这是用户在 2024-4-10 21:36 为 https://www.cell.com/cell-chemical-biology/fulltext/S2451-9456(21)00157-4?_returnURL=https%3A%2F%2Fl... 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
Advertisement
Review| Volume 28, ISSUE 7, P1000-1013, July 15, 2021

回顾 第28卷 第7期 P1000-1013,2021年7月15日 下载完整期刊
An E3 ligase guide to the galaxy of small-molecule-induced protein degradation
一个E3连接酶指南:小分子诱导的蛋白质降解的星系

An E3 ligase guide to the galaxy of small-molecule-induced protein degradation
一个E3连接酶指南:小分子诱导的蛋白质降解的星系

Open ArchivePublished:April 22, 2021DOI:https://doi.org/10.1016/j.chembiol.2021.04.002
开放档案发布日期:2021年4月22日DOI:https://doi.org/10.1016/j.chembiol.2021.04.002
Plum Print visual indicator of research metrics
PlumX Metrics 梅花X指标
  • Citations
    • Citation Indexes: 45
  • Captures
    • Readers: 209
  • Social Media
    • Shares, Likes & Comments: 36
see details

Summary 摘要

Induced protein degradation accomplishes elimination, rather than inhibition, of pathological proteins. Key to the success of this novel therapeutic modality is the modification of proteins with ubiquitin chains, which is brought about by molecular glues or bivalent compounds that induce proximity between the target protein and an E3 ligase. The human genome encodes ∼600 E3 ligases that differ widely in their structures, catalytic mechanisms, modes of regulation, and physiological roles. While many of these enzymes hold great promise for drug discovery, few have been successfully engaged by small-molecule degraders. Here, we review E3 ligases that are being used for induced protein degradation. Based on these prior successes and our growing understanding of the biology and biochemistry of E3 ligases, we propose new ubiquitylation enzymes that can be harnessed for drug discovery to firmly establish induced protein degradation as a specific and efficient therapeutic approach.
诱导蛋白降解实现了对病理蛋白的消除,而不是抑制。这种新型治疗模式的成功关键在于通过分子胶或双价化合物使目标蛋白与E3连接酶之间产生接近,从而将蛋白质修饰为泛素链。人类基因组编码了大约600种结构、催化机制、调控方式和生理作用各异的E3连接酶。虽然其中许多酶在药物发现方面具有巨大潜力,但只有少数能够成功地与小分子降解剂相互作用。在这里,我们回顾了正在用于诱导蛋白降解的E3连接酶。基于这些先前的成功以及我们对E3连接酶生物学和生物化学的日益了解,我们提出了可以用于药物发现的新型泛素化酶,以确立诱导蛋白降解作为一种特异而高效的治疗方法。

Graphical abstract 图形摘要

Keywords 关键词

Introduction 介绍

Induced protein degradation has emerged as a new therapeutic modality against targets that were once deemed undruggable. Key to eliminating pathological proteins from cells is their modification with ubiquitin chains that are recognized by receptors of the 26S proteasome (
  • Bard J.A.M.
  • Goodall E.A.
  • Greene E.R.
  • Jonsson E.
  • Dong K.C.
  • Martin A.
Structure and function of the 26S proteasome.
). The assembly of such ubiquitin polymers is initiated by E1 ubiquitin activating enzymes (
  • Jin J.
  • Li X.
  • Gygi S.P.
  • Harper J.W.
Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging.
), which transfer ubiquitin to the active-site cysteine in ∼40 E2 ubiquitin-conjugating enzymes (
  • Ye Y.
  • Rapé M.
Building ubiquitin chains: E2 enzymes at work.
). E2 enzymes can then charge a Cys residue in E3 ligases of the HECT (homologous to E6-AP C terminus), RBR (RING-in between-RING), and RCR (RING Cys relay) families, thereby enabling these enzymes to ubiquitylate a target (
  • Pao K.C.
  • Wood N.T.
  • Knebel A.
  • Rafie K.
  • Stanley M.
  • Mabbitt P.D.
  • Sundaramoorthy R.
  • Hofmann K.
  • van Aalten D.M.F.
  • Virdee S.
Activity-based E3 ligase profiling uncovers an E3 ligase with esterification activity.
;
  • Walden H.
  • Rittinger K.
RBR ligase-mediated ubiquitin transfer: a tale with many twists and turns.
;
  • Wang Y.
  • Argiles-Castillo D.
  • Kane E.I.
  • Zhou A.
  • Spratt D.E.
HECT E3 ubiquitin ligases - emerging insights into their biological roles and disease relevance.
) (Figure 1A). Alternatively, E2s can be activated by E3 ligases with signature RING (really interesting new gene) domains to transfer ubiquitin from their own active site to the substrate (
  • Baek K.
  • Scott D.C.
  • Schulman B.A.
NEDD8 and ubiquitin ligation by cullin-RING E3 ligases.
;
  • Deshaies R.J.
  • Joazeiro C.A.
RING domain E3 ubiquitin ligases.
) (Figure 1B). By recruiting both substrates and ubiquitin-charged E2 enzymes, E3 ligases occupy a central place in the enzymatic cascade leading to protein ubiquitylation.
诱导蛋白降解已成为一种针对曾被认为无法药物靶点的新的治疗模式。从细胞中清除病理蛋白的关键是将其修饰为被26S蛋白酶体受体识别的泛素链。这种泛素聚合物的组装由E1泛素激活酶启动,它们将泛素转移到约40个E2泛素连接酶的活性位点半胱氨酸上。然后,E2酶可以将泛素充电到HECT(与E6-AP C端同源)、RBR(环中环)和RCR(环半胱氨酸中继)家族的E3连接酶的半胱氨酸残基上,从而使这些酶能够泛素化目标。或者,E2酶可以被具有特征RING(真正有趣的新基因)结构域的E3连接酶激活,将泛素从其自身的活性位点转移到底物上。通过招募底物和带电的E2酶,E3连接酶在导致蛋白质泛素化的酶级级联中占据着核心位置。
Figure thumbnail gr1
Figure 1E3 ligase families and modes of substrate recognition in cells
图1E3中的连接酶家族和细胞中底物识别的方式
The human genome encodes ∼600 E3 ligases, which differ widely in how many proteins they modify: while genetic studies identified a single essential substrate for the E3 ligases MDM2, CUL3KEAP1, and SCFFBXL5 (
  • Montes de Oca Luna R.
  • Wagner D.S.
  • Lozano G.
Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53.
;
  • Moroishi T.
  • Nishiyama M.
  • Takeda Y.
  • Iwai K.
  • Nakayama K.I.
The FBXL5-IRP2 axis is integral to control of iron metabolism in vivo.
;
  • Wakabayashi N.
  • Itoh K.
  • Wakabayashi J.
  • Motohashi H.
  • Noda S.
  • Takahashi S.
  • Imakado S.
  • Kotsuji T.
  • Otsuka F.
  • Roop D.R.
  • et al.
Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation.
), SCFβTrCP and the anaphase-promoting complex (APC/C) ubiquitylate dozens of proteins (
  • Skaar J.R.
  • Pagan J.K.
  • Pagano M.
Mechanisms and function of substrate recruitment by F-box proteins.
;
  • Watson E.R.
  • Brown N.G.
  • Peters J.M.
  • Stark H.
  • Schulman B.A.
Posing the APC/C E3 ubiquitin ligase to orchestrate cell division.
). E3 ligases also vary in the products of their enzymatic activity: rather than tagging their substrates with a single possible modification, they can assemble different types of ubiquitin conjugates that elicit distinct outcomes in cells (
  • Yau R.
  • Rapé M.
The increasing complexity of the ubiquitin code.
). E3 ligases that produce polymers linked through K11 or K48 of ubiquitin trigger proteasomal degradation (
  • Chau V.
  • Tobias J.W.
  • Bachmair A.
  • Marriott D.
  • Ecker D.J.
  • Gonda D.K.
  • Varshavsky A.
A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein.
;
  • Jin L.
  • Williamson A.
  • Banerjee S.
  • Philipp I.
  • Rapé M.
Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex.
), while enzymes synthesizing short chains of mixed topology or K63-linked polymers help eliminate proteins, aggregates, or even organelles through the autophagy-lysosome system (
  • Ordureau A.
  • Paulo J.A.
  • Zhang J.
  • An H.
  • Swatek K.N.
  • Cannon J.R.
  • Wan Q.
  • Komander D.
  • Harper J.W.
Global landscape and dynamics of parkin and USP30-dependent ubiquitylomes in iNeurons during mitophagic signaling.
). Notably, E3 ligases do not have to act alone: collaboration between enzymes results in more complex heterotypic polymers, such as K11/K48- or K29/K48-branched chains (
  • Haakonsen D.L.
  • Rapé M.
Branching out: improved signaling by heterotypic ubiquitin chains.
), which recruit the unfolding ATPase p97/VCP (
  • Blythe E.E.
  • Olson K.C.
  • Chau V.
  • Deshaies R.J.
Ubiquitin- and ATP-dependent unfoldase activity of P97/VCP∗NPLOC4∗UFD1L is enhanced by a mutation that causes multisystem proteinopathy.
;
  • Oh E.
  • Mark K.G.
  • Mocciaro A.
  • Watson E.R.
  • Prabu J.R.
  • Cha D.D.
  • Kampmann M.
  • Gamarra N.
  • Zhou C.Y.
  • Rapé M.
Gene expression and cell identity controlled by anaphase-promoting complex.
;
  • Yau R.G.
  • Doerner K.
  • Castellanos E.R.
  • Haakonsen D.L.
  • Werner A.
  • Wang N.
  • Yang X.W.
  • Martinez-Martin N.
  • Matsumoto M.L.
  • Dixit V.M.
  • et al.
Assembly and function of heterotypic ubiquitin chains in cell-cycle and protein quality control.
) and promote proteasomal turnover with particular efficiency (
  • Meyer H.J.
  • Rapé M.
Enhanced protein degradation by branched ubiquitin chains.
). Having that many E3 ligases at their disposal, cells use a wide range of approaches to fine-tune their activities, which include inhibitors of substrate binding or catalytic activity, changes in their intracellular localization, or expression in specific tissues or at particular stages of development or disease (
  • Oh E.
  • Akopian D.
  • Rapé M.
Principles of ubiquitin-dependent signaling.
).
人类基因组编码约600个E3连接酶,它们在修改蛋白质的数量上存在很大差异:尽管遗传学研究确定了E3连接酶MDM2、CUL3和SCF的单个必需底物,但SCF和负责有丝分裂促进复合物(APC/C)的酶可以泛素化数十种蛋白质。E3连接酶的酶活性产物也存在差异:它们不仅可以给底物标记上一种可能的修饰,还可以组装不同类型的泛素结合物,从而在细胞中引发不同的结果。通过K11或K48连接泛素的产生聚合物的E3连接酶会触发蛋白质的蛋白酶体降解,而合成混合拓扑或K63连接聚合物的酶则通过自噬溶酶体系统帮助清除蛋白质、聚集体甚至细胞器。 值得注意的是,E3连接酶不必独自行动:酶之间的合作会产生更复杂的异型聚合物,例如K11/K48或K29/K48分支链(
  • Haakonsen D.L.
  • Rapé M.
Branching out: improved signaling by heterotypic ubiquitin chains.
),这些聚合物会招募展开ATP酶p97/VCP(
  • Blythe E.E.
  • Olson K.C.
  • Chau V.
  • Deshaies R.J.
Ubiquitin- and ATP-dependent unfoldase activity of P97/VCP∗NPLOC4∗UFD1L is enhanced by a mutation that causes multisystem proteinopathy.
  • Oh E.
  • Mark K.G.
  • Mocciaro A.
  • Watson E.R.
  • Prabu J.R.
  • Cha D.D.
  • Kampmann M.
  • Gamarra N.
  • Zhou C.Y.
  • Rapé M.
Gene expression and cell identity controlled by anaphase-promoting complex.
  • Yau R.G.
  • Doerner K.
  • Castellanos E.R.
  • Haakonsen D.L.
  • Werner A.
  • Wang N.
  • Yang X.W.
  • Martinez-Martin N.
  • Matsumoto M.L.
  • Dixit V.M.
  • et al.
Assembly and function of heterotypic ubiquitin chains in cell-cycle and protein quality control.
),并以特定的效率促进蛋白酶体降解(
  • Meyer H.J.
  • Rapé M.
Enhanced protein degradation by branched ubiquitin chains.
)。细胞拥有如此多的E3连接酶可供利用,它们使用各种方法来微调它们的活性,包括抑制底物结合或催化活性的抑制剂,改变它们的细胞内定位,或在特定组织或特定发育或疾病阶段表达(
  • Oh E.
  • Akopian D.
  • Rapé M.
Principles of ubiquitin-dependent signaling.
)。
To ensure that ubiquitylation occurs at the right time and place, E3 ligases recognize their targets through specific motifs referred to as degrons (Figure 1C). Some degrons, such as the D box present in APC/C substrates or the carboxy terminus of C-end-rule substrates (
  • da Fonseca P.C.
  • Kong E.H.
  • Zhang Z.
  • Schreiber A.
  • Williams M.A.
  • Morris E.P.
  • Barford D.
Structures of APC/C(Cdh1) with substrates identify Cdh1 and Apc10 as the D-box co-receptor.
;
  • King R.W.
  • Glotzer M.
  • Kirschner M.W.
Mutagenic analysis of the destruction signal of mitotic cyclins and structural characterization of ubiquitinated intermediates.
;
  • Koren I.
  • Timms R.T.
  • Kula T.
  • Xu Q.
  • Li M.Z.
  • Elledge S.J.
The eukaryotic proteome is shaped by E3 ubiquitin ligases targeting C-terminal degrons.
;
  • Lin H.C.
  • Yeh C.W.
  • Chen Y.F.
  • Lee T.T.
  • Hsieh P.Y.
  • Rusnac D.V.
  • Lin S.Y.
  • Elledge S.J.
  • Zheng N.
  • Yen H.S.
C-terminal end-directed protein elimination by CRL2 ubiquitin ligases.
), are linear sequence stretches that are constitutively accessible to the E3 ligase. Other degrons require posttranslational modifications, such as phosphorylation (
  • Winston J.T.
  • Strack P.
  • Beer-Romero P.
  • Chu C.Y.
  • Elledge S.J.
  • Harper J.W.
The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro.
), acetylation (
  • Donato V.
  • Bonora M.
  • Simoneschi D.
  • Sartini D.
  • Kudo Y.
  • Saraf A.
  • Florens L.
  • Washburn M.P.
  • Stadtfeld M.
  • Pinton P.
  • et al.
The TDH-GCN5L1-Fbxo15-KBP axis limits mitochondrial biogenesis in mouse embryonic stem cells.
;
  • Shemorry A.
  • Hwang C.S.
  • Varshavsky A.
Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway.
), hydroxylation (
  • Ivan M.
  • Kondo K.
  • Yang H.
  • Kim W.
  • Valiando J.
  • Ohh M.
  • Salic A.
  • Asara J.M.
  • Lane W.S.
  • Kaelin Jr., W.G.
HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing.
;
  • Jaakkola P.
  • Mole D.R.
  • Tian Y.M.
  • Wilson M.I.
  • Gielbert J.
  • Gaskell S.J.
  • von Kriegsheim A.
  • Hebestreit H.F.
  • Mukherji M.
  • Schofield C.J.
  • et al.
Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation.
), ADP ribosylation (
  • Zhang Y.
  • Liu S.
  • Mickanin C.
  • Feng Y.
  • Charlat O.
  • Michaud G.A.
  • Schirle M.
  • Shi X.
  • Hild M.
  • Bauer A.
  • et al.
RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling.
), or arginylation (
  • Yoo Y.D.
  • Mun S.R.
  • Ji C.H.
  • Sung K.W.
  • Kang K.Y.
  • Heo A.J.
  • Lee S.H.
  • An J.Y.
  • Hwang J.
  • Xie X.Q.
  • et al.
N-terminal arginylation generates a bimodal degron that modulates autophagic proteolysis.
). Degrons can also be inactivated in a regulated manner, for example, by oxidation (
  • Manford A.G.
  • Rodriguez-Perez F.
  • Shih K.Y.
  • Shi Z.
  • Berdan C.A.
  • Choe M.
  • Titov D.V.
  • Nomura D.K.
  • Rapé M.
A cellular mechanism to detect and alleviate reductive stress.
). Some substrates possess several copies of a degron to allow for multivalent and high-affinity recognition (
  • Csizmok V.
  • Orlicky S.
  • Cheng J.
  • Song J.
  • Bah A.
  • Delgoshaie N.
  • Lin H.
  • Mittag T.
  • Sicheri F.
  • Chan H.S.
  • et al.
An allosteric conduit facilitates dynamic multisite substrate recognition by the SCFCdc4 ubiquitin ligase.
;
  • Tang X.
  • Orlicky S.
  • Lin Z.
  • Willems A.
  • Neculai D.
  • Ceccarelli D.
  • Mercurio F.
  • Shilton B.H.
  • Sicheri F.
  • Tyers M.
Suprafacial orientation of the SCFCdc4 dimer accommodates multiple geometries for substrate ubiquitination.
;
  • Werner A.
  • Baur R.
  • Kaya D.
  • Teerikorpi N.
  • Rapé M.
Multivalent substrate recognition by an E3 ligase is essential for neural crest specification.
). While short linear motifs have been studied most extensively, structural degrons also exist: providing a recent example, SCFFBXL17 recognizes the shape, rather than the sequence, of its target broad-complex, tramtrack, and bric-à-brac (BTB) domain (
  • Mena E.L.
  • Kjolby R.A.S.
  • Saxton R.A.
  • Werner A.
  • Lew B.G.
  • Boyle J.M.
  • Harland R.
  • Rapé M.
Dimerization quality control ensures neuronal development and survival.
,
  • Mena E.L.
  • Jevtic P.
  • Greber B.J.
  • Gee C.L.
  • Lew B.G.
  • Akopian D.
  • Nogales E.
  • Kuriyan J.
  • Rapé M.
Structural basis for dimerization quality control.
). Finally, some E3 ligases function predominantly by extending ubiquitin chains and thus recognize ubiquitin itself as their substrate (
  • Eddins M.J.
  • Carlile C.M.
  • Gomez K.M.
  • Pickart C.M.
  • Wolberger C.
Mms2-Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation.
;
  • Koegl M.
  • Hoppe T.
  • Schlenker S.
  • Ulrich H.D.
  • Mayer T.U.
  • Jentsch S.
A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly.
;
  • Wickliffe K.E.
  • Lorenz S.
  • Wemmer D.E.
  • Kuriyan J.
  • Rapé M.
The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit e2.
;
  • Yau R.G.
  • Doerner K.
  • Castellanos E.R.
  • Haakonsen D.L.
  • Werner A.
  • Wang N.
  • Yang X.W.
  • Martinez-Martin N.
  • Matsumoto M.L.
  • Dixit V.M.
  • et al.
Assembly and function of heterotypic ubiquitin chains in cell-cycle and protein quality control.
).
为了确保泛素化发生在正确的时间和地点,E3连接酶通过特定的序列模体(称为降解子)识别它们的目标(图1C)。一些降解子,如存在于APC/C底物中的D盒或C末端规则底物的羧基末端(
  • da Fonseca P.C.
  • Kong E.H.
  • Zhang Z.
  • Schreiber A.
  • Williams M.A.
  • Morris E.P.
  • Barford D.
Structures of APC/C(Cdh1) with substrates identify Cdh1 and Apc10 as the D-box co-receptor.
  • King R.W.
  • Glotzer M.
  • Kirschner M.W.
Mutagenic analysis of the destruction signal of mitotic cyclins and structural characterization of ubiquitinated intermediates.
  • Koren I.
  • Timms R.T.
  • Kula T.
  • Xu Q.
  • Li M.Z.
  • Elledge S.J.
The eukaryotic proteome is shaped by E3 ubiquitin ligases targeting C-terminal degrons.
  • Lin H.C.
  • Yeh C.W.
  • Chen Y.F.
  • Lee T.T.
  • Hsieh P.Y.
  • Rusnac D.V.
  • Lin S.Y.
  • Elledge S.J.
  • Zheng N.
  • Yen H.S.
C-terminal end-directed protein elimination by CRL2 ubiquitin ligases.
),是线性序列段,始终可被E3连接酶访问。其他降解子需要后转录修饰,如磷酸化(
  • Winston J.T.
  • Strack P.
  • Beer-Romero P.
  • Chu C.Y.
  • Elledge S.J.
  • Harper J.W.
The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro.
)、乙酰化(
  • Donato V.
  • Bonora M.
  • Simoneschi D.
  • Sartini D.
  • Kudo Y.
  • Saraf A.
  • Florens L.
  • Washburn M.P.
  • Stadtfeld M.
  • Pinton P.
  • et al.
The TDH-GCN5L1-Fbxo15-KBP axis limits mitochondrial biogenesis in mouse embryonic stem cells.
  • Shemorry A.
  • Hwang C.S.
  • Varshavsky A.
Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway.
)、羟基化(
  • Ivan M.
  • Kondo K.
  • Yang H.
  • Kim W.
  • Valiando J.
  • Ohh M.
  • Salic A.
  • Asara J.M.
  • Lane W.S.
  • Kaelin Jr., W.G.
HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing.
  • Jaakkola P.
  • Mole D.R.
  • Tian Y.M.
  • Wilson M.I.
  • Gielbert J.
  • Gaskell S.J.
  • von Kriegsheim A.
  • Hebestreit H.F.
  • Mukherji M.
  • Schofield C.J.
  • et al.
Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation.
)、ADP核糖基化(
  • Zhang Y.
  • Liu S.
  • Mickanin C.
  • Feng Y.
  • Charlat O.
  • Michaud G.A.
  • Schirle M.
  • Shi X.
  • Hild M.
  • Bauer A.
  • et al.
RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling.
)或精氨酰化(
  • Yoo Y.D.
  • Mun S.R.
  • Ji C.H.
  • Sung K.W.
  • Kang K.Y.
  • Heo A.J.
  • Lee S.H.
  • An J.Y.
  • Hwang J.
  • Xie X.Q.
  • et al.
N-terminal arginylation generates a bimodal degron that modulates autophagic proteolysis.
)。降解子也可以通过调控方式失活,例如氧化(
  • Manford A.G.
  • Rodriguez-Perez F.
  • Shih K.Y.
  • Shi Z.
  • Berdan C.A.
  • Choe M.
  • Titov D.V.
  • Nomura D.K.
  • Rapé M.
A cellular mechanism to detect and alleviate reductive stress.
)。一些底物具有多个降解子的副本,以实现多价和高亲和力的识别(
  • Csizmok V.
  • Orlicky S.
  • Cheng J.
  • Song J.
  • Bah A.
  • Delgoshaie N.
  • Lin H.
  • Mittag T.
  • Sicheri F.
  • Chan H.S.
  • et al.
An allosteric conduit facilitates dynamic multisite substrate recognition by the SCFCdc4 ubiquitin ligase.
  • Tang X.
  • Orlicky S.
  • Lin Z.
  • Willems A.
  • Neculai D.
  • Ceccarelli D.
  • Mercurio F.
  • Shilton B.H.
  • Sicheri F.
  • Tyers M.
Suprafacial orientation of the SCFCdc4 dimer accommodates multiple geometries for substrate ubiquitination.
  • Werner A.
  • Baur R.
  • Kaya D.
  • Teerikorpi N.
  • Rapé M.
Multivalent substrate recognition by an E3 ligase is essential for neural crest specification.
)。虽然短线性模体已被广泛研究,但结构性降解子也存在:最近的一个例子是SCF FBXL17 通过识别其目标广复合物、轨道和破烂(BTB)结构域的形状而不是序列(
  • Mena E.L.
  • Kjolby R.A.S.
  • Saxton R.A.
  • Werner A.
  • Lew B.G.
  • Boyle J.M.
  • Harland R.
  • Rapé M.
Dimerization quality control ensures neuronal development and survival.
  • Mena E.L.
  • Jevtic P.
  • Greber B.J.
  • Gee C.L.
  • Lew B.G.
  • Akopian D.
  • Nogales E.
  • Kuriyan J.
  • Rapé M.
Structural basis for dimerization quality control.
)。 最后,一些E3连接酶主要通过延长泛素链来发挥作用,因此将泛素本身识别为它们的底物(
  • Eddins M.J.
  • Carlile C.M.
  • Gomez K.M.
  • Pickart C.M.
  • Wolberger C.
Mms2-Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation.
  • Koegl M.
  • Hoppe T.
  • Schlenker S.
  • Ulrich H.D.
  • Mayer T.U.
  • Jentsch S.
A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly.
  • Wickliffe K.E.
  • Lorenz S.
  • Wemmer D.E.
  • Kuriyan J.
  • Rapé M.
The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit e2.
  • Yau R.G.
  • Doerner K.
  • Castellanos E.R.
  • Haakonsen D.L.
  • Werner A.
  • Wang N.
  • Yang X.W.
  • Martinez-Martin N.
  • Matsumoto M.L.
  • Dixit V.M.
  • et al.
Assembly and function of heterotypic ubiquitin chains in cell-cycle and protein quality control.
)。
As shown for the APC/C, fusing a degron to heterologous proteins can deliver an unnatural target, or neo-substrate, to an E3 ligase for ubiquitylation (
  • King R.W.
  • Glotzer M.
  • Kirschner M.W.
Mutagenic analysis of the destruction signal of mitotic cyclins and structural characterization of ubiquitinated intermediates.
). Genetic fusions were soon superseded by a small-molecule inhibitor of a cellular protein that was connected to a peptide degron for the E3 ligase SCFβTrCP (
  • Sakamoto K.M.
  • Kim K.B.
  • Kumagai A.
  • Mercurio F.
  • Crews C.M.
  • Deshaies R.J.
Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation.
). This first proteolysis-targeting chimera, or PROTAC, triggered the ubiquitin- and proteasome-dependent degradation of its recombinant drug target in Xenopus laevis extract. With breathtaking speed, we have learned to replace the degron with small molecules, resulting in compounds that can recruit specific proteins to E3 ligases to elicit their proteolytic ubiquitylation (
  • Burslem G.M.
  • Crews C.M.
Proteolysis-targeting chimeras as therapeutics and tools for biological discovery.
;
  • Winter G.E.
  • Buckley D.L.
  • Paulk J.
  • Roberts J.M.
  • Souza A.
  • Dhe-Paganon S.
  • Bradner J.E.
DRUG DEVELOPMENT. Phthalimide conjugation as a strategy for in vivo target protein degradation.
). Compared with traditional inhibitors, small-molecule degraders act catalytically and, hence, at lower concentrations, interfere with all functions of a protein—rather than shutting down only one activity—and prevent compensatory upregulation of the drug target. In this review, we will focus on the E3 ligases as the key machineries of induced protein degradation. In particular, we will build on our increasing understanding of the biology and biochemistry of ubiquitylation to propose new enzymes that could expand our toolbox and firmly establish this exciting therapeutic modality.
如APC/C所示,将降解标记融合到异源蛋白质上可以将非自然靶点或新型底物传递给E3连接酶进行泛素化。遗传融合很快被连接到肽降解标记的细胞蛋白小分子抑制剂所取代。这种第一个蛋白质降解靶向嵌合物(PROTAC)在Xenopus laevis提取物中触发了其重组药物靶点的泛素和蛋白酶体依赖性降解。我们以惊人的速度学会了用小分子取代降解标记,从而产生能够招募特定蛋白质到E3连接酶以引发其蛋白质降解泛素化的化合物。与传统抑制剂相比,小分子降解剂具有催化作用,因此在较低浓度下干扰蛋白质的所有功能,而不仅仅是关闭一个活性,并防止药物靶点的补偿性上调。在本综述中,我们将重点关注E3连接酶作为诱导蛋白质降解的关键机制。 特别是,我们将在对泛素化的生物学和生物化学的日益理解的基础上,提出新的酶,以扩展我们的工具箱,并牢固地确立这种令人兴奋的治疗模式。

