这是用户在 2025-1-12 13:14 为 https://app.immersivetranslate.com/pdf-pro/8cf10aac-6019-4b15-9f03-5d1af6ba1a4f 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
[68] developed a methodological framework for the visual strength grading of timber structural elements based on the HBIM approach for data collection and management. The workflow employed a rule-based approach developed using VP. Similarly, Moyano et al. [66] developed an accurate and reliable BIM-based method to analyse and manage the structural deformations of historical buildings through parametric models, VP and HBIM workflow.
[68]基于HBIM数据收集和管理方法,开发了一个木材结构构件视觉强度分级的方法框架。工作流采用了基于规则的方法,使用VP开发。类似地,Moyano等人[66]开发了一种准确可靠的基于BIM的方法,通过参数化模型、VP和HBIM工作流程来分析和管理历史建筑的结构变形。
In summary, HBIM workflows relied on the data input collected using different technologies and technics for data collection, such as 3D laser scanning and digital photogrammetry. VP is integrated into HBIM workflows during the point cloud data analysis and BIM elements creation. In addition, VP has the potential to create parametric BIM elements and support rule-based design approaches. Finally, only a limited number of research employed computational BIM with AI-supported systems for decision-making.
总之,HBIM工作流程依赖于使用不同的数据收集技术和工艺收集的数据输入,例如3D激光扫描和数字摄影测量。VP在点云数据分析和BIM元素创建期间集成到HBIM工作流程中。此外,VP还具有创建参数化BIM元素和支持基于规则的设计方法的潜力。最后,只有有限数量的研究采用计算BIM和人工智能支持的系统进行决策。

4.5. Project management  4.5.项目管理

Project management is another aspect that has benefited from integrating computational BIM. Traditional project management methods often require being on the construction site, which exposes workers to higher risks during construction work. Moreover, inspection methods are often time-consuming, error-prone, and lack automation and realtime data exchange. Consequently, researchers developed different BIM-based workflows, and VP was one of the key tools employed to overcome these project management-related challenges.
项目管理是从集成计算BIM中受益的另一个方面。传统的项目管理方法通常需要在施工现场,这使工人在施工期间面临更高的风险。此外,检查方法通常耗时,容易出错,并且缺乏自动化和实时数据交换。因此,研究人员开发了不同的基于BIM的工作流程,而VP是用来克服这些项目管理相关挑战的关键工具之一。
For instance, a BIM-based approach was proposed to automate concrete joint positioning for planning concrete pouring [43]. The authors claimed that their system could generate a daily concrete schedule more cost-effectively and accurately compared to traditional methods of designing construction joints and planning pours. An automatic safety rule compliance approach for excavation works was developed using computational BIM [94]. The system can generate geometric conditions in BIM and visualise the possible risks and installation of safety resources alongside their quantity take-off and optimized locations. A near real-time construction work inspection system called iVR was developed using the BIM approach [91]. This system integrates 3D scanning, extended reality, and VP to visualize interactive onsite inspection for indoor activities and provide numeric data. Finally, a BIM-based system (iFobot-B) was developed to automatically search for the best picking location within reach of the robot arm during the design stage of the construction project [92]. The results proved that the system (iFobot-B) produces optimized locations for the robot arm workstations with the lowest possible collision and reachability rate while addressing robot operation time reduction, reducing risks confronted during facade construction and boosting productivity.
例如,提出了一种基于BIM的方法来自动化混凝土接缝定位,以规划混凝土浇筑[43]。作者声称,与设计施工缝和计划浇筑的传统方法相比,他们的系统可以更有效地生成每日混凝土进度表。使用计算BIM [94]开发了一种挖掘工程的自动安全规则合规方法。该系统可以在BIM中生成几何条件,并可视化可能的风险和安全资源的安装以及它们的数量和优化位置。使用BIM方法开发了一种称为iVR的近实时建筑工程检查系统[91]。该系统集成了3D扫描、延展实境和虚拟现实技术,可对室内活动的交互式现场检查进行可视化,并提供数字数据。 最后,开发了一个基于BIM的系统(iFobot-B),用于在施工项目的设计阶段自动搜索机器人手臂可达范围内的最佳拾取位置[92]。结果证明,该系统(iFobot-B)为机器人臂工作站提供了最佳位置,具有最低的碰撞和可达性,同时解决了机器人操作时间缩短问题,降低了立面施工过程中面临的风险,提高了生产率。
Moreover, a low-cost and easily adaptable real-time construction activities’ productivity tracking BIM-based framework was developed for small to medium size construction companies by integrating surveycloud and computational BIM [93]. In addition, an automated construction site layout planning (CSLP) framework was developed for prefabricated buildings [95]. The framework integrated the BIM and an optimization algorithm and used VP to create an information channel between the BIM and the optimization algorithm.
此外,通过整合调查云和计算BIM,为中小型建筑公司开发了一个低成本且易于适应的实时施工活动生产率跟踪BIM框架[93]。此外,还为预制建筑开发了自动化施工现场布局规划(CSLP)框架[95]。该框架集成了BIM和优化算法,并使用VP在BIM和优化算法之间创建信息通道。
Regarding project management, computational BIM was used to develop tools to help ensure workers’ safety and cost efficiency, remote working, and improve productivity and planning. Besides computational BIM, several proposed frameworks in these studies employed 3D laser scanning for data collection and VR for visualization and inspection.
在项目管理方面,计算BIM被用于开发工具,以帮助确保工人的安全和成本效益,远程工作,并提高生产力和规划。除了计算BIM,这些研究中提出的几个框架采用3D激光扫描进行数据收集,VR进行可视化和检查。

