这是用户在 2024-8-19 15:14 为 https://www.science.org/doi/10.1126/sciadv.adk8662 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
Open access
Research Article 研究论文
ENGINEERING 工程

Reconfigurable origami-inspired multistable metamorphous structures
可重构折纸启发的多稳态变质结构

Science Advances 科学进展
29 May 2024 二零二四年五月二十九日
Vol 10, Issue 22
1022

Abstract 抽象

Origami-inspired metamorphous structures can adjust their shapes and mechanical behaviors according to operational requirements. However, they are typically composed of nonrigid origami, where required facet deformation complicates actuation and makes them highly material dependent. In this study, we present a type of origami metamorphous structure composed of modular bistable units, each of which is a rigid origami. The elasticity within the origami creases and switching of mountain and valley crease lines enable it to have bistability. The resultant metamorphous structure has multistability, allowing it to switch among multifarious configurations with programmable profiles. This concept was validated by potential energy analysis and experiments. Using this concept, we developed a robotic limb capable of both lifting and gripping through configuration changes. Furthermore, we used the origami units to construct a metamaterial whose properties could change with the variation of configurations. These examples demonstrate the concept’s remarkable versatility and potential for many applications.
受折纸启发的变质结构可以根据操作要求调整其形状和机械行为。然而,它们通常由非刚性折纸组成,其中所需的刻面变形使驱动复杂化,并使它们高度依赖于材料。在这项研究中,我们提出了一种由模块化双稳态单元组成的折纸结构,每个双稳态单元都是一个刚性折纸。折纸折痕内的弹性以及山脉和山谷折痕线的切换使其具有双稳态。由此产生的结构具有多稳定性,使其能够在具有可编程轮廓的多种配置之间切换。这一概念通过势能分析和实验得到了验证。利用这一概念,我们开发了一种机器人肢体,能够在配置更改时提升和抓取。此外,我们使用折纸单元来构建一种超材料,其性质可能会随着构型的变化而变化。这些例子证明了该概念具有卓越的多功能性和在许多应用中的潜力。

INTRODUCTION 介绍

Metamorphous structures have always attracted interests from scientists and engineers. One essential feature of these structures is their shape changing ability and accompanied change of mechanical properties. More recent ones are programmable according to requirements (17), and some are even adaptive to their operational environment (813). There exists a family of metamorphous structures that are inspired by origami objects because these simple objects often offer rich geometrical features unmatched by other structures. Origami morphing structures have been extensively developed in fields such as robotics (1421), mechanical metamaterials (12, 2226) and aerospace deployable structures (2729). To achieve morphing, some origami structures rely on the switch of mountain and valley assignments of creases to alter folding motions (3034), whereas others use flexibility of the materials to obtain multistable metamorphous structures (5, 13, 19, 24, 25, 3537). At present, most such structures adopt a particular shape-changing mechanism or design from which almost all functions are derived. In other words, once the design of a structure is determined, rarely can it acquire new configurations (and therefore new functionalities) beyond those associated with the original design (10, 11, 24, 25, 3842). There is a distinct lack of reconfigurability.
变质结构一直引起科学家和工程师的兴趣。这些结构的一个基本特征是它们的形状变化能力和伴随的机械性能变化。较新的可以根据需求 (1-7) 进行编程,有些甚至可以适应其操作环境 (8-13)。存在一系列受折纸对象启发的结构,因为这些简单的对象通常提供其他结构无法比拟的丰富几何特征。折纸变形结构已在机器人技术(14-21)、机械超材料(1222-26)和航空航天可展开结构(27-29)等领域得到广泛开发。为了实现变形,一些折纸结构依赖于折痕的山地和山谷分配的切换来改变折叠运动 (30-34),而另一些折纸结构则利用材料的柔韧性来获得多稳定的变质结构 (5, 1319242535-37).目前,大多数此类结构都采用特定的变形机制或设计,几乎所有功能都源于该机制或设计。 换言之,一旦确定了结构的设计,它就很少能获得与原始设计相关的新配置(因此也无法获得新功能)(10,11,24,25,38-42)。 明显缺乏可重构性。
Here, we present a new family of programmable and reconfigurable modular multistable metamorphous structures. The constitutive unit of the structure is composed of a pair of origami cells that is bonded together. Kinematically the unit is a rigid origami with a motion bifurcation. However, we are able to show that the unit becomes bistable when the active creases are elastic. Assemblies of such units lead to metamorphous structures that can change their shapes and are reconfigurable through switch of stable configurations of their constitutive units. As a result, the mechanical properties and even its functions can be altered within the same structure. The units are scalable and the concept is modular, and multiple stable configurations of the structures are only related to the stiffness of the creases and the rest states of origami cells at which they are manufactured and thus, independent of the materials of the rigid facets. These features provide the possibility of creating structures of all scales for target applications. To demonstrate this, we built, first of all, a robotic limb capable of reconfiguring its operational profiles automatically to lift or hold weights of various shapes, and second, a programmable mechanical metamaterial capable of altering its mechanical properties such as Poisson’s ratios. Prototypes were fabricated to validate these concepts. We expect that our multistable metamorphous structures would facilitate the development of advanced metamaterials and reconfigurable morphing structures.
在这里,我们提出了一个新的可编程和可重构的模块化多稳态变质结构家族。该结构的构成单元由一对键合在一起的折纸细胞组成。在运动学上,该单元是一个具有运动分叉的刚性折纸。然而,我们能够证明,当活动折痕具有弹性时,该单元变得双稳态。这种单元的组装导致结构,这些变形结构可以改变其形状,并且可以通过切换其组成单元的稳定配置来重新配置。因此,在同一结构中,机械性能甚至其功能都可以改变。这些单元是可扩展的,概念是模块化的,结构的多种稳定配置仅与折痕的刚度和制造它们的折纸单元的其余状态有关,因此与刚性刻面的材料无关。这些特性为目标应用创建各种规模的结构提供了可能性。为了证明这一点,我们首先构建了一个机器人肢体,能够自动重新配置其操作轮廓以举起或保持各种形状的重量,其次,一种能够改变其机械性能(如泊松比)的可编程机械超材料。制作原型以验证这些概念。我们期望我们的多稳态变质结构将促进先进超材料和可重构变形结构的发展。