Current E3 ligase toolbox for induced protein degradation
目前用于诱导蛋白质降解的E3连接酶工具箱

Small molecules that target proteins for ubiquitylation fall into two major classes: molecular glues and bivalent compounds that we refer to as PROTACs. While molecular glues sandwich between two proteins (
  • Schreiber S.L.
The rise of molecular glues.
) (Figure 2A), PROTACs have independent binding moieties to an E3 ligase and its neo-substrate that are connected by a short linker (
  • Burslem G.M.
  • Crews C.M.
Proteolysis-targeting chimeras as therapeutics and tools for biological discovery.
) (Figure 2B). Molecular glues are expected to have better pharmacological properties, yet PROTACs allow for modular design to rapidly connect one enzyme with many targets. Very few of the 600 human E3 ligases have been engaged by small-molecule degraders, and we have yet to learn how to predict which enzyme would work best against a given target. It is therefore likely that we are missing out on opportunities to improve the efficiency of induced protein degradation. Importantly, cancer cells are able to evolve resistance against degraders by downregulating the E3 ligase (
  • Sievers Q.L.
  • Gasser J.A.
  • Cowley G.S.
  • Fischer E.S.
  • Ebert B.L.
Genome-wide screen identifies cullin-RING ligase machinery required for lenalidomide-dependent CRL4(CRBN) activity.
). As this can be overcome by engaging a distinct ubiquitylation enzyme against the same target (
  • Shirasaki R.
  • Matthews G.M.
  • Gandolfi S.
  • de Matos Simoes R.
  • Buckley D.L.
  • Raja Vora J.
  • Sievers Q.L.
  • Bruggenthies J.B.
  • Dashevsky O.
  • Poarch H.
  • et al.
Functional genomics identify distinct and overlapping genes mediating resistance to different classes of heterobifunctional degraders of oncoproteins.
), expanding our E3 ligase toolbox is imperative to increase the impact of induced protein degradation as a therapeutic strategy. Learning from prior successes provides one means to accomplish this goal.
靶向蛋白质泛素化的小分子可分为两大类:分子粘合剂和我们称之为PROTACs的双价化合物。分子粘合剂夹在两个蛋白质之间(
  • Schreiber S.L.
The rise of molecular glues.
)(图2A),而PROTACs具有独立的结合基团,分别与E3连接酶和其新底物通过短链连接(
  • Burslem G.M.
  • Crews C.M.
Proteolysis-targeting chimeras as therapeutics and tools for biological discovery.
)(图2B)。分子粘合剂预计具有更好的药理特性,然而PROTACs允许模块化设计,快速将一个酶与多个靶点连接起来。目前只有很少一部分600个人类E3连接酶被小分子降解剂所利用,并且我们还不知道如何预测哪种酶对特定靶点的效果最好。因此,我们很可能错过了提高诱导蛋白质降解效率的机会。重要的是,癌细胞能够通过下调E3连接酶来对抗降解剂的抗药性(
  • Sievers Q.L.
  • Gasser J.A.
  • Cowley G.S.
  • Fischer E.S.
  • Ebert B.L.
Genome-wide screen identifies cullin-RING ligase machinery required for lenalidomide-dependent CRL4(CRBN) activity.
)。通过利用不同的泛素化酶来攻击同一靶点,可以克服这个问题(
  • Shirasaki R.
  • Matthews G.M.
  • Gandolfi S.
  • de Matos Simoes R.
  • Buckley D.L.
  • Raja Vora J.
  • Sievers Q.L.
  • Bruggenthies J.B.
  • Dashevsky O.
  • Poarch H.
  • et al.
Functional genomics identify distinct and overlapping genes mediating resistance to different classes of heterobifunctional degraders of oncoproteins.
),因此扩展我们的E3连接酶工具箱对于提高诱导蛋白质降解作为治疗策略的影响至关重要。 从以往的成功中学习提供了实现这一目标的一种方法。
Figure thumbnail gr2
Figure 2Different types of compounds recruit E3 ligases to neo-substrates
图2不同类型的化合物将E3连接酶招募到新底物上

E3 ligases targeted by natural molecular glues
E3酶受天然分子粘合物靶向

Providing a blueprint for drugging E3 ligases, plants use the hormone auxin, or indoleacetic acid, as a molecular glue to deliver transcriptional repressors to the E3 ligase SCFTIR1 (
  • Dharmasiri N.
  • Dharmasiri S.
  • Estelle M.
The F-box protein TIR1 is an auxin receptor.
;
  • Tan X.
  • Calderon-Villalobos L.I.
  • Sharon M.
  • Zheng C.
  • Robinson C.V.
  • Estelle M.
  • Zheng N.
Mechanism of auxin perception by the TIR1 ubiquitin ligase.
). By tethering transcriptional regulators to SCFTIR1, auxin induces their proteasomal degradation and thereby molds the genetic expression landscape of the plant. Variations of this theme are employed to sense other hormones, such as gibberellic acid and jasmonate (
  • Murase K.
  • Hirano Y.
  • Sun T.P.
  • Hakoshima T.
Gibberellin-induced DELLA recognition by the gibberellin receptor GID1.
;
  • Sheard L.B.
  • Tan X.
  • Mao H.
  • Withers J.
  • Ben-Nissan G.
  • Hinds T.R.
  • Kobayashi Y.
  • Hsu F.F.
  • Sharon M.
  • Browse J.
  • et al.
Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor.
), which points to the versatility and robustness of induced protein degradation as a signaling modality. Indeed, expression of the auxin receptor TIR1 allows for hormone-inducible degradation of proteins that had been fused to the short plant degron in many heterologous cell types (
  • Yesbolatova A.
  • Saito Y.
  • Kitamoto N.
  • Makino-Itou H.
  • Ajima R.
  • Nakano R.
  • Nakaoka H.
  • Fukui K.
  • Gamo K.
  • Tominari Y.
  • et al.
The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice.
).
提供了一种针对E3连接酶进行药物化的蓝图,植物使用激素生长素或吲哚乙酸作为分子胶水,将转录抑制因子传递给E3连接酶SCF TIR1 (
  • Dharmasiri N.
  • Dharmasiri S.
  • Estelle M.
The F-box protein TIR1 is an auxin receptor.
;
  • Tan X.
  • Calderon-Villalobos L.I.
  • Sharon M.
  • Zheng C.
  • Robinson C.V.
  • Estelle M.
  • Zheng N.
Mechanism of auxin perception by the TIR1 ubiquitin ligase.
)。通过将转录调节因子与SCF TIR1 相连,生长素诱导它们的蛋白酶降解,从而塑造植物的基因表达格局。这种主题的变化被用于感知其他激素,如赤霉酸和茉莉酸 (
  • Murase K.
  • Hirano Y.
  • Sun T.P.
  • Hakoshima T.
Gibberellin-induced DELLA recognition by the gibberellin receptor GID1.
;
  • Sheard L.B.
  • Tan X.
  • Mao H.
  • Withers J.
  • Ben-Nissan G.
  • Hinds T.R.
  • Kobayashi Y.
  • Hsu F.F.
  • Sharon M.
  • Browse J.
  • et al.
Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor.
),这表明诱导蛋白降解作为一种信号传导方式的多功能性和稳健性。事实上,生长素受体TIR1的表达使得许多异源细胞类型中与短植物降解子融合的蛋白质能够通过激素诱导进行降解 (
  • Yesbolatova A.
  • Saito Y.
  • Kitamoto N.
  • Makino-Itou H.
  • Ajima R.
  • Nakano R.
  • Nakaoka H.
  • Fukui K.
  • Gamo K.
  • Tominari Y.
  • et al.
The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice.
)。
Auxin signals through an E3 ligase of the SCF family, which are composed of a CUL1 scaffold, the RING-domain subunit RBX1, and SKP1 as a shared factor that connects the catalytic CUL1-RBX1 module to exchangeable substrate adaptors with F-box domains (
  • Baek K.
  • Krist D.T.
  • Prabu J.R.
  • Hill S.
  • Klugel M.
  • Neumaier L.M.
  • von Gronau S.
  • Kleiger G.
  • Schulman B.A.
NEDD8 nucleates a multivalent cullin-RING-UBE2D ubiquitin ligation assembly.
;
  • Schulman B.A.
  • Carrano A.C.
  • Jeffrey P.D.
  • Bowen Z.
  • Kinnucan E.R.
  • Finnin M.S.
  • Elledge S.J.
  • Harper J.W.
  • Pagano M.
  • Pavletich N.P.
Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex.
;
  • Zheng N.
  • Schulman B.A.
  • Song L.
  • Miller J.J.
  • Jeffrey P.D.
  • Wang P.
  • Chu C.
  • Koepp D.M.
  • Elledge S.J.
  • Pagano M.
  • et al.
Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex.
) (Figure 1B). In addition to its F box, TIR1 contains leucine-rich repeats that form a cradle to accommodate its targets (
  • Tan X.
  • Calderon-Villalobos L.I.
  • Sharon M.
  • Zheng C.
  • Robinson C.V.
  • Estelle M.
  • Zheng N.
Mechanism of auxin perception by the TIR1 ubiquitin ligase.
). Among the 22 human FBXL proteins with similar domain architecture, several have interesting links to disease or small-molecule regulation: FBXL2 activity toward a phosphatidylinositol 3-kinase subunit or inositol 1,4,5-triphosphate receptor requires prenylation (
  • Kuchay S.
  • Duan S.
  • Schenkein E.
  • Peschiaroli A.
  • Saraf A.
  • Florens L.
  • Washburn M.P.
  • Pagano M.
FBXL2- and PTPL1-mediated degradation of p110-free p85beta regulatory subunit controls the PI(3)K signalling cascade.
,
  • Kuchay S.
  • Wang H.
  • Marzio A.
  • Jain K.
  • Homer H.
  • Fehrenbacher N.
  • Philips M.R.
  • Zheng N.
  • Pagano M.
GGTase3 is a newly identified geranylgeranyltransferase targeting a ubiquitin ligase.
); FBXL3-dependent control of the circadian clock is regulated by flavin adenine dinucleotides (
  • Xing W.
  • Busino L.
  • Hinds T.R.
  • Marionni S.T.
  • Saifee N.H.
  • Bush M.F.
  • Pagano M.
  • Zheng N.
SCF(FBXL3) ubiquitin ligase targets cryptochromes at their cofactor pocket.
); FBXL5 establishes iron homeostasis reliant on a redox-active [2Fe2S] cluster (
  • Salahudeen A.A.
  • Thompson J.W.
  • Ruiz J.C.
  • Ma H.W.
  • Kinch L.N.
  • Li Q.
  • Grishin N.V.
  • Bruick R.K.
An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis.
;
  • Vashisht A.A.
  • Zumbrennen K.B.
  • Huang X.
  • Powers D.N.
  • Durazo A.
  • Sun D.
  • Bhaskaran N.
  • Persson A.
  • Uhlen M.
  • Sangfelt O.
  • et al.
Control of iron homeostasis by an iron-regulated ubiquitin ligase.
;
  • Wang H.
  • Shi H.
  • Rajan M.
  • Canarie E.R.
  • Hong S.
  • Simoneschi D.
  • Pagano M.
  • Bush M.F.
  • Stoll S.
  • Leibold E.A.
  • et al.
FBXL5 regulates IRP2 stability in iron homeostasis via an oxygen-responsive [2Fe2S] cluster.
); and FBXL17 controls many proteins mutated in cancer, including KEAP1, BCL6, and KBTBD8 (
  • Mena E.L.
  • Kjolby R.A.S.
  • Saxton R.A.
  • Werner A.
  • Lew B.G.
  • Boyle J.M.
  • Harland R.
  • Rapé M.
Dimerization quality control ensures neuronal development and survival.
). These observations imply that FBXL E3 ligases could be promising candidates for developing molecular glues to instigate protein degradation.
生长素通过SCF家族的E3连接酶进行信号传导,该家族由CUL1支架、RING结构域亚单位RBX1和作为共享因子的SKP1组成,将催化的CUL1-RBX1模块与具有F-box结构域的可交换底物适配体连接起来(
  • Baek K.
  • Krist D.T.
  • Prabu J.R.
  • Hill S.
  • Klugel M.
  • Neumaier L.M.
  • von Gronau S.
  • Kleiger G.
  • Schulman B.A.
NEDD8 nucleates a multivalent cullin-RING-UBE2D ubiquitin ligation assembly.
  • Schulman B.A.
  • Carrano A.C.
  • Jeffrey P.D.
  • Bowen Z.
  • Kinnucan E.R.
  • Finnin M.S.
  • Elledge S.J.
  • Harper J.W.
  • Pagano M.
  • Pavletich N.P.
Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex.
  • Zheng N.
  • Schulman B.A.
  • Song L.
  • Miller J.J.
  • Jeffrey P.D.
  • Wang P.
  • Chu C.
  • Koepp D.M.
  • Elledge S.J.
  • Pagano M.
  • et al.
Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex.
)(图1B)。除了其F-box外,TIR1还包含富含亮氨酸重复的结构,形成一个托座以容纳其靶标(
  • Tan X.
  • Calderon-Villalobos L.I.
  • Sharon M.
  • Zheng C.
  • Robinson C.V.
  • Estelle M.
  • Zheng N.
Mechanism of auxin perception by the TIR1 ubiquitin ligase.
)。在具有类似结构域架构的22个人类FBXL蛋白中,有几个与疾病或小分子调控有着有趣的联系:FBXL2对磷脂酰肌醇3-激酶亚单位或肌醇1,4,5-三磷酸受体的活性需要戊二烯基化(
  • Kuchay S.
  • Duan S.
  • Schenkein E.
  • Peschiaroli A.
  • Saraf A.
  • Florens L.
  • Washburn M.P.
  • Pagano M.
FBXL2- and PTPL1-mediated degradation of p110-free p85beta regulatory subunit controls the PI(3)K signalling cascade.
  • Kuchay S.
  • Wang H.
  • Marzio A.
  • Jain K.
  • Homer H.
  • Fehrenbacher N.
  • Philips M.R.
  • Zheng N.
  • Pagano M.
GGTase3 is a newly identified geranylgeranyltransferase targeting a ubiquitin ligase.
);FBXL3对昼夜节律的控制受到黄素腺嘌呤二核苷酸的调节(
  • Xing W.
  • Busino L.
  • Hinds T.R.
  • Marionni S.T.
  • Saifee N.H.
  • Bush M.F.
  • Pagano M.
  • Zheng N.
SCF(FBXL3) ubiquitin ligase targets cryptochromes at their cofactor pocket.
);FBXL5建立依赖于氧化还原活性的[2Fe2S]簇的铁稳态(
  • Salahudeen A.A.
  • Thompson J.W.
  • Ruiz J.C.
  • Ma H.W.
  • Kinch L.N.
  • Li Q.
  • Grishin N.V.
  • Bruick R.K.
An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis.
  • Vashisht A.A.
  • Zumbrennen K.B.
  • Huang X.
  • Powers D.N.
  • Durazo A.
  • Sun D.
  • Bhaskaran N.
  • Persson A.
  • Uhlen M.
  • Sangfelt O.
  • et al.
Control of iron homeostasis by an iron-regulated ubiquitin ligase.
  • Wang H.
  • Shi H.
  • Rajan M.
  • Canarie E.R.
  • Hong S.
  • Simoneschi D.
  • Pagano M.
  • Bush M.F.
  • Stoll S.
  • Leibold E.A.
  • et al.
FBXL5 regulates IRP2 stability in iron homeostasis via an oxygen-responsive [2Fe2S] cluster.
);而FBXL17控制了许多在癌症中突变的蛋白质,包括KEAP1、BCL6和KBTBD8(
  • Mena E.L.
  • Kjolby R.A.S.
  • Saxton R.A.
  • Werner A.
  • Lew B.G.
  • Boyle J.M.
  • Harland R.
  • Rapé M.
Dimerization quality control ensures neuronal development and survival.
)。这些观察结果表明,FBXL E3连接酶可能是开发分子胶水以引发蛋白质降解的有希望的候选者。
Reminiscent of auxin, the natural product asukamycin acts as a molecular glue that connects the E3 ligase UBR7 to the TP53 tumor suppressor (
  • Isobe Y.
  • Okumura M.
  • McGregor L.M.
  • Brittain S.M.
  • Jones M.D.
  • Liang X.
  • White R.
  • Forrester W.
  • McKenna J.M.
  • Tallarico J.A.
  • et al.
Manumycin polyketides act as molecular glues between UBR7 and P53.
). Moreover, an anti-proliferative product of the neem tree, nimbolide, inhibits the E3 ligase RNF114 (
  • Spradlin J.N.
  • Hu X.
  • Ward C.C.
  • Brittain S.M.
  • Jones M.D.
  • Ou L.
  • To M.
  • Proudfoot A.
  • Ornelas E.
  • Woldegiorgis M.
  • et al.
Harnessing the anti-cancer natural product nimbolide for targeted protein degradation.
). Nimbolide covalently modifies a Cys residue in a domain of RNF114 that had been implicated in substrate recruitment, allowing researchers to convert nimbolide into an RNF114-dependent PROTAC (
  • Spradlin J.N.
  • Hu X.
  • Ward C.C.
  • Brittain S.M.
  • Jones M.D.
  • Ou L.
  • To M.
  • Proudfoot A.
  • Ornelas E.
  • Woldegiorgis M.
  • et al.
Harnessing the anti-cancer natural product nimbolide for targeted protein degradation.
;
  • Tong B.
  • Spradlin J.N.
  • Novaes L.F.T.
  • Zhang E.
  • Hu X.
  • Moeller M.
  • Brittain S.M.
  • McGregor L.M.
  • McKenna J.M.
  • Tallarico J.A.
  • et al.
A nimbolide-based kinase degrader preferentially degrades oncogenic BCR-ABL.
). Although the physiological roles of UBR7 and RNF114 remain ill defined, these results highlight that not only receptors of natural molecular glues, but also natural products themselves, could point to novel E3 ligases for small-molecule-induced protein degradation.
回忆起生长素,天然产物阿斯卡霉素作为一种分子胶水,将E3连接酶UBR7与TP53肿瘤抑制因子连接起来。此外,印楝树的一种抗增殖产物尼姆波酮抑制了E3连接酶RNF114。尼姆波酮共价修饰了RNF114中一个被认为与底物招募有关的结构域中的一个半胱氨酸残基,使研究人员能够将尼姆波酮转化为依赖于RNF114的PROTAC。虽然UBR7和RNF114的生理作用尚未明确,但这些结果强调,不仅天然分子胶水的受体,而且天然产物本身也可能指向新的E3连接酶,用于小分子诱导的蛋白质降解。