4.6. Material take-off (MTO)
4.6.物料取出(MTO)

It has been proven in previous studies that one of the most efficient functionalities of BIM tools compared to CAD tools is material take-off (MTO) functionality, thanks to the intelligent BIM model and its
在以前的研究中已经证明,与CAD工具相比,BIM工具最有效的功能之一是材料提取(MTO)功能,这要归功于智能BIM模型及其

parametric objects. However, due to the complexity of building components in the project, the accuracy of BIM-based MTO outputs (e.g. material cost estimation) is still questionable [117]. Consequently, many researchers attempted to improve the accuracy of MTO by taking advantage of the synergy of BIM and VP tools.
参数化对象。然而,由于项目中建筑构件的复杂性,基于BIM的MTO输出(例如材料成本估计)的准确性仍然值得怀疑[117]。因此,许多研究人员试图通过利用BIM和VP工具的协同作用来提高MTO的准确性。
In this regard, a prototype system was developed to improve the accuracy of the quantities of compound elements from the BIM models that are deficient or incorrect [80]. Similarly, a new method was proposed to automatically modify compound elements in BIM models by separating each layer into an individual model element and removing intersecting regions [81]. Furthermore, a prototype system was developed to automate the calculation of wall framings quantities and embed them into a BIM model [82]. According to the authors, the proposed method delivered more accurate quantities of wall framings than the manual method.
在这方面,开发了一个原型系统,以提高BIM模型中有缺陷或不正确的复合元素数量的准确性[80]。类似地,提出了一种新方法,通过将每个层分离为单个模型元素并删除相交区域来自动修改BIM模型中的复合元素[81]。此外,开发了一个原型系统,用于自动计算墙框架数量并将其嵌入BIM模型[82]。根据作者的说法,所提出的方法比手动方法提供了更准确的墙框架数量。
Saridaki et al. [78] tested two methods for data integration between the BIM model, cost calculations, and cost databases. The first method used the MS Excel tool, while the second used a VP tool. However, according to the authors, both methods still face several obstacles regarding data integration across software packages. Therefore, another BIM-based prototype system was developed to perform lifecycle cost analysis (LCCA) by integrating BIM and a rational database management system (RDBMS) [77]. Likewise, a BIM database integrated system was proposed to estimate building project construction costs [83]. Besides, a fully automated BIM-based system was developed using Dynamo and Revit to evaluate the concrete usage index (CUI) in a case study building [79].
Saridaki等人[78]测试了BIM模型、成本计算和成本数据库之间的两种数据集成方法。第一种方法使用MS Excel工具,而第二种方法使用VP工具。然而,根据作者的说法,这两种方法在跨软件包的数据集成方面仍然面临着一些障碍。因此,开发了另一个基于BIM的原型系统,通过集成BIM和合理的数据库管理系统(RDBMS)来执行生命周期成本分析(LCCA)[77]。同样,BIM数据库集成系统被提议用于估算建筑项目施工成本[83]。此外,使用Dynamo和Revit开发了一个全自动的基于BIM的系统,以评估案例研究建筑中的混凝土使用指数(CUI)[79]。
In the topic of MTO, VP has been used to improve BIM-based MTO output in terms of accuracy and automation. Besides, several studies attempted to evaluate the performance of material usage and the cost of different criteria, such as LCCA and CUI. In this research topic, Dynamo is the most used VP tool due to its integration with Revit, one of the leading BIM authoring tools in the market.
在MTO的主题中,VP已被用于提高基于BIM的MTO输出的准确性和自动化。此外,一些研究试图评估材料使用的性能和不同标准的成本,如LCCA和CUI。在本研究主题中,Dynamo是最常用的VP工具,因为它与市场上领先的BIM创作工具之一Revit集成。

