Review on comprehending and enhancing the initial Coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries 锂离子/钠离子电池负极材料初始库仑效率的理解与提升研究进展
Xin , Xiaohong Sun , Xudong , Fengru Fan , Shu Cai , Chunming Zheng , 辛 昕 , 孙 晓红 , 旭东 , 范 凤茹 , 蔡淑 , 郑 春明 ,Galen D. Stucky 盖伦·斯塔基(Galen D.Stucky) a School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, a 天津大学材料科学与工程学院, 先进陶瓷与机械加工技术教育部重点实验室, 天津,300072, PR China 300072,中国 Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, 93106, United States 加州大学化学与生物化学系,加利福尼亚州圣巴巴拉,93106,美国 Materials Department, University of California, Santa Barbara, CA, 93106, United States 加州大学材料系, 圣巴巴拉, CA, 93106, 美国 State Key Laboratory of Hollow-fiber Membrane Materials and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 天津天津天工大学化学化工学院, 中空纤维膜材料与膜工艺国家重点实验室,300387, PR China 300387,中国
A R T I C L E I N F O
Keywords: 关键字:
Lithium-ion battery 锂离子电池
Sodium-ion battery 钠离子电池
Initial Coulombic efficiency 初始库仑效率
Energy density 能量密度
Anode materials 阳极材料
Abstract 抽象
A B S T R A C T Developing lithium-ion batteries (LIBs)/sodium-ion batteries (SIBs) with high energy density is vital to meet increasingly demanding requirements for energy storage. The initial Coulombic efficiency (ICE) of LIBs and SIBs anode materials, which is associated with the amount of redundant cathode materials in full cells, is a key parameter for the improvement of energy density in batteries. Generally, the low ICE of anode materials is compensated by additional loading of cathode materials in current commercial LIBs. Nevertheless, because the specific capacity of common lithium-metal oxide cathodes is lower than that of anodes, an excessive amount of cathode materials ( for graphite anode material) must be added to overcome the insufficient ICE of anode materials, which leads to an appreciable reduction of energy density. Specifically, the reduction is about of total available capacity in commercial graphite electrodes; and, it can even be as high as for next-generation high-capacity anode materials (such as Si and Sn ). Much work has been devoted to exploring anode materials with high ICE in LIBs/SIBs; however, to the best of our knowledge, there does not yet exist a comprehensive review. Herein, we provide an overview of ICE of anode materials both in LIBs and SIBs. In this review, we first discuss the current understanding of the association between ICE and energy density. This is followed by a detailed assessment of the reasons of the initial capacity loss (low ICE) for various types of anode materials. A summary is then given of the growing number of methods and related fundamental mechanisms being used to enhance ICE. We conclude with a perspective on the current challenges and promising research directions that might lead to further improvements of the ICE and the fabrication of higher-energy-density batteries. 开发具有高能量密度的锂离子电池(LIB)/钠离子电池(SIB)对于满足日益苛刻的储能要求至关重要。锂离子电池和SIBs负极材料的初始库仑效率(ICE)与全电池中冗余正极材料的数量有关,是提高电池能量密度的关键参数。通常,负极材料的低ICE通过当前商用锂离子电池中阴极材料的额外负载来补偿。然而,由于普通锂金属氧化物正极的比容量低于阳极,因此必须添加过量的正极材料( 用于石墨负极材料)以克服阳极材料的ICE不足,从而导致能量密度明显降低。具体来说,减少的大约 是商用石墨电极的总可用容量;而且,它甚至可以与 下一代高容量负极材料(如Si和Sn)一样高。在LIBs/SIBs中,已经投入了大量工作来探索具有高ICE的负极材料;然而,据我们所知,目前还没有一项全面的审查。在此,我们概述了锂离子电池和SIB中负极材料的ICE。在这篇综述中,我们首先讨论了目前对ICE与能量密度之间关系的理解。接下来,对各种类型的负极材料的初始容量损失(低ICE)的原因进行了详细评估。然后总结了用于增强ICE的越来越多的方法和相关基本机制。 最后,我们展望了当前的挑战和有希望的研究方向,这些挑战可能导致内燃机的进一步改进和更高能量密度电池的制造。
1. Introduction 1. 引言
Due to the rapid consumption of fossil fuels and the accompanying serious environmental issues, the utilization of new sustainable and environmentally friendly energy, such as wind, solar, geothermal, water, and tidal energy, has attracted great attentions in the past decades [1-6]. However, the characteristics of unpredictability, capacity instability and intermittence impede the exploitation of these energy sources [7-9]. Thus, the exploration of high-performance energy storage devices is urgently required in order to most efficiently utilize renewable energy sources. Among the various available energy storage systems, rechargeable LIBs with their high energy conversion efficiency, stable cyclability, simple maintenance, and adaptable power/energy features have become one of the most widely used candidates [10-16]. LIBs have been successfully applied in many fields ranging from portable electronics and electric vehicles to large-scale smart grids [17-22]. Nevertheless, with the increasing need for energy storage, it is more and more necessary to develop LIBs with substantially better electrochemical 由于化石燃料的快速消耗以及随之而来的严重环境问题,风能、太阳能、地热能、水能和潮汐能等新型可持续环保能源的利用在过去几十年中引起了人们的极大关注[1-6]。然而,不可预测性、容量不稳定性和间歇性等特点阻碍了这些能源的开发[7-9]。因此,为了最有效地利用可再生能源,迫切需要探索高性能储能设备。在各种可用的储能系统中,可充电锂离子电池具有能量转换效率高、可循环性稳定、维护简单、电力/能量适应性强等特点,成为应用最广泛的候选系统之一[10-16]。锂离子电池已成功应用于从便携式电子产品和电动汽车到大规模智能电网等多个领域[17-22]。然而,随着对储能需求的增加,越来越有必要开发具有明显更好的电化学性质的锂离子电池
Scheme 1. The relationship between causes of low ICE, ICE and energy density. 方案 1.低ICE,ICE和能量密度的原因之间的关系。
performance, including higher power/energy density, longer lifespan, and faster charge/discharge rates, especially for transportation applications [23-29]. In addition to LIBs, SIBs are being considered as potential alternatives for large-scale stationary energy storage applications, and have also attracted worldwide interest over the past few years due to the rich reserves and low cost of sodium resources [29-37]. However, the practical application of SIBs is still undesirable owing to their unsatisfactory electrochemical performance [38-40]. 性能,包括更高的功率/能量密度、更长的使用寿命和更快的充放电速率,特别是对于运输应用[23-29]。除锂离子电池外,系统重要性银行也被认为是大规模固定式储能应用的潜在替代品,并且由于钠资源储量丰富且成本低廉,在过去几年中也引起了全世界的兴趣[29-37]。然而,由于SIBs的电化学性能不理想,其实际应用仍然不理想[38-40]。
As an essential part of rechargeable batteries, anode materials play an important role in electrochemical performance for both LIBs and SIBs. Currently, the most widely used commercial anode material for LIBs is graphite, which has a relative limited theoretical capacity of 372 and practical capacity of [41-44]. However, commercial graphite has limitations for the storage of sodium-ions due to the large atomic radius of sodium-ions [45-48]. Hence, in order to successfully meet the increasingly higher demands for LIBs equivalent or better energy storage, and to resolve the practical application for SIBs, the creation of anode materials that have commercial electrochemical 负极材料作为可充电电池的重要组成部分,对锂离子电池和系统实科电池的电化学性能都起着重要作用。目前,锂离子电池使用最广泛的商业负极材料是石墨,其理论容量相对有限,为372 ,实际容量为 [41-44]。然而,由于钠离子的原子半径较大,商业石墨在钠离子的储存方面存在局限性[45-48]。因此,为了成功满足对锂离子电池等效或更好储能的日益增长的要求,并解决SIB的实际应用,创造了具有商业电化学的阳极材料
(a)
- Graphite/NCA
O Binder
Electrolyte
:8 Conductive carbon
Separator
Current collector
(c) (三)
(d) (四)
Fig. 1. The influence of initial capacity loss on energy density. (a) Schematic depiction of an 18650-type cell. (b) The bar chart demonstrates the specific energies and energy density for the calculations. (Step 1 indicates the theoretical capacity and Step 2 indicates the practical capacity in consideration of the anode and cathode balancing due to the effect of initial capacity loss). Adapted with permission from Refs. [41], Richard Schmuch et al., Adv. Energy Mater., Copyright 2018, John Wiley and Sons. (c) The typical schematic diagram of the sodium-ion full cell. Reprinted from Nano Energy, 28, Wenhao Ren et al., Cathodic polarization suppressed sodium-ion full cell with a 3.3V high-voltage, 8, Copyright (2016), with permission from Elsevier. (d) Sodium-ion storage properties including energy density and power density of full cells reported. Adapted from Ref. [61] with permission from The Royal Society of Chemistry. 图 1.初始容量损失对能量密度的影响。(a) 18650型细胞的示意图。(b) 条形图显示了计算的比能量和能量密度。(步骤 1 表示理论容量,步骤 2 表示考虑由于初始容量损失影响而导致的阳极和阴极平衡的实际容量)。经 Refs 许可改编。[41],Richard Schmuch等人,Adv. Energy Mater.,版权所有 2018,John Wiley and Sons。(c) 钠离子全电池的典型示意图。转载自Nano Energy,28,Wenhao 任等人,阴极偏振抑制钠离子全电池与3.3V高压,8,版权所有(2016),经爱思唯尔许可。(d) 报告的钠离子储存特性,包括能量密度和全电池的功率密度。改编自参考文献[61],经英国皇家化学学会许可。