E3 ligases targeted by synthetic molecular glues
合成分子胶水靶向的E3连接酶

While nature might have taken the lead, synthetic compounds are rapidly catching up and will allow us to harness the many human ubiquitylation enzymes in a more prospective fashion. This field was jump-started by a molecular glue with a simple structure and dark past, thalidomide. Prescribed as a sleep medication and treatment against morning sickness, thalidomide disrupted limb development in newborns and caused peripheral neuropathy in older patients (
  • Lenz W.
A short history of thalidomide embryopathy.
). Thalidomide and its derivatives, collectively referred to as IMIDs, were later found to be efficient against multiple myeloma or del5q myelodysplastic syndrome. These compounds all bind cereblon (CRBN), a substrate adaptor of CUL4-RING E3 ligases (
  • Fischer E.S.
  • Bohm K.
  • Lydeard J.R.
  • Yang H.
  • Stadler M.B.
  • Cavadini S.
  • Nagel J.
  • Serluca F.
  • Acker V.
  • Lingaraju G.M.
  • et al.
Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide.
;
  • Ito T.
  • Ando H.
  • Suzuki T.
  • Ogura T.
  • Hotta K.
  • Imamura Y.
  • Yamaguchi Y.
  • Handa H.
Identification of a primary target of thalidomide teratogenicity.
), and recruit zinc-finger transcription factors or the kinase CK1α for CUL4CRBN-dependent ubiquitylation and proteasomal degradation (
  • Kronke J.
  • Udeshi N.D.
  • Narla A.
  • Grauman P.
  • Hurst S.N.
  • McConkey M.
  • Svinkina T.
  • Heckl D.
  • Comer E.
  • Li X.
  • et al.
Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells.
,
  • Kronke J.
  • Fink E.C.
  • Hollenbach P.W.
  • MacBeth K.J.
  • Hurst S.N.
  • Udeshi N.D.
  • Chamberlain P.P.
  • Mani D.R.
  • Man H.W.
  • Gandhi A.K.
  • et al.
Lenalidomide induces ubiquitination and degradation of CK1alpha in del(5q) MDS.
;
  • Lu G.
  • Middleton R.E.
  • Sun H.
  • Naniong M.
  • Ott C.J.
  • Mitsiades C.S.
  • Wong K.K.
  • Bradner J.E.
  • Kaelin Jr., W.G.
The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins.
). Likely accounting for aborted limb development, thalidomide also delivers the transcription factor SALL4 to CUL4CRBN (
  • Donovan K.A.
  • An J.
  • Nowak R.P.
  • Yuan J.C.
  • Fink E.C.
  • Berry B.C.
  • Ebert B.L.
  • Fischer E.S.
Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane Radial Ray syndrome.
;
  • Matyskiela M.E.
  • Couto S.
  • Zheng X.
  • Lu G.
  • Hui J.
  • Stamp K.
  • Drew C.
  • Ren Y.
  • Wang M.
  • Carpenter A.
  • et al.
SALL4 mediates teratogenicity as a thalidomide-dependent cereblon substrate.
,
  • Matyskiela M.E.
  • Clayton T.
  • Zheng X.
  • Mayne C.
  • Tran E.
  • Carpenter A.
  • Pagarigan B.
  • McDonald J.
  • Rolfe M.
  • Hamann L.G.
  • et al.
Crystal structure of the SALL4-pomalidomide-cereblon-DDB1 complex.
), while targets for its neurological side effects are yet to be determined. Physiological substrates of CRBN remain surprisingly scarce (
  • Fischer E.S.
  • Bohm K.
  • Lydeard J.R.
  • Yang H.
  • Stadler M.B.
  • Cavadini S.
  • Nagel J.
  • Serluca F.
  • Acker V.
  • Lingaraju G.M.
  • et al.
Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide.
;
  • Nguyen T.V.
  • Lee J.E.
  • Sweredoski M.J.
  • Yang S.J.
  • Jeon S.J.
  • Harrison J.S.
  • Yim J.H.
  • Lee S.G.
  • Handa H.
  • Kuhlman B.
  • et al.
Glutamine triggers acetylation-dependent degradation of glutamine synthetase via the thalidomide receptor cereblon.
), and a natural product that takes thalidomide's place in cellular regulation is not known.
尽管自然可能占据了先导地位,但合成化合物正在迅速赶上,并将使我们能够更有前景地利用许多人类泛素化酶。这个领域是由一种结构简单但过去不为人知的分子胶水——沙利度胺(thalidomide)推动起来的。沙利度胺曾被作为睡眠药物和对抗晨吐的治疗药物,但它破坏了新生儿的肢体发育,并导致老年患者出现周围神经病变。后来发现,沙利度胺及其衍生物(统称为IMIDs)对多发性骨髓瘤或del5q骨髓增生异常综合征具有高效作用。这些化合物都与CUL4-RING E3连接酶的底物适配器cereblon(CRBN)结合,并招募锌指转录因子或激酶CK1α参与CUL4依赖的泛素化和蛋白酶体降解。沙利度胺还将转录因子SALL4传递给CUL4,这可能解释了肢体发育的异常。至于其神经系统副作用的靶点尚待确定。 CRBN的生理底物仍然非常稀缺(
  • Fischer E.S.
  • Bohm K.
  • Lydeard J.R.
  • Yang H.
  • Stadler M.B.
  • Cavadini S.
  • Nagel J.
  • Serluca F.
  • Acker V.
  • Lingaraju G.M.
  • et al.
Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide.
  • Nguyen T.V.
  • Lee J.E.
  • Sweredoski M.J.
  • Yang S.J.
  • Jeon S.J.
  • Harrison J.S.
  • Yim J.H.
  • Lee S.G.
  • Handa H.
  • Kuhlman B.
  • et al.
Glutamine triggers acetylation-dependent degradation of glutamine synthetase via the thalidomide receptor cereblon.
),并且在细胞调控中替代沙利度胺的天然产物尚未被发现。
CRBN is one of ∼100 exchangeable substrate adaptors of modular E3 ligases that contain CUL4A or the related CUL4B as a scaffold, RBX1 as the catalytic center, and DDB1 as a shared factor to recruit the substrate adaptor (
  • Angers S.
  • Li T.
  • Yi X.
  • MacCoss M.J.
  • Moon R.T.
  • Zheng N.
Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery.
;
  • Nakagawa T.
  • Xiong Y.
X-linked mental retardation gene CUL4B targets ubiquitylation of H3K4 methyltransferase component WDR5 and regulates neuronal gene expression.
;
  • Reichermeier K.M.
  • Straube R.
  • Reitsma J.M.
  • Sweredoski M.J.
  • Rose C.M.
  • Moradian A.
  • den Besten W.
  • Hinkle T.
  • Verschueren E.
  • Petzold G.
  • et al.
PIKES analysis reveals response to degraders and key regulatory mechanisms of the CRL4 network.
). Substrate adaptors of the CUL4 E3 ligases often show structural flexibility that allows them to adapt to diverse surfaces presented by physiological or unnatural binding partners (
  • Faust T.B.
  • Yoon H.
  • Nowak R.P.
  • Donovan K.A.
  • Li Z.
  • Cai Q.
  • Eleuteri N.A.
  • Zhang T.
  • Gray N.S.
  • Fischer E.S.
Structural complementarity facilitates E7820-mediated degradation of RBM39 by DCAF15.
;
  • Fischer E.S.
  • Scrima A.
  • Bohm K.
  • Matsumoto S.
  • Lingaraju G.M.
  • Faty M.
  • Yasuda T.
  • Cavadini S.
  • Wakasugi M.
  • Hanaoka F.
  • et al.
The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation.
). This feature is exploited by viral factors that recruit CUL4 to host proteins to induce their degradation and thereby blunt an anti-infectious immune response (
  • Greenwood E.J.D.
  • Williamson J.C.
  • Sienkiewicz A.
  • Naamati A.
  • Matheson N.J.
  • Lehner P.J.
Promiscuous targeting of cellular proteins by Vpr drives systems-level proteomic remodeling in HIV-1 infection.
;
  • Simon V.
  • Bloch N.
  • Landau N.R.
Intrinsic host restrictions to HIV-1 and mechanisms of viral escape.
). CUL4 E3 ligases therefore appear to be well suited to accommodate unnatural targets, a prerequisite for use in induced protein degradation. In line with this notion, the sulfonamide indisulam exploits an enzyme built around the adaptor DCAF15, CUL4DCAF15, to eliminate RNA-binding proteins (
  • Bussiere D.E.
  • Xie L.
  • Srinivas H.
  • Shu W.
  • Burke A.
  • Be C.
  • Zhao J.
  • Godbole A.
  • King D.
  • Karki R.G.
  • et al.
Structural basis of indisulam-mediated RBM39 recruitment to DCAF15 E3 ligase complex.
;
  • Han T.
  • Goralski M.
  • Gaskill N.
  • Capota E.
  • Kim J.
  • Ting T.C.
  • Xie Y.
  • Williams N.S.
  • Nijhawan D.
Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15.
;
  • Ting T.C.
  • Goralski M.
  • Klein K.
  • Wang B.
  • Kim J.
  • Xie Y.
  • Nijhawan D.
Aryl sulfonamides degrade RBM39 and RBM23 by recruitment to CRL4-DCAF15.
), while CUL4DCAF16 was labeled with a Cys-reactive PROTAC to induce degradation of a model substrate (
  • Zhang X.
  • Crowley V.M.
  • Wucherpfennig T.G.
  • Dix M.M.
  • Cravatt B.F.
Electrophilic PROTACs that degrade nuclear proteins by engaging DCAF16.
). The catalytic module composed of CUL4, RBX1, and DDB1 can even be recruited to proteins independent of adaptors, as shown by compounds that cause degradation of a cyclin-dependent kinase regulating transcriptional elongation (
  • Lv L.
  • Chen P.
  • Cao L.
  • Li Y.
  • Zeng Z.
  • Cui Y.
  • Wu Q.
  • Li J.
  • Wang J.H.
  • Dong M.Q.
  • et al.
Discovery of a molecular glue promoting CDK12-DDB1 interaction to trigger cyclin K degradation.
;
  • Mayor-Ruiz C.
  • Bauer S.
  • Brand M.
  • Kozicka Z.
  • Siklos M.
  • Imrichova H.
  • Kaltheuner I.H.
  • Hahn E.
  • Seiler K.
  • Koren A.
  • et al.
Rational discovery of molecular glue degraders via scalable chemical profiling.
;
  • Slabicki M.
  • Kozicka Z.
  • Petzold G.
  • Li Y.D.
  • Manojkumar M.
  • Bunker R.D.
  • Donovan K.A.
  • Sievers Q.L.
  • Koeppel J.
  • Suchyta D.
  • et al.
The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K.
).
CRBN是模块化E3连接酶的约100个可交换底物适配体之一,其中包含CUL4A或相关的CUL4B作为支架,RBX1作为催化中心,DDB1作为共享因子来招募底物适配体。CUL4 E3连接酶的底物适配体通常显示出结构的灵活性,使它们能够适应生理或非自然结合伙伴呈现的多样表面。这个特性被病毒因子利用,将CUL4招募到宿主蛋白上,诱导它们的降解,从而削弱抗感染的免疫反应。因此,CUL4 E3连接酶似乎非常适合容纳非自然的目标,这是诱导蛋白降解中的先决条件。与这个概念一致,磺酰胺indisulam利用围绕适配体DCAF15、CUL4构建的酶来消除RNA结合蛋白,而CUL4则被标记有Cys反应性的PROTAC来诱导模型底物的降解。 由CUL4、RBX1和DDB1组成的催化模块甚至可以独立于适配器而被招募到蛋白质上,如通过导致调控转录延伸的细胞周期依赖性激酶降解的化合物所示(
  • Lv L.
  • Chen P.
  • Cao L.
  • Li Y.
  • Zeng Z.
  • Cui Y.
  • Wu Q.
  • Li J.
  • Wang J.H.
  • Dong M.Q.
  • et al.
Discovery of a molecular glue promoting CDK12-DDB1 interaction to trigger cyclin K degradation.
  • Mayor-Ruiz C.
  • Bauer S.
  • Brand M.
  • Kozicka Z.
  • Siklos M.
  • Imrichova H.
  • Kaltheuner I.H.
  • Hahn E.
  • Seiler K.
  • Koren A.
  • et al.
Rational discovery of molecular glue degraders via scalable chemical profiling.
  • Slabicki M.
  • Kozicka Z.
  • Petzold G.
  • Li Y.D.
  • Manojkumar M.
  • Bunker R.D.
  • Donovan K.A.
  • Sievers Q.L.
  • Koeppel J.
  • Suchyta D.
  • et al.
The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K.
)。
It is a potential caveat of harnessing CUL4 E3 ligases that these enzymes often regulate processes essential for development. DDB1 is critical for stem cell division and differentiation (
  • Buckley S.M.
  • Aranda-Orgilles B.
  • Strikoudis A.
  • Apostolou E.
  • Loizou E.
  • Moran-Crusio K.
  • Farnsworth C.L.
  • Koller A.A.
  • Dasgupta R.
  • Silva J.C.
  • et al.
Regulation of pluripotency and cellular reprogramming by the ubiquitin-proteasome system.
;
  • Gao J.
  • Buckley S.M.
  • Cimmino L.
  • Guillamot M.
  • Strikoudis A.
  • Cang Y.
  • Goff S.P.
  • Aifantis I.
The CUL4-DDB1 ubiquitin ligase complex controls adult and embryonic stem cell differentiation and homeostasis.
), and mutations in CUL4B, DDB1, or adaptors, including CRBN, disrupt human development and cause pediatric diseases (
  • Alazami A.M.
  • Al-Saif A.
  • Al-Semari A.
  • Bohlega S.
  • Zlitni S.
  • Alzahrani F.
  • Bavi P.
  • Kaya N.
  • Colak D.
  • Khalak H.
  • et al.
Mutations in C2orf37, encoding a nucleolar protein, cause hypogonadism, alopecia, diabetes mellitus, mental retardation, and extrapyramidal syndrome.
;
  • Cleaver J.E.
  • Thompson L.H.
  • Richardson A.S.
  • States J.C.
A summary of mutations in the UV-sensitive disorders: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy.
;
  • Higgins J.J.
  • Pucilowska J.
  • Lombardi R.Q.
  • Rooney J.P.
A mutation in a novel ATP-dependent Lon protease gene in a kindred with mild mental retardation.
;
  • Tarpey P.S.
  • Raymond F.L.
  • O'Meara S.
  • Edkins S.
  • Teague J.
  • Butler A.
  • Dicks E.
  • Stevens C.
  • Tofts C.
  • Avis T.
  • et al.
Mutations in CUL4B, which encodes a ubiquitin E3 ligase subunit, cause an X-linked mental retardation syndrome associated with aggressive outbursts, seizures, relative macrocephaly, central obesity, hypogonadism, pes cavus, and tremor.
;
  • Zou Y.
  • Liu Q.
  • Chen B.
  • Zhang X.
  • Guo C.
  • Zhou H.
  • Li J.
  • Gao G.
  • Guo Y.
  • Yan C.
  • et al.
Mutation in CUL4B, which encodes a member of cullin-RING ubiquitin ligase complex, causes X-linked mental retardation.
). To prevent repeating thalidomide's history, it is important that the physiological functions of CUL4 E3 ligases and organismal consequences of engaging them with small molecules are understood in depth before these enzymes are exploited for therapeutic applications in patients.
利用CUL4 E3连接酶的潜在注意事项是,这些酶通常调节发育过程中的关键环节。DDB1对干细胞的分裂和分化至关重要(
  • Buckley S.M.
  • Aranda-Orgilles B.
  • Strikoudis A.
  • Apostolou E.
  • Loizou E.
  • Moran-Crusio K.
  • Farnsworth C.L.
  • Koller A.A.
  • Dasgupta R.
  • Silva J.C.
  • et al.
Regulation of pluripotency and cellular reprogramming by the ubiquitin-proteasome system.
  • Gao J.
  • Buckley S.M.
  • Cimmino L.
  • Guillamot M.
  • Strikoudis A.
  • Cang Y.
  • Goff S.P.
  • Aifantis I.
The CUL4-DDB1 ubiquitin ligase complex controls adult and embryonic stem cell differentiation and homeostasis.
),而CUL4B、DDB1或适配体(包括CRBN)的突变会干扰人类的发育并导致儿科疾病(
  • Alazami A.M.
  • Al-Saif A.
  • Al-Semari A.
  • Bohlega S.
  • Zlitni S.
  • Alzahrani F.
  • Bavi P.
  • Kaya N.
  • Colak D.
  • Khalak H.
  • et al.
Mutations in C2orf37, encoding a nucleolar protein, cause hypogonadism, alopecia, diabetes mellitus, mental retardation, and extrapyramidal syndrome.
  • Cleaver J.E.
  • Thompson L.H.
  • Richardson A.S.
  • States J.C.
A summary of mutations in the UV-sensitive disorders: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy.
  • Higgins J.J.
  • Pucilowska J.
  • Lombardi R.Q.
  • Rooney J.P.
A mutation in a novel ATP-dependent Lon protease gene in a kindred with mild mental retardation.
  • Tarpey P.S.
  • Raymond F.L.
  • O'Meara S.
  • Edkins S.
  • Teague J.
  • Butler A.
  • Dicks E.
  • Stevens C.
  • Tofts C.
  • Avis T.
  • et al.
Mutations in CUL4B, which encodes a ubiquitin E3 ligase subunit, cause an X-linked mental retardation syndrome associated with aggressive outbursts, seizures, relative macrocephaly, central obesity, hypogonadism, pes cavus, and tremor.
  • Zou Y.
  • Liu Q.
  • Chen B.
  • Zhang X.
  • Guo C.
  • Zhou H.
  • Li J.
  • Gao G.
  • Guo Y.
  • Yan C.
  • et al.
Mutation in CUL4B, which encodes a member of cullin-RING ubiquitin ligase complex, causes X-linked mental retardation.
)。为了避免重蹈沙利度胺的覆辙,在将这些酶用于患者的治疗应用之前,有必要深入了解CUL4 E3连接酶的生理功能以及与小分子结合后对生物体的影响。
While IMIDs were introduced into the clinic without understanding their mechanism of action, recent work taught us that it is possible to prospectively select an E3 ligase for generating synthetic molecular glues. Proof-of-concept compounds brought hypophosphorylated β-catenin, a driver of colon cancer (
  • Nusse R.
  • Clevers H.
Wnt/beta-Catenin signaling, disease, and emerging therapeutic modalities.
), into proximity of the E3 ligase SCFβTrCP (
  • Simonetta K.R.
  • Taygerly J.
  • Boyle K.
  • Basham S.E.
  • Padovani C.
  • Lou Y.
  • Cummins T.J.
  • Yung S.L.
  • von Soly S.K.
  • Kayser F.
  • et al.
Prospective discovery of small molecule enhancers of an E3 ligase-substrate interaction.
). Although these molecules effectively induced β-catenin ubiquitylation in vitro, they were less potent in driving protein degradation in vivo, which in part might be due to the large number of endogenous substrates that compete for access to this E3 ligase (
  • Skaar J.R.
  • Pagan J.K.
  • Pagano M.
Mechanisms and function of substrate recruitment by F-box proteins.
). Thus, as we are beginning to choose new E3 ligase handles, there is an urgent need to decipher the physiological regulation of these enzymes in cellular or organismal models.
虽然在不了解其作用机制的情况下,IMIDs已被引入临床,但最近的研究告诉我们,可以预先选择一个E3连接酶来生成合成的分子胶。概念验证化合物将低磷酸化的β-连环蛋白(结肠癌的驱动因子)与E3连接酶SCF()接近。尽管这些分子在体外有效地诱导了β-连环蛋白的泛素化,但在体内促进蛋白质降解的效果较弱,部分原因可能是由于大量内源性底物竞争访问该E3连接酶。因此,当我们开始选择新的E3连接酶处理物时,迫切需要解密这些酶在细胞或有机体模型中的生理调节。

E3 ligases recruited by protein oligomerization
蛋白质寡聚化招募的E3连接酶

While tethering a neo-substrate to an E3 ligase is one way for compounds to induce degradation, molecular glues can also trigger turnover by promoting protein oligomerization (Figure 2C). This paradigm was recently established with compounds targeting BCL6, a transcriptional repressor and driver of B cell malignancies (
  • Kerres N.
  • Steurer S.
  • Schlager S.
  • Bader G.
  • Berger H.
  • Caligiuri M.
  • Dank C.
  • Engen J.R.
  • Ettmayer P.
  • Fischerauer B.
  • et al.
Chemically induced degradation of the oncogenic transcription factor BCL6.
;
  • Slabicki M.
  • Yoon H.
  • Koeppel J.
  • Nitsch L.
  • Roy Burman S.S.
  • Di Genua C.
  • Donovan K.A.
  • Sperling A.S.
  • Hunkeler M.
  • Tsai J.M.
  • et al.
Small-molecule-induced polymerization triggers degradation of BCL6.
). BCL6 contains a BTB domain, as it occurs in ∼100 CUL3 adaptors and ∼100 transcription factors (
  • Geyer R.
  • Wee S.
  • Anderson S.
  • Yates J.
  • Wolf D.A.
BTB/POZ domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases.
;
  • Pintard L.
  • Willis J.H.
  • Willems A.
  • Johnson J.L.
  • Srayko M.
  • Kurz T.
  • Glaser S.
  • Mains P.E.
  • Tyers M.
  • Bowerman B.
  • et al.
The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase.
;
  • Xu L.
  • Wei Y.
  • Reboul J.
  • Vaglio P.
  • Shin T.H.
  • Vidal M.
  • Elledge S.J.
  • Harper J.W.
BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3.
). Most BTB domains mediate homodimerization, which is required for function (
  • Mena E.L.
  • Kjolby R.A.S.
  • Saxton R.A.
  • Werner A.
  • Lew B.G.
  • Boyle J.M.
  • Harland R.
  • Rapé M.
Dimerization quality control ensures neuronal development and survival.
). Molecules that induce further oligomerization of BCL6 dimers allow for recruitment of the E3 ligase SIAH1 and thereby trigger BCL6 ubiquitylation and degradation of the transcriptional repressor (
  • Kerres N.
  • Steurer S.
  • Schlager S.
  • Bader G.
  • Berger H.
  • Caligiuri M.
  • Dank C.
  • Engen J.R.
  • Ettmayer P.
  • Fischerauer B.
  • et al.
Chemically induced degradation of the oncogenic transcription factor BCL6.
;
  • Slabicki M.
  • Yoon H.
  • Koeppel J.
  • Nitsch L.
  • Roy Burman S.S.
  • Di Genua C.
  • Donovan K.A.
  • Sperling A.S.
  • Hunkeler M.
  • Tsai J.M.
  • et al.
Small-molecule-induced polymerization triggers degradation of BCL6.
). As SIAH1 itself is dimeric and recognizes a short VxP motif (
  • House C.M.
  • Frew I.J.
  • Huang H.L.
  • Wiche G.
  • Traficante N.
  • Nice E.
  • Catimel B.
  • Bowtell D.D.
A binding motif for Siah ubiquitin ligase.
,
  • House C.M.
  • Hancock N.C.
  • Moller A.
  • Cromer B.A.
  • Fedorov V.
  • Bowtell D.D.
  • Parker M.W.
  • Polekhina G.
Elucidation of the substrate binding site of Siah ubiquitin ligase.
), induced oligomerization likely establishes multivalent recognition of a low-affinity degron by the E3 ligase. Compounds that displace a tRNA synthetase variant from heat shock protein 70 (HSP70) also cause SIAH1-dependent ubiquitylation and degradation (
  • Lim S.
  • Cho H.Y.
  • Kim D.G.
  • Roh Y.
  • Son S.Y.
  • Mushtaq A.U.
  • Kim M.
  • Bhattarai D.
  • Sivaraman A.
  • Lee Y.
  • et al.
Targeting the interaction of AIMP2-DX2 with HSP70 suppresses cancer development.
), and it is tempting to speculate that release from HSP70 similarly results in protein oligomerization and multivalent detection by the E3 ligase. As SIAH1 expression increases upon accumulation of aggregation-prone proteins (
  • Matsuzawa S.I.
  • Reed J.C.
Siah-1, SIP, and Ebi collaborate in a novel pathway for beta-catenin degradation linked to p53 responses.
;
  • Scortegagna M.
  • Kim H.
  • Li J.L.
  • Yao H.
  • Brill L.M.
  • Han J.
  • Lau E.
  • Bowtell D.
  • Haddad G.
  • Kaufman R.J.
  • et al.
Fine tuning of the UPR by the ubiquitin ligases Siah1/2.
), these compounds likely exploit a physiological mechanism controlling substrate recognition by this E3 ligase.
将新型底物与E3连接酶相连是化合物诱导降解的一种方式,分子胶也可以通过促进蛋白质寡聚化来触发蛋白质的降解(图2C)。最近,这种范式已经在针对B细胞恶性肿瘤的转录抑制因子和驱动因子BCL6的化合物中得到了证实。BCL6含有一个BTB结构域,与约100个CUL3适配体和约100个转录因子中的结构域相同。大多数BTB结构域介导同源二聚化,这对其功能是必需的。诱导BCL6二聚体进一步寡聚化的分子可以招募E3连接酶SIAH1,从而触发BCL6的泛素化和转录抑制因子的降解。由于SIAH1本身是二聚体并且识别一个短的VxP基序,诱导的寡聚化可能通过E3连接酶对低亲和力降解子的多价识别来建立。 使tRNA合成酶变体从热休克蛋白70(HSP70)中释放的化合物也会引起SIAH1依赖的泛素化和降解(
  • Lim S.
  • Cho H.Y.
  • Kim D.G.
  • Roh Y.
  • Son S.Y.
  • Mushtaq A.U.
  • Kim M.
  • Bhattarai D.
  • Sivaraman A.
  • Lee Y.
  • et al.
Targeting the interaction of AIMP2-DX2 with HSP70 suppresses cancer development.
),可以猜测从HSP70中释放同样会导致蛋白质寡聚和E3连接酶的多价检测。随着聚集易于聚集的蛋白质的积累,SIAH1的表达增加(
  • Matsuzawa S.I.
  • Reed J.C.
Siah-1, SIP, and Ebi collaborate in a novel pathway for beta-catenin degradation linked to p53 responses.
  • Scortegagna M.
  • Kim H.
  • Li J.L.
  • Yao H.
  • Brill L.M.
  • Han J.
  • Lau E.
  • Bowtell D.
  • Haddad G.
  • Kaufman R.J.
  • et al.
Fine tuning of the UPR by the ubiquitin ligases Siah1/2.
),这些化合物很可能利用了这种E3连接酶对底物识别的生理机制。
Reminiscent of SIAH1, RIPLET and TRIM65 recognize their ubiquitylation targets RIG-I and MDA5 only after they polymerize upon binding to exogenous RNA molecules (
  • Cadena C.
  • Ahmad S.
  • Xavier A.
  • Willemsen J.
  • Park S.
  • Park J.W.
  • Oh S.W.
  • Fujita T.
  • Hou F.
  • Binder M.
  • et al.
Ubiquitin-dependent and -independent roles of E3 ligase RIPLET in innate immunity.
;
  • Kato K.
  • Ahmad S.
  • Zhu Z.
  • Young J.M.
  • Mu X.
  • Park S.
  • Malik H.S.
  • Hur S.
Structural analysis of RIG-I-like receptors reveals ancient rules of engagement between diverse RNA helicases and TRIM ubiquitin ligases.
). These E3 ligases require dimerization through coiled-coil domains to increase avidity to their polymerized substrate (
  • Kato K.
  • Ahmad S.
  • Zhu Z.
  • Young J.M.
  • Mu X.
  • Park S.
  • Malik H.S.
  • Hur S.
Structural analysis of RIG-I-like receptors reveals ancient rules of engagement between diverse RNA helicases and TRIM ubiquitin ligases.
). Most other TRIM-family E3 ligases contain coiled coils, and ∼100 CUL3 family E3 ligases dimerize through their BTB domains (
  • Marzahn M.R.
  • Marada S.
  • Lee J.
  • Nourse A.
  • Kenrick S.
  • Zhao H.
  • Ben-Nissan G.
  • Kolaitis R.M.
  • Peters J.L.
  • Pounds S.
  • et al.
Higher-order oligomerization promotes localization of SPOP to liquid nuclear speckles.
;
  • Mena E.L.
  • Kjolby R.A.S.
  • Saxton R.A.
  • Werner A.
  • Lew B.G.
  • Boyle J.M.
  • Harland R.
  • Rapé M.
Dimerization quality control ensures neuronal development and survival.
). Molecular glues that oligomerize substrates of these enzymes might therefore emerge as indirect, yet powerful, means to instigate drug-induced protein ubiquitylation. However, programs aimed at developing such compounds need to carefully control against potentially toxic protein aggregation, a common cause of neurodegenerative disease (
  • Hipp M.S.
  • Park S.H.
  • Hartl F.U.
Proteostasis impairment in protein-misfolding and -aggregation diseases.
).
类似于SIAH1,RIPLET和TRIM65只有在与外源RNA分子结合后聚合才能识别它们的泛素化靶标RIG-I和MDA5(
  • Cadena C.
  • Ahmad S.
  • Xavier A.
  • Willemsen J.
  • Park S.
  • Park J.W.
  • Oh S.W.
  • Fujita T.
  • Hou F.
  • Binder M.
  • et al.
Ubiquitin-dependent and -independent roles of E3 ligase RIPLET in innate immunity.
  • Kato K.
  • Ahmad S.
  • Zhu Z.
  • Young J.M.
  • Mu X.
  • Park S.
  • Malik H.S.
  • Hur S.
Structural analysis of RIG-I-like receptors reveals ancient rules of engagement between diverse RNA helicases and TRIM ubiquitin ligases.
)。这些E3连接酶需要通过螺旋卷曲结构域二聚化,以增加它们对聚合底物的亲和力(
  • Kato K.
  • Ahmad S.
  • Zhu Z.
  • Young J.M.
  • Mu X.
  • Park S.
  • Malik H.S.
  • Hur S.
Structural analysis of RIG-I-like receptors reveals ancient rules of engagement between diverse RNA helicases and TRIM ubiquitin ligases.
)。大多数其他TRIM家族的E3连接酶含有螺旋卷曲结构,约100个CUL3家族的E3连接酶通过它们的BTB结构域二聚化(
  • Marzahn M.R.
  • Marada S.
  • Lee J.
  • Nourse A.
  • Kenrick S.
  • Zhao H.
  • Ben-Nissan G.
  • Kolaitis R.M.
  • Peters J.L.
  • Pounds S.
  • et al.
Higher-order oligomerization promotes localization of SPOP to liquid nuclear speckles.
  • Mena E.L.
  • Kjolby R.A.S.
  • Saxton R.A.
  • Werner A.
  • Lew B.G.
  • Boyle J.M.
  • Harland R.
  • Rapé M.
Dimerization quality control ensures neuronal development and survival.
)。因此,能够使这些酶的底物寡聚化的分子粘合剂可能成为间接但强大的药物诱导蛋白质泛素化的手段。然而,旨在开发这类化合物的项目需要仔细控制潜在的有毒蛋白质聚集,这是神经退行性疾病的常见原因之一(
  • Hipp M.S.
  • Park S.H.
  • Hartl F.U.
Proteostasis impairment in protein-misfolding and -aggregation diseases.
)。