4.7. Facility management  4.7.设施管理

Besides building design and construction phases, computational BIM has been employed in various studies during the operation stage for facility management. Similar to HBIM-related research, one of the significant challenges in facility management is how to automate the detection of building components from a dataset of 3D point clouds to create as-built models for FM. In this regard, a fully automated approach was proposed to convert terrestrial laser scanning data to wellconnected BIMs for MEP scenes [96]. The proposed workflow applied different stages of data extraction and processing of the 3D point cloud data, and it used an MEP network construction and Dynamo to generate the BIM model. The experiment results showed that the developed technique could effectively convert laser scanning data of MEP scenes to as-built BIMs with adequate accuracy for facility management purposes. Furthermore, several BIM-based methods were proposed for BIM and FM integration for building performance assessment and maintenance activities. VP was employed to automatically extract asset management data from the BIM model and export the data to a proprietary format required by the facility owner [99,101,102].
除了建筑设计和施工阶段,计算BIM还用于设施管理运营阶段的各种研究。与HBIM相关研究类似,设施管理中的一个重大挑战是如何从3D点云数据集中自动检测建筑构件,以创建FM的竣工模型。在这方面,提出了一种完全自动化的方法,将地面激光扫描数据转换为MEP场景的连接良好的BIM [96]。提出的工作流程应用不同阶段的数据提取和处理的三维点云数据,它使用MEP网络结构和Dynamo生成BIM模型。实验结果表明,所开发的技术可以有效地将MEP场景的激光扫描数据转换为竣工BIM,并且具有足够的准确性,用于设施管理目的。 此外,提出了几种基于BIM的方法,用于BIM和FM集成,用于建筑性能评估和维护活动。VP用于自动从BIM模型中提取资产管理数据,并将数据导出为设施所有者要求的专有格式[99,101,102]。
Within the scope of BIM and FM integration, numerous scholars studied the feasibility of using IoT technology to improve FM-related works. For instance, researchers investigated the potential of developing a symbiotic data platform by integrating BIM data and real-time information (IoT) to enhance energy efficiency and comfort maximization during the occupation phase [97]. Furthermore, a fault detection and alert generation system was developed to detect the malfunctioning of FM sensors during the operational phase [98]. The system integrated sensor information within BIM into a cloud-based system to ensure better communication between the building facility manager and IoT company for effective IoT system maintenance. Desogus et al. [103] also explored the integration of BIM methodology and IoT systems for FM
在BIM和FM集成的范围内,许多学者研究了使用物联网技术改进FM相关工程的可行性。例如,研究人员调查了通过整合BIM数据和实时信息(IoT)开发共生数据平台的潜力,以提高占用阶段的能源效率和舒适度最大化。此外,还开发了一个故障检测和警报生成系统,以检测运行阶段FM传感器的故障[98]。该系统将BIM中的传感器信息集成到基于云的系统中,以确保建筑设施管理人员与物联网公司之间更好的沟通,从而实现有效的物联网系统维护。Desogus等人。[103]还探索了FM的BIM方法和物联网系统的集成

purposes. They developed a tool by integrating BIM, VP, and IoT sensors to support building managers with real-time data and information about buildings’ performance during the operation stage. O’Shea and Murphy [100] explored the potential of implementing BIM on existing structures for asset management and structural health monitoring. They developed a BIM-based method for integrating sensors to enhance the visualization of structural health monitoring through BIM. Chang et al. [44] developed a BIM-based platform to visualize sensor data collected from an existing university campus to support complex decisions related to building facility management, such as space temperature, humidity and Predicted Mean Vote (PMV). Similarly, Natephra et al. [40] developed a new method for combining time-stamped 3D thermal data in the BIM environment. The proposed system converted the collected thermal images into numeric surface temperatures, integrated them with the gathered environmental data in the BIM model, calculated thermal comfort variables, such as mean radiant temperature (MRT), and assessed the thermal comfort level for various locations inside the building.
目的他们通过集成BIM、VP和物联网传感器开发了一种工具,为建筑管理人员提供有关运营阶段建筑性能的实时数据和信息。O'Shea和Murphy [100]探讨了在现有结构上实施BIM进行资产管理和结构健康监测的潜力。他们开发了一种基于BIM的方法,用于集成传感器,以通过BIM增强结构健康监测的可视化。Chang等人[44]开发了一个基于BIM的平台,用于可视化从现有大学校园收集的传感器数据,以支持与建筑设施管理相关的复杂决策,例如空间温度,湿度和预测平均投票(PMV)。类似地,Natephra等人[40]开发了一种新方法,用于在BIM环境中组合带时间戳的3D热数据。 该系统将收集的热图像转换为数字表面温度,将其与BIM模型中收集的环境数据相结合,计算热舒适度变量,如平均辐射温度(MRT),并评估建筑物内各个位置的热舒适度水平。
In summary, in this topic, most of the developed workflows and models relied on 3D scanning, sensors and IoT technologies to collect the data input used in the proposed methods and workflows. Based on the reviewed papers, computational BIM was implemented for FM during building performance assessment and maintenance activities, fault detection and alert generation system of sensors and structural health monitoring.
总之,在本主题中,大多数开发的工作流程和模型都依赖于3D扫描,传感器和物联网技术来收集用于拟议方法和工作流程的数据输入。基于审查的文件,计算BIM实施FM在建筑性能评估和维护活动,故障检测和警报生成系统的传感器和结构健康监测。

