Review 评论Machine learning in natural and engineered water systems
自然水系统和工程水系统中的机器学习
Graphical abstract 图形摘要
Keywords 关键词
1. Introduction 1.导言
水是人类赖以生存和发展的最不可或缺的物质资源之一。然而,人类活动造成的污染物排放量不断增加,导致水污染日益严重,对生态系统和人类社会的可持续发展构成威胁。为了保护生态安全和人类健康免受水污染的影响,人们采取了一系列措施。在自然水系中,为了更好地管理和利用水资源,对各种水体(如河流、湖泊、地下水和海水)的水质进行密切监测。此外,还通过对污染物的识别、源头追踪和毒性评估来控制水污染。在工程水系统中,取自天然水域的原水在饮用水处理厂(DWTPs)中通过各种处理工艺(如混凝、沉淀、过滤和消毒)进行净化,以去除污染物,然后通过分配系统供应给用户。此外,污水和废水经收集后在污水处理厂(WWTP)中通过一系列物理、化学和生物过程进行处理,以减少对城市和自然环境的污染。在自然水管理、水资源利用和污染水处理过程中,人们开展了大量相应的研究,并逐渐发展成为与自然水系统和工程水系统相关的领域。
当前,"第四次工业革命 "与大数据和人工智能相结合,有望给人类社会带来巨大变革。机器学习(ML)是人工智能的技术手段之一,它是在数学和统计学知识的基础上,利用各种算法开发出来的。ML 可以通过总结已知数据中的潜在关系和规则来预测新数据的状态,其预测性能会随着数据量的增加和算法的迭代而提高(Vamathevan et al., 2019)。ML 可以解决涉及大量非线性过程或组合空间的复杂问题,这些问题无法用传统方法解决,或者只能花费大量时间和成本。因此,ML 已广泛应用于计算机视觉、语音识别、自然语言处理、机器人控制等领域,以及其他热门课题(Jordan and Mitchell, 2015a)。
近年来,ML 也被应用于解决水科学领域的各种问题。为了了解 ML 在这些领域的应用情况,以及各种算法在解决水相关问题中的适用性和可行性,有必要对现有研究进行回顾和总结,一些论文对相关研究进行了综述。例如,许多出版物对人工神经网络(ANN)和其他算法的应用进行了综述,如模糊推理系统(FIS)、进化算法、支持向量机(SVM)、随机森林(RF)、决策树(DT)等、决策树(DT)和 ML 与小波变换或优化算法相结合,用于河流、湖泊和地下水的水质建模(Chau ;2006; Che Osmi et al.,2016; Chen et al、2020b; Ighalo et al、2020; Maier and Dandy, ;2000; Maier et al.,2010, 2014; Nicklow et al.2010 年;Ostfeld and Solomatine, 2008 年;Raghavendra and Deka, ;2014; Rajaee et al.,2020;Tiyasha, Tung and Yaseen, 2020)。此外,还综述了 ML 在其他方面或与水有关的研究中的应用,例如用于水质监测remote sensing (Sagan et al、2020; Wagle et al、2020)、饮用水处理(Dogo et al、2019; Li et al、2021)、海水淡化(Al Aani et al、2019)、以及废水处理和污染物去除(Fan ;et al., 2018; Khataee and Kasiri, ;2011; Wang et al.,2021b; Yaseen 2021).所有这些综述都有助于研究人员了解和拓展人工智能在水科学领域的应用。然而,许多其他已发表的人工智能应用,如地下水污染物绘图(Podgorski ;和Berg, 2020)、污染物来源追踪(Balleste et al.,2020)、污染物毒性评估(Wang et al、2021d )、污染物识别(Baek et al.此外,许多综述论文只关注一种算法的应用,缺乏与其他算法优缺点的比较。众所周知,目前已开发出大量的 ML 算法,它们在解决实际任务时的表现也各不相同。因此,需要分析各种算法在处理不同水相关问题时的适用范围。
本文全面回顾了 ML 在水科学相关领域的应用,并总结了近年来的代表性研究。首先,简要介绍了 ML 模型的建立过程,包括数据准备、算法选择和模型评估。此外,还总结了 ML 在自然水系的水质预测和管理以及工程水系的技术开发和运行监测方面的代表性应用。具体而言,在自然水系中,ML 已被用于预测水质指标、绘制地下水中的污染物分布图、对水资源进行分类、追踪污染物来源以及评估污染物毒性。在工程水系统中,ML 被用于优化吸附和氧化过程,协助实验室表征分析,改善饮用水净化和分配以及废水收集和处理的操作和管理。更重要的是,讨论了代表性算法的优缺点,并通过比较它们的结构和机制,分析了它们对不同数据和研究的适用性。最后,讨论了当前 ML 水利用与污染控制相结合的研究热点、挑战和前景。
2. An overview of machine learning
2.机器学习概述
ML 指的是一种技术,它使用一系列编程算法,通过自动数学分析从给定数据中的隐藏关联中吸取经验,预测任何原始数据的未来模式(Jordan and Mitchell, 2015b)。一般来说,要尽可能准确地识别已知数据的基本规则,首先应妥善处理数据以生成数据集。然后,根据输入数据的特点和输出数据的要求,确定合适的 ML 算法。然后用精心准备的数据对选定的算法进行训练和评估,调整其中的超参数,从而生成所需的模型。之后,提出的 ML 模型就可以对新数据进行预测了。下文将简要介绍 ML 模型的建立,想要了解有关 ML 算法的更多细节,可以参考统计学或机器学习方面的专业书籍和论文(Hastie et al、2008; Mohri et al.)
2.1. Date preparation 2.1.准备日期
理想的人工智能需要适当和训练有素的模型,但数据的质量和数量也至关重要。目前,我们可以从互联网上抓取数据,从文献中收集数据,从开源数据库中搜索数据,或从实验中记录数据等。然而,我们获得的原始数据通常会有缺失值、错误、重复或噪声,这些都需要通过数据清洗来处理。然后,基于专业背景知识开展特征工程,根据任务需求选择或提取数据特征。最后,准备好的数据通常会被分为训练集、验证集(针对某些算法)和测试集。训练集用于根据选定的 ML 算法训练模型,而验证集则用于调整超参数,以优化训练后的模型。训练过程结束后,通过比较预测输出和相应的已知结果,使用测试集评估训练模型的预测和泛化能力。
2.2. Algorithm selection 2.2.算法选择
ML 的兴起可以追溯到 20 世纪 50 年代,当时 Donald Hebb 提出了希比学习理论(Hebb, 1949),之后各种 ML 算法应运而生。一般来说,ML 算法可根据数据类型和工作要求分为三类:监督学习、无监督学习和强化学习(某种分类还包括半监督学习)。此外,还讨论了深度学习(DL)在水资源利用和污染控制方面的应用,因为DL和ML之间有着密不可分的关系。Fig. 1 概述了已审查的 ML 算法及其在自然和工程水系统领域的应用。

Fig. 1. Reviewed machine learning algorithms and their applications in natural and engineered water systems.
图 1。回顾了机器学习算法及其在自然和工程水系统中的应用。
监督学习算法通常用于处理标记数据,使用回归法预测连续集合的值,或使用分类法预测离散集合的类别。对于回归分析,最小二乘法(LSM)长期以来一直被用于许多算法中,因为它可以找到最佳函数参数,使预测值与实际值之间的误差平方和最小。基于 LSM,最简单的 ML 算法线性回归通常适用于数据集规模相对较小且数据内部存在线性关系的情况(Fig. 2a )。在处理非线性关系时,同样基于 LSM 的多项式回归是更好的选择,因为它可以通过调整变量的幂来灵活地拟合非线性数据(Fig. 2b )。通过使用线性回归和多项式回归,可以实现快速建模、直观解释和对异常值的准确敏感性。除了线性回归和多项式回归,脊回归、Lasso 回归和 ElasticNet 回归也是其他领域常用的回归算法。至于分类任务,长期以来一直使用的是天真贝叶斯(NB)分类器和逻辑回归(LR)。NB 分类器可以根据事件的现有先验概率计算出所需的后验概率,然后更新新获得的概率来执行后续任务。LR 应用 sigmoid 函数对预测值进行归一化处理,从而计算出事件发生的概率,并将其与选定的阈值(通常为 0.0)进行比较。5)来生成预测的二元结果(是或否)。

Fig. 2. A chart of the common algorithms applied in this review.