Table 1 表1
Summary of ICE for various anode materials in LIBs/SIBs and the reasons for initial capacity loss. 锂离子电池/SIB中各种负极材料的ICE总结以及初始容量损失的原因。
Type of material 材料类型
Material 材料
ICE
Reason for initial capacity loss 初始容量损失的原因
Electrolyte 电解质
Batteries 电池
Ref. 裁判。
插层型
intercalation-
type
hard carbon 硬碳
62.0
formation of solid-electrolyte interface (SEI) layer 固体电解质界面(SEI)层的形成
in 在
LIBs 锂离子电池
[62]
graphite 石墨
85.1
formation of SEI layer SEI层的形成
in 在
LIBs 锂离子电池
[63]
无定形碳
amorphous
carbon
75.0
formation of SEI layer SEI层的形成
in 在
SIBs 系统重要性银行
[64]
hard carbon 硬碳
53.4
SEI层的形成和电极表面电解质的分解
formation of SEI layer and decomposition of the electrolyte on the
surfaces of the electrode
in 在
SIBs 系统重要性银行
[65]
无定形碳
amorphous
carbon
48.1
formation of SEI layer SEI层的形成
在 :
in :
SIBs 系统重要性银行
[66]
41.5
formation of SEI layer SEI层的形成
in 在
SIBs 系统重要性银行
[67]
alloying-type 合金型
49.0
irreversible reaction between and lithium-ions 锂离子之间的 不可逆反应
in 在
LIBs 锂离子电池
52.4
low oxygen reutilization due to the irreversibility of 由于不可逆性, 氧气再利用率低
在 :
in :
LIBs 锂离子电池
53.5
和 Na 之间的 不可逆反应和 SEIlayer 的形成
irreversible reaction between and Na and formation of SEI
layer
在FEC中
in
FEC
SIBs 系统重要性银行
43.9
formation of inactive particles 非活性颗粒的形成
in 在
SIBs 系统重要性银行
52.4
coarsening of Sn in the mixture 混合物中Sn的粗化
in 在
LIBs 锂离子电池
[55]
62.0
formation of SEI layer and SEI层的形成和
以 1:1:1 (V/V/V) EC:DMC:DEC 为单位
in 1:1:1 (v/v/v) EC:DMC:
DEC
LIBs 锂离子电池
40.0
formation of SEI layer SEI层的形成
在 :
in :
LIBs 锂离子电池
[73]
43.0
formation of and 和
在 :D EC
in :
DEC
LIBs 锂离子电池
[74]
Si 四
58.0
formation of SEI layer SEI层的形成
在FEC中
in
FEC
LIBs 锂离子电池
[75]
Si 四
76.1
formation of SEI layer SEI层的形成
in 在
LIBs 锂离子电池
48.9
formation of matrix 矩阵的 形成
在FEC中
in
FEC
LIBs 锂离子电池
[77]
Si 四
83.3
surface oxidation and poor crystallinity of nano-sized Si 纳米硅的表面氧化和结晶度差
在FEC中
in
FEC
LIBs 锂离子电池
Si 四
lithium trapping 锂捕获
在VC中
in
VC
LIBs 锂离子电池
[79]
conversion-type 转换类型
68.6
formation of SEI layer and SEI层的形成和
in 在
LIBs 锂离子电池
[80]
81.4
formation of SEI layer and SEI层的形成和
在 :D EC
in :
DEC
LIBs 锂离子电池
[81]
37.0
aggregation of nano-sized electrode materials 纳米尺寸电极材料的聚集
in 在
LIBs 锂离子电池
[82]
60.0
formation of SEI layer SEI层的形成
in 在
LIBs 锂离子电池
[83]
76.0
SEI层的形成和聚合物层的可逆形成和分解
formation of SEI layer and the reversible formation and
decomposition of polymeric layer
in 在
LIBs 锂离子电池
66.0
electrolyte decomposition and formation of SEI layer 电解质分解及SEI层的形成
in 在
LIBs 锂离子电池
[85]
MnS 锰
72.1
formation of SEI layer and irreversible insertion of lithium-ions SEI层的形成和锂离子的不可逆插入
12月
in
DEC
LIBs 锂离子电池
[86]
68.3
formation of SEI layer SEI层的形成
in DEGDME 在DEGDME中
SIBs 系统重要性银行
[87]
FeS 铁硫
68.9
formation of SEI layer and irreversible insertion of sodium-ions SEI层的形成和钠离子的不可逆插入
在FEC中
in
FEC
SIBs 系统重要性银行
79.5
irreversible side reactions and absorption of sodium-ions 不可逆的副反应和钠离子的吸收
在FEC中
in
FEC
SIBs 系统重要性银行
[89]
65.6
formation of SEI layer and electrode decomposition SEI层的形成和电极分解
在 :D MC 中
in :
DMC
LIBs 锂离子电池
[90]
performance offers a great opportunity. 性能提供了一个很好的机会。
Key variables that must be taken into consideration in order to obtain a satisfactory electrochemical performance for anode materials include ICE, cycling performance, rate capability, and average charge voltage. The methods and mechanisms to modify these parameters have attracted a great deal of attention during the past decades, and some excellent reviews have summarized the desired realization of stability and the enhancement of the rate capabilities of various anodes for LIBs/SIBs. This has provided vital and precious values for further modification of anode materials for LIBs/SIBs [49-54]. However, to the best of our knowledge, there is no review focusing in detail on ICE as a key variable for practical applications of various anode materials for LIBs/SIBs. Here we provide a comprehensive overview of ICE for different kinds of anode materials in LIBs/SIBs. We focus on (i) the association between ICE and energy density, (ii) the cause of low ICE for various types of anode materials, and (iii) various methods and related fundamental mechanisms being used to enhance ICE with specific reasons for various anode materials. We end this review with a perspective on the future challenges and potential research directions for the anode materials that might lead to further improvements of ICE and the fabrication of high-energy-density batteries. 为了获得令人满意的负极材料电化学性能,必须考虑的关键变量包括内燃机、循环性能、倍率能力和平均充电电压。在过去的几十年中,修改这些参数的方法和机制引起了人们的广泛关注,一些优秀的综述总结了LIB/SIBs各种阳极的稳定性和速率能力的增强。这为锂离子电池/SIB的阳极材料的进一步改性提供了重要而宝贵的价值[49-54]。然而,据我们所知,目前还没有综述将ICE作为LIBs/SIBs各种负极材料实际应用的关键变量进行详细讨论。在这里,我们全面概述了 LIB/SIB 中不同类型负极材料的 ICE。我们专注于(i)ICE与能量密度之间的关联,(ii)各种类型负极材料低ICE的原因,以及(iii)用于增强ICE的各种方法和相关基本机制,以及各种负极材料的特定原因。最后,我们展望了负极材料的未来挑战和潜在研究方向,这些挑战和潜在研究方向可能导致内燃机的进一步改进和高能量密度电池的制造。
2. The relationship between ICE and energy density 2. 内燃机与能量密度的关系
The ICE of anode materials in half cells can be calculated from the ratio of initial charge capacity to initial discharge capacity, which defines the ability of anode materials to prevent the occurrence of irreversible reactions and the loss of irreversible capacity. This ability is of great importance because it is associated with the practical application for anode materials in a battery in terms of available energy density. In general, a low ICE for the anode material can be attributed to various causes, as shown in Scheme 1 and will lead to a low energy density for a battery. 半电池中负极材料的ICE可以从初始充容量与初始放电容量的比值计算出来,它定义了负极材料防止不可逆反应发生和不可逆容量损失的能力。这种能力非常重要,因为它与电池中阳极材料的实际应用有关,就可用能量密度而言。一般来说,阳极材料的低ICE可以归因于各种原因,如方案1所示,并导致电池的能量密度低。
For example, the low ICE of anode materials is compensated for in current commercial LIBs by additional loading of cathode materials [55]. Nevertheless, as common lithium-metal oxide cathodes have lower specific capacity ( ) than that of anodes, excessive amount of cathode materials ( for a graphite anode material) must be 例如,在当前的商业锂离子电池中,负极材料的低ICE可以通过增加阴极材料的负载来补偿[55]。然而,由于普通锂金属氧化物阴极的比容量( )低于阳极,因此过量的阴极材料( 对于石墨负极材料)必须
(a) (一)
(b) (二)
(c) (三)
Fig. 2. Formation of SEI layer. (a) Schematic open-circuit energy diagram of an electrolyte. (b) Computed reduction potential for several common solvents, additives, and salts. Data compiled from Delp et al. Reprinted from Electrochim. Acta, 209, Samuel A. Delp et al., Importance of reduction and oxidation stability of high voltage electrolytes and additives, 13, Copyright (2016), with permission from Elsevier. (c) Schematic diagram of SEI on graphite particle. Reprinted from J. Power Sources, 153, Kristina Edström et al., A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries, 5, Copyright (2006), with permission from Elsevier. 图 2.SEI层的形成。(a) 电解质的开路能量示意图。(b) 几种常见溶剂、添加剂和盐的计算还原潜力。数据汇编自 Delp 等人。转载自 Electrochim。Acta, 209, Samuel A. Delp et al., Importance of reduction and oxidation stability of high voltage electrolytes and additives, 13, 版权所有 (2016),经爱思唯尔许可。(c) 石墨颗粒SEI示意图。转载自 J. Power Sources, 153, Kristina Edström et al., A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries, 5, Copyright (2006), with permission from Elsevier.
