Elsevier

Materials Chemistry and Physics
材料化學與物理

Volume 245, 15 April 2020, 122533
第245卷,2020年4月15日,122533
Materials Chemistry and Physics

Review of Transition Metal Nitrides and Transition Metal Nitrides/Carbon nanocomposites for supercapacitor electrodes
過渡金屬氮化物和過渡金屬氮化物/碳納米複合材料用於超級電容器電極的研究進展

https://doi.org/10.1016/j.matchemphys.2019.122533Get rights and content 獲取許可權和內容

Highlights 突出

  • The electrochemical properties of TMN and TMN/C electrodes.
    TMN和TMN/C電極的電化學性質。

  • Tables and figures are used to make review more readable.
    使用表格和數位使評論更具可讀性。

  • Key challenges and future directions of TMN and TMN/C electrodes.
    TMN和TMN/C電極的主要挑戰和未來發展方向。

Abstract 抽象

Supercapacitors (SCs) are considered to be one of the most promising energy storage device options for sustainable development of human beings due to their advantages of fast charge-discharge capacitance, high specific capacitance, reversibility, long life and so on. As a key component of SCs, electrode materials determine the electrochemical performance of SCs. Transition Metal Nitrides (TMN) with low electrical resistance, excellent thermal and chemical stability are promising as electrode materials for SCs. Moreover, the integration of TMN with carbonaceous nanocomposite materials attracts great research interests because of the unique inherent properties of carbonaceous material (high specific surface area and low resistivity), which can enlarge the specific surface area of the nanocomposite for faradiac redox reaction. This review summarizes the main preparation method of TMN, the latest research progress of TMN including binary nitrides, ternary nitrides, carbon and TMN composites (TMN/C). Finally, we give a brief overview of some of the challenges by the electrode materials and point out the research directions in the future.
超級電容器(SCs)具有充放電電容快、比電容高、可逆性、壽命長等優點,被認為是人類可持續發展最有前途的儲能器件之一。電極材料是SCs的關鍵成分,決定了SCs的電化學性能,具有低電阻、優異的熱穩定性和化學穩定性,是SCs電極材料的有前途。此外,TMN與碳質納米複合材料的結合由於碳質材料獨特的固有性能(高比表面積和低電阻率)而引起了極大的研究興趣,可以擴大納米複合材料的比表面積,用於氧化還原反應。本文綜述了TMN的主要製備方法,TMN的最新研究進展包括二元氮化物、三元氮化物、碳和TMN複合材料(TMN/C)。最後,本文簡要概述了電極材料面臨的一些挑戰,並指出了未來的研究方向。

Keywords 關鍵字

Transition Metal Nitrides
Transition Metal Nitrides/Carbon
Electrode materials
Supercapacitors

過渡金屬丁化物過渡金屬丁化物/碳電極材料超級電容器

1. Introduction 1. 引言

Energy is essential for scientific and technological progress and human development, but the large-scale use of fossil fuels such as coal, oil and natural gas had brought out serious environmental pollution and energy shortages problems [1]. A great deal of research are being done on the design and development of new and sustainable energy conversion and storage devices [[2], [3], [4], [5], [6]]. As the times require, electrochemical energy storage devices such as lithium-ion batteries, hybrid electric vehicles, fuel cells and SCs have sprung up [[7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17]]. Obviously, they have their own advantages and disadvantages. SCs is one of new type of electrochemical energy storage devices, which attracts more and more attention due to its fast charge-discharge ability, high specific capacitance, superior reversibility, long life, almost maintenance-free, safety and reliability [[18], [19], [20]]. The performance of SCs is between batteries and traditional capacitor batteries. Compared with battery, SCs has higher energy density. Compared with fuel cell, SCs has the advantages of instantaneous high current release, high charge-discharge efficiency and long cycle life [[21], [22], [23]]. SCs can perfectly fill the gap between traditional dielectric capacitors and batteries with high energy density [24,25], (Fig. 1).
能源對於科學技術進步和人類發展至關重要,但煤炭,石油和天然氣等化石燃料的大規模使用帶來了嚴重的環境污染和能源短缺問題[1]。關於新能源和可持續能源轉換和存儲設備的設計和開發正在進行大量研究[[2],[3],[4],[5],[6]]。隨著時代的需要,鋰離子電池、混合動力汽車、燃料電池和SC等電化學儲能器件如雨後春筍般湧現[[7]、[8]、[9]、[10]、[11]、[12]、[13]、[14]、[15]、[16]、[17]]。顯然,它們各有優缺點。SCs是一種新型的電化學儲能器件,因其快速充放電能力、高比電容、優異的可逆性、長壽命、幾乎免維護、安全可靠等特點而受到越來越多的關注[[18]、[19]、[20]]。SC的性能介於電池和傳統電容器電池之間。與電池相比,SC具有更高的能量密度。與燃料電池相比,SCs具有暫態大電流釋放、高充放電效率和長迴圈壽命等優點[[21]、[22]、[23]]。SC可以完美地填補傳統介電電容器和高能量密度電池之間的空白[24,25](圖1)。

