Abstract 抽象的
The marine iodine cycle has significant impacts on air quality and atmospheric chemistry. Specifically, the reaction of iodide with ozone in the top few micrometres of the surface ocean is an important sink for tropospheric ozone (a pollutant gas) and the dominant source of reactive iodine to the atmosphere. Sea surface iodide parameterisations are now being implemented in air quality models, but these are currently a major source of uncertainty. Relatively little observational data is available to estimate the global surface iodide concentrations, and this data has not hitherto been openly available in a collated, digital form. Here we present all available sea surface (<20 m depth) iodide observations. The dataset includes values digitised from published manuscripts, published and unpublished data supplied directly by the originators, and data obtained from repositories. It contains 1342 data points, and spans latitudes from 70°S to 68°N, representing all major basins. The data may be used to model sea surface iodide concentrations or as a reference for future observations.
海洋碘循环对空气质量和大气化学有重大影响。具体而言,碘化物与海洋表面几微米处的臭氧发生反应,是对流层臭氧(一种污染气体)的重要汇,也是大气中活性碘的主要来源。海面碘化物参数化现在正在空气质量模型中实施,但这些是目前不确定性的主要来源。可用于估计全球表面碘化物浓度的观测数据相对较少,并且该数据迄今尚未以整理的数字形式公开提供。在这里,我们展示了所有可用的海面(<20 米深度)碘化物观测结果。该数据集包括从已发表的手稿数字化的值、由作者直接提供的已发表和未发表的数据以及从存储库获得的数据。它包含 1342 个数据点,纬度从 70°S 到 68°N,代表所有主要盆地。这些数据可用于模拟海面碘化物浓度或作为未来观测的参考。
Measurement(s) 测量值 | iodide 碘化物 |
Technology Type(s) 技术类型 | digital curation 数字策展 |
Factor Type(s) 因素类型 | sampling time and place 采样时间和地点 |
Sample Characteristic - Environment | sea water • ocean 海水 • 海洋 |
Sample Characteristic - Location | Earth (planet) 地球(行星) |
Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.10130129
描述报告数据的机器可访问元数据文件: https://doi.org/10.6084/m9.figshare.10130129
Similar content being viewed by others
其他人正在查看类似内容
Background & Summary 背景与总结
There has recently been a resurgence of interest in the marine iodine cycle, reflecting its involvement in a diverse range of processes, from influencing air quality (e.g.1) to recording ocean deoxygenation in sediments (e.g.2). Iodine is a redox active element that is present in seawater in two main forms, iodide (I−) and iodate (IO3−). Sea-to-air transfer is the dominant source of iodine to the atmosphere, where it is subject to atmospheric processing prior to deposition back to the sea or onto land. It is an essential nutrient for many organisms including humans, and deficiency in humans leads to goitre, cretinism and is the leading cause of preventable mental retardation globally3. Iodine radionuclides are also released to the oceans by anthropogenic activities, where they will be subject to the same processes of biogeochemical cycling and volatilisation as the naturally occurring stable isotope4. Despite the wide ranging impacts of iodine biogeochemistry, the distribution of iodine species in the oceans remains relatively poorly understood. Here we present an updated compilation of all currently available sea surface iodide concentrations. The data set is specifically intended to inform studies of the sea-air exchange of iodine species, but may also be of use in improving understanding of the marine iodine cycle more generally.
最近人们对海洋碘循环的兴趣重新兴起,反映出它参与了各种过程,从影响空气质量(例如1 )到记录沉积物中的海洋脱氧(例如2 )。碘是一种氧化还原活性元素,以两种主要形式存在于海水中:碘化物 (I − ) 和碘酸盐 (IO 3 − )。海空转移是碘进入大气的主要来源,碘在沉积回海洋或陆地之前要经过大气处理。它是包括人类在内的许多生物体的必需营养素,人类缺乏它会导致甲状腺肿、克汀病,并且是全球可预防的智力低下的主要原因3 。碘放射性核素也通过人类活动释放到海洋,它们将经历与天然存在的稳定同位素相同的生物地球化学循环和挥发过程4 。尽管碘生物地球化学具有广泛的影响,但人们对海洋中碘物种的分布仍然知之甚少。在这里,我们提供了所有当前可用的海面碘化物浓度的更新汇编。该数据集专门用于为碘物质的海-气交换研究提供信息,但也可用于更广泛地增进对海洋碘循环的了解。
The reaction of iodide with ozone at the surface of the ocean has been established as an important sink for ozone, thought to be responsible for around one third of the total ozone loss by dry deposition5. The reaction liberates reactive iodine compounds to the atmosphere, which in turn contribute to further ozone removal processes. Gas phase reactions involving iodine are estimated to account for up to 15% of tropospheric ozone losses6. To incorporate this chemistry, global and regional air quality and atmospheric chemistry models have begun to include predicted sea-surface iodide fields derived from parameterisations (e.g.5,7,8,9). However, current sea surface iodide parameterisations are known to have biases10, are subject to substantial uncertainty6, and do not take advantage of recent and substantial increases in the number of available observations (e.g.11).
碘化物与海洋表面臭氧的反应已被确定为重要的臭氧汇,据认为约三分之一的干沉积臭氧损失是由臭氧汇造成的5 。该反应将活性碘化合物释放到大气中,这反过来又有助于进一步去除臭氧的过程。据估计,涉及碘的气相反应占对流层臭氧损失的 15% 6 。为了纳入这种化学作用,全球和区域空气质量和大气化学模型已开始包括从参数化得出的预测海面碘化物场(例如5 、 7 、 8 、 9 )。然而,目前的海面碘化物参数化已知存在偏差10 ,存在很大的不确定性6 ,并且没有利用最近可用观测数量的大幅增加(例如11 )。
The observational data underpinning iodide parameterisations is sparse, and has hitherto not been publicly available in a collated form. In many cases, iodide observations are not readily accessible in a digital form (i.e. are only presented in graphical format). To facilitate the development and validation of improved sea surface iodide parameterisations, we have compiled all available sea surface iodide observations. The dataset is an extended version of that used in our earlier publication12, in which we described the large scale sea surface iodide distribution and presented correlations between iodide and other oceanographic variables, but did not publish the observations themselves. The dataset we now present incorporates more than 400 new observations (see Fig. 1), including new, basin scale transects from the Indian Ocean (currently unpublished) and the tropical eastern Pacific11, both of which were previously undersampled12. This new extended dataset is freely available via the British Oceanographic Data Centre (BODC; http://doi.org/czhx)13.
支持碘化物参数化的观测数据很少,并且迄今为止尚未以整理的形式公开提供。在许多情况下,碘化物观测结果不容易以数字形式获得(即仅以图形格式呈现)。为了促进改进的海面碘化物参数化的开发和验证,我们汇编了所有可用的海面碘化物观测结果。该数据集是我们早期出版物12中使用的数据集的扩展版本,其中我们描述了大规模海面碘化物分布,并提出了碘化物与其他海洋学变量之间的相关性,但并未发布观测结果本身。我们现在提供的数据集包含 400 多个新观测数据(见图1 ),包括来自印度洋(目前未发布)和热带东太平洋11 的新盆地规模横断面,这两个区域之前都采样不足12 。这个新的扩展数据集可通过英国海洋学数据中心(BODC;http://doi.org/czhx)免费获取13 。
We anticipate that the primary use of the dataset will be modelling of ozone deposition to the sea surface and/or associated trace gas emissions to the atmosphere. It has been used to generate new monthly parameterised sea-surface iodide fields (12 × 12 km resolution) using a machine learning approach, described in our accompanying partner publication10. The dataset may also be of interest in other areas of iodine research. In particular, improved understanding of the marine iodine cycle is needed to refine the use of iodine speciation as a paleo-oceanographic tracer of past ocean oxygenation (e.g.2), and to better predict the impacts of iodine radionuclides released to the environment by anthropogenic activities (e.g.4).