图 2。本综述采用的常用算法图。
除了上述专为回归或分类开发的算法外,还有许多其他算法可同时用于回归和分类。K 近邻(kNN)可以根据样本在特征空间中的相邻值来预测样本的值或类别。在回归时,k 个近邻的平均值被视为预测结果,而在分类时,则输出 k 个近邻中出现最多的类别(Fig. 2c)(Altman, 1992 )。此外, 支持向量机(SVM)的目的是根据两类样本之间间隔最大化的原则找到一个超平面来分割样本(Fig. 2d )。为解决分类或回归问题,SVM 可分为支持向量分类(SVC)和支持向量回归(SVR)(Kadyrova and Pavlova, 2014 )。决策树(DT)也是一种流行的树形结构算法。它由一个根节点、几个内部节点和叶节点组成,分别代表所有样本集、属性测试和决策结果(Fig. 2 e)。DT 算法的决策过程从根节点开始,然后将测试数据与特征节点进行比较。 然后,算法根据属性测试结果选择下一个比较分支。最后输出叶节点的结果作为最终决策结果(Myles et al.)由于 DT 算法可以同时解决分类和回归问题,因此也被称为分类回归树(CART)。此外,为了提高 DT 算法的性能,人们还开发了许多衍生的 DT 算法,如提升决策树(BDT)、梯度提升决策树(GBDT)和随机森林(RF)。其中,RF 是一种由许多决策树组成的集合算法,每棵树都会从输入数据中随机取样,独立生成预测结果。在所有树输出其决定后,它们投票选出最合适的结果,作为该 RF 模型的最终预测结果(Fig. 2f)(Breiman, 2001)。除上述算法外,人工神经网络(ANN)是综述研究中最常用的算法。感知器是人工神经网络的结构单元,它由输入单元和输出单元以及它们之间的连接权重组成。通过调整权重连接的值,不同的输入信息会对输出产生不同的影响(Fig. 2g) (Rosenblatt, 1957).感知器算法是一种线性分类模型,适用于处理线性可分离数据。通过组合多个感知器并引入隐藏层和激活函数,multilayer perceptron (MLP) 算法被提出,并能够处理多维数据(Fig. 2h)(Clark, 1991 )。但是,MLP 是一种全局近似算法,每次学习样本时都要重新调整网络中的所有权值。因此,MLP 的缺点是收敛速度慢,容易陷入局部最优。径向基函数神经网络(RBF NN)是另一种常见的 ANN 算法(Fig. 2i )。它采用径向基函数作为激活函数,只调整指定域中的权值连接。因此,RBF NN 具有收敛速度快、不受局部最优问题影响的优点(Lee and Chang, 2003)。此外,自适应神经模糊推理系统(ANFIS)也是一种常用的 ANN 衍生算法。ANFIS 可定义为一种多层前馈网络,它采用模糊推理将输入空间映射到输出空间。 ANFIS 允许实现高度非线性映射,与普通线性方法相比,ANFIS 在生成非线性时间序列方面更具优势(Jang, 1993 )。
无监督学习算法通常用于揭示未标记样本数据的内在特征和规则。它们通常用于降维、聚类和异常检测(也称为离群点检测)。主成分分析(PCA)是无监督降维的一种代表性方法。顾名思义,PCA 的目的是找到最基本的特征或生成一个新的特征来描述原始数据集,从而降低数据集的维度,以最小的信息损失提高可解释性(Jolliffe and Cadima, 2016)。K-Means 是一种常用的聚类分析方法。它可以通过最小化经验平均值与聚类中的点之间的平方误差,找到一个分区,将数据组织成可区分的分组(Jain, 2010)。隔离林、高斯分布和局部离群因子 (LOF) 也是异常检测的常用算法。它们通常用于检测分布稀疏且远离大多数数据的样本(Ariyaluran Habeeb et al.,2019)。与直接预测数据的监督学习算法不同,非监督学习算法在本文回顾的研究中通常用于数据解释。
2.3. Model evaluation 2.3.模型评估
人们提出了许多方法来评估 ML 模型的性能。回归算法的评估参数主要包括偏差、方差、平均绝对误差 (MAE)、平均平方误差 (MSE) 和 R 平方 (R2) 等。偏差是指预测结果与实际值之间的差异,而方差则代表偏离总样本平均值的程度。MAE 是每个样本偏差绝对值的平均和。它可以避免正负误差相互抵消的问题,从而反映预测的实际误差。MSE 是每个样本偏差平方和的平均值。通常情况下,为了保持评价指标和样本值处于同一数量级,MSE 采用求根的方法得到均方根误差(RMSE),这也是常用的性能衡量标准。此外,R2也称为判定系数,用于描述回归函数与观测值的拟合程度。R2 值介于 0 和 1 之间;R2 值越接近 1,模型与数据的拟合程度越高。
对于分类算法来说,准确率是最常用的评价指标,它是指正确分类的样本占样本总数的比例。此外,精确度(P)和召回率(R)也是广泛使用的分类器评估指标。根据真实类别和预测类别,预测结果可分为真阳性(TP)、假阳性(FP)、真阴性(TN)和假阴性(FN)(Table 1 )。P 的定义是正确分类的阳性样本占阳性样本总数的比例,而 R 则是正确分类的阳性样本占正确分类样本总数的比例。对于理想的分类器来说,P 和 R 的值都应尽可能高。但在实际情况中,一个值会增加,而另一个值会减少。因此,Fβ 分数,即 P 值和 R 值的加权调和平均值,被用来平衡 P 值和 R 值。Fβ 表示为 Eq. (1) ,其中 β 衡量 R 对 P 的相对重要性。 (1) 其中,当 β >1 时,R 比 P 重要;反之,当 β <1 时,P 比 R 重要。当 β =1 时,Fβ 被转换为 F1 分数,代表 R 和 P 之间的平衡。
Table 1. Confusion matrix.
表 1。混淆矩阵。
True classification 真实分类 | Predicted classification 预测分类 | |
---|---|---|
True 正确 | False 假的 | |
True 正确 | True Positive (TP) 真阳性 (TP) | False Negative (FN) 假阴性 (FN) |
False 假的 | False Positive (FP) 假阳性 (FP) | True Negative (TN) 真阴性 (TN) |
3. Water quality prediction and management in natural water systems
3.自然水系的水质预测和管理
天然水,包括河流、湖泊、地下水和海洋,是人类生活和生产活动最重要的水源。为了更好地管理和利用天然水资源,不同国家和地区采用了基于一系列水质指标(WQIs)的各种评价方案。物理指标包括温度、颜色、浑浊度、电导率(EC)、悬浮固体(SS)和总固体(TS)。化学指标包括 pH 值、溶解氧 (DO)、生化需氧量 (BOD)、化学需氧量 (COD)、总有机碳 (TOC)、碱度、氨氮、总磷 (TP) 和总氮 (TN)、肠球菌)(Uddin et al、2021)。近年来,许多研究将 ML 方法应用于自然水环境中的水质预测和水资源管理 。下面总结了 ML 的相关代表性应用,包括预测水质 WQIs(如溶解氧、FIB 和 Chl-a 或其他多指标)、绘制地下水中污染物分布图、根据不同标准对水资源进行分类、追踪污染源以及评估污染物毒性等。
3.1. Predicting water quality
3.1.预测水质
溶解氧(DO)浓度是评估水生环境生态健康状况的关键参数。这一浓度是产氧(例如,光合作用和空气扩散)和耗氧(例如,有氧呼吸、硝化反应)之间平衡的结果、Olyaie et al.在这些复杂过程的影响下,传统的基于过程的模型或统计方法很难模拟溶解氧水平。相反,数据驱动的 ML 不考虑溶解氧的累积机制,只分析不同参数之间的统计和数学关系。例如,选择温度、pH 值、导电率和排水量等 WQIs 作为输入,训练两种类型的 ANN 模型来预测福泉溪下游和上游的溶解氧浓度。与 MLP 模型(Ay ;和 Kisi, 2012)。然而,RBF NN 在预测地中海和加沙地区溶解氧浓度时不如 MLP 准确,这可能与数据库较小有关,因为 RBF NN 对数据量更敏感(Zaqoot ;et al.,2009)。为了提高 RBF 神经网络的性能,一般回归神经网络(GRNN)对 RBF 的结构进行了修改,将隐藏层和输出层之间的权值连接改为求和层,以减少对数据量的需求。在预测多瑙河溶解氧浓度时,仅使用少量数据考察了 MLP、GRNN 和递归神经网络(RNN)的性能。结果表明,GRNN 的性能优于 MLP。但是,GRNN 的性能不如 RNN 模型,因为 RNN 模型配备了一个额外层,可以在需要时存储和转换之前的输入信息作为决策参考(Fig. 2J)(J and W, 2011)。经过测试的 RNN 对溶解氧的预测效果要好得多,所有结果的误差都在±10% 以下(Antanasijevic et al., 2013b)。然而,由于先前的信息是按顺序存储在 RNN 中的,过多的信息会使远期信息难以学习,从而造成长期依赖问题。为了解决这个问题,我们开发了长短时记忆(LSTM)算法,将以前的信息存储在存储单元中,需要时通过门打开这些存储单元以传输信息(图)。 2K)(Greff et al.)使用 CAMELS-chem 数据库(该数据库收集了美国 236 个最小干扰流域的溶解氧信息),将 LSTM 应用于预测大陆尺度的河流溶解氧浓度。最终,拟议的 LSTM 模型取得了令人满意的预测结果,其纳什-苏特克利夫效率(NSE)的平均值和中值分别为 0.60 和 0.78(NSE 的平均值和中值分别为 0.60 和 0.78)。78 (Fig. 3A) (Zhi et al、2021)。由于研究的空间位置和规模不同,以及变量的选择和数据量的差异,不同研究之间的比较无疑是困难的。不过,通过在同一研究中进行直接比较,以及对表 S1 中列出的不同研究进行交叉比较,发现 MLP 在数据量较小(数据量小于 1000)的情况下表现良好,而 SVM 在数据量较大(数据量大于 1000)的情况下表现较好。此外,考虑到研究中用于预测溶解氧的变量通常基于时间序列,因此也推荐使用 LSTM,因为它是专为时间序列任务设计的,可以将有用的信息从过去带到未来。此外,它所依赖的环境变量较少,从而节省了数据收集成本。

Fig. 3. The applications of ML in predicting water quality in the natural water environment. (A) The application of the LSTM model in predicting river DO concentrations across the continental United States. Reproduced from (Zhi et al. 2021) with permission. Copyright (2021) American Chemical Society. (B) Balanced data for Clarks Beach, green dot: below sample, blue dot: above sample, brown dot: ADASYN sample. Reproduced from (Xu et al. 2020) with permission. Copyright (2020) Elsevier Ltd. (C) Monthly mean Chl-a concentration derived from Aqua-MODIS by BME/SVR. Reproduced from (He et al. 2020) with permission. Copyright (2019) Elsevier Ltd. (D) RGB Channel separation diagram of a pond water sample. Reproduced from (Li et al. 2020b) with permission. Copyright (2020) Elsevier Ltd. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
图 3。应用 ML 预测自然水环境中的水质。(A) LSTM 模型在预测美国大陆河流溶解氧浓度中的应用。经授权转载自(Zhi 等,2021 年)。美国化学学会版权所有 (2021)。(B) 克拉克斯海滩的平衡数据,绿点:样本下方,蓝点:样本上方,棕点:ADASYN 样本:ADASYN 样本。经授权转载自(Xu 等,2020 年)。Copyright (2020) Elsevier Ltd. All Rights Reserved.(C) 通过 BME/SVR 从 Aqua-MODIS 得出的月平均 Chl-a 浓度。经授权转载自 (He et al. 2020)。版权所有 (2019) 爱思唯尔有限公司。(D) 池塘水样的 RGB 通道分离图。 经授权转载自(Li et al.版权 (2020) 爱思唯尔有限公司。(本图例中有关颜色的解释,请读者参阅本文网络版)。