Fig. 1
  1. Download : Download high-res image (275KB)
    下載:下載高解析度圖片(275KB)
  2. Download : Download full-size image
    下載:下載全尺寸圖像

Fig. 1. Ragone plot of different electrochemical storage devices [25]. Copyright 2018 Materials Today.
圖 1.不同電化學記憶體件的Ragone圖[25]。版權所有 2018 Materials Today。

In 1746, a capacitor called “Laihton bottle” with storage function was discovered by Dutch physicist, So far, the mysterious veil of capacitors had gradually been uncovered [26]. The study of SCs could be traced back to 1879, and Helmholz first discovered the electric double layer capacitance properties of the electrochemical interface [27]. In 1957, Becker applied for the first patent on carbon-electrode SCs, which had energy density similar to that of batteries but had specific capacities of 3-4 orders of magnitude higher than ordinary capacitors [28]. From 1975 to 1980, Burke et al. [[29], [30], [31]] extensively explored ruthenium oxide pseudocapacitors, which stored energy through electroadsorption, redox reaction and intercalation mechanism. Their research broadened the scope of SCs and made the great contributions to the research of electrode materials for SCs in the future.
1746年,荷蘭物理學家發現了一種名為「萊頓瓶」的具有存儲功能的電容器,至此,電容器的神秘面紗已逐漸被揭開[26]。SC的研究可以追溯到1879年,亥姆霍茲首先發現了電化學介面的雙電層電容特性[27]。1957年,貝克爾申請了第一項碳電極SC專利,其能量密度與電池相似,但比容量比普通電容器高3-4個數量級[28]。從1975年到1980年,Burke等人[[29],[30],[31]]廣泛探索了氧化釕贗電容器,該電容器通過電吸附、氧化還原反應和插層機制儲存能量。他們的研究拓寬了SCs的範圍,為未來SCs電極材料的研究做出了巨大貢獻。

