[]-[]。然而,许多候选基因在大样本人群遗传研究和全基因组关联研究中尚未得到证实。在一项大样本和全基因组的荟萃分析中,3'-UTR 中的 rs5068 变体被微 RNA(miR)-425 逆调节,并与较高的 ANP 水平、较低的 BP 水平和较少的 LV 肥厚有关[]。Rs5068 变体还与较低的人体测量指标、较低的 C-反应蛋白、较高的高密度脂蛋白以及较少的 HF 易感性相关[]-[]。 在 NPPB 基因中,rs198388 和 198389 变体与较低的 BP 水平、减少的 LV 重塑、改善的 LV 功能以及较少的糖尿病有关[, ]。NPPC 和 NPR-B 基因中的变体仍不清楚[]。NPR-C 基因中的变体与高血压有关,在高加索人和亚洲人群的全基因组关联研究中有所体现[]。Corin 基因中的变体与非洲裔美国人群中更高的 BP 水平和更多的 LV 肥厯有关[]。

Genetic manipulation 基因操纵

In order to determine the function of NPs and medication of NPRs, genetic manipulation has been widely applied through the knockout of NPRs in animal experiments. For example, ANP-dependent natriuresis and diuresis are mediated exclusively by NPR-A in mice because these effects are completely lost after NPR-A knockout []. Mice lacking ANP or NPR-A have an enlarged heart, whereas mice over-expressing ANP have a smaller heart []. Mice over-expressing ANP are resistant to hypoxia-induced hypertension, whereas mice lacking ANP exhibit increased pulmonary hypertension in response to chronic hypoxia []. Moreover, designer NPs have been engineered through genetic alteration of native NPs. Compared with native NPs, designer NPs have improved efficacy and safety [].
为了确定 NPs 的功能和 NPRs 的药物作用,遗传操纵已广泛应用于动物实验中的 NPRs 敲除。例如,在小鼠中,ANP 依赖性的利尿和利尿作用仅由 NPR-A 介导,因为在 NPR-A 敲除后这些效应完全丧失[]。缺乏 ANP 或 NPR-A 的小鼠有扩大的心脏,而过度表达 ANP 的小鼠有较小的心脏[]。过度表达 ANP 的小鼠对缺氧诱导的高血压具有抗性,而缺乏 ANP 的小鼠在慢性缺氧情况下表现出增加的肺动脉高压[]。此外,通过对原生 NPs 进行基因改变,设计师 NPs 已被工程化。与原生 NPs 相比,设计师 NPs 具有改进的功效和安全性[]。

Roles of micro-RNA 微小 RNA 的作用

MiR-100 has been demonstrated to inhibit NPR-C expression in rat MI tissues and human LV cells, and increased miR-100 in HF may reflect a compensatory mechanism to prolong half-life of NPs []. MiR-425 inhibits ANP synthesis in human heart by interacting with 3’-UTR of NPPA gene, and antagonists of miR-425 may be a potential therapy for HF []. MiR-21 interacts with ANP in vascular smooth muscle cells through modulating downstream cGMP signaling []. MiR-30 is expressed in healthy heart, but suppressed in failing heart. MiR-30 inhibits GalNAc-transferase (GALNT) 1 and 2-mediated glycosylation of proBNP-108. MiR-30-GALNT pathway may be a novel therapeutic target for HF, and more researches are necessary in humans []. Although many miRs targeting NPRs have been suggested in silico analyses to modulate NP signaling pathways in HF, it is necessary to confirm their actual interactions in vivo experiments [].
MiR-100 已被证明能抑制大鼠 MI 组织和人类 LV 细胞中的 NPR-C 表达,并且 HF 中 miR-100 的增加可能反映了一种延长 NPs 半衰期的代偿机制[]。MiR-425 通过与 NPPA 基因的 3'-UTR 相互作用,在人类心脏中抑制 ANP 的合成,miR-425 的拮抗剂可能是 HF 的潜在治疗方法[]。MiR-21 通过调节下游 cGMP 信号与血管平滑肌细胞中的 ANP 相互作用[]。MiR-30 在健康心脏中表达,但在衰竭心脏中受抑制。MiR-30 抑制 GalNAc 转移酶(GALNT)1 和 2 介导的 proBNP-108 的糖基化。MiR-30-GALNT 途径可能是 HF 的一种新的治疗靶点,需要在人类中进行更多的研究[]。尽管许多通过计算分析提出的 miRs 被认为在 HF 中调节 NP 信号通路,但有必要通过体内实验来确认它们的实际相互作用[]。

Epigenetic remodeling 表观遗传重塑

Maladaptive remodeling of LV in HF is correlated with fetal-gene reactivation and epigenetic remodeling in promoters of NPPA and NPPB genes. Although there is nuclear export of histone deacetylase 4 (HDAC4), gene activation of NPPA and NPPB dose not require increased histone acetylation in promoters. In contrast, methylation of histone 3 lysine 9 (H3K9) and binding of heterochromatin protein 1 (HP1) in promoters of these genes are reduced by HDAC4, perhaps by forming a transcriptional repressor complex with histone methyltransferase (suppressor of variegation 3-9 homolog 1, SUV39H1). This complex is disrupted by Ca2+/calmodulin-dependent kinase II (CaMKII)δB-induced phosphorylation of HDAC4. Histone demethylase [Jumonji C (JmjC) domain-containing demethylase] may be upregulated to maintain H3K9 demethylation in HF [].

Diagnostic values 诊断价值

Practical application 实际应用

NPs reflect cardiac stress and function, increase drastically in patients with HF, and have powerful diagnostic value for various forms of HF []. Plasma NP levels are also used to evaluate HF severity [, ]. Plasma ANP levels differ according to atrial pressure, whereas plasma BNP levels reflect ventricular overload. BNP (half-life: 22 minutes) has been shown to have greater stability than ANP (half-life: 2 minutes) []. Both BNP and NT-proBNP are removed by kidney, and BNP is also degraded by NEP and NPR-C. BNP has shorter half-life than NT-proBNP (half-life: 70 minutes). Thus, BNP and NT-proBNP are preferred to other NPs as gold standard for HF diagnosis, and established as rule-out tests of HF based on clinical guidelines [, ]. LV hypertrophy and dysfunction lead to higher levels of ANP and BNP. Thus, elevated ANP and BNP levels can be used to identify LV hypertrophy and dysfunction in general population and hospitalized patients []. Rapid assay for NPs can not only discriminate the origin of acute dyspnea (acute HF versus bronchial asthma), but also manage the patients with chronic HF []. Plasma NT-proBNP level 300 pg/ml is appropriate for ruling out acute HF. Age-dependent cutoff levels of plasma NT-proBNP are appropriate for ruling in acute HF: 450 pg/ml in patients < 50 years of age, 900 pg/ml in patients ≥ 50 years of age, and 1800 pg/ml in patients > 75 years of age []. Plasma BNP level 100 pg/ml and 400 pg/ml are appropriate for ruling out and ruling in acute HF, respectively. Cutoff levels of plasma NT-proBNP and BNP are 125 pg/ml and 35 pg/ml to chronic HF, respectively [].
NPs 反映心脏应激和功能,在 HF 患者中急剧增加,并对各种形式的 HF 具有强大的诊断价值[]。血浆 NP 水平也用于评估 HF 严重程度[, ]。血浆 ANP 水平根据心房压力而异,而血浆 BNP 水平反映心室过载。已经证明 BNP(半衰期:22 分钟)比 ANP(半衰期:2 分钟)更稳定[]。BNP 和 NT-proBNP 都被肾脏清除,而 BNP 也被 NEP 和 NPR-C 降解。BNP 的半衰期比 NT-proBNP(半衰期:70 分钟)短。因此,BNP 和 NT-proBNP 被优先用作 HF 诊断的金标准,并根据临床指南建立为 HF 排除测试[, ]。LV 肥厚和功能障碍导致 ANP 和 BNP 水平升高。因此,升高的 ANP 和 BNP 水平可用于识别一般人群和住院患者中的 LV 肥厚和功能障碍[]。 快速检测 NPs 不仅可以区分急性呼吸困难的原因(急性 HF 与支气管哮喘),还可以管理慢性 HF 患者[]。血浆 NT-proBNP 水平 300 pg/ml 适用于排除急性 HF。血浆 NT-proBNP 的年龄相关截断值适用于确诊急性 HF:50 岁以下患者为 450 pg/ml,50 岁及以上患者为 900 pg/ml,75 岁以上患者为 1800 pg/ml[]。血浆 BNP 水平 100 pg/ml 和 400 pg/ml 适用于排除和确诊急性 HF。血浆 NT-proBNP 和 BNP 的截断值分别为 125 pg/ml 和 35 pg/ml,适用于慢性 HF[]。

Confounding factors 混杂因素

Although applying BNP and NT-proBNP as diagnostic biomarkers of HF has brought significant improvement in treating HF, several confounding factors, such as aging, obesity, anemia, sepsis, hypertension, MI, cardiac hypertrophy, pulmonary hypertension, atrial fibrillation, diabetes mellitus, renal failure, liver cirrhosis, severe burn and cancer chemotherapy, limit their accuracy []. Plasma NP levels have been inversely related to body mass index in epidemiological investigations [, ]. Plasma NPs have lower levels in patients with diabetes mellitus, insulin resistance or metabolic syndrome, perhaps contributing to HF risk [, ]. Plasma BNP has higher levels in patients with hypertension or LV hypertrophy than in those without them [, ]. Plasma BNP has higher levels in patients with LV concentric hypertrophy than in those with LV eccentric hypertrophy or in those with normal LV structure and hypertension []. BP-lowering therapy reduces BNP levels and LV mass [, ].
尽管将 BNP 和 NT-proBNP 应用作 HF 的诊断生物标志物在治疗 HF 方面取得了显著进展,但多种混杂因素,如衰老、肥胖、贫血、败血症、高血压、心肌梗死、心肌肥厚、肺动脉高压、心房颤动、糖尿病、肾功能衰竭、肝硬化、严重烧伤和癌症化疗,限制了它们的准确性[]。流行病学调查显示,血浆 NP 水平与体重指数呈负相关[, ]。患有糖尿病、胰岛素抵抗或代谢综合征的患者血浆 NPs 水平较低,可能增加 HF 风险[, ]。患有高血压或左心室肥厚的患者血浆 BNP 水平较高,而没有这些情况的患者血浆 BNP 水平较低[, ]。左心室浓厚肥厚患者的血浆 BNP 水平较左心室偏心肥厚或正常左心室结构和高血压患者的水平更高[]。降压治疗可降低 BNP 水平和左心室质量[, ]。

Coronary artery disease 冠状动脉疾病

Plasma NPs have higher levels in patients with acute coronary syndrome or exercise-induced myocardial ischemia but without ventricular dilation []. Plasma ANP levels rise until admission and then decline in patients with acute MI. Plasma BNP levels rise until 12-24 hours after acute MI, then decline and peak once more after 5-7 days []. Height of the second peak is an useful indicator of LV remodeling []. Although there is a gradual decrease, plasma BNP levels are still increased in chronic phase, showing LV damage and remodeling []. However, plasma BNP has almost normal levels if early coronary reperfusion successfully prevents LV remodeling.
Plasma NPs 在急性冠状动脉综合征或运动诱发的心肌缺血患者中水平较高,但没有室壁扩张[]。急性心肌梗死患者的血浆 ANP 水平在入院前升高,然后下降。急性心肌梗死后 12-24 小时,血浆 BNP 水平上升,然后下降,并在 5-7 天后再次达到峰值[]。第二次峰值的高度是 LV 重塑的一个有用指标[]。尽管有逐渐减少的趋势,血浆 BNP 水平在慢性阶段仍然增加,显示 LV 损伤和重塑[]。然而,如果早期冠状动脉再灌注成功预防 LV 重塑,血浆 BNP 几乎达到正常水平。

Chronic kidney disease 慢性肾病

Renal function has systematical effects on NP system. In patients with chronic kidney disease (CKD), plasma NP levels are elevated as compensatory protection of renal function. CKD is always related to cardiovascular abnormalities. However, due to unclear mechanisms, there are elevated BNP levels in patients with CKD but without cardiovascular abnormalities []. Plasma NP levels may be regulated both by synthetic/secretory rate from heart and by extraction rate from blood. Key mechanism may not be an increase in extraction rate from kidney. Other mechanisms include the decreases in functional renal mass, second messenger synthesis and clearance receptor degradation in kidney [, ]. Elevated NP levels in CKD are correlated with a counter-regulatory response directed from heart to kidney, suggesting NPs as potential biomarkers of LV remodeling in patients with CKD []. Plasma NP levels in CKD reflect the stress on cardiac wall caused by LV hypertrophy or dysfunction [].
肾功能对 NP 系统有系统性影响。在慢性肾病(CKD)患者中,血浆 NP 水平升高,作为肾功能的代偿性保护。CKD 通常与心血管异常相关。然而,由于机制不清楚,患有 CKD 但没有心血管异常的患者血浆 BNP 水平升高。血浆 NP 水平可能受心脏合成/分泌速率和血液中提取速率的调节。关键机制可能不是来自肾脏的提取速率增加。其他机制包括功能性肾脏质量减少、第二信使合成和肾脏中清除受体降解的降低。CKD 中升高的 NP 水平与从心脏到肾脏的反调节反应相关,表明 NPs 可能是 CKD 患者 LV 重塑的潜在生物标志物。CKD 中的血浆 NP 水平反映了由 LV 肥厚或功能障碍引起的心脏壁的应激。

End-stage renal disease 晚期肾脏疾病

Plasma BNP and NT-proBNP have higher levels in patients with end-stage renal disease. There is a decrease of about 20–40% in plasma BNP levels after hemodialysis (HD). Peritoneal dialysis (PD) may not alter plasma BNP levels []. HD promotes fluid clearance and alleviates volume overload, leading to reduced wall stress and NP release []. Plasma BNP has lower levels in patients with PD than in those with HD, supporting that PD may lead to slower ultrafiltration rate, higher urine output, better hemodynamic condition, less cardiac load and lower BP levels than HD []. However, it remains inconclusive and needs more researches []. Meanwhile, due to reduced ultrafiltration rate, continuous volume overload and more LV hypertrophy, patients with automated PD (APD) may have higher BNP levels than those with continuous ambulatory PD (CAPD) []. Moreover, plasma BNP levels have a significant potential to identify LV hypertrophy or dysfunction in patients with different dialysis and renal transplant [].
Plasma BNP 和 NT-proBNP 在晚期肾病患者中水平较高。血液透析(HD)后,血浆 BNP 水平下降约 20-40%。腹膜透析(PD)可能不会改变血浆 BNP 水平[]。HD 促进液体清除,减轻容量过载,导致减少壁应力和 NP 释放[]。PD 患者的血浆 BNP 水平低于 HD 患者,支持 PD 可能导致较慢的超滤速率,更高的尿量,更好的血流动力学状况,较少的心脏负荷和较低的血压水平[]。然而,这仍然没有定论,需要更多的研究[]。同时,由于超滤速率降低,持续容量过载和更多的 LV 肥厚,自动腹膜透析(APD)患者可能比持续间歇腹膜透析(CAPD)患者具有更高的 BNP 水平[]。此外,血浆 BNP 水平在不同透析和肾移植患者中有显著潜力用于识别 LV 肥厚或功能障碍[]-[]。

Practical application in CKD
慢性肾病中的实际应用

Renal function limits current use of NPs in patients with CKD []. Plasma NP levels in patients with CKD are related to CKD severity, and cutoff levels are increased as CKD stages advance. Plasma BNP levels rise to almost 200 pg/ml in patients with CKD but without HF. Compared with plasma BNP levels, plasma NT-proBNP levels may be more strongly correlated with GFR and affected by age-related decrease in GFR, suggesting careful use of NT-proBNP in elderly with CKD []. In patients with CKD, plasma NT-proBNP levels > 1200 pg/ml suggest chronic HF in patients < 50 years of age and > 4502 pg/ml in patients between 50 and 75 years old []. It remains unclear if elevated NP levels in CKD effectively reflect the activation of NP system and effects on target organ. Elevated NP levels may have reduced ability to activate NP system and affect target organ in CKD. NP resistance in CKD may be caused by downregulated NPR-A expression in renal medulla and upregulated NPR-C expression in renal cortex []. NP resistance in CKD results in the invalidity of NP infusion in protecting renal function and treating cardiorenal syndrome in patients with HF [].
肾功能限制了目前在慢性肾病患者中使用 NPs []。慢性肾病患者的血浆 NP 水平与慢性肾病的严重程度相关,随着慢性肾病阶段的进展,截断水平也会增加。慢性肾病患者的血浆 BNP 水平在没有心力衰竭的患者中升高到近 200 pg/ml。与血浆 BNP 水平相比,血浆 NT-proBNP 水平可能与 GFR 更强相关,并受年龄相关 GFR 降低的影响,这表明在患有慢性肾病的老年人中要谨慎使用 NT-proBNP []。在慢性肾病患者中,血浆 NT-proBNP 水平> 1200 pg/ml 提示 50 岁以下患者患有慢性心力衰竭,而在 50 至 75 岁之间的患者中> 4502 pg/ml []。目前尚不清楚慢性肾病中升高的 NP 水平是否有效反映了 NP 系统的激活和对靶器官的影响。在慢性肾病中,升高的 NP 水平可能降低激活 NP 系统和影响靶器官的能力。慢性肾病中的 NP 抵抗可能是由于肾髓质中 NPR-A 表达下调和肾皮质中 NPR-C 表达上调引起的 []。 NP 抗性在 CKD 中导致 NP 输注在保护肾功能和治疗 HF 患者的心肾综合征中无效[]。

Point-of-care systems 现场系统

Previous assays for BNP are invasive and time-consuming with the discomfort caused by venipuncture. Some ideal point-of-care (POC) systems have been developed to allow rapid and repeated assays for BNP from capillary blood, like measuring blood sugar from fingertip []. A system at bedside would not only be useful for repeated assays at home, but also achieve routine monitoring in a remote way. Additionally, POC systems would also be used in the hospitals for BNP-guided therapy of HF and rapid triage of dyspnea. Two POC systems for BNP use either venipuncture ethylenediaminetetraacetic acid (EDTA) plasma (Alere Triage) or EDTA whole blood (Abbott i-STAT) []. In contrast, Alere Heart Check BNP Test is the first POC system easily used as a rapid assay for BNP from untreated fingertip capillary whole blood. Previous studies have demonstrated the safety and feasibility of Alere Heart Check BNP Test at home [].
以前的 BNP 检测方法是侵入性的和耗时的,由静脉穿刺引起的不适。一些理想的即时检测(POC)系统已经开发出来,允许从毛细血管血液中快速和重复地检测 BNP,就像从指尖测量血糖一样[]。床边的系统不仅对家庭中的重复检测有用,而且可以实现远程的常规监测。此外,POC 系统还将用于 BNP 引导 HF 治疗和呼吸困难的快速分诊。两种用于 BNP 的 POC 系统分别使用静脉穿刺乙二胺四乙酸(EDTA)血浆(Alere Triage)或 EDTA 全血(Abbott i-STAT)[]。相比之下,Alere Heart Check BNP Test 是第一个易于使用的 POC 系统,可从未经处理的指尖毛细血管全血中快速检测 BNP。以前的研究已经证明了 Alere Heart Check BNP Test 在家中的安全性和可行性[]。

Current bioactivity assays
当前生物活性测定

Current immunoassays can not reflect the bioactivity of NPs []. Rabbit aortic strip test (RAST) measures inhibitory activity of recombinant form of human BNP (rhBNP) on the tension of isolated aortic strip to determine its bioactivity []. However, it is variable, rough, laborious and time-consuming with the isolation of fresh issues from sacrificed rabbits. As the well-characterized pathways activated by rhBNP, cGMP has been quantified as alternative assays in human umbilical vein endotheliocyte (HUVEC) or rat pheochromocytoma cell-12 (PC-12) by radioimmunoassays []. However, HUVEC is primary cell and PC-12 tends to differentiate. Both HUVEC and PC-12 are not stable in culture. These intracellular cGMP measurements have limited accuracy, precision and reproducibility. They are tedious with the preparation of cell lysate and depend on standard curve by radioimmunoassays []. One stable cell-based assay is based on the NPR-A in HEK 293 cell. This single high-responsiveness clone is simplified by detecting the cGMP in culture supernatant with non-radioactive material in a high-throughput manner []. Although this assay has a significant potential to monitor endogenous activities of NPs, it needs more researches involving different NP forms and clinical stages [].
当前的免疫分析无法反映 NPs 的生物活性[]。兔主动脉条试验(RAST)测量人类 BNP 重组形式(rhBNP)对孤立主动脉条张力的抑制活性,以确定其生物活性[]。然而,这种方法具有变异性、粗糙、费时且需要从牺牲的兔子中分离新鲜组织。由于 rhBNP 激活的途径已经得到很好的表征,cGMP 已被作为人脐静脉内皮细胞(HUVEC)或大鼠嗜铬细胞瘤细胞-12(PC-12)的替代分析方法通过放射免疫分析进行定量测定[]。然而,HUVEC 是原代细胞,而 PC-12 倾向于分化。HUVEC 和 PC-12 在培养中不稳定。这些细胞内 cGMP 测量具有有限的准确性、精确性和可重复性。它们需要准备细胞裂解物,并依赖于放射免疫分析的标准曲线[]。一种稳定的基于 HEK 293 细胞中的 NPR-A 的细胞基础分析方法。这种单一的高响应克隆通过检测培养上清液中的 cGMP 以非放射性材料以高通量方式简化了[]。 尽管这种检测具有监测 NPs 内源活动的重要潜力,但需要进行涉及不同 NP 形式和临床阶段的更多研究[]。