饮用被粪便污染的水或娱乐用水有可能导致胃肠道和呼吸道疾病(Haile et al、1999)。总大肠菌群、粪大肠菌群(或大肠杆菌)和肠球菌通常被用作粪便指示菌 (FIB),以确定水体粪便污染的特征。然而,常用的 FIB 定量方法,如多管发酵、膜过滤和特定酶检测,通常需要 18-72 ;小时,而流式细胞术、ATP 检测、在线光学传感器、和定量 PCR成本高昂(García-Alba ;et al.,2019)。不过,数据驱动的 ML 可以依靠容易获得的环境条件信息(如降水、排水和潮汐)提供实时预测,下文将对具有代表性的研究进行回顾。例如,根据肯塔基河的相关物理、化学和细菌学数据,使用 MLP 模型来填补数据集中缺失的微生物数据。与误差值较小的传统估算或回归模型相比,MLP 的性能更为精确。 此外,拟议的 MLP 模型还能准确地将观测数据划分为河流系统中粪大肠菌群浓度的两个定义范围,尤其是当 FIB 浓度低于 200 CFU/100 mL 时(Chandramouli et al、2007)。此外,当 FIB 的安全浓度被设定为分类阈值时,ML 也可应用于娱乐地表水的水质警告。例如,在监测加利福尼亚南部沿海水域的粪便污染时,MLP 准确地预测了三种 FIB 的含量,FP 和 FN 的比率低于 10%,因此足以对海滩关闭或警告做出快速可靠的决定(He and He, 2008 )。除 ANN 模型外,其他一些算法(如 CART、RF 和贝叶斯网络)也被用于预测 FIB 浓度,以提供有关水安全的信息(Thoe et al., 2014)。虽然上述模型表现良好,总体准确率较高,但数据集的不平衡可能会降低预测的灵敏度。造成数据不平衡的原因是,数据集中的大部分数据通常低于指导阈值,而少数数据超过了指导阈值。这增加了训练模型时多数类过度拟合和少数类信息丢失的可能性(Batista et al.,2004)。为了解决这个问题,我们采用了自适应合成(ADASYN)采样算法,利用线性插值在两类之间的边界创建更多样本(Fig. 3 B)。之后,提出的 kNN、BDT 和 MLP 模型都提供了良好的预测,灵敏度相对较高,约为 75%,总体准确率超过 90%(Xu et al., 2020)。除了 ADASYN 之外,最近还应用了合成少数超采样技术(SMOTE)来解决 FIB 预测中的数据不平衡问题。SMOTE 是一种基于最近邻思想的技术,用于合成少数类的新样本。与 SMOTE 的结合提高了六种测试算法的性能。例如,与基线相比,RF 的真阳性率提高了 50%(Bourel et al., 2021)。这两项研究中提出的方法为训练 ML 模型的数据准备提供了新的见解。此外,无论采用哪种算法进行 FIB 预测,准确率总是用来评估所提出模型的性能。然而,如果假定高假阴性(FN)率对健康的潜在影响大于高假阳性(FP)率带来的不必要的娱乐用水关闭风险,那么准确性可能不足以评估模型。因此,(Stidson et al.(Stidson 等人,2012))更重视假阴性率(FN)而非其他指标。这是因为高 FN 率意味着将危险情况预测为安全情况(Motamarri and Boccelli, 2012)。因此,在评估 ML 模型的性能时,应根据实际需求考虑多样化的评估标准。根据表 S2,在以往对 FIB 进行建模的研究中,MLP 是使用最广泛的算法,但在解决数据不平衡问题的研究中,基于 DT 的算法(如 BDT、CART 和 RF)表现更好。此外,基于 DT 的模型比神经网络模型更具可解释性,对理解和防止 FIB 超过安全标准更有指导意义。因此,基于 DT 的模型结合数据不平衡处理技术更适合用于 FIB 预测。
水生环境中适量的浮游植物可以通过光合作用产生氧气和吸收 二氧化碳,从而改善水质(Durham ;et al.,2015)。然而, 水体 富营养化 水体 将促进 浮游植物的快速生长、从而导致藻类大量繁殖等水生环境问题(Ma ;et al.,2015)。藻华会遮蔽底栖初级生产者的阳光,降低溶解氧水平,积累有毒代谢物,威胁生态和人类(Conley et al.)因此,预报藻华或确定控制藻华产生的关键因素,对于防止藻华的有害影响非常重要(Recknagel et al.)为实现这一目的,提出了各种模型,包括经验模型、确定性模型、时间序列分析模型和模糊逻辑模型(Yabunaka et al.) 通过识别影响藻类生物量生长和积累的环境因素来模拟藻类繁殖的非线性过程,ML 也被用于预测藻类繁殖(Karul et al、2000; Lee et al.)不过,控制藻类生物量的环境因素因研究不同而各异。例如,据报道,水流和温度在决定蓝藻生长的开始和持续时间方面起着主导作用,而水色则控制着 藻群生长高峰的大小(Maier et al.)此外,控制因素对不同蓝藻菌属的重要性也因物种而异。具体来说,Anabaena 和 Microcystis 对平均流量的敏感度最高、而对于Planktolyngbya 和Oscillatoria、是温度,Cylindrospermopsis 是水色。 因此,由于构成藻华的浮游植物种类繁多,很难通过单一的环境变量来预测藻华的强度和频率,也很难通过调整少数影响因素来控制藻华的生物量(Nelson et al、2018)。在过去的几十年中,遥感技术的发展使得在大时空尺度上直接观测和研究藻华成为可能。最近,ML 也被用于分析 遥感数据(Lary et al.)例如,中等分辨率成像分光辐射计数据被用于估算加拿大圣劳伦斯湾的 Chl-a 浓度(Fig. 3 C)。在这项研究中,10 种反射率(Rrs)遥感与 8 种不同的 ML 算法相结合来预测藻华。比较结果表明,使用 412、443、488、531 和 678 nm 波长的反射率,SVR 模型获得了最佳性能(He et al., 2020)。 此外,其他一些遥感数据,如SeaWiFS, 也被用于估算藻华的 Chl-a 浓度,以预测藻华(Campsvalls ;et al.,2006; Keiner 2010 )。除了以遥感数据的形式预测 Chl-a 外,遥感技术 还可以提供高光谱图像来模拟藻类细胞的浓度。在一项预测蓝藻细胞浓度的研究中,(Pyo et al、2021)开发了一种带有卷积块注意模块(CNNan)的卷积神经网络(CNN)模型,该模块可以强调有价值的信息,抑制无价值的信息,从而提高 CNN 在图像识别方面的性能。与传统的流体动力学模型和 CNN 相比,CNNan 的性能更好,NSE 更高而 RMSE 更小(表 S3)(Pyo et al., 2021)。如本节所述,影响不同藻类生长的因素各不相同,而一个自然水体往往同时含有多种类型的藻类。因此,在预测藻类或 Chl-a 之前,往往需要对所有可用的水体相关参数进行筛选,以确定影响因素,这既费时又费力。 遥感和图像识别技术不考虑复杂的水质参数,而是直接使用颜色信息,而颜色信息是富含 Chl-a 或藻类的水体相对于其他污染水体的主要特征之一。因此,基于遥感信息或高光谱图像的算法无疑是预测藻类或 Chl-a 浓度的最佳选择。
3.2. Mapping groundwater contaminants

Fig. 4. The applications of ML in mapping groundwater contaminants. (A) Modeled probability of arsenic concentration in groundwater exceeding 10 μg/L for the entire globe. Reproduced from (Podgorski and Berg 2020) with permission. Copyright (2020) The American Association for the Advancement of Science. (B) Areas of aquifers with fluoride concentrations exceeding 1.5 mg/L in India, and neighboring countries of Bangladesh, Bhutan, Nepal, and Sri Lanka. Reproduced from (Podgorski et al. 2018) with permission from ACS AuthorChoice. (C) Modeled probability of high Mn indicated by Mn > 300 μg/L in the northern continental United States. Reproduced from (Erickson et al. 2021) with permission from ACS AuthorChoice.
3.3. Classifying water resources

Fig. 5. The applications of ML in water resource and pollutant management in the natural water environment. (A) The surface water quality prediction performance of DT, RF, and DCF using (a) DO, CODMn, and NH3-N; (b) CODMn and NH3-N. Reproduced from (Chen et al. 2020a) with permission. Copyright (2020) Elsevier Ltd. (B) Schematic of a high-throughput DNA-sequencing approach for determining sources of fecal bacteria in the Lake Superior estuary. Reproduced from (Brown et al. 2017) with permission. Copyright (2017) American Chemical Society. (C) Schematic of tracking the sources of antibiotic resistance genes in an urban stream during wet weather. Reproduced from (Baral et al. 2018) with permission. Copyright (2018) American Chemical Society. (D) Schematic of tracing the sources of sediment based on the correlation between the sediment bacteria's alpha diversity, aquatic environmental variables, and aquatic sediment in Dongting Lake. Reproduced from (Zhang et al. 2019a) with permission. Copyright (2019) American Chemical Society. (E) Schematic of the computational process used to generate and validate microbial source tracking models with Ichnaea®. Reproduced from (Balleste et al. 2020) with permission. Copyright (2020) Elsevier Ltd. (F) Schematic of a perturbation theory machine learning (PTML) based QSTR approach for predicting the genotoxicity of metal oxide nanomaterials. Reproduced from (Halder et al. 2020) with permission. Copyright (2019) Elsevier Ltd.