E3 ligases targeted by inhibitors-turned-PROTACs
E3酶受抑制剂转化为PROTACs所针对的酶

With so many E3 ligases encoded in our genome, it is not surprising that dysregulation of some enzymes causes or sustains disease. While this led to an interest in developing E3 ligase inhibitors, ubiquitylation enzymes do not possess readily accessible pockets at their active sites, such as the eponymous ATP-binding clefts in kinases. Early programs thus wished to block interactions between E3 ligases and their key substrates, which resulted in compounds that can now be re-programmed into PROTACs. A case in point is made by MDM2, which ubiquitylates the tumor suppressor TP53 (
  • Kussie P.H.
  • Gorina S.
  • Marechal V.
  • Elenbaas B.
  • Moreau J.
  • Levine A.J.
  • Pavletich N.P.
Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain.
;
  • Li M.
  • Brooks C.L.
  • Wu-Baer F.
  • Chen D.
  • Baer R.
  • Gu W.
Mono- versus polyubiquitination: differential control of p53 fate by Mdm2.
;
  • Momand J.
  • Zambetti G.P.
  • Olson D.C.
  • George D.
  • Levine A.J.
The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation.
;
  • Nomura K.
  • Klejnot M.
  • Kowalczyk D.
  • Hock A.K.
  • Sibbet G.J.
  • Vousden K.H.
  • Huang D.T.
Structural analysis of MDM2 RING separates degradation from regulation of p53 transcription activity.
;
  • Oliner J.D.
  • Kinzler K.W.
  • Meltzer P.S.
  • George D.L.
  • Vogelstein B.
Amplification of a gene encoding a p53-associated protein in human sarcomas.
). Inhibition of MDM2 is considered beneficial in cancers that maintain wild-type TP53 alleles but downregulate the tumor suppressor by MDM2 overexpression. Among the first programs to successfully target an E3 ligase, molecules referred to as “Nutlins” thus competitively inhibited TP53-binding to MDM2, yet these molecules stalled in the clinic due to toxicity based on TP53-dependent neutropenia and thrombocytopenia (
  • Kastenhuber E.R.
  • Lowe S.W.
Putting p53 in context.
). Nutlins were recently converted into PROTACs that trigger neo-substrate degradation at concentrations at which they only partially inhibit the turnover of TP53 (
  • Hines J.
  • Lartigue S.
  • Dong H.
  • Qian Y.
  • Crews C.M.
MDM2-Recruiting PROTAC offers superior, synergistic antiproliferative activity via simultaneous degradation of BRD4 and stabilization of p53.
). These inhibitors-turned-PROTACs might thus provide therapeutic benefit without the drastic side effects of complete MDM2 loss.
在我们的基因组中编码了如此多的E3连接酶,因此一些酶的失调导致或维持疾病并不令人意外。尽管如此,这引起了对开发E3连接酶抑制剂的兴趣,但泛素化酶在其活性位点上并没有容易访问的口袋,例如激酶中的著名ATP结合裂口。因此,早期的项目希望阻断E3连接酶与其关键底物之间的相互作用,这导致了现在可以重新编程为PROTACs的化合物。一个例子是MDM2,它泛素化肿瘤抑制因子TP53。抑制MDM2在保持野生型TP53等位基因但通过MDM2过表达下调肿瘤抑制因子的癌症中被认为是有益的。因此,被称为“Nutlins”的分子竞争性地抑制了TP53与MDM2的结合,然而这些分子由于基于TP53依赖性中性粒细胞减少症和血小板减少症的毒性而在临床中停滞不前。 Nutlins最近被转化为PROTACs,以在仅部分抑制TP53的转化率的浓度下触发新底物的降解。这些转化的抑制剂-PROTACs可能因此在不引起完全MDM2丧失的剧烈副作用的情况下提供治疗效益。
A similar logic motivated the development of inhibitors against cIAP1, as overexpression of this E3 ligase is known to drive tumorigenesis and help cancer cells survive cytotoxic treatments (
  • Vince J.E.
  • Wong W.W.
  • Khan N.
  • Feltham R.
  • Chau D.
  • Ahmed A.U.
  • Benetatos C.A.
  • Chunduru S.K.
  • Condon S.M.
  • McKinlay M.
  • et al.
IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis.
;
  • Zender L.
  • Spector M.S.
  • Xue W.
  • Flemming P.
  • Cordon-Cardo C.
  • Silke J.
  • Fan S.T.
  • Luk J.M.
  • Wigler M.
  • Hannon G.J.
  • et al.
Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach.
). Interestingly, small-molecule cIAP1 antagonists not only prevent substrate recognition, but also cause autoubiquitylation and proteasomal degradation of the E3 ligase (
  • Dueber E.C.
  • Schoeffler A.J.
  • Lingel A.
  • Elliott J.M.
  • Fedorova A.V.
  • Giannetti A.M.
  • Zobel K.
  • Maurer B.
  • Varfolomeev E.
  • Wu P.
  • et al.
Antagonists induce a conformational change in cIAP1 that promotes autoubiquitination.
). PROTACs that harness cIAP1 thus induce degradation of their target protein, but also self-limit their effects as they diminish cIAP1 (
  • Naito M.
  • Ohoka N.
  • Shibata N.
SNIPERs-Hijacking IAP activity to induce protein degradation.
). Moreover, a covalent inhibitor of the oxidative stress E3 ligase KEAP1, bardoxolone, has been engineered into a degrader (
  • Tong B.
  • Luo M.
  • Xie Y.
  • Spradlin J.N.
  • Tallarico J.A.
  • McKenna J.M.
  • Schirle M.
  • Maimone T.J.
  • Nomura D.K.
Bardoxolone conjugation enables targeted protein degradation of BRD4.
), suggesting that molecules originally designed to inhibit substrate recognition might provide a robust path forward toward new PROTAC E3 ligases.
类似的逻辑推动了针对cIAP1的抑制剂的开发,因为已知这种E3连接酶的过度表达会促进肿瘤发生,并帮助癌细胞在细胞毒性治疗中存活(
  • Vince J.E.
  • Wong W.W.
  • Khan N.
  • Feltham R.
  • Chau D.
  • Ahmed A.U.
  • Benetatos C.A.
  • Chunduru S.K.
  • Condon S.M.
  • McKinlay M.
  • et al.
IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis.
  • Zender L.
  • Spector M.S.
  • Xue W.
  • Flemming P.
  • Cordon-Cardo C.
  • Silke J.
  • Fan S.T.
  • Luk J.M.
  • Wigler M.
  • Hannon G.J.
  • et al.
Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach.
)。有趣的是,小分子cIAP1拮抗剂不仅可以阻止底物识别,还会导致E3连接酶的自体泛素化和蛋白酶体降解(
  • Dueber E.C.
  • Schoeffler A.J.
  • Lingel A.
  • Elliott J.M.
  • Fedorova A.V.
  • Giannetti A.M.
  • Zobel K.
  • Maurer B.
  • Varfolomeev E.
  • Wu P.
  • et al.
Antagonists induce a conformational change in cIAP1 that promotes autoubiquitination.
)。利用cIAP1的PROTACs因此会诱导其靶蛋白的降解,但同时也会自我限制其效果,因为它们会减少cIAP1的存在(
  • Naito M.
  • Ohoka N.
  • Shibata N.
SNIPERs-Hijacking IAP activity to induce protein degradation.
)。此外,一种针对氧化应激E3连接酶KEAP1的共价抑制剂bardoxolone已被改造成降解剂(
  • Tong B.
  • Luo M.
  • Xie Y.
  • Spradlin J.N.
  • Tallarico J.A.
  • McKenna J.M.
  • Schirle M.
  • Maimone T.J.
  • Nomura D.K.
Bardoxolone conjugation enables targeted protein degradation of BRD4.
),这表明最初设计用于抑制底物识别的分子可能为新的PROTAC E3连接酶提供了一个可靠的前进路径。

E3 ligases targeted by degron mimicry
E3酶受到降解子模拟的靶向

cIAP1 antagonists were obtained by mimicking a structurally defined interaction between the E3 ligase and a physiological binding partner (
  • Vince J.E.
  • Wong W.W.
  • Khan N.
  • Feltham R.
  • Chau D.
  • Ahmed A.U.
  • Benetatos C.A.
  • Chunduru S.K.
  • Condon S.M.
  • McKinlay M.
  • et al.
IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis.
). A similar strategy, focusing on the interaction between E3 ligase and degron, provided a starting point for potent PROTACs using CUL2VHL. As a key enzyme of the hypoxic stress response (
  • Kaelin W.G.
Von hippel-lindau disease.
), CUL2VHL targets the transcription factor HIF1α for proteasomal degradation (
  • Ohh M.
  • Park C.W.
  • Ivan M.
  • Hoffman M.A.
  • Kim T.Y.
  • Huang L.E.
  • Pavletich N.
  • Chau V.
  • Kaelin W.G.
Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein.
). To ensure that this reaction occurs only when sufficient oxygen is available, recognition of HIF1α by CUL2VHL requires hydroxylation of a Pro residue in the HIF1α degron (
  • Ivan M.
  • Kondo K.
  • Yang H.
  • Kim W.
  • Valiando J.
  • Ohh M.
  • Salic A.
  • Asara J.M.
  • Lane W.S.
  • Kaelin Jr., W.G.
HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing.
). As oxygen levels drop, prolyl hydroxylation of HIF1α decreases, its ubiquitylation is prevented, and the transcription factor accumulates to drive a compensatory gene expression program. Starting with peptide mimetics of the HIF1α degron, compounds that compete with HIF1α for access to CUL2VHL were found (
  • Buckley D.L.
  • Van Molle I.
  • Gareiss P.C.
  • Tae H.S.
  • Michel J.
  • Noblin D.J.
  • Jorgensen W.L.
  • Ciulli A.
  • Crews C.M.
Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1alpha interaction.
;
  • Van Molle I.
  • Thomann A.
  • Buckley D.L.
  • So E.C.
  • Lang S.
  • Crews C.M.
  • Ciulli A.
Dissecting fragment-based lead discovery at the von Hippel-Lindau protein:hypoxia inducible factor 1alpha protein-protein interface.
), which were then developed into high-affinity VHL binders and efficient PROTAC handles (
  • Zengerle M.
  • Chan K.H.
  • Ciulli A.
Selective small molecule induced degradation of the BET bromodomain protein BRD4.
). To date, VHL-targeting warheads nucleate PROTACs against a large number of neo-substrates of CUL2VHL (
  • Ramachandran S.
  • Ciulli A.
Building ubiquitination machineries: E3 ligase multi-subunit assembly and substrate targeting by PROTACs and molecular glues.
).
cIAP1拮抗剂是通过模拟E3连接酶和生理结合伙伴之间的构象定义的相互作用获得的(
  • Vince J.E.
  • Wong W.W.
  • Khan N.
  • Feltham R.
  • Chau D.
  • Ahmed A.U.
  • Benetatos C.A.
  • Chunduru S.K.
  • Condon S.M.
  • McKinlay M.
  • et al.
IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis.
)。类似的策略,专注于E3连接酶和降解子之间的相互作用,为利用CUL2的高效PROTAC提供了起点 VHL 。作为缺氧应激反应的关键酶(
  • Kaelin W.G.
Von hippel-lindau disease.
),CUL2 VHL 将转录因子HIF1α靶向蛋白酶体降解(
  • Ohh M.
  • Park C.W.
  • Ivan M.
  • Hoffman M.A.
  • Kim T.Y.
  • Huang L.E.
  • Pavletich N.
  • Chau V.
  • Kaelin W.G.
Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein.
)。为确保只有足够的氧气可用时才发生这种反应,CUL2 VHL 对HIF1α的识别需要对HIF1α降解子中的一个脯氨酸残基进行羟化(
  • Ivan M.
  • Kondo K.
  • Yang H.
  • Kim W.
  • Valiando J.
  • Ohh M.
  • Salic A.
  • Asara J.M.
  • Lane W.S.
  • Kaelin Jr., W.G.
HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing.
)。随着氧气水平下降,HIF1α的脯氨酸羟化减少,其泛素化被阻止,转录因子累积以驱动补偿性基因表达程序。从HIF1α降解子的肽类模拟出发,发现了能与HIF1α竞争访问CUL2的化合物( VHL ),然后将其改进为高亲和力的VHL结合物和高效的PROTAC处理器(
  • Zengerle M.
  • Chan K.H.
  • Ciulli A.
Selective small molecule induced degradation of the BET bromodomain protein BRD4.
)。 迄今为止,VHL靶向战斗头核化了针对CUL2的大量新底物的PROTACs。
Is the success of CUL2VHL-directed PROTACs due to a property of the HIF1α degron and its unique posttranslational modification, or could other members of the CUL2 family of E3 ligases yield similarly efficient PROTACs or molecular glues? We argue that the latter is an exciting possibility. Using an intermediary Elongin B/Elongin C dimer, CUL2 binds exchangeable substrate adaptors characterized by a VHL-box motif (
  • Stebbins C.E.
  • Kaelin Jr., W.G.
  • Pavletich N.P.
Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function.
). This architecture is highly similar to CUL5 E3 ligases that use Elongin B/Elongin C to connect CUL5 with substrate adaptors containing a SOCS-box motif (
  • Kamura T.
  • Maenaka K.
  • Kotoshiba S.
  • Matsumoto M.
  • Kohda D.
  • Conaway R.C.
  • Conaway J.W.
  • Nakayama K.I.
VHL-box and SOCS-box domains determine binding specificity for Cul2-Rbx1 and Cul5-Rbx2 modules of ubiquitin ligases.
). Both CUL2 and CUL5 E3 ligases are hijacked by viruses that remodel the host proteome, showing that these enzymes can be re-programmed to target new substrates (
  • Blackford A.N.
  • Patel R.N.
  • Forrester N.A.
  • Theil K.
  • Groitl P.
  • Stewart G.S.
  • Taylor A.M.
  • Morgan I.M.
  • Dobner T.
  • Grand R.J.
  • et al.
Adenovirus 12 E4orf6 inhibits ATR activation by promoting TOPBP1 degradation.
;
  • Greenwood E.J.
  • Matheson N.J.
  • Wals K.
  • van den Boomen D.J.
  • Antrobus R.
  • Williamson J.C.
  • Lehner P.J.
Temporal proteomic analysis of HIV infection reveals remodelling of the host phosphoproteome by lentiviral Vif variants.
;
  • Guo Y.
  • Dong L.
  • Qiu X.
  • Wang Y.
  • Zhang B.
  • Liu H.
  • Yu Y.
  • Zang Y.
  • Yang M.
  • Huang Z.
Structural basis for hijacking CBF-beta and CUL5 E3 ligase complex by HIV-1 Vif.
;
  • Yu X.
  • Yu Y.
  • Liu B.
  • Luo K.
  • Kong W.
  • Mao P.
  • Yu X.F.
Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex.
). Akin to CUL2VHL, several CUL2 and CUL5 enzymes play key roles in stress responses and thus might be kept in a state poised for rapid activation. This includes CUL2FEM1B, a core component of the reductive stress response (
  • Manford A.G.
  • Rodriguez-Perez F.
  • Shih K.Y.
  • Shi Z.
  • Berdan C.A.
  • Choe M.
  • Titov D.V.
  • Nomura D.K.
  • Rapé M.
A cellular mechanism to detect and alleviate reductive stress.
); CUL2ZYG11B and CUL2ZER1, which target proteins that fail to get myristoylated (
  • Timms R.T.
  • Zhang Z.
  • Rhee D.Y.
  • Harper J.W.
  • Koren I.
  • Elledge S.J.
A glycine-specific N-degron pathway mediates the quality control of protein N-myristoylation.
); CUL2FEM1A, CUL2FEM1C, CUL2KLHDC2, CUL2KLHDC3, and CUL2APPBP2, which recognize proteins dependent on their carboxy terminus (
  • Koren I.
  • Timms R.T.
  • Kula T.
  • Xu Q.
  • Li M.Z.
  • Elledge S.J.
The eukaryotic proteome is shaped by E3 ubiquitin ligases targeting C-terminal degrons.
;
  • Lin H.C.
  • Yeh C.W.
  • Chen Y.F.
  • Lee T.T.
  • Hsieh P.Y.
  • Rusnac D.V.
  • Lin S.Y.
  • Elledge S.J.
  • Zheng N.
  • Yen H.S.
C-terminal end-directed protein elimination by CRL2 ubiquitin ligases.
), as they can be produced by proteases (
  • Ravalin M.
  • Theofilas P.
  • Basu K.
  • Opoku-Nsiah K.A.
  • Assimon V.A.
  • Medina-Cleghorn D.
  • Chen Y.F.
  • Bohn M.F.
  • Arkin M.
  • Grinberg L.T.
  • et al.
Specificity for latent C termini links the E3 ubiquitin ligase CHIP to caspases.
); and CUL2LRR1, which helps unload replication complexes from DNA (
  • Dewar J.M.
  • Low E.
  • Mann M.
  • Raschle M.
  • Walter J.C.
CRL2(Lrr1) promotes unloading of the vertebrate replisome from chromatin during replication termination.
). Structural studies showed how CUL2KLHDC2 and CUL2FEM1A use surface pockets to recognize short carboxy-terminal peptides (
  • Chen X.
  • Liao S.
  • Makaros Y.
  • Guo Q.
  • Zhu Z.
  • Krizelman R.
  • Dahan K.
  • Tu X.
  • Yao X.
  • Koren I.
  • et al.
Molecular basis for arginine C-terminal degron recognition by Cul2(FEM1) E3 ligase.
;
  • Rusnac D.V.
  • Lin H.C.
  • Canzani D.
  • Tien K.X.
  • Hinds T.R.
  • Tsue A.F.
  • Bush M.F.
  • Yen H.S.
  • Zheng N.
Recognition of the diglycine C-end degron by CRL2(KLHDC2) ubiquitin ligase.
;
  • Yan X.
  • Wang X.
  • Li Y.
  • Zhou M.
  • Li Y.
  • Song L.
  • Mi W.
  • Min J.
  • Dong C.
Molecular basis for ubiquitin ligase CRL2(FEM1C)-mediated recognition of C-degron.
), an observation that indicates that E3 ligases of this family might be able to accept small molecules for PROTAC development.
CUL2导向的PROTACs的成功是由于HIF1α降解物及其独特的翻译后修饰性质,还是CUL2家族的其他成员的E3连接酶能够产生同样高效的PROTACs或分子胶水?我们认为后者是一个令人兴奋的可能性。通过中介的Elongin B/Elongin C二聚体,CUL2与可交换的底物适配体结合,这些适配体具有VHL-box基序(
  • Stebbins C.E.
  • Kaelin Jr., W.G.
  • Pavletich N.P.
Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function.
)。这种结构与使用Elongin B/Elongin C将CUL5与包含SOCS-box基序的底物适配体连接的CUL5 E3连接酶非常相似(
  • Kamura T.
  • Maenaka K.
  • Kotoshiba S.
  • Matsumoto M.
  • Kohda D.
  • Conaway R.C.
  • Conaway J.W.
  • Nakayama K.I.
VHL-box and SOCS-box domains determine binding specificity for Cul2-Rbx1 and Cul5-Rbx2 modules of ubiquitin ligases.
)。CUL2和CUL5 E3连接酶都被病毒利用来重塑宿主蛋白质组,表明这些酶可以被重新编程以靶向新的底物(
  • Blackford A.N.
  • Patel R.N.
  • Forrester N.A.
  • Theil K.
  • Groitl P.
  • Stewart G.S.
  • Taylor A.M.
  • Morgan I.M.
  • Dobner T.
  • Grand R.J.
  • et al.
Adenovirus 12 E4orf6 inhibits ATR activation by promoting TOPBP1 degradation.
  • Greenwood E.J.
  • Matheson N.J.
  • Wals K.
  • van den Boomen D.J.
  • Antrobus R.
  • Williamson J.C.
  • Lehner P.J.
Temporal proteomic analysis of HIV infection reveals remodelling of the host phosphoproteome by lentiviral Vif variants.
  • Guo Y.
  • Dong L.
  • Qiu X.
  • Wang Y.
  • Zhang B.
  • Liu H.
  • Yu Y.
  • Zang Y.
  • Yang M.
  • Huang Z.
Structural basis for hijacking CBF-beta and CUL5 E3 ligase complex by HIV-1 Vif.
  • Yu X.
  • Yu Y.
  • Liu B.
  • Luo K.
  • Kong W.
  • Mao P.
  • Yu X.F.
Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex.
)。与CUL2类似,几种CUL2和CUL5酶在应激反应中起着关键作用,因此可能处于快速激活的状态。 这包括了CUL2 FEM1B ,这是还原应激反应的核心组分(
  • Manford A.G.
  • Rodriguez-Perez F.
  • Shih K.Y.
  • Shi Z.
  • Berdan C.A.
  • Choe M.
  • Titov D.V.
  • Nomura D.K.
  • Rapé M.
A cellular mechanism to detect and alleviate reductive stress.
);CUL2 ZYG11B 和CUL2 ZER1 ,它们针对未能获得肌醇化的蛋白质(
  • Timms R.T.
  • Zhang Z.
  • Rhee D.Y.
  • Harper J.W.
  • Koren I.
  • Elledge S.J.
A glycine-specific N-degron pathway mediates the quality control of protein N-myristoylation.
);CUL2 FEM1A ,CUL2 FEM1C ,CUL2 KLHDC2 ,CUL2 KLHDC3 ,和CUL2 APPBP2 ,它们识别依赖于其羧基末端的蛋白质(
  • Koren I.
  • Timms R.T.
  • Kula T.
  • Xu Q.
  • Li M.Z.
  • Elledge S.J.
The eukaryotic proteome is shaped by E3 ubiquitin ligases targeting C-terminal degrons.
  • Lin H.C.
  • Yeh C.W.
  • Chen Y.F.
  • Lee T.T.
  • Hsieh P.Y.
  • Rusnac D.V.
  • Lin S.Y.
  • Elledge S.J.
  • Zheng N.
  • Yen H.S.
C-terminal end-directed protein elimination by CRL2 ubiquitin ligases.
),因为它们可能被蛋白酶产生(
  • Ravalin M.
  • Theofilas P.
  • Basu K.
  • Opoku-Nsiah K.A.
  • Assimon V.A.
  • Medina-Cleghorn D.
  • Chen Y.F.
  • Bohn M.F.
  • Arkin M.
  • Grinberg L.T.
  • et al.
Specificity for latent C termini links the E3 ubiquitin ligase CHIP to caspases.
);以及CUL2 LRR1 ,它帮助从DNA上卸载复制复合物(
  • Dewar J.M.
  • Low E.
  • Mann M.
  • Raschle M.
  • Walter J.C.
CRL2(Lrr1) promotes unloading of the vertebrate replisome from chromatin during replication termination.
)。结构研究显示CUL2 KLHDC2 和CUL2 FEM1A 如何利用表面口袋识别短的羧基末端肽段(
  • Chen X.
  • Liao S.
  • Makaros Y.
  • Guo Q.
  • Zhu Z.
  • Krizelman R.
  • Dahan K.
  • Tu X.
  • Yao X.
  • Koren I.
  • et al.
Molecular basis for arginine C-terminal degron recognition by Cul2(FEM1) E3 ligase.
  • Rusnac D.V.
  • Lin H.C.
  • Canzani D.
  • Tien K.X.
  • Hinds T.R.
  • Tsue A.F.
  • Bush M.F.
  • Yen H.S.
  • Zheng N.
Recognition of the diglycine C-end degron by CRL2(KLHDC2) ubiquitin ligase.
  • Yan X.
  • Wang X.
  • Li Y.
  • Zhou M.
  • Li Y.
  • Song L.
  • Mi W.
  • Min J.
  • Dong C.
Molecular basis for ubiquitin ligase CRL2(FEM1C)-mediated recognition of C-degron.
),这一观察表明该家族的E3连接酶可能能够接受小分子用于PROTAC的开发。

Using biology as a guide for novel degrader E3 ligases
以生物学为指导,开发新型降解酶E3连接酶

E3 ligases that have already been engaged by small molecules provide guideposts for finding new enzymes for PROTAC or molecular glue development, yet prior success as a starting point might resemble looking for keys under the streetlight. What if a better key could be found outside of the zone of light? As an alternative strategy, we thus propose to build on our increasing understanding of the rich biology and biochemistry of E3 ligases to prospectively select an optimal enzyme for a target at hand. To choose an E3 ligase tailored to the task, features such as mode of substrate selection, catalytic specificity, regulation, dynamics of enzyme expression and assembly, and physiological function should be taken into account. As emerging technologies, including DNA-encoded libraries (
  • Conole D.
  • J H.H.
  • Waring M.J.
The maturation of DNA encoded libraries: opportunities for new users.
), are allowing us to rapidly isolate small-molecular binders against many targets, generating PROTAC handles for E3 ligases chosen due to their biological or catalytic properties will provide many opportunities to expand the reach of induced protein degradation.
已经被小分子激活的E3连接酶为寻找新的PROTAC或分子胶的酶提供了指引,然而,以此为起点的先前成功可能类似于在路灯下寻找钥匙。如果在光线区域之外找到更好的钥匙会怎样呢?因此,作为一种替代策略,我们建议在对E3连接酶的丰富生物学和生物化学的理解不断增加的基础上,有针对性地选择一个最佳酶来处理手头的目标。在选择适合任务的E3连接酶时,应考虑到底物选择方式、催化特异性、调控、酶表达和组装的动力学以及生理功能等特征。随着包括DNA编码文库在内的新兴技术的出现,我们能够快速分离出针对许多目标的小分子结合物,选择具有生物学或催化特性的E3连接酶生成PROTAC手柄将提供许多扩展诱导蛋白降解的机会。