我们预计该数据集的主要用途将是对海面臭氧沉积和/或相关的大气痕量气体排放进行建模。它已被用于使用机器学习方法生成新的每月参数化海面碘化物场(12 × 12 km 分辨率),如我们随附的合作伙伴出版物10中所述。该数据集也可能对碘研究的其他领域感兴趣。特别是,需要加深对海洋碘循环的了解,以完善碘形态作为过去海洋氧化作用的古海洋示踪剂的使用(例如2 ),并更好地预测人类活动释放到环境中的碘放射性核素的影响(例如4 )。
Methods 方法
Data compilation 资料整理
The data set includes iodide measurements made by a number of different research groups (Online-only Table 1). These were collated from the following sources:
该数据集包括由多个不同研究小组进行的碘化物测量(仅在线表1 )。这些内容是从以下来源整理的:
- A. 一个。
Published manuscripts. Data was digitised from tables and graphics, either by hand or using the free online tool WebPlotDigitizer (https://automeris.io/WebPlotDigitizer).
发表手稿。数据通过手工或使用免费在线工具 WebPlotDigitizer ( https://automeris.io/WebPlotDigitizer ) 从表格和图形中数字化。 - B.
Data originators. Data (both published and unpublished) was provided directly by the owners.
数据发起者。数据(已发布和未发布)由所有者直接提供。 - C.
Data repositories. Data was obtained by request or on-demand download from hosting repositories (e.g. BODC, PANGAEA, the US JGOFS Data System).
数据存储库。数据是通过请求或从托管存储库(例如 BODC、PANGAEA、美国 JGOFS 数据系统)按需下载获得的。
Following the approach adopted previously12, ‘surface’ concentrations are considered to be those from depths of less than 20 m. As discussed in Chance et al.12, the ocean is usually considered well mixed to this depth, and to restrict ‘surface data’ to shallower depths would substantially reduce the number of observations included. We examined a sub-set of data (n = 93) where observations were available from multiple depths within the upper 20 m of the water column. While significant differences were occasionally found between individual pairs of samples collected from depths of ~1-2 m and ~10 m at a given station, concentrations were within 10 nM in almost 50% of pairs (49.5%), and 80% were within 26 nM. Statistical analysis (using a paired students t-test) found no significant difference between samples from different depths within the upper 20 m. The exact depth of near surface samples can itself have high relative uncertainty, as factors such as sea swell can lead to metre scale fluctuations to the exact depth of e.g. a ship seawater inlet. Furthermore, the exact depths of such inlets, or the ‘surface’ sample bottle, was not always stated in the original data sources. Therefore, we have not included depth as a parameter in our compiled data set and no distinction has been made between samples obtained using a CTD rosette fitted with Niskin bottles (or similar), a pumped underway seawater supply or a manual method (such as bucket sampling).
按照之前采用的方法12 ,“表面”浓度被认为是来自深度小于 20 m 的浓度。正如 Chance等人所讨论的。如图12所示,海洋通常被认为在这个深度上混合得很好,并且将“表面数据”限制在较浅的深度将大大减少所包括的观测数量。我们检查了数据子集 (n = 93),其中可从水体上部 20 m 内的多个深度进行观测。虽然在给定站点从 ~1-2 m 和 ~10 m 深度采集的各个样本对之间偶尔会发现显着差异,但几乎 50% 的样本对 (49.5%) 的浓度在 10 nM 以内,80% 在 10 nM 以内。 26纳米。统计分析(使用配对学生 t 检验)发现上部 20 m 内不同深度的样本之间没有显着差异。近地表样本的精确深度本身可能具有较高的相对不确定性,因为海浪等因素可能导致船舶海水入口的精确深度出现米级波动。此外,原始数据源中并不总是说明此类入口或“表面”样品瓶的确切深度。因此,我们没有将深度作为参数纳入我们编译的数据集中,并且使用装有 Niskin 瓶(或类似装置)的 CTD 玫瑰花结、泵送的正在进行的海水供应或手动方法(例如桶)获得的样本之间没有区别。采样)。
Each data set was entered onto an individual Excel spreadsheet in a standard format. Rarely, source values were below the limit of detection (LoD) for the method used. Where this was the case, we have used a substitute value of 0.75 x the estimated LoD and the data point was flagged (column ‘ErrorMethod’). No further processing has been applied to any of the data. It has not been normalised e.g. to salinity. Required fields from individual ‘input’ files were then collated into a single comma-separated value (.csv) file using open-source Python code, including the Pandas package14.
每个数据集都以标准格式输入到单独的 Excel 电子表格中。极少数情况下,源值低于所用方法的检测限 (LoD)。在这种情况下,我们使用了 0.75 x 估计 LoD 的替代值,并标记了数据点(“ErrorMethod”列)。没有对任何数据进行进一步处理。它尚未标准化,例如盐度。然后使用开源 Python 代码(包括 Pandas 包14 )将各个“输入”文件中的必填字段整理成单个逗号分隔值 (.csv) 文件。
A total of 1342 observations, from 57 individual data sets has been collated (Online-only Table 1). This is an increase of 417 observations (45%) on that included in our earlier compilation12. Locations of individual data points are shown in Fig. 1, which highlights how the expanded dataset increases spatial coverage. The earliest observations were made in 1967 and the most recent in 2018. For some data points (n = 32) the date of sampling is not specified as this was not given in the original publication. Ten of the input data sets are currently unpublished.
已对来自 57 个单独数据集的总共 1342 个观察结果进行了整理(仅在线表1 )。与我们之前的汇编中包含的观测值相比,增加了 417 个观测值 (45%) 12 。各个数据点的位置如图1所示,它突出显示了扩展数据集如何增加空间覆盖范围。最早的观测是在 1967 年进行的,最近一次是在 2018 年进行的。对于某些数据点 (n = 32),未指定采样日期,因为原始出版物中没有给出。目前有 10 个输入数据集尚未发布。
Additional fields 附加字段
Each iodide observation is associated with the record fields listed in Table 1. In addition to spatial and temporal co-ordinates, the estimated uncertainty and analytical method used to generate the observations are provided.
每个碘化物观测值都与表1中列出的记录字段相关联。除了空间和时间坐标之外,还提供了用于生成观测值的估计不确定性和分析方法。
表1 海面碘化物数据库中包含的数据记录字段或每个字段的列名称、列描述和单位。
Method 方法
Analytical methods are summarised in Table 2. In the majority of cases (~53%), iodide was measured by cathodic stripping square wave voltammetry (CSSWV) according to the method of Campos15. However a range of other measurements techniques were also used. Iodide was sometimes measured as the difference between the total inorganic iodine (TII) concentration and the iodate concentration.
分析方法总结于表2中。在大多数情况下 (~53%),碘化物是根据 Campos 15的方法通过阴极溶出方波伏安法 (CSSWV) 测量的。然而,还使用了一系列其他测量技术。碘化物有时被测量为总无机碘 (TII) 浓度和碘酸盐浓度之间的差值。
表 2 分析方法和相关不确定性。
Uncertainty 不确定
Measurements of iodide in seawater are subject to non-trivial analytical uncertainties, which should be considered when using the data set. An estimate of the uncertainty associated with each observation has been included, using either information provided by the data source where available, or comparison to other measurements using the same analytical method. The uncertainty estimates provided are typically derived from replicate analyses of the same sample, and so represent the precision of the measurements. As insufficient information was available to quantify the precision in the same way for all observations, the approach used to estimate the precision is also included (see Table 1). Relative uncertainty estimates for each analytical method, for typical ambient concentrations in a seawater matrix, are also provided in Table 2. The precision given for each data set is often 5% (Table 2), which reflects the stated repeatability of the CSSWV method15 and a number of other measurements used. However, we note that repeat analyses of samples using this method can sometimes give lower precision (e.g. ~10%)16. Considering all data points in our dataset, we find ~75% have a precision of 10% or less, and ~51% have an precision of 5% or less. Such uncertainties are modest in comparison to the global scale variation in sea surface iodide concentrations (from less than 10 to more than 200 nM; Fig. 2).