3.4. Tracing contaminant sources
3.5. Evaluating pollutant toxicity
4. Technology optimization and operation monitoring in engineered water systems
4.1. Modeling treatment technique

Fig. 6. The applications of ML in modeling adsorption and oxidation processes, and assisting characterization analysis. (A) Predicting aqueous adsorption of organic compounds onto biochars, carbon nanotubes, granular activated carbons, and resins with machine learning. Reproduced from (Zhang et al. 2020) with permission. Copyright (2020) American Chemical Society. (B) Schematic for prediction of oxidant exposures and micropollutant abatement during ozonation. Reproduced from (Cha et al. 2020) with permission. Copyright (2021) American Chemical Society. (C) Schematic for the understanding of DOM reactivity in freshwater. Reproduced from (Herzsprung et al. 2020) with permission. Copyright (2020) American Chemical Society. (D) Fully CNN for detection and counting of diatoms after short-term field exposure. Reproduced from (Krause et al. 2020) with permission. Copyright (2020) American Chemical Society. (E) Hyperspectral imaging-based method for rapid detection of microplastics in the intestinal tracts of fish. Reproduced from (Zhang et al. 2019c) with permission. Copyright (2019) American Chemical Society. (F) Rapid identification of marine plastic debris via spectroscopic techniques and ML classifiers. Reproduced from (Michel et al. 2020) with permission. Copyright (2020) American Chemical Society.
4.2. Assisting characterization analysis
4.3. Purifying and distributing drinking water

Fig. 7. The applications of ML in water purification and distribution. (A) Representation of predictions for KMnO4 demand time-series. Reproduced from (Godo-Pla et al. 2019) with permission. Copyright (2019) Elsevier Ltd. (B) The optimal model of ANN for predicting real-time coagulant dosage in water treatment. Reproduced from (Wu and Lo 2008) with permission. Copyright (2008) Elsevier Ltd. (C) The comparison of observed and simulated 3D fouling images (The unit of the axis is μm). Reproduced from (Park et al. 2019) with permission. Copyright (2019) Elsevier Ltd. (D) Comparisons of ANN predictions with experimental measurements for DBP formation in conventionally treated waters. Reproduced from (Kulkarni and Chellam 2010) with permission. Copyright (2010) Elsevier Ltd. (E) Forecasts of chlorine in a water distribution system at Aldinga. Reproduced from (Bowden et al. 2006) with permission. Copyright (2006) Elsevier Ltd. (F) Schematic for predicting DBPs in a DWDS. Reproduced from (Lin et al. 2020) with permission. Copyright (2020) Elsevier Ltd. (G) Actual and predicted search volume for symptoms of gastrointestinal illness with the RF and bagged CART models. Reproduced from (Shortridge and Guikema 2014) with permission. Copyright (2014) Elsevier Ltd.
4.4. Collecting and treating sewage water

Fig. 8. The applications of ML in wastewater collection and treatment. (A) Variable importance estimated by RF model in determining self-cleansing velocity: (a) without deposited bed; (b) with a deposited bed. Reproduced from (Montes et al. 2020) with permission. Copyright (2020) Elsevier Ltd. (B) Overview of the defect classification and location recognition framework for sewer line assessment system. Reproduced from (Hassan et al. 2019) with permission. Copyright (2019) Elsevier Ltd. (C) Schematic flow diagram of the BPANN-AO + ALK/ULS system to remove ammonia nitrogen. Reproduced from (Yang et al. 2021) with permission. Copyright (2020) Elsevier Ltd. (D) Observed and predicted sludge volume index in Batna wastewater treatment plant. Reproduced from (Djeddou and Achour 2015) with permission. Copyright (2015) Larhyss Journal. (E) Comparison of experimental and ANN model predicted values for trichloroethylene concentration. Reproduced from (Baskaran et al. 2020) with permission. Copyright (2019) Elsevier Ltd. (F) Comparison of the measured and ANN predicted results for mercury removal efficiency. Reproduced from (Yaqub and Lee 2020) with permission. Copyright (2019) Elsevier Ltd. (G) Forecast N2O concentrations from (a) the DNN-based model and (b) the LSTM-based model over the fixed prediction horizon (1 day). Reproduced from (Hwangbo et al. 2021) with permission. Copyright (2021) Elsevier Ltd.
5. Discussion, conclusions, and prospects
5.1. Discussion and conclusions
Table 2. Recommendations on the selection of ML algorithm in different research directions of water science.
Means | Applications | Algorithm recommended | Algorithm characteristics | Applicable conditions | |
---|---|---|---|---|---|
Regression | Predicting water quality | MLP | Simple structure; slow convergence, local optimum, black box | Fewer features | Data with big volume |
Evaluating pollutant toxicity | RBF NN | Strong generalization, fast convergence; complex structure, black box | Data with small volume | ||
Modeling treatment technique | CART | Interpretable, fast training; easy to over-fitting, | Data with a balanced sample size for each category | ||
Assisting characterization analysis | RF | Interpretable, fast training, anti- overfitting, no need for feature selection; calculation burden | More features | Data with less noisy | |
Purifying and distributing drinking water | LSTM | Long-time memory; complex structure, black box, calculation burden | Data of time series | ||
Collecting and treating sewage water | DNN | Strong ability in fitting, feature extraction, and fault tolerance; complex structure, black box, calculation burden | Data with a huge volume | ||
Classification | Classifying water resources | CART | As mentioned above | Fewer features | As mentioned above |
Mapping groundwater contaminants | RF | As mentioned above | More features | As mentioned above | |
Data mining | Evaluating pollutant toxicity | DNN | As mentioned above | Usually, the volume of data is huge and molecular descriptors are needed | |
Modeling treatment technique | |||||
Image recognition | Predicting water quality | CNN | Automatic feature extraction | The sample is presented in the form of images | |
Assisting characterization analysis | |||||
Purifying and distributing drinking water | |||||
Collecting and treating sewage water |
5.2. Prospects
- i)As analyzed above, there was not a perfect algorithm for all tasks necessary for the water science field. Algorithms with simple structures typically have defects in performance (e.g., MLP and CART), while those with excellent performance often possess complex structures, thus increasing the difficulty of programming and the hardware cost of operation (e.g., DNN). Therefore, according to the characteristics of the data in water-related research, such as a moderate amount of time series data, algorithms with simple structures, high performance, and strong interpretability are encouraged to be developed. Moreover, the graphical user interface (e.g., the graphical user interface designed for modeling adsorption processes) or user-friendly data analytics tools (e.g., SourceTracker) designed specifically for water-related studies can also reduce the cost and difficulties of researchers encounter when using ML techniques.
- ii)Data mining is helpful to collect data from similar studies to form big data, thus revealing underlying rules or providing a data basis for other big data researchers. However, in traditional research areas, including water science, data from other studies are often difficult to obtain. Open data and the sharing of data are common ways to provide rich data sources for datasets in the application of ML. However, open source data in water science field seems to be insufficient compared to other fields where ML techniques have been applied earlier and utilized more in depth, e.g., drug research (Vamathevan et al., 2019), biological research (Camacho et al., 2018), and solid Earth geosciences (Bergen et al., 2019), for which many open source data platforms have been developed. Therefore, the concept of open source data and the sharing of data is expected to be accepted and practiced more widely in the water research community, and researchers are encouraged to share their research data without any conflict of interest or legal and regulatory restrictions.
- iii)The programming and implementation of ML models depend on the researchers' computer skills and mastery of algorithms, which are difficult for most water researchers to grasp in a short amount of time. To lower the threshold for researchers to use the ML technologies, interdisciplinary communication and cooperation with data researchers are beneficial. Under this framework of cross-disciplines, data researchers can provide professional suggestions on data processing and modeling, while water researchers can interpret the output of the model with expert knowledge. Moreover, with the help of data researchers, some cutting-edge algorithms can also be used to solve problems in water science field.