added to overcome the insufficient ICE of anode materials, which leads to an appreciable reduction of energy density [56]. Specifically, the reduction is about of total available capacity in commercial graphite electrodes and it can even reach to as high as for next-generation high-capacity anode materials (such as Si) [57-59]. Betz et al. compared the difference of energy densities in LIBs by using calculations based on theoretical and practical situations [41]. As shown in Fig. 1, they used (NCA) as the cathode material and graphite as the anode material in 18650-type cell for a LIB system. The theoretical energy content of the full cell at the active material level amounted to and , respectively. However, when taking the ICE effect of graphite and balancing the amount of anode and cathode material into consideration, the useable energy content at the active material level of a graphite/NCA battery cell decreases to and , respectively. As for the practical application of SIBs, the ICE of anode materials has similar effect on energy density with that of LIBs [60]. Consequently, to develop LIBs/SIBs with higher energy density, it is necessary and urgent to put more effort into the enhancement of ICE for anode materials. 添加以克服阳极材料的ICE不足,这导致能量密度明显降低[56]。具体而言,这种减少大约 是商用石墨电极的总可用容量,甚至可以达到与下一代高容量负极材料(如Si)一样高 的降低[57-59]。Betz等人通过基于理论和实际情况的计算比较了锂离子电池中能量密度的差异[41]。如图1所示,他们在LIB系统的18650型电池中使用 (NCA)作为阴极材料,石墨作为阳极材料。在活性物质水平上,全电池的理论能量含量分别为 和 。然而,当考虑到石墨的ICE效应并平衡阳极和阴极材料的数量时,石墨/NCA电池的活性材料水平上的可用能量含量分别降低到 和 。在SIB的实际应用中,负极材料的ICE对能量密度的影响与LIB相似[60]。因此,为了开发具有更高能量密度的LIB/SIBs,有必要且迫切需要加大对阳极材料ICE的增强力度。
3. Causes of low ICE 3. ICE低的原因
Until now, broadly three types of reaction mechanisms have been reported for anode materials in LIBs and SIBs. In this part, we will present the current research status of ICE (as shown in Table 1) and analyze the underlying causes of low ICE for various types of anode materials (anode materials are sorted by reaction mechanisms) to give an exhaustive understanding of why and how the irreversible capacity loss happens in the initial cycle. 到目前为止,锂离子电池和SIB中的负极材料大致有三种类型的反应机理。在这一部分中,我们将介绍ICE的现状(如表1所示),并分析各类负极材料(负极材料按反应机理排序)ICE低的根本原因,以详尽地了解初始循环中不可逆容量损失发生的原因和方式。
Intercalation-type anode materials mainly include carbon materials (such as commercial graphite and hard carbon) and Ti-based materials (such as , and ). The mechanism of intercalation-type anode materials is based on the reversible intercalation and extraction of lithium-ions/sodium-ions in the lattice of a host anode material with layered structures (e. g., 6C (graphite) ). For intercalation-type anode materials, for both LIBs and SIBs, there are mainly two causes of irreversible capacity loss during the initial cycling process: (i) the formation of a solid-electrolyte interface (SEI) layer and (ii) the irreversible absorption of lithium-ions or sodium- 插层型负极材料主要包括碳材料(如商业石墨和硬碳)和钛基材料(如 、和 )。插层型负极材料的机理是基于具有层状结构(例如6C(石墨) )的主体负极材料晶格中锂离子/钠离子的可逆插层和萃取。对于插层型负极材料,无论是锂离子电池还是SIBs,在初始循环过程中造成不可逆容量损失的原因主要有两个:(i)固体电解质界面(SEI)层的形成和(ii)锂离子或钠的不可逆吸收。
Fig. 3. Some causes of initial capacity loss for conversion-type anode materials. (a) FTIR spectra of before cycling, after first discharge, and after first cycle showing that both the first discharged specimen and the first charged specimen have , and . (b) Charge-discharge curves of confirming the occurrence of irreversible electrochemical reaction. Reprinted with permission from Refs. [80], J. Electrochem. Soc., 150, A1539 (2003). Copyright 2003, The Electrochemical Society. (c) Schematic illustration of the sodiation and desodiation process for the two electrodes with different binders toward different results. Reproduced from Ref. [98] with permission from The Royal Society of Chemistry. 图 3.转换型负极材料初始容量损失的一些原因。(a) 循环 前、首次放电后和第一次循环后的 FTIR 光谱显示,第一放电试样和第一带电试样均具有 和 。(b)确认不可逆电化学反应发生的充放电曲线 。经 Refs 许可转载。[80],J.电化学。Soc., 150, A1539 (2003)。版权所有 2003,电化学学会。(c) 两种电极的钠化和脱钠过程示意图,其粘合剂不同,结果不同。经英国皇家化学学会许可,转载自参考文献[98]。
ions within the host materials. Extensive research has been done in order to understand the mechanism of formation of SEI layers in both lithium ion and sodium ion batteries [62-67]. 主体材料中的离子。为了了解锂离子和钠离子电池中SEI层的形成机制,已经进行了广泛的研究[62-67]。
Fig. 2a shows the relative electron energies of the anode, electrolyte, and cathode of a thermodynamically stable redox pair in LIBs. In the figure, and are the electrochemical potentials of the anode and cathode respectively. The stability window of the electrolyte is the difference between the energy of the LUMO and HOMO. This window is shown as . If is above the LUMO energy, then it will reduce the electrolyte on the anode, and, likewise, if is below the HOMO energy, it will oxidize the electrolyte on the cathode [91]. Fig. 2b presents the computed reduction potential for several common solvents, additives, and salts. For graphite, the SEI layer contains an inorganic layer inside, porous organic layer outside and the presence of LiF crystals as presented in Fig. 2c [92,93]. Zhang et al. found that the ICE of graphite is for a graphite cell, and ascribed the initial capacity loss to the formation of a SEI layer [94]. Based on their study, they found that the formation of a SEI layer on the graphite electrode went through two major stages. The first stage underwent at a voltage of greater than 0.25 图2a显示了LIB中热力学稳定的氧化还原对的阳极、电解质和阴极的相对电子能。在图中, 和 分别是阳极和阴极的电化学势。电解质的稳定窗口是 LUMO 和 HOMO 的能量之差。此窗口显示为 。如果 高于LUMO能量,则会减少阳极上的电解质,同样,如果 低于HOMO能量,则会氧化阴极上的电解质[91]。图2b显示了几种常见溶剂、添加剂和盐的计算还原电位。对于石墨,SEI层内部包含无机层,外部包含多孔有机层,并且存在LiF晶体,如图2c所示[92,93]。Zhang等人发现石墨的ICE是 针对 石墨电池的,并将初始容量损失归因于SEI层的形成[94]。根据他们的研究,他们发现石墨电极上SEI层的形成经历了两个主要阶段。第一级在电压大于0.25的情况下进行
V , and of the irreversible capacity took place in this stage. The second stage was between 0.25 V and 0.04 V during the intercalation of lithium-ions into the graphite electrode, which accounts for of the irreversible capacity. Agubra et al. [95] summarized the formation reactions of the SEI layer on the graphite anode for different PC-based/EC-based electrolytes and commonly used carbonate solvents by various characterization methods, in order to determine how the SEI layer is formed and what the SEI layer is composed of under different conditions. For instance, the SEI layer can be composed of , , and LiF . As for the irreversible absorption of lithium-ions or sodium-ions, it is related to the properties of the host material itself, depending on whether the host material can offer enough space or energy for ions to be extracted. For example, in order to identify the other sources of ICE loss besides the formation of a SEI layer, Mitlin and co-workers utilized pseudographitic carbon in LIBs and SIBs [96]. They found by analysis of XRD, XPS, and Raman data that irreversible lithium-ions/sodium-ions adsorption takes place on graphene edges, domain surfaces, or in the amorphous regions between the pseudographitic domains, all of which are expected to lead to the initial capacity V,并且 在这个阶段发生了不可逆的能力。在锂离子插入石墨电极期间,第二级在0.25 V和0.04 V之间,这是 不可逆容量的原因。Agubra等[95]通过各种表征方法总结了不同PC基/EC基电解质和常用碳酸盐溶剂在石墨阳极上SEI层的形成反应,以确定SEI层是如何形成的,以及SEI层在不同条件下由什么组成。例如,SEI 层可以由 、 和 LiF 组成。至于锂离子或钠离子的不可逆吸收,则与主体材料本身的性质有关,取决于主体材料是否能提供足够的空间或能量来提取离子。例如,为了确定除SEI层形成之外的其他ICE损失来源,Mitlin及其同事在LIB和SIB中使用了假石墨碳[96]。他们通过分析XRD、XPS和拉曼数据发现,不可逆的锂离子/钠离子吸附发生在石墨烯边缘、畴表面或伪石墨畴之间的非晶区域,所有这些都有望导致初始容量
(a) (一)
(b) (二)