According to the mechanism of charge storage, SCs can be divided into three major categories: Electric Double-Layer SCs (EDLS), Faradaic SCs (FS) (including: uderpotential deposition [32,33], Redox pseudocapacitance [34,35] and Intercalation pseudocapacitance [36,37] and Hybrid SCs (HS) [[38], [39], [40]]. In principle, EDLS form a electrical double layer on the surface of the electrode, mainly including space charge layer, electrolyte diffusion layer and compact Helmholtz layer, whose total thickness is about 1 nm. The charge storage mechanism of EDLS is based on the electrostatic interaction between ions on the surface of active electrode and electrolytes during charging and discharging. Usually, nanoporous materials with large specific surface area as active electrode materials are applied, mainly including activated carbon (AC) [41,42], porous carbon (PC) [43], carbon fiber (CF) [44], carbon nanotubes (CNTs) [45]. Such as, Miller et al. [46] reviewed in detail the mechanism of SCs, including graphene and graphene nanocomposites, AC prepared from renewable materials, conductive polymers (CPs) and transition metal dihalides. The energy storage mechanism of FS is to store charge by faradaic redox reaction on the surface of electrode. The redox reaction not only occurs on the surface of electrode, but also penetrates into the entire electrode. Therefore, the higher specific capacitance and energy density can be obtained under the same electrode areas than that of EDLS. Conway et al. [47] reported that the capacitance of FS was 10–100 times higher than that of EDLS. However, FS generally has a relatively lower power density than EDLS because the faradaic process is slow, and the redox reaction occurs at the electrode. Therefore, the stability of FS is poor during the cycles, which is similar to that of batteries [48]. Typically, FS electrode materials mainly includes metal oxides such as manganese-based, cobalt-based and nickel-based [[49], [50], [51], [52], [53], [54], [55], [56], [57], [58], [59]] TMN, such as VN, TiN and MoN [[60], [61], [62], [63], [64]], and conductive polymers (CPs) such as polyaniline (PANI) and polypyrrole (PPY) [[65], [66], [67], [68], [69]]. In order to improve the energy density and power density of the SCs as a whole, HS is prepared in combination with the advantages of EDLS and FS [70] which is generally composed of an EDLS electrode formed of a porous carbon-based materials and an FS electrode formed of a metal oxide materials.
根據電荷存儲的機理,SC可分為三大類:雙電層SC(EDLS)、法拉第SC(FS)(包括:電位沉積[32\u201233]、氧化還原贗電容[34,35]和插層贗電容[36,37]和混合SC(HS)[38]、[39]、[40]]。原則上,EDLS在電極表面形成雙電層,主要包括空間電荷層、電解質擴散層和緻密亥姆霍茲層,總厚度約為1 nm。EDLS的電荷儲存機理是基於活性電極表面的離子與電解質在充放電過程中的靜電相互作用。通常應用比表面積大的納米多孔材料作為活性電極材料,主要包括活性炭(AC)[41,42]、多孔碳(PC)[43]、碳纖維(CF)[44]、碳納米管(CNTs)[45]。例如,Miller等[46]詳細回顧了SCs的機理,包括石墨烯和石墨烯納米複合材料、由可再生材料、導電聚合物(CPs)和過渡金屬二鹵化物製備的AC。FS的能量儲存機理是通過法拉第氧化還原反應將電荷儲存在電極表面。氧化還原反應不僅發生在電極表面,而且滲透到整個電極中。因此,在相同的電極面積下可以獲得比EDLS更高的比電容和能量密度。Conway等[47]報導,FS的電容比EDLS高10-100倍。然而,FS的功率密度通常比EDLS低,因為法拉第過程緩慢,並且氧化還原反應發生在電極上。 因此,FS在迴圈過程中的穩定性較差,這與電池相似[48]。通常,FS電極材料主要包括金屬氧化物,如錳基、鈷基和鎳基[[49]、[50]、[51]、[52]、[53]、[54]、[55]、[56]、[57]、[58]、[59]]TMN,如VN、TiN和MoN[[60]、[61]、[62]、[63]、[64]],以及導電聚合物(CPs),如聚苯胺(PANI)和聚吡咯(PPY)[[65]、[66]、[67]、[68]、[69]]。為了提高SCs整體的能量密度和功率密度,結合EDLS和FS的優點製備了HS[70],後者通常由多孔碳基材料形成的EDLS電極和金屬氧化物材料形成的FS電極組成。