Therapeutic values 治疗价值

Mechanisms of therapy 治疗机制

Mortality rate remains high in patients with HF even with the best current therapies. This mandates a continuing search for new therapies. NPs counteract RAAS by inhibiting renin secretion through second messenger cGMP, and NP augment on top of RAAS blockade may have synergistic effects on HF []. NPR-A suppression activates the RAAS and impairs the kidney []. Although HF develops with progressive activation of NPs, this response is apparently insufficient to counteract vascular constriction and sodium retention of RAAS and SNS []. Synthetic ANP has an attenuated renal response (natriuresis and diuresis) in patients with HF, suggesting NPR dysregulation in these patients with RAAS activation []. However, synthetic ANP has other significant roles, such as hemodynamic improvement and RAAS inhibition, in patients with HF []. Elevated NP levels maintain sodium balance in early stage of HF, and NPR-A suppression in HF causes sodium retention [, ]. NPs suppress angiotensin-II-induced vasoconstriction, angiotensin-II-stimulated proximal tubule sodium reabsorption, angiotensin-II-enhanced aldosterone secretion and endothelin secretion []. Moreover, most of plasma BNP measured with current immunoassays is less active in patients with HF. Thus, HF induces an attenuated response to elevated BNP levels, and represents a deficiency of active BNP caused by abnormal processing of NPs [, ].
患有 HF 的患者即使接受最佳当前疗法,死亡率仍然很高。这要求不断寻找新疗法。NPs 通过抑制第二信使 cGMP 来对抗 RAAS,NP 在 RAAS 阻断的基础上增加可能对 HF 产生协同作用[]。NPR-A 抑制激活 RAAS 并损害肾脏[]。尽管 HF 随着 NPs 的逐渐激活而发展,但这种反应显然不足以对抗 RAAS 和 SNS 的血管收缩和钠潴留[]。合成 ANP 在 HF 患者中具有减弱的肾脏反应(利尿和利尿作用),这表明这些患者中 NPR 失调与 RAAS 激活相关[]。然而,在 HF 患者中,合成 ANP 还具有其他重要作用,如改善血液动力学和抑制 RAAS[]。升高的 NP 水平在 HF 早期阶段维持钠平衡,HF 中的 NPR-A 抑制导致钠潴留[]。 NPs 抑制血管紧张素-II 诱导的血管收缩、血管紧张素-II 刺激的近曲小管钠重吸收、血管紧张素-II 增强的醛固酮分泌和内皮素分泌[]。此外,目前的免疫测定法测量的大部分血浆 BNP 在 HF 患者中活性较低。因此,HF 引起对升高的 BNP 水平的反应减弱,并代表由于 NP 异常加工引起的活性 BNP 缺乏[, ]。

Increasing NP bioactivity
增加 NP 生物活性

Novel therapies are under development based on an augment in cardioprotective effects of NPs to re-balance neuroendocrine dysregulation in HF []. Current NP-augmenting strategies include the synthesis of NPs or agonists to increase NP bioactivity and inhibition of NEP to reduce NP breakdown [, ]. Nesiritide, a rhBNP, has been shown to induce hemodynamic and clinical improvements in Vasodilatation in the Management of Acute CHF (VMAC) and other trials []. Nesiritide is successfully approved by Food and Drug Administration (FDA) and routinely used for both acute and chronic HF. However, nesiritide has been questioned in two subsequent meta-analyses to worsen renal function and increase mortality rate []. Other studies, such as Acutely Decompensated Heart Failure Registry (ADHERE) trial, have not confirmed these unfavorable effects of nesiritide [, ]. Acute Study of Clinical Effectiveness of Nesiritide in Decompensated Heart Failure (ASCEND-HF) trial has reported that nesiritide has no significant relationship with mortality rate, nor is it related to worsening renal function []. Neutral conclusions may be correlated with nesiritide dose. Large dose of nesiritide is strongly vasodilative, causes severe hypotension and neutralizes beneficial roles. Recent studies have reported that small dose of nesiritide, particularly when administered through subcutaneous route, induces hemodynamic and clinical improvements, without increasing nephrotoxicity and mortality, thus reopening the debates about its usefulness in patients with HF []. Long-term antiapoptotic, antiremodeling and antihypertrophic actions of nesiritide are beneficial if NPR-A could be activated chronically []. Nesiritide administered twice daily for eight weeks through subcutaneous route has improved clinical symptoms and reduced LV mass in patients with HF []. Additionally, nesiritide has been suggested to protect LV function in patients with MI []. Carperitide, recombinant form of human ANP, has alleviated clinical symptoms and been recommended in Japan for acute decompensated HF []. But short half-life limits clinical application of carperitide. Moreover, oral forms of ANP and BNP are too unstable to be routinely used in HF. CNP is unsuitable for treating HF due to relatively short half-life and no renal-enhancing action. In Safety and Efficacy of an Intravenous Placebo-controlled Randomised Infusion of Ularitide (SIRIUS I and II), synthetic urodilatin (ularitide) has induced hemodynamic and clinical improvements, without worsening renal function and obvious BP change, in patients with acute decompensated HF [, ]. Another Phase III Trial of Ularitide Efficacy and Safety in Acute Heart Failure (TRUE-AHF) has shown that ularitide reduces systolic BP and cardiac stress as indicated by plasma NT-proBNP levels, but has no effect on clinical composite end point, cardiovascular mortality and myocardial injury as indicated by cardiac troponin T levels [].
新疗法正在开发中,基于 NPs 的心脏保护效应增强,以重新平衡 HF 中的神经内分泌失调[]。目前的 NP 增强策略包括合成 NPs 或激动剂以增加 NP 的生物活性,以及抑制 NEP 以减少 NP 的降解[, ]。Nesiritide,一种 rhBNP,已被证明在急性 CHF 管理中诱导血流动力学和临床改善(VMAC)和其他试验中的血管舒张作用[]。Nesiritide 已成功获得食品药品监督管理局(FDA)批准,并常规用于急性和慢性 HF。然而,两项随后的荟萃分析质疑了 Nesiritide 会恶化肾功能并增加死亡率[]。其他研究,如急性失代偿性心力衰竭登记(ADHERE)试验,未证实 Nesiritide 的这些不利影响[, ]。 急性失代偿性心力衰竭(ASCEND-HF)试验报告称,奈西立肽与死亡率无显著关系,也与肾功能恶化无关[]。中性结论可能与奈西立肽剂量相关。大剂量奈西立肽具有强烈的扩血管作用,会导致严重低血压并中和有益作用。最近的研究报告称,小剂量奈西立肽,特别是经皮下途径给药时,可引起血流动力学和临床改善,而不会增加肾毒性和死亡率,因此重新引发了关于其在 HF 患者中的有用性的争论[]。奈西立肽的长期抗凋亡、抗重塑和抗肥厚作用在 NPR-A 能够慢性激活时是有益的[]。经皮下途径每日两次给予奈西立肽治疗八周,改善了 HF 患者的临床症状并减少了左心室质量[]。此外,奈西立肽被建议用于保护心肌梗死患者的左心室功能[]。 卡普利肽,人类 ANP 的重组形式,已经缓解了临床症状,并在日本推荐用于急性失代偿性 HF []。但卡普利肽的短半衰期限制了其临床应用。此外,ANP 和 BNP 的口服形式过于不稳定,不能常规用于 HF。CNP 不适用于治疗 HF,因为其半衰期相对较短且没有肾脏增强作用。在 Ularitide 的静脉安慰剂对照随机输注的安全性和有效性(SIRIUS I 和 II)中,合成尿利肽(Ularitide)已经在急性失代偿性 HF 患者中引起了血流动力学和临床改善,而且没有恶化肾功能和明显的血压变化 [, ]。另一个急性心力衰竭中 Ularitide 疗效和安全性的 III 期试验(TRUE-AHF)显示,Ularitide 降低了收缩压和心脏应激,如血浆 NT-proBNP 水平所示,但对临床复合终点、心血管死亡率和心肌损伤,如心肌肌钙蛋白 T 水平所示,没有影响 []。

Designer NPs 设计师 NPs

Severe hypotension and short half-life make recombinant agents, including nesiritide, carperitide and ularitide, not very suitable for clinical use. Designer NPs are developed by altering genetic forms or aa structures of native NPs. These hybrid peptides have normal binding to NPR-A and increased resistance to degradation []. DNP is firstly discovered in snake venom, and much about DNP remains unclear in humans. Cenderitide-NP (CD-NP) is not easy to be degraded as a 37-aa hybrid NP designed by fusing native CNP-22 with 15-aa C-terminal of DNP. This first-generation designer NP retains vasodilative, antifibrotic and antihypertrophic roles of CNP, and natriuretic and diuretic roles of DNP []. Both NPR-A and NPR-B can be effectively activated by CD-NP to increase more GFR and cause less hypotension than nesiritide, with reduced atrial pressure and improved cardiac-unloading effect []. FDA has provided a fast-track designation for CD-NP in Phase II trials []. CU-NP has been designed by fusing 17-aa ring structure of native CNP with C- and N-terminal of urodilatin []. As an experimental agent in early stage, CU-NP exerts cardiac-unloading, renal-enhancing and RAAS-suppressing effects through activating cGMP. CU-NP has direct antihypertrophic effect through inhibiting sodium-hydrogen exchanger 1 (NHE-1)/calcineurin pathway []. Mutant ANP (M-ANP) has been designed as a 40-aa peptide by fusing native ANP with 12-aa extension to C-terminal []. M-ANP has exerted beneficial cardiac and renal effects, such as boosting natriuresis and diuresis, regulating BP and GFR, inhibiting RAAS and SNS, and promoting antifibrosis and antiproliferation in experiments []. Novel NPs are currently under clinical development programs for further trials []. An alternative RNA spliced transcript for BNP (AS-BNP) has a unique 34-aa C-terminal, with remaining structure of native BNP []. ANX-042 has been designed as a 42-aa peptide by fusing 16 aa from C-terminal of AS-BNP and 26 aa from native BNP. ANX-042 can activate cGMP to boost natriuresis and diuresis and suppress renin and angiotensin-II, but not activate cGMP to relax blood vessels. As a designer NP in a first-in-human trial, FDA has suggested ANX-042 as an investigated new drug for HF with renal protection and less hypotension []. CNP analog (BMN111) is one of the most promising therapy for achondroplasia, and obviously improves skeletal parameters in animal experiments [].
严重低血压和短半衰期使得重组药物,包括奈西立肽、卡佩立肽和乌拉立肽,不太适合临床使用。设计师 NPs 通过改变基因形式或氨基酸结构来开发。这些混合肽对 NPR-A 具有正常结合能力,并且对降解具有增加的抵抗力[]。DNP 最初在蛇毒中发现,关于 DNP 在人类中的许多情况仍不清楚。Cenderitide-NP(CD-NP)是一种 37-aa 混合 NP,通过将原生 CNP-22 与 DNP 的 15-aa C-末端融合设计而成,不容易被降解。这种第一代设计师 NP 保留了 CNP 的扩血管、抗纤维化和抗肥厚作用,以及 DNP 的利尿和利尿作用[]。CD-NP 可以有效激活 NPR-A 和 NPR-B,比奈西立肽引起更多的 GFR 和更少的低血压,降低心房压力并改善心脏卸载效果[]。FDA 已为 CD-NP 在 II 期试验中提供了快速通道指定[]。CU-NP 是通过将原生 CNP 的 17-aa 环结构与尿利肽的 C-和 N-末端融合设计而成。 作为早期实验性药物,CU-NP 通过激活 cGMP 发挥心脏卸载、肾脏增强和 RAAS 抑制作用。CU-NP 通过抑制钠-氢交换蛋白 1(NHE-1)/钙调神经磷酸酶途径具有直接的抗肥厚作用。突变 ANP(M-ANP)已被设计为一个由原生 ANP 与 12 个氨基酸延伸至 C 端的 40 个氨基酸肽。M-ANP 已在实验中发挥了有益的心脏和肾脏作用,如促进尿钠和利尿、调节血压和 GFR、抑制 RAAS 和 SNS,以及促进抗纤维化和抗增殖。新型 NPs 目前正在进行临床开发计划,以进行进一步的试验。BNP 的一种替代 RNA 剪接转录本(AS-BNP)具有独特的 34 个氨基酸 C 端,其余结构与原生 BNP 相同。ANX-042 被设计为一个 42 个氨基酸的肽,由 AS-BNP 的 C 端 16 个氨基酸和原生 BNP 的 26 个氨基酸融合而成。ANX-042 可以激活 cGMP 以促进尿钠和利尿,并抑制肾素和血管紧张素 II,但不能激活 cGMP 以放松血管。 作为一名设计师 NP 在第一例人体试验中,FDA 已建议将 ANX-042 作为 HF 肾保护和较少低血压的新药进行研究[]。CNP 类似物(BMN111)是骨发育不全症最有前途的疗法之一,显然在动物实验中改善了骨骼参数[]。

Reducing NP degradation 减少 NP 降解

Although NP breakdown can be blocked by affecting NPR-C and inhibiting IDE, the more commonly used approach to reduce NP degradation is NEP inhibition. However, there are plentiful substrates of NEP, such as angiotensin-I, angiotensin-II, bradykinin, substance P, adrenomedullin, endothelin-1, opioid peptide, insulin β-chain, glucagon, oxytocin, chemotactic peptide, neurotensin, enkephalins, gastrin and amyloid-β peptide. NEP inhibition has potential to increase levels of these substrates, leading to conflicting effects on kidney and vessels []. Moreover, NEP hydrolyzes angiotensin-I to angiotensin-(1-7), which counteracts angiotensin-II. As the first pure NEP inhibitor, candoxatril is stable when administered orally. However, due to its effects on other systems, candoxatril has no benefit for patients with hypertension or HF []. Candoxatril is characterized by both NP augment (elevated NP levels and natriuresis) and RAAS activation (elevated angiotensin-II levels and vasoconstriction), leading to unaltered vascular resistance and unavailable antihypertensive role.
尽管 NP 降解可以通过影响 NPR-C 并抑制 IDE 来阻止,但更常用的减少 NP 降解的方法是 NEP 抑制。然而,NEP 有丰富的底物,如血管紧张素-I、血管紧张素-II、激肽、物质 P、肾上腺髓质素、内皮素-1、阿片肽、胰岛素β链、胰高血糖素、催化肽、神经肽、恩啡肽、胃泌素和淀粉样蛋白-β肽。NEP 抑制有可能增加这些底物的水平,导致对肾脏和血管产生矛盾的影响[]。此外,NEP 将血管紧张素-I 水解为血管紧张素-(1-7),与血管紧张素-II 相抗衡。作为第一个纯 NEP 抑制剂,坎多沙曲稳定性口服给药。然而,由于其对其他系统的影响,坎多沙曲对高血压或 HF 患者没有益处[]。坎多沙曲的特点是 NP 增加(升高 NP 水平和利尿)和 RAAS 激活(升高血管紧张素-II 水平和血管收缩),导致血管阻力不变和无法发挥降压作用。

Dual ACE/NEP inhibitors 双重 ACE/NEP 抑制剂

Pure NEP inhibitors have disappointing clinical effects, which may be improved by combining RAAS blockade. Due to no improvement in clinical symptoms and an increase in aplastic anemia, it is unpractical to choose an addition of NEP inhibitors (ecadotril) to standard therapies including angiotensin-converting enzyme (ACE) inhibitors []. Dual ACE/NEP inhibitor (vasopeptidase inhibitor, sampatrilat) has shown beneficial effects, but then been dropped due to short half-life []. Omapatrilat (BMS-186716) has almost affinity and inhibition for NEP and ACE. In experimental HF and hypertension models, omapatrilat has not only improved clinical symptoms and survival, but also relieved cardiac dysfunction and hypertension []. Moreover, omapatrilat has improved cardiac function and remodeling, and decreased cardiac hypertrophy and fibrosis in mice with MI []. Omapatrilat has been evaluated in patients with HF or hypertension in Omapatrilat Cardiovascular Treatment Versus Enalapril (OCTAVE), Inhibition of Metalloprotease by Omapatarilat in a Randomized Exercise and Symptoms Study of Heart Failure (IMPRESS) and Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events (OVERTURE) trials []. Omapatrilat has more obviously lowered vascular resistance and BP levels than candoxatril. As bradykinin is degraded by both NEP and ACE, simultaneous inhibition of them by omapatrilat increases bradykinin levels that favor the development of angioedema. Compared with enalapril, omapatrilat has increased angioedema and hypotension, and shown no superior benefit in patients with HF or hypertension, precluding its clinical use and final approval of FDA [].
纯 NEP 抑制剂在临床效果上令人失望,可能通过联合 RAAS 阻断得到改善。由于临床症状没有改善且再生贫血增加,选择将 NEP 抑制剂(ecadotril)添加到包括血管紧张素转换酶(ACE)抑制剂在内的标准治疗方案中是不切实际的[]。双重 ACE/NEP 抑制剂(血管肽酶抑制剂,sampatrilat)显示出有益效果,但由于半衰期短而被放弃[]。Omapatrilat(BMS-186716)对 NEP 和 ACE 几乎具有亲和力和抑制作用。在实验性 HF 和高血压模型中,Omapatrilat 不仅改善了临床症状和生存率,还缓解了心脏功能障碍和高血压[]。此外,Omapatrilat 改善了心脏功能和重塑,并减少了心肌梗死小鼠的心肌肥厚和纤维化[]。 Omapatrilat 已在 Omapatrilat 心血管治疗与依那普利(OCTAVE)、心力衰竭的随机运动和症状研究中通过 Omapatarilat 抑制金属蛋白酶(IMPRESS)以及 Omapatrilat 与依那普利随机试验中进行评估,用于降低事件(OVERTURE)试验[]。Omapatrilat 明显降低了血管阻力和血压水平,优于卡多沙曲。由于 NEP 和 ACE 均降解激肽,Omapatrilat 同时抑制它们会增加有利于血管水肿发展的激肽水平。与依那普利相比,Omapatrilat 在心力衰竭或高血压患者中引起更多的血管水肿和低血压,并未显示出更好的益处,因此无法在临床上使用,也未获得 FDA 的最终批准[]。

Triple ACE/ECE/NEP inhibitors
三重 ACE/ECE/NEP 抑制剂

Endothelin-1 is a multifunctional vasoconstrictor and contributes to HF progression []. Most endothelin-1 receptor antagonists have no prognostic improvement in patients with acute and chronic HF. In experimental HF model, endothelin-converting enzyme (ECE) inhibition has suppressed endothelin-1 synthesis, improved cardiorenal function and reduced the neurohormones, such as renin, angiotensin-II and aldosterone []. NPs may be degraded by ECE. Thus, ECE inhibition may simultaneously augment the NPs and suppress the endothelin []. ECE inhibition has induced hemodynamic improvement in patients with HF []. However, there is no long-term study about ECE inhibition. Dual ECE/NEP inhibitor SLV-306 (daglutril) has not only lowered LV pressure in patients with HF, but also improved cardiac function and remodeling in rats with LV hypertrophy []. Moreover, daglutril has inhibited BP elevation and increased NP levels in healthy humans []. Another dual ECE/NEP inhibitor (SLV-338) has improved cardiac fibrosis in experiment []. Triple ACE/ECE/NEP inhibitors may inhibit the synthesis of angiotensin-II and endothelin-1, and enhance the effects of NPs and bradykinin. In experimental HF model, triple ACE/ECE/NEP inhibition has been superior to ACE inhibition and dual ECE/NEP inhibition in improving LV structure and function []. However, the development of triple ACE/ECE/NEP inhibitors may be obstructed by negative conclusions about endothelin-1 receptor antagonists from large HF trials and practical concerns about the safety with ACE/NEP inhibitors. It needs to be emphasized that endothelin-1 receptor antagonism and ECE inhibition should be distinguished in further human trials.
Endothelin-1 是一种多功能的血管收缩剂,对 HF 的进展起着贡献[]。大多数内皮素-1 受体拮抗剂对急性和慢性 HF 患者没有预后改善作用。在实验性 HF 模型中,内皮素转化酶(ECE)抑制已经抑制了内皮素-1 的合成,改善了心肾功能并减少了肾素、血管紧张素-II 和醛固酮等神经激素[]。NPs 可能会被 ECE 降解。因此,ECE 抑制可能同时增加 NPs 并抑制内皮素[]。ECE 抑制已经在 HF 患者中引起了血流动力学改善[]。然而,关于 ECE 抑制的长期研究尚无。双重 ECE/NEP 抑制剂 SLV-306(达格鲁曲)不仅降低了 HF 患者的 LV 压力,还改善了 LV 肥厚大鼠的心脏功能和重塑[]。此外,达格鲁曲已经抑制了健康人体内的血压升高并增加了 NP 水平[]。另一种双重 ECE/NEP 抑制剂(SLV-338)已经在实验中改善了心脏纤维化[]。 三重 ACE/ECE/NEP 抑制剂可能抑制血管紧张素-II 和内皮素-1 的合成,并增强 NPs 和激肽酶的作用。在实验性 HF 模型中,三重 ACE/ECE/NEP 抑制优于 ACE 抑制和双重 ECE/NEP 抑制,改善 LV 结构和功能[]。然而,三重 ACE/ECE/NEP 抑制剂的发展可能会受到大型 HF 试验中对内皮素-1 受体拮抗剂的负面结论以及与 ACE/NEP 抑制剂安全性相关的实际担忧的阻碍。需要强调的是,在进一步的人体试验中应区分内皮素-1 受体拮抗和 ECE 抑制。