Fig. 4. Some causes of initial capacity loss for alloying-type anode materials. (a) Ball-stick models of crystal structures of and : lithium, green: silicon, purple: oxygen). Reproduced from Ref. [100] with permission from The Royal Society of Chemistry. (b) The relationship of (left side) and (right side) with particle size (d) of Sn in a mixture. (c) Schematic drawing shows the structure and phase evolution of a -based electrode during initial discharge and charge. (d) Schematic diagram for the structural evolution of hierarchical . Reproduced from Refs. [101] with permission from The Royal Society of Chemistry. 图 4.合金型负极材料初始容量损失的一些原因。(a) 和 :锂,绿色:硅,紫色:氧的晶体结构的球棒模型)。经英国皇家化学学会许可,转载自参考文献[100]。(b) 混合物中Sn 的(左侧)和 (右侧)与粒径(d)的关系。(c) 示意图显示了基于 电极的初始放电和充电过程中的结构和相演化。(d) 层次结构演化示意图 。转载自参考文献。[101] 经英国皇家化学学会许可。
loss. 损失。
3.2. Conversion-type anode materials 3.2. 转化型负极材料
Conversion-type anode materials are usually transition-metal oxides, sulfides, selenides, nitrides, and phosphides that are of relatively low cost and relatively high capacity, such as , and . The conversion-type anode materials can store lithium/sodium through reversible replacement redox reactions between lithiumions/sodium-ions and transition-metal cations (e. g., ). For this class of materials, in both LIBs and SIBs, there are mainly four reasons causing the irreversible capacity loss during the initial cycling process: (i) the formation of SEI layer, (ii) the irreversible decomposition of , (iii) the irreversible absorption of lithium-ions or sodium-ions within the host materials, and (iv) adverse side reactions between inactive components and lithium/sodium metal. The formation of the SEI layer is associated with electrolyte decomposition on the surface of active materials, so that a larger contact area between conversion-type anode and the electrolyte can cause a greater amount of SEI layer formation. For the irreversible decomposition of , it is unavoidable because of the nature of the conversion reaction mechanism, the electrochemically inactivity and the inappropriate reaction dynamics of . For example, Kang et al. considered the use of as an anode material candidate for LIBs [80]. They found that has a crucial problem in view of its ICE, which just reaches . The reasons for such a low value of ICE were summarized in detail. First, the SEI layer is formed on the surface of the anode material during the first discharging from 1.2 V to 0.2 V , and it acts as a lithium-ion trap during this first charging. Second, based on the conversion reaction mechanism, the electrochemical reaction leads to the formation of (as shown in Fig. 3a). However, is known as an electrochemically inactive material with a lack of reversible decomposition of during the first charging 转化型负极材料通常是成本相对较低、容量相对较高的过渡金属氧化物、硫化物、硒化物、氮化物和磷化物,如 、 和 。转化型阳极材料可以通过锂离子/钠离子和过渡金属阳离子(例如) 之间的可逆置换氧化还原反应来储存锂/钠。对于这类材料,无论是在锂离子电池还是SIB中,在初始循环过程中造成不可逆容量损失的原因主要有四个:(i)SEI层的形成,(ii)锂离子或钠离子在主体材料中的不可逆 分解,以及(iv)非活性组分与锂/钠金属之间的不良副反应。SEI层的形成与活性材料表面的电解质分解有关,因此转化型阳极与电解质之间的接触面积越大,SEI层的形成量就越大。对于 的不可逆分解,由于转化反应机理的性质、电化学不活泼和反应 动力学的不适当,是不可避免的。例如,Kang等人考虑使用锂 离子电池作为阳极材料候选[80]。他们发现 ,鉴于其 ICE,它有一个关键问题,它刚刚达到 .详细总结了ICE值如此之低的原因。首先,在从1.2 V到0.2 V的第一次放电过程中,在阳极材料的表面形成SEI层,并在第一次充电期间充当锂离子阱。 其次,根据转化反应机理,电化学反应导致形成( 如图3a所示)。然而, 它被称为电化学非活性材料, 在第一次充电期间缺乏可逆分解
process, which results in the decrease of ICE (as seen in Fig. 3b). A similar explanation for the low value of ICE of for as an anode material for LIBs was verified by Zhang et al. through cyclic voltammetry (CV) profile and discharge-charge profiling analysis [82]. The irreversible absorption of lithium-ions/sodium-ions may occur in anode materials with the formation of a layered structure. Defects within such layered structure materials can easily trap lithium-ions/sodium-ions to give undesirable structural stability, which is similar to the formation of in lithium-ion intercalation-type anode materials as mentioned above. The adverse side reactions between inactive components and lithium/sodium metal are mainly attributed to the presence of the conductive agent and binder, which is necessary for the fabrication of electrodes [97]. 过程,导致ICE的降低(如图3b所示)。Zhang等人通过循环伏安法(CV)剖面和放电荷剖面分析验证了 ICE 作为锂离子电池负极材料的低值的类似解释[82]。锂离子/钠离子的不可逆吸收可能发生在形成层状结构的阳极材料中。这种层状结构材料中的缺陷很容易捕获锂离子/钠离子,从而产生不良的结构稳定性,这与上述锂离子插层型负极材料 的形成相似。非活性组分与锂/钠金属之间的不良副反应主要归因于导电剂和粘合剂的存在,这是制造电极所必需的[97]。
Xie et al. explored the sodium storage capability of , a layered material with S-Mo-S motifs stacked together by van der Waals forces [89]. They indicated that the low ICE of below for originates from: (i) the formation of SEI layers caused by electrolyte decomposition; (ii) adverse side reactions between inactive components, such as additive like FEC (fluoroethylene carbonate) and sodium metal; and (iii) considerable unwanted and irreversible side reactions, such as the irreversible electrochemical adsorption of sodium-ions (non-SEI related). Zhou et al. [98] studied the effect of binders on the formation of SEI layer and found that the SEI film for the NFNTs-GA (NFNTs: nanotubes; GA: gum arabic) electrode is much thinner than that of NFNTs-PVDF (PVDF: polyvinylidene fluoride) during the first discharge, indicating the fewer side reactions between the electrode and electrolyte for the NFNTs-GA electrode. This is because the GA binder can hinder the decomposition of the additive of FEC into NaF. Xie等人探索 了由范德华力堆叠在一起的具有S-Mo-S基序的层状材料的钠储存能力[89]。他们指出,以下 的 低ICE源于:(i)电解质分解引起的SEI层的形成;(ii)非活性成分之间的不良副反应,例如FEC(氟碳酸乙烯酯)和金属钠等添加剂;(iii)大量不需要的和不可逆的副反应,例如钠离子的不可逆电化学吸附(与SEI无关)。周等[98]研究了粘结剂对SEI层形成的影响,发现SEI膜为NFNTs-GA(NFNTs: 纳米管;GA:阿拉伯胶)电极在第一次放电时比NFNTs-PVDF(PVDF:聚偏二氟乙烯)的电极薄得多,表明NFNTs-GA电极的电极和电解液之间的副反应较少。这是因为GA粘结剂会阻碍FEC添加剂分解为NaF。
3.3. Alloying-type anode materials 3.3. 合金型负极材料
Alloying-type anode materials make use of group IV and V elements, including and Sb redundant, and can achieve extremely 合金型负极材料利用IV族和V族元素,包括 和Sb冗余,可以达到极高的效果
Table 2 表2
Methods and related mechanisms to improve ICE based on different causes of initial capacity loss. 基于初始容量损失的不同原因改进ICE的方法和相关机制。
初始容量损失的原因
Cause of initial
capacity loss
Material 材料
Method to improve ICE 提高ICE的方法
Mechanism 机制
未经修饰的 ICE (%)
ICE without
modification (%)
改性后的 ICE (%)
ICE after
modification (%)
Batteries 电池
Ref. 裁判。
formation of SEI layer SEI层的形成
硬碳
hard
carbon
hard carbon composite 硬碳复合材料
decompose SEI layer 分解 SEI 层
62.0
96.0
LIBs 锂离子电池
graphite 石墨
coating 衣
artificial SEI layer 人工SEI层
85.1
90.7
LIBs 锂离子电池
Si 四
3D HPSFs 3D HPSF
Minimize meso- and micropores 最小化中孔和微孔
88.8
92.7
LIBs 锂离子电池
[102]
Si 四
coating 衣
artificial SEI layer 人工SEI层
65.3
70.8
LIBs 锂离子电池
[103]
类似saqima的次级微观结构
saqima-like secondary
microstructure
SEI层仅在外表面形成
SEI layer only formed on the
outer surface
61
85.2
LIBs 锂离子电池
[104]
P
confine read P in porous carbon 将读数限制在多孔碳中
reduce surface area 减少表面积
68.2
92.2
SIBs 系统重要性银行
[105]
硬碳
Hard
carbon
热解和碳化蔗糖和酚醛树脂的混合物
pyrolyze and carbonize the mixture
of sucrose and phenolic resin
reduce surface area 减少表面积
70.0
87.0
SIBs 系统重要性银行
[106]
Si 四
3D无定形 纳米膜
3 D amorphous
nanomembranes
抑制SEI层的形成
suppress the formation of SEI
layer
57.0
70.0
LIBs 锂离子电池
[107]
carbon coating 碳涂层
reduce interface area 减少接口面积
40
65.9
LIBs 锂离子电池
不可逆氧化物的形成
formation of
irreversible oxides
add Ni to 将 Ni 添加到
decompose 分解
68.63
79.07
LIBs 锂离子电池
control the x value in 控制 x 值
减少锂离子的氧化
reduce the oxidation of lithium-
ions
43
63
LIBs 锂离子电池