海水中碘化物的测量存在很大的分析不确定性,在使用数据集时应考虑到这一点。使用数据源(如果可用)提供的信息或使用相同分析方法与其他测量值进行比较,对与每个观测值相关的不确定性进行了估计。所提供的不确定性估计通常来自同一样品的重复分析,因此代表了测量的精度。由于没有足够的信息来以相同的方式量化所有观测的精度,因此还包括用于估计精度的方法(参见表1 )。表2还提供了每种分析方法、海水基质中典型环境浓度的相对不确定性估计。每个数据集给出的精度通常为 5%(表2 ),这反映了 CSSWV 方法15和使用的许多其他测量的规定重复性。然而,我们注意到,使用这种方法重复分析样品有时会给出较低的精度(例如~10%) 16 。考虑到数据集中的所有数据点,我们发现约 75% 的精度为 10% 或更低,约 51% 的精度为 5% 或更低。与海面碘化物浓度的全球尺度变化(从小于 10 到大于 200 nM;图2 )相比,这种不确定性很小。
Estimated probability density function (PDF; kernel density estimate) for sea surface iodide observations. Plot shows all data (blue) combined, and open ocean (green) and coastal (red) data treated separately. Expanded inset shows values <400 nM only. Figure produced with Python Matplotlib79 and Seaborn80 packages.
海面碘化物观测的估计概率密度函数(PDF;核密度估计)。该图显示了所有数据(蓝色)的组合,以及单独处理的公海(绿色)和沿海(红色)数据。扩展插图仅显示值 <400 nM。使用 Python Matplotlib 79和 Seaborn 80软件包生成的图。
As the uncertainty estimates provided are typically derived from replicate analyses of the same sample they only estimate the short (days) to medium term (approx. monthly) repeatability. A fuller consideration of the uncertainty should also include the longer term (months to years) reproducibility, and an estimate of any uncertainties arising from bias, and thus may result in a larger uncertainty value. These sources of uncertainty are as yet poorly documented for the determination of iodide in seawater. At least in the case of the most commonly used method (CSSWV), we believe the contribution of long term reproducibility and bias to be small relative to the short-term precision. This is because the key of sources of uncertainty (e.g. that associated with making standard additions and sample dilutions by pipette, or variation in mercury electrode drop size) operate over a short time scale. Within our own laboratory, we have been monitoring long term reproducibility of the CSSWV method using aliquots of a near shore seawater sample, and estimate it at ~12% RSD over a period of 11 months (analysis by three operators using two different instruments; individual aliquots stored at −20 °C and defrosted within a few days of analysis), compared to ~monthly repeatability of 7–12% and repeatability over a few days of 5 to 18%. Changes taking place during storage will also contribute to the overall uncertainty of reported observations; for samples stored frozen (−16 °C), average iodide recovery after one year was 95–96%, compared to an average standard deviation of 5–8%15. In the majority of data sets we include, samples were stored frozen for less than one year prior to analysis, others were either analysed immediately following collection or stored for a shorter period refrigerated. Therefore we assume that storage artefacts were minimal. This view is supported by the oceanographic consistency found between stored and freshly analysed samples.
由于提供的不确定性估计通常来自同一样本的重复分析,因此它们仅估计短期(天)到中期(大约每月)的可重复性。对不确定性的更全面考虑还应包括长期(数月至数年)的再现性,以及对偏差引起的任何不确定性的估计,因此可能会导致更大的不确定性值。对于海水中碘化物的测定,这些不确定性来源的记录还很少。至少在最常用的方法(CSSWV)的情况下,我们认为长期再现性和偏差的贡献相对于短期精度来说很小。这是因为不确定性来源的关键(例如,与通过移液器添加标准品和样品稀释相关的不确定性,或汞电极液滴尺寸的变化)在短时间内起作用。在我们自己的实验室内,我们一直使用近岸海水样品的等分试样来监测 CSSWV 方法的长期再现性,并在 11 个月的时间内估计其 RSD 约为 12%(由三名操作员使用两种不同的仪器进行分析;个人等分试样储存在 -20 °C 并在分析后几天内解冻),相比之下,每月重复性为 7-12%,几天重复性为 5-18%。储存期间发生的变化也会增加报告观测结果的总体不确定性;对于冷冻保存的样品(−16 °C),一年后平均碘化物回收率为 95–96%,而平均标准偏差为 5–8% 15 。 在我们纳入的大多数数据集中,样品在分析前冷冻保存时间不到一年,其他样品要么在收集后立即分析,要么冷藏保存较短时间。因此,我们假设存储文物是最少的。这一观点得到了存储样本和新分析样本之间海洋学一致性的支持。
Assessment of bias in iodide in seawater determinations is hindered by the lack of a suitable reference material – many similar reference materials e.g. for trace metals, are acidified, which is unsuitable for the preservation of iodine speciation. Inaccuracy in standard preparation will contribute to bias in the short-term (all samples analysed using same standard), but are likely to become a random error in the longer term (several standards used over time). In either case, this should be a small contribution, as the uncertainty associated with preparing a typical analytical standard (e.g. 10 μM standard) should be less than 1% in a competent lab with well-maintained and calibrated equipment (e.g. balance, pipette). Other contributions to bias, such as matrix effects, are minimised by the use of standard additions rather than external calibration in the CSSWV protocol. In the absence of an iodide reference material, Campos15 tested the accuracy of the CSSWV method using solutions of known iodate concentration and a reduction step, and found it to be 99 ± 5.7% for 34 analyses. Given the current interest in marine iodide concentrations2,10,11, we believe that an inter-laboratory calibration exercise leading to development of a saline iodide reference material with a consensus value would be very timely. Such an exercise could follow the model of the recent GEOTRACES inter-calibration scheme (http://www.geotraces.org/Intercalibration).
由于缺乏合适的标准物质,海水测定中碘化物偏差的评估受到阻碍——许多类似的标准物质(例如痕量金属)都被酸化,这不适合保存碘形态。标准品制备的不准确会在短期内造成偏差(所有样品都使用相同的标准品进行分析),但从长期来看可能会成为随机误差(随着时间的推移使用多个标准品)。无论哪种情况,这都应该是一个很小的贡献,因为在拥有良好维护和校准设备(例如天平、移液器)的合格实验室中,与制备典型分析标准品(例如 10 μM 标准品)相关的不确定性应小于 1% 。通过在 CSSWV 协议中使用标准添加而不是外部校准,可以最大限度地减少对偏差的其他影响,例如基质效应。在没有碘化物标准物质的情况下,Campos 15使用已知碘酸盐浓度的溶液和还原步骤测试了 CSSWV 方法的准确性,发现 34 次分析的准确性为 99 ± 5.7%。鉴于目前人们对海洋碘化物浓度2 , 10 , 11的兴趣,我们相信,通过实验室间校准工作来开发具有共识值的盐水碘化物参考材料将是非常及时的。这样的练习可以遵循最近的 GEOTRACES 相互校准方案 ( http://www.geotraces.org/Intercalibration ) 的模型。
Geographical categorisation
地理分类
Data points are categorised as either ‘coastal’ or ‘non-coastal’. Following the approach used in Chance et al.12, this is determined by the designation of their static Longhurst biogeochemical province17. In most cases, the Longhurst province was assigned automatically, according to the nearest whole number degree of latitude and longitude. For a small number of samples collected very close to the coast, province (and hence coastal/non-coastal) was assigned manually - these samples are flagged (see Table 1). As in Chance et al.12, a small number of samples collected near Bermuda were also categorised as ‘coastal’ despite being located in an open ocean province (North Atlantic Subtropical Gyre Province (West)), as they were collected from an inshore area18. These samples are identified as such in the ‘Locator Method’ column.
数据点分为“沿海”或“非沿海”。遵循 Chance等人使用的方法。 12 、这是由他们指定的静态朗赫斯特生物地球化学省17确定的。在大多数情况下,朗赫斯特省是根据纬度和经度最接近的整数度数自动分配的。对于在非常靠近海岸的地方收集的少量样本,手动分配省份(以及沿海/非沿海) - 这些样本被标记(参见表1 )。正如钱斯等人所言。如图12所示,在百慕大附近采集的少量样本也被归类为“沿海”,尽管百慕大位于公海省份(北大西洋副热带环流省(西)),因为它们是从近海区域采集的18 。这些样本在“定位方法”列中被识别。
Ancillary data 辅助数据
Note that original ancillary data such as temperature and salinity is not included, as this was not reliably available for all data sets. Instead we recommend the use of climatological data (e.g. the World Ocean Database and World Ocean Atlas Series) selected according to user needs.