Development of LCZ696 LCZ696 的发展

Angiotensin receptor blocker NEP inhibitor (ARNI, LCZ696) is a major advance in the therapies for HF in the last 15 years. Molecular moieties of NEP inhibitor prodrug sacubitril (AHU377), and valsartan, an angiotensin receptor blocker (ARB), are present in this single molecule in 1:1 molar ratio (sacubitril/valsartan). Sacubitril (AHU377) becomes active NEP inhibitor LBQ657 after cleaving ethyl ester. ARNI preserves ACE mechanism for bradykinin degradation []. ARNI augments beneficial effects of NPs and inhibits harmful effects of angiotensin-II. As the first-in-class ARNI, LCZ696 has improved cardiac dysfunction, fibrosis, remodeling and hypertrophy in an animal model []. Compared with valsartan alone, LCZ696 has more effectively lowered BP levels, without increased angioedema, in patients with hypertension []. In patients with HF with reduced ejection fraction (HFrEF), LCZ696 has more effectively reduced all-cause, cardiovascular and sudden death, prevented HF progression and hospitalization, and improved life quality and renal function than enalapril in Prospective comparison of ARNI with ACE inhibitor to Determine Impact on Global Mortality and morbidity in Heart Failure (PARADIGM-HF) trial []. LCZ696 has recently been approved by FDA for treating HFrEF. But translating the results of this trial into guideline recommendation has raised some concerns []. Firstly, this study has been discontinued ahead of schedule due to overwhelming benefit of LCZ696, and there is a doubt about efficacy and safety of LCZ696 used for longer time []. Secondly, LCZ696 was administered twice daily at a dose of 200 mg (160 mg of valsartan), and enalapril was administered twice daily at a dose of 10 mg. Both two doses are target doses in most HF guidelines but higher than many patients with HFrEF may tolerate. Thirdly, more symptomatic postural hypotension in LCZ-696 group limited its clinical use, particularly in patients with borderline BP before therapy. It is necessary to observe this agent according to baseline BP in further studies. Fourthly, bradykinin levels have previously been shown to increase with ARB, and there were more patients with angioedema in LCZ-696 group []. Fifthly, amyloid-β peptide is a key peptide in Alzheimer disease, and NEP may block its breakdown to induce Alzheimer disease []. However, Alzheimer disease and cancer were not increased using LCZ696, and cognitive decline related to vascular diseases may be reduced by LCZ696. Finally, drug denials have already been increased, and applying LCZ696 would be further complicated by cost. Compared with valsartan, LCZ696 has not only reduced NT-proBNP levels and caused GFR elevation, but also improved overall clinical status and decreased left atrial pressure in Prospective comparison of ARNI with ARB on Management Of heart failUre with preserved ejectioN fracTion (PARAMOUNT) trial []. Whether it would benefit patients with HF with preserved ejection fraction (HFpEF) is currently being tested in ongoing Efficacy and Safety of LCZ696 Compared to Valsartan on Morbidity and Mortality in Heart Failure Patients With Preserved Ejection Fraction (PARAGON-HF, NCT01920711) trial. ARNI class has sparked considerable excitement in other cardiovascular diseases including hypertension []. Prospective comparison of Angiotensin Receptor neprilysin inhibitor with Angiotensin receptor blocker MEasuring arterial sTiffness in the eldERly (PARAMETER) trail is also underway to compare the relationships of LCZ696 and olmesartan with central BP in patients with resistant hypertension [].
Angiotensin 受体拮抗剂 NEP 抑制剂(ARNI,LCZ696)是过去 15 年心力衰竭治疗中的重大进展。NEP 抑制剂前药沙库比曲(AHU377)和缬沙坦,一种血管紧张素受体拮抗剂(ARB),以 1:1 的摩尔比例(沙库比曲/缬沙坦)存在于这种单一分子中。沙库比曲(AHU377)在裂解乙酸乙酯后成为活性 NEP 抑制剂 LBQ657。ARNI 保留 ACE 机制以降解激肽酶。ARNI 增强 NPs 的有益效果并抑制血管紧张素-II 的有害效果。作为首个 ARNI,LCZ696 在动物模型中改善了心脏功能障碍、纤维化、重塑和肥大[]。与单独使用缬沙坦相比,LCZ696 在高血压患者中更有效地降低了血压水平,而不增加血管性水肿[]。 在 HF 伴随降低射血分数(HFrEF)的患者中,LCZ696 在前瞻性比较 ARNI 与 ACE 抑制剂对心力衰竭全球死亡率和发病率的影响(PARADIGM-HF)试验中,比依诺普利更有效地降低了全因、心血管和猝死,预防了 HF 的进展和住院,改善了生活质量和肾功能[]。LCZ696 最近已获 FDA 批准用于治疗 HFrEF。但将该试验结果转化为指南建议引起了一些关注[]。首先,由于 LCZ696 的巨大益处,这项研究提前终止,对 LCZ696 长期使用的疗效和安全性存在疑虑[]。其次,LCZ696 每日两次给药,剂量为 200 毫克(缬沙坦 160 毫克),依诺普利每日两次给药,剂量为 10 毫克。这两个剂量是大多数 HF 指南中的目标剂量,但高于许多 HFrEF 患者可能耐受的剂量。 第三,LCZ-696 组中更多的症状性体位性低血压限制了其临床应用,特别是在治疗前边缘血压的患者中。有必要根据基线血压观察这种药物在进一步研究中的作用。第四,已经显示 ARB 会导致激肽酶原水平升高,LCZ-696 组中有更多患者出现血管性水肿。第五,淀粉样蛋白β是阿尔茨海默病的关键蛋白,NEP 可能阻止其降解以诱发阿尔茨海默病。然而,使用 LCZ696 并未增加阿尔茨海默病和癌症的发生,LCZ696 可能减少与血管性疾病相关的认知衰退。最后,药物拒绝已经增加,使用 LCZ696 将进一步受到成本的复杂化影响。与缬沙坦相比,LCZ696 不仅降低了 NT-proBNP 水平并导致 GFR 升高,还改善了整体临床状况并降低了左心房压力在心力衰竭保留射血分数(PARAMOUNT)试验中。 无论是否会使 HF 患者受益,目前正在进行的 PARAGON-HF(NCT01920711)试验中正在测试 HFpEF 患者的效果和安全性与 Valsartan 相比的 LCZ696 对心力衰竭患者的发病率和死亡率。ARNI 类已经在其他心血管疾病中引起了相当大的兴奋,包括高血压[]。与老年人中的血管硬度测量相关的 Angiotensin Receptor neprilysin inhibitor 与 Angiotensin receptor blocker 的前瞻性比较(PARAMETER)试验也正在进行,以比较 LCZ696 和 olmesartan 与难治性高血压患者中央血压的关系[]。

Mechanisms of LCZ696 LCZ696 的机制

It remains unclear about the mechanisms responsible for the superiority of LCZ696 over ACE inhibitor. Considering elevated levels of plasma BNP and urinary cGMP, systemic vasodilation and renal natriuresis could be important mechanisms. But it remains uncertain whether its superiority is direct effect on heart or indirect effect secondary to beneficial effects of this agent on vessels (lower BP levels) and kidney (less renal injury) []. Lower NT-proANP and troponin levels support that LCZ696 directly reduces myocardial stretch or ischemia. LCZ696 reduces proteinuria, focal segmental glomerulosclerosis and retinopathy, and plays beneficial effects on microvascular and renal complications. Without the evidence in PARADIGM-HF, further studies are required to fully address this issue. Meanwhile, positive effects of BNP on cardiac regeneration may also play an important role, and should be fully addressed in ongoing experimental and clinical studies. Exogenous BNP or NEP inhibition may induce endogenous cardiac regeneration, and achieve the therapies for HF and MI []. In experimental hypertension models, either alone or combined with MI or diabetes mellitus, ARNI has improved cardiac hypertrophy and fibrosis in a BP-independent manner. Since sacubitril is largely cleared in kidney, drug accumulation may occur in patients with impaired renal function, and hypotension is a potential adverse effect in patients with CKD.
目前尚不清楚 LCZ696 优于 ACE 抑制剂的机制。考虑到血浆 BNP 和尿 cGMP 水平升高,系统血管舒张和肾脱钠可能是重要的机制。但目前尚不确定其优越性是对心脏的直接影响还是对血管(降低血压水平)和肾脏(减少肾损伤)的有益影响的间接影响[]。较低的 NT-proANP 和肌钙蛋白水平支持 LCZ696 直接减少心肌伸展或缺血。LCZ696 减少蛋白尿、局灶节段性肾小球硬化和视网膜病变,并对微血管和肾脏并发症产生有益影响。在 PARADIGM-HF 中没有证据,需要进一步研究来全面解决这个问题。同时,BNP 对心脏再生的积极影响也可能起重要作用,并应在正在进行的实验和临床研究中得到充分解决。外源性 BNP 或 NEP 抑制可能诱导内源性心脏再生,并实现 HF 和 MI 的治疗[]。 在实验性高血压模型中,ARNI 已经改善了心脏肥大和纤维化,无论是单独使用还是与 MI 或糖尿病结合,都是独立于血压的方式。由于沙库比特利主要在肾脏中清除,患有肾功能受损的患者可能会出现药物积累,并且低血压是慢性肾病患者的潜在不良影响。

BNP-guided therapy BNP 引导治疗

Serial assays for BNP over time are clinically applied to the management of HF. BNP-guided therapy can assess the effectiveness and adjust the doses of drugs for HF, and improve the survival in patients with HFrEF or HFpEF []. United Kingdom-based economic model of BNP-guided therapy has been developed in patient with chronic HF []. BNP-guided therapy is cost-effective in younger patients (< 75 years) with HFrEF. It is potentially cost-effective in younger patients (< 75 years) with HFpEF and older patients (≥ 75 years) with HFrEF, but more evidence is required, particularly with respect to the frequency, duration and target for BNP monitoring []. Ongoing Guiding Evidence Based Therapy Using Biomarker Intensified Treatment in Heart Failure (GUIDE-IT) trial would be very important in providing better evidence in patients with HFrEF []. Additionally, NEP inhibitors may increase BNP levels and lower NT-proBNP levels, and require different monitoring strategies in BNP-guided therapy [].
序列 BNP 随时间的检测在 HF 管理中得到临床应用。BNP 引导的治疗可以评估 HF 药物的有效性并调整剂量,并改善 HFrEF 或 HFpEF 患者的生存率[]。基于英国的 BNP 引导治疗经济模型已在慢性 HF 患者中开发[]。BNP 引导的治疗在年轻患者(<75 岁)中的 HFrEF 患者中具有成本效益。在年轻患者(<75 岁)中的 HFpEF 患者和年长患者(≥75 岁)中的 HFrEF 患者中,它可能具有成本效益,但需要更多证据,特别是关于 BNP 监测的频率、持续时间和目标[]。正在进行的心力衰竭中基于生物标志物强化治疗的指导证据(GUIDE-IT)试验将在提供 HFrEF 患者更好证据方面非常重要[]。此外,NEP 抑制剂可能会增加 BNP 水平并降低 NT-proBNP 水平,并需要不同的监测策略在 BNP 引导的治疗中[]。

Prognostic values 预后价值

Plasma NP levels have prognostic values in patients with cardiovascular diseases. Previous studies on NP infusion, experimental animals and population genetics have demonstrated inverse correlations of plasma NP levels with different cardiovascular diseases. But epidemiological and clinical investigations of NPs as prognostic biomarkers have yielded positive correlations of plasma NP levels with poor prognosis []. As counter-regulatory hormones secreted after cardiac stretch, NPs have this paradox should be no surprise. In epidemiological investigations, elevated NP levels even in regular limit have been commonly observed in patients with subclinical cardiovascular diseases. In Framingham Offspring Study and Copenhagen, elevated NP levels have been significantly related to major adverse cardiovascular events and mortality rate in population without obvious cardiovascular diseases []. In patients with stable coronary artery disease, acute coronary syndrome or HF, elevated NP levels have also been significantly associated with cardiovascular events and mortality rate [, , ]. If plasma BNP or NT-proBNP levels do not fall off after the therapies for HF, patients with HF have more hospital admission and higher mortality rate. In patients with HF, NT-proBNP has higher levels, better accuracy, longer half-life and lower variation than BNP, and may be a better biomarker of HF progression and mortality rate []. Moreover, NPs are reliable predictors of all-cause and cardiovascular death independently of other clinical and biochemical risk factors, and have a potential to guide the therapy and predict the prognosis in patients with CKD [].
Plasma NP 水平在心血管疾病患者中具有预后价值。先前关于 NP 输注、实验动物和人群遗传学的研究表明,血浆 NP 水平与不同心血管疾病呈负相关。但 NPs 作为心脏伸展后分泌的对抗调节激素,其与不同心血管疾病的血浆 NP 水平呈正相关,作为预后生物标志物的流行病学和临床调查已经显示出积极相关性[]。在流行病学调查中,即使在正常范围内,NP 水平升高也常见于患有亚临床心血管疾病的患者。在弗雷明翰后代研究和哥本哈根中,NP 水平升高与无明显心血管疾病的人群中主要不良心血管事件和死亡率显著相关[]。在稳定冠状动脉疾病、急性冠状综合征或 HF 患者中,NP 水平升高也与心血管事件和死亡率显著相关[, , ]。 如果血浆 BNP 或 NT-proBNP 水平在 HF 治疗后没有下降,患有 HF 的患者入院次数更多,死亡率更高。在 HF 患者中,NT-proBNP 的水平更高,准确性更好,半衰期更长,变异性更低,可能是 HF 进展和死亡率的更好生物标志物。此外,NPs 是可靠的所有原因和心血管死亡的预测因子,独立于其他临床和生化风险因素,并有潜力指导 CKD 患者的治疗和预测预后。

Conclusion 结论

NPs play central roles in the regulation of HF. Both BNP and NT-proBNP are useful biomarkers to not only make the diagnosis and assess the severity of HF, but also guide the therapy and predict the prognosis in patients with HF. Current NP-augmenting strategies include the synthesis of NPs or agonists to increase NP bioactivity and inhibition of NEP to reduce NP breakdown. Nesiritide has been established as an available therapy, and ARNI has obtained extremely encouraging results with decreased morbidity and mortality. Novel pharmacological approaches based on NPs may promote a therapeutic shift from suppressing the RAAS and SNS to re-balancing neuroendocrine dysregulation in patients with HF.
NPs 在 HF 调节中发挥着核心作用。BNP 和 NT-proBNP 都是有用的生物标志物,不仅可以用于诊断和评估 HF 的严重程度,还可以指导治疗并预测 HF 患者的预后。目前的 NP 增强策略包括合成 NPs 或激动剂以增加 NP 的生物活性,以及抑制 NEP 以减少 NP 的降解。奈西立肽已被确认为一种可用的治疗方法,ARNI 取得了极为令人鼓舞的结果,降低了发病率和死亡率。基于 NPs 的新型药理学方法可能促进治疗策略的转变,从抑制 RAAS 和 SNS 到在 HF 患者中重新平衡神经内分泌失调。

Funding 资金

This work is supported by the grants from Health Special Scientific Research Project of Chinese People’s Liberation Army (12BJZ34 and 14BJZ12), and Sanya Medical and Health Science and Technology Innovation Project (2016YW21). The funding bodies play no role in manuscript preparation and submission.
本工作得到中国人民解放军卫生专项科研项目(12BJZ34 和 14BJZ12)以及三亚医学卫生科技创新项目(2016YW21)的资助。资助机构在手稿的准备和提交过程中没有发挥任何作用。

Availability of data and materials
数据和材料的可用性

Available. 可用。

Abbreviations 缩写

AaAmino acid 氨基酸
ANPAtrial natriuretic peptide
心房利钠肽
APDAutomated peritoneal dialysis
自动腹膜透析
ARNIAngiotensin receptor blocker NEP inhibitor
血管紧张素受体拮抗剂 NEP 抑制剂
BNPB-type natriuretic peptide
B 型钠利钠肽
BPBlood pressure 血压
CAPDContinuous ambulatory peritoneal dialysis
持续的腹膜透析
CD-NPCenderitide-NP
cGMPCyclic guanosine monophosphate
环鸟苷酸单磷酸
CKDChronic kidney disease 慢性肾病
CPCsCardiac precursor cells 心脏前体细胞
CNPC-type natriuretic peptide
C-terminalCarboxy-terminal
DPP-4Dipeptidyl peptidase-4
GCGuanylate cyclase
GFRGlomerular filtration rate
GTPGuanosine triphosphate
HDHemodialysis
HFHeart failure
IDEInsulin degrading enzyme
LVLeft ventricle
miRmicro-RNA
NEPNeutral endopeptidase
NONitric oxide
NPNatriuretic peptide
NPPNatriuretic peptide precursor
NPRNatriuretic peptide receptor
N-terminalAmino-terminal
NT-proANPN-terminal proANP
NT-proBNPN-terminal proBNP
PDPeritoneal dialysis
PDEPhosphodiesterase
PKGProtein kinase
POCPoint-of-care
RAASRenin-angiotensin-aldosterone system
rhBNPRecombinant form of human BNP
SNSSympathetic nervous system
5’-FR5’-flanking region
5’-UTR5’-untranslated region

Authors’ contributions

SF, PP, FW, LL: reviewed the literature and prepared the manuscript. All authors read and approved the final manuscript.

Notes

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors have no competing interest.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Shihui Fu, moc.621@5190oaixoaix.

Ping Ping, moc.qq@697917964.

Fengqi Wang, moc.361@36152389531.

Leiming Luo, Phone: 86-10-88626362, moc.anis@miell.