E3 ligases poised to be active
E3连接酶准备活跃起来

The mainstay E3 ligases for PROTAC development, CUL4CRBN and CUL2VHL, recognize a large number of structurally related proteins and an oxygen-responsive transcription factor, respectively. As CRBN was also suggested to act as an HSP90 co-chaperone specific for transmembrane proteins (
  • Heider M.
  • Eichner R.
  • Stroh J.
  • Morath V.
  • Kuisl A.
  • Zecha J.
  • Lawatscheck J.
  • Baek K.
  • Garz A.K.
  • Rudelius M.
  • et al.
The IMiD target CRBN determines HSP90 activity toward transmembrane proteins essential in multiple myeloma.
), it appears that both enzymes are embedded in stress response or quality control pathways that rapidly jump into action when needed. In fact, quality control E3 ligases fulfill many requirements for efficient PROTAC handles: they are expressed at high levels to cope with a potentially large number of substrates during stress (Figure 3A), and they must be flexible enough to ubiquitylate many proteins that differ in primary sequence and tertiary structure. Furthermore, quality control E3 ligases frequently modify their targets with highly effective ubiquitin conjugates, such as the proteasomal priority signals K11/K48-branched chains (
  • Meyer H.J.
  • Rapé M.
Enhanced protein degradation by branched ubiquitin chains.
;
  • Samant R.S.
  • Livingston C.M.
  • Sontag E.M.
  • Frydman J.
Distinct proteostasis circuits cooperate in nuclear and cytoplasmic protein quality control.
;
  • Yau R.G.
  • Doerner K.
  • Castellanos E.R.
  • Haakonsen D.L.
  • Werner A.
  • Wang N.
  • Yang X.W.
  • Martinez-Martin N.
  • Matsumoto M.L.
  • Dixit V.M.
  • et al.
Assembly and function of heterotypic ubiquitin chains in cell-cycle and protein quality control.
), as only rapid degradation can prevent aggregation of their natural targets.
主要用于PROTAC开发的E3连接酶,CUL4和CUL2,分别识别大量结构相关的蛋白质和氧感应转录因子。由于CRBN也被认为是HSP90的共分子伴侣,专门用于跨膜蛋白() ,因此看起来这两种酶都嵌入在应激反应或质量控制途径中,当需要时迅速行动。事实上,质量控制E3连接酶满足了有效的PROTAC手柄的许多要求:它们在应激期间表达水平较高,以应对潜在的大量底物(图3A),并且它们必须足够灵活,能够泛素化许多在主要序列和三级结构上有所不同的蛋白质。此外,质量控制E3连接酶经常使用高效的泛素连接物修饰其靶标,例如蛋白酶体优先信号K11/K48-分支链(;;),因为只有快速降解才能防止其天然靶标的聚集。
Figure thumbnail gr3
Figure 3Expression patterns as guidance to select E3 ligases for degrader development
图3 表达模式作为选择E3连接酶进行降解剂开发的指导
Quality control E3 ligases poised to modify proteins with potent ubiquitin chains therefore provide unique opportunities to generate molecular glues or PROTACs. Importantly, as cells can experience a wide range of adverse conditions, they possess many types of quality control E3 ligases that the degrader community could choose from. In addition to the CUL2 enzymes of the reductive stress or C-end-rule pathways, which were described above, an interesting family of E3 ligases is the N-recognins (
  • Varshavsky A.
N-degron and C-degron pathways of protein degradation.
). These enzymes are best known for determining the stability of a protein based on its amino-terminal residue, a pathway aptly named N-end rule. The specificity of these E3 ligases is imposed by their namesake UBR box, which detects a protein's amino terminus, but can bind amino acids with micromolar affinity (
  • Matta-Camacho E.
  • Kozlov G.
  • Li F.F.
  • Gehring K.
Structural basis of substrate recognition and specificity in the N-end rule pathway.
;
  • Tasaki T.
  • Mulder L.C.
  • Iwamatsu A.
  • Lee M.J.
  • Davydov I.V.
  • Varshavsky A.
  • Muesing M.
  • Kwon Y.T.
A family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognize N-degrons.
). UBR family E3 ligases are also allosterically activated by dipeptides (
  • Turner G.C.
  • Du F.
  • Varshavsky A.
Peptides accelerate their uptake by activating a ubiquitin-dependent proteolytic pathway.
), which suggests that we should be able to engage them with small molecules. In addition to their role in the N-end rule, the best-understood members UBR1, UBR2, UBR4, and UBR5 act in quality control: UBR1 and UBR2 collaborate with the chaperone HSP70 to degrade misfolded cytoplasmic proteins (
  • Singh A.
  • Vashistha N.
  • Heck J.
  • Tang X.
  • Wipf P.
  • Brodsky J.L.
  • Hampton R.Y.
Direct involvement of Hsp70 ATP hydrolysis in Ubr1-dependent quality control.
;
  • Theodoraki M.A.
  • Nillegoda N.B.
  • Saini J.
  • Caplan A.J.
A network of ubiquitin ligases is important for the dynamics of misfolded protein aggregates in yeast.
); UBR4 eliminates misfolded proteins retrotranslocated from the endoplasmic reticulum (
  • Leto D.E.
  • Morgens D.W.
  • Zhang L.
  • Walczak C.P.
  • Elias J.E.
  • Bassik M.C.
  • Kopito R.R.
Genome-wide CRISPR analysis identifies substrate-specific conjugation modules in ER-associated degradation.
); and UBR4 and the HECT-E3 UBR5 assemble K11/K48-branched ubiquitin chains on newly synthesized, yet misfolded, proteins that are presented by the chaperones BAG6, HSP70, or HSP90 (
  • Yau R.G.
  • Doerner K.
  • Castellanos E.R.
  • Haakonsen D.L.
  • Werner A.
  • Wang N.
  • Yang X.W.
  • Martinez-Martin N.
  • Matsumoto M.L.
  • Dixit V.M.
  • et al.
Assembly and function of heterotypic ubiquitin chains in cell-cycle and protein quality control.
). However, as with CUL4, molecules targeting UBR-family E3 ligases need to be carefully assessed for effects on the natural targets of these enzymes, as mutations in the genes encoding these enzymes have been associated with both developmental and neurodegenerative diseases (
  • Conroy J.
  • McGettigan P.
  • Murphy R.
  • Webb D.
  • Murphy S.M.
  • McCoy B.
  • Albertyn C.
  • McCreary D.
  • McDonagh C.
  • Walsh O.
  • et al.
A novel locus for episodic ataxia:UBR4 the likely candidate.
;
  • Sukalo M.
  • Fiedler A.
  • Guzman C.
  • Spranger S.
  • Addor M.C.
  • McHeik J.N.
  • Oltra Benavent M.
  • Cobben J.M.
  • Gillis L.A.
  • Shealy A.G.
  • et al.
Mutations in the human UBR1 gene and the associated phenotypic spectrum.
;
  • Yau R.G.
  • Doerner K.
  • Castellanos E.R.
  • Haakonsen D.L.
  • Werner A.
  • Wang N.
  • Yang X.W.
  • Martinez-Martin N.
  • Matsumoto M.L.
  • Dixit V.M.
  • et al.
Assembly and function of heterotypic ubiquitin chains in cell-cycle and protein quality control.
).
质量控制的E3连接酶能够修饰蛋白质,形成强效的泛素链,因此为生成分子粘合剂或PROTACs提供了独特的机会。重要的是,由于细胞可能经历各种不良条件,它们拥有许多类型的质量控制E3连接酶供降解剂社区选择。除了上述的还原应激或C末端规则途径的CUL2酶外,一个有趣的E3连接酶家族是N-recognins(
  • Varshavsky A.
N-degron and C-degron pathways of protein degradation.
)。这些酶以其氨基末端残基来确定蛋白质的稳定性,这条途径被恰当地称为N末端规则。这些E3连接酶的特异性是由它们的命名U 除了在N末端规则中的作用外,最为了解的成员UBR1、UBR2、UBR4和UBR5还在质量控制中发挥作用:UBR1和UBR2与分子伴侣HSP70合作降解错折的细胞质蛋白(
  • Singh A.
  • Vashistha N.
  • Heck J.
  • Tang X.
  • Wipf P.
  • Brodsky J.L.
  • Hampton R.Y.
Direct involvement of Hsp70 ATP hydrolysis in Ubr1-dependent quality control.
  • Theodoraki M.A.
  • Nillegoda N.B.
  • Saini J.
  • Caplan A.J.
A network of ubiquitin ligases is important for the dynamics of misfolded protein aggregates in yeast.
);UBR4清除从内质网逆转运的错折蛋白(
  • Leto D.E.
  • Morgens D.W.
  • Zhang L.
  • Walczak C.P.
  • Elias J.E.
  • Bassik M.C.
  • Kopito R.R.
Genome-wide CRISPR analysis identifies substrate-specific conjugation modules in ER-associated degradation.
);UBR4和HECT-E3 UBR5在新合成的、但错折的蛋白质上组装K11/K48分支的泛素链,这些蛋白质由分子伴侣BAG6、HSP70或HSP90呈现(
  • Yau R.G.
  • Doerner K.
  • Castellanos E.R.
  • Haakonsen D.L.
  • Werner A.
  • Wang N.
  • Yang X.W.
  • Martinez-Martin N.
  • Matsumoto M.L.
  • Dixit V.M.
  • et al.
Assembly and function of heterotypic ubiquitin chains in cell-cycle and protein quality control.
)。然而,与CUL4一样,针对UBR家族E3连接酶的分子需要仔细评估对这些酶的自然靶点的影响,因为与编码这些酶的基因突变与发育和神经退行性疾病有关(
  • Conroy J.
  • McGettigan P.
  • Murphy R.
  • Webb D.
  • Murphy S.M.
  • McCoy B.
  • Albertyn C.
  • McCreary D.
  • McDonagh C.
  • Walsh O.
  • et al.
A novel locus for episodic ataxia:UBR4 the likely candidate.
  • Sukalo M.
  • Fiedler A.
  • Guzman C.
  • Spranger S.
  • Addor M.C.
  • McHeik J.N.
  • Oltra Benavent M.
  • Cobben J.M.
  • Gillis L.A.
  • Shealy A.G.
  • et al.
Mutations in the human UBR1 gene and the associated phenotypic spectrum.
  • Yau R.G.
  • Doerner K.
  • Castellanos E.R.
  • Haakonsen D.L.
  • Werner A.
  • Wang N.
  • Yang X.W.
  • Martinez-Martin N.
  • Matsumoto M.L.
  • Dixit V.M.
  • et al.
Assembly and function of heterotypic ubiquitin chains in cell-cycle and protein quality control.
)。

E3 ligases at the right time and place
在正确的时间和地点的E3连接酶

Quality control E3 ligases can be considered as housekeeping enzymes, and they are accordingly expressed in most tissues at high levels (Figure 3A). By contrast, in line with the crucial role of ubiquitylation in cell fate specification (
  • Rapé M.
Ubiquitylation at the crossroads of development and disease.
), some E3 ligases are present predominantly in specific tissues or at particular stages of development (Figure 3B). This includes E3 ligases that control stem cell behavior (
  • Buckley S.M.
  • Aranda-Orgilles B.
  • Strikoudis A.
  • Apostolou E.
  • Loizou E.
  • Moran-Crusio K.
  • Farnsworth C.L.
  • Koller A.A.
  • Dasgupta R.
  • Silva J.C.
  • et al.
Regulation of pluripotency and cellular reprogramming by the ubiquitin-proteasome system.
;
  • Gao J.
  • Buckley S.M.
  • Cimmino L.
  • Guillamot M.
  • Strikoudis A.
  • Cang Y.
  • Goff S.P.
  • Aifantis I.
The CUL4-DDB1 ubiquitin ligase complex controls adult and embryonic stem cell differentiation and homeostasis.
;
  • Werner A.
  • Iwasaki S.
  • McGourty C.A.
  • Medina-Ruiz S.
  • Teerikorpi N.
  • Fedrigo I.
  • Ingolia N.T.
  • Rapé M.
Cell-fate determination by ubiquitin-dependent regulation of translation.
), while other enzymes are induced upon differentiation and remain expressed in the resulting cell type. Under the right conditions, either a tissue-specific or a housekeeping E3 ligase might be the enzyme of choice for degrader development: tissue-specific enzymes could allow us to access the ubiquitylation machinery in only a subset of cells, thereby reducing the potential for on-target toxicity in organs that are not affected by a disease. Conversely, the generalists among E3 ligases might be particularly useful to build modular PROTAC handles that could be employed against many targets and across multiple tissues. Notably, many of the frequently engaged PROTAC-E3 ligases to date, including CRBN, are expressed at high levels across most tissues (Figure 3A). Other enzymes discussed above, such as the C-end-rule adaptor KLHDC2, the quality control E3 ligases UBR4 and UBR5, and the oxidative stress sensor KEAP1, also fall into the category of broadly expressed E3 ligases.
质量控制的E3连接酶可以被视为日常维护的酶,因此它们在大多数组织中以高水平表达(图3A)。相比之下,与泛素化在细胞命运规定中的关键作用相一致(
  • Rapé M.
Ubiquitylation at the crossroads of development and disease.
),一些E3连接酶主要存在于特定组织或特定发育阶段(图3B)。这包括控制干细胞行为的E3连接酶(
  • Buckley S.M.
  • Aranda-Orgilles B.
  • Strikoudis A.
  • Apostolou E.
  • Loizou E.
  • Moran-Crusio K.
  • Farnsworth C.L.
  • Koller A.A.
  • Dasgupta R.
  • Silva J.C.
  • et al.
Regulation of pluripotency and cellular reprogramming by the ubiquitin-proteasome system.
  • Gao J.
  • Buckley S.M.
  • Cimmino L.
  • Guillamot M.
  • Strikoudis A.
  • Cang Y.
  • Goff S.P.
  • Aifantis I.
The CUL4-DDB1 ubiquitin ligase complex controls adult and embryonic stem cell differentiation and homeostasis.
  • Werner A.
  • Iwasaki S.
  • McGourty C.A.
  • Medina-Ruiz S.
  • Teerikorpi N.
  • Fedrigo I.
  • Ingolia N.T.
  • Rapé M.
Cell-fate determination by ubiquitin-dependent regulation of translation.
),而其他酶则在分化过程中诱导并在产生的细胞类型中持续表达。在适当的条件下,组织特异性或日常维护的E3连接酶都可能成为降解剂开发的选择酶:组织特异性酶可以使我们仅在细胞子集中访问泛素化机制,从而减少对未受疾病影响的器官的靶向毒性的潜力。相反,E3连接酶中的广义酶可能特别有用,可以构建模块化的PROTAC手柄,可用于多个靶点和多个组织。 值得注意的是,迄今为止,许多经常参与的PROTAC-E3连接酶,包括CRBN,在大多数组织中表达水平较高(图3A)。上面讨论的其他酶,如C末端规则适配器KLHDC2,质量控制E3连接酶UBR4和UBR5,以及氧化应激传感器KEAP1,也属于广泛表达的E3连接酶类别。
It is likely a reflection of our choices of laboratory model systems that few tissue-specific E3 ligases are understood in mechanistic detail. Some enzymes, however, have gained attention as their mutation causes developmental defects, an observation that could independently point to E3 ligases that act predominantly in a particular tissue. Mutations in the CUL3-adaptors KLHL31 and KLHL41, for example, trigger myopathies, and these proteins are accordingly expressed at high levels in heart and muscle (
  • Papizan J.B.
  • Garry G.A.
  • Brezprozvannaya S.
  • McAnally J.R.
  • Bassel-Duby R.
  • Liu N.
  • Olson E.N.
Deficiency in Kelch protein Klhl31 causes congenital myopathy in mice.
;
  • Ramirez-Martinez A.
  • Cenik B.K.
  • Bezprozvannaya S.
  • Chen B.
  • Bassel-Duby R.
  • Liu N.
  • Olson E.N.
KLHL41 stabilizes skeletal muscle sarcomeres by nonproteolytic ubiquitination.
). However, CUL3 family E3 ligases often monoubiquitylate their targets and may not be the best enzymes for drug discovery programs aimed at inducing protein degradation. It is thus interesting that E3 ligases of the MURF family, also known as TRIM54, TRIM55, and TRIM63, are similarly expressed, particularly in muscle and heart. These E3 ligases can drive proteasomal degradation, potentially in collaboration with CUL4 E3 ligases that have been implemented in PROTAC approaches (
  • Nowak M.
  • Suenkel B.
  • Porras P.
  • Migotti R.
  • Schmidt F.
  • Kny M.
  • Zhu X.
  • Wanker E.E.
  • Dittmar G.
  • Fielitz J.
  • et al.
DCAF8, a novel MuRF1 interaction partner, promotes muscle atrophy.
). In a similar manner, SCFFBXO40, an E3 ligase that is abundant in heart and targets a regulator of insulin signaling for proteasomal degradation (
  • Shi J.
  • Luo L.
  • Eash J.
  • Ibebunjo C.
  • Glass D.J.
The SCF-Fbxo40 complex induces IRS1 ubiquitination in skeletal muscle, limiting IGF1 signaling.
), might provide a unique handle for inducing tissue-specific protein degradation.
很可能是由于我们选择的实验室模型系统有限,导致对于少数组织特异性的E3连接酶的机制细节了解不多。然而,一些酶因突变而引起发育缺陷,这一观察结果可能独立地指向在特定组织中起主导作用的E3连接酶。例如,CUL3适配蛋白KLHL31和KLHL41的突变会引发肌肉病,因此这些蛋白在心脏和肌肉中的表达水平较高。然而,CUL3家族的E3连接酶通常会对其目标进行单一泛素化,可能不是诱导蛋白降解的药物发现项目中最好的酶。因此,有趣的是,MURF家族的E3连接酶(也称为TRIM54、TRIM55和TRIM63)在肌肉和心脏中也有类似的表达。这些E3连接酶可以与已经应用于PROTAC方法的CUL4家族的E3连接酶合作,推动蛋白质酶解降解(
  • Nowak M.
  • Suenkel B.
  • Porras P.
  • Migotti R.
  • Schmidt F.
  • Kny M.
  • Zhu X.
  • Wanker E.E.
  • Dittmar G.
  • Fielitz J.
  • et al.
DCAF8, a novel MuRF1 interaction partner, promotes muscle atrophy.
)。 以类似的方式,SCF FBXO40 ,一种在心脏中丰富且靶向胰岛素信号调节因子进行蛋白酶降解的E3连接酶(
  • Shi J.
  • Luo L.
  • Eash J.
  • Ibebunjo C.
  • Glass D.J.
The SCF-Fbxo40 complex induces IRS1 ubiquitination in skeletal muscle, limiting IGF1 signaling.
),可能为诱导组织特异性蛋白降解提供独特的手段。
In addition to select expression in healthy tissues, E3 ligases that are induced in specific diseases could provide starting points for the development of molecular glues or PROTACs with reduced side effects. E3 ligases of the MAGE family are, for example, expressed only in germ cells, but become re-activated in cancer (
  • Pineda C.T.
  • Ramanathan S.
  • Fon Tacer K.
  • Weon J.L.
  • Potts M.B.
  • Ou Y.H.
  • White M.A.
  • Potts P.R.
Degradation of AMPK by a cancer-specific ubiquitin ligase.
). Following this example, a survey of ∼600 human E3 ligases revealed several enzymes that are upregulated in small subsets of cancers and hence could be exploited to develop degradation approaches against the respective malignancy (Figure 3C). These include the plasma membrane E3 ligase RNF43, which restricts the accumulation of receptors of the WNT morphogen and can be mutated in colon cancer (
  • Koo B.K.
  • Spit M.
  • Jordens I.
  • Low T.Y.
  • Stange D.E.
  • van de Wetering M.
  • van Es J.H.
  • Mohammed S.
  • Heck A.J.
  • Maurice M.M.
  • et al.
Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors.
). RNF43 was recently engaged by bispecific antibodies, referred to as AbTACs, which bring the E3 ligase in proximity to a membrane protein to trigger ubiquitin-dependent endocytosis (
  • Cotton A.D.
  • Nguyen D.P.
  • Gramespacher J.A.
  • Seiple I.B.
  • Wells J.A.
Development of antibody-based PROTACs for the degradation of the cell-surface immune checkpoint protein PD-L1.
). We speculate that such AbTACs should work best in tissues that show the highest levels of RNF43.
除了在健康组织中选择表达外,特定疾病中诱导的E3连接酶可能为开发具有减少副作用的分子胶或PROTAC提供起点。例如,MAGE家族的E3连接酶仅在生殖细胞中表达,但在癌症中重新激活。根据这个例子,对大约600种人类E3连接酶的调查发现了几种在小部分癌症中上调的酶,因此可以利用它们来开发针对相应恶性肿瘤的降解方法。其中包括负调控WNT形态发生素受体积累的细胞膜E3连接酶RNF43,它在结肠癌中可能发生突变。最近,RNF43被称为AbTACs的双特异性抗体所利用,这些抗体将E3连接酶与细胞膜蛋白接近,触发泛素依赖的内吞作用。我们推测,这样的AbTACs在RNF43水平最高的组织中效果最好。
It is important to note that gene expression analyses are only an approximation of protein levels and must be complemented with quantitative proteomics before choosing E3 ligases based on abundance. In addition, even constitutively expressed E3 ligases might be activated only under specific conditions. Most subunits of the APC/C, for example, are present throughout the cell cycle, but a combination of inhibitors and posttranslational modifications ensures that this E3 ligase ubiquitylates its targets during mitosis and in the subsequent G1 phase (
  • Watson E.R.
  • Brown N.G.
  • Peters J.M.
  • Stark H.
  • Schulman B.A.
Posing the APC/C E3 ubiquitin ligase to orchestrate cell division.
). The same applies to RBR family E3 ligases that often exist in autoinhibited conformations that are overcome by specific partners, including other E3 ligases or phosphorylated ubiquitin (
  • Duda D.M.
  • Olszewski J.L.
  • Schuermann J.P.
  • Kurinov I.
  • Miller D.J.
  • Nourse A.
  • Alpi A.F.
  • Schulman B.A.
Structure of HHARI, a RING-IBR-RING ubiquitin ligase: autoinhibition of an Ariadne-family E3 and insights into ligation mechanism.
;
  • Horn-Ghetko D.
  • Krist D.T.
  • Prabu J.R.
  • Baek K.
  • Mulder M.P.C.
  • Klugel M.
  • Scott D.C.
  • Ovaa H.
  • Kleiger G.
  • Schulman B.A.
Ubiquitin ligation to F-box protein targets by SCF-RBR E3-E3 super-assembly.
;
  • Lechtenberg B.C.
  • Rajput A.
  • Sanishvili R.
  • Dobaczewska M.K.
  • Ware C.F.
  • Mace P.D.
  • Riedl S.J.
Structure of a HOIP/E2∼ubiquitin complex reveals RBR E3 ligase mechanism and regulation.
;
  • Wauer T.
  • Simicek M.
  • Schubert A.
  • Komander D.
Mechanism of phospho-ubiquitin-induced PARKIN activation.
). In addition, as shown for Cullin RING ligases, even expressed substrate adaptors do not form an active E3 ligase unless they have recognized their target and are allowed to engage the cullin scaffold in a process promoted by the exchange factor CAND1 (
  • Liu X.
  • Reitsma J.M.
  • Mamrosh J.L.
  • Zhang Y.
  • Straube R.
  • Deshaies R.J.
Cand1-Mediated adaptive exchange mechanism enables variation in F-box protein expression.
;
  • Pierce N.W.
  • Lee J.E.
  • Liu X.
  • Sweredoski M.J.
  • Graham R.L.
  • Larimore E.A.
  • Rome M.
  • Zheng N.
  • Clurman B.E.
  • Hess S.
  • et al.
Cand1 promotes assembly of new SCF complexes through dynamic exchange of F box proteins.
;
  • Reichermeier K.M.
  • Straube R.
  • Reitsma J.M.
  • Sweredoski M.J.
  • Rose C.M.
  • Moradian A.
  • den Besten W.
  • Hinkle T.
  • Verschueren E.
  • Petzold G.
  • et al.
PIKES analysis reveals response to degraders and key regulatory mechanisms of the CRL4 network.
). In many cases, we know little about additional factors that are required for E3 ligase function: indeed, many enzymes of the CUL3 family depend on proteins referred to as co-adaptors that provide the means for localized E3 ligase activation beyond mere adaptor expression (
  • McGourty C.A.
  • Akopian D.
  • Walsh C.
  • Gorur A.
  • Werner A.
  • Schekman R.
  • Bautista D.
  • Rapé M.
Regulation of the CUL3 ubiquitin ligase by a calcium-dependent Co-adaptor.
;
  • Rodriguez-Perez F.
  • Manford A.G.
  • Pogson A.
  • Ingersoll A.J.
  • Martinez-Gonzalez B.
  • Rapé M.
Ubiquitin-dependent remodeling of the actin cytoskeleton drives cell fusion.
;
  • Werner A.
  • Iwasaki S.
  • McGourty C.A.
  • Medina-Ruiz S.
  • Teerikorpi N.
  • Fedrigo I.
  • Ingolia N.T.
  • Rapé M.
Cell-fate determination by ubiquitin-dependent regulation of translation.
,
  • Werner A.
  • Baur R.
  • Kaya D.
  • Teerikorpi N.
  • Rapé M.
Multivalent substrate recognition by an E3 ligase is essential for neural crest specification.
), and some E3 ligases, such as the APC/C, rely on E2 enzymes that are present only at particular cell-cycle stages (
  • Rapé M.
  • Kirschner M.W.
Autonomous regulation of the anaphase-promoting complex couples mitosis to S-phase entry.
;
  • Williamson A.
  • Wickliffe K.E.
  • Mellone B.G.
  • Song L.
  • Karpen G.H.
  • Rapé M.
Identification of a physiological E2 module for the human anaphase-promoting complex.
). Finally, regulatory circuits that alter the intracellular location of an E3 ligase might also have an impact on the efficiency of PROTAC approaches using this enzyme (
  • Tateno S.
  • Iida M.
  • Fujii S.
  • Suwa T.
  • Katayama M.
  • Tokuyama H.
  • Yamamoto J.
  • Ito T.
  • Sakamoto S.
  • Handa H.
  • et al.
Genome-wide screening reveals a role for subcellular localization of CRBN in the anti-myeloma activity of pomalidomide.
). Choosing the best E3 ligase for drug discovery will therefore greatly benefit from mechanistic analyses geared toward revealing physiological mechanisms of regulation.
需要注意的是,基因表达分析只是蛋白质水平的近似值,在选择丰度为基础的E3连接酶之前,必须与定量蛋白质组学相结合。此外,即使是持续表达的E3连接酶也可能只在特定条件下被激活。例如,大多数APC/C的亚单位在细胞周期中始终存在,但是抑制剂和翻译后修饰的组合确保了这种E3连接酶在有丝分裂和随后的G1期间泛素化其靶标。同样,RBR家族的E3连接酶通常存在于被自我抑制的构象中,这些构象可以被特定的伴侣(包括其他E3连接酶或磷酸化的泛素)克服。此外,正如Cullin RING连接酶所示,即使是表达的底物适配体也不会形成活性的E3连接酶,除非它们已经识别到其靶标并被允许与CAND1交换因子促进的Cullin支架发生作用。 在许多情况下,我们对于E3连接酶功能所需的其他因素了解甚少:事实上,CUL3家族的许多酶依赖于被称为辅助蛋白的蛋白质,这些蛋白质提供了定位的E3连接酶激活方式,超越了仅仅适配器的表达(
  • McGourty C.A.
  • Akopian D.
  • Walsh C.
  • Gorur A.
  • Werner A.
  • Schekman R.
  • Bautista D.
  • Rapé M.
Regulation of the CUL3 ubiquitin ligase by a calcium-dependent Co-adaptor.
  • Rodriguez-Perez F.
  • Manford A.G.
  • Pogson A.
  • Ingersoll A.J.
  • Martinez-Gonzalez B.
  • Rapé M.
Ubiquitin-dependent remodeling of the actin cytoskeleton drives cell fusion.
  • Werner A.
  • Iwasaki S.
  • McGourty C.A.
  • Medina-Ruiz S.
  • Teerikorpi N.
  • Fedrigo I.
  • Ingolia N.T.
  • Rapé M.
Cell-fate determination by ubiquitin-dependent regulation of translation.
  • Werner A.
  • Baur R.
  • Kaya D.
  • Teerikorpi N.
  • Rapé M.
Multivalent substrate recognition by an E3 ligase is essential for neural crest specification.
),而一些E3连接酶,如APC/C,则依赖于仅在特定细胞周期阶段存在的E2酶(
  • Rapé M.
  • Kirschner M.W.
Autonomous regulation of the anaphase-promoting complex couples mitosis to S-phase entry.
  • Williamson A.
  • Wickliffe K.E.
  • Mellone B.G.
  • Song L.
  • Karpen G.H.
  • Rapé M.
Identification of a physiological E2 module for the human anaphase-promoting complex.
)。最后,改变E3连接酶的细胞内定位的调节回路也可能对使用该酶的PROTAC方法的效率产生影响(
  • Tateno S.
  • Iida M.
  • Fujii S.
  • Suwa T.
  • Katayama M.
  • Tokuyama H.
  • Yamamoto J.
  • Ito T.
  • Sakamoto S.
  • Handa H.
  • et al.
Genome-wide screening reveals a role for subcellular localization of CRBN in the anti-myeloma activity of pomalidomide.
)。因此,选择最佳的E3连接酶用于药物发现将极大地受益于针对揭示调节的生理机制的机械分析。