RESULTS 结果

Geometry of the cells and unit
单元和单元的几何形状

The origami unit is a combination of two similar origami cells. The crease pattern of the first one, referred to as cell I, is given in Fig. 1A. Black solid lines are mountain creases, whereas dashed lines are valley creases. All the inclined creases are parallel, and the rest are horizontal. It is a rigid origami pattern with a single degree of freedom (DOF). θ, the dihedral angle between two triangular facets on either side of the diagonal of the central rhombuses, could be treated as an input that uniquely determines the folded shapes of the cells, as given below the pattern. The key geometrical parameters are dimensions a and b. Here, we first take a = b, and α = π/4. Moreover, we let β = α. The crease pattern for cell II is shown in Fig. 1B. It has the identical geometry parameters but opposite fold assignments to those in cell I except those around two shaded central rhombuses. The edges of the rhombuses are dormant creases. To meet the rigid foldable conditions, the creases along their diagonals become valley creases. Its partially folded shape is displayed beneath the pattern. The behavior of both origami cells is demonstrated in movie S1.
折纸单元是两个相似的折纸单元的组合。第一个折痕模式,称为单元格 I,如图 1A 所示。黑色实线是山地折痕,而虚线是山谷折痕。所有倾斜的折痕都是平行的,其余的都是水平的。它是一种具有单一自由度 (DOF) 的刚性折纸图案。θ 是中央菱形对角线两侧两个三角形刻面之间的二面角,可以被视为唯一确定细胞折叠形状的输入,如图案下方给出的那样。关键的几何参数是尺寸 ab。在这里,我们首先取 a = b,α = π/4。此外,我们让 β = α。细胞 II 的折痕模式如图 1B 所示。它具有相同的几何参数,但与单元格 I 中的折叠分配相反,除了两个阴影中心菱形周围的折叠分配。菱形的边缘是休眠的折痕。为了满足刚性可折叠条件,沿其对角线的折痕成为谷状折痕。其部分折叠的形状显示在图案下方。电影 S1 中展示了两种折纸细胞的行为。
Fig. 1. Bistable origami unit.
图 1.双稳态折纸单元。
(A) Crease pattern and partially folded shape of cell I where a = b = 15 mm. (B) Crease pattern and partially folded shape of cell II of the same dimension. (C) Origami unit created by stacking cell II on top of cell I and bonding the shaded central rhombuses and left and right edges together, respectively. (D) Configuration of the origami unit when cells I and II are switched over. (E) δI and δII versus θ plot. θ = π is the motion bifurcation state where both cells are completely flat. (F) Transition process between different configurations of the unit made from card (movie S1).
A) 单元格 I 的折痕图案和部分折叠形状,其中 a = b = 15 mm。 (B) 相同尺寸的单元格 II 的折痕图案和部分折叠形状。(C) 通过将单元格 II 堆叠在单元 I 的顶部并分别将阴影的中心菱形和左右边缘粘合在一起而创建的折纸单元。(D) 细胞 I 和 II 切换时折纸单元的配置。(Eδ I 和 δII 与 θ 图的关系。θ = π 是两个单元完全平坦的运动分岔状态。(F)由卡制成的单元的不同配置之间的过渡过程(视频S1)。
Open in viewer 在检视器中打开
The origami unit, shown in Fig. 1C, is created by stacking cell II on top of cell I and then bonding the shaded central rhombuses of two cells and their corresponding left and right edges together, respectively. This is possible when θ angles in both cells are made identical. The unit remains to be a flat-foldable rigid origami with a single DOF with θ angles, now merged together, being taken as the input, and it deploys and collapses easily.
折纸单元,如图 1C 所示,是通过将单元格 II 堆叠在单元格 I 的顶部,然后分别将两个单元格的阴影中心菱形及其相应的左右边缘粘合在一起而创建的。当两个单元格中的 θ 角相同时,这是可能的。该单元仍然是一个平面可折叠的刚性折纸,具有具有 θ 角的单个景深,现在合并在一起,作为输入,它很容易展开和折叠。
The relationships between θ and δI as well as δII, which are the dihedral angles between a triangular facet and its adjacent parallelogram facet along one of the edges of central rhombuses for cells I and II, respectively, can be obtained (text S1). We plot them in Fig. 1E. It can be seen that when θ = π, both cells are completely flat. Decreasing θ results in cell I being folded up with δI reducing steadily along the blue path while δII remaining at π. If, instead, θ is increased, i.e., the valley creases along the diagonal of rhombuses in cell I are inverted to mountain creases, the dormant creases along the edges of the central rhombuses are activated. δII decreases along the black path, while δI stays unchanged as a constant π, indicating that the creases along the edges of rhombuses of cell I become dormant. Effectively, cells I and II are switched over, as shown in Fig. 1 (C and D). This transition only occurs at θ = π. In other words, θ = π is a kinematic bifurcation point.
可以得到 θ 和 δI 以及 δII 之间的关系,即三角形面与其相邻的平行四边形面之间的二面角,分别是单元格 I 和 II 的中心菱形边之一(文本 S1)。我们在图1E中绘制了它们。可以看出,当 θ = π时,两个电池都是完全平坦的。减小 θ 导致细胞 I 折叠,δI 沿蓝色路径稳步减小,而II δ保持在π。相反,如果 θ 增加,即单元 I 中沿菱形对角线的山谷折痕与山形折痕倒置,则沿中央菱形边缘的休眠折痕被激活。δII 沿黑色路径减少,而 δI 作为恒定π保持不变,表明细胞 I 菱形边缘的折痕处于休眠状态。实际上,单元 I 和 II 被切换,如图 1(C 和 D)所示。这种转变仅在 θ = π 时发生。换句话说,θ = π 是一个运动学分岔点。
A card model of the unit was built in which the diagonal creases of the two central rhombuses were cut open to reduce the influence of the material thickness as the cells are bonded together at these rhombuses when forming the unit, making these areas rather thick. The transition of the unit between different states is shown in Fig. 1F and movie S1. Two observations were made. First, by poking the convex central vertex of the unit in a configuration close to the bifurcation state with a probe, the cells snapped from one configuration to another. Second, although it is theoretically possible both cells deploy to an identical shape after passing the bifurcation state, as indicated in Fig. 1D, this never occurred in practice for reasons which we shall discuss next.
构建了该单元的卡片模型,其中两个中心菱形的对角线折痕被切开,以减少材料厚度的影响,因为在形成单元时,单元在这些菱形上粘合在一起,使这些区域相当厚。单元在不同状态之间的转换如图 1F 和视频 S1 所示。会上提出了两点意见。首先,通过用探针在接近分叉状态的配置中戳入单元的凸中心顶点,单元从一个配置捕捉到另一个配置。其次,尽管理论上两个电池在通过分叉状态后可能以相同的形状展开,如图 1D 所示,但由于我们接下来将讨论的原因,这种情况在实践中从未发生过。