4.8. Other application areas (regulation compliance, structure optimization, hardware integration, structure components prefabrication)
4.8.其他应用领域(法规遵从、结构优化、硬件集成、结构部件预制)

The combination of computational BIM has been used to solve various problems in other areas found to be less dominant in this review paper, such as compliance checking, structure optimization, and structure components prefabrication, to name a few.
计算BIM的组合已被用于解决其他领域的各种问题,这些问题在本文中不太占主导地位,例如合规性检查,结构优化和结构部件预制等。
For instance, Liu et al. [106] integrated BIM and steel fabrication machine codes (BVBS) with open BIM standards and VP to interoperate the computerized design and prefabrication automation of steel reinforcement. The results revealed that prefab-related objects and attributes in Industry Foundation Classes (IFC) based BIM models can be extracted effectively using VP to cater to the BVBS data transformation toward automatic prefabrication. Similarly, Bakhshi et al. [104] developed a new framework to combine the capabilities of Building BIM in the Design for Manufacturing and Assembly (DfMA) method with mass customization to enable customers to participate in the offsite construction configuration process. In addition, a new method was proposed using computational BIM for printing path design in the threedimensional (3D) concrete printing process (3DCP) [107]. This method has been applied to a large-scale construction process, and the simulation results showed that the proposed approach could reduce data loss from a 3D BIM model to printing path generation. Finally, Dimyadi et al. [46] developed a BIM-based system called Visual Code Checking Language (VCCL), which uses a graphical notation to represent the rules of a code in a machine and human-readable language. This system ensures the building’s structural stability, reliability, and usability during the design stage.
例如,Liu等人[106]将BIM和钢筋加工机器代码(BVBS)与开放的BIM标准和VP集成在一起,以实现钢筋的计算机化设计和预制自动化的互操作。结果表明,预制相关的对象和属性的工业基础类(IFC)的BIM模型可以有效地提取使用VP,以迎合BVBS数据转换为自动预制。类似地,Bakhshi等人[104]开发了一种新的框架,将制造和装配设计(DfMA)方法中的建筑BIM功能与大规模定制相结合,使客户能够参与场外施工配置过程。此外,还提出了一种使用计算BIM进行三维(3D)混凝土打印过程(3DCP)中打印路径设计的新方法[107]。 该方法已应用于一个大规模的施工过程中,仿真结果表明,该方法可以减少从三维BIM模型到打印路径生成的数据丢失。最后,Dimyadi等人[46]开发了一个基于BIM的系统,称为可视化代码检查语言(VCCL),它使用图形符号来表示机器和人类可读语言中的代码规则。该系统在设计阶段确保建筑物的结构稳定性、可靠性和可用性。
Several researchers employed computational BIM to develop new methods and workflows for automated code-compliance checking. These methods employ rule-based approaches developed using VP to tackle building safety and stability issues. For example, Nov et al. [108] developed an automated system for detecting and solving clashes of the structural strut by integrating a rule-based approach and computational BIM. Furthermore, Ghannad et al. [112] proposed a BIM data-checking prototype that can evaluate the quality and defects of the BIM model according to specific design rules. Finally, Peansupap et al. [105] used engineering knowledge, advanced construction technology and a rulebased approach to detect and solve the clashes between kingposts and underground structures.
一些研究人员采用计算BIM来开发自动代码合规性检查的新方法和工作流程。这些方法采用基于规则的方法,使用VP开发,以解决建筑物的安全性和稳定性问题。例如,Nov等人[108]开发了一个自动化系统,通过集成基于规则的方法和计算BIM来检测和解决结构支柱的冲突。此外,Ghannad等人[112]提出了一个BIM数据检查原型,可以根据特定的设计规则评估BIM模型的质量和缺陷。最后,Peansupap等人[105]使用工程知识、先进的施工技术和基于规则的方法来检测和解决主支柱与地下结构之间的冲突。
Kincelova et al. [109] developed a BIM-based code-checking method for the fire safety of tall timber buildings in the Canadian context. According to the authors, the implementation of this method was successful for geometrical and non-geometrical requirements due to the efficient BIM and VP integration. Likewise, Khan et al. [110] used VP to plan the portable firefighting equipment installation in a BIM model.
Kincelova等人。[109]开发了一种基于BIM的规范检查方法,用于加拿大高层木结构建筑的消防安全。根据作者的说法,由于BIM和VP的有效集成,该方法的实施对于几何和非几何要求是成功的。同样,Khan等人[110]使用VP在BIM模型中规划便携式消防设备安装。
Besides these topics, a study by Benjamin et al. [113] developed and demonstrated an innovative feature modelling approach for configuring and adapting modular buildings. At the same time, Kensek (2014) investigated the feasibility of using VP to connect environmental sensors such as light, humidity, or CO 2 receptors to a building information model. According to the authors, this integration could be used to test intelligent façade systems before constructing full-size mock-ups.
除了这些主题,Benjamin等人的一项研究[113]开发并展示了一种用于配置和适应模块化建筑的创新特征建模方法。与此同时,Kensek(2014)研究了使用VP将环境传感器(如光、湿度或CO 2受体)连接到建筑信息模型的可行性。根据作者的说法,这种集成可以用于在构建全尺寸模型之前测试智能立面系统。
The review shows that computational BIM has been applied in various aspects and phases of building projects, including different roles, processes, and tools. Therefore, the next section of this paper seeks to review the methodological role of VP-enabled computational BIM algorithms in building research.
该综述表明,计算BIM已应用于建筑项目的各个方面和阶段,包括不同的角色,过程和工具。因此,本文的下一部分旨在回顾VP支持的计算BIM算法在建筑研究中的方法学作用。