Nevertheless, Low energy density of SCs limits its use in certain fields. In order to increase the energy density of SCs, researchers are committed to the development of high-capacitance electrode materials. So far, researchers have studied the advantages and disadvantages of various materials as shown in Table 1, such as carbon materials [71] transition metal oxide (TMO) [72] and CPs electrode materials [73] and some emerging electrode materials TMN, Mxene, black phosphorus and other materials. For example, Zhang et al. [71] discussed the progress and challenges of carbon-based SCs, and summarized the latest development of carbon-based SCs. Low et al. [72] emphasised on the current evolution of mixed transition metal oxides (MTMO) and the hybridisation of MTMO with graphene nanosheets as active electrode materials. Moreover, the key factors that influenced the electrochemical activities of MTMO based materials were also described. Meng et al. [73] selected Several typical CPs, including PPY, PANI and PTH, analyzed the treatment methods of these materials to improve their performance, and also pointed out the future challenges and research directions in the field. Yu et al. [74] reviewed the recent progress in thin film electrode (TFE) materials, including traditional carbon materials, TMO, CPs, new two-dimensional (2D) inorganic materials and organic SCs materials, and discussed the preparation methods of TFE with different thicknesses in order to improve its performance. Theerthagiri et al. [75] simply summarized the research progress of 2D metal nitrides, carbides and phosphide-based SCs electrode materials in recent years. Although little attention had been paid to metal nitrides, compared with TMO and CPs, nitrides had attracted much attention due to their low resistance, high thermal stability, good chemical stability and low cost. It is well known that the development of electrode materials for SCs is very rapid. Therefore, this review comprised five aspects, the first part introduced the basic principles of SCs, the second part introduced the main preparation methods of nitride electrode materials, The third and the fourth part, we discussed the effects of the synthesis strategies and electrochemical parameters of TMN (vanadium nitride (VN), titanium nitride (TiN), molybdenum nitride (MoN), chromium nitride (CrN), titanium vanadium nitride (TiVN) and titanium nitride/vanadium nitride composite (TiN/VN) etc.). The fifth part described the electrochemical properties of the TMN/C electrodes. Finally, we summarized the advantages and disadvantages of TMN electrode for SCs, analyzed the future challenges of SCs electrode materials, and pointed out the future research directions of electrode in the filed.
然而,SC的低能量密度限制了其在某些領域的使用。為了提高SCs的能量密度,研究人員致力於開發高電容電極材料。到目前為止,研究人員已經研究了表1所示的各種材料的優缺點,如碳材料[71]、過渡金屬氧化物(TMO)[72]和CPs電極材料[73]以及一些新興的電極材料TMN、Mxene、黑磷等材料。例如,Zhang等[71]討論了碳基SCs的進展和挑戰,並總結了碳基SCs的最新發展,Low等[72]強調了混合過渡金屬氧化物(MTMO)的當前發展以及MTMO與石墨烯納米片作為活性電極材料的雜化。此外,還描述了影響MTMO基材料電化學活性的關鍵因素。Meng等[73]選取了PPY、PANI和PTH等幾種典型的CPs,分析了這些材料的處理方法,以提高其性能,並指出了該領域未來的挑戰和研究方向。Yu等[74]綜述了薄膜電極(TFE)材料的最新進展,包括傳統碳材料、TMO、CPs、新型二維(2D)無機材料和有機SCs材料,並討論了不同厚度TFE的製備方法,以提高其性能。Theerthagiri等[75]簡單總結了近年來二維金屬氮化物、碳化物和磷化物基SCs電極材料的研究進展。 儘管金屬氮化物很少受到關注,但與TMO和CP相比,氮化物因其電阻低、熱穩定性高、化學穩定性好、成本低而受到廣泛關注。眾所周知,SC電極材料的發展非常迅速。因此,本綜述包括五個方面,第一部分介紹了SCs的基本原理,第二部分介紹了氮化物電極材料的主要製備方法,第三和第四部分討論了TMN(氮化釩(VN)、氮化鈦(TiN)、氮化鉬(MoN)、氮化鉻(CrN)、 氮化鈦釩(TiVN)和氮化鈦/氮化釩複合材料(TiN/VN)等)。第五部分介紹了TMN/C電極的電化學性質。最後,總結了TMN電極在SCs上的優缺點,分析了SCs電極材料未來的挑戰,並指出了電極在該領域未來的研究方向。

Table 1. Advantages and disadvantages of elctrode materials for SCs.
表 1.SCs用電質材料的優缺點。