Bistability of the unit 装置的双稳态

In most origami models, the creases are not perfect mechanical joints that can rotate freely. Rather, they exhibit certain stiffness. If the creases are assumed to behave like linear elastic torsional springs with a stiffness k per unit length whereas the facets are rigid (5, 32, 38), the potential energies for each cell are ΠC-I=i=1m12kLi (ϕiϕi0)2 and ΠC-II=j=1n12kLj (ϕjϕj0)2 , where ΠC-I and ΠC-II represent the potential energy of cell I and cell II, respectively, m and n are total number of creases in each cell, L is the length of a crease, and ϕ and ϕ0 are final and initial rest dihedral angles of a crease, which include θ and δ used earlier to describe motions of cells. Note that the diagonal creases of the two central rhombuses are not included in the calculation since they were slit open when forming the unit. Hence, the total potential energy of a unit Π = ΠC-I + ΠC-II + ΠE in which ΠE is the potential energy of the edge creases formed when the edges of two cells are bonded together, and this energy can be calculated using a formula similar to ΠC-I or ΠC-II. Obviously, the rest dihedral angles ϕ0 are set by the initial state of a cell (text S2).
在大多数折纸模型中,折痕并不是可以自由旋转的完美机械关节。相反,它们表现出一定的刚度。如果假设折痕的行为类似于线弹性扭转弹簧,每单位长度的刚度为 k,而刻面是刚性的 (53238),则每个单元的势能为 ,其中 ΠC-I 和 ΠC-II 分别表示单元 I 和单元 II 的势能,mn 是每个单元中的折痕总数, L 是折痕的长度,φ 和 φ0 是折痕的最终和初始静止二面角,其中包括 θ 和 δ 之前用于描述细胞运动的 θ 和 。请注意,两个中央菱形的对角线折痕不包括在计算中,因为它们在形成单元时被切开。因此,单位 Π 的总势能 = ΠC-I + ΠC-II + ΠE,其中 ΠE 是两个电池的边缘粘合在一起时形成的边缘折痕的势能,该能量可以使用类似于 ΠCI 或 ΠC-II 的公式计算。显然,φ0 的其余二面角是由单元格的初始状态(文本 S2)设置的。
Now consider cell I with a rest angle θI0 = π/2. Its normalized potential energy (NPE) versus θ curve is plotted in blue in Fig. 2A. It is noticeable that the energy curve has two wells at θ = θI0 = π/2 and θ = 3π/2. This indicates that cell I is a bistable structure with two stable states. If cell II is constructed exactly the same as cell I, i.e., θII0 = 3π/2 because of the way that we define θ in cell II, it will also exhibit two stable states, one at θ = θII0 = 3π/2 and the other at θ = π/2, drawn as the green curve in Fig. 2A. The second stable state of cell II matches the first stable position of cell I. Hence, we can fold cell II to reach the configuration with θ = π/2 and then bond both cells together to create a unit. The rest angles at the edge creases of the unit are set as the angles when bonding of the edges takes place, and the associated energy is plotted in red in Fig. 2A. The overall potential energy of the unit, Π, is given in Fig. 2B. It is symmetrical about the bifurcation state (θ = π), and Π still has two wells at θ1 = π/2 and θ2 = 3π/2, respectively, indicating that there are two stable states for the unit as expected. If we select θI0 = π/3 and θII0 = 3π/2, the overall energy curve is no longer symmetrical, but it remains to have two wells at θ1 = 0.419π and θ2 = 1.557π, different from those angles of each cell (see Fig. 2C). When θI0 = 2π/3 and θII0 = 3π/2, the energy curve shown in Fig. 2D is similar to those of other units where two energy wells appear at θ1 = 0.586π and θ2 = 1.442π. It can be concluded that if the creases behave like a linear elastic rotational hinge, the origami unit becomes a bistable structure whose stable states are related to but slightly different from the stable states of each cell. Figure 2E gives contours of the angle θ at two stable states when different initial rest states of the cells are selected.
现在考虑静止角为 θI0 = π/2 的单元格 I。其归一化势能 (NPE) 与 θ 的关系曲线在图 2A 中以蓝色绘制。值得注意的是,能量曲线在 θ = θI0 = π/2 和 θ = 3π/2 处有两个井。这表明细胞 I 是具有两种稳定状态的双稳态结构。如果单元 II 的构造与单元 I 完全相同,即 θII0 = 3π/2,因为我们在单元 II 中定义 θ 的方式,它也将表现出两种稳定状态,一种在 θ = θII0 = 3π/2,另一种在 θ = π/2 处,如图 2A 中的绿色曲线所示。细胞 II 的第二个稳定状态与细胞 I 的第一个稳定位置匹配。 因此,我们可以折叠细胞 II 以达到 θ = π/2 的构型,然后将两个细胞粘合在一起以创建一个单元。单元边缘折痕处的其余角度设置为边缘发生粘合时的角度,相关能量在图 2A 中以红色绘制。该单位的总势能 Π 如图 2B 所示。分岔态(θ = π)对称,Π分别在θ1 = π/2和θ2 = 3π/2处有两个井,表明该单元如预期的那样存在两种稳定状态。如果我们选择 θI0 = π/3 和 θII0 = 3π/2,则总能量曲线不再对称,但在 θ1 = 0.419π 和 θ2 = 1.557π 处仍然有两个阱,与每个单元的角度不同(见图 2C)。当 θI0 = 2π/3 和 θII0 = 3π/2 时,图 2D 中显示的能量曲线与其他单元的能量曲线相似,其中两个能量阱出现在 θ1 = 0.586π 和 θ2 = 1.442π。 可以得出结论,如果折痕表现得像线性弹性旋转铰链,折纸单元就会变成一个双稳态结构,其稳定状态与每个细胞的稳定状态相关,但略有不同。图 2E 给出了在选择不同的细胞初始静止状态时,两种稳定状态下的角度 θ 的轮廓。
Fig. 2. Potential energy of the origami unit.
图 2.折纸单元的势能。
(A) NPE versus θ curves for cell I with θI0 = π/2 (blue), cell II with θII0 = 3π/2 (green), and edge creases (red). (B) NPE of the origami unit. (C) NPE versus θ curves for each cell and the unit composed of these cells where θI0 = π/3 and θII0 = 3π/2. (D) NPE versus θ curves for each cell and the unit composed of these cells where θI0 = 2π/3 and θII0 = 3π/2. (E) Contours of θ1 and θ2 of origami units with respect to different initial rest angles θI0 and θII0.
A) 细胞 I 的 NPE 与 θ 曲线,θI0 = π/2(蓝色),细胞 II 的 θII0 = 3π/2(绿色)和边缘折痕(红色)。(B)折纸单元的NPE。(C) 每个细胞和由这些细胞组成的单元的 NPE 与 θ 曲线,其中 θI0 = π/3 和 θII0 = 3π/2。(D) 每个细胞和由这些细胞组成的单元的 NPE 与 θ 曲线,其中 θI0 = 2π/3 和 θII0 = 3π/2。(E) 折纸单元的 θ1 和 θ2 相对于不同初始静止角 θI0 和 θII0 的等值线。
Open in viewer
For all units, there always exists a localized NPE peak when θ = π, e.g., the one shown in Fig. 2B. However, it is unlikely that the switch between two stable states will follow the NPE curve over this peak. Any small perturbation will result in the structure rapidly snap from one stable state to another, similar to the snap-through behavior in buckling of curved elastic beam systems (43). This is confirmed by our observation of the card model shown in Fig. 1F and movie S1. Moreover, the two cells will never take the same shape as doing so will require higher NPE (text S2).
对于所有单元,当θ = π时,始终存在局部NPE峰,例如,图2B中所示的那个。然而,两个稳定状态之间的切换不太可能在这个峰值上遵循NPE曲线。任何微小的扰动都会导致结构迅速从一种稳定状态卡入到另一种稳定状态,类似于弯曲弹性梁系统屈曲的卡扣行为(43)。我们对图 1F 和电影 S1 中所示的卡片模型的观察证实了这一点。此外,这两个单元格永远不会采用相同的形状,因为这样做将需要更高的 NPE(文本 S2)。

Experimental validation of bistable units
双稳态单元的实验验证

Three sample units, SU1, SU2 and SU3, were constructed. First, three sets of cells were manufactured in their unstrained forms using a 0.6-mm-thick elastomeric material, in which θI0 = π/2, π/3, and 2π/3, respectively, while θII0 was kept unchanged at 3π/2, and 0.4-mm-thick carbon fiber laminate sheet was cut and bonded to each facet to maintain rigid origami and confine all deformation to the creases (see Fig. 3A). Each cell II was then deformed to a shape with its θ close to θI0 using a rig and then bonded with cell I to form a unit. The edges of both cells were made slightly wider so that the corresponding edges could be bonded together to form edge creases of the unit (text S3).
构建了SU1、SU2和SU3三个样本单元。首先,使用 0.6 mm 厚的弹性材料以未应变形式制造三组电池,其中 θI0 分别 = π/2、π/3 和 2π/3,而 θII0 保持在 3π/2 不变,并将 0.4 mm 厚的碳纤维层压板切割并粘合到每个刻面上,以保持刚性折纸并将所有变形限制在折痕上(见图 3A)。然后使用钻机将每个单元 II 变形为其 θ 接近 θI0 的形状,然后与单元 I 结合形成一个单元。两个单元格的边缘都稍微宽一些,以便相应的边缘可以粘合在一起以形成单元的边缘折痕(文本 S3)。
Fig. 3. Fabrication and experimental validation of the bistable units.
图 3.双稳态单元的制造和实验验证。
(A) Manufactured unstrained forms of cells I and II and resulting units. (B) Measured forces versus displacement in the force direction for SU1. (C) Energy plots for SU1. (D) Transition process between two stable states of the first prototype when pushed by a probe. Transition took place in the first and second photos of the second row (movie S2).
A) 制造的未应变形式的细胞 I 和 II 以及所得单元。(B) SU1 在力方向上测量的力与位移的关系。(C) SU1的能量图。(D)第一个原型在探针推动下的两个稳定状态之间的过渡过程。过渡发生在第二行的第一张和第二张照片(电影 S2)中。
Open in viewer
We then measured the angles corresponding to two stable configurations of the units, whose values are given in Fig. 3A. The actual angles are close to the theoretical ones with a maximum error of 16.7% (θ2 of SU2).
然后,我们测量了对应于单元的两个稳定配置的角度,其值如图 3A 所示。实际角度接近理论角度,最大误差为16.7%(SU2θ2)。
A total of four experiments were conducted for each unit. Starting from each of its two stable states, a unit is compressed to move away from this state either by either a lateral force (increasing θ), or a set of in-plane point forces (decreasing θ) as indicated in Fig. 3B. The energy curves were then obtained through integration of the measured forces over the corresponding displacements. The NPE versus θ plot of SU1 is given in Fig. 3C. The trend of experimental curves matches well with that of analysis, although the computed NPE is overestimated. This is because creases of the prototypes had finite width, whereas the theoretical width of the creases is zero, and thus, the actual model is less stiff than the analytical model.
每个单元总共进行了四次实验。从其两种稳定状态开始,一个单元被压缩以通过侧向力(增加 θ)或一组面内点力(减小 θ)离开该状态,如图 3B 所示。然后,通过对相应位移上的测量力进行积分来获得能量曲线。SU1 的 NPE 与 θ 的关系图如图 3C 所示。实验曲线的趋势与分析曲线的趋势吻合良好,尽管计算出的NPE被高估了。这是因为原型的折痕具有有限的宽度,而折痕的理论宽度为零,因此,实际模型的刚度不如分析模型。
Figure 3D shows the transition process of the first prototype by an external stimulus (movie S2). It was noticed that the unit never folded flat because the flat configuration does not correspond to any stable state, and a snap-through process took place in less than 1 s as shown in the first and second photos of the second row. Two stable states of the unit were symmetric to each other.
图 3D 显示了第一个原型在外部刺激下的过渡过程(视频 S2)。我们注意到,该装置从未折叠平整,因为平坦的配置不对应于任何稳定状态,并且在不到 1 秒的时间内发生了卡通过程,如第二排的第一张和第二张照片所示。该单元的两个稳定状态彼此对称。