Declaration of Competing Interest
Acknowledgment
Appendix. Supplementary materials
References
- Abdollahi et al., 2014Artificial neural network modelling of photodegradation in suspension of manganese doped zinc oxide nanoparticles under visible-light irradiationScientificWorldJournal, 2014 (2014), Article 726101
- Ai et al., 2019QSAR modelling study of the bioconcentration factor and toxicity of organic compounds to aquatic organisms using machine learning and ensemble methodsEcotoxicol. Environ. Saf., 179 (2019), pp. 71-78
- Al Aani et al., 2019Can machine language and artificial intelligence revolutionize process automation for water treatment and desalination?Desalination, 458 (2019), pp. 84-96
- Alejo et al., 2018Effluent composition prediction of a two-stage anaerobic digestion process: machine learning and stoichiometry techniquesEnviron. Sci. Pollut. Res., 25 (21) (2018), pp. 21149-21163
- Altman, 1992An introduction to kernel and nearest-neighbor nonparametric regressionAm. Stat., 46 (3) (1992), pp. 175-185
- Álvarez et al., 2016The use of genetic algorithms in response surface methodologyQual. Technol. Quant. Manage., 6 (3) (2016), pp. 295-307
- Amini et al., 2008Statistical modeling of global geogenic fluoride contamination in groundwatersEnviron. Sci. Technol., 42 (10) (2008), pp. 3662-3668
- Anning et al., 2012Predicted Nitrate and Arsenic Concentrations in Basin-Fill Aquifers of the Southwestern United States(2012), p. 5065Scientific Investigations Report
- Antanasijevic et al., 2013aModelling of dissolved oxygen content using artificial neural networks: Danube River, North Serbia, case studyEnviron. Sci. Pollut. Res., 20 (12) (2013), pp. 9006-9013
- Antanasijevic et al., 2013bModelling of dissolved oxygen content using artificial neural networks: Danube River, North Serbia, case studyEnviron. Sci. Pollut. Res. Int., 20 (12) (2013), pp. 9006-9013
- Arad et al., 2013A dynamic thresholds scheme for contaminant event detection in water distribution systemsWater Res., 47 (5) (2013), pp. 1899-1908
- Ariyaluran Habeeb et al., 2019Real-time big data processing for anomaly detection: a SurveyInt. J. Inf. Manage., 45 (2019), pp. 289-307
- Ay and Kisi, 2012Modeling of dissolved oxygen concentration using different neural network techniques in foundation Creek, El Paso County, ColoradoJ. Environ. Eng., 138 (2012), pp. 654-662
- Ayotte et al., 2017Estimating the high-arsenic domestic-well population in the conterminous United StatesEnviron. Sci. Technol., 51 (21) (2017), pp. 12443-12454
- Ayotte et al., 2016Predicting arsenic in drinking water wells of the central valley, CaliforniaEnviron. Sci. Technol., 50 (14) (2016), pp. 7555-7563
- Ayotte et al., 2006Modeling the probability of arsenic in groundwater in New England as a tool for exposure assessmentEnviron. Sci. Technol., 40 (2006), pp. 3578-3585
- Azamathulla et al., 2012ANFIS-based approach for predicting sediment transport in clean sewerAppl. Soft Comput., 12 (3) (2012), pp. 1227-1230
- Azqhandi et al., 2019A highly effective, recyclable, and novel host-guest nanocomposite for Triclosan removal: a comprehensive modeling and optimization-based adsorption studyJ. Colloid Interface Sci., 551 (2019), pp. 195-207
- Baek et al., 2021Replacing the internal standard to estimate micropollutants using deep and machine learningWater Res., 188 (2021), Article 116535
- Balleste et al., 2020Improving the identification of the source of faecal pollution in water using a modelling approach: from multi-source to aged and diluted samplesWater Res., 171 (2020), Article 115392
- Baral et al., 2018Tracking the sources of antibiotic resistance genes in an urban stream during wet weather using shotgun metagenomic analysesEnviron. Sci. Technol., 52 (16) (2018), pp. 9033-9044
- Barzegar et al., 2020Short-term water quality variable prediction using a hybrid CNN–LSTM deep learning modelStoch. Environ. Res. Risk Assess., 34 (2) (2020), pp. 415-433
- Baskaran et al., 2020Performance evaluation and neural network modeling of trichloroethylene removal using a continuously operated two-phase partitioning bioreactorEnviron. Technol. Innov., 17 (2020), Article 100568
- Batista et al., 2004A study of the behavior of several methods for balancing machine learning training dataACM SIGKDD Explor. Newslett., 6 (1) (2004), pp. 20-29
- Bergen et al., 2019Machine learning for data-driven discovery in solid Earth geoscienceScience, 363 (6433) (2019), Article 6433
- Bindal and Singh, 2019Predicting groundwater arsenic contamination: regions at risk in highest populated state of IndiaWater Res., 159 (2019), pp. 65-76
- Bolton et al., 1996Figures-of-merit for the technical development and application of advanced oxidation processesJ. Adv. Oxid. Technol., 1 (1996), pp. 13-17
- Bonakdari and Larrarte, 2006Experimental and Numerical Investigation on Self Cleansing and Shear in SewersVienna, Austria (2006), pp. 19-26
- Borhani et al., 2016QSPR prediction of the hydroxyl radical rate constant of water contaminantsWater Res., 98 (2016), pp. 344-353
- Bourel et al., 2021Machine learning methods for imbalanced data set for prediction of faecal contamination in beach watersWater Res., 202 (2021), Article 117450
- Bowden et al., 2006Forecasting chlorine residuals in a water distribution system using a general regression neural networkMath. Comput. Model., 44 (5–6) (2006), pp. 469-484
- Breiman, 2001Random forestMach. Learn., 45 (2001), pp. 5-32
- Breiman et al., 1984Classification and Regression TreesWadsworth International Group, Belmont, CA, USA (1984)
- Bretzler et al., 2017Groundwater arsenic contamination in Burkina Faso, West Africa: predicting and verifying regions at riskSci. Total Environ., 584-585 (2017), pp. 958-970
- Brown et al., 2017A high-throughput DNA-sequencing approach for determining sources of fecal bacteria in a lake superior estuaryEnviron. Sci. Technol., 51 (15) (2017), pp. 8263-8271
- Camacho et al., 2018Next-generation machine learning for biological networksCell, 173 (7) (2018), pp. 1581-1592
- Campsvalls et al., 2006Retrieval of oceanic chlorophyll concentration with relevance vector machinesRemote Sens. Environ., 105 (1) (2006), pp. 23-33
- Castrillo and Garcia, 2020Estimation of high frequency nutrient concentrations from water quality surrogates using machine learning methodsWater Res., 172 (2020), Article 115490
- Cha et al., 2020Prediction of oxidant exposures and micropollutant abatement during ozonation using a machine learning methodEnviron. Sci. Technol., 55 (1) (2020), pp. 709-718
- Cha et al., 2016Bayesian modeling approach for characterizing groundwater arsenic contamination in the Mekong River basinChemosphere, 143 (2016), pp. 50-56
- Chandramouli et al., 2007Backfilling missing microbial concentrations in a riverine database using artificial neural networksWater Res., 41 (1) (2007), pp. 217-227
- Chau, 2006A review on integration of artificial intelligence into water quality modellingMar. Pollut. Bull., 52 (7) (2006), pp. 726-733
- Che Osmi et al., 2016Development of river water quality management using fuzzy techniques: a reviewInt. J. River Basin Manage., 14 (2) (2016), pp. 243-254
- Chen et al., 2020aComparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big dataWater Res., 171 (2020), Article 115454
- Chen et al., 2020bA Review of the Artificial Neural Network Models for Water Quality PredictionApplied Sciences, 10 (17) (2020), Article 5776
- Cho et al., 2011Prediction of contamination potential of groundwater arsenic in Cambodia, Laos, and Thailand using artificial neural networkWater Res., 45 (17) (2011), pp. 5535-5544
- Chong et al., 2010Recent developments in photocatalytic water treatment technology: a reviewWater Res., 44 (10) (2010), pp. 2997-3027
- Chowdhury et al., 2010Comparison of ordinary kriging and artificial neural network for spatial mapping of arsenic contamination of groundwaterStoch. Environ. Res. Risk Assess., 24 (1) (2010), pp. 1-7
- Clark, 1991Neural network modellingPhys. Med. Biol., 36 (10) (1991), pp. 1259-1317
- Conley et al., 2009Controlling eutrophication: nitrogen and phosphorusScience, 323 (2009), pp. 1014-1015
- Dabrowski, 2001Adsorption—From theory to practiceAdv. Colloid Interface Sci., 93 (1–3) (2001), pp. 135-224
- Danso-Amoakoa and Prasad, 2014ANN model to predict the influence of chemical and biological parameters on iron and manganese accumulationProc. Eng., 70 (2014), pp. 409-418
- Dezfooli et al., 2017Classification of water quality status based on minimum quality parameters: application of machine learning techniquesModel. Earth Syst. Environ., 4 (1) (2017), pp. 311-324
- Djeddou and Achour, 2015The use of a neural network technique for the prediction of sludge volume index in municipal wastewater treatment plantLarhyss Journal, 24 (2015), pp. 351-370
- Dogo et al., 2019A survey of machine learning methods applied to anomaly detection on drinking-water quality dataUrban Water J., 16 (3) (2019), pp. 235-248
- Dummer et al., 2015Geostatistical modelling of arsenic in drinking water wells and related toenail arsenic concentrations across Nova Scotia, CanadaSci. Total Environ., 505 (2015), pp. 1248-1258
- Durham et al., 2015Cryptic carbon and sulfur cycling between surface ocean planktonProc. Natl. Acad. Sci., 112 (2015), pp. 453-457
- Elith et al., 2008A working guide to boosted regression treesJ. Anim. Ecol., 77 (4) (2008), pp. 802-813
- Elmolla et al., 2010The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton processJ. Hazard. Mater., 179 (1–3) (2010), pp. 127-134
- Erickson et al., 2021Machine-learning predictions of high arsenic and high manganese at drinking water depths of the glacial aquifer system, Northern Continental United StatesEnviron. Sci. Technol., 55 (9) (2021), pp. 5791-5805
- Fan et al., 2018A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligenceChemosphere, 200 (2018), pp. 330-343