nanocubes 纳米立方体
Co 原子可逆地与
Co atoms reversibly react with
52.4
71.1
LIBs 锂离子电池
C/Sn/还原氧化石墨烯 (rGO)
C/Sn/reduced graphene oxide
(rGO)
金属Sn不形成非活性物质
metal Sn does not form inactive
substances
43.9
70.3
SIBs 系统重要性银行
SiO 碳化硅
石墨碳均匀封装
homogeneous encapsulation by
graphite carbon
防止电解质与活性材料直接接触
prevent direct contact between
electrolytes and active materials
54.8
62.6
LIBs 锂离子电池
[99]
纳米颗粒锚定在N掺杂石墨烯上
nanoparticles anchoring
on N -doped graphene
facilitate the reversibility of 促进
62
78
LIBs 锂离子电池
composites 复合材料
可以促进Liextracting
can promote the Li
extracting
48.9
78
LIBs 锂离子电池
活性纳米材料的粗化
coarsening of active
nano-materials
composite and 复合材料 和
suppress the aggregation of Sn 抑制Sn的聚集
49
74
LIBs 锂离子电池
add 加
suppress the aggregation of Sn 抑制Sn的聚集
52.4
83.2
LIBs 锂离子电池
graphene composite 石墨烯复合材料
suppress the aggregation of Sn 抑制Sn的聚集
51.5
87.1
LIBs 锂离子电池
[108]
锚定在石墨烯气凝胶上
anchored on graphene
aerogel
restrain the aggregation of 抑制
63
80
LIBs 锂离子电池
[109]
Co additives 辅添加剂
inhibit Sn coarsening 抑制Sn粗化
52.4
80.8
LIBs 锂离子电池
[110]
carbon nanoboxes 碳纳米盒
prevent the coarsening of Sn 防止Sn粗化
67.8
90.8
SIBs 系统重要性银行
[111]
不可逆的副反应 电/离子转移能力差
irreversible side
reactions
poor electro/ion
transfer capability
without adding FEC 无需添加 FEC
limit side reactions 限制副反应
63
78
SIBs 系统重要性银行
[112]
Ge 通用 电气
high crystallinity 高结晶度
free of surface oxide layer 无表面氧化层
-
91.8
LIBs 锂离子电池
[113]
nanotube composite 纳米管复合材料
减少与电解质之间的 接触
diminishes the contact between
and electrolyte
-
92
SIBs 系统重要性银行
[114]
Si 四
enhance the crystallinity 提高结晶度
抑制衍生自
suppress side reactions derived
from
83.9
89
LIBs 锂离子电池
硬碳
Hard
carbon
reductive strategy 还原策略
减少含氧共价键和悬空键
reduce oxygen-containing
covalent bond and dangling
bonds
66
79
SIBs 系统重要性银行
[115]
Si 四
空气氧化镁化
air-oxidation demagnesiation of
保护材料免受电解液副反应的影响
protect
material from side reaction with
electrolyte
-
88
LIBs 锂离子电池
[116]
composite 复合
优异的导电性可阻止不可逆的相变
excellent conductivity impede
irreversible phase transition
-
95
LIBs 锂离子电池
[117]
hydrothermal and calcination 水热和煅烧
enhance conductivity 增强导电性
81.4
96.3
LIBs 锂离子电池
[81]
composites. 复合材料。
enhance conductivity 增强导电性
80.4
LIBs 锂离子电池
[118]
microclews 微切口
促进离子和电子传输
facilitate ion and electron
transport
-
82
LIBs 锂离子电池
[119]
high capacities, with a mechanism based on alloying reactions that take place between lithium/sodium and the anode materials (e. g., . For this type of material, for both LIBs and SIBs, there are primarily three causes of irreversible capacity loss during the initial cycling process: (i) formation of SEI layers, (ii) formation of some irreversible oxides (see below) generated during the electrochemical reaction, and (iii) an incomplete reversible reaction due to coarsening of active nanocrystalline materials formed during the process of volume expansion. In addition, for Si-based anodes in LIBs, irreversible lithium ions trapping is also a major cause of low ICE. Similar to the intercalation-type and conversion-type materials, the formation of SEI layers is unavoidable due to the decomposition of the electrolyte on the surface of anode materials. For instance, Szczech et al. pointed out that the operating potential of the Si anode materials in LIBs is close to the potential of metallic lithium, which lies outside of the thermodynamic stability region of organic electrolytes [99]. Hence, the electrolyte solution undergoes electrochemical decomposition resulting in the formation of a passivating SEI layer, leading to the low value of ICE. Besides the formation of SEI layers, some oxides (such as , and ), which are generated during the electrochemical reaction process, can be also associated with the initial capacity loss and irreversibly consume lithium/sodium due to their thermodynamic stability and poor ability of reversible decomposition. For example, Chang et al. found that the practical applications of have been stifled by large initial irreversible capacity loss and low ICE, and that the reason for this is that the amorphous Li-Si-O matrix (as shown in Fig. 4a) generated during the conversion reaction of is highly thermodynamically stable and thus has poor reversibility during the de-lithiation process [100]. Kim et al. have also confirmed that the low ICE of is related to the formation of irreversible oxides, such as and [74]. In addition, coarsening of active materials can lead to failure to fully utilize the active materials, which leads to initial capacity loss for the anode 高容量,其机理基于锂/钠与阳极材料之间发生的合金化反应(例如, .对于这种类型的材料,无论是锂离子电池还是SIB,在初始循环过程中造成不可逆容量损失的主要原因主要有三个:(i)SEI层的形成,(ii)在电化学反应过程中产生的一些不可逆氧化物(见下文)的形成,以及(iii)由于在体积膨胀过程中形成的活性纳米晶材料粗化而导致的不完全可逆反应。此外,对于锂离子电池中的硅基阳极,不可逆的锂离子捕获也是导致ICE低的一个主要原因。与插层型和转化型材料类似,由于阳极材料表面电解液的分解,SEI层的形成是不可避免的。例如,Szczech等人指出,锂离子电池中硅阳极材料的工作电位接近金属锂的电位,金属锂位于有机电解质的热力学稳定区之外[99]。因此,电解质溶液发生电化学分解,形成钝化SEI层,导致ICE值低。除了SEI层的形成外,在电化学反应过程中产生的一些氧化物(如 、和 )由于其热力学稳定性和可逆分解能力差,也可能与初始容量损失有关,并不可逆地消耗锂/钠。例如,Chang et al. 研究发现,由于初始不可逆容量损失大、ICE低,其实际应用 受到扼杀,其原因是非 晶态Li-Si-O基体(如图4a所示)在转化反应过程中具有高度的热力学稳定性,因此在脱锂过程中具有较差的可逆性[100]。Kim等人也证实,低ICE 与不可逆氧化物的形成有关,如 和 [74]。此外,活性材料的粗化会导致活性材料无法充分利用,从而导致阳极的初始容量损失
Table 3 表3
Summary of methods of prelithiation to improve ICE for various materials. 提高各种材料内燃机的预锂化方法摘要。
Methods to realize prelithiation 实现预锂化的方法
Material 材料
Method to improve ICE 提高ICE的方法
Mechanism 机制
预锂化后的内燃机 (%)
ICE after
prelithiation (%)
Ref. 裁判。
预锂化试剂的利用
utilization of prelithiation
reagents
carbon 碳
使用稳定的锂金属粉末(SLMP)
use stabilized lithium metal powder
(SLMP)
SLMP提供锂来形成SEI层和锂化碳。
SLMP provides lithium both to form SEI layer and
to lithiate the carbon.
95.4
[121]
graphite 石墨
use SLMP 使用 SLMP
SLMP provide a low cost SEI formation process. SLMP提供低成本的SEI形成过程。
100
[128]
Si 四
使用 纳米颗粒 (NP) 预锂化试剂
use nanoparticles (NP) as
prelithiation reagents
NP与人工SEI层消除了不可逆的第一周期容量损失。
NP with artificial SEI layer eliminate the
irreversible first-cycle capacity loss.
99.2
硅碳纳米管
Si-Carbon
Nanotube
use SLMP 使用 SLMP
使用SLMP进行预锂化可以抵消第一周期的容量损失。
Prelithiation with SLMP can counteract first cycle
capacity loss.
79
[123]
Graphite 石墨
使用 核壳NP预锂化试剂
use core-shell NP as
prelithiation reagents
NP抑制了SEI形成过程中正极材料中Li的意外消耗。
NP suppresses the undesired
consumption of Li from cathode materials during
SEI formation.
99
Graphite 石墨
use as prelithiation reagents 用作预锂化试剂
NP 用作预锂化试剂以增加 ICE。
NP serves as prelithiation reagents to
increase the ICE.
100.6
[129]
诱导阳极材料与锂金属箔之间的电短路
inducing electrical shorting
between anode materials and
lithium metal foil
Si 四
使用简单的自放电机制来预锂化硅纳米线
use a facile self-discharge mechanism to
prelithiate Si nanowires
硅纳米线可以完全预锂化,其机制类似于电池缺点机制。
Si nanowires can be fully prelithiated, with a
mechanism similar to a battery shortcoming
mechanism.
-
[124]
Graphite 石墨
开发活性材料/聚合物/锂负极的三层结构
develop a trilayer structure of active
material/polymer/lithium anode
聚合物层逐渐溶解在电池电解液中,活性物质与锂接触形成锂化阳极。
The polymer layer is gradually dissolved in the
battery electrolyte, and active materials contact
with lithium to form lithiated anode.
99.7
一种基于锂金属箔电短路的可扩展但精细的预锂化方案
a scalable but delicate prelithiation
scheme based on electrical shorting with
lithium metal foil
精确的短路时间和电压监控允许在不镀锂的情况下微调预锂化程度。
The accurate shorting time and voltage monitoring
allow a fine-tuning on the degree of prelithiation
without lithium plating.
94.9
a primary-cell process to prelithiate 预锂化的原代电池工艺
该方法可以抑制SEI形成过程中正极材料中锂离子的不良消耗。
This method can suppress the undesired
consumption of lithium-ions from cathode
materials during SEI formation.