Empty CellAdvantagesDisadvantages
CPsExcellent electrical conductivity, flexibility, relatively cheap, easy to synthesize
優良的導電性、柔韌性、相對便宜、易於合成
Poor thermal stability and cycle performance
熱穩定性和迴圈性能差
Metal oxideHigh energy density, electrochemical stability
能量密度高,電化學穩定性好
High internal resistance and cost
高內阻和高成本
CarbonHigh conductivity, Large specific surface area, long cycling stability
高導電性、比表面積大、迴圈穩定性長
Large contact resistance, Low specific capacitance
接觸電阻大,比電容低
TMNGood electrochemical properties, high chemical stability and standard technological approach
電化學性能好,化學穩定性高,工藝方法標準
Low specific capacity 比容量低
Black phosphorus 黑磷Higher theoretical capacitance, distinct structures with corrugated planes of P atoms
更高的理論電容,具有波紋狀P原子平面的獨特結構
Poor chemical stability 化學穩定性差
MxenesExclusive conductivity and hydrophilicity, Large specific surface area
獨特的導電性和親水性,比表面積大
Complex synthesis 複雜合成

2. Preparation of TMN materials
2. TMN材料的製備

The synthetic strategies of TMN electrodes with excellent energy density and high cycle numbles are expected by researchers and industry. Now, researchers have been committed to exploring and developing an economical and universal method for the preparation of TMN electrodes for SCs. The preparation of TMN are generally through two-step methods, in which the precursor with different morphologies has been synthesized by various methods, and then the precursor was reduced to metal nitride by high temperature in ammonia atmosphere. Here we mainly summarized and discussed these synthesis methods in detail below.
具有優異能量密度和高迴圈麻木的TMN電極的合成策略受到研究人員和工業界的期望。現在,研究人員一直致力於探索和開發一種經濟且通用的方法來制備用於SC的TMN電極。TMN的製備一般採用兩步法,其中通過各種方法合成了不同形貌的前驅體,然後在氨氣氛中高溫將前驅體還原為金屬氮化物。下面我們主要對這些合成方法進行詳細總結和討論。