References

1. Owens AT, Brozena SC, Jessup M. New Management Strategies in Heart Failure. Circ Res. 2016;118(3):480–495. doi: 10.1161/CIRCRESAHA.115.306567. [PubMed] [CrossRef] []
2. Wong PC, Guo J, Zhang A. The renal and cardiovascular effects of natriuretic peptides. Adv Physiol Educ. 2017;41(2):179–185. doi: 10.1152/advan.00177.2016. [PubMed] [CrossRef] []
3. Gupta DK, Wang TJ. Natriuretic Peptides and Cardiometabolic Health. Circ J. 2015;79(8):1647–1655. doi: 10.1253/circj.CJ-15-0589. [PMC free article] [PubMed] [CrossRef] []
4. Rosenblatt-Velin N, Badoux S, Liaudet L. Pharmacological Therapy in the Heart as an Alternative to Cellular Therapy: A Place for the Brain Natriuretic Peptide? Stem Cells Int. 2016;2016:5961342. doi: 10.1155/2016/5961342. [PMC free article] [PubMed] [CrossRef] []
5. Zois NE, Bartels ED, Hunter I, Kousholt BS, Olsen LH, Goetze JP. Natriuretic peptides in cardiometabolic regulation and disease. Nat Rev Cardiol. 2014;11(7):403–412. doi: 10.1038/nrcardio.2014.64. [PubMed] [CrossRef] []
6. Ichiki T, Schirger JA, Huntley BK, Brozovich FV, Maleszewski JJ, Sandberg SM, Sangaralingham SJ, Park SJ, Burnett JC., Jr Cardiac fibrosis in end-stage human heart failure and the cardiac natriuretic peptide guanylyl cyclase system: regulation and therapeutic implications. J Mol Cell Cardiol. 2014;75:199–205. doi: 10.1016/j.yjmcc.2014.08.001. [PMC free article] [PubMed] [CrossRef] []
7. Volpe M, Carnovali M, Mastromarino V. The natriuretic peptides system in the pathophysiology of heart failure: from molecular basis totreatment. Clin Sci (Lond) 2016;130(2):57–77. doi: 10.1042/CS20150469. [PMC free article] [PubMed] [CrossRef] []
8. de Bold AJ, Borenstein HB, Veress AT, Sonnenberg H. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Reprinted from Life Sci. 28:89-94, 1981. J Am Soc Nephrol. 2001;12(2):403–409. [PubMed] []
9. Ogawa Y, Itoh H, Nakao K. Molecular biology and biochemistry of natriuretic peptide family. Clin Exp Pharmacol Physiol. 1995;22(1):49–53. doi: 10.1111/j.1440-1681.1995.tb01918.x. [PubMed] [CrossRef] []
10. Knowlton KU, Rockman HA, Itani M, Vovan A, Seidman CE, Chien KR. Divergent pathways mediate the induction of ANF transgenes in neonatal and hypertrophic ventricular myocardium. J Clin Invest. 1995;96(3):1311–1318. doi: 10.1172/JCI118166. [PMC free article] [PubMed] [CrossRef] []
11. Yan W, Wu F, Morser J, Corin WQ. a transmembrane cardiac serine protease, acts as a pro-atrial natriuretic peptide-converting enzyme. Proc Natl Acad Sci U S A. 2000;97(15):8525–8529. doi: 10.1073/pnas.150149097. [PMC free article] [PubMed] [CrossRef] []
12. Sugawara A, Nakao K, Morii N, Yamada T, Itoh H, Shiono S, Saito Y, Mukoyama M, Arai H, Nishimura K, et al. Synthesis of atrial natriuretic polypeptide in human failing hearts. Evidence for altered processing of atrial natriuretic polypeptide precursor and augmented synthesis of beta-human ANP. J Clin Invest. 1988;81(6):1962–1970. doi: 10.1172/JCI113544. [PMC free article] [PubMed] [CrossRef] []
13. van Kimmenade RR, Januzzi JL., Jr The evolution of the natriuretic peptides-Current applications in human and animal medicine. J Vet Cardiol. 2009;11(Suppl 1):S9–21. doi: 10.1016/j.jvc.2009.01.001. [PubMed] [CrossRef] []
14. Nishikimi T, Kuwahara K, Nakao K. Current biochemistry, molecular biology, and clinical relevance of natriuretic peptides. J Cardiol. 2011;57(2):131–140. doi: 10.1016/j.jjcc.2011.01.002. [PubMed] [CrossRef] []
15. Yandle TG, Richards AM. B-type natriuretic peptide circulating forms: analytical and bioactivity issues. Clin Chim Acta. 2015;448:195–205. doi: 10.1016/j.cca.2015.07.004. [PubMed] [CrossRef] []
16. Zachariah JP, Aliku T, Scheel A, Hasan BS, Lwabi P, Sable C, Beaton AZ. Amino-terminal pro-brain natriuretic peptide in children with latent rheumatic heart disease. Ann Pediatr Cardiol. 2016;9(2):120–125. doi: 10.4103/0974-2069.180668. [PMC free article] [PubMed] [CrossRef] []
17. Minamino N, Horio H, Nishikimi T. Natriuretic peptides in the cardiovascular system. In: Kastin AJ, editor. The handbook of biologically active peptides. 1st ed. New York. London: Academic Press; 2006. pp. 1217–1225. []
18. Abassi Z, Karram T, Ellahamc S, Winaver J, Hoffman A. Implications of the natriuretic peptide system in the pathogenesis of heart failure: diagnostic and therapeutic importance. Pharmacol Ther. 2004;102(3):223–241. doi: 10.1016/j.pharmthera.2004.04.004. [PubMed] [CrossRef] []
19. Ma KK, Ogawa T, de Bold AJ. Selective upregulation of cardiac brain natriuretic peptide at the transcriptional and translational levels by pro-inflammatory cytokines and by conditioned medium derived from mixed lymphocyte reactions via p38 MAP kinase. J Mol Cell Cardiol. 2004;36(4):505–513. doi: 10.1016/j.yjmcc.2004.01.001. [PubMed] [CrossRef] []
20. Clerico A, Vittorini S, Passino C. Circulating forms of the b-type natriuretic peptide prohormone: pathophysiologic and clinical considerations. Adv Clin Chem. 2012;58:31–44. doi: 10.1016/B978-0-12-394383-5.00008-4. [PubMed] [CrossRef] []
21. Ichiki T, Huntley BK, Burnett JC Jr. BNP molecular forms and processing by the cardiac serine protease corin. Adv Clin Chem. 2013;61:1–31. [PMC free article] [PubMed]
22. Nishikimi T, Minamino N, Masashi I, Takeda Y, Tadokoro K, Shibasaki I, Fukuda H, Horiuchi Y, Oikawa S, Ieiri T, Matsubara M, Ishimitsu T. Diversity of molecular forms of plasma brain natriuretic peptide in heart failure-different proBNP-108 to BNP-32 ratios in atrial and ventricular overload. Heart. 2010;96(6):432–9. [PubMed]
23. Nishikimi T, Kuwahara K, Nakagawa Y, Kangawa K, Minamino N, Nakao K. Complexity of molecular forms of B-type natriuretic peptide in heart failure. Heart. 2013;99(10):677–679. doi: 10.1136/heartjnl-2012-302929. [PubMed] [CrossRef] []
24. Liang F, O’Rear J, Schellenberger U, Tai L, Lasecki M, Schreiner GF, Apple FS, Maisel AS, Pollitt NS, Protter AA. Evidence for functional heterogeneity of circulating B-type natriuretic peptide. J Am Coll Cardiol. 2007;49(10):1071–1078. doi: 10.1016/j.jacc.2006.10.063. [PubMed] [CrossRef] []
25. Menon SG, Mills RM, Schellenberger U, Saqhir S, Protter AA. Clinical implications of defective B-type natriuretic peptide. Clin Cardiol. 2009;32(12):E36–E41. doi: 10.1002/clc.20480. [PMC free article] [PubMed] [CrossRef] []
26. Dickey DM, Potter LR. ProBNP(1-108) is resistant to degradation and activates guanylyl cyclase-A with reduced potency. Clin Chem. 2011;57(9):1272–1278. doi: 10.1373/clinchem.2011.169151. [PMC free article] [PubMed] [CrossRef] []
27. Semenov AG, Postnikov AB, Tamm NN, Seferian KR, Karpova NS, Bloshchitsyna MN, Koshkina EV, Krasnoselsky MI, Serebryanaya DV, Katrukha AG. Processing of pro-Brain natriuretic peptide is suppressed by O-glycosylation in the region close to the cleavage site. Clin Chem. 2009;55(3):489–498. doi: 10.1373/clinchem.2008.113373. [PubMed] [CrossRef] []
28. Semenov AG, Tamm NN, Seferian KR, Postnikov AB, Karpova NS, Serebryanaya DV, Koshkina EV, Krasnoselsky MI, Katrukha AG. Processing of pro-B-type natriuretic peptide: furin and corin as candidate convertases. Clin Chem. 2010;56(7):1166–1176. doi: 10.1373/clinchem.2010.143883. [PubMed] [CrossRef] []
29. Peng J, Jiang J, Wang W, Qi X, Sun XL, Wu Q. Glycosylation and processing of pro-B-type natriuretic peptide in cardiomyocytes. Biochem Biophys Res Commun. 2011;411(3):593–598. doi: 10.1016/j.bbrc.2011.06.192. [PMC free article] [PubMed] [CrossRef] []
30. Huntley BK, Sandberg SM, Heublein DM, Sangaralingham SJ, Burnett JC, Jr, Ichiki T. Pro-B-type natriuretic peptide-1-108 processing and degradation in human heart failure. Circ Heart Fail. 2015;8(1):89–97. doi: 10.1161/CIRCHEARTFAILURE.114.001174. [PMC free article] [PubMed] [CrossRef] []
31. Vodovar N, Seronde MF, Laribi S, Gayat E, Lassus J, Boukef R, Nouira S, Manivet P, Samuel JL, Logeart D, Ishihara S, Cohen Solal A, Januzzi JL, Jr, Richards AM, Launay JM, Mebazaa A. GREAT Network. Post-translational modifications enhance NT-proBNP and BNP production in acute decompensated heart failure. Eur Heart J. 2014;35(48):3434–3441. doi: 10.1093/eurheartj/ehu314. [PubMed] [CrossRef] []
32. Nakagawa Y, Nishikimi T, Kuwahara K, Fujishima A, Oka S, Tsutamoto T, Kinoshita H, Nakao K, Cho K, Inazumi H, Okamoto H, Nishida M, Kato T, Fukushima H, Yamashita JK9, Wijnen WJ, Creemers EE, Kangawa K, Minamino N, Nakao K, Kimura T. MiR30-GALNT1/2 Axis-Mediated Glycosylation Contributes to the Increased Secretion of Inactive Human Prohormone for Brain Natriuretic Peptide (proBNP) From Failing Hearts. J Am Heart Assoc. 2017;6(2). pii: e003601. [PMC free article] [PubMed]
33. Nishikimi T, Okamoto H, Nakamura M, Ogawa N, Horii K, Nagata K, Nakagawa Y, Kinoshita H, Yamada C, Nakao K, Minami T, Kuwabara Y, Kuwahara K, Masuda I, Kangawa K, Minamino N, Nakao K. Direct immunochemiluminescent assay for proBNP and total BNP in human plasma proBNP and total BNP levels in normal and heart failure. PLoS One. 2013;8(1):e53233. doi: 10.1371/journal.pone.0053233. [PMC free article] [PubMed] [CrossRef] []
34. Seferian KR, Tamm NN, Semenov AG, Mukharyamova KS, Tolstaya AA, Koshkina EV, Kara AN, Krasnoselsky MI, Apple FS, Esakova TV, Filatov VL, Katrukha AG. The brain natriuretic peptide (BNP) precursor is the major immunoreactive form of BNP in patients with heart failure. Clin Chem. 2007;53(5):866–873. doi: 10.1373/clinchem.2006.076141. [PubMed] [CrossRef] []
35. Heublein DM, Huntley BK, Boerrigter G, Cataliotti A, Sandberg SM, Redfield MM, Burnett JC., Jr Immunoreactivity and guanosine 3’, 5’-cyclic monophosphate activating actions of various molecular forms of human B-type natriuretic peptide. Hypertension. 2007;49(5):1114–1119. doi: 10.1161/HYPERTENSIONAHA.106.081083. [PubMed] [CrossRef] []
36. Scirica BM, Braunwald E, Raz I, Cavender MA, Morrow DA, Jarolim P, Udell JA, Mosenzon O, Im K, Umez-Eronini AA, Pollack PS, Hirshberg B, Frederich R, Lewis BS, McGuire DK, Davidson J, Steg PG, Bhatt DL. Heart failure, saxagliptin, and diabetes mellitus: observations from the SAVOR-TIMI 53 randomized trial. Circulation. 2015;132(15):e198. doi: 10.1161/CIR.0000000000000330. [PubMed] [CrossRef] []
37. Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, Ohman P, Frederich R, Wiviott SD, Hoffman EB, Cavender MA, Udell JA, Desai NR, Mosenzon O, McGuire DK, Ray KK, Leiter LA, Raz I. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369(14):1317–1326. doi: 10.1056/NEJMoa1307684. [PubMed] [CrossRef] []
38. Fadini GP, Avogaro A, Degli Esposti L, Russo P, Saragoni S, Buda S, Rosano G, Pecorelli S, Pani L. Risk of hospitalization for heart failure in patients with type 2 diabetes newly treated with DPP-4 inhibitors or other oral glucose-lowering medications: a retrospective registry study on 127,555 patients from the Nationwide OsMed Health-DB Database. Eur Heart J. 2015;36(36):2454–2462. doi: 10.1093/eurheartj/ehv301. [PubMed] [CrossRef] []
39. Chang CH, Chang YC, Lin JW, Caffrey JL, LC W, Lai MS, Chuang LM. No increased risk of hospitalization for heart failure for patients treated with dipeptidyl peptidase-4 inhibitors in Taiwan. Int J Cardiol. 2016;220:14–20. doi: 10.1016/j.ijcard.2016.06.125. [PubMed] [CrossRef] []
40. SM O, Chen HT, Kuo SC, Chen TJ, Shih CJ, Chen YT. Dipeptidyl peptidase-4 inhibitors and cardiovascular risks in patients with pre-existing heart failure. Heart. 2017;103(6):414–420. doi: 10.1136/heartjnl-2016-309687. [PubMed] [CrossRef] []
41. Sato A, Yoshihisa A, Kanno Y, Takiguchi M, Miura S, Shimizu T, Nakamura Y, Yamauchi H, Owada T, Sato T, Suzuki S, Oikawa M, Yamaki T, Sugimoto K, Kunii H, Nakazato K, Suzuki H, Saitoh SI, Takeishi Y. Associations of dipeptidyl peptidase-4 inhibitors with mortality in hospitalized heart failure patients with diabetes mellitus. ESC Heart Fail. 2016;3(2):77–85. doi: 10.1002/ehf2.12079. [PMC free article] [PubMed] [CrossRef] []
42. Elgendy IY, Mahmoud AN, Barakat AF, Elgendy AY, Saad M, Abuzaid A, Wayangankar SA, Bavry AA. Cardiovascular Safety of Dipeptidyl-Peptidase IV Inhibitors: a meta-analysis of placebo-controlled randomized trials. Am J Cardiovasc Drugs. 2017;17(2):143–155. doi: 10.1007/s40256-016-0208-x. [PubMed] [CrossRef] []
43. Li L, Li S, Deng K, Liu J, Vandvik PO, Zhao P, Zhang L, Shen J, Bala MM, Sohani ZN, Wong E, Busse JW, Ebrahim S, Malaga G, Rios LP, Wang Y, Chen Q, Guyatt GH, Sun X. Dipeptidyl peptidase-4 inhibitors and risk of heart failure in type 2 diabetes: systematic review and meta-analysis of randomised and observational studies. BMJ. 2016;352:i610. doi: 10.1136/bmj.i610. [PMC free article] [PubMed] [CrossRef] []
44. Takahashi A, Ihara M, Yamazaki S, Asanuma H, Asakura M, Kitakaze M. Impact of either GLP-1 agonists or DPP-4 inhibitors on pathophysiology of heart failure. Int Heart J. 2015;56(4):372–376. doi: 10.1536/ihj.15-028. [PubMed] [CrossRef] []
45. Fadini GP, Bonora BM, Albiero M, Zaninotto M, Plebani M, Avogaro A. DPP-4 inhibition has no acute effect on BNP and its N-terminal pro-hormone measured by commercial immune-assays. A randomized cross-over trial in patients with type 2 diabetes. Cardiovasc Diabetol. 2017;16(1):22. doi: 10.1186/s12933-017-0507-9. [PMC free article] [PubMed] [CrossRef] []
46. Wu C, Wu F, Pan J, Morser J, Wu Q. Furin-mediated processing of Pro-C-type natriuretic peptide. J Biol Chem. 2003;278(28):25847–25852. doi: 10.1074/jbc.M301223200. [PubMed] [CrossRef] []
47. Zhang Z, Xiao Z, Diamond SL. Shear stress induction of c-type natriuretic peptide (CNP) in endothelial cells is independent of no autocrine signaling. Ann Biomed Eng. 1999;27(4):419–426. doi: 10.1114/1.203. [PubMed] [CrossRef] []
48. Yasoda A, Kitamura H, Fujii T, Kondo E, Murao N, Miura M, Kanamoto N, Komatsu Y, Arai H, Nakao K. Systemic administration of c-type natriuretic peptide as a novel therapeutic strategy for skeletal dysplasias. Endocrinology. 2009;150(7):3138–3144. doi: 10.1210/en.2008-1676. [PMC free article] [PubMed] [CrossRef] []
49. Mangiafico S, Costello-Boerrigter LC, Andersen IA, Cataliotti A, Burnett JC., Jr Neutral endopeptidase inhibition and the natriuretic peptide system: an evolving strategy in cardiovascular therapeutics. Eur Heart J. 2013;34(12):886–893c. doi: 10.1093/eurheartj/ehs262. [PMC free article] [PubMed] [CrossRef] []
50. Dickey DM, Burnett JC, Jr, Potter LR. Novel bifunctional natriuretic peptides as potential therapeutics. J Biol Chem. 2008;283(50):35003–35009. doi: 10.1074/jbc.M804538200. [PMC free article] [PubMed] [CrossRef] []
51. Abbey SE, Potter R. Vasopressin-dependent inhibition of the C-type natriuretic peptide receptor, NPR-B/GC-B, requires elevated intracellular calcium concentrations. J Biol Chem. 2002;277(45):42423–42430. doi: 10.1074/jbc.M206686200. [PubMed] [CrossRef] []
52. Misono KS. Natriuretic peptide receptor: structure and signaling. Mol Cell Biochem. 2002;230(1-2):49–60. doi: 10.1023/A:1014257621362. [PubMed] [CrossRef] []
53. Theilig F, Wu Q. ANP-induced signaling cascade and its implications in renal pathophysiology. Am J Physiol Renal Physiol. 2015;308(10):F1047–F1055. doi: 10.1152/ajprenal.00164.2014. [PMC free article] [PubMed] [CrossRef] []
54. Duda T. Atrial natriuretic factor-receptor guanylate cyclase signal transduction mechanism. Mol Cell Biochem. 2010;334(1-2):37–51. doi: 10.1007/s11010-009-0335-7. [PubMed] [CrossRef] []
55. Potter LR. Domain analysis of human transmembrane guanylyl cyclase receptors: implications for regulation. Front Biosci. 2005;10:1205–1220. doi: 10.2741/1613. [PubMed] [CrossRef] []
56. Rubattu S, Sciarretta S, Morriello A, Calvieri C, Battistoni A, Volpe M. NPR-C: a component of the natriuretic peptide family with implications in human diseases. J Mol Med (Berl) 2010;88(9):889–897. doi: 10.1007/s00109-010-0641-2. [PubMed] [CrossRef] []
57. Knecht M, Pagel I, Langenickel T, Philipp S, Scheuermann-Freestone M, Willnow T, Bruemmer D, Graf K, Dietz R, Willenbrock R. Increased expression of renal neutral endopeptidase in severe heart failure. Life Sci. 2002;71(23):2701–2712. doi: 10.1016/S0024-3205(02)01990-2. [PubMed] [CrossRef] []
58. Hawkridge AM, Heublein DM, Bergen HR, III, Cataliotti A, Burnett JC, Jr, Muddiman DC. Quantitative mass spectral evidence for the absence of circulating brain natriuretic peptide (BNP-32) in severe human heart failure. Proc Natl Acad Sci U S A. 2005;102(48):17442–17447. doi: 10.1073/pnas.0508782102. [PMC free article] [PubMed] [CrossRef] []
59. Flora DR, Potter LR. Prolonged atrial natriuretic peptide exposure stimulates guanylyl cyclase-A degradation. Endocrinology. 2010;151(6):2769–2776. doi: 10.1210/en.2009-1239. [PMC free article] [PubMed] [CrossRef] []
60. Bae EH, Ma SK, Lee J, Kim SW. Altered regulation of renal nitric oxide and atrial natriuretic peptide systems in angiotensin II-induced hypertension. Regul Pept. 2011;170(1-3):31–37. doi: 10.1016/j.regpep.2011.05.005. [PubMed] [CrossRef] []
61. Potter LR, Abbey-Hosch S, Dickey DM. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev. 2006;27(1):47–72. doi: 10.1210/er.2005-0014. [PubMed] [CrossRef] []
62. Gopi V, Parthasarathy A, Umadevi S, Vellaichamy E. Angiotensin-II down-regulates cardiac natriuretic peptide receptor-A mediated anti-hypertrophic signaling in experimental rat hearts. Indian J Exp Biol. 2013;51(1):48–55. [PubMed] []
63. Goetz KL. Physiology and pathophysiology of atrial peptides. Am J Physiol. 1988;254(1 Pt 1):E1–15. [PubMed] []