Multistable robotic limb made from the origami unit
由折纸单元制成的多稳态机器人肢体

The origami unit is scalable and could be used as building blocks for robots. Here, we use a robotic limb to demonstrate its vast possibilities. Figure 4A shows the origami pattern and its partially folded state for a limb consisting of a chain of three units where two units are bridged together by an inverted unit. Note that, although we state that there are three units, some facets of the neighboring units are actually overlapping. In its front view, we use ⊕ or ⊖ to mark the profile when a unit is convex up or down. This multistable robotic limb consists of three main components: the origami skeleton, a set of arc-shaped strips made from shape memory alloy (SMA) that are mounted on the central vertex of each unit for reconfiguration, and a flexible air-tight skin over the entire structure and a pump used to deploy the skeleton in each configuration (text S4). Figure 4B shows the arrangements of SMA strips in a unit in which a pair of them is installed on either side of the central vertex, and thus, there were a total of six SMA strips. Heating up one could force the vertex to invert, resulting in the unit to switch from ⊕ to ⊖ configurations, or vice versa (movie S3). Unlike conventional actuators, an SMA strip does not provide continuous control. Rather, it only provides an impulsive moment to let the unit snap from ⊕ to ⊖ and thus, much simpler in design. Once the skeleton enters into a particular configuration, e.g., ⊖-⊕-⊖, the force generated by the SMA actuators could be removed without causing the configuration change because each configuration is mechanically stable. However, its shape can further change by altering the pressure in the bag. Since the limb has three units, it has a total of eight configurations (23). Figure 4C shows those configurations.
折纸单元是可扩展的,可以用作机器人的构建块。在这里,我们使用机器人肢体来展示其巨大的可能性。图4A显示了折纸模式及其部分折叠状态,该肢体由三个单元的链组成,其中两个单元通过一个倒置的单元桥接在一起。请注意,尽管我们声明有三个单元,但相邻单元的某些方面实际上是重叠的。在其前视图中,我们使用 ⊕ 或 ⊖ 来标记单元向上或向下凸起时的轮廓。这种多稳态机器人肢体由三个主要组件组成:折纸骨架,一组由形状记忆合金(SMA)制成的弧形条带,安装在每个单元的中心顶点上以进行重新配置,以及整个结构上的柔性气密皮肤和一个用于在每个配置中部署骨架的泵(文本S4)。图 4B 显示了 SMA 条带在一个单元中的排列,其中一对 SMA 条安装在中心顶点的两侧,因此总共有六个 SMA 条带。加热 1 可能会迫使顶点反转,导致单元从 ⊕ 配置切换到 ⊖配置,反之亦然(电影 S3)。与传统的执行器不同,SMA 条带不提供连续控制。相反,它只提供了一个冲动的时刻,让装置从 ⊕ 卡到⊖,因此在设计上要简单得多。一旦骨架进入特定配置,例如⊖-⊕-⊖,SMA致动器产生的力就可以被移除而不引起配置变化,因为每个配置在机械上都是稳定的。然而,它的形状可以通过改变袋子中的压力来进一步改变。由于肢体有三个单元,因此它总共有八种配置(23)。 图 4C 显示了这些配置。
Fig. 4. Multistable robotic limb.
图 4.多稳态机器人肢体。
(A) Origami crease pattern and schematic diagram of the partially folded robotic limb. (B) Arrangements of SMA strips in an origami unit. (C) Front views and the limb in eight stable configurations and its corresponding relaxed and contraction (folded) states. (D) The robotic limb lifts a weight (movie S4) or grabs objects (movie S5).
A)部分折叠的机器人肢体的折纸折痕图案和示意图。(B) 折纸单元中 SMA 条带的排列。(C)前视图和肢体处于八种稳定配置及其相应的放松和收缩(折叠)状态。(D) 机器人肢体举起重物(影片 S4)或抓取物体(影片 S5)。
Open in viewer
The robotic limb has many potential applications. For instance, when the limb is in ⊖-⊕-⊕ configuration, it can lift a weight (movie S4). To act as a gripper, it needs first to reconfigure from ⊖-⊕-⊖ to ⊕-⊕-⊕ configuration through SMA strips and then it grabs an object through its shape change activated by withdrawing air from the airbag. The entire process is demonstrated in both Fig. 4D and movie S5. In comparison with existing artificial limbs with a single operation mode, this multistable pneumatic-driven limb provides more operational programmability. It achieves, for instance, lifting and gripping modes in one assembly. Moreover, the gripper can also easily cope with objects of various shapes and weights.
机器人肢体有许多潜在的应用。例如,当肢体处于 ⊖-⊕-⊕ 配置时,它可以举起重物(电影 S4)。要充当抓手,它首先需要通过 SMA 条从 ⊖-⊕-⊖ 重新配置为 ⊕-⊕-⊕配置,然后通过从安全气囊中抽出空气来激活其形状变化来抓取物体。整个过程在图4D和视频S5中都有所演示。与现有的单一操作模式的假肢相比,这种多稳态气动驱动的假肢提供了更多的操作可编程性。例如,它在一个组件中实现了提升和抓取模式。此外,夹持器还可以轻松应对各种形状和重量的物体。

Reprogrammable mechanical metamaterials
可重编程机械超材料

Not only could the bistable units be placed in series to form an artificial limb, it could also be extended laterally to create reconfigurable and programmable mechanical metamaterials to achieve desirable features such as negative Poisson’s ratio, variable stiffness, and shape transformations.
不仅可以将双稳态单元串联放置以形成假肢,还可以横向扩展以创建可重构和可编程的机械超材料,以实现所需的特性,例如负泊松比、可变刚度和形状变换。
Figure 5A shows an origami metamaterial built using 0.12-mm-thick cards, whose pattern consists of three columns of units laterally. In the longitudinal direction, these columns of units are arranged similarly to that of the multistable limb. The total number of columns is seven, and thus, there are 21 units. The origami pattern is given in Fig. 5B. In its original state, the metamaterial takes the shape of ⊕, ⊖, ⊕, ⊖, ⊕, ⊖, and ⊕. Note that unit within the same column behave exactly the same, i.e., they are either ⊕ or ⊖, otherwise, the mountain and valley rules would be violated. It has therefore a total of 128 stable states (27) (movie S6) among which five symmetrical stable configurations of the same metamaterial are displayed in Fig. 5A. The interchangeable configurations could be reached once external stimuli are applied when the origami is close to its flat shape. We have investigated the Poisson’s ratios of the metamaterial, which are defined as functions of the folding ratio in the y direction (text S5). We placed an acrylic plate on top of the metamaterial and two weights were placed on top of the plate to impose a compressive force in the y direction. The Poisson’s ratio, νxy and νzy were then obtained, which are plotted in Fig. 5 (C and D). νxy was always negative and monotonically decreasing with the increase of the folding ratio, while νzy could be either positive or negative according to the folding ratio.
图 5A 显示了使用 0.12 毫米厚的卡片构建的折纸超材料,其图案由横向的三列单元组成。在纵向上,这些单元柱的排列类似于多稳肢的排列。列总数为 7 列,因此有 21 个单元。折纸图案如图 5B 所示。在其原始状态下,超材料呈现⊕、⊖、⊕、⊖、⊕、⊖和⊕的形状。请注意,同一列中的单元的行为完全相同,即它们要么是⊕的,要么是⊖的,否则将违反山脉和山谷规则。因此,它总共有128个稳定态(2,7)(电影S6),其中同一超材料的5个对称稳定构型如图5A所示。当折纸接近其平面形状时,一旦应用外部刺激,就可以达到可互换的配置。我们已经研究了超材料的泊松比,它被定义为 y 方向(文本 S5)的折叠比的函数。我们在超材料顶部放置了一块亚克力板,并在板顶部放置了两个重物,以在 y 方向上施加压缩力。然后得到泊松比 νxy 和 νzy,如图 5 所示(C 和 D)。νxy始终为负,且随着折叠率的增加呈单调减小趋势,而νzy根据折叠率的不同,可以是正的,也可以是负的。
Fig. 5. Reconfigurable and programmable origami metamaterials.
图 5.可重构和可编程的折纸超材料。
(A) Five selected symmetrical stable configurations of this metamaterial and corresponding fully compressed (flat folded) states. (B) The origami pattern of the metamaterial. (C) Poisson’s ratios νxy versus lateral folding ratio plots. (D) Poisson’s ratios νzy versus lateral folding ratio plots. (E) Four possible configurations for the same origami structure. Each column shows the deployable sequence of the structure in a particular configuration. (F) The reconfigurable origami structure in a more general form where each unit is different.
A) 该超材料的五种选定对称稳定构型和相应的完全压缩(平坦折叠)状态。(B)超材料的折纸图案。(C) 泊松比 νxy 与横向折叠比图。(D) 泊松比 νzy 与横向折叠比图。(E) 同一折纸结构的四种可能配置。每列都显示特定配置中结构的可部署顺序。(F) 可重构的折纸结构,采用更一般的形式,其中每个单元都不同。
Open in viewer 在检视器中打开
The number of distinct configurations of a reprogrammable mechanical metamaterial depends on the number of units in series. It is C(n, 2) where n is the number of the units. Figure 5E shows a single structure made from 11 units in four configurations out of 55 possible ones. Each column shows the deployable sequence of the structure in a particular configuration. Instead of using solely symmetrical units where α = β (see Fig. 1A), unsymmetrical ones could also be included where α ≠ β. An example is shown in Fig. 5F with its four configurations amongst many others. Use of unsymmetrical units can lead to spiral profile, avoiding collision between first and final units in a chain of units.
可重编程机械超材料的不同配置数量取决于串联单元的数量。它是 C(n, 2),其中 n 是单位的数量。图 5E 显示了由 11 个单元组成的单一结构,这些单元在 55 种可能的配置中有四种配置。每列都显示特定配置中结构的可部署顺序。在α = β的地方,而不是只使用对称的单位(见图1A),也可以在α ≠ β的地方包括不对称的单位。图 5F 中显示了一个示例,其中包含四种配置以及许多其他配置。使用不对称单元会导致螺旋形轮廓,从而避免单元链中的第一个单元和最终单元之间的碰撞。