请注意,原始辅助数据(例如温度和盐度)不包括在内,因为这并非对所有数据集都可靠可用。相反,我们建议使用根据用户需求选择的气候数据(例如世界海洋数据库和世界海洋地图集系列)。
Data Records 数据记录
The compiled dataset is hosted by BODC (https://doi.org/10.5285/7e77d6b9-83fb-41e0-e053-6c86abc069d0)13, and is available as a single.csv file (plus a separate metadata file). It includes the fields listed in Table 1. It is anticipated that updated versions will be made available periodically, as new sea surface iodide observations become available. The current iteration is termed Version 1.0, future iterations will be named sequentially (i.e. version 2.0 etc). The lead authors would be very pleased to be contacted regarding new or omitted iodide observations for inclusion in future iterations of the dataset.
编译后的数据集由 BODC ( https://doi.org/10.5285/7e77d6b9-83fb-41e0-e053-6c86abc069d0 ) 13托管,并作为单个 .csv 文件(加上单独的元数据文件)提供。它包括表1中列出的字段。预计随着新的海面碘化物观测结果的出现,将定期提供更新版本。当前迭代被称为版本 1.0,未来迭代将按顺序命名(即版本 2.0 等)。主要作者将非常高兴就新的或遗漏的碘化物观测结果与我们联系,以便将其纳入数据集的未来迭代中。
Technical Validation 技术验证
Of the records included in our database, the majority (47/57) are described in peer-reviewed literature, and a further two are from PhD theses, and so their quality has already been subject to scientific scrutiny. Unpublished data sets made use of well-established analytical techniques, including the use of calibration standards and replicate analyses. In addition, the majority of data points were described in our earlier peer reviewed manuscript12, and were shown to have to a cohesive global distribution. The distribution of observations in the extended dataset continues to conform to this distribution (not shown), with concentrations remaining in the expected range (Fig. 2).
在我们数据库中包含的记录中,大多数(47/57)是在同行评审的文献中描述的,另外两个来自博士论文,因此它们的质量已经受到科学审查。未发表的数据集利用了完善的分析技术,包括使用校准标准和重复分析。此外,大多数数据点在我们之前的同行评审手稿12中进行了描述,并且被证明具有一致的全球分布。扩展数据集中的观测值分布继续符合该分布(未显示),浓度保持在预期范围内(图2 )。
A very small number of unusually high concentration points (19 with iodide levels higher than 400 nM) are present in the data set. These are not representative of the overall iodide distribution, all being above the 98th percentile and also defined as outliers under the Tukey definition19. Where present, these extreme outlier values have been subject to rigorous scrutiny and are believed to be real.
数据集中存在极少数异常高的浓度点(19 个碘化物水平高于 400 nM)。这些并不代表整体碘化物分布,全部都高于第98 个百分位数,并且根据 Tukey 定义也被定义为异常值19 。如果存在,这些极端异常值都经过严格审查并被认为是真实的。
We have not evaluated the data set to look for systematic differences between measurement techniques, as method used and location (and hence iodide concentration) are not independent variables. In most cases, only a small number of geographically limited points are available for a given method (Table 2). As noted, more than half the observations have been made using the same CSSWV technique. The remainder have been analysed using a wide range of other approaches, including, for some of the earliest datasets, labour intensive ‘wet chemical’ procedures which have since been superseded. In particular, a large proportion of the Pacific measurements were made in between 1968 and 197020,21 using a revised version of the Sugawara precipitation method22. The scarcity of more modern data from the Pacific limits comparisons, but we note that the range of this early Pacific data (3–168 nM) falls within that of the global data set, with a well-defined latitudinal distribution consistent with that observed overall. Regional concentrations (e.g. high latitudes, north Pacific23) are in agreement with those measured subsequently using different methods. Furthermore, the original data sources report vertical iodide profiles consistent in shape and magnitude with more recent measurements. Data obtained using the original, unmodified Sugawara method24 (1955) is not included, as this method is known to have poor performance22.
我们尚未评估数据集来寻找测量技术之间的系统差异,因为所使用的方法和位置(以及碘化物浓度)不是自变量。在大多数情况下,只有少数地理上有限的点可用于给定方法(表2 )。如前所述,超过一半的观测是使用相同的 CSSWV 技术进行的。其余的数据已使用各种其他方法进行了分析,其中包括一些最早的数据集的劳动密集型“湿化学”程序,这些程序后来已被取代。特别是,太平洋地区的大部分测量是在 1968 年至 1970 年间20 , 21使用菅原降水法22的修订版进行的。来自太平洋的更现代数据的稀缺限制了比较,但我们注意到,早期太平洋数据的范围(3-168 nM)属于全球数据集的范围,其明确的纬度分布与观察到的总体数据一致。区域浓度(例如高纬度地区、北太平洋23 )与随后使用不同方法测量的浓度一致。此外,原始数据源报告的垂直碘化物分布在形状和大小上与最近的测量一致。不包括使用原始的、未经修改的菅原方法24 (1955) 获得的数据,因为已知该方法的性能较差22 。
As described earlier, iodide observations are subject to non-negligible analytical uncertainty; we have reviewed the uncertainty estimation for each data set, and present this alongside the observations. As noted above, precision has usually been taken to represent method uncertainty. A variety of different methods have been used to estimate this, and so uncertainty magnitudes may not be directly comparable across all datasets.
如前所述,碘化物观测结果受到不可忽略的分析不确定性的影响;我们审查了每个数据集的不确定性估计,并将其与观察结果一起呈现。如上所述,精度通常用来表示方法的不确定性。已使用各种不同的方法来估计这一点,因此不确定性大小可能无法在所有数据集中直接进行比较。
Usage Notes 使用说明
For computational convenience, iodide concentrations and associated uncertainties are provided to one decimal place (units are nM for both). However, note that this does not usually reflect the precision of the data points correctly, as this is typically a few percent.
为了计算方便,碘化物浓度和相关不确定性均保留至小数点后一位(单位均为 nM)。但是,请注意,这通常不能正确反映数据点的精度,因为这通常是几个百分点。
For the purposes of investigating large-scale trends and creating regional iodide parameterisations, it may be appropriate to exclude the very high outlier values noted in the preceding section. Similarly, a number of points are from relatively low salinity estuarine areas (e.g. the Skaggerak), and so may not be representative of true marine trends in iodine speciation.
为了调查大规模趋势和创建区域碘化物参数化的目的,排除上一节中提到的非常高的异常值可能是适当的。同样,许多点来自盐度相对较低的河口地区(例如斯卡格拉克),因此可能无法代表碘形态的真实海洋趋势。
Missing fields are shown as not a number (“NaN”) in the output data file.
缺失字段在输出数据文件中显示为非数字(“NaN”)。
Code availability 代码可用性
The Python code used to prepare the archived data, and to enable incorporation of any subsequent observational data files, has also been made permanently available (https://doi.org/10.5281/zenodo.3271678)25.
用于准备存档数据以及合并任何后续观测数据文件的 Python 代码也已永久可用 ( https://doi.org/10.5281/zenodo.3271678 ) 25 。
References 参考
Sherwen, T. et al. Effects of halogens on European air-quality. Faraday Discuss. 200, 75–100 (2017).
舍文,T.等人。卤素对欧洲空气质量的影响。法拉第讨论。 200 , 75–100 (2017)。Lu, W. et al. Late inception of a resiliently oxygenated upper ocean. Science, https://doi.org/10.1126/science.aar5372, 361(6398), 174–177, (2018).
卢,W.等人。弹性充氧的上层海洋开始较晚。科学, https://doi.org/10.1126/science.aar5372,361 (6398),174–177, ( 2018)。Andersson, M., Karumbunathan, V. & Zimmermann, M. B. Global Iodine Status in 2011 and Trends over the Past Decade. J. Nutr 142, 744–750 (2012).
Andersson, M.、Karumbunathan, V. 和 Zimmermann, MB 2011 年全球碘状况和过去十年的趋势。 J. Nutr 142 , 744–750 (2012)。Kadowaki, M. et al. Impacts of anthropogenic source from the nuclear fuel reprocessing plants on global atmospheric iodine-129 cycle: A model analysis. Atmos. Environ. 184, 278–291 (2018).