64. Matsukawa T, Miyamoto T. Angiotensin II-stimulated secretion of arginine vasopressin is inhibited by atrial natriuretic peptide in humans. Am J Physiol Regul Integr Comp Physiol. 2011;300(3):R624–R629. doi: 10.1152/ajpregu.00324.2010. [PubMed] [CrossRef] []
65. Inoue T, Nonoguchi H, Tomita K. Physiological effects of vasopressin and atrial natriuretic peptide in the collecting duct. Cardiovasc Res. 2001;51(3):470–480. doi: 10.1016/S0008-6363(01)00248-6. [PubMed] [CrossRef] []
66. Veldkamp PJ, Carmines PK, Inscho EW, Navar LG. Direct evaluation of the microvascular actions of ANP in juxtamedullary nephrons. Am J Physiol. 1988;254(3 Pt 2):F440–F444. [PubMed] []
67. Brenner BM, Ballermann BJ, Gunning ME, Zeidel ML. Diverse biological actions of atrial natriuretic peptide. Physiol Rev. 1990;70(3):665–699. doi: 10.1152/physrev.1990.70.3.665. [PubMed] [CrossRef] []
68. Lanese DM, Yuan BH, Falk SA, Conger JD. Effects of atriopeptin III on isolated rat afferent and efferent arterioles. Am J Physiol. 1991;261(6 Pt 2):F1102–F1109. [PubMed] []
69. Chen W, Gassner B, Börner S, Nikolaev VO, Schlegel N, Waschke J, Steinbronn N, Strasser R, Kuhn M. Atrial natriuretic peptide enhances microvascular albumin permeability by the caveolae-mediated transcellular pathway. Cardiovasc Res. 2012;93(1):141–151. doi: 10.1093/cvr/cvr279. [PMC free article] [PubMed] [CrossRef] []
70. Elesgaray R, Caniffi C, Ierace DR, Jaime MF, Fellet A, Arranz C, Costa MA. Signaling cascade that mediates endothelial nitric oxide synthase activation induced by atrial natriuretic peptide. Regul Pept. 2008;151(1-3):130–134. doi: 10.1016/j.regpep.2008.05.008. [PubMed] [CrossRef] []
71. Costa MA, Elesgaray R, Balaszczuk AM, Arranz C. Role of NPR-C natriuretic receptor in nitric oxide system activation induced by atrial natriuretic peptide. Regul Pept. 2006;135(1-2):63–68. doi: 10.1016/j.regpep.2006.04.002. [PubMed] [CrossRef] []
72. Hamad AM, Clayton A, Islam B, Knox AJ. Guanylyl cyclases, nitric oxide, natriuretic peptides, and airway smooth muscle function. Am J Physiol Lung Cell Mol Physiol. 2003;285(5):L973–L983. doi: 10.1152/ajplung.00033.2003. [PubMed] [CrossRef] []
73. Klinger JR, Warburton RR, Pietras LA, Smithies O, Swift R, Hill NS. Genetic disruption of atrial natriuretic peptide causes pulmonary hypertension in normoxic and hypoxic mice. Am J Physiol. 1999;276(5 Pt 1):L868–L874. [PubMed] []
74. Levin ER, Gardner DG, Samson WK. Natriuretic peptides. N Engl J Med. 1998;339(5):321–328. doi: 10.1056/NEJM199807303390507. [PubMed] [CrossRef] []
75. Floras JS. Inhibitory effect of atrial natriuretic factor on sympathetic ganglionic neurotransmission in humans. Am J Physiol. 1995;269(2 Pt 2):R406–R412. [PubMed] []
76. Kaupp UB, Seifert R. Cyclic nucleotide-gated ion channels. Physiol Rev. 2002;82(3):769–824. doi: 10.1152/physrev.00008.2002. [PubMed] [CrossRef] []
77. Knowles JW, Esposito G, Mao L, Hagaman JR, Fox JE, Smithies O, Rockman HA, Maeda N. Pressure-independent enhancement of cardiac hypertrophy in natriuretic peptide receptor A-deficient mice. J Clin Invest. 2001;107(8):975–984. doi: 10.1172/JCI11273. [PMC free article] [PubMed] [CrossRef] []
78. Newton-Cheh C, Larson MG, Vasan RS, Levy D, Bloch KD, Surti A, Guiducci C, Kathiresan S, Benjamin EJ, Struck J, Morgenthaler NG, Bergmann A, Blankenberg S, Kee F, Nilsson P, Yin X, Peltonen L, Vartiainen E, Salomaa V, Hirschhorn JN, Melander O, Wang TJ. Association of common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure. Nat Genet. 2009;41(3):348–353. doi: 10.1038/ng.328. [PMC free article] [PubMed] [CrossRef] []
79. Franco F, Dubois SK, Peshock RM, Shohet RV. Magnetic resonance imaging accurately estimates LV mass in a transgenic mouse model of cardiac hypertrophy. Am J Physiol. 1998;274(2 Pt 2):H679–H683. [PubMed] []
80. Somanna NK, Yariswamy M, Garagliano JM, Siebenlist U, Mummidi S, Valente AJ, Chandrasekar B. Aldosterone-induced cardiomyocyte growth, and fibroblast migration and proliferation are mediated by TRAF3IP2. Cell Signal. 2015;27(10):1928–1938. doi: 10.1016/j.cellsig.2015.07.001. [PubMed] [CrossRef] []
81. Fujita S, Shimojo N, Terasaki F, Otsuka K, Hosotani N, Kohda Y, Tanaka T, Nishioka T, Yoshida T, Hiroe M, Kitaura Y, Ishizaka N, Imanaka-Yoshida K. Atrial natriuretic peptide exerts protective action against angiotensin II-induced cardiac remodeling by attenuating inflammation via endothelin-1/endothelin receptor A cascade. Heart Vessels. 2013;28(5):646–657. [PubMed] []
82. Sharma GD, Nguyen HT, Antonov AS, Gerrity RG, von Geldern T, Pandey KN. Expression of atrial natriuretic peptide receptor-A antagonizes the mitogen-activated protein kinases (Erk2 and P38MAPK) in cultured human vascular smooth muscle cells. Mol Cell Biochem. 2002;233(1-2):165–173. doi: 10.1023/A:1015882302796. [PubMed] [CrossRef] []
83. Nojiri T, Hosoda H, Tokudome T, Miura K, Ishikane S, Otani K, Kishimoto I, Shintani Y, Inoue M, Kimura T, Sawabata N, Minami M, Nakagiri T, Funaki S, Takeuchi Y, Maeda H, Kidoya H7, Kiyonari H, Shioi G, Arai Y, Hasegawa T, Takakura N, Hori M, Ohno Y, Miyazato M, Mochizuki N, Okumura M, Kangawa K. Atrial natriuretic peptide prevents cancer metastasis through vascular endothelial cells. Proc Natl Acad Sci U S A. 2015;112(13):4086–4091. doi: 10.1073/pnas.1417273112. [PMC free article] [PubMed] [CrossRef] [] Retracted
84. Calderone A, Thaik CM, Takahashi N, Chang DL, Colucci WS. Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growthpromoting effects of norepinephrine in cardiac myocytes and fibroblasts. J Clin Invest. 1998;101(4):812–818. doi: 10.1172/JCI119883. [PMC free article] [PubMed] [CrossRef] []
85. Rubattu S, Bigatti G, Evangelista A, Lanzani C, Stanzione R, Zagato L, Manunta P, Marchitti S, Venturelli V, Bianchi G. Association of atrial natriuretic peptide and type a natriuretic peptide receptor gene polymorphisms with left ventricular mass in human essential hypertension. J Am Coll Cardiol. 2006;48(3):499–505. doi: 10.1016/j.jacc.2005.12.081. [PubMed] [CrossRef] []
86. Scotland RS, Cohen M, Foster P, Lovell M, Mathur A, Ahluwalia A, Hobbs AJ. C-type natriuretic peptide inhibits leukocyte recruitment and platelet-leukocyte interactions via suppression of P-selectin expression. Proc Natl Acad Sci U S A. 2005;102(40):14452–14457. doi: 10.1073/pnas.0504961102. [PMC free article] [PubMed] [CrossRef] []
87. Sengenes C, Zakaroff-Girard A, Moulin A, Berlan M, Bouloumi’e A, Lafontan M, Galitzky J. Natriuretic peptide-dependent lipolysis in fat cells is a primate specificity. Am J Physiol Regul Integr Comp Physiol. 2002;283(1):R257–R265. doi: 10.1152/ajpregu.00453.2001. [PubMed] [CrossRef] []
88. Sengenes C, Bouloumie A, Hauner H, Berlan M, Busse R, Lafontan M, Galitzky J. Involvement of a cGMP-dependent pathway in the natriuretic peptide-mediated hormone-sensitive lipase phosphorylation in human adipocytes. J Biol Chem. 2003;278(49):48617–48626. doi: 10.1074/jbc.M303713200. [PubMed] [CrossRef] []
89. Moro C, Pillard F, de Glisezinski I, Klimcakova E, Crampes F, Thalamas C, Harant I, Marques MA, Lafontan M, Berlan M. Exercise-induced lipid mobilization in subcutaneous adipose tissue is mainly related to natriuretic peptides in overweight men. Am J Physiol Endocrinol Metab. 2008;295(2):E505–E513. doi: 10.1152/ajpendo.90227.2008. [PubMed] [CrossRef] []
90. Engeli S, Birkenfeld AL, Badin PM, Bourlier V, Louche K, Viguerie N, Thalamas C, Montastier E, Larrouy D, Harant I, de Glisezinski I, Lieske S, Reinke J, Beckmann B, Langin D, Jordan J, Moro C. Natriuretic peptides enhance the oxidative capacity of human skeletal muscle. J Clin Invest. 2012;122(12):4675–4679. doi: 10.1172/JCI64526. [PMC free article] [PubMed] [CrossRef] []
91. Bordicchia M, Liu D, Amri EZ, Ailhaud G, Dessì-Fulgheri P, Zhang C, Takahashi N, Sarzani R, Collins S. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest. 2012;122(3):1022–1036. doi: 10.1172/JCI59701. [PMC free article] [PubMed] [CrossRef] []
92. Moilanen AM, Rysä J, Mustonen E, Serpi R, Aro J, Tokola H, Leskinen H, Manninen A, Levijoki J, Vuolteenaho O, Ruskoaho H. Intramyocardial BNP gene delivery improves cardiac function through distinct context-dependent mechanisms. Circ Heart Fail. 2011;4(4):483–495. doi: 10.1161/CIRCHEARTFAILURE.110.958033. [PubMed] [CrossRef] []
93. Cataliotti A, Tonne JM, Bellavia D, Martin FL, Oehler EA, Harders GE, Campbell JM, Peng KW, Russell SJ, Malatino LS, Burnett JC, Jr, Ikeda Y. Long-term cardiac pro-B-type natriuretic peptide gene delivery prevents the development of hypertensive heart disease in spontaneously hypertensive rats. Circulation. 2011;123(12):1297–1305. doi: 10.1161/CIRCULATIONAHA.110.981720. [PMC free article] [PubMed] [CrossRef] []
94. Shaw SM, Fildes JE, Puchałka CM, Basith M, Yonan N, Williams SG. BNP directly immunoregulates the innate immune system of cardiac transplant recipients in vitro. Transpl Immunol. 2009;20(3):199–202. doi: 10.1016/j.trim.2008.08.010. [PubMed] [CrossRef] []
95. Glezeva N, Collier P, Voon V, Ledwidge M, McDonald K, Watson C, Baugh J. Attenuation of monocyte chemotaxis-novel anti-inflammatory mechanism of action for the cardio-protective hormone B-type natriuretic peptide. J Cardiovasc Transl Res. 2013;6(4):545–557. doi: 10.1007/s12265-013-9456-1. [PubMed] [CrossRef] []
96. Chiurchiù V, Izzi V, D'Aquilio F, Carotenuto F, Di Nardo P, Baldini PM. Brain Natriuretic Peptide (BNP) regulates the production of inflammatory mediators in human THP-1 macrophages. Regul Pept. 2008;148(1-3):26–32. doi: 10.1016/j.regpep.2008.02.009. [PubMed] [CrossRef] []
97. Das BB, Raj S, Solinger R. Natriuretic peptides in cardiovascular diseases of fetus, infants and children. Cardiovasc Hematol Agents Med Chem. 2009;7(1):43–51. doi: 10.2174/187152509787047667. [PubMed] [CrossRef] []
98. Schwachtgen L, Herrmann M, Georg T, Schwarz P, Marx N, Lindinger A. Reference values of NT-proBNP serum concentrations in the umbilical cord blood and in healthy neonates and children. Z Kardiol. 2005;94(6):399–404. doi: 10.1007/s00392-005-0246-x. [PubMed] [CrossRef] []
99. Becker JR, Chatterjee S, Robinson TY, Bennett JS, Panáková D, Galindo CL, Zhong L, Shin JT, Coy SM, Kelly AE, Roden DM, Lim CC, MacRae CA. Differential activation of natriuretic peptide receptorsmodulates cardiomyocyte proliferation during development. Development. 2014;141(2):335–345. doi: 10.1242/dev.100370. [PMC free article] [PubMed] [CrossRef] []
100. Abdelalim EM, Tooyama I. BNP signaling is crucial for embryonic stem cell proliferation. PLoS One. 2009;4(4):e5341. doi: 10.1371/journal.pone.0005341. [PMC free article] [PubMed] [CrossRef] []
101. Kuhn M, Völker K, Schwarz K, Carbajo-Lozoya J, Flögel U, Jacoby C, Stypmann J, van Eickels M, Gambaryan S, Hartmann M, Werner M, Wieland T, Schrader J, Baba HA. The natriuretic peptide/guanylyl cyclase-system functions as a stress-responsive regulator of angiogenesis in mice. J Clin Invest. 2009;119(7):2019–2030. doi: 10.1172/JCI37430. [PMC free article] [PubMed] [CrossRef] []
102. Bielmann C, Rignault-Clerc S, Liaudet L, Li F, Kunieda T, Sogawa C, Zehnder T, Waeber B, Feihl F, Rosenblatt-Velin N. Brain natriuretic peptide is able to stimulate cardiac progenitor cell proliferation and differentiation in murine hearts after birth. Basic Res Cardiol. 2015;110(1):455. doi: 10.1007/s00395-014-0455-4. [PubMed] [CrossRef] []
103. Bielmann C, Rignault-Clerc S, Liaudet L, Li F, Kunieda T, Sogawa C, Zehnder T, Waeber B, Feihl F, Rosenblatt-Velin N. NPR-A regulates selfrenewal and pluripotency of embryonic stem cells. Cell Mol Life Sci. 2015;72(9):1741–1757. doi: 10.1007/s00018-015-1833-2. [PMC free article] [PubMed] [CrossRef] []
104. Rignault-Clerc S, Bielmann C, Liaudet L, Waeber B, Feihl F, Rosenblatt-Velin N. Natriuretic Peptide Receptor B modulates the proliferation of the cardiac cells expressing the Stem Cell Antigen-1. Sci Rep. 2017;7:41936. doi: 10.1038/srep41936. [PMC free article] [PubMed] [CrossRef] []
105. Del Ry S, Passino C, Maltinti M, Emdin M, Giannessi D. C-type natriuretic peptide plasma levels increase in patients with chronic heart failure as a function of clinical severity. Eur J Heart Fail. 2005;7(7):1145–1148. doi: 10.1016/j.ejheart.2004.12.009. [PubMed] [CrossRef] []
106. Sangaralingham SJ, Huntley BK, Martin FL, McKie PM, Bellavia D, Ichiki T, Harders GE, Chen HH, Burnett JC., Jr The aging heart, myocardial fibrosis, and its relationship to circulating C-type natriuretic Peptide. Hypertension. 2011;57(2):201–207. doi: 10.1161/HYPERTENSIONAHA.110.160796. [PMC free article] [PubMed] [CrossRef] []
107. Soeki T, Kishimoto I, Okumura H, Tokudome T, Horio T, Mori K, Kangawa K. C-type natriuretic peptide, a novel antifibrotic and antihypertrophic agent, prevents cardiac remodeling after myocardial infarction. J Am Coll Cardiol. 2005;45(4):608–616. doi: 10.1016/j.jacc.2004.10.067. [PubMed] [CrossRef] []
108. Kohno M, Yokokawa K, Yasunari K, Kano H, Minami M, Ueda M, Yoshikawa J. Effect of natriuretic peptide family on the oxidized LDL-induced migration of human coronary artery smooth muscle cells. Circ Res. 1997;81(4):585–590. doi: 10.1161/01.RES.81.4.585. [PubMed] [CrossRef] []
109. Kairuz EM, Barber MN, Anderson CR, Kanagasundaram M, Drummond GR, Woods RL. C-type natriuretic peptide (CNP) suppresses plasminogen activator inhibitor-1 (PAI-1) in vivo. Cardiovasc Res. 2005;66:574–582. doi: 10.1016/j.cardiores.2005.01.024. [PubMed] [CrossRef] []
110. Barton M, Bény JL, d'Uscio LV, Wyss T, Noll G, Lüscher TF. Endothelium-independent relaxation and hyperpolarization to C-type natriuretic peptide in porcine coronary arteries. J Cardiovasc Pharmacol. 1998;31(3):377–383. doi: 10.1097/00005344-199803000-00008. [PubMed] [CrossRef] []
111. Del Ry S, Cabiati M, Vozzi F, Battolla B, Caselli C, Forini F, Segnani C, Prescimone T, Giannessi D, Mattii L. Expression of C-type natriuretic peptide and its receptor NPR-B in cardiomyocytes. Peptides. 2011;32(8):1713–1718. doi: 10.1016/j.peptides.2011.06.014. [PubMed] [CrossRef] []
112. Li P, Wang D, Lucas J, Oparil S, Xing D, Cao X, Novak L, Renfrow MB, Chen YF. Atrial natriuretic peptide inhibits transforming growth factor beta-induced Smad signaling and myofibroblast transformation in mouse cardiac fibroblasts. Circ Res. 2008;102(2):185–192. doi: 10.1161/CIRCRESAHA.107.157677. [PubMed] [CrossRef] []
113. Kuhn M, Voss M, Mitko D, Stypmann J, Schmid C, Kawaguchi N, Grabellus F, Baba HA. Left ventricular assist device support reverses altered cardiac expression and function of natriuretic peptides and receptors in end-stage heart failure. Cardiovasc Res. 2004;64(2):308–314. doi: 10.1016/j.cardiores.2004.07.004. [PubMed] [CrossRef] []
114. Dickey DM, Dries DL, Margulies KB, Potter LR. Guanylyl cyclase (GC)-A and GC-B activities in ventricles and cardiomyocytes from failed and non-failed human hearts: GC-A is inactive in the failed cardiomyocyte. J Mol Cell Cardiol. 2012;52(3):727–732. doi: 10.1016/j.yjmcc.2011.11.007. [PMC free article] [PubMed] [CrossRef] []
115. Creemers EE, Pinto YM. Molecular mechanisms that control interstitial fibrosis in the pressureoverloaded heart. Cardiovasc Res. 2011;89(2):265–272. doi: 10.1093/cvr/cvq308. [PubMed] [CrossRef] []
116. Itoh T, Nagaya N, Murakami S, Fujii T, Iwase T, Ishibashi-Ueda H, Yutani C, Yamagishi M, Kimura H, Kangawa K. C-type natriuretic peptide ameliorates monocrotaline-induced pulmonary hypertension in rats. Am J Respir Crit Care Med. 2004;170(11):1204–1211. doi: 10.1164/rccm.200404-455OC. [PubMed] [CrossRef] []
117. Legeai-Mallet L. C-Type Natriuretic Peptide Analog as Therapy for Achondroplasia. Endocr Dev. 2016;30:98–105. doi: 10.1159/000439334. [PubMed] [CrossRef] []
118. Crozier IG, Nicholls MG, Ikram H, Espiner EA, Yandle TG, Jans S. Atrial natriuretic peptide in humans. Production and clearance by various tissues. Hypertension. 1986;8(6 Pt 2):II11–II15. [PubMed] []
119. Hollister AS, Rodeheffer RJ, White FJ, Potts JR, Imada T, Inagami T. Clearance of atrial natriuretic factor by lung, liver, and kidney in human subjects and the dog. J Clin Invest. 1989;83(2):623–628. doi: 10.1172/JCI113926. [PMC free article] [PubMed] [CrossRef] []
120. Mukoyama M, Nakao K, Hosoda K, Suga S, Saito Y, Ogawa Y, Shirakami G, Jougasaki M, Obata K, Yasue H, et al. Brain natriuretic peptide as a novel cardiac hormone in humans. Evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. J Clin Invest. 1991;87(4):1402–1412. doi: 10.1172/JCI115146. [PMC free article] [PubMed] [CrossRef] []
121. Richards AM, Crozier IG, Yandle TG, Espiner EA, Ikram H, Nicholls MG. Brain natriuretic factor: regional plasma concentrations and correlations with haemodynamic state in cardiac disease. Br Heart J. 1993;69(5):414–417. doi: 10.1136/hrt.69.5.414. [PMC free article] [PubMed] [CrossRef] []
122. Kita S, Nishizawa H, Okuno Y, Tanaka M, Yasui A, Matsuda M, Yamada Y, Shimomura I. Competitive binding of musclin to natriuretic peptide receptor 3 with atrial natriuretic peptide. J Endocrinol. 2009;201(2):287–295. doi: 10.1677/JOE-08-0551. [PubMed] [CrossRef] []
123. Jiang W, Cai DY, Pan CS, Qi YF, Jiang HF, Geng B, Tang CS. Changes in production and metabolism of brain natriuretic peptide in rats with myocardial necrosis. Eur J Pharmacol. 2005;507(1-3):153–162. doi: 10.1016/j.ejphar.2004.11.023. [PubMed] [CrossRef] []