DISCUSSION 讨论

The reported work provides an origami-based building block for multistable metamorphous structures that process many stable configurations. This feature allows the structures to be reconfigurable from one set of motions to a completely different set. Once the reconfiguration takes place, the mechanical behavior also changes accordingly with the new stable structural layout. We have demonstrated a modular structural concept where the geometric design of a unit can be efficiently exploited to customize its two stable configurations, and the behavior of individual units gives rise to the overall reconfigurable feature that is rare in such structures. Our findings are validated by experiments. It was observed that the kinematic behavior of our physical models was broadly close to the rigid origami behavior due to the fact that they had a rigid folding–based designs, although various materials of different stiffness were used. The method presented in this work could be extended both to larger and smaller scales metamorphous structures. As our mechanical metamaterials are multistable, they can also be designed to achieve target geometry configurations and physical properties. Although we only used two examples to show the potential of our modular metamorphous structures, our research offers a new design paradigm for the reconfigurable shape morphing structures and metamaterial architecture that can potentially be used to realize multifunctional robotic systems, bioinspired morphing mechanisms, and advanced metamaterials.
报告的工作为处理许多稳定构型的多稳定结构提供了一个基于折纸的构建块。此功能允许结构从一组运动重新配置到完全不同的一组运动。一旦发生重新配置,机械性能也会随着新的稳定结构布局而发生相应变化。我们已经展示了一种模块化结构概念,其中可以有效地利用单元的几何设计来定制其两种稳定的配置,并且单个单元的行为会产生此类结构中罕见的整体可重构特征。我们的研究结果得到了实验的验证。据观察,尽管使用了不同刚度的各种材料,但我们的物理模型的运动学行为与刚性折纸行为大致接近,因为它们具有基于刚性折叠的设计。本文提出的方法可以扩展到更大尺度和更小尺度的变质结构。由于我们的机械超材料是多稳态的,因此它们也可以设计为实现目标几何配置和物理性能。虽然我们只用了两个例子来展示我们的模块化变形结构的潜力,但我们的研究为可重构形状变形结构和超材料结构提供了一种新的设计范式,可用于实现多功能机器人系统、仿生变形机制和先进超材料。

MATERIALS AND METHODS 材料和方法

The bistable origami unit (Fig. 1) was folded using card paper (0.2 mm thick, 160 g/m2). The origami metamaterials (Fig. 5) were built using card paper (0.12 mm thick, 100 g/m2). Cells of three sample units (Fig. 3) and the robotic limb (Fig. 4) were fabricated with polyurethane elastomer (Hei-Cast 8400, 0.6 mm thick, Young’s modulus, 12 MPa). Carbon fiber laminate sheet (0.4 mm thick, Young’s modulus 230 GPa) was bonded to each facet of cells to maintain rigid origami. The flexible air-tight skin is fabricated with polyethylene film (0.15 mm thick). The details about prototype fabrication are provided in texts S3 and S4.
使用卡片纸(0.2 mm厚,160 g / m2)折叠双稳态折纸单元(图1)。折纸超材料(图5)是用卡片纸(0.12 mm厚,100 g/m2)构建的。三个样品单元(图3)和机器人肢体(图4)的细胞采用聚氨酯弹性体(Hei-Cast 8400,0.6 mm厚,杨氏模量,12 MPa)制备。碳纤维层压板(0.4 mm 厚,杨氏模量 230 GPa)粘合到电池的每个面上,以保持刚性折纸。柔韧的气密表皮由聚乙烯薄膜(0.15 毫米厚)制成。有关原型制造的详细信息,请参阅文本 S3 和 S4。
SMA strips (edge length of 32.0 mm, width of 8.0 mm, and thickness of 0.15 mm) of the robotic limb were heating up with a current of 9.5A, power on 5.0 s. The air pump could provide a −90 kPa vacuum with 15 liter/min air flow. The details of lifting and grabbing experiment details of the multistable robotic limb are described in text S4. The mechanical testing of the sample units was carried out on a tensile testing machine INSTRON 9350.
机器人肢体的SMA条带(边长为32.0 mm,宽度为8.0 mm,厚度为0.15 mm)在9.5A电流、通电5.0 s时升温。气泵可以提供 −90 kPa 真空,空气流量为 15 升/分钟。多稳态机械肢体的提升和抓取实验细节详见文本S4。样品单元的机械测试是在INSTRON 9350拉伸试验机上进行的。

Acknowledgments 确认

Funding: We acknowledge the support of the National Natural Science Foundation of China (grant no. 52192631, 52320105005, and 51835002). Z.Y. acknowledges the support of the University of Hong Kong, who served as a visiting research professor while working on this manuscript.
资金:我们感谢国家自然科学基金(第52192631项、第52320105005项、第51835002项)的支持。Z.Y.感谢香港大学的支持,香港大学在撰写本文时担任访问研究教授。
Author contributions: Conceptualization: H.G., Z.Y., and C.W. Methodology: H.G., Z.Y., C.W., and Y.C. Investigation: C.W., H.G., and R.L. Data analysis: C.W., R.L., and Z.D. Supervision: H.G., Z.Y., and Z.D. Writing (original draft): C.W., Z.Y., and H.G. Writing (review and editing): All authors.
作者贡献:概念化:H.G.、Z.Y. 和 C.W. 方法论:H.G.、Z.Y.、C.W. 和 Y.C. 调查:C.W.、H.G. 和 R.L. 数据分析:C.W.、R.L. 和 Z.D. 监督:H.G.、Z.Y. 和 Z.D. 写作(初稿):C.W.、Z.Y. 和 H.G. 写作(审查和编辑):所有作者。
Competing interests: The authors declare that they have no competing interests.
利益争夺:提交人声明,他们没有相互竞争的利益。
Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials.
数据和材料可用性:评估论文中结论所需的所有数据都包含在论文和/或补充材料中。

Supplementary Materials 补充材料

This PDF file includes: 此 PDF 文件包括:

Supplementary Text 补充文本
Figs. S1 to S16 无花果。S1 至 S16
Tables S1 to S3 表 S1 至 S3
Legends for movies S1 to S6
电影 S1 至 S6 的图例

Other Supplementary Material for this manuscript includes the following:
本手稿的其他补充材料包括以下内容:

Movies S1 to S6 电影 S1 至 S6

REFERENCES AND NOTES 参考资料和注释

1
C. Harvey, V. B. Baliga, J. C. M. Wong, D. L. Altshuler, D. J. Inman, Birds can transition between stable and unstable states via wing morphing. Nature 603, 648–653 (2022).
C. Harvey, V. B. Baliga, J. C. M. Wong, D. L. Altshuler, D. J. Inman, 鸟类可以通过翅膀变形在稳定和不稳定状态之间过渡。自然 603, 648–653 (2022)。
2
T. Chen, M. Pauly, P. M. Reis, A reprogrammable mechanical metamaterial with stable memory. Nature 589, 386–390 (2021).
T. Chen, M. Pauly, P. M. Reis, 一种具有稳定内存的可重编程机械超材料。自然 589, 386–390 (2021)。
3
W. Kim, J. Byun, J. K. Kim, W. Y. Choi, K. Jakobsen, J. Jakobsen, D. Y. Lee, K. J. Cho, Bioinspired dual-morphing stretchable origami. Sci. Robotics 4, eaay3493 (2019).
W. Kim、J. Byun、J. K. Kim、W. Y. Choi、K. Jakobsen、J. Jakobsen、D. Y. Lee、K. J. Cho,仿生双变形可拉伸折纸。机器人科学 4, eaay3493 (2019).
4
X. Zhang, J. Ma, M. Li, Z. You, X. Wang, Y. Luo, K. Ma, Y. Chen, Kirigami-based metastructures with programmable multistability. Proc. Natl. Acad. Sci. 119, e2117649119 (2022).
X. Zhang, J. 马, M. Li, Z. You, X. Wang, Y. Luo, K. 马, Y. Chen, 基于Kirigami的元结构,具有可编程多稳定性。Proc. Natl. Acad. Sci.119, e2117649119 (2022).
5
J. A. Faber, A. F. Arrieta, A. R. Studart, Bioinspired spring origami. Science 359, 1386–1391 (2018).
6
R. Guseinov, C. McMahan, J. Pérez, C. Daraio, B. Bickel, Programming temporal morphing of self-actuated shells. Nat. Commun. 11, 237 (2020).
7
R. M. Erb, J. S. Sander, R. Grisch, A. R. Studart, Self-shaping composites with programmable bioinspired microstructures. Nat. Commun. 4, 1712 (2013).
8
B. Haghpanah, L. Salari-Sharif, P. Pourrajab, J. Hopkins, L. Valdevit, Multistable shape-reconfigurable architected materials. Adv. Mater. 28, 7915–7920 (2016).
9
H. Yasuda, T. Tachi, M. Lee, J. Yang, Origami-based tunable truss structures for non-volatile mechanical memory operation. Nat. Commun. 8, 962 (2017).
10
D. Y. Lee, S. R. Kim, J. S. Kim, J. J. Park, K. J. Cho, Origami wheel transformer: A variable-diameter wheel drive robot using an origami structure. Soft Robotics 4, 163–180 (2017).
11
D. Y. Lee, J. K. Kim, C. Y. Sohn, J. M. Heo, K. J. Cho, High-load capacity origami transformable wheel. Robotics 6, eabe0201 (2021).
12
J. L. Silverberg, A. A. Evans, L. McLeod, R. C. Hayward, T. Hull, C. D. Santangelo, I. Cohen, Using origami design principles to fold reprogrammable mechanical metamaterials. Science 345, 647–650 (2014).
13
D. Melancon, B. Gorissen, C. J. García-Mora, C. Hoberman, K. Bertoldi, Multistable inflatable origami structures at the metre scale. Nature 592, 545–550 (2021).
14
K. Kuribayashi, K. Tsuchiya, Z. You, D. Tomus, M. Umemoto, T. Ito, M. Sasaki, Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil. Mater. Sci. Eng. A 419, 131–137 (2006).
15
S. Felton, M. Tolley, E. Demaine, D. Rus, R. Wood, A method for building self-folding machines. Science 345, 644–646 (2014).
16
S. Li, D. M. Vogt, D. Rus, R. J. Wood, Fluid-driven origami-inspired artificial muscles. Proc. Natl. Acad. Sci. U.S.A. 114, 13132–13137 (2017).
17
Q. Ze, S. Wu, J. Nishikawa, J. Dai, Y. Sun, S. Leanza, C. Zemelka, L. S. Novelino, G. H. Paulino, R. R. Zhao, Soft robotic origami crawler. Sci. Adv. 8, eabm7834 (2022).
18
S. Wu, Q. Ze, J. Dai, N. Udipi, G. H. Paulino, R. Zhao, Stretchable origami robotic arm with omnidirectional bending and twisting. Proc. Natl. Acad. Sci. U.S.A. 118, e2110023118 (2021).
19
Z. Zhakypov, J. Paik, Design methodology for constructing multimaterial origami robots and machines. IEEE Trans. Rob. 34, 151–165 (2018).
20
C. Zhang, Z. Zhang, Y. Peng, Y. Zhang, S. An, Y. Wang, Z. Zhai, Y. Xu, H. Jiang, Plug and play origami modules with all-purpose deformation modes. Nat. Commun. 14, 4329 (2023).
21
N. Hu, B. Li, R. Bai, K. Xie, G. Chen, A torsion-bending antagonistic bistable actuator enables untethered crawling and swimming of miniature robots. Research 6, 0116 (2023).
22
M. Schenk, S. D. Guest, Geometry of Miura-folded metamaterials. Proc. Natl. Acad. Sci. U.S.A. 110, 3276–3281 (2013).
23
E. T. Filipov, T. Tachi, G. H. Paulino, Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials. Proc. Natl. Acad. Sci. U.S.A. 112, 12321–12326 (2015).
24
J. Cai, D. Xiaowei, Z. Ya, F. Jian, T. Yongming, Bistable behavior of the cylindrical origami structure with Kresling pattern. J. Mech. Des. 137, 061406 (2015).
25
H. Fang, S. Li, H. Ji, K. W. Wang, Dynamics of a bistable Miura-origami structure. Phys. Rev. E 95, 052211 (2017).
26
H. Ye, Q. Liu, J. Cheng, H. Li, B. Jian, R. Wang, Z. Sun, Y. Lu, Q. Ge, Multimaterial 3D printed self-locking thick-panel origami metamaterials. Nat. Commun. 14, 1607 (2023).
27
M. Meloni, J. Cai, Q. Zhang, D. Sang-Hoon Lee, M. Li, R. Ma, T. E. Parashkevov, J. Feng, Engineering origami: A comprehensive review of recent applications, design methods, and tools. Adv. Sci. 8, 2000636 (2021).
28
N. A. Pehrson, D. C. Ames, S. P. Smith, S. P. Magleby, M. Arya, Self-deployable, self-stiffening, and retractable origami-based arrays for spacecraft. AIAA Journal 58, 3221–3228 (2020).
29
S. Wang, Y. Gao, H. Huang, B. Li, H. Guo, R. Liu, Design of deployable curved-surface rigid origami flashers. Mech. Mach. Thoery 167, 104512–104517 (2022).
30
S. Wang, P. Yan, H. Huang, N. Zhang, B. Li, Inflatable metamorphic origami. Research 6, 0133 (2023).
31
J. L. Silverberg, J. H. Na, A. A. Evans, B. Liu, T. C. Hull, C. D. Santangelo, R. J. Lang, R. C. Hayward, I. Cohen, Origami structures with a critical transition to bistability arising from hidden degrees of freedom. Nat. Mater. 14, 389–393 (2015).
32
L. C. Wang, W. L. Song, Y. J. Zhang, M. J. Qu, Z. Zhao, M. Chen, Y. Yang, H. Chen, D. Fang, Active reconfigurable tristable square-twist origami. Adv. Funct. Mater. 30, 1909087 (2020).
33
P. P. Pratapa, K. Liu, G. H. Paulino, Geometric mechanics of origami patterns exhibiting Poisson’s ratio switch by breaking mountain and valley assignment. Phys. Rev. Lett. 122, 155501 (2019).
34
K. Johnson, V. Arroyos, A. Ferran, R. Villanueva, D. Yin, T. Elberier, A. Aliseda, S. Fuller, V. Iyer, S. Gollakota, Solar-powered shape-changing origami microfliers. Sci. Robot. 8, eadg4276 (2023).
35
Q. Zhang, H. Fang, J. Xu, Programmable stopbands and supratransmission effects in a stacked Miura-origami metastructure. Phys. Rev. E 101, 042206 (2020).
36
K. Liu, T. Tachi, G. H. Paulino, Invariant and smooth limit of discrete geometry folded from bistable origami leading to multistable metasurfaces. Nat. Commun. 10, 4238 (2019).
37
D. Melancon, A. E. Forte, L. M. Kamp, B. Gorissen, K. Bertoldi, Inflatable origami: Multimodal deformation via multistability. Adv. Funct. Mater. 32, 2201891 (2022).
38
B. H. Hanna, J. M. Lund, R. J. Lang, S. P. Magleby, L. L. Howell, Waterbomb base: A symmetric single-vertex bistable origami mechanism. Smart Mater. Struct. 23, 094009 (2014).
39
Z. Zhai, Y. Wang, H. Jiang, Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness. Proc. Natl. Acad. Sci. U.S.A. 115, 2032–2037 (2018).
40
L. H. Dudte, E. Vouga, T. Tachi, L. Mahadevan, Programming curvature using origami tessellations. Nat. Mater. 15, 583–588 (2016).
41
H. Yasuda, J. Yang, Reentrant origami-based metamaterials with negative Poisson’s ratio and bistability. Phys. Rev. Lett. 114, 185502 (2015).
42
G. Wang, J. Wang, Y. Yao, F. Yang, H. Yue, Research on programmable spatial capture mechanism and its motion characteristics based on origami principle. Mech Mach. Thoery 181, 105179 (2023).
43
S. P. Timoshenko, J. M. Gere, Theory of elastic stability (Courier Corporation, 2009).