- Fan et al., 2017Modeling and prediction of copper removal from aqueous solutions by nZVI/rGO magnetic nanocomposites using ANN-GA and ANN-PSOSci. Rep., 7 (1) (2017), p. 18040
- Frederick et al., 2016Contrasting regional and national mechanisms for predicting elevated arsenic in private wells across the United States using classification and regression treesWater Res., 91 (2016), pp. 295-304
- García-Alba et al., 2019Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuariesWater Res., 150 (2019), pp. 283-295
- Geyikçi et al., 2012Modelling of lead adsorption from industrial sludge leachate on red mud by using RSM and ANNChem. Eng. J., 183 (2012), pp. 53-59
- Ghaedi and Vafaei, 2017Applications of artificial neural networks for adsorption removal of dyes from aqueous solution: a reviewAdv. Colloid Interface Sci., 245 (2017), pp. 20-39
- Giwa et al., 2016Experimental investigation and artificial neural networks ANNs modeling of electrically-enhanced membrane bioreactor for wastewater treatmentJ. Water Process Eng., 11 (2016), pp. 88-97
- Godo-Pla et al., 2019Predicting the oxidant demand in full-scale drinking water treatment using an artificial neural network: uncertainty and sensitivity analysisProcess Saf. Environ. Prot., 125 (2019), pp. 317-327
- Greff et al., 2017LSTM: a search space odysseyIEEE Trans. Neural Netw. Learn. Syst., 28 (10) (2017), pp. 2222-2232
- Griffiths and Andrews, 2011Application of artificial neural networks for filtration optimizationJ. Environ. Eng., 137 (11) (2011), pp. 1040-1047
- Gu et al., 2020Source identification of phosphorus in the river-lake interconnected system using microbial community fingerprintsEnviron. Res., 186 (2020), Article 109498
- Haile et al., 1999The health effects of swimming in ocean water contaminated by storm drain runoffEpidemiology, 10 (4) (1999), pp. 355-363
- Halder et al., 2020A unified in silico model based on perturbation theory for assessing the genotoxicity of metal oxide nanoparticlesChemosphere, 244 (2020), Article 125489
- Hamidin et al., 2008Human health risk assessment of chlorinated disinfection by-products in drinking water using a probabilistic approachWater Res., 42 (2008), pp. 3263-3274
- Hassan et al., 2019Underground sewer pipe condition assessment based on convolutional neural networksAutom. Constr., 106 (2019), Article 102849
- Hastie et al., 2008The Elements of Statistical LearningSpringer (2008)
- He et al., 2020Space-time chlorophyll-a retrieval in optically complex waters that accounts for remote sensing and modeling uncertainties and improves remote estimation accuracyWater Res., 171 (2020), Article 115403
- He et al., 2019Insights into pesticide toxicity against aquatic organism: QSTR models on Daphnia MagnaEcotoxicol. Environ. Saf., 173 (2019), pp. 285-292
- He and He, 2008Water quality prediction of marine recreational beaches receiving watershed baseflow and stormwater runoff in southern California, USAWater Res., 42 (10–11) (2008), pp. 2563-2573
- Hebb, 1949The Organization of BehaviourWiley & Sons, New York (1949)
- Heddam et al., 2012ANFIS-based modelling for coagulant dosage in drinking water treatment plant: a case studyEnviron. Monit. Assess., 184 (4) (2012), pp. 1953-1971
- Heo et al., 2019Deep learning driven QSAR model for environmental toxicology: effects of endocrine disrupting chemicals on human healthEnviron. Pollut., 253 (2019), pp. 29-38
- Herzsprung et al., 2020Improved understanding of dissolved organic matter processing in freshwater using complementary experimental and machine learning approachesEnviron. Sci. Technol., 54 (21) (2020), pp. 13556-13565
- Hogg, 2000Flocculation and dewateringInt. J. Miner. Process., 58 (2000), pp. 223-236
- Holmberg et al., 2006An application of artificial neural networks to carbon, nitrogen and phosphorus concentrations in three boreal streams and impacts of climate changeEcol. Model., 195 (1–2) (2006), pp. 51-60
- Hossain and Piantanakulchai, 2013Groundwater arsenic contamination risk prediction using GIS and classification tree methodEng. Geol., 156 (2013), pp. 37-45
- Hou et al., 2020Estimate ecotoxicity characterization factors for chemicals in life cycle assessment using machine learning modelsEnviron. Int., 135 (2020), Article 105393
- Hu et al., 2018Comparison of drinking water treatment processes combinations for the minimization of subsequent disinfection by-products formation during chlorination and chloraminationChem. Eng. J., 335 (2018), pp. 352-361
- Hwangbo et al., 2021Integrated model for understanding N2O emissions from wastewater treatment plants: a deep learning approachEnviron. Sci. Technol., 55 (3) (2021), pp. 2143-2151
- Ighalo et al., 2020Artificial intelligence for surface water quality monitoring and assessment: a systematic literature analysisModel. Earth Syst. Environ., 7 (2) (2020), pp. 669-681
- J and W, 2011Recurrent high order neural network modeling for wastewater treatment processJ. Comput., 6 (2011), pp. 1570-1577
- Jain, 2010Data clustering: 50 years beyond K-meansPattern Recognit. Lett, 31 (8) (2010), pp. 651-666
- Jang, 1993ANFIS: adaptive-network-based fuzzy inference systemIEEE Trans. Syst. Man Cybern., 23 (3) (1993), pp. 665-685
- Jiang et al., 2020A generalized predictive model for TiO2-Catalyzed photo-degradation rate constants of water contaminants through artificial neural networkEnviron. Res., 187 (2020), Article 109697
- Jolliffe and Cadima, 2016Principal component analysis: a review and recent developmentsPhilos. Trans. A Math. Phys. Eng. Sci., 374 (2065) (2016), Article 20150202
- Jordan and Mitchell, 2015aMachine learning: trends, perspectives, and prospectsScience, 349 (6245) (2015), pp. 255-260
- Jordan and Mitchell, 2015bMachine learning: trends, perspectives, and prospectsScience, 4349 (6245) (2015), pp. 255-260
- Jun et al., 2020Modeling and optimization by particle swarm embedded neural network for adsorption of methylene blue by jicama peroxidase immobilized on buckypaper/polyvinyl alcohol membraneEnviron. Res., 183 (2020), Article 109158
- Kadyrova and Pavlova, 2014Statistical analysis of big data: an approach based on support vector machines for classification and regression problemsBiophysics, 59 (3) (2014), pp. 364-373
- Karul et al., 2000Case studies on the use of neural networks in eutrophication modelingEcol. Modell., 134 (2000), pp. 145-152
- Kavitha and Palanivelu, 2004The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenolChemosphere, 55 (9) (2004), pp. 1235-1243
- Keiner, 2010Estimating oceanic chlorophyll concentrations with neural networksInt. J. Remote Sens., 20 (1) (2010), pp. 189-194
- Kennedy and Eberhart, 1995Particle Swarm Optimization (PSO)Perth, Australia (1995), pp. 1942-1948
- Khataee and Kasiri, 2010Artificial neural networks modeling of contaminated water treatment processes by homogeneous and heterogeneous nanocatalysisJ. Mol.Catal. A, 331 (1–2) (2010), pp. 86-100
- Khataee and Kasiri, 2011Modeling of biological water and wastewater treatment processes using artificial neural networksCLEAN, 39 (8) (2011), pp. 742-749
- Khatri et al., 2019Prediction of effluent quality in ICEAS-sequential batch reactor using feedforward artificial neural networkWater Sci. Technol., 80 (2) (2019), pp. 213-222
- Khatri et al., 2020Artificial neural network modelling of faecal coliform removal in an intermittent cycle extended aeration system-sequential batch reactor based wastewater treatment plantJ. Water Process Eng., 37 (2020), Article 101477
- Kim et al., 2011Spatial modeling for groundwater arsenic levels in North CarolinaEnviron. Sci. Technol., 45 (11) (2011), pp. 4824-4831
- Kim et al., 2008Source tracking of microbial intrusion in water systems using artificial neural networksWater Res., 42 (4–5) (2008), pp. 1308-1314
- Knights et al., 2011Bayesian community-wide culture-independent microbial source trackingNat. Methods, 8 (2011), pp. 761-763
- Krause et al., 2020Fully convolutional neural network for detection and counting of diatoms on coatings after short-term field exposureEnviron. Sci. Technol., 54 (16) (2020), pp. 10022-10030
- Kulkarni and Chellam, 2010Disinfection by-product formation following chlorination of drinking water: artificial neural network models and changes in speciation with treatmentSci. Total Environ., 408 (19) (2010), pp. 4202-4210
- Lado et al., 2008Modelling arsenic hazard in Cambodia: a geostatistical approach using ancillary dataAppl. Geochem., 23 (11) (2008), pp. 3010-3018
- LaPara et al., 2015The bacterial communities of full-scale biologically active, granular activated carbon filters are stable and diverse and potentially contain novel ammonia-oxidizing microorganismsAppl. Environ. Microbiol., 81 (19) (2015), pp. 6864-6872
- Lary et al., 2016Machine learning in geosciences and remote sensingGeosci. Front., 7 (2016), pp. 3-10
- Lee and Chang, 2003Radial basis function networks applied to DNBR calculation in digital core protection systemsAnn. Nucl. Energy, 30 (2003), pp. 1516-1572
- Lee et al., 2003Neural network modelling of coastal algal bloomsEcol. Modell., 159 (2003), pp. 179-201
- Lee et al., 2009Determining the probability of arsenic in groundwater using a parsimonious modelEnviron. Sci. Technol., 43 (17) (2009), pp. 6662-6668
- Lee et al., 2008Real-time remote monitoring of small-scaled biological wastewater treatment plants by a multivariate statistical process control and neural network-based software sensorsProcess Biochem., 43 (10) (2008), pp. 1107-1113
- Li et al., 2021Recent advances in artificial intelligence and machine learning for nonlinear relationship analysis and process control in drinking water treatment: a reviewChem. Eng. J., 405 (2021), Article 126673
- Li et al., 2020aA multivariate Bayesian network analysis of water quality factors influencing trihalomethanes formation in drinking water distribution systemsWater Res., 190 (2020), Article 116712