124. Vanneste Y, Michel A, Dimaline R, Najdovski T, Deschodt-Lanckman M. Hydrolysis of alpha-human atrial natriuretic peptide in vitro by human kidney membranes and purified endopeptidase-24.11. Evidence for a novel cleavage site. Biochem J. 1988;254(2):531–537. doi: 10.1042/bj2540531. [PMC free article] [PubMed] [CrossRef] []
125. Watanabe Y, Nakajima K, Shimamori Y, Fujimoto Y. Comparison of the hydrolysis of the three types of natriuretic peptides by human kidney neutral endopeptidase 24.11. Biochem Mol Med. 1997;61(1):47–51. doi: 10.1006/bmme.1997.2584. [PubMed] [CrossRef] []
126. Potter LR, Yoder AR, Flora DR, Antos LK, Dickey DM. Natriuretic peptides: their structures, receptors, physiologic functions and therapeutic applications. Handb Exp Pharmacol. 2009;191:341–366. doi: 10.1007/978-3-540-68964-5_15. [PMC free article] [PubMed] [CrossRef] []
127. Kenny AJ, Bourne A, Ingram J. Hydrolysis of human and pig brain natriuretic peptides, urodilatin, C-type natriuretic peptide and some C-receptor ligands by endopeptidase-24.11. Biochem J. 1993;291(Pt 1):83–88. doi: 10.1042/bj2910083. [PMC free article] [PubMed] [CrossRef] []
128. Dickey DM, Potter LR. Human B-type natriuretic peptide is not degraded by meprin A. Biochem. Biochem Pharmacol. 2010;80(7):1007–1011. doi: 10.1016/j.bcp.2010.06.015. [PMC free article] [PubMed] [CrossRef] []
129. Duckworth WC, Bennett RG, Hamel FG. Insulin degradation: progress and potential. Endocr Rev. 1998;19(5):608–624. [PubMed] []
130. Müller D, Schulze C, Baumeister H, Buck F, Richter D. Rat insulin-degrading enzyme: cleavage pattern of the natriuretic peptide hormones ANP, BNP, and CNP revealed by HPLC and mass spectrometry. Biochemistry. 1992;31(45):11138–11143. doi: 10.1021/bi00160a026. [PubMed] [CrossRef] []
131. Smith MW, Espiner EA, Yandle TG, Charles CJ, Richards AM. Delayed metabolism of human brain natriuretic peptide reflects resistance to neutral endopeptidase. J Endocrinol. 2000;167(2):239–246. doi: 10.1677/joe.0.1670239. [PubMed] [CrossRef] []
132. Charles CJ, Espiner EA, Nicholls MG, Richards AM, Yandle TG, Protter A, Kosoglou T. Clearance receptors and endopeptidase 24.11: equal role in natriuretic peptide metabolism in conscious sheep. Am J Physiol. 1996;271(2 Pt 2):R373–R380. [PubMed] []
133. Hashimoto Y, Nakao K, Hama N, Imura H, Mori S, Yamaguchi M, Yasuhara M, Hori R. Clearance mechanisms of atrial and brain natriuretic peptides in rats. Pharm Res. 1994;11(1):60–64. doi: 10.1023/A:1018941626731. [PubMed] [CrossRef] []
134. Rubattu S, Sciarretta S, Volpe M. Atrial natriuretic peptide gene variants and circulating levels: implications in cardiovascular diseases. Clin Sci (Lond) 2014;127:1–13. doi: 10.1042/CS20130427. [PubMed] [CrossRef] []
135. Zhang S, Mao G, Zhang Y, Tang G, Wen Y, Hong X, Jiang S, Yu Y, Xu X. Association between human atrial natriuretic peptide Val7Met polymorphism and baseline blood pressure, plasma trough irbesartan concentrations, and the antihypertensive efficacy of irbesartan in rural Chinese patients with essential hypertension. Clin Ther. 2005;27(11):1774–1784. doi: 10.1016/j.clinthera.2005.11.008. [PubMed] [CrossRef] []
136. Conen D, Cheng S, Steiner LL, Buring JE, Ridker PM, Zee RY. Association of 77 polymorphisms in 52 candidate genes with blood pressure progression and incident hypertension: the Women’s Genome Health Study. J Hypertens. 2009;27(3):476–483. doi: 10.1097/HJH.0b013e32832104c8. [PMC free article] [PubMed] [CrossRef] []
137. Kato N, Sugiyama T, Morita H, Nabika T, Kurihara H, Yamori Y, Yazaki Y. Genetic analysis of the atrial natriuretic peptide gene in essential hypertension. Clin Sci (Lond) 2000;98(3):251–258. doi: 10.1042/cs0980251. [PubMed] [CrossRef] []
138. Niu W. The Relationship between Natriuretic Peptide Precursor a Gene T2238C Polymorphism and Hypertension: A Meta-Analysis. Int J Hypertens. 2011;2011:653698. [PMC free article] [PubMed] []
139. Sciarretta S, Marchitti S, Bianchi F, Moyes A, Barbato E, Di Castro S, Stanzione R, Cotugno M, Castello L, Calvieri C, Eberini I, Sadoshima J, Hobbs AJ, Volpe M, Rubattu S. C2238 atrial natriuretic peptide molecular variant is associated with endothelial damage and dysfunction through natriuretic peptide receptor C signaling. Circ Res. 2013;112(10):1355–1364. doi: 10.1161/CIRCRESAHA.113.301325. [PubMed] [CrossRef] []
140. Cannone V, Huntley BK, Olson TM, Heublein DM, Scott CG, Bailey KR, Redfield MM, Rodeheffer RJ, Burnett JC., Jr Atrial natriuretic peptide genetic variant rs5065 and risk for cardiovascular disease in the general community: a 9-year follow-up study. Hypertension. 2013;62(5):860–865. doi: 10.1161/HYPERTENSIONAHA.113.01344. [PMC free article] [PubMed] [CrossRef] []
141. Jujić A, Leosdottir M, Östling G, Gudmundsson P, Nilsson PM, Melander O, Magnusson M. A genetic variant of the atrial natriuretic peptide gene is associated with left ventricular hypertrophy in a non-diabetic population--the Malmo preventive project study. BMC Med Genet. 2013;14:64. doi: 10.1186/1471-2350-14-64. [PMC free article] [PubMed] [CrossRef] []
142. Cannone V, Boerrigter G, Cataliotti A, Costello-Boerrigter LC, Olson TM, McKie PM, Heublein DM, Lahr BD, Bailey KR, Averna M, Redfield MM, Rodeheffer RJ, Burnett JC., Jr A genetic variant of the atrial natriuretic peptide gene is associated with cardiometabolic protection in the general community. J Am Coll Cardiol. 2011;58(6):629–636. doi: 10.1016/j.jacc.2011.05.011. [PMC free article] [PubMed] [CrossRef] []
143. Cannone V, Cefalu’ AB, Noto D, Scott CG, Bailey KR, Cavera G, Pagano M, Sapienza M, Averna MR, Burnett JC., Jr The atrial natriuretic peptide genetic variant rs5068 is associated with a favorable cardiometabolic phenotype in a Mediterranean population. Diabetes Care. 2013;36(9):2850–2856. doi: 10.2337/dc12-2337. [PMC free article] [PubMed] [CrossRef] []
144. Arora P, Wu C, Khan AM, Bloch DB, Davis-Dusenbery BN, Ghorbani A, Spagnolli E, Martinez A, Ryan A, Tainsh LT, Kim S, Rong J, Huan T, Freedman JE, Levy D, Miller KK, Hata A, Del Monte F, Vandenwijngaert S, Swinnen M, Janssens S, Holmes TM, Buys ES, Bloch KD, Newton-Cheh C, Wang TJ. Atrial natriuretic peptide is negatively regulated by microRNA-425. J Clin Invest. 2013;123(8):3378–3382. doi: 10.1172/JCI67383. [PMC free article] [PubMed] [CrossRef] []
145. Ellis KL, Newton-Cheh C, Wang TJ, Frampton CM, Doughty RN, Whalley GA, Ellis CJ, Skelton L, Davis N, Yandle TG, Troughton RW, Richards AM, Cameron VA. Association of genetic variation in the natriuretic peptide system with cardiovascular outcomes. J Mol Cell Cardiol. 2011;50(4):695–701. doi: 10.1016/j.yjmcc.2011.01.010. [PubMed] [CrossRef] []
146. Kato N, Takeuchi F, Tabara Y, Kelly TN, Go MJ, Sim X, Tay WT, Chen CH, Zhang Y, Yamamoto K, Katsuya T, Yokota M, Kim YJ, Ong RT, Nabika T, Gu D, Chang LC, Kokubo Y, Huang W, Ohnaka K, Yamori Y, Nakashima E, Jaquish CE, Lee JY, Seielstad M, Isono M, Hixson JE, Chen YT, Miki T, Zhou X, Sugiyama T, Jeon JP, Liu JJ, Takayanagi R, Kim SS, Aung T, Sung YJ, Zhang X, Wong TY, Han BG, Kobayashi S, Ogihara T, Zhu D, Iwai N, JY W, Teo YY, Tai ES, Cho YS, He J. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat Genet. 2011;43(6):531–538. doi: 10.1038/ng.834. [PMC free article] [PubMed] [CrossRef] []
147. International Consortium for Blood Pressure Genome-Wide Association Studies. Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, Smith AV, Tobin MD, Verwoert GC, Hwang SJ, Pihur V, Vollenweider P, O'Reilly PF, Amin N, Bragg-Gresham JL, Teumer A, Glazer NL, Launer L, Zhao JH, Aulchenko Y, Heath S, Sõber S, Parsa A, Luan J, Arora P, Dehghan A, Zhang F, Lucas G, Hicks AA, Jackson AU, Peden JF, Tanaka T, Wild SH, Rudan I, Igl W, Milaneschi Y, Parker AN, Fava C, Chambers JC, Fox ER, Kumari M, Go MJ, van der Harst P, Kao WH, Sjögren M, Vinay DG, Alexander M, Tabara Y, Shaw-Hawkins S, Whincup PH, Liu Y, Shi G, Kuusisto J, Tayo B, Seielstad M, Sim X, Nguyen KD, Lehtimäki T, Matullo G, Wu Y, Gaunt TR, Onland-Moret NC, Cooper MN, Platou CG, Org E, Hardy R, Dahgam S, Palmen J, Vitart V, Braund PS, Kuznetsova T, Uiterwaal CS, Adeyemo A, Palmas W, Campbell H, Ludwig B, Tomaszewski M, Tzoulaki I, Palmer ND, CARDIoGRAM consortium. CKDGen Consortium; KidneyGen Consortium. EchoGen consortium; CHARGE-HF consortium. Aspelund T, Garcia M, Chang YP, O'Connell JR, Steinle NI, Grobbee DE, Arking DE, Kardia SL, Morrison AC, Hernandez D, Najjar S, WL MA, Hadley D, Brown MJ, Connell JM, Hingorani AD, Day IN, Lawlor DA, Beilby JP, Lawrence RW, Clarke R, Hopewell JC, Ongen H, Dreisbach AW, Li Y, Young JH, Bis JC, Kähönen M, Viikari J, Adair LS, Lee NR, Chen MH, Olden M, Pattaro C, Bolton JA, Köttgen A, Bergmann S, Mooser V, Chaturvedi N, Frayling TM, Islam M, Jafar TH, Erdmann J, Kulkarni SR, Bornstein SR, Grässler J, Groop L, Voight BF, Kettunen J, Howard P, Taylor A, Guarrera S, Ricceri F, Emilsson V, Plump A, Barroso I, Khaw KT, Weder AB, Hunt SC, Sun YV, Bergman RN, Collins FS, Bonnycastle LL, Scott LJ, Stringham HM, Peltonen L, Perola M, Vartiainen E, Brand SM, Staessen JA, Wang TJ, Burton PR, Soler Artigas M, Dong Y, Snieder H, Wang X, Zhu H, Lohman KK, Rudock ME, Heckbert SR, Smith NL, Wiggins KL, Doumatey A, Shriner D, Veldre G, Viigimaa M, Kinra S, Prabhakaran D, Tripathy V, Langefeld CD, Rosengren A, Thelle DS, Corsi AM, Singleton A, Forrester T, Hilton G, CA MK, Salako T, Iwai N, Kita Y, Ogihara T, Ohkubo T, Okamura T, Ueshima H, Umemura S, Eyheramendy S, Meitinger T, Wichmann HE, Cho YS, Kim HL, Lee JY, Scott J, Sehmi JS, Zhang W, Hedblad B, Nilsson P, Smith GD, Wong A, Narisu N, Stančáková A, Raffel LJ, Yao J, Kathiresan S, O'Donnell CJ, Schwartz SM, Ikram MA, Longstreth WT, Jr, Mosley TH, Seshadri S, Shrine NR, Wain LV, Morken MA, Swift AJ, Laitinen J, Prokopenko I, Zitting P, Cooper JA, Humphries SE, Danesh J, Rasheed A, Goel A, Hamsten A, Watkins H, Bakker SJ, van Gilst WH, Janipalli CS, Mani KR, Yajnik CS, Hofman A, Mattace-Raso FU, Oostra BA, Demirkan A, Isaacs A, Rivadeneira F, Lakatta EG, Orru M, Scuteri A, Ala-Korpela M, Kangas AJ, Lyytikäinen LP, Soininen P, Tukiainen T, Würtz P, Ong RT, Dörr M, Kroemer HK, Völker U, Völzke H, Galan P, Hercberg S, Lathrop M, Zelenika D, Deloukas P, Mangino M, Spector TD, Zhai G, Meschia JF, Nalls MA, Sharma P, Terzic J, Kumar MV, Denniff M, Zukowska-Szczechowska E, Wagenknecht LE, Fowkes FG, Charchar FJ, Schwarz PE, Hayward C, Guo X, Rotimi C, Bots ML, Brand E, Samani NJ, Polasek O, Talmud PJ, Nyberg F, Kuh D, Laan M, Hveem K, Palmer LJ, van der Schouw YT, Casas JP, Mohlke KL, Vineis P, Raitakari O, Ganesh SK, Wong TY, Tai ES, Cooper RS, Laakso M, Rao DC, Harris TB, Morris RW, Dominiczak AF, Kivimaki M, Marmot MG, Miki T, Saleheen D, Chandak GR, Coresh J, Navis G, Salomaa V, Han BG, Zhu X, Kooner JS, Melander O, Ridker PM, Bandinelli S, Gyllensten UB, Wright AF, Wilson JF, Ferrucci L, Farrall M, Tuomilehto J, Pramstaller PP, Elosua R, Soranzo N, Sijbrands EJ, Altshuler D, Loos RJ, Shuldiner AR, Gieger C, Meneton P, Uitterlinden AG, Wareham NJ, Gudnason V, Rotter JI, Rettig R, Uda M, Strachan DP, Witteman JC, Hartikainen AL, Beckmann JS, Boerwinkle E, Vasan RS, Boehnke M, Larson MG, Järvelin MR, Psaty BM, Abecasis GR, Chakravarti A, Elliott P, van Duijn CM, Newton-Cheh C, Levy D, Caulfield MJ, Johnson T, International Consortium for Blood Pressure Genome-Wide Association S Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478(7367):103–109. doi: 10.1038/nature10405. [PMC free article] [PubMed] [CrossRef] []
148. Rame JE, Drazner MH, Post W, Peshock R, Lima J, Cooper RS, Dries DL. Corin I555(P568) allele is associated with enhanced cardiac hypertrophic response to increased systemic afterload. Hypertension. 2007;49(4):857–864. doi: 10.1161/01.HYP.0000258566.95867.9e. [PubMed] [CrossRef] []
149. Wong LL, Wee AS, Lim JY, Ng JY, Chong JP, Liew OW, Lilyanna S, Martinez EC, Ackers-Johnson MA, Vardy LA, Armugam A, Jeyaseelan K, Ng TP, Lam CS, Foo RS, Richards AM, Chen YT. Natriuretic peptide receptor 3 (NPR3) is regulated by microRNA-100. J Mol Cell Cardiol. 2015;82:13–21. doi: 10.1016/j.yjmcc.2015.02.019. [PubMed] [CrossRef] []
150. Kotlo KU, Hesabi B, Danziger RS. Implication of microRNAs in atrial natriuretic peptide and nitric oxide signaling in vascular smooth muscle cells. Am J Physiol Cell Physiol. 2011;301(4):C929–C937. doi: 10.1152/ajpcell.00088.2011. [PMC free article] [PubMed] [CrossRef] []
151. Wong LL, Wang J, Liew OW, Richards AM, Chen YT. MicroRNA and Heart Failure. Int J Mol Sci. 2016;17(4):502. doi: 10.3390/ijms17040502. [PMC free article] [PubMed] [CrossRef] []
152. Hohl M, Wagner M, Reil JC, Müller SA, Tauchnitz M, Zimmer AM, Lehmann LH, Thiel G, Böhm M, Backs J, Maack C. HDAC 4 controls histone methylation in response to elevated cardiac load. J Clin Invest. 2013;123(3):1359–1370. doi: 10.1172/JCI61084. [PMC free article] [PubMed] [CrossRef] []
153. van Veldhuisen DJ, Linssen GC, Jaarsma T, van Gilst WH, Hoes AW, Tijssen JG, Paulus WJ, Voors AA, Hillege HL. B-type natriuretic peptide and prognosis in heart failure patients with preserved and reduced ejection fraction. J Am Coll Cardiol. 2013;61(14):1498–1506. doi: 10.1016/j.jacc.2012.12.044. [PubMed] [CrossRef] []
154. Yasue H, Yoshimura M, Sumida H, Kikuta K, Kugiyama K, Jougasaki M, Ogawa H, Okumura K, Mukoyama M, Nakao K. Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure. Circulation. 1994;90(1):195–203. doi: 10.1161/01.CIR.90.1.195. [PubMed] [CrossRef] []
155. Yoshimura M, Yasue H, Okumura K, Ogawa H, Jougasaki M, Mukoyama M, Nakao K, Imura H. Different secretion patterns of atrial natriuretic peptide and brain natriuretic peptide in patients with congestive heart failure. Circulation. 1993;87(2):464–469. doi: 10.1161/01.CIR.87.2.464. [PubMed] [CrossRef] []
156. Semenov AG, Katrukha AG. Analytical issues with natriuretic peptides-has this been overly simplified? EJIFCC. 2016;27(3):189–207. [PMC free article] [PubMed] []
157. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Jr, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride PE, McMurray JJ, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson LW, Tang WH, Tsai EJ, Wilkoff BL. 2013 ACCF/AHA guideline for the management of heart failure: Executive summary: A report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128(16):1810–1852. doi: 10.1161/CIR.0b013e31829e8807. [PubMed] [CrossRef] []
158. Troughton RW, Frampton CM, Brunner-La Rocca HP, Pfisterer M, Eurlings LW, Erntell H, Persson H, O'Connor CM, Moertl D, Karlström P, Dahlström U, Gaggin HK, Januzzi JL, Berger R, Richards AM, Pinto YM, Nicholls MG. Effect of B-type natriuretic peptide-guided treatment of chronic heart failure on total mortality and hospitalization: An individual patient meta-analysis. Eur Heart J. 2014;35(23):1559–1567. [PMC free article] [PubMed] []
159. Wang TJ, Larson MG, Levy D, Benjamin EJ, Leip EP, Omland T, Wolf PA, Vasan RS. Plasma natriuretic peptide levels and the risk of cardiovascular events and death. N Engl J Med. 2004;350(7):655–663. doi: 10.1056/NEJMoa031994. [PubMed] [CrossRef] []
160. Jessup M, Abraham WT, Casey DE, Feldman AM, Francis GS, Ganiats TG, Konstam MA, Mancini DM, Rahko PS, Silver MA, Stevenson LW, Yancy CW. 2009 focused update: ACCF/AHA Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation. 2009;119(14):1977–2016. doi: 10.1161/CIRCULATIONAHA.109.192064. [PubMed] [CrossRef] []
161. Dickstein K, Cohen-Solal A, Filippatos G, JJ MM, Ponikowski P, Poole-Wilson PA, Strömberg A, van Veldhuisen DJ, Atar D, Hoes AW, Keren A, Mebazaa A, Nieminen M, Priori SG, Swedberg K, ESC Committee for Practice Guidelines (CPG) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM) Eur Heart J. 2008;29(19):2388–2442. doi: 10.1093/eurheartj/ehn309. [PubMed] [CrossRef] []
162. Heart Failure Society of America. Lindenfeld J, Albert NM, Boehmer JP, Collins SP, Ezekowitz JA, Givertz MM, Katz SD, Klapholz M, Moser DK, Rogers JG, Starling RC, Stevenson WG, Tang WH, Teerlink JR, Walsh MN. HFSA 2010 comprehensive heart failure practice guideline. J Card Fail. 2010;16(6):e1–194. doi: 10.1016/j.cardfail.2010.04.004. [PubMed] [CrossRef] []
163. Januzzi JL, Jr, Camargo CA, Anwaruddin S, Baggish AL, Chen AA, Krauser DG, Tung R, Cameron R, Nagurney JT, Chae CU, Lloyd-Jones DM, Brown DF, Foran-Melanson S, Sluss PM, Lee-Lewandrowski E, Lewandrowski KB. The N-terminal Pro-BNP investigation of dyspnea in the emergency department (PRIDE) study. Am J Cardiol. 2005;95(8):948–954. doi: 10.1016/j.amjcard.2004.12.032. [PubMed] [CrossRef] []
164. JJ MM, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, Falk V, Filippatos G, Fonseca C, Gomez-Sanchez MA, Jaarsma T, Køber L, Lip GY, Maggioni AP, Parkhomenko A, Pieske BM, Popescu BA, Rønnevik PK, Rutten FH, Schwitter J, Seferovic P, Stepinska J, Trindade PT, Voors AA, Zannad F, Zeiher A, ESC Committee for Practice Guidelines ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2012;33(14):1787–1847. doi: 10.1093/eurheartj/ehs104. [PubMed] [CrossRef] []
165. Stokes NR, Dietz BW, Liang JJ. Cardiopulmonary laboratory biomarkers in the evaluation of acute dyspnea. Open Access Emerg Med. 2016;8:35–45. [PMC free article] [PubMed] []
166. Fox ER, Musani SK, Bidulescu A, Nagarajarao HS, Samdarshi TE, Gebreab SY, Sung JH, Steffes MW, Wang TJ, Taylor HA, Vasan RS. Relation of obesity to circulating B-type natriuretic peptide concentrations in blacks: the Jackson Heart Study. Circulation. 2011;124(9):1021–1027. doi: 10.1161/CIRCULATIONAHA.110.991943. [PMC free article] [PubMed] [CrossRef] []