(0)eLetters 电子信件

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.
eLetters是一个持续进行同行评审的论坛。电子信件未经编辑、校对或索引,但经过筛选。eLetters应提供对文章的实质性和学术性评论。无法提交嵌入的数字,我们一般不鼓励在电子信函中使用数字。如果图表是必不可少的,请在电子信函的文本中包含该图表的链接。在提交电子信函之前,请阅读我们的服务条款

Log In to Submit a Response

No eLetters have been published for this article yet.

Recommended articles from TrendMD

Information & Authors

Information

Published In

Science Advances
Volume 10 | Issue 22
May 2024

Article versions

Submission history

Received: 15 September 2023
Accepted: 23 April 2024

Permissions

Request permissions for this article.

Acknowledgments

Funding: We acknowledge the support of the National Natural Science Foundation of China (grant no. 52192631, 52320105005, and 51835002). Z.Y. acknowledges the support of the University of Hong Kong, who served as a visiting research professor while working on this manuscript.
Author contributions: Conceptualization: H.G., Z.Y., and C.W. Methodology: H.G., Z.Y., C.W., and Y.C. Investigation: C.W., H.G., and R.L. Data analysis: C.W., R.L., and Z.D. Supervision: H.G., Z.Y., and Z.D. Writing (original draft): C.W., Z.Y., and H.G. Writing (review and editing): All authors.
Competing interests: The authors declare that they have no competing interests.
Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials.

Authors

Affiliations

Funding Information

Notes

*
Corresponding author. Email: guohw@hit.edu.cn (H.G.); zhong.you@eng.ox.ac.uk (Z.Y.)

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

View Options

View options

PDF format

Download this article as a PDF file

Download PDF

Media

Figures

Fig. 1. Bistable origami unit.
(A) Crease pattern and partially folded shape of cell I where a = b = 15 mm. (B) Crease pattern and partially folded shape of cell II of the same dimension. (C) Origami unit created by stacking cell II on top of cell I and bonding the shaded central rhombuses and left and right edges together, respectively. (D) Configuration of the origami unit when cells I and II are switched over. (E) δI and δII versus θ plot. θ = π is the motion bifurcation state where both cells are completely flat. (F) Transition process between different configurations of the unit made from card (movie S1).
Fig. 2. Potential energy of the origami unit.
(A) NPE versus θ curves for cell I with θI0 = π/2 (blue), cell II with θII0 = 3π/2 (green), and edge creases (red). (B) NPE of the origami unit. (C) NPE versus θ curves for each cell and the unit composed of these cells where θI0 = π/3 and θII0 = 3π/2. (D) NPE versus θ curves for each cell and the unit composed of these cells where θI0 = 2π/3 and θII0 = 3π/2. (E) Contours of θ1 and θ2 of origami units with respect to different initial rest angles θI0 and θII0.
Fig. 3. Fabrication and experimental validation of the bistable units.
(A) Manufactured unstrained forms of cells I and II and resulting units. (B) Measured forces versus displacement in the force direction for SU1. (C) Energy plots for SU1. (D) Transition process between two stable states of the first prototype when pushed by a probe. Transition took place in the first and second photos of the second row (movie S2).
Fig. 4. Multistable robotic limb.
(A) Origami crease pattern and schematic diagram of the partially folded robotic limb. (B) Arrangements of SMA strips in an origami unit. (C) Front views and the limb in eight stable configurations and its corresponding relaxed and contraction (folded) states. (D) The robotic limb lifts a weight (movie S4) or grabs objects (movie S5).
Fig. 5. Reconfigurable and programmable origami metamaterials.
(A) Five selected symmetrical stable configurations of this metamaterial and corresponding fully compressed (flat folded) states. (B) The origami pattern of the metamaterial. (C) Poisson’s ratios νxy versus lateral folding ratio plots. (D) Poisson’s ratios νzy versus lateral folding ratio plots. (E) Four possible configurations for the same origami structure. Each column shows the deployable sequence of the structure in a particular configuration. (F) The reconfigurable origami structure in a more general form where each unit is different.