92.7
[130]
prelithiated material 预锂化材料
用机械化学路线合成的碳装饰
decorated with carbon
synthesized by mechanochemical route
82.6
[127]
material. For example, Hu et al. concluded that it is the coarsening of Sn nanoparticles (a recrystallization of Sn atoms), which impedes the reversible reaction between and Sn , that is the cause of the initially low ICE (about 52.4%) for -based anodes in LIBs, rather than the formation of irreversible [101]. To prove this, they calculated the formation enthalpy and Gibbs free energy at 298 K for the reaction between Sn and to form . They found that and are and , respectively, which theoretically indicates that could react reversibly with Sn to form , provided that the mixture in the lithiation products has an appropriate nano-sized interfacial structure (as shown in Fig. 4b-d). In addition, by ex situ XRD patterns and in situ SERS spectra analysis, they also confirmed the disappearance of after initial cycling when the coarsening of Sn nanoparticles is restricted. 材料。例如,胡等人得出结论,是Sn纳米颗粒的粗化(Sn原子的再结晶)阻碍了与Sn之间的 可逆反应,这是LIB中 基于阳极的初始低ICE(约52.4%)的原因 ,而不是不可逆的形成[101]。为了证明这一点,他们计算了 Sn 和 形成 之间反应的 298 K 的生成焓 和吉布斯自由能 。 他们分别发现 和 是 和 ,这在理论上表明 可以与 Sn 可逆反应形成 ,前提是锂化产物中的 混合物具有适当的纳米级界面结构(如图 4b-d 所示)。此外,通过非原位XRD图谱和原位SERS光谱分析,还证实了当Sn纳米颗粒的粗化受到限制时,初始循环 后消失。
4. Methods and related mechanisms to improve ICE 4. 改善ICE的方法和相关机制
Owing to the importance of ICE as mentioned above for fabricating high-energy-density batteries, many efforts have been devoted to improving ICE. In this part, we give a comprehensive overview of the various methods and related fundamental mechanisms that have been used to realize the enhancement of ICE (summarized in Table 2 and Table 3). 由于上述内燃机在制造高能量密度电池方面的重要性,人们已经为改进内燃机做出了许多努力。在这一部分中,我们全面概述了用于实现ICE增强的各种方法和相关基本机制(总结在表2和表3中)。
4.1. Controlling the formation of SEI layers 4.1. 控制SEI层的形成
The formation of a SEI layer is unavoidable for various kinds of anode materials in LIBs/SIBs. However, controlling the amount of SEI formation can be achieved by (i) decreasing the contact areas between active materials and electrolyte, (ii) using a catalyst to decompose the SEI layer, (iii) designing surface functional groups on the surface of the anode material to control SEI formation, and (iv) utilizing a protective artificial layer (such as and ). Decreasing the contact area between electrolyte and active materials is a direct and effective way to limit the formation of a SEI layer, owing to the decreased availability of active sites for the decomposition of the electrolyte. For example, Ryu et al. prepared three-dimensional (3D) hyperporous silicon flakes 对于LIBs/SIBs中的各种负极材料来说,SEI层的形成是不可避免的。然而,控制SEI的形成量可以通过以下方式实现:(i)减少活性材料和电解质之间的接触面积,(ii)使用催化剂分解SEI层,(iii)在阳极材料表面设计表面官能团以控制SEI的形成,以及(iv)利用保护性人工层(如 和 ).减少电解质和活性材料之间的接触面积是限制SEI层形成的直接有效方法,因为电解质分解的活性位点的可用性降低。例如,Ryu等人制备了三维(3D)多孔硅片
(HPSFs) as anode materials for lithium storage [102]. By modifying the microstructure and the degree of hierarchical porosity, the ICE of HPSFs can be as high as (Fig. 5a-c). This exceptionally high ICE of the HPSFs anode is attributed to the reduced contact area between HPSFs and electrolyte, which is realized by retaining its macro-size structure with dominant macropores ). Even though HPSFs show a relatively high surface area ( ), they can still avoid large initial irreversible capacity loss by minimizing the fraction of mesopores and micropores . Hu et al. synthesized saqima-like /CNTs as anode materials for LIBs, which exhibit a high ICE of [104]. The high ICE of saqima-like /CNTs is related to the stable SEI film on the outer surface of the microstructures. For the prepared , each nanoparticle is tightly confined by neighboring nanoparticles, so that the electrolyte cannot easily penetrate to a nanoparticle surface, and the SEI film cannot form on the nanoparticle surface (as seen in Fig. 5d). Thus, although saqima-like /CNTs shows a high specific surface area, the amount of irreversibly formed and SEI film is limited, thus giving an ultrahigh ICE. (HPSFs)作为锂储能的负极材料[102]。通过改变微观结构和分层孔隙度,HPSFs的ICE可以高达 (图5a-c)。HPSFs阳极的这种异常高的ICE归因于HPSFs与电解质之间的接触面积减小,这是通过保持其具有主要大孔的宏观尺寸结构来实现 的。即使HPSFs显示出相对较高的表面积( ),它们仍然可以通过最小化介孔 和微孔的比例来避免较大的初始不可逆容量损失 。胡等人合成了类似saqima的 /CNTs作为LIBs的负极材料,其ICE很高[ 104]。saqima样 /CNTs的高ICE与微观结构外表面稳定的SEI膜有关。对于制备 的,每个纳米颗粒被相邻的纳米颗粒紧密地限制,使得电解质不能轻易渗透到纳米颗粒表面,并且SEI膜不能在 纳米颗粒表面形成(如图5d所示)。因此,尽管类似saqima的 /CNTs显示出高比表面积,但不可逆形成 的SEI膜的数量是有限的,因此产生了超高的ICE。
Introducing a catalyst as a component of active anode materials to promote the reversible formation and decomposition of SEI layers is also an effective strategy to improve ICE. For instance, Guo et al. embedded nano-scaled tin (Sn) in the mesopores of hard carbon spheres (HCS) to form a composite (HCS-Sn) anode material for LIBs [62]. The ICE of HCS-Sn anode is , which is much higher than that of pure HCS (62%). Based on infrared spectroscopic analysis, the improved ICE is attributed to decomposition of the species in the SEI layer through the catalytic effect introduced by the nano-Sn. Tao et al. [120] found that introducing a P-O bond into porous carbon can modify the structure, morphology and chemical composition of the SEI layer and favors the formation of thin and dense SEI (as seen in Fig. 5e-f). It is concluded that the preexisting P-O bond on the surface of porous carbon forms a dense layer that significantly prevents the permeation of solvated from the exterior to interior of the porous carbon electrode. Therefore, porous carbon with P-O bonds can deliver a higher ICE of compared to that of for carbon without the P-O bond. It is believed that an artificial protective layer can perform the function of an 引入催化剂作为活性负极材料的组分,促进SEI层的可逆形成和分解,也是改善ICE的有效策略。例如,Guo等人将纳米级锡(Sn)嵌入硬碳球(HCS)的介孔中,形成锂离子电池的复合(HCS-Sn)负极材料[62]。HCS-Sn阳极的ICE为 ,远高于纯HCS(62%)。基于红外光谱分析,改进的ICE归因于通过纳米Sn引入的催化作用分解了SEI层中的 物质。Tao等[120]发现,在多孔碳中引入P-O键可以改变SEI层的结构、形貌和化学组成,有利于形成薄而致密的SEI(如图5e-f所示)。结果表明,多孔碳表面预先存在的P-O键形成了致密层,显著阻止了溶剂化 物从多孔碳电极外部向内部的渗透。因此, 与没有P-O键的碳相比 ,具有P-O键的多孔碳可以提供更高的ICE。据信,人工保护层可以执行
(a) (一)
(d) (b) (d) (b)
(c) (三)
(e) (五)
(f) (六)
(g) (七)
Fig. 5. Some methods to enhance ICE by controlling the formation of SEI layer in LIBs. (a) Schematic illustration of 3D hyperporous structure. (b) Pore volume distribution of HPSF. (c) Galvanostatic first cycle discharge/charge voltage profiles of HPSF. Adapted with permission from (J. Ryu et al., Multiscale hyperporous silicon flake anodes for high initial Coulombic efficiency and cycle stability, ACS Nano, 10 (2016) 10589-10597). Copyright (2016) American Chemical Society. (d) Schematic illustration of SEI formation on a saqima-like CNTs secondary microstructure and random aggregated nanoparticles. Reprinted by permission from Springer Nature, J. Solid State Electrochem., Ref. [104] (Saqima-like CNTs secondary microstructures with ultrahigh initial Coulombic efficiency as an anode for lithium ion batteries, Aiping Hu et al.), Copyright (2017). (e) Illustration of different compositions of the SEI on the surface of PO/C and C-800 electrodes. (f) Discharge/charge curves of PO/C and C-800 at . Reprinted with permission from (Huachao Tao et al., Achieving a high-performance carbon anode through the P-O bond for lithium-ion batteries, ACS Appl. Mater. Interfaces, 10 (2018) 34245-34253). Copyright (2018) American Chemical Society. (g) Schematic of the coating on graphite. Reprinted with permission from (Tianyu Feng et al., Low-cost coating layer as a preformed SEI on natural graphite powder to improve Coulombic efficiency and high-rate cycling stability of lithium-ion batteries, ACS Appl. Mater. Interfaces, 8 (2016) 6512-6519). Copyright (2016) American Chemical Society. 图 5.通过控制锂离子电池中SEI层的形成来增强ICE的一些方法。(a) 三维多孔结构示意图。(b) HPSF的孔隙体积分布。(c) HPSF的恒电流第一周期放电/充电电压曲线。经许可改编自(J. Ryu 等人,用于高初始库仑效率和循环稳定性的多尺度多孔硅片状阳极,ACS Nano,10 (2016) 10589-10597)。版权所有 (2016) 美国化学学会。(d) 在类似saqima 的CNTs二级微观结构和随机聚集 的纳米颗粒上形成SEI的示意图。经施普林格·自然(Springer Nature)许可转载,J. Solid State Electrochem.,参考文献[104](Saqima类 碳纳米管二次微结构,具有超高初始库仑效率作为锂离子电池的阳极,Aiping 胡等人),版权所有(2017)。(e) PO/C 和 C-800 电极表面 SEI 的不同成分图示。(f) PO/C 和 C-800 在 .经许可转载自 (Huachao Tao et al., Achieving a high-performance carbon anode through the P-O bond for lithium-ion batteries, ACS Appl. Mater.接口, 10 (2018) 34245-34253).版权所有 (2018) 美国化学学会。(g) 石墨 涂层示意图。经许可转载自(Tianyu Feng et al., Low-cost coating layer as a preformed SEI on natural graphite powder to improve Coulombic efficiency and high-rate cycling stability of lithium-ion batteries, ACS Appl. Mater.接口, 8 (2016) 6512-6519).版权所有 (2016) 美国化学学会。