- Li et al., 2013Assessment for surface water quality in Lake Taihu Tiaoxi River Basin China based on support vector machineStoch. Environ. Res. Risk Assess., 27 (8) (2013), pp. 1861-1870
- Li et al., 2020bLagoon water quality monitoring based on digital image analysis and machine learning estimatorsWater Res., 172 (2020), Article 115471
- Lin et al., 2020Radial basis function artificial neural network able to accurately predict disinfection by-product levels in tap water: taking haloacetic acids as a case studyChemosphere, 248 (2020), Article 125999
- Lister and Van Der Kraak, 2001Endocrine disruption: why is it so complicated?Water Qual. Res. J., 36 (2) (2001), pp. 175-188Canada
- Long et al., 2021Predicting the performance of anaerobic digestion using machine learning algorithms and genomic dataWater Res., 199 (1) (2021), Article 117182
- Lotfi et al., 2019Predicting wastewater treatment plant quality parameters using a novel hybrid linear-nonlinear methodologyJ. Environ. Manage., 240 (2019), pp. 463-474
- Lu et al., 2016Review of social water cycle research in a changing environmentRenew. Sustain. Energy Rev., 63 (2016), pp. 132-140
- Ma et al., 2015Controlling cyanobacterial blooms by managing nutrient ratio and limitation in a large hyper-eutrophic lake: lake Taihu, ChinaJ. Environ. Sci., 27 (2015), pp. 80-86
- Mahmod and Wahab, 2017Dynamic modelling of aerobic granular sludge artificial neural networksInt. Jo. Electr. Comput. Eng., 7 (3) (2017), pp. 1568-1573
- Maier and Dandy, 2000Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applicationsEnviron. Modell. Softw., 15 (2000), pp. 101-124
- Maier et al., 1998Use of artificial neural networks for modelling cyanobacteria Anabaena spp. in the River Murray, South AustraliaEcol. Modell., 105 (1998), pp. 257-272
- Maier et al., 2010Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directionsEnviron. Modell. Softw., 25 (8) (2010), pp. 891-909
- Maier et al., 2014Evolutionary algorithms and other metaheuristics in water resources: current status, research challenges and future directionsEnviron. Modell. Softw., 62 (2014), pp. 271-299
- Makaya and Hensel, 2016Modelling flow dynamics in water distribution networks using artificial neural networks - A leakage detection techniqueInt. J. Eng. Sci. Technol., 7 (1) (2016), pp. 33-43
- Manu and Thalla, 2017Artificial intelligence models for predicting the performance of biological wastewater treatment plant in the removal of Kjeldahl Nitrogen from wastewaterAppl. Water Sci., 7 (7) (2017), pp. 3783-3791
- May et al., 2008Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systemsEnviron. Modell. Softw., 23 (10–11) (2008), pp. 1289-1299
- Meliker et al., 2008Validity of spatial models of arsenic concentrations in private well waterEnviron. Res., 106 (1) (2008), pp. 42-50
- Michel et al., 2020Rapid identification of marine plastic debris via spectroscopic techniques and machine learning classifiersEnviron. Sci. Technol., 54 (17) (2020), pp. 10630-10637
- Miklos et al., 2018Evaluation of advanced oxidation processes for water and wastewater treatment - a critical reviewWater Res., 139 (2018), pp. 118-131
- Modaresi and Araghinejad, 2014A comparative assessment of support vector machines, probabilistic neural networks, and K-nearest neighbor algorithms for water quality classificationWater Resour. Manage., 28 (12) (2014), pp. 4095-4111
- Mohammadpour et al., 2015Prediction of water quality index in constructed wetlands using support vector machineEnviron. Sci. Pollut. Res. Int., 22 (8) (2015), pp. 6208-6219
- Mohammadpour et al., 2016Prediction of water quality index in free surface constructed wetlandsEnviron. Earth Sci., 75 (2) (2016), Article 139
- Mohri et al., 2012Foundations of Machine LearningMIT Press (2012)
- Montes et al., 2020Predicting non-deposition sediment transport in sewer pipes using random forestWater Res., 189 (2020), Article 116639
- Mood and Carina 2010Logistic regression: why we cannot do what we think we can do, and what we can do about itEur. Sociol. Rev., 26 (1) (2010), p. 67
- Moreno-Rodenas et al., 2021Deep-learning based monitoring of FOG layer dynamics in wastewater pumping stationsWater Res., 202 (2021), Article 117482
- Motamarri and Boccelli, 2012Development of a neural-based forecasting tool to classify recreational water quality using fecal indicator organismsWater Res., 46 (14) (2012), pp. 4508-4520
- Mustafa et al., 2014The use of artificial neural network (ANN) for the prediction and simulation of oil degradation in wastewater by AOPEnviron. Sci. Pollut. Res. Int., 21 (12) (2014), pp. 7530-7537
- Myles et al., 2004An introduction to decision tree modelingJ. Chemom., 18 (6) (2004), pp. 275-285
- Najafzadeh and Zeinolabedini, 2019Prognostication of waste water treatment plant performance using efficient soft computing models: an environmental evaluationMeasurement, 138 (2019), pp. 690-701
- Najah Ahmed et al., 2019Machine learning methods for better water quality predictionJ. Hydrol., 578 (2019), Article 124084
- Nelson et al., 2018Revealing biotic and abiotic controls of harmful algal blooms in a shallow subtropical lake through statistical machine learningEnviron. Sci. Technol., 52 (6) (2018), pp. 3527-3535
- Nguyen et al., 2020Photocatalytic remediation of persistent organic pollutants (POPs): a reviewArab. J. Chem., 13 (11) (2020), pp. 8309-8337
- Nicklow et al., 2010State of the art for genetic algorithms and beyond in water resources planning and managementJ. Water Resour. Plan. Manage., 136 (4) (2010), pp. 412-432
- Okwori et al., 2021Spatial heterogeneity assessment of factors affecting sewer pipe blockages and predictionsWater Res., 194 (2021), Article 116934
- Olyaie et al., 2017A comparative analysis among computational intelligence techniques for dissolved oxygen prediction in Delaware RiverGeosci. Front., 8 (3) (2017), pp. 517-527
- Ostfeld and Solomatine, 2008Data-driven modelling: some past experiences and new approachesJ. Hydroinform., 10 (1) (2008), pp. 3-22
- Palani et al., 2008An ANN application for water quality forecastingMar. Pollut. Bull., 56 (9) (2008), pp. 1586-1597
- Park et al., 2019Deep neural networks for modeling fouling growth and flux decline during NF/RO membrane filtrationJ. Membr. Sci., 587 (2019), Article 117164
- Peleato et al., 2018Neural networks for dimensionality reduction of fluorescence spectra and prediction of drinking water disinfection by-productsWater Res., 136 (2018), pp. 84-94
- Perelman et al., 2012Event detection in water distribution systems from multivariate water quality time seriesEnviron. Sci. Technol., 46 (15) (2012), pp. 8212-8219
- Perendeci et al., 2009Effects of phase vector and history extension on prediction power of adaptive-network based fuzzy inference system (ANFIS) model for a real scale anaerobic wastewater treatment plant operating under unsteady stateBioresour. Technol., 100 (20) (2009), pp. 4579-4587
- Podgorski and Berg, 2020Global threat of arsenic in groundwaterScience, 368 (2020), pp. 845-850
- Podgorski et al., 2017Extensive arsenic contamination in high-pH unconfined aquifers in the Indus ValleySci. Adv., 3 (8) (2017), Article e1700935
- Podgorski et al., 2018Prediction modeling and mapping of groundwater fluoride contamination throughout IndiaEnviron. Sci. Technol., 52 (17) (2018), pp. 9889-9898
- Purkait, 2008Application of artificial neural network model to study arsenic contamination in groundwater of Malda District, Eastern IndiaJ. Environ. Inform., 12 (2) (2008), pp. 140-149
- Pyo et al., 2021Cyanobacteria cell prediction using interpretable deep learning model with observed, numerical, and sensing data assemblageWater Research, 203 (2021), Article 117483
- Raghavendra and Deka, 2014Support vector machine applications in the field of hydrology: a reviewAppl. Soft Comput., 19 (2014), pp. 372-386
- Rahmanian et al., 2011Application of experimental design approach and artificial neural network (ANN) for the determination of potential micellar-enhanced ultrafiltration processJ. Hazard. Mater., 187 (1–3) (2011), pp. 67-74
- Rajaee et al., 2020Artificial intelligence-based single and hybrid models for prediction of water quality in rivers: a reviewChemomet. Intell. Lab. Syst., 200 (2020), Article 103978
- Recknagel et al., 1997Artificial neural network approach for modelling and prediction of algal bloomsEcol. Modell., 96 (1997), pp. 11-28
- Rodríguez-Lado et al., 2013Groundwater arsenic contamination throughout China.pdfScience, 341 (6148) (2013), pp. 866-868
- Rosenblatt, 1957The Perceptron: a Perceiving and Recognizing AutomatonCornell Aeronautical Laboratory (1957)Report 85-460-1
- Safari and Danandeh Mehr, 2018Multigene genetic programming for sediment transport modeling in sewers for conditions of non-deposition with a bed depositInt. J. Sediment Res., 33 (3) (2018), pp. 262-270
- Sagan et al., 2020Monitoring inland water quality using remote sensing: potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computingEarth-Sci. Rev., 205 (2020), Article 103187
- Salleh et al., 2011Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive reviewDesalination, 280 (1–3) (2011), pp. 1-13
- Seshan et al., 2014Support vector regression model of wastewater bioreactor performance using microbial community diversity indices: effect of stress and bioaugmentationWater Res., 53 (2014), pp. 282-296
- Shaji et al., 2020Arsenic contamination of groundwater: a global synopsis with focus on the Indian PeninsulaGeosci. Front., 12 (3) (2020), Article 101079
- Shetty and Chellam, 2003Predicting membrane fouling during municipal drinking water nanofiltration using artificial neural networksJ. Membr. Sci., 217 (1–2) (2003), pp. 69-86
- Sheydaei et al., 2020Simultaneous immobilization of Dy2O3, graphite and TiO2 to prepare stable nanocomposite for visible light assisted photocatalytic ozonation of a wastewater: modeling via artificial neural networkEnviron. Technol. Innov., 17 (2020), Article 100512