5. Methodological role of VP-enabled computational BIM algorithms in building research
5. VP支持的计算BIM算法在建筑研究中的方法学作用

5.1. Overview  5.1.概述

The data in the 3D BIM models becomes strategic assets that could be built upon to perform various kinds of BIM customization [118,119]. In this research, programming is used to extend the capabilities of BIM. VP is the most common tool for developing scripts or applications in a BIM environment since it is more user-friendly than writing text-based programming languages [9]. An in-depth review was conducted to identify the methodological role of VP application in the different studies. The findings revealed five major roles: data management, process automation, parametric modelling, performance assessment and simulation and other roles (see Table 4). Some papers can have more than one role of VP. Based on the reviewed studies, the most common role of VP in BIMbased research is data management ( 42 studies). Performance assessment and building simulation ( 24 studies) are the following ranks of the role of VP in the research field. Process automation (16 studies) and parametric modelling ( 16 studies) share the third rank of the role of VP, and the other roles ( 9 studies), such as hardware control, data interoperability, and documentation, are the least common in the research field. Detailed information regarding the role of the VP and the tools used for each paper is presented in Appendix A. The following sub-section describes the examples of studies in each role.
3D BIM模型中的数据成为战略资产,可用于执行各种BIM定制[118,119]。在这项研究中,编程被用来扩展BIM的功能。VP是在BIM环境中开发脚本或应用程序的最常用工具,因为它比编写基于文本的编程语言更用户友好[9]。进行了深入的审查,以确定VP应用在不同的研究中的方法学作用。调查结果揭示了五个主要角色:数据管理,流程自动化,参数建模,性能评估和模拟以及其他角色(见表4)。一些论文可以有不止一个VP角色。基于回顾的研究,VP在基于BIM的研究中最常见的角色是数据管理(42项研究)。性能评估和建筑模拟(24项研究)是VP在研究领域中的作用的以下行列。 过程自动化(16项研究)和参数化建模(16项研究)共享VP角色的第三位,其他角色(9项研究),如硬件控制,数据互操作性和文档,是研究领域中最不常见的。关于副总裁的作用和每篇论文所用工具的详细信息见附录A。以下小节描述了每个角色的研究示例。