Kadowaki,M.等人。核燃料后处理厂人为源对全球大气碘 129 循环的影响:模型分析。大气。环境。 184 , 278–291 (2018)。Ganzeveld, L., Helmig, D., Fairall, C. W., Hare, J. & Pozzer, A. Atmosphere‐ocean ozone exchange: A global modeling study of biogeochemical, atmospheric, and waterside turbulence dependencies. Global Biogeochem. Cycles. 23, GB4021, https://doi.org/10.1029/2008GB003301 (2009).
Ganzeveld, L.、Helmig, D.、Fairall, CW、Hare, J. 和 Pozzer, A. 大气-海洋臭氧交换:生物地球化学、大气和水边湍流依赖性的全球模型研究。全球生物地球化学。循环。 23 、GB4021, https://doi.org/10.1029/2008GB003301 (2009)。Sherwen, T. et al. Iodine’s impact on tropospheric oxidants: a global model study in GEOS-Chem. Atmos. Chem. Phys. 16, 1161–1186 (2016).
舍文,T.等人。碘对对流层氧化剂的影响:GEOS-Chem 的全球模型研究。大气。化学。物理。 16、1161-1186 (2016)。Oh, I.-B., Byun, D. W., Kim, H.-C., Kim, S. & Cameron, B. Modeling the effect of iodide distribution on ozone deposition to seawater surface. Atmos. Environ. 42, 4453–4466 (2008).
Oh, I.-B.、Byun, DW、Kim, H.-C.、Kim, S. 和 Cameron, B. 模拟碘化物分布对海水表面臭氧沉积的影响。大气。环境。 42、4453–4466 (2008)。Sarwar, G. et al. Technical note: Examining ozone deposition over seawater. Atmos. Environ. 141, 255–262 (2016).
萨瓦尔,G.等人。技术说明:检查海水上的臭氧沉积。大气。环境。 141、255–262 (2016)。Sherwen, T., Evans, M. J., Carpenter, L. J., Schmidt, J. A. & Mickley, L. J. Halogen chemistry reduces tropospheric O3 radiative forcing. Atmos. Chem. Phys. 17, 1557–1569 (2017).
Sherwen, T.、Evans, MJ、Carpenter, LJ、Schmidt, JA 和 Mickley, LJ 卤素化学可减少对流层 O 3辐射强迫。大气。化学。物理。 17、1557-1569 (2017)。Sherwen, T. et al. A machine learning based global sea-surface iodide distribution. Earth Syst. Sci. Data Discuss 2019, 1–40 (2019).
Sherwen,T.等人。基于机器学习的全球海面碘化物分布。地球系统。科学。 2019 年数据讨论,1-40 (2019)。Cutter, G. A., Moffett, J. G., Nielsdottir, M. C. & Sanial, V. Multiple oxidation state trace elements in suboxic waters off Peru: In situ redox processes and advective/diffusive horizontal transport. Mar. Chem. 201, 77–89 (2018).
Cutter,GA,Moffett,JG,Nielsdottir,MC 和 Sanial,V。秘鲁近海低氧水域中的多种氧化态微量元素:原位氧化还原过程和平流/扩散水平传输。三月化学。 201 , 77–89 (2018)。Chance, R., Baker, A. R., Carpenter, L. & Jickells, T. D. The distribution of iodide at the sea surface. Environ. Sci.-Proc. Imp 16, 1841–1859 (2014).
Chance, R.、Baker, AR、Carpenter, L. 和 Jickells, TD 海面碘化物的分布。环境。科学进展。 Imp 16,1841–1859 (2014)。Chance, R. et al. Global sea-surface iodide observations, 1967–2018. British Oceanographic Data Centre, Natural Environment Research Council, UK, https://doi.org/10.5285/7e77d6b9-83fb-41e0-e053-6c86abc069d0 (2019).
机会,R.等人。 1967-2018 年全球海面碘化物观测。英国海洋学数据中心、自然环境研究委员会,英国, https://doi.org/10.5285/7e77d6b9-83fb-41e0-e053-6c86abc069d0 (2019)。McKinney, W. Data Structures for Statistical Computing in Python, In: Proceedings of the 9th Python in Science Conference, (eds. van der Walt, S. & Millman, J.) 51–56 (2010).
McKinney, W. Python 中统计计算的数据结构,见:第九届 Python 科学会议论文集,(eds. van der Walt, S. & Millman, J.)51–56 (2010)。Campos, M. L. A. M. New approach to evaluating dissolved iodine speciation in natural waters using cathodic stripping voltammetry and a storage study for preserving iodine species. Mar. Chem. 57, 107–117 (1997).
Campos,MLAM 使用阴极溶出伏安法和保存碘形态的储存研究来评估天然水中溶解的碘形态的新方法。三月化学。 57、107-117 (1997)。Chance, R. et al. Seasonal and interannual variation of dissolved iodine speciation at a coastal Antarctic site. Mar. Chem. 118, 171–181 (2010).
机会,R.等人。南极沿海地区溶解碘形态的季节和年际变化。三月化学。 118、171-181 (2010)。Longhurst, A. R. Ecological geography of the sea. (Academic, 1998).
朗赫斯特,阿肯色州海洋生态地理学。 (学术,1998)。Jickells, T. D., Boyd, S. S. & Knap, A. H. Iodine cycling in the Sargasso Sea and the Bermuda Inshore waters. Mar. Chem. 24, 61–82 (1988).
Jickells, TD、Boyd, SS 和 Knap, AH 马尾藻海和百慕大近海水域的碘循环。三月化学。 24、61-82 (1988)。Frigge, M., Hoaglin, D. C. & Iglewicz, B. Some implementations of the Boxplot. The American Statistician 43, 50–54 (1989).
Frigge, M.、Hoaglin, DC 和 Iglewicz, B. 箱线图的一些实现。 《美国统计学家》 43 , 50–54 (1989)。Tsunogai, S. Iodine in the deep water of the ocean. Deep-Sea Res 18, 913–919 (1971).
Tsunogai, S. 海洋深水中的碘。深海研究18 , 913–919 (1971)。Tsunogai, S. & Henmi, T. Iodine in the surface water of the Pacific Ocean. J. Oceanogr. Soc. Japan 27, 67–72 (1971).
Tsunogai, S. 和 Henmi, T. 太平洋表层水中的碘。 J.Oceanogr。苏克。日本27 , 67–72 (1971)。Tsunogai, S. Determination of iodine in seawater by an improved Sugawara method. Anal. Chim. Acta 55, 444–447 (1971).
Tsunogai, S. 采用改进的菅原法测定海水中的碘。肛门。奇姆。 Acta 55 , 444–447 (1971)。Nakayama, E., Kimoto, T., Isshiki, K., Sohrin, Y. & Okazaki, S. Determination and distribution of iodide-iodine and total-iodine in the north Pacific ocean by using a new automated electrochemical method. Mar. Chem. 27, 105–116 (1989).
Nakayama, E.、Kimoto, T.、Isshiki, K.、Sohrin, Y. 和 Okazaki, S. 使用新的自动化电化学方法测定北太平洋中碘化物-碘和总碘的分布。三月化学。 27、105-116 (1989)。Sugawara, K., Koyama, T. & Terada, K. A new method of spectrophotometric determination of iodine in natural waters. Bull. Chem. Soc. Jpn. 28, 494–497 (1955).
Sukawara, K.、Koyama, T. 和 Terada, K. 天然水中碘的分光光度测定新方法。公牛。化学。苏克。日本。 28、494-497 (1955)。Sherwen, T. tsherwen/sparse2spatial: sparse2spatial v0.1.0, Zenodo, https://doi.org/10.5281/zenodo.3349646 (2019).
Sherwen,T.tsherwen/sparse2spatial:sparse2spatial v0.1.0, Zenodo ,https: //doi.org/10.5281/zenodo.3349646 (2019)。Campos, M. L. A. M., Farrenkopf, A. M., Jickells, T. D. & Luther, G. W. A comparison of dissolved iodine cycling at the Bermuda Atlantic Time-Series station and Hawaii Ocean Time-Series Station. Deep-Sea Res. Pt. II 43, 455–466 (1996).
Campos, MLAM、Farrenkopf, AM、Jickells, TD 和 Luther, GW 百慕大大西洋时间序列站和夏威夷海洋时间序列站溶解碘循环的比较。深海研究中心。铂。 II 43 , 455–466 (1996)。Wong, G. T. F. & Brewer, P. G. Determination and distribution of iodate in South Atlantic waters. J. Mar. Res. 32, 25–36 (1974).