2.1. Hydrothermal method 2.1. 水熱法

The hydrothermal method is to synthesize TMN electrodes with different morphology and nanostructures at high pressure and medium temperature in a closed Teflon-lined stainless steel autoclave [76], which is considered a promising preparation method, due to its monodispersed particles with controllable size and morphology, versatility and environmental friendliness. Many TMN have been prepared by hydrothermal method [2,[77], [78], [79], [80], [81]] For example, Hou et al. [2] prepared chrysanthemum-like TiO2 precursor by hydrothermal method, and then nitrided the precursor in order to obtain a novel chrysanthemum-like titanium nitride (CL-TiN), The prepared CL-TiN had a capacitance of 23.35 F g−1 at 1.0 A g−1, and the capacitance retention rate remained 90.0% after 10,000 cycles at a scanning speed of 0.1 V s−1. We can see that many mesopores formed by lobular nanorods could provided an effective ion transport paths thereby improving the capacitance and cycle numbers of TiN electrode. Śliwak et al. [78] overcomed the larger particle iron nitride (Fe2N) blocking the activated carbon (AC) pores in the impregnation method, and prepared a unique FeN2/AC electrode which can provide an effective ion transport path. So the as synthesized electrode reached an excellent specific capacitance of 507 F g−1 at 0.5 A g−1 and a remarkable rate capability of 72%. Moreover, Ishaq et al. [79] obtained a nanosheet-like quaternary nitride precursor fluorinated graphene (FG)-supported Nickel-Cobalt-Iron nitride nanoparticles on nickel foam (NCF-N@FG/NF) with a large specific surface area by hydrothermal method (Fig. 2 a). The structure and morphology integrity of the hexagonal-plate had been adjusted through varying the NH3 annealing temperature, and the electrochemical performance can be affected (Fig. 2 b-f). They explained that advantages of those distinctive morphological landscapes were as follows: (i) efficient charge transport, (ii) abundant electrochemical active sites. The as-fabricated asymmetry-device (asy-device) of NCF-N@FG/NF || AC@NF (quaternary nitride precursor fluorinated graphene (FG)-supported Nickel-Cobalt-Iron nitride nanoparticles on nickel foam and activated carbon on Ni foam) was exhibited an outstanding capacitance of 89.5% and an excellen energy density of 56.3 Wh kg−1 at 0.5 A g−1 (Fig. 2 g,h).
水熱法是在封閉的聚四氟乙烯襯里不鏽鋼高壓釜中,在高壓和中溫下合成具有不同形貌和納米結構的TMN電極[76],由於其單分散顆粒具有可控的尺寸和形態、多功能性和環境友好性,被認為是一種很有前途的製備方法。許多TMN已經通過水熱法制備[2,[77],[78],[79],[80],[81]]例如,Hou等[2]用水熱法制備了菊花狀TiO 2 前驅體,然後對前驅體進行氮化處理,以獲得一種新型的菊花狀氮化鈦(CL-TiN),製備的CL-TiN在1.0 A g −1 時的電容為23.35 F g −1 , 在0.1 V s −1 的掃描速度下,10,000次迴圈后,電容保持率保持在90.0%。我們可以看到,許多由小葉納米棒形成的介孔可以提供有效的離子傳輸路徑,從而提高TiN電極的電容和循環次數。Śliwak等[78]克服了浸漬法中較大顆粒氮化鐵(Fe 2 N)阻塞活性炭(AC)孔隙的問題,製備了一種獨特的FeN 2 /AC電極,可提供有效的離子傳輸路徑。因此,合成的電極在0.5 A g −1 時達到了507 F g −1 的優異比電容和72%的顯著倍率能力。此外,Ishaq等[79]通過水熱法在泡沫鎳(NCF-N@FG/NF)上獲得了納米片狀氟化石墨烯(FG)負載的鎳鈷氮化鐵納米顆粒,比表面積大(圖2a)。 通過改變NH 3 退火溫度對六邊形板的結構和形貌完整性進行了調整,電化學性能受到影響(圖2 b-f)。他們解釋說,這些獨特的形態景觀的優點如下:(i)有效的電荷傳輸,(ii)豐富的電化學活性位點。NCF-N@FG/NF的預製非對稱器件(asy-device) ||AC@NF(泡沫鎳上的氮化四元前驅體氟化石墨烯(FG)負載的鎳鈷氮化鐵納米顆粒和泡沫鎳上的活性炭) −1 在0.5 A g −1 時表現出89.5%的出色電容和56.3 Wh kg的優異能量密度(圖2 g,h)。

Fig. 2
  1. Download : Download high-res image (2MB)
    下載 : 下載高解析度影像 (2MB)
  2. Download : Download full-size image
    下載:下載全尺寸圖像

Fig. 2. (a) Schematic illustration of the formation mechanism of the NCF-N@FG/NF hybrid, (b,c)TEM images of NCF-L@FG/NF precursor and NCF-N@FG/NF (500 °C) hybrid annealed at 500 °C, (d,e,f) XRD pattern of the NCF-N@FG/NF Hybrid at different annealing temperatures (300, 400 and 500 °C), (g) Specific capacitances of the NCF-N@FG/NF hybrid (300, 400 and 500 °C), (h) Specific capacitance and Coulombic efficiency of NCF-L@FG/NF (500 °C) precursor and NCF-N@FG/NF-3/500 °C hybrid electrode at a current density of 10 A g−1 [79]. Copyright 2018 Elsevier.
圖 2.(a)NCF-N@FG/NF雜化物的形成機理示意圖,(b,c)NCF-L@FG/NF前驅體和NCF-N@FG/NF(500 °C)雜化物在500 °C下退火的TEM圖像,(d,e,f)不同退火溫度(300、400和500 °C)下NCF-N@FG/NF Hybrid的XRD圖譜, (g) NCF-N@FG/NF雜化物的比電容(300, 400和500 °C),(h)NCF-L@FG/NF (500 °C)前驅體和NCF-N@FG/NF-3/500 °C混合電極在電流密度為10 A g −1 時的比電容和庫侖效率[79]。版權所有 2018 Elsevier。

The TMN electrodes were prepared by hydrot