SEI layer, and if properly designed can suppress the consumption of excess lithium/sodium due to the initial capacity loss. For example, Feng et al. demonstrated a low-cost treatment to modify natural graphite by coating with using a sol-gel method [63]. They found that a smooth coating layer with proper thickness can act as preformed SEI layer (as seen in Fig. 5 g). It can reduce the regeneration of a SEI layer and lithium-ions consumption during the initial electrochemical reaction process. Moreover, by analyzing the relative energy levels in LIBs based on the first principles DFT calculations, they verified that the coating with suitable bandgap and favorable lithium-ions conduction ability can perform the function as SEI layer. As a result, an layer coated on natural graphite can deliver a high ICE of in commercial batteries SEI层,如果设计得当,可以抑制由于初始容量损失而消耗过多的锂/钠。例如,Feng等人展示了一种低成本的处理方法,即 使用溶胶-凝胶法涂覆天然石墨[63]。他们发现,具有适当厚度的光滑 涂层可以充当预成型的SEI层(如图5 g所示)。它可以减少初始电化学反应过程中SEI层的再生和锂离子消耗。此外,通过基于第一性原理DFT计算的锂离子电池相对能级分析,验证了具有合适带隙和良好锂离子传导能力的 涂层可以发挥SEI层的功能。因此,涂覆在天然石墨上的 一层可以在商用电池中提供高 ICE
4.2. Facilitating the reversible decomposition of oxides 4.2. 促进氧化物的可逆分解
Irreversibly formed oxides generated during the electrochemical reaction process, such as , and , have an adverse influence on ICE. In order to realize the maximum reversible decomposition of these oxides to enhance ICE, various methods have been utilized. For instance, Kang et al. tried coating the surface with Ni by ball milling, in order to take advantage of the observation that Ni has the highest catalytic activity for the decomposition of among transition metals [80]. By analyzing the FTIR spectrum of ball-milled with Ni at the first charged state, they found that the peak of at does not appear, indicating the decomposition of by the Ni catalyst. Thus, the ICE of ball-milled Ni increased to (the ICE with pure was ). Similarly, for a catalyst to decompose et al. designed multi-yolk-shell nanocubes as anode materials for LIBs that have a significantly improved ICE of 71.7% from the theoretical ICE value of for [69]. They proposed a novel strategy to improve the oxygen reutilization in by introducing oxygen-poor metals or alloys (they take Co as an example in this work). As shown in Fig. 6a, the nanoalloys are uniformly 在电化学反应过程中产生的不可逆形成的氧化物,如 和 ,对 ICE 有不利影响。为了实现这些氧化物的最大可逆分解以增强内燃机,已经使用了各种方法。例如,Kang等人尝试通过球磨在 表面涂覆Ni,以利用Ni在过渡金属中分解 具有最高催化活性的观察结果[80]。通过分析在第一次带电状态下用Ni 球磨的FTIR光谱,他们发现at 的 峰值没有出现,表明Ni催化剂分解了 。因此, 球磨Ni的ICE增加到 (纯 的ICE为 )。类似地,为了分解催化剂, 等人设计了多卵黄壳 纳米立方体作为锂离子电池的阳极材料,其ICE比 理论 ICE值显著提高71.7%[69]。他们提出了一种新的策略 ,通过引入贫氧金属或合金来改善氧气的再利用(他们在这项工作中以Co为例)。如图6a所示, 纳米合金均匀
(a) (一)
(b) (二)
(c) (三)
Ball Milling Process 球磨工艺
Electrochemical Process 电化学工艺
Fig. 6. Some methods to enhance ICE by facilitating the reversible decomposition of oxides in (a) Schematic of the oxygen reutilization mechanism of the / nanocubes. Reprinted with permission from (Liwei Su et al., Multi-yolk-shell nanocubes with high initial Coulombic efficiency and oxygen reutilization for lithium storage, ACS Appl. Mater. Interfaces, 8 (2016) 35172-35179). Copyright (2016) American Chemical Society. (b) The structure changes of the electrode during charging/discharging (left) and the improved transfer kinetics mechanism of C@SnS-SnO for LIB applications (middle) and the cleaved crystal structure of SnS and with (210) and (110) crystal planes (left), respectively. Reprinted from J. Alloys Compd., 769, Mengjiao Li et al., In-situ gas reduction in reversible -doped graphene anodes for high-rate and lasting lithium storage, 12, Copyright (2018), with permission from Elsevier. (c) Illustration of preparation and electrochemical reaction process for the composites. Reprinted from Energy Storage Mater., 13, Hanyin Zhang et al., Highly reversible conversion reaction in nanocomposite: a high initial Coulombic efficiency and long lifetime anode for lithium storage, 10 , Copyright (2018), with permission from Elsevier. 图 6.(a) 纳米立方体的氧再利用机理 示意图中通过促进氧化物 的可逆分解来增强ICE的一些方法。经许可转载自 (Liwei Su et al., Multi-yolk-shell nanocubes with high initial Coulombic efficiency and oxygen reutilization for lithium storage, ACS Appl. Mater.接口, 8 (2016) 35172-35179).版权所有 (2016) 美国化学学会。(b) 电极在充放电过程中的结构变化(左)和C@SnS-SnO 在锂离子电池应用中的转移动力学改进机理(中)和SnS的 裂解晶体结构以及(210)和(110)晶平面(左)。转载自 J. Alloys Compd., 769, Mengjiao Li et al., In-situ gas reduction in reversible -doped graphene anodes for high-rate and lasting lithium storage, 12, Copyright (2018), with permission from Elsevier.(c) 复合材料的制备和电化学反应过程 。转载自 Energy Storage Mater., 13, Hanyin Zhang et al., Highly reversible conversion reaction in nanocomposite: a high initial Coulombic efficiency and long lifetime anode for lithium storage, 10 , Copyright (2018), with permission from Elsevier.
dispersed in the matrix of and can release Co and Sn during discharging; the newly released Co can react with to form in charging, which can successfully realize the efficient reutilization of surrounding Sn nanocrystals. Boosting charge transfer in electrodes can also promote the decomposition reaction dynamics of oxides. For instance, Li et al. prepared graphene composites that exhibit an ICE of , which is higher than that of graphene anodes (62%) [72]. The enhancement of ICE is attributed to the existence of heterostructures as illustrated in Fig. 6b, which is favorable to the charge transfer and therefore can increase the reversibility of and . Similarly, Zhang et al. studied as anode materials for LIBs with relative low ICE of 48.9% [77]. By using ball milling, a new class of composites was fabricated and it could achieve a much-improved ICE value of . In this multiple-phase composite, the in situ formed nano-sized particles are firmly attached on the surfaces to build up insulated/metallic interfaces, which can promote the extracting speed of lithium from Li-Si-O glass and facilitate the regeneration of during the de-lithiation process (as seen in Fig. 6c). 分散在基体中 ,放电时能释放Co和Sn;新释放的Co在充电中能反应 形成 ,可成功实现 周边Sn纳米晶体的高效再利用。增强电极中的电荷转移也可以促进氧化物的分解反应动力学。例如,Li等人制备 的石墨烯复合材料的ICE为 ,高于石 墨烯阳极(62%)[72]。ICE的增强归因于异 质结构的存在,如图6b所示,这有利于电荷转移,因此可以增加 和 的可逆性。同样,Zhang等人研究了 LIB的负极材料,其ICE相对较低,为48.9%[77]。通过使用球磨,制造了一类 新的复合材料,它可以大大提高ICE 值。在这种多相复合材料中,原位形成的纳米颗粒 牢固地附着在 表面,形成绝缘/金属界面,可以提高锂从Li-Si-O玻璃中提取的速度, 并促进锂在脱锂过程中的再生(如图6c所示)。
4.3. Preventing the active nano-materials from coarsening 4.3. 防止活性纳米材料粗化
Full utilization of active materials is of great importance for the enhancement of ICE. However, the coarsening of active nano-materials, such as Sn-based materials, will inevitably occur during the electrochemical reaction process. Specifically, coarsening is the result of recrystallization of the Sn atoms. During the dealloying process of , coarsening of Sn clusters takes place to form large Sn particles due to thermally induced recrystallization. That can lead to inadequate contact between active materials and electrolyte and loss of capacity. To solve this problem, various methods have been tried. For example, Hu et al. demonstrated that a high ICE of for batteries could be achieved when an appropriate nanostructure is designed to suppress the coarsening of Sn [101]. By ball milling the pristine together with the transition metal ( M , such as ) and graphite powders, they prepared a new kind of Sn-based composite. In this unique composite, the nano-sized M grains can act as barriers, impeding the transport of Sn from one grain into another and preventing Sn coarsening in the lithiated electrode; meanwhile, the easily formed interfacial intermetallic phase can also suppress the long range diffusion of Sn (as seen in 活性材料的充分利用对于内燃机的增强具有重要意义。然而,活性纳米材料(如Sn基材料)在电化学反应过程中不可避免地会发生粗化。具体来说,粗化是 Sn 原子重结晶的结果。在脱 合金过程中,由于热诱导的再结晶,Sn团簇发生粗化形成大的Sn颗粒。这可能导致活性材料与电解质之间的接触不足和容量损失。为了解决这个问题,已经尝试了各种方法。例如,胡等人证明,当设计适当的纳米结构来抑制Sn的粗化时,可以 实现电池 的高ICE[101]。通过球磨 ,将原始金属与过渡金属(M等 )和石墨粉末一起,制备了一种新型的Sn基复合材料。在这种独特的复合材料中,纳米尺寸的M晶粒可以充当屏障,阻碍Sn从一个晶粒到另一个晶粒的运输,并防止Sn在锂化电极中粗化;同时,易形成的界面金属间 相也可以抑制Sn的长程扩散(如图所示