Wong, GTF 和 Brewer, PG 南大西洋水域中碘酸盐的测定和分布。 J. Mar. Res。 32、25-36 (1974)。Truesdale, V. W. Automatic determination of Iodate-iodine and Total-iodine in seawater. Mar. Chem. 6, 253–273 (1978).
Truesdale, VW 自动测定海水中的碘酸盐和总碘。三月化学。 6,253-273 (1978)。Truesdale, V. W. & Smith, P. J. Automatic determination of iodide or iodate in solution by catalytic spectrophotometry, with particular reference to river water. Analyst 100, 111–123 (1975).
Truesdale, VW & Smith, PJ 通过催化分光光度法自动测定溶液中的碘化物或碘酸盐,特别是河水。分析师100 , 111–123 (1975)。Elderfield, H. & Truesdale, V. W. On the biophilic nature of iodine in seawater. Earth Planet. Sci. Lett. 50, 105–114 (1980).
Elderfield, H. 和 Truesdale, VW 关于海水中碘的亲生物性质。地球行星。科学。莱特。 50、105-114 (1980)。Truesdale, V. W., Bale, A. J. & Woodward, E. M. S. The meridional distribution of dissolved iodine in near-surface waters of the Atlantic Ocean. Prog.Oceanogr. 45, 387–400 (2000).
Truesdale, VW, Bale, AJ 和 Woodward, EMS 大西洋近地表水域溶解碘的经向分布。海洋学进展。 45、387-400 (2000)。Herring, J. R. & Liss, P. S. New method for determination of iodine species in seawater. Deep-Sea Res 21, 777–783 (1974).
Herring, JR 和 Liss, PS 测定海水中碘形态的新方法。深海研究21 , 777–783 (1974)。Takayanagi, K. & Wong, G. T. F. The oxidation of iodide to iodate for the polarographic determination of total iodine in natural waters. Talanta 33, 451–454 (1986).
Takayanagi, K. & Wong, GTF 将碘化物氧化成碘酸盐,用于极谱法测定天然水中的总碘。塔兰塔33 , 451–454 (1986)。Wong, G. T. F. & Zhang, L. Changes in iodine speciation across coastal hydrographic fronts in south-eastern United States continental shelf waters. Cont. Shelf Res. 12, 717–733 (1992).
Wong, GTF 和Zhang, L。美国东南部大陆架水域沿海水文前沿的碘形态变化。续。货架资源。 12、717-733 (1992)。Liss, P. S., Herring, J. R. & Goldberg, E. D. The Iodide/Iodate system in seawater as a possible measure of redox potential. Nat. Phys. Sci 242, 108–109 (1973).
Liss, PS、Herring, JR 和 Goldberg, ED 海水中的碘化物/碘酸盐系统可作为氧化还原电位的可能测量。纳特。物理。科学242 , 108–109 (1973)。Luther, G. W., Swartz, C. B. & Ullman, W. J. Direct determination of iodide in seawater by cathodic stripping square-wave voltammetry. Anal. Chem. 60, 1721–1724 (1988).
Luther, GW、Swartz, CB 和 Ullman, WJ 通过阴极溶出方波伏安法直接测定海水中的碘化物。肛门。化学。 60,1721-1724 (1988)。Farrenkopf, A. M. & Luther, G. W. Iodine chemistry reflects productivity and denitrification in the Arabian Sea: evidence for flux of dissolved species from sediments of western India into the OMZ. Deep-Sea Res. Pt II 49, 2303–2318 (2002).
Farrenkopf, AM 和 Luther, GW 碘化学反应了阿拉伯海的生产力和反硝化作用:溶解物质从印度西部沉积物流入 OMZ 的证据。深海研究中心。第二部分49 , 2303–2318 (2002)。Ullman, W. J., Luther, G. W., Delange, G. J. & Woittiez, J. R. W. Iodine chemistry in deep anoxic basins and overlying waters of the Mediterranean Sea. Mar. Chem. 31, 153–170 (1990).
Ullman, WJ, Luther, GW, Delange, GJ & Woittiez, JRW 地中海深层缺氧盆地和上覆水域中的碘化学。三月化学。 31、153-170 (1990)。Wong, G. T. F. & Zhang, L. S. Chemical removal of oxygen with sulfite for the polarographic or voltammetric determination of iodate or iodid in seawater. Mar. Chem. 38, 109–116 (1992).
Wong, GTF 和Zhang, LS 使用亚硫酸盐化学去除氧,用于极谱法或伏安法测定海水中的碘酸盐或碘化物。三月化学。 38、109-116 (1992)。Rue, E. L., Smith, G. J., Cutter, G. A. & Bruland, K. W. The response of trace element redox couples to suboxic conditions in the water column. Deep-Sea Res. Pt I 44, 113–134 (1997).
Rue, EL、Smith, GJ、Cutter, GA 和 Bruland, KW 微量元素氧化还原对对水柱中缺氧条件的响应。深海研究中心。第一部分44 , 113–134 (1997)。Nakayama, E., Kimoto, T. & Okazaki, S. Automatic determination of iodine species in determination of iodine species in natural waters by a new flow-through electrode system. Anal. Chem. 57, 1157–1160 (1985).
Nakayama, E.、Kimoto, T. 和 Okazaki, S. 通过新型流通电极系统自动测定天然水中的碘形态。肛门。化学。 57、1157-1160 (1985)。Wong, G. T. F. & Brewer, P. G. Determination of iodide in seawater by instrumental neutron activation analysis. Anal. Chim. Acta 81, 81–90 (1976).
Wong, GTF 和 Brewer, PG 通过仪器中子活化分析测定海水中的碘化物。肛门。奇姆。 Acta 81 , 81–90 (1976)。Hou, X. et al. Speciation of I-129 and I-127 in seawater and implications for sources and transport pathways in the North Sea. Environ. Sci. Technol. 41, 5993–5999 (2007).
侯X.等人。海水中 I-129 和 I-127 的形态及其对北海来源和传输路径的影响。环境。科学。技术。 41、5993-5999 (2007)。Hou, X. L., Dahlgaard, H. & Nielsen, S. P. Chemical speciation analysis of I-129 in seawater and a preliminary investigation to use it as a tracer for geochemical cycle study of stable iodine. Mar. Chem. 74, 145–155 (2001).
Hou, XL, Dahlgaard, H. & Nielsen, SP 对海水中 I-129 的化学形态分析以及将其用作稳定碘地球化学循环研究示踪剂的初步研究。三月化学。 74、145–155 (2001)。He, P., Aldahan, A., Hou, X. L. & Possnert, G. Tracing variability in the iodine isotopes and species along surface water transect from the North Sea to the Canary Islands. J. Radioanal. Nucl. Ch 307, 1407–1412 (2016).
He, P.、Aldahan, A.、Hou, XL 和 Possnert, G。追踪从北海到加那利群岛地表水横断面的碘同位素和物种的变化。 J.放射肛门。核。第307章,1407–1412(2016)。Schwehr, K. A. & Santschi, P. H. Sensitive determination of iodine species, including organo-iodine, for freshwater and seawater samples using high performance liquid chromatography and spectrophotometric detection. Anal. Chim. Acta 482, 59–71 (2003).
Schwehr, KA 和 Santschi, PH 使用高效液相色谱和分光光度检测对淡水和海水样品中的碘形态(包括有机碘)进行灵敏测定。肛门。奇姆。 Acta 482,59-71 (2003)。McTaggart, A. R., Butler, E. C. V., Haddad, P. R. & Middleton, J. H. Iodide and iodate concentrations in eastern Australian subtropical waters, with iodide by ion chromatography. Mar. Chem. 47, 159–172 (1994).
McTaggart, AR, Butler, ECV, Haddad, PR & Middleton, JH 澳大利亚东部亚热带水域的碘化物和碘酸盐浓度,通过离子色谱法测定碘化物。三月化学。 47、159-172 (1994)。Huang, Z., Ito, K., Timerbaev, A. R. & Hirokawa, T. Speciation studies by capillary electrophoresis - simultaneous determination of iodide and iodate in seawater. Anal. Bioanal. Chem. 378, 1836–1841 (2004).