E3 ligases with benefits 具有益处的E3连接酶

Most degrader programs do not wish to saturate the E3 ligase with the PROTAC handle, so that the physiological function of the ubiquitylation enzyme is not affected. However, such an effect is not necessarily deleterious: an E3 ligase inhibitor used as a handle could produce a PROTAC that both stabilizes the natural E3 target and degrades its neo-substrate. In cancer therapy, such polypharmacology could result in synthetic lethality and yield therapeutic effects at lower compound concentrations. Indeed, the aforementioned PROTACs built around an MDM2 inhibitor not only elicited degradation of their intended neo-substrate, but also stabilized TP53, and accordingly killed cancer cells more efficiently than PROTACs relying on an innocuous E3 handle (
  • Hines J.
  • Lartigue S.
  • Dong H.
  • Qian Y.
  • Crews C.M.
MDM2-Recruiting PROTAC offers superior, synergistic antiproliferative activity via simultaneous degradation of BRD4 and stabilization of p53.
). In a similar manner, PROTACs engaging cIAP1 could gain efficiency against cancer cells by simultaneously degrading their neo-substrate and promoting caspase activation (
  • Steinebach C.
  • Ng Y.L.D.
  • Sosic I.
  • Lee C.S.
  • Chen S.
  • Lindner S.
  • Vu L.P.
  • Bricelj A.
  • Haschemi R.
  • Monschke M.
  • et al.
Systematic exploration of different E3 ubiquitin ligases: an approach towards potent and selective CDK6 degraders.
). Polypharmacology does not need to be limited to oncology: PROTACs based on inhibitors of the oxidative stress sensor KEAP1 could both stabilize the physiological substrate of CUL3KEAP1, the antioxidant transcription factor NRF2, and induce degradation of the target protein of the second PROTAC warhead (
  • Tong B.
  • Luo M.
  • Xie Y.
  • Spradlin J.N.
  • Tallarico J.A.
  • McKenna J.M.
  • Schirle M.
  • Maimone T.J.
  • Nomura D.K.
Bardoxolone conjugation enables targeted protein degradation of BRD4.
). As NRF2 drives expression of proteasome subunits (
  • Pickering A.M.
  • Linder R.A.
  • Zhang H.
  • Forman H.J.
  • Davies K.J.
Nrf2-dependent induction of proteasome and Pa28alphabeta regulator are required for adaptation to oxidative stress.
) and is highly protective against neurotoxic protein aggregation (
  • Quinti L.
  • Casale M.
  • Moniot S.
  • Pais T.F.
  • Van Kanegan M.J.
  • Kaltenbach L.S.
  • Pallos J.
  • Lim R.G.
  • Naidu S.D.
  • Runne H.
  • et al.
SIRT2- and NRF2-targeting thiazole-containing compound with therapeutic activity in huntington's disease models.
;
  • Skibinski G.
  • Hwang V.
  • Ando D.M.
  • Daub A.
  • Lee A.K.
  • Ravisankar A.
  • Modan S.
  • Finucane M.M.
  • Shaby B.A.
  • Finkbeiner S.
Nrf2 mitigates LRRK2- and alpha-synuclein-induced neurodegeneration by modulating proteostasis.
), KEAP1-targeting PROTACs might be of particular use in neurodegenerative disease.
大多数降解程序不希望用PROTAC手柄饱和E3连接酶,以免影响泛素化酶的生理功能。然而,这种效果不一定是有害的:作为手柄使用的E3连接酶抑制剂可以产生既稳定天然E3靶点又降解其新底物的PROTAC。在癌症治疗中,这种多药作用可能导致合成致死性,并在较低的化合物浓度下产生治疗效果。事实上,围绕MDM2抑制剂构建的上述PROTAC不仅引发了其预期的新底物的降解,还稳定了TP53,并且比依赖无害的E3手柄的PROTAC更有效地杀死了癌细胞。以类似的方式,与cIAP1相互作用的PROTAC可以通过同时降解其新底物和促进半胱天冬酶活化来提高对癌细胞的效果。 多功能药理学不仅限于肿瘤学:基于氧化应激传感器KEAP1抑制剂的PROTACs可以同时稳定CUL3的生理底物抗氧化转录因子NRF2,并降解第二个PROTAC战斗头的目标蛋白。由于NRF2促进蛋白酶体亚单位的表达并且对神经毒性蛋白聚集具有高度保护作用,针对KEAP1的PROTACs在神经退行性疾病中可能特别有用。
In a variation on the theme of polypharmacology, many PROTACs use an IMID as their starting point and, thus, a molecular glue that by itself can trigger protein degradation (
  • Winter G.E.
  • Buckley D.L.
  • Paulk J.
  • Roberts J.M.
  • Souza A.
  • Dhe-Paganon S.
  • Bradner J.E.
DRUG DEVELOPMENT. Phthalimide conjugation as a strategy for in vivo target protein degradation.
). If the initial molecular glue retains its activity within the PROTAC, such compounds could lead to degradation of multiple proteins at a time to produce a more sustained therapeutic effect. Indeed, the aforementioned PROTACs built on IMIDs as E3 handles typically retain their ability to trigger the turnover of Ikaros, Aiolos, and likely other targets, which could add to the effects caused by the degradation of the intended target. Synthetic lethality screens will provide a powerful means to determine degradation pairs in a rational manner that would be effective in a specific disease background (
  • Kaelin Jr., W.G.
The concept of synthetic lethality in the context of anticancer therapy.
).
在多药作用主题的变体中,许多PROTACs使用IMID作为起点,因此使用一种分子粘合剂,该粘合剂本身可以触发蛋白质降解(
  • Winter G.E.
  • Buckley D.L.
  • Paulk J.
  • Roberts J.M.
  • Souza A.
  • Dhe-Paganon S.
  • Bradner J.E.
DRUG DEVELOPMENT. Phthalimide conjugation as a strategy for in vivo target protein degradation.
)。如果初始的分子粘合剂在PROTAC中保持其活性,这种化合物可能会同时降解多种蛋白质,产生更持久的治疗效果。事实上,以IMID作为E3处理物的上述PROTACs通常保留其触发Ikaros、Aiolos和可能其他靶点的降解能力,这可能增加了对预期靶点降解引起的效应。合成致死筛选将提供一种强大的方法,以合理的方式确定在特定疾病背景下有效的降解配对(
  • Kaelin Jr., W.G.
The concept of synthetic lethality in the context of anticancer therapy.
)。

“Don't panic.” 不要惊慌。

As this review has illustrated, progress in the field of induced protein degradation has been stunning. A mere 10 years ago, E3 ligases were deemed undruggable, yet we are now discussing how to engage many of the ∼600 human ubiquitylation enzymes for innovative drug discovery. While we focused this review on enzymes that elicit proteasomal degradation, the universe of induced ubiquitylation extends far beyond this application. It includes E3 ligases of the CUL3 family that can monoubiquitylate intrinsically disordered proteins to keep them soluble (
  • Werner A.
  • Baur R.
  • Kaya D.
  • Teerikorpi N.
  • Rapé M.
Multivalent substrate recognition by an E3 ligase is essential for neural crest specification.
). Induced monoubiquitylation might therefore be useful against proteins, such as FUS or TDP-43, that are essential and cannot be degraded, yet cause a toxic gain-of-function when aggregating (
  • Weishaupt J.H.
  • Hyman T.
  • Dikic I.
Common molecular pathways in amyotrophic lateral sclerosis and frontotemporal dementia.
). We can also envision scenarios in which it is attractive to decorate pathological proteins with K63-linked ubiquitin chains that establish reversible protein interactions (
  • Yau R.
  • Rapé M.
The increasing complexity of the ubiquitin code.
). As an example, compounds that deliver the catalytic domain of the K63-specific NEDD4 to the mitochondrial outer membrane trigger organellar clustering in perinuclear regions (
  • Richard T.J.C.
  • Herzog L.K.
  • Vornberger J.
  • Rahmanto A.S.
  • Sangfelt O.
  • Salomons F.A.
  • Dantuma N.P.
K63-linked ubiquitylation induces global sequestration of mitochondria.
). In fact, we can imagine molecules that pair proteins with enzymes installing ubiquitin-like modifications: compounds that link pathological variants of Huntingtin to the ubiquitin-like LC3, an inducer of autophagosome formation (
  • Gatica D.
  • Lahiri V.
  • Klionsky D.J.
Cargo recognition and degradation by selective autophagy.
), indeed cause the removal of pathological proteins through the autophagy-lysosome system (
  • Li Z.
  • Wang C.
  • Wang Z.
  • Zhu C.
  • Li J.
  • Sha T.
  • Ma L.
  • Gao C.
  • Yang Y.
  • Sun Y.
  • et al.
Allele-selective lowering of mutant HTT protein by HTT-LC3 linker compounds.
).
正如本综述所示,诱导蛋白质降解领域取得了惊人的进展。仅仅10年前,E3连接酶被认为是无法药物靶点,然而现在我们正在讨论如何利用大约600种人类泛素化酶进行创新药物研发。虽然我们在本综述中重点讨论了引发蛋白酶降解的酶,但诱导泛素化的应用远不止于此。它还包括CUL3家族的E3连接酶,可以对本质无序蛋白进行单泛素化,使其保持可溶性。因此,诱导单泛素化可能对无法降解但在聚集时引起有毒增强功能的蛋白质(如FUS或TDP-43)有用。我们还可以设想一些情景,其中将病理蛋白质装饰成K63链的泛素可能具有吸引力,以建立可逆的蛋白质相互作用。例如,将K63特异性NEDD4的催化结构域传递到线粒体外膜上,可以在近核区域触发细胞器聚集。 事实上,我们可以想象分子将蛋白质与酶配对,安装类泛素修饰:将亨廷顿病的病理变体与类泛素LC3连接起来的化合物,确实通过自噬溶酶体系统将病理蛋白质清除。
The galaxy of E3 ligases that is available for innovative drug discovery therefore seems endless. But, in the words of Douglas Adams, “don't panic.” Since the days when E3 ligases were thought to be undruggable, we have learned much about their structure, function, and regulation, which revealed deep biology that can now be exploited for tailored drug discovery. We are beginning to dissect gene expression programs at the single-cell level throughout metazoan development, and even proteomics has reached the age of single-cell detection (
  • Brunner A.D.
  • Thielert M.
  • Vasilopoulou C.
  • Ammar C.
  • Coscia F.
  • Mund A.
  • Horning O.B.
  • Bache N.
  • Apalategui A.
  • Lubeck M.
  • et al.
Ultra-high sensitivity mass spectrometry quantifies single- cell proteome changes upon perturbation.
). As we will learn when and where E3 ligases are expressed, we will be able to predict ever more precisely which ubiquitylation enzyme should be engaged by a PROTAC. This progress is complemented by sophisticated genetic screening platforms that point to E3 ligases essential for cell function or survival, providing us with entry points that might prevent a cancer from becoming resistant against treatment. Exciting developments in small-molecule discovery, highlighted by the integration of DNA-encoded libraries with artificial intelligence (
  • McCloskey K.
  • Sigel E.A.
  • Kearnes S.
  • Xue L.
  • Tian X.
  • Moccia D.
  • Gikunju D.
  • Bazzaz S.
  • Chan B.
  • Clark M.A.
  • et al.
Machine learning on DNA-encoded libraries: a new paradigm for hit finding.
), will greatly facilitate endeavors to find chemical matter as E3 binders. The biology of ubiquitylation is therefore an exciting launching pad for developing new therapeutic paradigms that will allow us to tackle diseases—rather than proteins—that previously were deemed to be undruggable.
E3连接酶的星系似乎是无穷无尽的,因此对于创新药物发现来说,选择很多。但是,用道格拉斯·亚当斯的话来说,“不要惊慌”。自从E3连接酶被认为是无法药物化的那一天起,我们对它们的结构、功能和调控有了很多了解,揭示了深层次的生物学,现在可以利用这些知识进行定制药物发现。我们开始在多细胞动物发育过程中剖析基因表达程序,甚至蛋白质组学也已经进入了单细胞检测的时代。当我们了解E3连接酶在何时何地表达时,我们将能够更加准确地预测哪种泛素化酶应该与PROTAC结合。这一进展得到了复杂的基因筛选平台的支持,这些平台指出了对细胞功能或生存至关重要的E3连接酶,为我们提供了可能防止癌症对治疗产生抗药性的入口点。小分子发现方面的令人兴奋的进展,通过DNA编码文库与人工智能的整合()突出了这一点,将极大地促进寻找作为E3连接酶结合物的化学物质的努力。 泛素化的生物学因此成为开发新的治疗范式的激动人心的起点,这将使我们能够解决以前被认为无法治疗的疾病,而不是蛋白质。

Significance 重要性

Induced protein degradation has emerged as a new therapeutic modality that enables elimination, rather than mere inhibition, of previously undruggable pathological proteins. Small-molecule degraders induce proximity between an E3 ligase and the therapeutic target and thereby elicit protein ubiquitylation and proteasomal degradation. Although the human genome encodes ∼600 E3 ligases, very few are currently used to trigger small-molecule-dependent degradation. By carefully selecting new E3 ligases as targets for drug discovery, we can impose tissue- or disease-specific degradation, overcome resistance to degraders used in the clinic, and eliminate proteins that so far have resisted this therapeutic modality. Novel E3 ligases will therefore greatly expand the therapeutic reach of induced protein degradation.
诱导蛋白降解已成为一种新的治疗模式,能够消除先前无法药物治疗的病理蛋白,而不仅仅是抑制它们。小分子降解剂能够促使E3连接酶与治疗靶点接近,从而引发蛋白泛素化和蛋白酶体降解。虽然人类基因组编码了大约600种E3连接酶,但目前只有很少数被用于触发小分子依赖性降解。通过精选新的E3连接酶作为药物发现的目标,我们可以实现组织或疾病特异性的降解,克服临床使用的降解剂的耐药性,并消除迄今为止抵抗这种治疗模式的蛋白质。因此,新型E3连接酶将极大地扩展诱导蛋白降解的治疗范围。

Acknowledgments 致谢

We apologize to those whose work we could not include due to space constraints. We are grateful to all members of the Rapé lab and our collaborators for stimulating discussions and for testing the boundaries of knowledge every day. P.J. is a recipient of a Siebel Institute postdoctoral fellowship; D.L.H. is a recipient of an HHMI/Helen Hay Whitney postdoctoral fellowship; M.R. is an Investigator of the Howard Hughes Medical Institute.
我们对由于空间限制而无法包含的工作表示歉意。我们感谢Rapé实验室的所有成员和合作者每天进行的激发性讨论和对知识边界的测试。P.J.是Siebel研究所博士后奖学金的获得者;D.L.H.是HHMI/Helen Hay Whitney博士后奖学金的获得者;M.R.是Howard Hughes医学研究所的研究员。

Author contributions 作者贡献

P.J. and M.R. planned the first draft of the manuscript; P.J. and D.H. provided figures; P.J., D.H., and M.R. wrote the manuscript.
P.J.和M.R.计划了手稿的初稿;P.J.和D.H.提供了图表;P.J.,D.H.和M.R.撰写了手稿。

Declaration of interests 利益声明

M.R. is a founder of Nurix Therapeutics and member of its scientific advisory board. M.R. is a member of the scientific advisory of Monte Rosa Therapeutics. M.R. holds patents in the induced protein degradation space.
M.R.是Nurix Therapeutics的创始人和科学顾问委员会成员。M.R.是Monte Rosa Therapeutics的科学顾问委员会成员。M.R.在诱导蛋白质降解领域拥有专利。