Multimedia

Tables

Share

Share

Share article link

Share on social media

References

References

1
C. Harvey, V. B. Baliga, J. C. M. Wong, D. L. Altshuler, D. J. Inman, Birds can transition between stable and unstable states via wing morphing. Nature 603, 648–653 (2022).
2
T. Chen, M. Pauly, P. M. Reis, A reprogrammable mechanical metamaterial with stable memory. Nature 589, 386–390 (2021).
3
W. Kim, J. Byun, J. K. Kim, W. Y. Choi, K. Jakobsen, J. Jakobsen, D. Y. Lee, K. J. Cho, Bioinspired dual-morphing stretchable origami. Sci. Robotics 4, eaay3493 (2019).
4
X. Zhang, J. Ma, M. Li, Z. You, X. Wang, Y. Luo, K. Ma, Y. Chen, Kirigami-based metastructures with programmable multistability. Proc. Natl. Acad. Sci. 119, e2117649119 (2022).
5
J. A. Faber, A. F. Arrieta, A. R. Studart, Bioinspired spring origami. Science 359, 1386–1391 (2018).
6
R. Guseinov, C. McMahan, J. Pérez, C. Daraio, B. Bickel, Programming temporal morphing of self-actuated shells. Nat. Commun. 11, 237 (2020).
7
R. M. Erb, J. S. Sander, R. Grisch, A. R. Studart, Self-shaping composites with programmable bioinspired microstructures. Nat. Commun. 4, 1712 (2013).
8
B. Haghpanah, L. Salari-Sharif, P. Pourrajab, J. Hopkins, L. Valdevit, Multistable shape-reconfigurable architected materials. Adv. Mater. 28, 7915–7920 (2016).
9
H. Yasuda, T. Tachi, M. Lee, J. Yang, Origami-based tunable truss structures for non-volatile mechanical memory operation. Nat. Commun. 8, 962 (2017).
10
D. Y. Lee, S. R. Kim, J. S. Kim, J. J. Park, K. J. Cho, Origami wheel transformer: A variable-diameter wheel drive robot using an origami structure. Soft Robotics 4, 163–180 (2017).
11
D. Y. Lee, J. K. Kim, C. Y. Sohn, J. M. Heo, K. J. Cho, High-load capacity origami transformable wheel. Robotics 6, eabe0201 (2021).
12
J. L. Silverberg, A. A. Evans, L. McLeod, R. C. Hayward, T. Hull, C. D. Santangelo, I. Cohen, Using origami design principles to fold reprogrammable mechanical metamaterials. Science 345, 647–650 (2014).
13
D. Melancon, B. Gorissen, C. J. García-Mora, C. Hoberman, K. Bertoldi, Multistable inflatable origami structures at the metre scale. Nature 592, 545–550 (2021).
14
K. Kuribayashi, K. Tsuchiya, Z. You, D. Tomus, M. Umemoto, T. Ito, M. Sasaki, Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil. Mater. Sci. Eng. A 419, 131–137 (2006).
15
S. Felton, M. Tolley, E. Demaine, D. Rus, R. Wood, A method for building self-folding machines. Science 345, 644–646 (2014).
16
S. Li, D. M. Vogt, D. Rus, R. J. Wood, Fluid-driven origami-inspired artificial muscles. Proc. Natl. Acad. Sci. U.S.A. 114, 13132–13137 (2017).
17
Q. Ze, S. Wu, J. Nishikawa, J. Dai, Y. Sun, S. Leanza, C. Zemelka, L. S. Novelino, G. H. Paulino, R. R. Zhao, Soft robotic origami crawler. Sci. Adv. 8, eabm7834 (2022).
18
S. Wu, Q. Ze, J. Dai, N. Udipi, G. H. Paulino, R. Zhao, Stretchable origami robotic arm with omnidirectional bending and twisting. Proc. Natl. Acad. Sci. U.S.A. 118, e2110023118 (2021).
19
Z. Zhakypov, J. Paik, Design methodology for constructing multimaterial origami robots and machines. IEEE Trans. Rob. 34, 151–165 (2018).
20
C. Zhang, Z. Zhang, Y. Peng, Y. Zhang, S. An, Y. Wang, Z. Zhai, Y. Xu, H. Jiang, Plug and play origami modules with all-purpose deformation modes. Nat. Commun. 14, 4329 (2023).
21
N. Hu, B. Li, R. Bai, K. Xie, G. Chen, A torsion-bending antagonistic bistable actuator enables untethered crawling and swimming of miniature robots. Research 6, 0116 (2023).
22
M. Schenk, S. D. Guest, Geometry of Miura-folded metamaterials. Proc. Natl. Acad. Sci. U.S.A. 110, 3276–3281 (2013).
23
E. T. Filipov, T. Tachi, G. H. Paulino, Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials. Proc. Natl. Acad. Sci. U.S.A. 112, 12321–12326 (2015).
24
J. Cai, D. Xiaowei, Z. Ya, F. Jian, T. Yongming, Bistable behavior of the cylindrical origami structure with Kresling pattern. J. Mech. Des. 137, 061406 (2015).
25
H. Fang, S. Li, H. Ji, K. W. Wang, Dynamics of a bistable Miura-origami structure. Phys. Rev. E 95, 052211 (2017).
26
H. Ye, Q. Liu, J. Cheng, H. Li, B. Jian, R. Wang, Z. Sun, Y. Lu, Q. Ge, Multimaterial 3D printed self-locking thick-panel origami metamaterials. Nat. Commun. 14, 1607 (2023).
27
M. Meloni, J. Cai, Q. Zhang, D. Sang-Hoon Lee, M. Li, R. Ma, T. E. Parashkevov, J. Feng, Engineering origami: A comprehensive review of recent applications, design methods, and tools. Adv. Sci. 8, 2000636 (2021).
28
N. A. Pehrson, D. C. Ames, S. P. Smith, S. P. Magleby, M. Arya, Self-deployable, self-stiffening, and retractable origami-based arrays for spacecraft. AIAA Journal 58, 3221–3228 (2020).
29
S. Wang, Y. Gao, H. Huang, B. Li, H. Guo, R. Liu, Design of deployable curved-surface rigid origami flashers. Mech. Mach. Thoery 167, 104512–104517 (2022).
30
S. Wang, P. Yan, H. Huang, N. Zhang, B. Li, Inflatable metamorphic origami. Research 6, 0133 (2023).
31
J. L. Silverberg, J. H. Na, A. A. Evans, B. Liu, T. C. Hull, C. D. Santangelo, R. J. Lang, R. C. Hayward, I. Cohen, Origami structures with a critical transition to bistability arising from hidden degrees of freedom. Nat. Mater. 14, 389–393 (2015).
32
L. C. Wang, W. L. Song, Y. J. Zhang, M. J. Qu, Z. Zhao, M. Chen, Y. Yang, H. Chen, D. Fang, Active reconfigurable tristable square-twist origami. Adv. Funct. Mater. 30, 1909087 (2020).
33
P. P. Pratapa, K. Liu, G. H. Paulino, Geometric mechanics of origami patterns exhibiting Poisson’s ratio switch by breaking mountain and valley assignment. Phys. Rev. Lett. 122, 155501 (2019).
34
K. Johnson, V. Arroyos, A. Ferran, R. Villanueva, D. Yin, T. Elberier, A. Aliseda, S. Fuller, V. Iyer, S. Gollakota, Solar-powered shape-changing origami microfliers. Sci. Robot. 8, eadg4276 (2023).
35
Q. Zhang, H. Fang, J. Xu, Programmable stopbands and supratransmission effects in a stacked Miura-origami metastructure. Phys. Rev. E 101, 042206 (2020).
36
K. Liu, T. Tachi, G. H. Paulino, Invariant and smooth limit of discrete geometry folded from bistable origami leading to multistable metasurfaces. Nat. Commun. 10, 4238 (2019).
37
D. Melancon, A. E. Forte, L. M. Kamp, B. Gorissen, K. Bertoldi, Inflatable origami: Multimodal deformation via multistability. Adv. Funct. Mater. 32, 2201891 (2022).
38
B. H. Hanna, J. M. Lund, R. J. Lang, S. P. Magleby, L. L. Howell, Waterbomb base: A symmetric single-vertex bistable origami mechanism. Smart Mater. Struct. 23, 094009 (2014).
39
Z. Zhai, Y. Wang, H. Jiang, Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness. Proc. Natl. Acad. Sci. U.S.A. 115, 2032–2037 (2018).
40
L. H. Dudte, E. Vouga, T. Tachi, L. Mahadevan, Programming curvature using origami tessellations. Nat. Mater. 15, 583–588 (2016).
41
H. Yasuda, J. Yang, Reentrant origami-based metamaterials with negative Poisson’s ratio and bistability. Phys. Rev. Lett. 114, 185502 (2015).
42
G. Wang, J. Wang, Y. Yao, F. Yang, H. Yue, Research on programmable spatial capture mechanism and its motion characteristics based on origami principle. Mech Mach. Thoery 181, 105179 (2023).
43
S. P. Timoshenko, J. M. Gere, Theory of elastic stability (Courier Corporation, 2009).
View figure
Fig. 1
Fig. 1. Bistable origami unit.
(A) Crease pattern and partially folded shape of cell I where a = b = 15 mm. (B) Crease pattern and partially folded shape of cell II of the same dimension. (C) Origami unit created by stacking cell II on top of cell I and bonding the shaded central rhombuses and left and right edges together, respectively. (D) Configuration of the origami unit when cells I and II are switched over. (E) δI and δII versus θ plot. θ = π is the motion bifurcation state where both cells are completely flat. (F) Transition process between different configurations of the unit made from card (movie S1).
View figure
Fig. 2
Fig. 2. Potential energy of the origami unit.
(A) NPE versus θ curves for cell I with θI0 = π/2 (blue), cell II with θII0 = 3π/2 (green), and edge creases (red). (B) NPE of the origami unit. (C) NPE versus θ curves for each cell and the unit composed of these cells where θI0 = π/3 and θII0 = 3π/2. (D) NPE versus θ curves for each cell and the unit composed of these cells where θI0 = 2π/3 and θII0 = 3π/2. (E) Contours of θ1 and θ2 of origami units with respect to different initial rest angles θI0 and θII0.
View figure
Fig. 3
Fig. 3. Fabrication and experimental validation of the bistable units.
(A) Manufactured unstrained forms of cells I and II and resulting units. (B) Measured forces versus displacement in the force direction for SU1. (C) Energy plots for SU1. (D) Transition process between two stable states of the first prototype when pushed by a probe. Transition took place in the first and second photos of the second row (movie S2).
View figure
Fig. 4
Fig. 4. Multistable robotic limb.
(A) Origami crease pattern and schematic diagram of the partially folded robotic limb. (B) Arrangements of SMA strips in an origami unit. (C) Front views and the limb in eight stable configurations and its corresponding relaxed and contraction (folded) states. (D) The robotic limb lifts a weight (movie S4) or grabs objects (movie S5).
View figure
Fig. 5
Fig. 5. Reconfigurable and programmable origami metamaterials.
(A) Five selected symmetrical stable configurations of this metamaterial and corresponding fully compressed (flat folded) states. (B) The origami pattern of the metamaterial. (C) Poisson’s ratios νxy versus lateral folding ratio plots. (D) Poisson’s ratios νzy versus lateral folding ratio plots. (E) Four possible configurations for the same origami structure. Each column shows the deployable sequence of the structure in a particular configuration. (F) The reconfigurable origami structure in a more general form where each unit is different.
ScienceAdviser

Get the latest news, commentary, and research, free to your inbox daily.