- Shokoohi et al., 2020Modelling and optimisation of catalytic ozonation process assisted by ZrO2-pumice/H2O2 in the degradation of Rhodamine B dye from aqueous environmentInt. J. Environ. Anal. Chem., 100 (2020), pp. 1-25
- Shortridge and Guikema, 2014Public health and pipe breaks in water distribution systems: analysis with internet search volume as a proxyWater Res., 53 (2014), pp. 26-34
- Sigmund et al., 2020Deep learning neural network approach for predicting the sorption of ionizable and polar organic pollutants to a wide range of carbonaceous materialsEnviron. Sci. Technol., 54 (7) (2020), pp. 4583-4591
- Singh et al., 2011Support vector machines in water quality managementAnal Chim Acta, 703 (2) (2011), pp. 152-162
- Singh et al., 2004Identification of unknown groundwater pollution sources using artificial neural networksJ. Water Resour. Plan. Manage., 130 (6) (2004), pp. 506-514
- Speight et al., 2019Identification of the causes of drinking water discolouration from machine learning analysis of historical datasetsEnviron. Sci., 5 (4) (2019), pp. 747-755
- Stidson et al., 2012Development and use of modelling techniques for real-time bathing water quality predictionsWater and Environment Journal, 26 (1) (2012), pp. 7-18
- Strugholtz et al., 2008Neural networks and genetic algorithms in membrane technology modellingJ. Water Supply, 57 (1) (2008), pp. 23-34
- Sun et al., 2021Predicting antibiotic resistance gene abundance in activated sludge using shotgun metagenomics and machine learningWater Res., 202 (2021), Article 117384
- Takata et al., 2020Predicting the acute ecotoxicity of chemical substances by machine learning using graph theoryChemosphere, 238 (2020), Article 124604
- Tan et al., 2020Machine learning models of groundwater arsenic spatial distribution in bangladesh: influence of holocene sediment depositional historyEnviron. Sci. Technol., 54 (15) (2020), pp. 9454-9463
- Teychene et al., 2018Predicting of ultrafiltration performances by advanced data analysisWater Res., 129 (2018), pp. 365-374
- Thoe et al., 2014Predicting water quality at Santa Monica Beach: evaluation of five different models for public notification of unsafe swimming conditionsWater Res., 67 (2014), pp. 105-117
- Tiyasha, Tung and Yaseen, 2020A survey on river water quality modelling using artificial intelligence models: 2000–2020J. Hydrol., 585 (2020), Article 124670
- Twarakavi and Kaluarachchi, 2006Arsenic in the shallow ground waters of conterminous United States: assessment, health risks, and costs for MCL complianceJ. Am. Water Resour. Assoc., 42 (2006), pp. 275-294
- Uddin et al., 2021A review of water quality index models and their use for assessing surface water qualityEcol. Indic., 122 (2021), Article 107218
- Vamathevan et al., 2019Applications of machine learning in drug discovery and developmentNat. Rev. Drug Discov., 18 (6) (2019), pp. 463-477
- Wagle et al., 2020Comprehensive review on application of machine learning algorithms for water quality parameter estimation using remote sensing dataSens. Mater., 32 (11) (2020), pp. 3879-3892
- Wang et al., 2021dDeveloping QSAR Models with Defined Applicability Domains on PPARγ Binding Affinity Using Large Data Sets and Machine Learning AlgorithmsEnviron. Sci. Technol., 55 (10) (2021), pp. 6857-6866
- Wang et al., 2021bArtificial neural networks for water quality soft-sensing in wastewater treatment: a reviewArtif. Intell. Rev. (2021), 10.1007/s10462-021-10038-8In press
- Wang et al., 2021aMachine learning approach identifies water sample source based on microbial abundanceWater Res., 199 (1) (2021), Article 117185
- Wang et al., 2021cSepPCNET: deeping learning on a 3D surface electrostatic potential point cloud for enhanced toxicity classification and its application to suspected environmental estrogensEnviron. Sci. Technol., 55 (14) (2021), pp. 9958-9967
- White et al., 2021Exploration of E. coli contamination drivers in private drinking water wells: an application of machine learning to a large, multivariable, geo-spatio-temporal datasetWater Res., 197 (2021), Article 117089
- Winkel et al., 2008Predicting groundwater arsenic contamination in Southeast Asia from surface parametersNat. Geosci., 1 (8) (2008), pp. 536-542
- Winkel et al., 2011Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a centuryProc. Natl. Acad. Sci. U. S. A., 108 (4) (2011), pp. 1246-1251
- Wu and Lo, 2008Predicting real-time coagulant dosage in water treatment by artificial neural networks and adaptive network-based fuzzy inference systemEng. Appl. Artif. Intell., 21 (8) (2008), pp. 1189-1195
- Wu and Wang, 2018Machine learning based toxicity prediction: from chemical structural description to transcriptome analysisInt. J. Mol. Sci., 19 (8) (2018), Article 2358
- Xu et al., 2020A predictive model of recreational water quality based on adaptive synthetic sampling algorithms and machine learningWater Res., 177 (2020), Article 115788
- Yabunaka et al., 1997Novel application of a backpropagation artificial neural network model formulated to predict algal bloomWater. Sci. Tech., 36 (1997), pp. 89-97
- Yan et al., 2010Adaptive neuro fuzzy inference system for classification of water quality statusJ. Environ. Sci., 22 (12) (2010), pp. 1891-1896
- Yang et al., 2014Predicting geogenic arsenic contamination in shallow groundwater of south Louisiana, United StatesEnviron. Sci. Technol., 48 (10) (2014), pp. 5660-5666
- Yang et al., 2012Can arsenic occurrence rates in bedrock aquifers be predicted?Environ. Sci. Technol., 46 (4) (2012), pp. 2080-2087
- Yang et al., 2021Simulating a combined lysis-cryptic and biological nitrogen removal system treating domestic wastewater at low C/N ratios using artificial neural networkWater Res., 189 (2021), Article 116576
- Yaqub et al., 2019Soft computing techniques in prediction Cr(VI) removal efficiency of polymer inclusion membranesEnviron. Eng. Res., 25 (3) (2019), pp. 418-425
- Yaqub and Lee, 2020Micellar enhanced ultrafiltration (MEUF) of mercury-contaminated wastewater: experimental and artificial neural network modelingJ. Water Process Eng., 33 (2020), Article 101046
- Yaseen, 2021An insight into machine learning models era in simulating soil, water bodies and adsorption heavy metals: review, challenges and solutionsChemosphere, 277 (2021), Article 130126
- Ye et al., 2019Diagnosis of sewer pipe defects on image recognition of multi-features and support vector machine in a southern Chinese cityFront. Environ. Sci. Eng., 13 (2) (2019), Article 17
- Yetilmezsoy et al., 2009Response surface modeling of Pb(II) removal from aqueous solution by Pistacia vera L.: box-Behnken experimental designJ. Hazard. Mater., 171 (1–3) (2009), pp. 551-562
- Zaghloul et al., 2020aComparison of adaptive neuro-fuzzy inference systems (ANFIS) and support vector regression (SVR) for data-driven modelling of aerobic granular sludge reactorsJ. Environ. Chem. Eng., 8 (3) (2020), Article 103742
- Zaghloul et al., 2020bDevelopment of an ensemble of machine learning algorithms to model aerobic granular sludge reactorsWater Res., 189 (2020), Article 116657
- Zaqoot et al., 2009Prediction of dissolved oxygen in the Mediterranean Sea along Gaza, Palestine - an artificial neural network approachWater Sci. Technol., 60 (12) (2009), pp. 3051-3059
- Zhang et al., 2020Predicting aqueous adsorption of organic compounds onto biochars, carbon nanotubes, granular activated carbons, and resins with machine learningEnviron. Sci. Technol., 54 (11) (2020), pp. 7008-7018
- Zhang et al., 2012Predicting the risk of arsenic contaminated groundwater in Shanxi Province, Northern ChinaEnviron. Pollut., 165 (2012), pp. 118-123
- Zhang et al., 2013Coupling predicted model of arsenic in groundwater with endemic arsenism occurrence in Shanxi Province, Northern ChinaJ. Hazard. Mater., 262 (2013), pp. 1147-1153
- Zhang et al., 2019aNew insights into sediment transport in interconnected river–lake systems through tracing microorganismsEnviron. Sci. Technol., 53 (8) (2019), pp. 4099-4108
- Zhang et al., 2019bIntegrating water quality and operation into prediction of water production in drinking water treatment plants by genetic algorithm enhanced artificial neural networkWater Research, 164 (2019), Article 114888
- Zhang et al., 2019cHyperspectral imaging based method for rapid detection of microplastics in the intestinal tracts of fishEnviron. Sci. Technol., 53 (9) (2019), pp. 5151-5158
- Zhao et al., 2007Water quality forecast through application of BP neural network at Yuqiao reservoirJ. Zhejiang Univ., 8 (9) (2007), pp. 1482-1487
- Zhi et al., 2021From hydrometeorology to river water quality: can a deep learning model predict dissolved oxygen at the continental scale?Environ. Sci. Technol., 55 (4) (2021), pp. 2357-2368
- Zhong et al., 2020A deep neural network combined with molecular fingerprints (DNN-MF) to develop predictive models for hydroxyl radical rate constants of water contaminantsJ. Hazard. Mater., 383 (2020), Article 121141
Cited by (146)
The mixed/mixotrophic nitrogen removal for the effective and sustainable treatment of wastewater: From treatment process to microbial mechanism
2022, Water ResearchCitation Excerpt :However, the large number of process parameters in practice inevitably complicates the model, and the fitting of multiple effecters may lead to distortion. Recently, machine learning has been widely adopted to guide the operation of wastewater treatment process (Huang et al., 2021b), which also provides the idea of a more stable and efficient mathematical model for MixNR. In fact, the existence of AnAOB has been widely reported in many municipal WWTPs with a low anammox rate (0.08-1.2 μmol-N g−1VSS h−1) (Yang et al., 2021).
Geogenic manganese and iron in groundwater of Southeast Asia and Bangladesh – Machine learning spatial prediction modeling and comparison with arsenic
2022, Science of the Total Environment