References 参考资料

    • Alazami A.M.  阿拉扎米 A.M.
    • Al-Saif A.  阿尔萨伊夫A.
    • Al-Semari A.  阿尔塞马里A.
    • Bohlega S.  波赫莱加S.
    • Zlitni S.
    • Alzahrani F.  阿尔扎赫拉尼F.
    • Bavi P.  巴维P.
    • Kaya N.  卡亚N.
    • Colak D.
    • Khalak H.  哈拉克H.
    • et al. 等人
    Mutations in C2orf37, encoding a nucleolar protein, cause hypogonadism, alopecia, diabetes mellitus, mental retardation, and extrapyramidal syndrome.
    C2orf37基因突变导致性腺发育不全、脱发、糖尿病、智力障碍和锥体外系综合征。
    Am. J. Hum. Genet. 2008; 83
    美国人类遗传学杂志,2008年;83
    : 684-691
    • Angers S.
    • Li T.
    • Yi X.
    • MacCoss M.J.
    • Moon R.T.
    • Zheng N.
    Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery.
    Nature. 2006; 443: 590-593
    • Baek K.
    • Krist D.T.
    • Prabu J.R.
    • Hill S.
    • Klugel M.
    • Neumaier L.M.
    • von Gronau S.
    • Kleiger G.
    • Schulman B.A.
    NEDD8 nucleates a multivalent cullin-RING-UBE2D ubiquitin ligation assembly.
    Nature. 2020; 578: 461-466
    • Baek K.
    • Scott D.C.
    • Schulman B.A.
    NEDD8 and ubiquitin ligation by cullin-RING E3 ligases.
    Curr. Opin. Struct. Biol. 2020; 67: 101-109
    • Bard J.A.M.
    • Goodall E.A.
    • Greene E.R.
    • Jonsson E.
    • Dong K.C.
    • Martin A.
    Structure and function of the 26S proteasome.
    Annu. Rev. Biochem. 2018; 87: 697-724
    • Blackford A.N.
    • Patel R.N.
    • Forrester N.A.
    • Theil K.
    • Groitl P.
    • Stewart G.S.
    • Taylor A.M.
    • Morgan I.M.
    • Dobner T.
    • Grand R.J.
    • et al.
    Adenovirus 12 E4orf6 inhibits ATR activation by promoting TOPBP1 degradation.
    Proc. Natl. Acad. Sci. U S A. 2010; 107: 12251-12256
    • Blythe E.E.
    • Olson K.C.
    • Chau V.
    • Deshaies R.J.
    Ubiquitin- and ATP-dependent unfoldase activity of P97/VCP∗NPLOC4∗UFD1L is enhanced by a mutation that causes multisystem proteinopathy.
    Proc. Natl. Acad. Sci. U S A. 2017; 114: E4380-E4388
    • Brunner A.D.
    • Thielert M.
    • Vasilopoulou C.
    • Ammar C.
    • Coscia F.
    • Mund A.
    • Horning O.B.
    • Bache N.
    • Apalategui A.
    • Lubeck M.
    • et al.
    Ultra-high sensitivity mass spectrometry quantifies single- cell proteome changes upon perturbation.
    biorxivorg. 2021; https://doi.org/10.1101/2020.12.22.423933
    • Buckley D.L.
    • Van Molle I.
    • Gareiss P.C.
    • Tae H.S.
    • Michel J.
    • Noblin D.J.
    • Jorgensen W.L.
    • Ciulli A.
    • Crews C.M.
    Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1alpha interaction.
    J. Am. Chem. Soc. 2012; 134: 4465-4468
    • Buckley S.M.
    • Aranda-Orgilles B.
    • Strikoudis A.
    • Apostolou E.
    • Loizou E.
    • Moran-Crusio K.
    • Farnsworth C.L.
    • Koller A.A.
    • Dasgupta R.
    • Silva J.C.
    • et al.
    Regulation of pluripotency and cellular reprogramming by the ubiquitin-proteasome system.
    Cell Stem Cell. 2012; 11: 783-798
    • Burslem G.M.
    • Crews C.M.
    Proteolysis-targeting chimeras as therapeutics and tools for biological discovery.
    Cell. 2020; 181: 102-114
    • Bussiere D.E.
    • Xie L.
    • Srinivas H.
    • Shu W.
    • Burke A.
    • Be C.
    • Zhao J.
    • Godbole A.
    • King D.
    • Karki R.G.
    • et al.
    Structural basis of indisulam-mediated RBM39 recruitment to DCAF15 E3 ligase complex.
    Nat. Chem. Biol. 2020; 16: 15-23
    • Cadena C.
    • Ahmad S.
    • Xavier A.
    • Willemsen J.
    • Park S.
    • Park J.W.
    • Oh S.W.
    • Fujita T.
    • Hou F.
    • Binder M.
    • et al.
    Ubiquitin-dependent and -independent roles of E3 ligase RIPLET in innate immunity.
    Cell. 2019; 177: 1187-1200.e16
    • Chau V.
    • Tobias J.W.
    • Bachmair A.
    • Marriott D.
    • Ecker D.J.
    • Gonda D.K.
    • Varshavsky A.
    A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein.
    Science. 1989; 243: 1576-1583
    • Chen X.
    • Liao S.
    • Makaros Y.
    • Guo Q.
    • Zhu Z.
    • Krizelman R.
    • Dahan K.
    • Tu X.
    • Yao X.
    • Koren I.
    • et al.
    Molecular basis for arginine C-terminal degron recognition by Cul2(FEM1) E3 ligase.
    Nat. Chem. Biol. 2021; 17: 254-262
    • Cleaver J.E.
    • Thompson L.H.
    • Richardson A.S.
    • States J.C.
    A summary of mutations in the UV-sensitive disorders: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy.
    Hum. Mutat. 1999; 14: 9-22
    • Conole D.
    • J H.H.
    • Waring M.J.
    The maturation of DNA encoded libraries: opportunities for new users.
    Future Med. Chem. 2020; 13: 173-191
    • Conroy J.
    • McGettigan P.
    • Murphy R.
    • Webb D.
    • Murphy S.M.
    • McCoy B.
    • Albertyn C.
    • McCreary D.
    • McDonagh C.
    • Walsh O.
    • et al.
    A novel locus for episodic ataxia:UBR4 the likely candidate.
    Eur. J. Hum. Genet. 2014; 22: 505-510
    • Cotton A.D.
    • Nguyen D.P.
    • Gramespacher J.A.
    • Seiple I.B.
    • Wells J.A.
    Development of antibody-based PROTACs for the degradation of the cell-surface immune checkpoint protein PD-L1.
    J. Am. Chem. Soc. 2021; 143: 593-598
    • Csizmok V.
    • Orlicky S.
    • Cheng J.
    • Song J.
    • Bah A.
    • Delgoshaie N.
    • Lin H.
    • Mittag T.
    • Sicheri F.
    • Chan H.S.
    • et al.
    An allosteric conduit facilitates dynamic multisite substrate recognition by the SCFCdc4 ubiquitin ligase.
    Nat. Commun. 2017; 8: 13943
    • da Fonseca P.C.
    • Kong E.H.
    • Zhang Z.
    • Schreiber A.
    • Williams M.A.
    • Morris E.P.
    • Barford D.
    Structures of APC/C(Cdh1) with substrates identify Cdh1 and Apc10 as the D-box co-receptor.
    Nature. 2011; 470: 274-278
    • Deshaies R.J.
    • Joazeiro C.A.
    RING domain E3 ubiquitin ligases.
    Annu. Rev. Biochem. 2009; 78: 399-434
    • Dewar J.M.
    • Low E.
    • Mann M.
    • Raschle M.
    • Walter J.C.
    CRL2(Lrr1) promotes unloading of the vertebrate replisome from chromatin during replication termination.
    Genes Dev. 2017; 31: 275-290
    • Dharmasiri N.
    • Dharmasiri S.
    • Estelle M.
    The F-box protein TIR1 is an auxin receptor.
    Nature. 2005; 435: 441-445
    • Donato V.
    • Bonora M.
    • Simoneschi D.
    • Sartini D.
    • Kudo Y.
    • Saraf A.
    • Florens L.
    • Washburn M.P.
    • Stadtfeld M.
    • Pinton P.
    • et al.
    The TDH-GCN5L1-Fbxo15-KBP axis limits mitochondrial biogenesis in mouse embryonic stem cells.
    Nat. Cell Biol. 2017; 19: 341-351
    • Donovan K.A.
    • An J.
    • Nowak R.P.
    • Yuan J.C.
    • Fink E.C.
    • Berry B.C.
    • Ebert B.L.
    • Fischer E.S.
    Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane Radial Ray syndrome.
    Elife. 2018; 7: e38430
    • Duda D.M.
    • Olszewski J.L.
    • Schuermann J.P.
    • Kurinov I.
    • Miller D.J.
    • Nourse A.
    • Alpi A.F.
    • Schulman B.A.
    Structure of HHARI, a RING-IBR-RING ubiquitin ligase: autoinhibition of an Ariadne-family E3 and insights into ligation mechanism.
    Structure. 2013; 21: 1030-1041
    • Dueber E.C.
    • Schoeffler A.J.
    • Lingel A.
    • Elliott J.M.
    • Fedorova A.V.
    • Giannetti A.M.
    • Zobel K.
    • Maurer B.
    • Varfolomeev E.
    • Wu P.
    • et al.
    Antagonists induce a conformational change in cIAP1 that promotes autoubiquitination.
    Science. 2011; 334: 376-380
    • Eddins M.J.
    • Carlile C.M.
    • Gomez K.M.
    • Pickart C.M.
    • Wolberger C.
    Mms2-Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation.
    Nat. Struct. Mol. Biol. 2006; 13: 915-920
    • Faust T.B.
    • Yoon H.
    • Nowak R.P.
    • Donovan K.A.
    • Li Z.
    • Cai Q.
    • Eleuteri N.A.
    • Zhang T.
    • Gray N.S.
    • Fischer E.S.
    Structural complementarity facilitates E7820-mediated degradation of RBM39 by DCAF15.
    Nat. Chem. Biol. 2020; 16: 7-14
    • Fischer E.S.
    • Bohm K.
    • Lydeard J.R.
    • Yang H.
    • Stadler M.B.
    • Cavadini S.
    • Nagel J.
    • Serluca F.
    • Acker V.
    • Lingaraju G.M.
    • et al.
    Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide.
    Nature. 2014; 512: 49-53
    • Fischer E.S.
    • Scrima A.
    • Bohm K.
    • Matsumoto S.
    • Lingaraju G.M.
    • Faty M.
    • Yasuda T.
    • Cavadini S.
    • Wakasugi M.
    • Hanaoka F.
    • et al.
    The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation.
    Cell. 2011; 147: 1024-1039
    • Gao J.
    • Buckley S.M.
    • Cimmino L.
    • Guillamot M.
    • Strikoudis A.
    • Cang Y.
    • Goff S.P.
    • Aifantis I.
    The CUL4-DDB1 ubiquitin ligase complex controls adult and embryonic stem cell differentiation and homeostasis.
    Elife. 2015; 4: e07539
    • Gatica D.
    • Lahiri V.
    • Klionsky D.J.
    Cargo recognition and degradation by selective autophagy.
    Nat. Cell Biol. 2018; 20: 233-242
    • Geyer R.
    • Wee S.
    • Anderson S.
    • Yates J.
    • Wolf D.A.
    BTB/POZ domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases.
    Mol. Cell. 2003; 12: 783-790
    • Greenwood E.J.
    • Matheson N.J.
    • Wals K.
    • van den Boomen D.J.
    • Antrobus R.
    • Williamson J.C.
    • Lehner P.J.
    Temporal proteomic analysis of HIV infection reveals remodelling of the host phosphoproteome by lentiviral Vif variants.
    Elife. 2016; 5: e18296
    • Greenwood E.J.D.
    • Williamson J.C.
    • Sienkiewicz A.
    • Naamati A.
    • Matheson N.J.
    • Lehner P.J.
    Promiscuous targeting of cellular proteins by Vpr drives systems-level proteomic remodeling in HIV-1 infection.
    Cell Rep. 2019; 27: 1579-1596.e7
    • Guo Y.
    • Dong L.
    • Qiu X.
    • Wang Y.
    • Zhang B.
    • Liu H.
    • Yu Y.
    • Zang Y.
    • Yang M.
    • Huang Z.
    Structural basis for hijacking CBF-beta and CUL5 E3 ligase complex by HIV-1 Vif.
    Nature. 2014; 505: 229-233
    • Haakonsen D.L.
    • Rapé M.
    Branching out: improved signaling by heterotypic ubiquitin chains.
    Trends Cell Biol. 2019; 29: 704-716
    • Han T.
    • Goralski M.
    • Gaskill N.
    • Capota E.
    • Kim J.
    • Ting T.C.
    • Xie Y.
    • Williams N.S.
    • Nijhawan D.
    Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15.
    Science. 2017; 356: eaal3755
    • Heider M.
    • Eichner R.
    • Stroh J.
    • Morath V.
    • Kuisl A.
    • Zecha J.
    • Lawatscheck J.
    • Baek K.
    • Garz A.K.
    • Rudelius M.
    • et al.
    The IMiD target CRBN determines HSP90 activity toward transmembrane proteins essential in multiple myeloma.
    Mol. Cell. 2021; 81: 1170-1186
    • Higgins J.J.
    • Pucilowska J.
    • Lombardi R.Q.
    • Rooney J.P.
    A mutation in a novel ATP-dependent Lon protease gene in a kindred with mild mental retardation.
    Neurology. 2004; 63: 1927-1931
    • Hines J.
    • Lartigue S.
    • Dong H.
    • Qian Y.
    • Crews C.M.
    MDM2-Recruiting PROTAC offers superior, synergistic antiproliferative activity via simultaneous degradation of BRD4 and stabilization of p53.
    Cancer Res. 2019; 79: 251-262
    • Hipp M.S.
    • Park S.H.
    • Hartl F.U.
    Proteostasis impairment in protein-misfolding and -aggregation diseases.
    Trends Cell Biol. 2014; 24: 506-514
    • Horn-Ghetko D.
    • Krist D.T.
    • Prabu J.R.
    • Baek K.
    • Mulder M.P.C.
    • Klugel M.
    • Scott D.C.
    • Ovaa H.
    • Kleiger G.
    • Schulman B.A.
    Ubiquitin ligation to F-box protein targets by SCF-RBR E3-E3 super-assembly.
    Nature. 2021; 590: 671-676
    • House C.M.
    • Frew I.J.
    • Huang H.L.
    • Wiche G.
    • Traficante N.
    • Nice E.
    • Catimel B.
    • Bowtell D.D.
    A binding motif for Siah ubiquitin ligase.
    Proc. Natl. Acad. Sci. U S A. 2003; 100: 3101-3106
    • House C.M.
    • Hancock N.C.
    • Moller A.
    • Cromer B.A.
    • Fedorov V.
    • Bowtell D.D.
    • Parker M.W.
    • Polekhina G.
    Elucidation of the substrate binding site of Siah ubiquitin ligase.
    Structure. 2006; 14: 695-701
    • Isobe Y.
    • Okumura M.
    • McGregor L.M.
    • Brittain S.M.
    • Jones M.D.
    • Liang X.
    • White R.
    • Forrester W.
    • McKenna J.M.
    • Tallarico J.A.
    • et al.
    Manumycin polyketides act as molecular glues between UBR7 and P53.
    Nat. Chem. Biol. 2020; 16: 1189-1198
    • Ito T.
    • Ando H.
    • Suzuki T.
    • Ogura T.
    • Hotta K.
    • Imamura Y.
    • Yamaguchi Y.
    • Handa H.
    Identification of a primary target of thalidomide teratogenicity.
    Science. 2010; 327: 1345-1350
    • Ivan M.
    • Kondo K.
    • Yang H.
    • Kim W.
    • Valiando J.
    • Ohh M.
    • Salic A.
    • Asara J.M.
    • Lane W.S.
    • Kaelin Jr., W.G.
    HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing.
    Science. 2001; 292: 464-468
    • Jaakkola P.
    • Mole D.R.
    • Tian Y.M.
    • Wilson M.I.
    • Gielbert J.
    • Gaskell S.J.
    • von Kriegsheim A.
    • Hebestreit H.F.
    • Mukherji M.
    • Schofield C.J.
    • et al.
    Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation.
    Science. 2001; 292: 468-472
    • Jin J.
    • Li X.
    • Gygi S.P.
    • Harper J.W.
    Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging.
    Nature. 2007; 447: 1135-1138
    • Jin L.
    • Williamson A.
    • Banerjee S.
    • Philipp I.
    • Rapé M.
    Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex.
    Cell. 2008; 133: 653-665
    • Kaelin W.G.
    Von hippel-lindau disease.
    Annu. Rev. Pathol. 2007; 2: 145-173
    • Kaelin Jr., W.G.
    The concept of synthetic lethality in the context of anticancer therapy.
    Nat. Rev. Cancer. 2005; 5: 689-698
    • Kamura T.
    • Maenaka K.
    • Kotoshiba S.
    • Matsumoto M.
    • Kohda D.
    • Conaway R.C.
    • Conaway J.W.
    • Nakayama K.I.
    VHL-box and SOCS-box domains determine binding specificity for Cul2-Rbx1 and Cul5-Rbx2 modules of ubiquitin ligases.
    Genes Dev. 2004; 18: 3055-3065
    • Kastenhuber E.R.
    • Lowe S.W.
    Putting p53 in context.
    Cell. 2017; 170: 1062-1078
    • Kato K.
    • Ahmad S.
    • Zhu Z.
    • Young J.M.
    • Mu X.
    • Park S.
    • Malik H.S.
    • Hur S.
    Structural analysis of RIG-I-like receptors reveals ancient rules of engagement between diverse RNA helicases and TRIM ubiquitin ligases.
    Mol. Cell. 2020; 81: 599-613
    • Kerres N.
    • Steurer S.
    • Schlager S.
    • Bader G.
    • Berger H.
    • Caligiuri M.
    • Dank C.
    • Engen J.R.
    • Ettmayer P.
    • Fischerauer B.
    • et al.
    Chemically induced degradation of the oncogenic transcription factor BCL6.
    Cell Rep. 2017; 20: 2860-2875
    • King R.W.
    • Glotzer M.
    • Kirschner M.W.
    Mutagenic analysis of the destruction signal of mitotic cyclins and structural characterization of ubiquitinated intermediates.
    Mol. Biol. Cell. 1996; 7: 1343-1357
    • Koegl M.
    • Hoppe T.
    • Schlenker S.
    • Ulrich H.D.
    • Mayer T.U.
    • Jentsch S.
    A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly.
    Cell. 1999; 96: 635-644
    • Koo B.K.
    • Spit M.
    • Jordens I.
    • Low T.Y.
    • Stange D.E.
    • van de Wetering M.
    • van Es J.H.
    • Mohammed S.
    • Heck A.J.
    • Maurice M.M.
    • et al.
    Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors.
    Nature. 2012; 488: 665-669
    • Koren I.
    • Timms R.T.
    • Kula T.
    • Xu Q.
    • Li M.Z.
    • Elledge S.J.
    The eukaryotic proteome is shaped by E3 ubiquitin ligases targeting C-terminal degrons.
    Cell. 2018; 173: 1622-1635 e1614
    • Kronke J.
    • Fink E.C.
    • Hollenbach P.W.
    • MacBeth K.J.
    • Hurst S.N.
    • Udeshi N.D.
    • Chamberlain P.P.
    • Mani D.R.
    • Man H.W.
    • Gandhi A.K.
    • et al.
    Lenalidomide induces ubiquitination and degradation of CK1alpha in del(5q) MDS.
    Nature. 2015; 523: 183-188
    • Kronke J.
    • Udeshi N.D.
    • Narla A.
    • Grauman P.
    • Hurst S.N.
    • McConkey M.
    • Svinkina T.
    • Heckl D.
    • Comer E.
    • Li X.
    • et al.
    Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells.
    Science. 2014; 343: 301-305
    • Kuchay S.
    • Duan S.
    • Schenkein E.
    • Peschiaroli A.
    • Saraf A.
    • Florens L.
    • Washburn M.P.
    • Pagano M.
    FBXL2- and PTPL1-mediated degradation of p110-free p85beta regulatory subunit controls the PI(3)K signalling cascade.
    Nat. Cell Biol. 2013; 15: 472-480
    • Kuchay S.
    • Wang H.
    • Marzio A.
    • Jain K.
    • Homer H.
    • Fehrenbacher N.
    • Philips M.R.
    • Zheng N.
    • Pagano M.
    GGTase3 is a newly identified geranylgeranyltransferase targeting a ubiquitin ligase.
    Nat. Struct. Mol. Biol. 2019; 26: 628-636
    • Kussie P.H.
    • Gorina S.
    • Marechal V.
    • Elenbaas B.
    • Moreau J.
    • Levine A.J.
    • Pavletich N.P.
    Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain.
    Science. 1996; 274: 948-953
    • Lechtenberg B.C.
    • Rajput A.
    • Sanishvili R.
    • Dobaczewska M.K.
    • Ware C.F.
    • Mace P.D.
    • Riedl S.J.
    Structure of a HOIP/E2∼ubiquitin complex reveals RBR E3 ligase mechanism and regulation.
    Nature. 2016; 529: 546-550
    • Lenz W.
    A short history of thalidomide embryopathy.
    Teratology. 1988; 38: 203-215
    • Leto D.E.
    • Morgens D.W.
    • Zhang L.
    • Walczak C.P.
    • Elias J.E.
    • Bassik M.C.
    • Kopito R.R.
    Genome-wide CRISPR analysis identifies substrate-specific conjugation modules in ER-associated degradation.
    Mol. Cell. 2019; 73: 377-389.e11
    • Li M.
    • Brooks C.L.
    • Wu-Baer F.
    • Chen D.
    • Baer R.
    • Gu W.
    Mono- versus polyubiquitination: differential control of p53 fate by Mdm2.
    Science. 2003; 302: 1972-1975
    • Li Z.
    • Wang C.
    • Wang Z.
    • Zhu C.
    • Li J.
    • Sha T.
    • Ma L.
    • Gao C.
    • Yang Y.
    • Sun Y.
    • et al.
    Allele-selective lowering of mutant HTT protein by HTT-LC3 linker compounds.
    Nature. 2019; 575: 203-209
    • Lim S.
    • Cho H.Y.
    • Kim D.G.
    • Roh Y.
    • Son S.Y.
    • Mushtaq A.U.
    • Kim M.
    • Bhattarai D.
    • Sivaraman A.
    • Lee Y.
    • et al.
    Targeting the interaction of AIMP2-DX2 with HSP70 suppresses cancer development.
    Nat. Chem. Biol. 2020; 16: 31-41
    • Lin H.C.
    • Yeh C.W.
    • Chen Y.F.
    • Lee T.T.
    • Hsieh P.Y.
    • Rusnac D.V.
    • Lin S.Y.
    • Elledge S.J.
    • Zheng N.
    • Yen H.S.
    C-terminal end-directed protein elimination by CRL2 ubiquitin ligases.
    Mol. Cell. 2018; 70: 602-613.e3
    • Liu X.
    • Reitsma J.M.
    • Mamrosh J.L.
    • Zhang Y.
    • Straube R.
    • Deshaies R.J.
    Cand1-Mediated adaptive exchange mechanism enables variation in F-box protein expression.
    Mol. Cell. 2018; 69: 773-786.e6
    • Lu G.
    • Middleton R.E.
    • Sun H.
    • Naniong M.
    • Ott C.J.
    • Mitsiades C.S.
    • Wong K.K.
    • Bradner J.E.
    • Kaelin Jr., W.G.
    The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins.
    Science. 2014; 343: 305-309
    • Lv L.
    • Chen P.
    • Cao L.
    • Li Y.
    • Zeng Z.
    • Cui Y.
    • Wu Q.
    • Li J.
    • Wang J.H.
    • Dong M.Q.
    • et al.
    Discovery of a molecular glue promoting CDK12-DDB1 interaction to trigger cyclin K degradation.
    Elife. 2020; 9: e59994
    • Manford A.G.
    • Rodriguez-Perez F.
    • Shih K.Y.
    • Shi Z.
    • Berdan C.A.
    • Choe M.
    • Titov D.V.
    • Nomura D.K.
    • Rapé M.
    A cellular mechanism to detect and alleviate reductive stress.
    Cell. 2020; 183: 46-61.e21
    • Marzahn M.R.
    • Marada S.
    • Lee J.
    • Nourse A.
    • Kenrick S.
    • Zhao H.
    • Ben-Nissan G.
    • Kolaitis R.M.
    • Peters J.L.
    • Pounds S.
    • et al.
    Higher-order oligomerization promotes localization of SPOP to liquid nuclear speckles.
    EMBO J. 2016; 35: 1254-1275
    • Matsuzawa S.I.
    • Reed J.C.
    Siah-1, SIP, and Ebi collaborate in a novel pathway for beta-catenin degradation linked to p53 responses.
    Mol. Cell. 2001; 7: 915-926
    • Matta-Camacho E.
    • Kozlov G.
    • Li F.F.
    • Gehring K.
    Structural basis of substrate recognition and specificity in the N-end rule pathway.
    Nat. Struct. Mol. Biol. 2010; 17: 1182-1187
    • Matyskiela M.E.
    • Clayton T.
    • Zheng X.
    • Mayne C.
    • Tran E.
    • Carpenter A.
    • Pagarigan B.
    • McDonald J.
    • Rolfe M.
    • Hamann L.G.
    • et al.
    Crystal structure of the SALL4-pomalidomide-cereblon-DDB1 complex.
    Nat. Struct. Mol. Biol. 2020; 27: 319-322
    • Matyskiela M.E.
    • Couto S.
    • Zheng X.
    • Lu G.
    • Hui J.
    • Stamp K.
    • Drew C.
    • Ren Y.
    • Wang M.
    • Carpenter A.
    • et al.
    SALL4 mediates teratogenicity as a thalidomide-dependent cereblon substrate.
    Nat. Chem. Biol. 2018; 14: 981-987
    • Mayor-Ruiz C.
    • Bauer S.
    • Brand M.
    • Kozicka Z.
    • Siklos M.
    • Imrichova H.
    • Kaltheuner I.H.
    • Hahn E.
    • Seiler K.
    • Koren A.
    • et al.
    Rational discovery of molecular glue degraders via scalable chemical profiling.
    Nat. Chem. Biol. 2020; 16: 1199-1207
    • McCloskey K.
    • Sigel E.A.
    • Kearnes S.
    • Xue L.
    • Tian X.
    • Moccia D.
    • Gikunju D.
    • Bazzaz S.
    • Chan B.
    • Clark M.A.
    • et al.
    Machine learning on DNA-encoded libraries: a new paradigm for hit finding.
    J. Med. Chem. 2020; 63: 8857-8866
    • McGourty C.A.
    • Akopian D.
    • Walsh C.
    • Gorur A.
    • Werner A.
    • Schekman R.
    • Bautista D.
    • Rapé M.
    Regulation of the CUL3 ubiquitin ligase by a calcium-dependent Co-adaptor.
    Cell. 2016; 167: 525-538 e514
    • Mena E.L.
    • Jevtic P.
    • Greber B.J.
    • Gee C.L.
    • Lew B.G.
    • Akopian D.
    • Nogales E.
    • Kuriyan J.
    • Rapé M.
    Structural basis for dimerization quality control.
    Nature. 2020; 586: 452-456
    • Mena E.L.
    • Kjolby R.A.S.
    • Saxton R.A.
    • Werner A.
    • Lew B.G.
    • Boyle J.M.
    • Harland R.
    • Rapé M.
    Dimerization quality control ensures neuronal development and survival.
    Science. 2018; 362: eaap8236
    • Meyer H.J.
    • Rapé M.
    Enhanced protein degradation by branched ubiquitin chains.
    Cell. 2014; 157: 910-921
    • Momand J.
    • Zambetti G.P.
    • Olson D.C.
    • George D.
    • Levine A.J.
    The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation.
    Cell. 1992; 69: 1237-1245
    • Montes de Oca Luna R.
    • Wagner D.S.
    • Lozano G.
    Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53.
    Nature. 1995; 378: 203-206
    • Moroishi T.
    • Nishiyama M.
    • Takeda Y.
    • Iwai K.
    • Nakayama K.I.
    The FBXL5-IRP2 axis is integral to control of iron metabolism in vivo.
    Cell Metab. 2011; 14: 339-351
    • Murase K.
    • Hirano Y.
    • Sun T.P.
    • Hakoshima T.
    Gibberellin-induced DELLA recognition by the gibberellin receptor GID1.
    Nature. 2008; 456: 459-463
    • Naito M.
    • Ohoka N.
    • Shibata N.
    SNIPERs-Hijacking IAP activity to induce protein degradation.
    Drug Discov. Today Technol. 2019; 31: 35-42
    • Nakagawa T.
    • Xiong Y.
    X-linked mental retardation gene CUL4B targets ubiquitylation of H3K4 methyltransferase component WDR5 and regulates neuronal gene expression.