5.2. Data management  5.2.数据管理

The major challenge when working with BIM is managing building data that are attached and not attached in a BIM model. Data management is the process of extracting, analysing, evaluating, combining, and converting building data from or to a BIM model [7]. Managing data can be done by built-in features in BIM software or using automated scripts developed for specific purposes [7]. VP is one of the tools used for managing these data. As shown in Table 4, Revit as the BIM authoring tool and Dynamo as the VP tool are employed in 88 % 88 % 88%88 \% of the studies related to data management. In contrast, Rhinoceros and its VP tool Grasshopper were used only 12 % 12 % 12%12 \% and 7 % 7 % 7%7 \%, respectively. Based on the reviews, the data management process in a BIM environment can be divided into five groups.
使用BIM时的主要挑战是管理BIM模型中附加和未附加的建筑数据。数据管理是从BIM模型中提取、分析、评估、组合和转换建筑数据的过程[7]。管理数据可以通过BIM软件中的内置功能或使用为特定目的开发的自动化脚本来完成[7]。VP是用于管理这些数据的工具之一。如表4所示,在与数据管理相关的 88 % 88 % 88%88 \% 研究中,使用Revit作为BIM创作工具,使用Dynamo作为VP工具。相比之下,Rhinoceros及其VP工具Grasshopper分别仅使用 12 % 12 % 12%12 \% 7 % 7 % 7%7 \% 。基于这些审查,BIM环境中的数据管理过程可以分为五组。
First, VP is mainly used to extract data from the BIM models for calculation and send data back to the BIM models. For example, some studies use VP to query or extract data from the BIM model [69,101,104,109] and write data to a spreadsheet file for analysis [43,57,76,77,85,102]. Several studies used Dynamo or Grasshopper to extract information from BIM or 3D models for calculating specific tasks, such as the best position of the Photovoltaics (PV) modules [47], life
首先,VP主要用于从BIM模型中提取数据进行计算,并将数据发送回BIM模型。例如,一些研究使用VP从BIM模型[69,101,104,109]中查询或提取数据,并将数据写入电子表格文件进行分析[43,57,76,77,85,102]。几项研究使用Dynamo或Grasshopper从BIM或3D模型中提取信息,以计算特定任务,例如Photopolics(PV)模块的最佳位置[47],寿命
Table 4  表4
Use of VP and BIM tools and the role of VP-enabled computational BIM algorithms in building research.
VP和BIM工具的使用以及VP支持的计算BIM算法在建筑研究中的作用。
Role of VP  VP的作用 Number of studies  许多研究 Percentage of CAD/BIM tool usage (%)
CAD/BIM工具使用率(%)
Percentage of VP tool usage (%)
VP工具使用百分比(%)
Revit Rhinoceros  犀牛 Other BIM/CAD tools  其他BIM/CAD工具 Dynamo  迪纳摩 Grasshopper  蚱蜢 Other VP tools  其他VP工具
Data Management  数据管理 42 88 % 12 % 14 % 88 % 7 % 10 %
Process Automation  过程自动化 16 81 % 25 % 13 % 69 % 31 % 0 %
Parametric Modelling  参数化建模 16 63 % 56 % 31 % 31 % 31%31 \% 56 % 56 % 0 %
Performance assessment and simulation
性能评估和模拟
24 100 % 13 % 0 % 83 % 21 % 0 %
Other roles  其他角色 9 100 % 11 % 0 % 89 % 11 % 0 %
Role of VP Number of studies Percentage of CAD/BIM tool usage (%) Percentage of VP tool usage (%) Revit Rhinoceros Other BIM/CAD tools Dynamo Grasshopper Other VP tools Data Management 42 88 % 12 % 14 % 88 % 7 % 10 % Process Automation 16 81 % 25 % 13 % 69 % 31 % 0 % Parametric Modelling 16 63 % 56 % 31% 56 % 56 % 0 % Performance assessment and simulation 24 100 % 13 % 0 % 83 % 21 % 0 % Other roles 9 100 % 11 % 0 % 89 % 11 % 0 %| Role of VP | Number of studies | Percentage of CAD/BIM tool usage (%) | | | Percentage of VP tool usage (%) | | | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | | | Revit | Rhinoceros | Other BIM/CAD tools | Dynamo | Grasshopper | Other VP tools | | Data Management | 42 | 88 % | 12 % | 14 % | 88 % | 7 % | 10 % | | Process Automation | 16 | 81 % | 25 % | 13 % | 69 % | 31 % | 0 % | | Parametric Modelling | 16 | 63 % | 56 % | $31 \%$ | 56 % | 56 % | 0 % | | Performance assessment and simulation | 24 | 100 % | 13 % | 0 % | 83 % | 21 % | 0 % | | Other roles | 9 | 100 % | 11 % | 0 % | 89 % | 11 % | 0 % |
cycle cost [78], Green Building Index (GBI) points [49], room thermal values [97], concrete usage index (CUI) [79], cost estimation [83], and steel fabrication machine codes (BVBS) [106]. Others extract information from BIM models, process it, and then send it back to the BIM models [43,45,68,80-82]. Also, few studies used VP to extract data from BIM models for optimization tasks [9].
循环成本[78]、绿色建筑指数(GBI)点[49]、室内热值[97]、混凝土使用指数(CUI)[79]、成本估算[83]和钢筋加工机器代码(BVBS)[106]。其他人从BIM模型中提取信息,处理它,然后将其发送回BIM模型[43,45,68,80 -82]。此外,很少有研究使用VP从BIM模型中提取数据用于优化任务[9]。
Second, VP processes data from other sources into BIM models. The sources can be either online databases [111], IoT sensors [120], virtual sensors [100], thermal images [40], point cloud data [67], or site survey data [93]. The data are processed and then embedded into properties of BIM elements.
其次,VP将来自其他来源的数据处理为BIM模型。这些来源可以是在线数据库[111]、物联网传感器[120]、虚拟传感器[100]、热图像[40]、点云数据[67]或现场勘测数据[93]。数据经过处理,然后嵌入到BIM元素的属性中。
Third, VP combines data in BIM models with an external database. For example, it can connect HBIM models with history ontology [75]. Another study used Dynamo to combine information from the BIM model with the Life Cycle Assessment (LCA) database and calculate the embodied carbon of the HVAC system [48].
第三,VP将BIM模型中的数据与外部数据库相结合。例如,它可以将HBIM模型与历史本体连接起来[75]。另一项研究使用Dynamo将来自BIM模型的联合收割机信息与生命周期评估(LCA)数据库相结合,并计算HVAC系统的隐含碳[48]。
Fourth, VP analyses and evaluates information extracted from BIM models. For example, some studies used VP to evaluate structural BIM models [113] or analyze structural deformation between the point cloud and BIM models [66]. In addition, some studies used VP to perform acoustical analysis from the extracted geometries and acoustical information from BIM models [59,62]. Other studies used VP as a tool for analysing spaces and functions of architectural design, such as the shortest path between every room’s doors [112] and the functional flexibility of the building design [50]. Moreover, a study used VP to transfer data to MATLAB to optimize the position of tower cranes on a construction site [95].
第四,VP分析和评估从BIM模型中提取的信息。例如,一些研究使用VP来评估结构BIM模型[113]或分析点云和BIM模型之间的结构变形[66]。此外,一些研究使用VP从BIM模型中提取的几何形状和声学信息进行声学分析[59,62]。其他研究使用VP作为分析建筑设计的空间和功能的工具,例如每个房间门之间的最短路径[112]和建筑设计的功能灵活性[50]。此外,一项研究使用VP将数据传输到MATLAB,以优化建筑工地上塔式起重机的位置[95]。
Fifth, VP is used to convert data from one format to another format. For example, Cecchini [74] used SafeFME to convert GIS data to CityGML format. Likewise, Ali et al. [91] used VP (Grasshopper) to manage point cloud data collected from the job site, which is then converted into a 3D model.
第五,VP用于将数据从一种格式转换为另一种格式。例如,Cecchini [74]使用SafeFME将GIS数据转换为CityGML格式。同样,Ali等人[91]使用VP(Grasshopper)来管理从工作现场收集的点云数据,然后将其转换为3D模型。
All in all, data management is one of the most common roles of VP. Like all programming languages, VP can be used to create automated scripts that can extract, edit, or create data or geometry in BIM. The research related to VP would be limited to the libraries in each VP language. This limitation can be solved using a text-based programming language such as C# or Python to create new libraries that advance programming skills.
总之,数据管理是VP最常见的角色之一。与所有编程语言一样,VP可用于创建自动化脚本,这些脚本可以在BIM中提取、编辑或创建数据或几何图形。与VP相关的研究将仅限于每种VP语言中的库。这个限制可以使用基于文本的编程语言(如C#或Python)来解决,以创建新的库来提高编程技能。