Huang, Z.、Ito, K.、Timerbaev, AR 和 Hirokawa, T. 毛细管电泳形态研究 - 同时测定海水中的碘化物和碘酸盐。肛门。生物肛门。化学。 378,1836-1841 (2004)。Huang, Z. et al. Sensitive monitoring of iodine species in sea water using capillary electrophoresis: vertical profiles of dissolved iodine in the Pacific Ocean. J. Environ. Monit. 7, 804–808 (2005).
黄,Z.等人。使用毛细管电泳灵敏监测海水中的碘形态:太平洋溶解碘的垂直剖面。 J.环境。监视。 7、804-808 (2005)。Woittiez, J. R. W., Vandersloot, H. A., Wals, G. D., Nieuwendijk, B. J. T. & Zonderhuis, J. The determination of iodide, iodate, total inorganic iodine and charcoal adsorbable iodine in seawater. Mar. Chem. 34, 247–259 (1991).
Woittiez, JRW, Vandersloot, HA, Wals, GD, Nieuwendijk, BJT & Zonderhuis, J. 海水中碘化物、碘酸盐、总无机碘和木炭可吸附碘的测定。三月化学。 34、247-259 (1991)。Chance, R. The influence of marine algae on the reduction of iodate to iodide in the sea Ph.D. thesis, University of East Anglia (2007).
Chance, R.海藻对海洋中碘酸盐还原成碘化物的影响博士。论文,东安格利亚大学(2007 年)。Truesdale, V. W., Danielssen, D. S. & Waite, T. J. Summer and winter distributions of dissolved iodine in the Skagerrak. Estuar. Coast. Shelf Sci. 57, 701–713 (2003).
Truesdale, VW, Danielssen, DS & Waite, TJ 斯卡格拉克河中溶解碘的夏季和冬季分布。河口。海岸。货架科学。 57、701-713 (2003)。Truesdale, V. W., Nausch, G. & Baker, A. The distribution of iodine in the Baltic Sea during summer. Mar. Chem. 74, 87–98 (2001).
Truesdale, VW, Nausch, G. 和 Baker, A. 波罗的海夏季碘的分布。三月化学。 74、87-98 (2001)。Truesdale, V. W., Kennedy, H., Agusti, S. & Waite, T. J. On the relative constancy of iodate and total-iodine concentrations accompanying phytoplankton blooms initiated in mesocosm experiments in Antarctica. Limnol. Oceanogr. 48, 1569–1574 (2003).
Truesdale, VW、Kennedy, H.、Agusti, S. 和 Waite, TJ 关于南极洲中生态实验中伴随浮游植物大量繁殖的碘酸盐和总碘浓度的相对稳定性。利姆诺尔。海洋学家。 48、1569-1574 (2003)。Waite, T. J., Truesdale, V. W. & Olafsson, J. The distribution of dissolved inorganic iodine in the seas around Iceland. Mar. Chem. 101, 54–67 (2006).
Waite, TJ、Truesdale, VW 和 Olafsson, J。冰岛周围海域溶解无机碘的分布。三月化学。 101 , 54–67 (2006)。Wong, G. T. F. & Brewer, P. G. Marine chemistry of iodine in anoxic basins. Geochim. Cosmochim. Acta 41, 151–159 (1977).
Wong, GTF 和 Brewer, PG 缺氧盆地中碘的海洋化学。土石土。宇宙化学。 Acta 41 , 151–159 (1977)。Truesdale, V. W. & Bailey, G. W. Iodine distribution in the Southern Benguela system during an upwelling episode. Cont. Shelf Res. 22, 39–49 (2002).
Truesdale, VW 和 Bailey, GW 上升流期间南本格拉系统的碘分布。续。货架资源。 22、39-49 (2002)。Tian, R. C. et al. Iodine speciation: A potential indicator to evaluate new production versus regenerated production. Deep-Sea Res. Pt I 43, 723–738 (1996).
田,RC等人。碘形态:评估新产量与再生产量的潜在指标。深海研究中心。第一部分43 , 723–738 (1996)。Tian, R. C. & Nicolas, E. Iodine speciation in the north-westen Mediterranean Sea - Method and vertical profile. Mar. Chem. 48, 151–156 (1995).
Tian, RC & Nicolas, E. 地中海西北部的碘形态 - 方法和垂直剖面。三月化学。 48、151-156 (1995)。Tian, R. C. & Nicolas, E. Iodine speciation at time series station DYFAMED from date 1994-06-04. PANGAEA, https://doi.org/10.1594/PANGAEA.174586 (1995).
Tian, RC & Nicolas, E. 1994 年 6 月 4 日起时间序列站 DYFAMED 的碘形态。盘古大陆, https://doi.org/10.1594/PANGAEA.174586 (1995)。Truesdale, V. W. Iodine in inshore and off-shore marine waters. Mar. Chem. 6, 1–13 (1978).
Truesdale,VW 近海和近海海水中的碘。三月化学。 6、1-13 (1978)。Truesdale, V. W. & Upstill-Goddard, R. Dissolved iodate and total iodine along the British east coast. Estuar. Coast. Shelf Sci. 56, 261–270 (2003).
Truesdale, VW 和 Upstill-Goddard, R. 英国东海岸的溶解碘酸盐和总碘。河口。海岸。货架科学。 56、261-270 (2003)。Wong, G. T. F. & Zhang, L. S. Geochemical dynamics of iodine in marginal seas: the southern East China Sea. Deep-Sea Res. Pt II 50, 1147–1162 (2003).
Wong, GTF 和Zhang, LS 边缘海碘地球化学动态:东海南部。深海研究中心。第二部分50 , 1147–1162 (2003)。Campos, M. L. A. M., Sanders, R. & Jickells, T. The dissolved iodate and iodide distribution in the South Atlantic from the Weddell Sea to Brazil. Mar. Chem. 65, 167–175 (1999).
Campos,MLAM,Sanders,R. 和 Jickells,T。从威德尔海到巴西的南大西洋溶解的碘酸盐和碘化物分布。三月化学。 65、167-175 (1999)。Luther, G.W. & Lewis, B. Iodine speciation. United States JGOFS Data Server. Woods Hole Oceanographic Institution, USA: U.S. JGOFS Data Management Office. Accessed:2018, http://usjgofs.whoi.edu/jg/dir/jgofs/arabian/ttn-045/ (1997).
Luther, GW 和 Lewis, B. 碘形态。美国JGOFS数据服务器。美国伍兹霍尔海洋研究所:美国 JGOFS 数据管理办公室。访问时间:2018 年, http://usjgofs.whoi.edu/jg/dir/jgofs/arabian/ttn-045/ (1997)。Wong, G. T. F., Takayanagi, K. & Todd, J. F. Dissolved iodine in waters overlying and in the Orca Basin, Gulf of Mexico. Mar. Chem. 17, 177–183 (1985).
Wong, GTF、Takayanagi, K. 和 Todd, JF 墨西哥湾奥卡盆地上层和奥卡盆地水域中溶解的碘。三月化学。 17、177-183 (1985)。Wong, G. T. F. & Cheng, X. H. Dissolved organic iodine in marine waters: Determination, occurrence and analytical implications. Mar. Chem. 59, 271–281 (1998).
Wong, GTF 和 Cheng, XH 海水中溶解的有机碘:测定、发生和分析意义。三月化学。 59、271-281 (1998)。Bluhm, K., Croot, P. L., Huhn, O., Rohardt, G. & Lochte, K. Distribution of iodide and iodate in the Atlantic sector of the southern ocean during austral summer. Deep-Sea Res. Pt II 58, 2733–2748 (2011).
Bluhm, K.、Croot, PL、Huhn, O.、Rohardt, G. 和 Lochte, K. 南半球夏季期间南大洋大西洋区碘化物和碘酸盐的分布。深海研究中心。第二部分58,2733–2748 (2011)。Wong, G. T. F. & Cheng, X.-H. Dissolved inorganic and organic iodine in the Chesapeake Bay and adjacent Atlantic waters: Speciation changes through an estuarine system. Mar. Chem. 111, 221–232 (2008).