167. Richards M, Di Somma S, Mueller C, Nowak R, Peacock WF, Ponikowski P, Mockel M, Hogan C, AH W, Clopton P, Filippatos GS, Anand I, Ng L, Daniels LB, Neath SX, Shah K, Christenson R, Hartmann O, Anker SD, Maisel A. Atrial fibrillation impairs the diagnostic performance of cardiac natriuretic peptides in dyspneic patients: Results from the BACH Study (Biomarkers in ACute Heart Failure) JACC Heart Fail. 2013;1(3):192–199. doi: 10.1016/j.jchf.2013.02.004. [PubMed] [CrossRef] []
168. Gruden G, Landi A, Bruno G. Natriuretic peptides, heart, and adipose tissue: new findings and future developments for diabetes research. Diabetes Care. 2014;37(11):2899–2908. doi: 10.2337/dc14-0669. [PubMed] [CrossRef] []
169. Lazo M, Young JH, Brancati FL, Coresh J, Whelton S, Ndumele CE, Hoogeveen R, Ballantyne CM, Selvin E. NH2-terminal pro-brain natriuretic peptide and risk of diabetes. Diabetes. 2013;62(9):3189–3193. doi: 10.2337/db13-0478. [PMC free article] [PubMed] [CrossRef] []
170. Buckley MG, Markandu ND, Miller MA, Sagnella GA, MacGregor GA. Plasma concentrations and comparisons of brain and atrial natriuretic peptide in normal subjects and in patients with essential hypertension. J Hum Hypertens. 1993;7(3):245–250. [PubMed] []
171. Yamamoto K, Burnett JC, Jr, Jougasaki M, Nishimura RA, Bailey KR, Saito Y, Nakao K, Redfield MM. Superiority of brain natriuretic peptide as a hormonal marker of ventricular systolic and diastolic dysfunction and ventricular hypertrophy. Hypertension. 1996;28(6):988–994. doi: 10.1161/01.HYP.28.6.988. [PubMed] [CrossRef] []
172. Nishikimi T, Yoshihara F, Morimoto A, Ishikawa K, Ishimitsu T, Saito Y, Kangawa K, Matsuo H, Omae T, Matsuoka H. Relationship between left ventricular geometry and natriuretic peptide levels in essential hypertension. Hypertension. 1996;28(1):22–30. doi: 10.1161/01.HYP.28.1.22. [PubMed] [CrossRef] []
173. Kohno M, Horio T, Yokokawa K, Yasunari K, Ikeda M, Minami M, Kurihara N, Takeda T. Brain natriuretic peptide as a marker for hypertensive left ventricular hypertrophy: changes during 1-year antihypertensive therapy with angiotensin-converting enzyme inhibitor. Am J Med. 1995;98(3):257–265. doi: 10.1016/S0002-9343(99)80372-6. [PubMed] [CrossRef] []
174. Vasan RS, Benjamin EJ, Larson MG, Leip EP, Wang TJ, Wilson PW, Levy D. Plasma natriuretic peptides for community screening for left ventricular hypertrophy and systolic dysfunction: the Framingham heart study. JAMA. 2002;288(10):1252–1259. doi: 10.1001/jama.288.10.1252. [PubMed] [CrossRef] []
175. Clerico A, Recchia FA, Passino C, Emdin M. Cardiac endocrine function is an essential component of the homeostatic regulation network: physiological and clinical implications. Am J Physiol Heart Circ Physiol. 2006;290(1):H17–H29. doi: 10.1152/ajpheart.00684.2005. [PubMed] [CrossRef] []
176. Morita E, Yasue H, Yoshimura M, Ogawa H, Jougasaki M, Matsumura T, Mukoyama M, Nakao K. Increased plasma levels of brain natriuretic peptide in patients with acute myocardial infarction. Circulation. 1993;88(1):82–91. doi: 10.1161/01.CIR.88.1.82. [PubMed] [CrossRef] []
177. Nishikimi T, Maeda N, Matsuoka H. The role of natriuretic peptides in cardioprotection. Cardiovasc Res. 2006;69(2):318–328. doi: 10.1016/j.cardiores.2005.10.001. [PubMed] [CrossRef] []
178. Nagaya N, Goto Y, Nishikimi T, Uematsu M, Miyao Y, Kobayashi Y, Miyazaki S, Hamada S, Kuribayashi S, Takamiya M, Matsuo H, Kangawa K, Nonogi H. Sustained elevation of plasma brain natriuretic peptide levels associated with progressive ventricular remodelling after acute myocardial infarction. Clin Sci (Lond) 1999;96(2):129–136. doi: 10.1042/cs0960129. [PubMed] [CrossRef] []
179. Tagore R, Ling LH, Yang H, Daw HY, Chan YH, Sethi SK. Natriuretic peptides in chronic kidney disease. Clin J Am Soc Nephrol. 2008;3(6):1644–1651. [PMC free article] [PubMed] []
180. Anwaruddin S, Lloyd-Jones DM, Baggish A, Chen A, Krauser D, Tung R, Chae C, Januzzi JL., Jr Renal function, congestive heart failure, andamino-terminal pro-brain natriuretic peptide measurement:results from the pro-BNP Investigation of Dyspnea in the Emergency Department (PRIDE) study. J Am Coll Cardiol. 2006;47(1):91–97. [PubMed] []
181. Santos-Araújo C, Leite-Moreira A, Pestana M. Clinical value of natriuretic peptides in chronic kidney disease. Nefrologia. 2015;35(3):227–233. doi: 10.1016/j.nefro.2015.03.002. [PubMed] [CrossRef] []
182. Satyan S, Light RP, Agarwal R. Relationships of N-terminalpro-B-natriuretic peptides and cardiac troponin T to left ventricular mass and function and mortality in asymptomatic hemodialysis patients. Am J Kidney Dis. 2007;50(6):1009–1019. doi: 10.1053/j.ajkd.2007.08.017. [PMC free article] [PubMed] [CrossRef] []
183. Obineche EN, Pathan JY, Fisher S, Prickett TC, Yandle TG, Frampton CM, Cameron VA, Nicholls MG. Natriuretic peptide and adrenomedullin levels in chronic renal failure and effects of peritoneal dialysis. Kidney Int. 2006;69(1):152–156. doi: 10.1038/sj.ki.5000009. [PubMed] [CrossRef] []
184. Madsen LH, Ladefoged S, Corell P, Schou M, Hildebrandt PR, Atar D. N-terminal pro brain natriuretic peptide predicts mortality in patients with end-stage renal disease in hemodialysis. Kidney Int. 2007;71(6):548–554. doi: 10.1038/sj.ki.5002087. [PubMed] [CrossRef] []
185. Sanjuan R, Oliva SM, Blasco ML, Puchades M, Torregrosa I, Ramón RG, Carrasco AM. Plasma brain natriuretic peptide levels in cardiac function assessment in chronic dialysis patients. Cardiorenal Med. 2011;1(3):147–155. doi: 10.1159/000329337. [PMC free article] [PubMed] [CrossRef] []
186. Taskapan MC, Ulutas O, Aksoy Y, Senel S, Sahin I, Kosar F, Taskapan H. Brain natriuretic peptide and its relationship to left ventricular hypertrophy in patients on peritoneal dialysis or hemodialysis less than 3 years. Ren Fail. 2006;28(2):133–139. doi: 10.1080/08860220500530668. [PubMed] [CrossRef] []
187. Bavbek N, Akay H, Altay M, Uz E, Turgut F, Uyar ME, Karanfil A, Selcoki Y, Akcay A, Duranay M, Serum BNP. concentration and left ventricular mass in CAPD and automated peritoneal dialysis patients. Perit Dial Int. 2007;27(6):663–668. [PubMed] []
188. Chan W, Bosch JA, Jones D, McTernan PG, Inston N, Moore S, Kaur O, Phillips AC, Borrows R. Hypervolemia and blood pressure in prevalent kidney transplant recipients. Transplantation. 2014;98(3):320–327. doi: 10.1097/TP.0000000000000066. [PubMed] [CrossRef] []
189. Memon L, Spasojevic-Kalimanovska V, Stanojevic NB, Kotur-Stevuljevic J, Simic-Ogrizovic S, Giga V, Dopsaj V, Jelic-Ivanovic Z, Spasic S. Are levels of NT-proBNP and SDMA useful to determine diastolic dysfunction in chronic kidney disease and renal transplant patients? J Clin Lab Anal. 2013;27(6):461–470. doi: 10.1002/jcla.21628. [PMC free article] [PubMed] [CrossRef] []
190. Gheissari A, Sabri M, Pirpiran M, Merrikhi A. Possible correlation among echocardiographic measures, serum brain natriuretic peptide, and angiotensin II levels in hypertensive kidney transplanted children. Exp Clin Transplant. 2013;11(2):128–133. doi: 10.6002/ect.2012.0140. [PubMed] [CrossRef] []
191. Codognotto M, Piccoli A, Zaninotto M, Mion M, Plebani M, Vertolli U, Tona F, Ruzza L, Barchita A, Boffa GM. Renal dysfunction is a confounder for plasma natriuretic peptides in detecting heart dysfunction in uremic and idiopathic dilated cardiomyopathies. Clin Chem. 2007;53(12):2097–2104. doi: 10.1373/clinchem.2007.089656. [PubMed] [CrossRef] []
192. McCullough PA, Sandberg KR. B-type natriuretic peptide and renal disease. Heart Fail Rev. 2003;8(4):355–358. doi: 10.1023/A:1026195332025. [PubMed] [CrossRef] []
193. Santos-Araújo C, Roncon-Albuquerque R, Jr, Moreira-Rodrigues M, Henriques-Coelho T, Quelhas-Santos J, Faria B, Sampaio-Maia B, Leite-Moreira AF, Pestana M. Local modulation of the natriuretic peptide system in the rat remnant kidney. Nephrol Dial Transplant. 2009;24(6):1774–1782. [PubMed] []
194. Sackner-Bernstein JD, Skopicki HA, Aaronson KD. Risk of worsening renal function with nesiritide in patients with acutely decompensated heart failure. Circulation. 2005;111(12):1487–1491. doi: 10.1161/01.CIR.0000159340.93220.E4. [PubMed] [CrossRef] []
195. Cheng V, Kazanagra R, Garcia A, Lenert L, Krishnaswamy P, Gardetto N, Clopton P, Maisel AA. Rapid bedside test for B-type peptide predicts treatment outcomes in patients admitted for decompensated heart failure: a pilot study. J Am Coll Cardiol. 2001;37(2):386–391. doi: 10.1016/S0735-1097(00)01157-8. [PubMed] [CrossRef] []
196. Vogeser M, Jacob K. B-type natriuretic peptide (BNP)-validation of an immediate response assay. Clin Lab. 2001;47(1-2):29–33. [PubMed] []
197. Ro R, Thode HC, Jr, Taylor M, Gulla J, Tetrault E, Singer AJ. Comparison of the diagnostic characteristics of two B-type natriuretic peptide point-of-care devices. J Emerg Med. 2011;41(6):661–667. doi: 10.1016/j.jemermed.2010.10.025. [PubMed] [CrossRef] []
198. Shah K, Terracciano GJ, Jiang K, Maisel AS, Fitzgerald RL. Comparability of Results between Point-of-Care and Automated Instruments to Measure B-type Natriuretic Peptide. West J Emerg Med. 2010;11(1):44–48. [PMC free article] [PubMed] []
199. Heart check BNP test strip package insert 0017 spec-0363 rev. 1, 2010/09, Alere Technologies Ltd., Stirling, Scotland.
200. Triage® BNP test product insert, 2011, Alere Technologies Ltd., Stirling, Scotland.
201. Lang NN, Wong CM, Dalzell JR, Jansz S, Leslie SJ, Gardner RS. The ease of use and reproducibility of the Alere Heart Check System: a comparison of patient and healthcare professional measurement of BNP. Biomark Med. 2014;8(6):791–796. doi: 10.2217/bmm.14.48. [PubMed] [CrossRef] []
202. Maisel A, Barnard D, Jaski B, Frivold G, Marais J, Azer M, Miyamoto MI, Lombardo D, Kelsay D, Borden K, Iqbal N, Taub PR, Kupfer K, Clopton P, Greenberg B. Primary results of the HABIT Trial (heart failure assessment with BNP in the home) J Am Coll Cardiol. 2013;61(16):1726–1735. doi: 10.1016/j.jacc.2013.01.052. [PubMed] [CrossRef] []
203. Hunter I, Goetze JP. Next generation natriuretic peptide measurement. Adv Clin Chem. 2012;58:45–48. doi: 10.1016/B978-0-12-394383-5.00009-6. [PubMed] [CrossRef] []
204. Sun Z, Chen J, Yao H, Liu L, Wang J, Zhang J, Liu JN. Use of Ssp dnaB derived mini-intein as a fusion partner for production of recombinant human brain natriuretic peptide in Escherichia coli. Protein Expr Purif. 2005;43(1):26–32. doi: 10.1016/j.pep.2005.05.005. [PubMed] [CrossRef] []
205. Pan S, Chen HH, Dickey DM, Boerrigter G, Lee C, Kleppe LS, Hall JL, Lerman A, Redfield MM, Potter LR, Burnett JC, Jr, Simari RD. Biodesign of a renal-protective peptide based on alternative splicing of B-type natriuretic peptide. Proc Natl Acad Sci USA. 2009;106(27):11282–11287. doi: 10.1073/pnas.0811851106. [PMC free article] [PubMed] [CrossRef] []
206. Dickey DM, Barbieri KA, McGuirk CM, Potter LR. Arg13 of B-type natriuretic Peptide reciprocally modulates binding to guanylyl cyclase but not clearance receptors. Mol Pharmacol. 2010;78(3):431–435. doi: 10.1124/mol.110.066084. [PMC free article] [PubMed] [CrossRef] []
207. Yu L, Rao C, Shi X, Li Y, Gao K, Li X, Wang JA. novel bioassay for the activity determination of therapeutic human brain natriuretic peptide (BNP) PLoS One. 2012;7(11):e49934. doi: 10.1371/journal.pone.0049934. [PMC free article] [PubMed] [CrossRef] []
208. Han B, Hasin Y. Cardiovascular effects of natriuretic peptides and their interrelation with endothelin-1. Cardiovasc Drugs Ther. 2003;17(1):41–52. doi: 10.1023/A:1024255808831. [PubMed] [CrossRef] []
209. Charloux A, Piquard F, Doutreleau S, Brandenberger G, Geny B. Mechanisms of renal hyporesponsiveness to ANP in heart failure. Eur J Clin Invest. 2003;33(9):769–778. doi: 10.1046/j.1365-2362.2003.01222.x. [PubMed] [CrossRef] []
210. Lohmeier TE, Mizelle HL, Reinhart GA, Montani JP, Hord CE, Jr, Didlake RH. Atrial natriuretic peptide and sodium homeostasis in compensated heart failure. Am J Physiol. 1996;271(5 Pt 2):R1353–R1363. [PubMed] []
211. Costello-Boerrigter LC, Boerrigter G, Burnett JC., Jr Revisiting salt and water retention: new diuretics, aquaretics, and natriuretics. Med Clin North Am. 2003;87(2):475–491. doi: 10.1016/S0025-7125(02)00181-5. [PubMed] [CrossRef] []
212. Stevens TL, Burnett JC, Jr, Kinoshita M, Matsuda Y, Redfield MMA. functional role for endogenous atrial natriuretic peptide in a canine model of early left ventricular dysfunction. J Clin Invest. 1995;95(3):1101–1108. doi: 10.1172/JCI117757. [PMC free article] [PubMed] [CrossRef] []
213. Wada A, Tsutamato T, Maeda Y, Kanamori T, Matsuda Y, Kinoshita M. Endogenous atrial natriuretic peptide inhibits endothelin-1 secretion in dogs with severe congestive heart failure. Am J Physiol. 1996;270(5 Pt 2):H1819–H1824. [PubMed] []
214. Chen HH. Heart failure: a state of brain natriuretic peptide deficiency or resistance or both. J Am Coll Cardiol. 2007;49(10):1089–1091. doi: 10.1016/j.jacc.2006.12.013. [PubMed] [CrossRef] []
215. Fielitz J, Dendorfer A, Pregla R, Ehler E, Zurbrügg HR, Bartunek J, Hetzer R, Regitz-Zagrosek V. Neutral endopeptidase is activated in cardiomyocytes in human aortic valve stenosis and heart failure. Circulation. 2002;105(3):286–289. doi: 10.1161/hc0302.103593. [PubMed] [CrossRef] []
216. Song W, Wang H, Atrial WQ. natriuretic peptide in cardiovascular biology and disease (NPPA) Gene. 2015;569(1):1–6. doi: 10.1016/j.gene.2015.06.029. [PMC free article] [PubMed] [CrossRef] []
217. Filippatos G, Farmakis D, Parissis J, Lekakis J. Drug therapy for patients with systolic heart failure after the PARADIGM-HF trial: In need of a new paradigm of LCZ696 implementation in clinical practice. BMC Med. 2015;13:35. doi: 10.1186/s12916-015-0272-0. [PMC free article] [PubMed] [CrossRef] []
218. Bayés-Genís A, Barallat J, Galán A, de Antonio M, Domingo M, Zamora E, Urrutia A, Lupón J. Soluble neprilysin is predictive of cardiovascular death and heart failure hospitalization in heart failure patients. J Am Coll Cardiol. 2015;65(7):657–665. doi: 10.1016/j.jacc.2014.11.048. [PubMed] [CrossRef] []
219. Colucci WS, Elkayam U, Horton DP, Abraham WT, Bourge RC, Johnson AD, Wagoner LE, Givertz MM, Liang CS, Neibaur M, Haught WH, LeJemtel TH. Intravenous nesiritide, a natriuretic peptide, in the treatment of decompensated congestive heart failure. Nesiritide Study Group. N Engl J Med. 2000;343(4):246–253. doi: 10.1056/NEJM200007273430403. [PubMed] [CrossRef] []
220. Partovian C, Li SX, Xu X, Lin H, Strait KM, Hwa J, Krumholz HM. Patterns of change in nesiritide use in patients with heart failure: how hospitals react to new information. JACC Heart Fail. 2013;1(4):318–324. [PMC free article] [PubMed] []
221. Abraham WT, Adams KF, Fonarow GC, Costanzo MR, Berkowitz RL, LeJemtel TH, Cheng ML, Wynne J, Scientific Advisory ADHERE. Committee and Investigators; ADHERE Study Group. In-hospital mortality in patients with acute decompensated heart failure requiring intravenous vasoactive medications: an analysis from the Acute Decompensated Heart Failure National Registry (ADHERE) J Am Coll Cardiol. 2005;46(1):57–64. doi: 10.1016/j.jacc.2005.03.051. [PubMed] [CrossRef] []
222. Witteles RM, Kao D, Christopherson D, Matsuda K, Vagelos RH, Schreiber D, Fowler MB. Impact of nesiritide on renal function in patients with acute decompensated heart failure and pre-existing renal dysfunction: a randomized, doubleblind, placebo-controlled clinical trial. J Am Coll Cardiol. 2007;50(19):1835–1840. doi: 10.1016/j.jacc.2007.03.071. [PubMed] [CrossRef] []
223. O'Connor CM, Starling RC, Hernandez AF, Armstrong PW, Dickstein K, Hasselblad V, Heizer GM, Komajda M, Massie BM, McMurray JJ, Nieminen MS, Reist CJ, Rouleau JL, Swedberg K, Adams KF, Jr, Anker SD, Atar D, Battler A, Botero R, Bohidar NR, Butler J, Clausell N, Corbalán R, Costanzo MR, Dahlstrom U, Deckelbaum LI, Diaz R, Dunlap ME, Ezekowitz JA, Feldman D, Felker GM, Fonarow GC, Gennevois D, Gottlieb SS, Hill JA, Hollander JE, Howlett JG, Hudson MP, Kociol RD, Krum H, Laucevicius A, Levy WC, Méndez GF, Metra M, Mittal S, BH O, Pereira NL, Ponikowski P, Tang WH, Tanomsup S, Teerlink JR, Triposkiadis F, Troughton RW, Voors AA, Whellan DJ, Zannad F, Califf RM. Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med. 2011;365(1):32–43. doi: 10.1056/NEJMoa1100171. [PubMed] [CrossRef] []
224. Gottlieb SS, Stebbins A, Voors AA, Hasselblad V, Ezekowitz JA, Califf RM, O'Connor CM, Starling RC, Hernandez AF. Effects of nesiritide and predictors of urine output in acute decompensated heart failure: results from ASCEND-HF (acute study of clinical effectiveness of nesiritide and decompensated heart failure) J Am Coll Cardiol. 2013;62(13):1177–1183. doi: 10.1016/j.jacc.2013.04.073. [PubMed] [CrossRef] []
225. Kato T, Muraski J, Chen Y, Tsujita Y, Wall J, Glembotski CC, Schaefer E, Beckerle M, Sussman MA. Atrial natriuretic peptide promotes cardiomyocyte survival by cGMP-dependent nuclear accumulation of zyxin and Akt. J Clin Invest. 2005;115(10):2716–2730. doi: 10.1172/JCI24280. [PMC free article] [PubMed] [CrossRef] []
226. Chen HH, Glockner JF, Schirger JA, Cataliotti A, Redfield MM, Burnett JC., Jr Novel protein therapeutics for systolic heart failure: chronic subcutaneous B-type natriuretic peptide. J Am Coll Cardiol. 2012;60(22):2305–2312. doi: 10.1016/j.jacc.2012.07.056. [PMC free article] [PubMed] [CrossRef] []