    Mol. Cell. 2011; 43: 381-391
    • Nguyen T.V.
    • Lee J.E.
    • Sweredoski M.J.
    • Yang S.J.
    • Jeon S.J.
    • Harrison J.S.
    • Yim J.H.
    • Lee S.G.
    • Handa H.
    • Kuhlman B.
    • et al.
    Glutamine triggers acetylation-dependent degradation of glutamine synthetase via the thalidomide receptor cereblon.
    Mol. Cell. 2016; 61: 809-820
    • Nomura K.
    • Klejnot M.
    • Kowalczyk D.
    • Hock A.K.
    • Sibbet G.J.
    • Vousden K.H.
    • Huang D.T.
    Structural analysis of MDM2 RING separates degradation from regulation of p53 transcription activity.
    Nat. Struct. Mol. Biol. 2017; 24: 578-587
    • Nowak M.
    • Suenkel B.
    • Porras P.
    • Migotti R.
    • Schmidt F.
    • Kny M.
    • Zhu X.
    • Wanker E.E.
    • Dittmar G.
    • Fielitz J.
    • et al.
    DCAF8, a novel MuRF1 interaction partner, promotes muscle atrophy.
    J. Cell Sci. 2019; 132: jcs233395
    • Nusse R.
    • Clevers H.
    Wnt/beta-Catenin signaling, disease, and emerging therapeutic modalities.
    Cell. 2017; 169: 985-999
    • Oh E.
    • Akopian D.
    • Rapé M.
    Principles of ubiquitin-dependent signaling.
    Annu. Rev. Cell Dev Biol. 2018; 34: 137-162
    • Oh E.
    • Mark K.G.
    • Mocciaro A.
    • Watson E.R.
    • Prabu J.R.
    • Cha D.D.
    • Kampmann M.
    • Gamarra N.
    • Zhou C.Y.
    • Rapé M.
    Gene expression and cell identity controlled by anaphase-promoting complex.
    Nature. 2020; 579: 136-140
    • Ohh M.
    • Park C.W.
    • Ivan M.
    • Hoffman M.A.
    • Kim T.Y.
    • Huang L.E.
    • Pavletich N.
    • Chau V.
    • Kaelin W.G.
    Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein.
    Nat. Cell Biol. 2000; 2: 423-427
    • Oliner J.D.
    • Kinzler K.W.
    • Meltzer P.S.
    • George D.L.
    • Vogelstein B.
    Amplification of a gene encoding a p53-associated protein in human sarcomas.
    Nature. 1992; 358: 80-83
    • Ordureau A.
    • Paulo J.A.
    • Zhang J.
    • An H.
    • Swatek K.N.
    • Cannon J.R.
    • Wan Q.
    • Komander D.
    • Harper J.W.
    Global landscape and dynamics of parkin and USP30-dependent ubiquitylomes in iNeurons during mitophagic signaling.
    Mol. Cell. 2020; 77: 1124-1142 e1110
    • Pao K.C.
    • Wood N.T.
    • Knebel A.
    • Rafie K.
    • Stanley M.
    • Mabbitt P.D.
    • Sundaramoorthy R.
    • Hofmann K.
    • van Aalten D.M.F.
    • Virdee S.
    Activity-based E3 ligase profiling uncovers an E3 ligase with esterification activity.
    Nature. 2018; 556: 381-385
    • Papizan J.B.
    • Garry G.A.
    • Brezprozvannaya S.
    • McAnally J.R.
    • Bassel-Duby R.
    • Liu N.
    • Olson E.N.
    Deficiency in Kelch protein Klhl31 causes congenital myopathy in mice.
    J. Clin. Invest. 2017; 127: 3730-3740
    • Pickering A.M.
    • Linder R.A.
    • Zhang H.
    • Forman H.J.
    • Davies K.J.
    Nrf2-dependent induction of proteasome and Pa28alphabeta regulator are required for adaptation to oxidative stress.
    J. Biol. Chem. 2012; 287: 10021-10031
    • Pierce N.W.
    • Lee J.E.
    • Liu X.
    • Sweredoski M.J.
    • Graham R.L.
    • Larimore E.A.
    • Rome M.
    • Zheng N.
    • Clurman B.E.
    • Hess S.
    • et al.
    Cand1 promotes assembly of new SCF complexes through dynamic exchange of F box proteins.
    Cell. 2013; 153: 206-215
    • Pineda C.T.
    • Ramanathan S.
    • Fon Tacer K.
    • Weon J.L.
    • Potts M.B.
    • Ou Y.H.
    • White M.A.
    • Potts P.R.
    Degradation of AMPK by a cancer-specific ubiquitin ligase.
    Cell. 2015; 160: 715-728
    • Pintard L.
    • Willis J.H.
    • Willems A.
    • Johnson J.L.
    • Srayko M.
    • Kurz T.
    • Glaser S.
    • Mains P.E.
    • Tyers M.
    • Bowerman B.
    • et al.
    The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase.
    Nature. 2003; 425: 311-316
    • Quinti L.
    • Casale M.
    • Moniot S.
    • Pais T.F.
    • Van Kanegan M.J.
    • Kaltenbach L.S.
    • Pallos J.
    • Lim R.G.
    • Naidu S.D.
    • Runne H.
    • et al.
    SIRT2- and NRF2-targeting thiazole-containing compound with therapeutic activity in huntington's disease models.
    Cell Chem. Biol. 2016; 23: 849-861
    • Ramachandran S.
    • Ciulli A.
    Building ubiquitination machineries: E3 ligase multi-subunit assembly and substrate targeting by PROTACs and molecular glues.
    Curr. Opin. Struct. Biol. 2020; 67: 110-119
    • Ramirez-Martinez A.
    • Cenik B.K.
    • Bezprozvannaya S.
    • Chen B.
    • Bassel-Duby R.
    • Liu N.
    • Olson E.N.
    KLHL41 stabilizes skeletal muscle sarcomeres by nonproteolytic ubiquitination.
    Elife. 2017; 6: e26439
    • Rapé M.
    Ubiquitylation at the crossroads of development and disease.
    Nat. Rev. Mol. Cell Biol. 2018; 19: 59-70
    • Rapé M.
    • Kirschner M.W.
    Autonomous regulation of the anaphase-promoting complex couples mitosis to S-phase entry.
    Nature. 2004; 432: 588-595
    • Ravalin M.
    • Theofilas P.
    • Basu K.
    • Opoku-Nsiah K.A.
    • Assimon V.A.
    • Medina-Cleghorn D.
    • Chen Y.F.
    • Bohn M.F.
    • Arkin M.
    • Grinberg L.T.
    • et al.
    Specificity for latent C termini links the E3 ubiquitin ligase CHIP to caspases.
    Nat. Chem. Biol. 2019; 15: 786-794
    • Reichermeier K.M.
    • Straube R.
    • Reitsma J.M.
    • Sweredoski M.J.
    • Rose C.M.
    • Moradian A.
    • den Besten W.
    • Hinkle T.
    • Verschueren E.
    • Petzold G.
    • et al.
    PIKES analysis reveals response to degraders and key regulatory mechanisms of the CRL4 network.
    Mol. Cell. 2020; 77: 1092-1106 e1099
    • Richard T.J.C.
    • Herzog L.K.
    • Vornberger J.
    • Rahmanto A.S.
    • Sangfelt O.
    • Salomons F.A.
    • Dantuma N.P.
    K63-linked ubiquitylation induces global sequestration of mitochondria.
    Sci. Rep. 2020; 10: 22334
    • Rodriguez-Perez F.
    • Manford A.G.
    • Pogson A.
    • Ingersoll A.J.
    • Martinez-Gonzalez B.
    • Rapé M.
    Ubiquitin-dependent remodeling of the actin cytoskeleton drives cell fusion.
    Dev. Cell. 2021; 56: 588-601.e9
    • Rusnac D.V.
    • Lin H.C.
    • Canzani D.
    • Tien K.X.
    • Hinds T.R.
    • Tsue A.F.
    • Bush M.F.
    • Yen H.S.
    • Zheng N.
    Recognition of the diglycine C-end degron by CRL2(KLHDC2) ubiquitin ligase.
    Mol. Cell. 2018; 72: 813-822 e814
    • Sakamoto K.M.
    • Kim K.B.
    • Kumagai A.
    • Mercurio F.
    • Crews C.M.
    • Deshaies R.J.
    Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation.
    Proc. Natl. Acad. Sci. U S A. 2001; 98: 8554-8559
    • Salahudeen A.A.
    • Thompson J.W.
    • Ruiz J.C.
    • Ma H.W.
    • Kinch L.N.
    • Li Q.
    • Grishin N.V.
    • Bruick R.K.
    An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis.
    Science. 2009; 326: 722-726
    • Samant R.S.
    • Livingston C.M.
    • Sontag E.M.
    • Frydman J.
    Distinct proteostasis circuits cooperate in nuclear and cytoplasmic protein quality control.
    Nature. 2018; 563: 407-411
    • Schreiber S.L.
    The rise of molecular glues.
    Cell. 2021; 184: 3-9
    • Schulman B.A.
    • Carrano A.C.
    • Jeffrey P.D.
    • Bowen Z.
    • Kinnucan E.R.
    • Finnin M.S.
    • Elledge S.J.
    • Harper J.W.
    • Pagano M.
    • Pavletich N.P.
    Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex.
    Nature. 2000; 408: 381-386
    • Scortegagna M.
    • Kim H.
    • Li J.L.
    • Yao H.
    • Brill L.M.
    • Han J.
    • Lau E.
    • Bowtell D.
    • Haddad G.
    • Kaufman R.J.
    • et al.
    Fine tuning of the UPR by the ubiquitin ligases Siah1/2.
    PLoS Genet. 2014; 10: e1004348
    • Sheard L.B.
    • Tan X.
    • Mao H.
    • Withers J.
    • Ben-Nissan G.
    • Hinds T.R.
    • Kobayashi Y.
    • Hsu F.F.
    • Sharon M.
    • Browse J.
    • et al.
    Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor.
    Nature. 2010; 468: 400-405
    • Shemorry A.
    • Hwang C.S.
    • Varshavsky A.
    Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway.
    Mol. Cell. 2013; 50: 540-551
    • Shi J.
    • Luo L.
    • Eash J.
    • Ibebunjo C.
    • Glass D.J.
    The SCF-Fbxo40 complex induces IRS1 ubiquitination in skeletal muscle, limiting IGF1 signaling.
    Dev. Cell. 2011; 21: 835-847
    • Shirasaki R.
    • Matthews G.M.
    • Gandolfi S.
    • de Matos Simoes R.
    • Buckley D.L.
    • Raja Vora J.
    • Sievers Q.L.
    • Bruggenthies J.B.
    • Dashevsky O.
    • Poarch H.
    • et al.
    Functional genomics identify distinct and overlapping genes mediating resistance to different classes of heterobifunctional degraders of oncoproteins.
    Cell Rep. 2021; 34: 108532
    • Sievers Q.L.
    • Gasser J.A.
    • Cowley G.S.
    • Fischer E.S.
    • Ebert B.L.
    Genome-wide screen identifies cullin-RING ligase machinery required for lenalidomide-dependent CRL4(CRBN) activity.
    Blood. 2018; 132: 1293-1303
    • Simon V.
    • Bloch N.
    • Landau N.R.
    Intrinsic host restrictions to HIV-1 and mechanisms of viral escape.
    Nat. Immunol. 2015; 16: 546-553
    • Simonetta K.R.
    • Taygerly J.
    • Boyle K.
    • Basham S.E.
    • Padovani C.
    • Lou Y.
    • Cummins T.J.
    • Yung S.L.
    • von Soly S.K.
    • Kayser F.
    • et al.
    Prospective discovery of small molecule enhancers of an E3 ligase-substrate interaction.
    Nat. Commun. 2019; 10: 1402
    • Singh A.
    • Vashistha N.
    • Heck J.
    • Tang X.
    • Wipf P.
    • Brodsky J.L.
    • Hampton R.Y.
    Direct involvement of Hsp70 ATP hydrolysis in Ubr1-dependent quality control.
    Mol. Biol. Cell. 2020; 31: 2669-2686
    • Skaar J.R.
    • Pagan J.K.
    • Pagano M.
    Mechanisms and function of substrate recruitment by F-box proteins.
    Nat. Rev. Mol. Cell Biol. 2013; 14: 369-381
    • Skibinski G.
    • Hwang V.
    • Ando D.M.
    • Daub A.
    • Lee A.K.
    • Ravisankar A.
    • Modan S.
    • Finucane M.M.
    • Shaby B.A.
    • Finkbeiner S.
    Nrf2 mitigates LRRK2- and alpha-synuclein-induced neurodegeneration by modulating proteostasis.
    Proc. Natl. Acad. Sci. U S A. 2017; 114: 1165-1170
    • Slabicki M.
    • Kozicka Z.
    • Petzold G.
    • Li Y.D.
    • Manojkumar M.
    • Bunker R.D.
    • Donovan K.A.
    • Sievers Q.L.
    • Koeppel J.
    • Suchyta D.
    • et al.
    The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K.
    Nature. 2020; 585: 293-297
    • Slabicki M.
    • Yoon H.
    • Koeppel J.
    • Nitsch L.
    • Roy Burman S.S.
    • Di Genua C.
    • Donovan K.A.
    • Sperling A.S.
    • Hunkeler M.
    • Tsai J.M.
    • et al.
    Small-molecule-induced polymerization triggers degradation of BCL6.
    Nature. 2020; 588: 164-168
    • Spradlin J.N.
    • Hu X.
    • Ward C.C.
    • Brittain S.M.
    • Jones M.D.
    • Ou L.
    • To M.
    • Proudfoot A.
    • Ornelas E.
    • Woldegiorgis M.
    • et al.
    Harnessing the anti-cancer natural product nimbolide for targeted protein degradation.
    Nat. Chem. Biol. 2019; 15: 747-755
    • Stebbins C.E.
    • Kaelin Jr., W.G.
    • Pavletich N.P.
    Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function.
    Science. 1999; 284: 455-461
    • Steinebach C.
    • Ng Y.L.D.
    • Sosic I.
    • Lee C.S.
    • Chen S.
    • Lindner S.
    • Vu L.P.
    • Bricelj A.
    • Haschemi R.
    • Monschke M.
    • et al.
    Systematic exploration of different E3 ubiquitin ligases: an approach towards potent and selective CDK6 degraders.
    Chem. Sci. 2020; 11: 3474-3486
    • Sukalo M.
    • Fiedler A.
    • Guzman C.
    • Spranger S.
    • Addor M.C.
    • McHeik J.N.
    • Oltra Benavent M.
    • Cobben J.M.
    • Gillis L.A.
    • Shealy A.G.
    • et al.
    Mutations in the human UBR1 gene and the associated phenotypic spectrum.
    Hum. Mutat. 2014; 35: 521-531
    • Tan X.
    • Calderon-Villalobos L.I.
    • Sharon M.
    • Zheng C.
    • Robinson C.V.
    • Estelle M.
    • Zheng N.
    Mechanism of auxin perception by the TIR1 ubiquitin ligase.
    Nature. 2007; 446: 640-645
    • Tang X.
    • Orlicky S.
    • Lin Z.
    • Willems A.
    • Neculai D.
    • Ceccarelli D.
    • Mercurio F.
    • Shilton B.H.
    • Sicheri F.
    • Tyers M.
    Suprafacial orientation of the SCFCdc4 dimer accommodates multiple geometries for substrate ubiquitination.
    Cell. 2007; 129: 1165-1176
    • Tarpey P.S.
    • Raymond F.L.
    • O'Meara S.
    • Edkins S.
    • Teague J.
    • Butler A.
    • Dicks E.
    • Stevens C.
    • Tofts C.
    • Avis T.
    • et al.
    Mutations in CUL4B, which encodes a ubiquitin E3 ligase subunit, cause an X-linked mental retardation syndrome associated with aggressive outbursts, seizures, relative macrocephaly, central obesity, hypogonadism, pes cavus, and tremor.
    Am. J. Hum. Genet. 2007; 80: 345-352
    • Tasaki T.
    • Mulder L.C.
    • Iwamatsu A.
    • Lee M.J.
    • Davydov I.V.
    • Varshavsky A.
    • Muesing M.
    • Kwon Y.T.
    A family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognize N-degrons.
    Mol. Cell Biol. 2005; 25: 7120-7136
    • Tateno S.
    • Iida M.
    • Fujii S.
    • Suwa T.
    • Katayama M.
    • Tokuyama H.
    • Yamamoto J.
    • Ito T.
    • Sakamoto S.
    • Handa H.
    • et al.
    Genome-wide screening reveals a role for subcellular localization of CRBN in the anti-myeloma activity of pomalidomide.
    Sci. Rep. 2020; 10: 4012
    • Theodoraki M.A.
    • Nillegoda N.B.
    • Saini J.
    • Caplan A.J.
    A network of ubiquitin ligases is important for the dynamics of misfolded protein aggregates in yeast.
    J. Biol. Chem. 2012; 287: 23911-23922
    • Timms R.T.
    • Zhang Z.
    • Rhee D.Y.
    • Harper J.W.
    • Koren I.
    • Elledge S.J.
    A glycine-specific N-degron pathway mediates the quality control of protein N-myristoylation.
    Science. 2019; 365: eaaw4912
    • Ting T.C.
    • Goralski M.
    • Klein K.
    • Wang B.
    • Kim J.
    • Xie Y.
    • Nijhawan D.
    Aryl sulfonamides degrade RBM39 and RBM23 by recruitment to CRL4-DCAF15.
    Cell Rep. 2019; 29: 1499-1510.e6
    • Tong B.
    • Luo M.
    • Xie Y.
    • Spradlin J.N.
    • Tallarico J.A.
    • McKenna J.M.
    • Schirle M.
    • Maimone T.J.
    • Nomura D.K.
    Bardoxolone conjugation enables targeted protein degradation of BRD4.
    Sci. Rep. 2020; 10: 15543
    • Tong B.
    • Spradlin J.N.
    • Novaes L.F.T.
    • Zhang E.
    • Hu X.
    • Moeller M.
    • Brittain S.M.
    • McGregor L.M.
    • McKenna J.M.
    • Tallarico J.A.
    • et al.
    A nimbolide-based kinase degrader preferentially degrades oncogenic BCR-ABL.
    ACS Chem. Biol. 2020; 15: 1788-1794
    • Turner G.C.
    • Du F.
    • Varshavsky A.
    Peptides accelerate their uptake by activating a ubiquitin-dependent proteolytic pathway.
    Nature. 2000; 405: 579-583
    • Uhlen M.
    • Fagerberg L.
    • Hallstrom B.M.
    • Lindskog C.
    • Oksvold P.
    • Mardinoglu A.
    • Sivertsson A.
    • Kampf C.
    • Sjostedt E.
    • Asplund A.
    • et al.
    Proteomics. Tissue-based map of the human proteome.
    Science. 2015; 347: 1260419
    • Van Molle I.
    • Thomann A.
    • Buckley D.L.
    • So E.C.
    • Lang S.
    • Crews C.M.
    • Ciulli A.
    Dissecting fragment-based lead discovery at the von Hippel-Lindau protein:hypoxia inducible factor 1alpha protein-protein interface.
    Chem. Biol. 2012; 19: 1300-1312
    • Varshavsky A.
    N-degron and C-degron pathways of protein degradation.
    Proc. Natl. Acad. Sci. U S A. 2019; 116: 358-366
    • Vashisht A.A.
    • Zumbrennen K.B.
    • Huang X.
    • Powers D.N.
    • Durazo A.
    • Sun D.
    • Bhaskaran N.
    • Persson A.
    • Uhlen M.
    • Sangfelt O.
    • et al.
    Control of iron homeostasis by an iron-regulated ubiquitin ligase.
    Science. 2009; 326: 718-721
    • Vince J.E.
    • Wong W.W.
    • Khan N.
    • Feltham R.
    • Chau D.
    • Ahmed A.U.
    • Benetatos C.A.
    • Chunduru S.K.
    • Condon S.M.
    • McKinlay M.
    • et al.
    IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis.
    Cell. 2007; 131: 682-693
    • Wakabayashi N.
    • Itoh K.
    • Wakabayashi J.
    • Motohashi H.
    • Noda S.
    • Takahashi S.
    • Imakado S.
    • Kotsuji T.
    • Otsuka F.
    • Roop D.R.
    • et al.
    Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation.
    Nat. Genet. 2003; 35: 238-245
    • Walden H.
    • Rittinger K.
    RBR ligase-mediated ubiquitin transfer: a tale with many twists and turns.
    Nat. Struct. Mol. Biol. 2018; 25: 440-445
    • Wang H.
    • Shi H.
    • Rajan M.
    • Canarie E.R.
    • Hong S.
    • Simoneschi D.
    • Pagano M.
    • Bush M.F.
    • Stoll S.
    • Leibold E.A.
    • et al.
    FBXL5 regulates IRP2 stability in iron homeostasis via an oxygen-responsive [2Fe2S] cluster.
    Mol. Cell. 2020; 78: 31-41 e35
    • Wang Y.
    • Argiles-Castillo D.
    • Kane E.I.
    • Zhou A.
    • Spratt D.E.
    HECT E3 ubiquitin ligases - emerging insights into their biological roles and disease relevance.
    J. Cell Sci. 2020; 133: jcs228072
    • Watson E.R.
    • Brown N.G.
    • Peters J.M.
    • Stark H.
    • Schulman B.A.
    Posing the APC/C E3 ubiquitin ligase to orchestrate cell division.
    Trends Cell Biol. 2019; 29: 117-134
    • Wauer T.
    • Simicek M.
    • Schubert A.
    • Komander D.
    Mechanism of phospho-ubiquitin-induced PARKIN activation.
    Nature. 2015; 524: 370-374
    • Weishaupt J.H.
    • Hyman T.
    • Dikic I.
    Common molecular pathways in amyotrophic lateral sclerosis and frontotemporal dementia.
    Trends Mol. Med. 2016; 22: 769-783
    • Werner A.
    • Baur R.
    • Kaya D.
    • Teerikorpi N.
    • Rapé M.
    Multivalent substrate recognition by an E3 ligase is essential for neural crest specification.
    Elife. 2018; : e35407
    • Werner A.
    • Iwasaki S.
    • McGourty C.A.
    • Medina-Ruiz S.
    • Teerikorpi N.
    • Fedrigo I.
    • Ingolia N.T.
    • Rapé M.
    Cell-fate determination by ubiquitin-dependent regulation of translation.
    Nature. 2015; 525: 523-527
    • Wickliffe K.E.
    • Lorenz S.
    • Wemmer D.E.
    • Kuriyan J.
    • Rapé M.
    The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit e2.
    Cell. 2011; 144: 769-781
    • Williamson A.
    • Wickliffe K.E.
    • Mellone B.G.
    • Song L.
    • Karpen G.H.
    • Rapé M.
    Identification of a physiological E2 module for the human anaphase-promoting complex.
    Proc. Natl. Acad. Sci. U S A. 2009; 106: 18213-18218
    • Winston J.T.
    • Strack P.
    • Beer-Romero P.
    • Chu C.Y.
    • Elledge S.J.
    • Harper J.W.
    The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro.
    Genes Dev. 1999; 13: 270-283
    • Winter G.E.
    • Buckley D.L.
    • Paulk J.
    • Roberts J.M.
    • Souza A.
    • Dhe-Paganon S.
    • Bradner J.E.
    DRUG DEVELOPMENT. Phthalimide conjugation as a strategy for in vivo target protein degradation.
    Science. 2015; 348: 1376-1381
    • Xing W.
    • Busino L.
    • Hinds T.R.
    • Marionni S.T.
    • Saifee N.H.
    • Bush M.F.
    • Pagano M.
    • Zheng N.
    SCF(FBXL3) ubiquitin ligase targets cryptochromes at their cofactor pocket.
    Nature. 2013; 496: 64-68
    • Xu L.
    • Wei Y.
    • Reboul J.
    • Vaglio P.
    • Shin T.H.
    • Vidal M.
    • Elledge S.J.
    • Harper J.W.
    BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3.
    Nature. 2003; 425: 316-321
    • Yan X.
    • Wang X.
    • Li Y.
    • Zhou M.
    • Li Y.
    • Song L.
    • Mi W.
    • Min J.
    • Dong C.
    Molecular basis for ubiquitin ligase CRL2(FEM1C)-mediated recognition of C-degron.
    Nat. Chem. Biol. 2021; 17: 263-271
    • Yau R.
    • Rapé M.
    The increasing complexity of the ubiquitin code.
    Nat. Cell Biol. 2016; 18: 579-586
    • Yau R.G.
    • Doerner K.
    • Castellanos E.R.
    • Haakonsen D.L.
    • Werner A.
    • Wang N.
    • Yang X.W.
    • Martinez-Martin N.
    • Matsumoto M.L.
    • Dixit V.M.
    • et al.
    Assembly and function of heterotypic ubiquitin chains in cell-cycle and protein quality control.
    Cell. 2017; 171: 918-933 e920
    • Ye Y.
    • Rapé M.
    Building ubiquitin chains: E2 enzymes at work.
    Nat. Rev. Mol. Cell Biol. 2009; 10: 755-764
    • Yesbolatova A.
    • Saito Y.
    • Kitamoto N.
    • Makino-Itou H.
    • Ajima R.
    • Nakano R.
    • Nakaoka H.
    • Fukui K.
    • Gamo K.
    • Tominari Y.
    • et al.
    The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice.
    Nat. Commun. 2020; 11: 5701
    • Yoo Y.D.
    • Mun S.R.
    • Ji C.H.
    • Sung K.W.
    • Kang K.Y.
    • Heo A.J.
    • Lee S.H.
    • An J.Y.
    • Hwang J.
    • Xie X.Q.
    • et al.
    N-terminal arginylation generates a bimodal degron that modulates autophagic proteolysis.
    Proc. Natl. Acad. Sci. U S A. 2018; 115: E2716-E2724
    • Yu X.
    • Yu Y.
    • Liu B.
    • Luo K.
    • Kong W.
    • Mao P.
    • Yu X.F.
    Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex.
    Science. 2003; 302: 1056-1060
    • Zender L.
    • Spector M.S.
    • Xue W.
    • Flemming P.
    • Cordon-Cardo C.
    • Silke J.
    • Fan S.T.
    • Luk J.M.
    • Wigler M.
    • Hannon G.J.
    • et al.
    Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach.
    Cell. 2006; 125: 1253-1267
    • Zengerle M.
    • Chan K.H.
    • Ciulli A.
    Selective small molecule induced degradation of the BET bromodomain protein BRD4.
    ACS Chem. Biol. 2015; 10: 1770-1777
    • Zhang X.
    • Crowley V.M.
    • Wucherpfennig T.G.
    • Dix M.M.
    • Cravatt B.F.
    Electrophilic PROTACs that degrade nuclear proteins by engaging DCAF16.
    Nat. Chem. Biol. 2019; 15: 737-746
    • Zhang Y.
    • Liu S.
    • Mickanin C.
    • Feng Y.
    • Charlat O.
    • Michaud G.A.
    • Schirle M.
    • Shi X.
    • Hild M.
    • Bauer A.
    • et al.
    RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling.
    Nat. Cell Biol. 2011; 13: 623-629
    • Zheng N.
    • Schulman B.A.
    • Song L.
    • Miller J.J.
    • Jeffrey P.D.
    • Wang P.
    • Chu C.
    • Koepp D.M.
    • Elledge S.J.
    • Pagano M.
    • et al.
    Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex.
    Nature. 2002; 416: 703-709
    • Zou Y.
    • Liu Q.
    • Chen B.
    • Zhang X.
    • Guo C.
    • Zhou H.
    • Li J.
    • Gao G.
    • Guo Y.
    • Yan C.
    • et al.
    Mutation in CUL4B, which encodes a member of cullin-RING ubiquitin ligase complex, causes X-linked mental retardation.
    Am. J. Hum. Genet. 2007; 80: 561-566
  • Figure thumbnail fx1
  • Figure thumbnail gr1
  • Figure thumbnail gr2
  • Figure thumbnail gr3
Toggle Thumbstrip
  • Graph. Abst.
    Figure thumbnail fx1
  • Fig. 1
    Figure thumbnail gr1
  • Fig. 2
    Figure thumbnail gr2
  • Fig. 3
    Figure thumbnail gr3

Figures

  • Figure thumbnail fx1
    Graphical Abstract
  • Figure thumbnail gr1
    Figure 1E3 ligase families and modes of substrate recognition in cells
  • Figure thumbnail gr2
    Figure 2Different types of compounds recruit E3 ligases to neo-substrates
  • Figure thumbnail gr3
    Figure 3Expression patterns as guidance to select E3 ligases for degrader development