Wong, GTF 和 Cheng, X.-H.切萨皮克湾和邻近大西洋水域中溶解的无机和有机碘:通过河口系统的物种形成变化。三月化学。 111、221-232 (2008)。Truesdale, V. W. & Jones, K. Steady-state mixing of iodine in shelf seas off the British Isles. Cont. Shelf Res. 20, 1889–1905 (2000).
Truesdale, VW & Jones, K. 不列颠群岛外陆架海中碘的稳态混合。续。货架资源。 20、1889-1905 (2000)。Ducklow, H. W. et al. Spring-summer net community production, new production, particle export and related water column biogeochemical processes in the marginal sea ice zone of the Western Antarctic Peninsula 2012–2014. Philos. Tr. Roy. Soc. A 376, 15 (2018).
达克洛,HW等人。 2012-2014年南极西部半岛边缘海冰区春夏季群落净产量、新增产量、颗粒输出及相关水柱生物地球化学过程。菲洛斯. Tr。罗伊.苏克。 A 376 , 15 (2018)。Hou, X. et al. Iodine-129 in Seawater Offshore Fukushima: Distribution, Inorganic Speciation, Sources, and Budget. Environ. Sci. Technol. 47, 3091–3098 (2013).
侯X.等人。福岛近海海水中的 Iodine-129:分布、无机形态、来源和预算。环境。科学。技术。 47、3091-3098 (2013)。Luther, G. W. & Campbell, T. Iodine speciation in the water column of the Black Sea. Deep-Sea Res 38, S875–S882 (1991).
Luther, GW 和 Campbell, T. 黑海水柱中的碘形态。深海研究38 ,S875–S882 (1991)。Wong, G. T. F. Dissolved and Particulate Iodine in the Oceans Ph.D. Thesis thesis, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution (1976).
Wong, GTF海洋中的溶解碘和颗粒碘 博士论文,麻省理工学院和伍兹霍尔海洋研究所(1976 年)。Wong, G. T. F. Distribution of iodine in upper layers of the equatorial. Atlantic. Deep-Sea Res. 24, 115–125 (1977).
Wong,GTF 赤道上层的碘分布。大西洋。深海研究中心。 24 , 115–125 (1977)。He, P., Hou, X. L., Aldahan, A., Possnert, G. & Yi, P. Iodine isotopes species fingerprinting environmental conditions in surface water along the northeastern Atlantic Ocean. Sci. Rep 3, 8 (2013).
He, P.、Hou, XL、Aldahan, A.、Possnert, G. 和 Yi, P. 碘同位素物种指纹识别东北大西洋沿岸地表水中的环境条件。科学。报告3 , 8 (2013)。He, P., Aldahan, A., Possnert, G. & Hou, X. L. Temporal Variation of Iodine Isotopes in the North Sea. Environ. Sci. Technol. 48, 1419–1425 (2014).
He, P.、Aldahan, A.、Possnert, G. 和 Hou, XL 北海碘同位素的时间变化。环境。科学。技术。 48、1419-1425 (2014)。Zhou, P. et al. Intrusion pattern of the Kuroshio Subsurface Water onto the East China Sea continental shelf traced by dissolved inorganic iodine species during the spring and autumn of 2014. Mar. Chem. 196, 24–34 (2017).
周,P.等人。 2014年春秋期间溶解的无机碘物种追踪黑潮地下水对东海大陆架的入侵模式。 196 , 24–34 (2017)。Hunter, J. D. Matplotlib: A 2D graphics environment. Computing In Science & Engineering 9, 90–95 (2007).
Hunter,JD Matplotlib:2D 图形环境。科学与工程中的计算9 , 90–95 (2007)。Waskom, M. et al. mwaskom/seaborn: seaborn v0.8.1, Zenodo, https://doi.org/10.5281/zenodo.883859 (2017).
瓦斯科姆,M.等人。 mwaskom/seaborn:seaborn v0.8.1, Zenodo , https ://doi.org/10.5281/zenodo.883859(2017)。
Acknowledgements 致谢
We would like to thank the research teams, support staff and ships’ crews on all of our field campaigns, for invaluable assistance with the collection, transport and analysis of iodide samples. For funding details of published paper sets, please refer to the original publications. For unpublished and directly provided data sets, we particularly thank the following funding bodies who have made our research possible: Natural Environment Research Council (NERC) in the UK (grants NE/N00109983/1, NE/D006538/1, NE/D006511/1, NE/C001737/1, and studentship NER/S/A/2003/11224); The British Antarctic Survey, and Antarctic Funding Initiative (project NER/G/S/2003/00024); The Ministry of Earth Sciences, India; The Strategic Priority Research Program of the Chinese Academy of Sciences (grant XDA11020601); US National Science Foundation Office of Polar Programs (award PLR-1440435); German Research Foundation (DFG), via Collaborative Research Centre 754 (SFB 754); The Federal Ministry of Education and Research (BMBF), Germany. European Research Council (Advanced Grant agreement No. 669947); The World Bank Millennium Science Initiative (grant IC 120019); National Natural Science Foundation of China (no. 41603122). We acknowledge BODC, PANGAEA, the US JGOFS Data System for the provision of archived data sets, and BODC for hosting the compiled dataset. Assembly and dissemination of this data set has taken place as part of our project ‘Iodide in the ocean: distribution and impact on iodine flux and ozone loss.’ (NERC NE/N009983/1). Earlier work on the compilation also took place as part of Dr Chance’s PhD thesis (studentship NER/S/A/2003/11224), and as unfunded work during the period 2007–2016. Dr Sherwen’s contribution was also partially supported by NE/L01291X/1.
我们要感谢所有现场活动中的研究团队、支持人员和船员,他们在碘化物样品的收集、运输和分析方面提供了宝贵的帮助。已发表论文集的资助详情请参阅原始出版物。对于未发表和直接提供的数据集,我们特别感谢以下资助机构,他们使我们的研究成为可能:英国自然环境研究委员会(NERC)(赠款 NE/N00109983/1、NE/D006538/1、NE/D006511/ 1、NE/C001737/1和学生奖学金NER/S/A/2003/11224);英国南极调查局和南极资助计划(项目NER/G/S/2003/00024);印度地球科学部;中国科学院战略性先导科技专项(XDA11020601);美国国家科学基金会极地项目办公室(奖项 PLR-1440435);德国研究基金会 (DFG),通过合作研究中心 754 (SFB 754);德国联邦教育和研究部 (BMBF)。欧洲研究理事会(预先拨款协议编号 669947);世界银行千年科学计划(赠款 IC 120019);国家自然科学基金(No. 41603122)。我们感谢 BODC、PANGAEA、美国 JGOFS 数据系统提供存档数据集,并感谢 BODC 托管编译的数据集。该数据集的汇编和传播是我们项目“海洋中的碘化物:分布及其对碘通量和臭氧损失的影响”的一部分。 (NERC NE/N009983/1)。早期的汇编工作也是 Chance 博士博士论文(学生 NER/S/A/2003/11224)的一部分,也是 2007 年至 2016 年期间无资助的工作。 Sherwen 博士的贡献也得到了 NE/L01291X/1 的部分支持。
Ethics declarations 道德宣言
Competing interests 利益竞争
The authors declare no competing interests.
作者声明没有竞争利益。
Additional information 附加信息
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
出版商说明施普林格·自然对于已出版地图和机构隶属关系中的管辖权主张保持中立。
Online-only Table 仅限在线表
仅在线提供 表 1 本次汇编中包含的数据集摘要。
Rights and permissions 权利和权限
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
开放获取本文根据知识共享署名 4.0 国际许可证获得许可,该许可证允许以任何媒介或格式使用、共享、改编、分发和复制,只要您对原作者和来源给予适当的认可,提供知识共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非材料的出处另有说明。如果文章的知识共享许可中未包含材料,并且您的预期用途不受法律法规允许或超出了允许的用途,则您需要直接获得版权所有者的许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/ 。
The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the metadata files associated with this article.
知识共享公共领域奉献豁免http://creativecommons.org/publicdomain/zero/1.0/适用于与本文相关的元数据文件。
About this article
Cite this article
Chance, R.J., Tinel, L., Sherwen, T. et al. Global sea-surface iodide observations, 1967–2018. Sci Data 6, 286 (2019). https://doi.org/10.1038/s41597-019-0288-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41597-019-0288-y