5.3. Process automation  5.3.过程自动化

Process automation is one of the roles of computer programming. VP enables designers, architects, and engineers unfamiliar with text-based programming to automate repetitive processes in BIM workflows. Most research used VP to automate different processes, such as creating geometry or editing data or geometry in the BIM model. As illustrated in Table 4, Revit and Dynamo are used in 81 % 81 % 81%81 \% and 69 % 69 % 69%69 \% of the studies related to process automation, whereas Rhinoceros and its VP tool Grasshopper are used only 25 % 25 % 25%25 \% and 31 % 31 % 31%31 \%, respectively. The examples of studies where BIM and VP integration is used for process automation can be divided into three groups.
过程自动化是计算机编程的作用之一。VP使不熟悉基于文本编程的设计师、建筑师和工程师能够自动化BIM工作流程中的重复流程。大多数研究使用VP来自动化不同的流程,例如创建几何形状或编辑BIM模型中的数据或几何形状。如表4所示,Revit和Dynamo分别用于与流程自动化相关的 81 % 81 % 81%81 \% 69 % 69 % 69%69 \% 研究,而Rhinoceros及其VP工具Grasshopper分别仅用于 25 % 25 % 25%25 \% 31 % 31 % 31%31 \% 。BIM和VP集成用于过程自动化的研究示例可以分为三组。
The first group of studies used VP to automatically create BIM elements, such as columns and beams [84], plant walls [85], timber wall panels [86], Dou-gong elements [73], and façade modules on the
第一组研究使用VP自动创建BIM元素,例如柱和梁[84],植物墙[85],木墙板[86],斗拱元素[73]和立面模块。