227. Lyu T, Zhao Y, Zhang T, Zhou W, Yang F, Ge H, Ding S, Pu J, He B. Natriuretic peptides as an adjunctive treatment for acute myocardial infarction. Int Heart J. 2014;55(1):8–16. doi: 10.1536/ihj.13-109. [PubMed] [CrossRef] []
228. Mitrovic V, Lüss H, Nitsche K, Forssmann K, Maronde E, Fricke K, Forssmann WG, Meyer M. Effects of the renal natriuretic peptide urodilatin (ularitide) in patients with decompensated chronic heart failure: a double-blind, placebo-controlled, ascending-dose trial. Am Heart J. 2005;150(6):1239. [PubMed] []
229. Mitrovic V, Seferovic PM, Simeunovic D, Ristic AD, Miric M, Moiseyev VS, Kobalava Z, Nitsche K, Forssmann WG, Lüss H, Meyer M. Haemodynamic and clinical effects of ularitide in decompensated heart failure. Eur Heart J. 2006;27(23):2823–2832. [PubMed] []
230. Packer M, Holcomb R, Abraham WT, Anker S, Dickstein K, Filippatos G, Krum H, Maggioni AP, McMurray JJ, Mebazaa A, O'Connor C, Peacock F, Ponikowski P, Ruschitzka F, van Veldhuisen DJ, Holzmeister J. TRUE-AHF Investigators and Committees. Rationale for and design of the TRUE-AHF trial: the effects of ularitide on the short-term clinical course and long-term mortality of patients with acute heart failure. Eur J Heart Fail. 2017;19(5):673–681. doi: 10.1002/ejhf.698. [PubMed] [CrossRef] []
231. Lisy O, Huntley BK, McCormick DJ, Kurlansky PA, Burnett JC., Jr Design, synthesis, and actions of a novel chimeric natriuretic peptide: CDNP. J Am Coll Cardiol. 2008;52(1):60–68. doi: 10.1016/j.jacc.2008.02.077. [PMC free article] [PubMed] [CrossRef] []
232. Dickey DM, Potter LR. Dendroaspis natriuretic peptide and the designer natriuretic peptide, CD-NP, are resistant to proteolytic inactivation. J Mol Cell Cardiol. 2011;51(1):67–71. doi: 10.1016/j.yjmcc.2011.03.013. [PMC free article] [PubMed] [CrossRef] []
233. Neutel J, Rolston W, Maddock S, Goldsmith S, Koren M, Antwerp BV, Burnett J, Lieu HD. Initial experience with subcutaneous infusion of cenderitide in patients with chronic heart failure. J Am Coll Cardiol. 2012;59:E1037. doi: 10.1016/S0735-1097(12)61038-9. [CrossRef] []
234. Martin FL, Sangaralingham SJ, Huntley BK, McKie PM, Ichiki T, Chen HH, Korinek J, Harders GE, Burnett JC., Jr CD-NP: a novel engineered dual guanylylcyclase activator with anti-fibrotic actions in the heart. PLoS One. 2012;7(12):e52422. doi: 10.1371/journal.pone.0052422. [PMC free article] [PubMed] [CrossRef] []
235. Lee CY, Boerrigter G, Chen HH, Sandberg S, Heublein D, Harty G, Burnett JC., Jr Cardiorenal and Neurohumoral Actions of a Novel Designer Natriuretic Peptide, CU-NP. In Canine Experimental Heart Failure. Circulation. 2008;118:S293. []
236. McKie PM, Ichiki T, Burnett JC., Jr M-atrial natriuretic peptide: a novel antihypertensive protein therapy. Curr Hypertens Rep. 2012;14(1):62–69. doi: 10.1007/s11906-011-0244-5. [PubMed] [CrossRef] []
237. McKie PM, Cataliotti A, Ichiki T, Sangaralingham SJ, Chen HH, Burnett JC., Jr M-atrial natriuretic peptide and nytroglycerin in a canine model of experimental acute hypertensive heart failure: a differential actions of 2 cGMP activating therapeutics. J Am Heart Assoc. 2014;3(1):e000206. [PMC free article] [PubMed] []
238. Rolston W, Maddok S, Goldsmith S, Koren M, Bill VA, Burnett J, Lieu HD. Initial experience with subcutaneous infusion of cenderitide in chronic heart failure patients. J Am Coll Cardiol. 2012;59:E1037. doi: 10.1016/S0735-1097(12)61038-9. [CrossRef] []
239. von Lueder TG, Sangaralingham SJ, Wang BH, Kompa AR, Atar D, Burnett JC, Jr, Krum H. Renin-angiotensin blockade combined with natriuretic peptide system augmentation: noveltherapeutic concepts to combat heart failure. Circ Heart Fail. 2013;6(3):594–605. [PMC free article] [PubMed] []
240. Wendt DJ, Dvorak-Ewell M, Bullens S, Lorget F, Bell SM, Peng J, Castillo S, Aoyagi-Scharber M, O'Neill CA, Krejci P, Wilcox WR, Rimoin DL, Bunting S. Neutral endopeptidase-resistant C-type natriuretic peptide variant represents a new therapeutic approach for treatment of fibroblast growth factor receptor 3-related dwarfism. J Pharmacol Exp Ther. 2015;353:132–149. doi: 10.1124/jpet.114.218560. [PubMed] [CrossRef] []
241. Galli A, Lombardi F. Neprilysin inhibition for heart failure. N Engl J Med. 2014;371(24):2335. doi: 10.1056/NEJMc1412654. [PubMed] [CrossRef] []
242. Cleland JG, Swedberg K. Lack of efficacy of neutral endopeptidase inhibitor ecadotril in heart failure. The International Ecadotril Multicentre Dose-Ranging Study Investigators. Lancet. 1998;351(9116):1657–1658. doi: 10.1016/S0140-6736(05)77712-6. [PubMed] [CrossRef] []
243. Maki T, Nasa Y, Tanonaka K, Takahashi M, Takeo S. Beneficial effects of sampatrilat, a novel vasopeptidase inhibitor, on cardiac remodeling and function of rats with chronic heart failure following left coronary artery ligation. J Pharmacol Exp Ther. 2003;305(1):97–105. [PubMed] []
244. Weber MA. Vasopeptidase inhibitors. Lancet. 2001;358(9292):1525–1532. doi: 10.1016/S0140-6736(01)06584-9. [PubMed] [CrossRef] []
245. von Lueder TG, Wang BH, Kompa AR, Huang L, Webb R, Jordaan P, Atar D, Krum H. Angiotensin receptor neprilysin inhibitor LCZ696 attenuates cardiac remodeling and dysfunction after myocardial infarction by reducing cardiac fibrosis and hypertrophy. Circ Heart Fail. 2015;8(1):71–78. doi: 10.1161/CIRCHEARTFAILURE.114.001785. [PubMed] [CrossRef] []
246. Kostis JB, Packer M, Black HR, Schmieder R, Henry D, Levy E. Omapatrilat and enalapril in patients with hypertension: the Omapatrilat Cardiovascular Treatment vs Enalapril (OCTAVE) trial. Am J Hypertens. 2004;17(2):103–111. doi: 10.1016/j.amjhyper.2003.09.014. [PubMed] [CrossRef] []
247. Packer M, Califf RM, Konstam MA, Krum H, McMurray JJ, Rouleau JL, Swedberg K. Comparison of omapatrilat and enalapril in patients with chronic heart failure: the Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events (OVERTURE) Circulation. 2002;106(8):920–926. doi: 10.1161/01.CIR.0000029801.86489.50. [PubMed] [CrossRef] []
248. Rouleau JL, Pfeffer MA, Stewart DJ, Isaac D, Sestier F, Kerut EK, Porter CB, Proulx G, Qian C, Block AJ. Comparison of vasopeptidase inhibitor, omapatrilat, and lisinopril on exercise tolerance and morbidity in patients with heart failure: IMPRESS randomised trial. Lancet. 2000;356(9230):615–620. doi: 10.1016/S0140-6736(00)02602-7. [PubMed] [CrossRef] []
249. Armstrong PW, Lorell BH, Nissen S, Borer J. Omapatrilat. Circulation. 2002;106(6):e9011–e9012. [PubMed] []
250. von Lueder TG, Kjekshus H, Edvardsen T, ØIe E, Urheim S, Vinge LE, Ahmed MS, Smiseth OA, Attramadal H. Mechanisms of elevated plasma endothelin-1 in CHF: congestion increases pulmonary synthesis and secretion of endothelin-1. Cardiovasc Res. 2004;63(1):41–50. doi: 10.1016/j.cardiores.2004.03.016. [PubMed] [CrossRef] []
251. Wada A, Ohnishi M, Tsutamoto T, Fujii M, Matsumoto T, Yamamoto T, Wang X, Kinoshita M. Chronic effects of an endothelin-converting enzyme inhibitor on cardiorenal and hormonal function in heart failure. Clin Sci (Lond) 2002;103(Suppl 48):254S–257S. doi: 10.1042/CS103S254S. [PubMed] [CrossRef] []
252. Nakayama K, Emoto N, Suzuki Y, Vignon-Zellweger N, Yagi K, Hirata K. Physiological relevance of hydrolysis of atrial natriuretic peptide by endothelin-converting enzyme-1. Kobe J Med Sci. 2012;58(1):E12–E18. [PubMed] []
253. Mulder P, Barbier S, Monteil C, Jeng AY, Henry JP, Renet S, Thuillez C. Sustained improvement of cardiac function and prevention of cardiac remodeling after long-term dual ECE-NEP inhibition in rats with congestive heart failure. J Cardiovasc Pharmacol. 2004;43(4):489–494. doi: 10.1097/00005344-200404000-00003. [PubMed] [CrossRef] []
254. Emoto N, Raharjo SB, Isaka D, Masuda S, Adiarto S, Jeng AY, Yokoyama M, Dual ECE. NEP inhibition on cardiac and neurohumoral function during the transition from hypertrophy to heart failure in rats. Hypertension. 2005;45(6):1145–1152. doi: 10.1161/01.HYP.0000168944.29525.da. [PubMed] [CrossRef] []
255. Seed A, Kuc RE, Maguire JJ, Hillier C, Johnston F, Essers H, de Voogd HJ, McMurray J, Davenport AP. The dual endothelin converting enzyme/neutral endopeptidase inhibitor SLV-306 (daglutril), inhibits systemic conversion of big endothelin-1 in humans. Life Sci. 2012;91(13-14):743–748. doi: 10.1016/j.lfs.2012.03.022. [PubMed] [CrossRef] []
256. Kalk P, Sharkovska Y, Kashina E, von Websky K, Relle K, Pfab T, Alter M, Guillaume P, Provost D, Hoffmann K, Fischer Y, Hocher B. Endothelinconverting enzyme/neutral endopeptidase inhibitor SLV338 prevents hypertensive cardiac remodeling in a blood pressure-independent manner. Hypertension. 2011;57(4):755–763. doi: 10.1161/HYPERTENSIONAHA.110.163972. [PubMed] [CrossRef] []
257. Mellin V, Jeng AY, Monteil C, Renet S, Henry JP, Thuillez C, Mulder P. Triple ACE-ECE-NEP inhibition in heart failure: a comparison with ACE and dual ECE-NEP inhibition. J Cardiovasc Pharmacol. 2005;46(3):390–397. doi: 10.1097/01.fjc.0000175457.48031.8b. [PubMed] [CrossRef] []
258. Braunwald E. The path to an angiotensin receptor antagonist-neprilysin inhibitor in the treatment of heart failure. J Am Coll Cardiol. 2015;65(10):1029–1041. doi: 10.1016/j.jacc.2015.01.033. [PubMed] [CrossRef] []
259. Ruilope LM, Dukat A, Böhm M, Lacourcière Y, Gong J, Lefkowitz MP. Blood-pressure reduction with LCZ696, a novel dual-acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study. Lancet. 2010;375(9722):1255–1266. doi: 10.1016/S0140-6736(09)61966-8. [PubMed] [CrossRef] []
260. McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile MR. PARADIGM-HF Investigators and Committees. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371(11):993–1004. doi: 10.1056/NEJMoa1409077. [PubMed] [CrossRef] []
261. Vardeny O, Miller R, Solomon SD. Combined neprilysin and renin-angiotensin system inhibition for the treatment of heart failure. JACC Heart Fail. 2014;2(6):663–670. doi: 10.1016/j.jchf.2014.09.001. [PubMed] [CrossRef] []
262. Desai AS, McMurray JJ, Packer M, Swedberg K, Rouleau JL, Chen F, Gong J, Rizkala AR, Brahimi A, Claggett B, Finn PV, Hartley LH, Liu J, Lefkowitz M, Shi V, Zile MR, Solomon SD. Effect of the angiotensin-receptor-neprilysin inhibitor LCZ696 compared with enalapril on mode of death in heart failure patients. Eur Heart J. 2015;36(30):1990–1997. [PubMed] []
263. Packer M, McMurray JJ, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile M, Andersen K, Arango JL, Arnold JM, Bělohlávek J, Böhm M, Boytsov S, Burgess LJ, Cabrera W, Calvo C, Chen CH, Dukat A, Duarte YC, Erglis A, Fu M, Gomez E, Gonzàlez-Medina A, Hagège AA, Huang J, Katova T, Kiatchoosakun S, Kim KS, Kozan Ö, Llamas EB, Martinez F, Merkely B, Mendoza I, Mosterd A, Negrusz-Kawecka M, Peuhkurinen K, Ramires FJ, Refsgaard J, Rosenthal A, Senni M, Sibulo AS, Jr, Silva-Cardoso J, Squire IB, Starling RC, Teerlink JR, Vanhaecke J, Vinereanu D, Wong RC. PARADIGM-HF Investigators and Coordinators. Angiotensin receptor neprilysin inhibition compared with enalapril on the risk of clinical progression in surviving patients with heart failure. Circulation. 2015;131(1):54–61. doi: 10.1161/CIRCULATIONAHA.114.013748. [PubMed] [CrossRef] []
264. Minguet J, Sutton G, Ferrero C, Gomez T, Bramlage P. LCZ696: A new paradigm for the treatment of heart failure? Expert Opin Pharmacother. 2015;16(3):435–446. [PubMed] []
265. Henderson SJ, Andersson C, Narwal R, Janson J, Goldschmidt TJ, Appelkvist P, Bogstedt A, Steffen AC, Haupts U, Tebbe J, Freskgård PO, Jermutus L, Burrell M, Fowler SB, Webster CI. Sustained peripheral depletion of amyloid-β with a novel form of neprilysin does not affect central levels of amyloid-β Brain. 2014;137(Pt 2):553–564. doi: 10.1093/brain/awt308. [PMC free article] [PubMed] [CrossRef] []
266. Campbell DJ, Krum H, Esler MD. Losartan increases bradykinin levels in hypertensive humans. Circulation. 2005;111(3):315–320. doi: 10.1161/01.CIR.0000153269.07762.3B. [PubMed] [CrossRef] []
267. Grimm MO, Mett J, Stahlmann CP, Haupenthal VJ, Zimmer VC, Hartmann T. Neprilysin and Aβ Clearance: Impact of the APP Intracellular Domain in NEP Regulation and Implications in Alzheimer’s Disease. Front Aging Neurosci. 2013;5:98. doi: 10.3389/fnagi.2013.00098. [PMC free article] [PubMed] [CrossRef] []
268. Solomon SD, Zile M, Pieske B, Voors A, Shah A, Kraigher-Krainer E, Shi V, Bransford T, Takeuchi M, Gong J, Lefkowitz M, Packer M, McMurray JJ. Prospective comparison of ARNI with ARB on Management Of heart failUre with preserved ejectioN fracTion (PARAMOUNT) Investigators. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet. 2012;380(9851):1387–1395. doi: 10.1016/S0140-6736(12)61227-6. [PubMed] [CrossRef] []
269. Bavishi C, Messerli FH, Kadosh B, Ruilope LM, Kario K. Role of neprilysin inhibitor combinations in hypertension: insights from hypertension and heart failure trials. Eur Heart J. 2015;36(30):1967–1973. [PubMed] []
270. Williams B, Cockcroft JR, Kario K, Zappe DH, Cardenas P, Hester A, Brunel P, Zhang J. Rationale and study design of the Prospective comparison of Angiotensin Receptor neprilysin inhibitor with Angiotensin receptor blocker MEasuring arterial sTiffness in the eldERly (PARAMETER) study. BMJ Open. 2014;4(2):e004254. doi: 10.1136/bmjopen-2013-004254. [PMC free article] [PubMed] [CrossRef] []
271. Bodey F, Hopper I, Krum H. Neprilysin inhibitors preserve renal function in heart failure: A meta-analysis of randomised controlled trials. Int J Cardiol. 2015;179:329–330. doi: 10.1016/j.ijcard.2014.11.059. [PubMed] [CrossRef] []
272. Guéant Rodriguez RM, Spada R, Pooya S, Jeannesson E, Moreno Garcia MA, Anello G, Bosco P, Elia M, Romano A, Alberto JM, Juillière Y, Guéant JL. Homocysteine predicts increased NT-pro-BNP through impaired fatty acid oxidation. Int J Cardiol. 2013;167(3):768–775. doi: 10.1016/j.ijcard.2012.03.047. [PubMed] [CrossRef] []
273. Laramée P, Wonderling D, Swain S, Al-Mohammad A, Mant J. Cost-effectiveness analysis of serial measurement of circulating natriuretic peptide concentration in chronic heart failure. Heart. 2013;99(4):267–271. doi: 10.1136/heartjnl-2012-302692. [PubMed] [CrossRef] []
274. Mohiuddin S, Reeves B, Pufulete M, Maishman R, Dayer M, Macleod J, McDonagh T, Purdy S, Rogers C, Hollingworth W. Model-based cost-effectiveness analysis of B-type natriuretic peptide-guided care in patients with heart failure. BMJ Open. 2016;6(12):e014010. doi: 10.1136/bmjopen-2016-014010. [PMC free article] [PubMed] [CrossRef] []
275. Felker GM, Ahmad T, Anstrom KJ, Adams KF, Cooper LS, Ezekowitz JA, Fiuzat M, Houston-Miller N, Januzzi JL, Leifer ES, Mark DB, Desvigne-Nickens P, Paynter G, Piña IL, Whellan DJ, O'Connor CM. Rationale and design of the GUIDE-IT study: guiding evidence based therapy using biomarker intensified treatment in heart failure. JACC Heart Fail. 2014;2(5):457–465. doi: 10.1016/j.jchf.2014.05.007. [PMC free article] [PubMed] [CrossRef] []
276. Daniels LB, Maisel AS. Natriuretic peptides. J Am Coll Cardiol. 2007;50(25):2357–2368. doi: 10.1016/j.jacc.2007.09.021. [PubMed] [CrossRef] []
277. Kistorp C, Raymond I, Pedersen F, Gustafsson F, Faber J, Hildebrandt P. N-terminal pro-brain natriuretic peptide, C-reactive protein, and urinary albumin levels as predictors of mortality and cardiovascular events in older adults. JAMA. 2005;293(13):1609–1616. doi: 10.1001/jama.293.13.1609. [PubMed] [CrossRef] []
278. de Lemos JA, Morrow DA, Bentley JH, Omland T, Sabatine MS, McCabe CH, Hall C, Cannon CP, Braunwald E. The prognostic value of B-type natriuretic peptide in patients with acute coronary syndromes. N Engl J Med. 2001;345(14):1014–1021. doi: 10.1056/NEJMoa011053. [PubMed] [CrossRef] []
279. Sabatine MS, Morrow DA, de Lemos JA, Omland T, Sloan S, Jarolim P, Solomon SD, Pfeffer MA, Braunwald E. Evaluation of multiple biomarkers of cardiovascular stress for risk prediction and guiding medical therapy in patients with stable coronary disease. Circulation. 2012;125(2):233–240. doi: 10.1161/CIRCULATIONAHA.111.063842. [PMC free article] [PubMed] [CrossRef] []
280. Hunt PJ, Richards AM, Nicholls MG, Yandle TG, Doughty RN, Espiner EA. Immunoreactive amino-terminal pro-brain natriureticpeptide (NT-PROBNP): a new marker of cardiac impairment. Clin Endocrinol (Oxf) 1997;47(3):287–296. doi: 10.1046/j.1365-2265.1997.2361058.x. [PubMed] [CrossRef] []
281. Wang AY, Lam CW, CM Y, Wang M, Chan IH, Zhang Y, Lui SF, Sanderson JE. N-terminal pro-brain natriuretic peptide: an independent risk predictor of cardiovascular congestion, mortality, and adverse cardiovascular outcomes in chronic peritoneal dialysis patients. J Am Soc Nephrol. 2007;18(1):321–330. doi: 10.1681/ASN.2005121299. [PubMed] [CrossRef] []
282. Khalifeh N, Haider D, Hörl WH. Natriuretic peptides in chronic kidney disease and during renal replacement therapy: an update. J Investig Med. 2009;57(1):33–39. doi: 10.2310/JIM.0b013e318194f44b. [PubMed] [CrossRef] []
283. Paniagua R, Amato D, Mujais S, Vonesh E, Ramos A, Correa-Rotter R, Horl WH. Predictive value of brain natriuretic peptides in patients on peritoneal dialysis: results from the ADEMEX trial. Clin J Am Soc Nephrol. 2008;3(2):407–415. doi: 10.2215/CJN.03820907. [PMC free article] [PubMed] [CrossRef] []

Articles from Journal of Biological Engineering are provided here courtesy of BMC

x1.00
>
<
>>
<<
O
x1.00