building envelope [92]. Besides, a study used a combination of VP, MATLAB and Excel to automatically generate a BIM model based on the extracted data of MEP components and their connections [96]. The second group used VP to generate layout plans, such as the effective path for 3D printing [107], the excavation layout of a building foundation [94], and the optimized floor tiles layout [88,89]. The last group used VP to create rule-based systems that solve specific problems automatically. For example, Andriasyan et al. [72] used Grasshopper to convert point cloud data into 3D meshes automatically. Khosakitchalert et al. [80,82] used Dynamo to calculate the material quantities from BIM elements and automatically correct BIM models for more accurate material take-off [81]. Nov et al. [108] used VP to develop an automated, rule-based system for detecting and solving clashes of the structural strut. Finally, Peansupap et al. [105] developed a rule-based system using Dynamo to rearrange kingposts that intersect with other underground structures.
建筑围护结构[92]。此外,一项研究使用VP,MATLAB和Excel的组合,根据MEP组件及其连接的提取数据自动生成BIM模型[96]。第二组使用VP生成布局计划,例如3D打印的有效路径[107],建筑物基础的挖掘布局[94]以及优化的地砖布局[88,89]。最后一组使用VP创建基于规则的系统,自动解决特定问题。例如,Andriasyan等人[72]使用Grasshopper将点云数据自动转换为3D网格。Khosakitchalert等人[80,82]使用Dynamo从BIM元素计算材料数量,并自动校正BIM模型,以获得更准确的材料提取[81]。Nov等人[108]使用VP开发了一个自动化、基于规则的系统,用于检测和解决结构支柱的碰撞。最后,Peansupap et al. [105]开发了一个基于规则的系统,使用Dynamo重新排列与其他地下结构相交的主柱。
VP can be used to automate various processes. However, the execution speed of the system created by VP is slower than text-based programming. Also, VP, specifically Grasshopper and Dynamo, nowadays are single-threaded applications, so it does not use the full performance of the computer [121,122]. Therefore, the VP is suitable for creating scripts to automate a specific task or developing a research prototype system. However, text-based programming is preferable if the process is very complex and the script is long.
VP可用于自动化各种流程。然而,VP创建的系统的执行速度比基于文本的编程慢。此外,VP,特别是Grasshopper和Dynamo,现在是单线程应用程序,因此它不会使用计算机的全部性能[121,122]。因此,VP适用于创建脚本以自动执行特定任务或开发研究原型系统。然而,如果过程非常复杂并且脚本很长,则最好使用基于文本的编程。

5.4. Parametric modelling
5.4.参数化建模

Algorithm-aided modeling design (AAD) has emerged as an innovative approach in architectural design modeling of complex 3D structures is often achieved through computational design [123], with visual programming (VP) as a key language. As shown in Table 4, Revit and Dynamo are utilized in 63 % 63 % 63%63 \% and 56 % 56 % 56%56 \% of modeling studies, respectively, while Rhinoceros and its VP tool, Grasshopper, appear in 56 % 56 % 56%56 \% of studies. Based on our findings, VP can enhance the BIM process for modeling by automating 3D generation through pre-defined rules and by converting point cloud data into 3D models.
计算机辅助建模设计(AAD)已成为建筑设计中的一种创新方法,复杂3D结构的建模通常通过计算设计实现[123],可视化编程(VP)是关键语言。如表4所示,Revit和Dynamo分别用于 63 % 63 % 63%63 \% 56 % 56 % 56%56 \% 建模研究,而Rhinoceros及其VP工具Grasshopper出现在 56 % 56 % 56%56 \% 研究中。根据我们的发现,VP可以通过预定义规则自动生成3D以及将点云数据转换为3D模型来增强BIM建模流程。
First, pre-defined rules are used to automatically or semiautomatically generate 3D models or geometries [6]. For example, the pre-defined rules are used to generate structural columns and beams [84], a pattern of a plant wall [85], Dou-gong geometries [73], and a parametric building skin [87]. Parametric modelling can also be extended using optimization algorithms to find the optimal solution for a specific objective, such as reducing panelling waste [39]. Other studies used VP to generate 3D models based on specific data. For example, Gan et al. [54] used Dynamo to generate a city model from OpenStreetMap data. Pavón et al. [55] used Grasshopper to generate parametric façade elements which can adjust their shape based on the sun’s position.
首先,预定义的规则用于自动或半自动生成3D模型或几何形状[6]。例如,预定义的规则用于生成结构柱和梁[84]、植物墙图案[85]、斗拱几何形状[73]和参数化建筑蒙皮[87]。参数建模也可以使用优化算法进行扩展,以找到特定目标的最佳解决方案,例如减少镶板浪费[39]。其他研究使用VP基于特定数据生成3D模型。例如,Gan等人[54]使用Dynamo从OpenStreetMap数据生成城市模型。Pavón等人。[55]使用Grasshopper生成参数化的立面元素,这些元素可以根据太阳的位置调整它们的形状。
Second, it converts point cloud data into 3D BIM models. For instance, Massafra et al. [71] used Grasshopper to create a wood truss from point cloud data. Andriasyan et al. [72] used Grasshopper to convert point cloud data of a heritage building into 3D mesh surfaces. Santoni et al. [69] and Wang et al. [96] used Dynamo, while Ali et al. [91] and Calvano et al. [19] used Grasshopper to convert point cloud data to BIM elements in Revit. Bohórquez et al. [90] developed algorithms in Grasshopper to reconstruct building envelopes from point
其次,它将点云数据转换为3D BIM模型。例如,Massafra等人。[71]使用Grasshopper从点云数据创建木桁架。Andriasyan等人。[72]使用Grasshopper将遗产建筑的点云数据转换为3D网格表面。Santoni等人[69]和Wang等人[96]使用Dynamo,而Ali等人[91]和Calvano等人[19]使用Grasshopper将点云数据转换为Revit中的BIM元素。Bohórquez等人。[90]在Grasshopper中开发了从点重建建筑物包络的算法