Fig. 7. Some methods to enhance ICE by preventing the active nano-materials from coarsening in LIBs. (a) Schematic for the high reversibility reactions in ternary -M graphite hybrids. Reprinted with permission from Ref. [55], Min Zhu et al., Adv. Mater., Copyright 2017, John Wiley and Sons. (b) Schematic illustration of the structure and phase evolution of -rGO electrode during initial discharge and charge along with the following cycling. Reprinted with permission from Ref. [108], Dong-Liang Peng et al., Small, Copyright 2017, John Wiley and Sons. 图 7.通过防止活性纳米材料在锂离子电池中粗化来增强ICE的一些方法。(a) 三元 -M石墨杂化物中高可逆性反应示意图。经参考文献 [55], Min Zhu et al., Adv. Mater., Copyright 2017, John Wiley and Sons 许可转载。(b) -rGO电极在初始放电和充电过程中的结构和相演化以及随后的循环示意图。经参考文献 [108], Dong-Liang Peng et al., Small, Copyright 2017, John Wiley and Sons 许可转载。
Fig. 8. Some methods to enhance ICE by preventing the active nano-materials from coarsening in SIBs. Schematic illustrating highly reversible reactions in the SMS/ C heterointerface. Reprinted with permission from (Xing Ou et al., Fabrication of carbon heterostructures for sodium-ion batteries with high initial Coulombic efficiency and cycling stability, ACS Nano, 13 (2019) 3666-3676). Copyright (2019) American Chemical Society. 图 8.通过防止活性纳米材料在 SIB 中粗化来增强 ICE 的一些方法。SMS/C 异质界面中高度可逆反应的示意图。经许可转载自 (Xing Ou et al., Fabrication of carbon heterostructures for sodium-ion batteries with high initial Coulombic efficiency and cycling stability, ACS Nano, 13 (2019) 3666-3676)。版权所有 (2019) 美国化学学会。
Fig. 9. Some methods to obtain a "cleaner" surface in LIBs. (a) Schematic diagram for the fabrication of a porous Ge microcube on titanium foil. (b) Voltage profiles of the 1st, 2nd, 50th, and 100th cycle of the Ge microcubes. Reprinted with permission from (Chuanjian Zhang et al., Hierarchically designed germanium microcubes with high initial Coulombic efficiency toward highly reversible lithium storage, Chem. Mater., 27 (2015) 2189-2194). Copyright (2015) American Chemical Society. 图 9.在锂离子电池中获得“更清洁”表面的一些方法。(a) 在钛箔上制备多孔锗微立方体的示意图。(b) Ge微立方体第1、2、50和100个周期的电压曲线。经许可转载自 (Chuanjian Zhang et al., Hierarchically designed germanium microcubes with high initial Coulombic efficiency towards highly reversible lithium storage, Chem. Mater., 27 (2015) 2189-2194)。版权所有 (2015) 美国化学学会。
Fig. 7a). Due to this intriguing nanostructure design, the ICE of Fe-G nanocomposite is greatly improved and can reach as high as [55]. Based on the similar mechanism to avoid the coarsening of active materials, Huang et al. fabricated hollow nanoboxes encapsulated by 3D graphene oxide sheets ( ) as anodes for LIBs [108]. For the electrode, metal Co nanoparticles can be released at around during the first discharge process. During the first charge process, the reversed conversion potential of metal Co to during the lithium extraction process is higher than the de-alloying potential of metal Sn to (1.09 V and 1.73 V ). This means that, after full lithiation of , the formed well-dispersed metal Co nanoparticles in or matrices can work as anchors to effectively prohibit the diffusion and coarsening of Sn nanocrystals during the de-alloying and reversed conversion reactions (as shown in Fig. 7b). Therefore, the ICE of anode materials can reach as high as . 图7a)。由于这种有趣的纳米结构设计, Fe-G纳米复合材料的ICE得到了极大的改善,可以达到高达 [55]。基于避免活性材料粗化的类似机理,Huang等人制备了由3D氧化石墨烯片( )封装的空心 纳米盒作为锂离子电池的阳极[108]。对于 电极,金属Co纳米颗粒可以在第一次放电过程中释放出来 。在第一次充电过程中,金属Co 在锂提取过程中的反向转换电位高于金属Sn的反 向合金化电位(1.09 V和1.73 V)。这意味着,在完全 锂化后,形成的分散良好的金属Co纳米颗粒或 基体中可以作为锚定,在脱合金和反转转化反应中有效地阻止Sn纳米晶体的扩散和粗化(如图7b所示)。因此,负极材料的 ICE可以高达 。
This novel strategy has also been applied in SIBs. For instance, Ou et al. developed heterostructured polydopamine (PDA) carbon nanoboxes (SMS/C NBs) as anode materials for sodium storage [111]. In situ XRD analysis was performed during the initial cycle and the result indicates that the Mn metal can be released successfully at a potential between 0.6 and 0.1 V during the alloying process. The Mn metal can play the role of an anchor during de-alloying (0.1-1.0 V) and reverse conversion (1.0-2.0 V). To verify the role of Mn in SMS/C NBs, in situ TEM analysis was conducted. During the sodiation process, a slight volume expansion is observed after 6 s , indicating the occurrence of rapid intercalation in the SMS/C NBs. Further sodiation to 128 s resulted in a slight volume expansion of of SMS/C NBs. Compared with reported results of fully sodiated with volume expansion, the mild volume variation confirms the incorporation of Mn addition can prevent the coarsening and expansion of Sn particles (as seen in Fig. 8). Therefore, a high ICE of for SMS/C NBs can be obtained in SIBs. 这种新颖的策略也已应用于系统重要性银行。例如,Ou等人开发了异质结构 聚多巴胺(PDA)碳纳米盒(SMS/C NBs)作为钠储存的阳极材料[111]。在初始循环期间进行了原位XRD分析,结果表明,在合金化过程中,Mn金属可以在0.6至0.1 V的电位下成功释放。锰金属在去合金化(0.1-1.0 V)和反向转换(1.0-2.0 V)过程中可以起到锚栓的作用。为了验证Mn在SMS/C NB中的作用,进行了原位TEM分析。在钠化过程中,6 s后观察到轻微的体积膨胀,表明SMS/C NBs中发生了快速 插入。进一步钠化至128 s导致SMS/C NBs的体积略有膨胀 。 与报道的完全钠化 和 体积膨胀的结果相比,温和的体积变化证实了Mn添加的掺入可以防止Sn颗粒的粗化和膨胀(如图8所示)。因此,在 SIB 中可以获得 SMS/C NB 的高 ICE。
4.4. Reducing the impact of side reactions 4.4. 减少副反应的影响
Generally, side reactions are associated with (i) inert additives and (ii) surface defect sites/harmful functional groups of active materials. Hence both avoiding using adverse additives and obtaining a "cleaner" surface of active materials can be effective solutions for the suppression of the side reactions. For example, Choi et al. fabricated composites by performing high energy mechanical milling (HEMM) and subsequent heat treatment [112]. They found that the as-prepared composite can show an improved ICE of in the absence of fluoroethylene carbonate (FEC), compared to an ICE of when FEC was used as part of the formulation of anodes for SIBs. This implies that not using inactive additives can effectively improve the ICE of anode materials. In order to maximize the advantages of not using inactive additives and creating "cleaner" surfaces for the active materials, Zhang et al. designed and synthesized Ge microcubes with a hierarchical structure directly on titanium foil via a simple hydrogen reduction method [113]. When used as the anode for anode materials for LIBs, the Ge microcubes electrode exhibited an ultra-high ICE of , which results from the high crystallinity of the Ge and the absence of inert additives (as seen in Fig. 9a and b). Specifically, the good crystallinity of the Ge microcubes benefits the absence of a native oxide layer, together with none of the inert additives (such as binder and black carbon), both of which minimize the irreversible side reactions and irreversible lithium-ion consumption during the electrochemical reaction process. Similarly, in order to get a "cleaner" surface for Si materials to remove side reactions, Chen et al. designed and prepared B-doped porous Si (B-doped pSi) nanoplates as high-performance anode 通常,副反应与(i)惰性添加剂和(ii)活性材料的表面缺陷位点/有害官能团有关。因此,避免使用不利的添加剂和获得活性材料的“更清洁”表面都是抑制副反应的有效解决方案。例如,Choi等人通过进行高能机械铣削(HEMM)和随后的热处理来制造 复合材料[112]。他们发现,与将FEC用作SIB阳极配方的一部分时的ICE 相比,在没有氟碳酸乙烯酯(FEC)的情况下,制备 的复合材料可以显示出更好的ICE 。这意味着不使用非活性添加剂可以有效改善负极材料的ICE。为了最大限度地发挥不使用非活性添加剂的优势,并为活性材料创造“更清洁”的表面,Zhang等人通过简单的氢还原法直接在钛箔上设计并合成了具有多级结构的Ge微立方体[113]。当用作锂离子电池负极材料的阳极时,Ge微立方体电极表现出超高的ICE, 这是由于Ge的高结晶度和无惰性添加剂(如图9a和b所示)。具体来说,Ge微立方体的良好结晶度有利于没有天然氧化层,并且没有惰性添加剂(如粘合剂和黑碳),这两者都最大限度地减少了电化学反应过程中不可逆的副反应和不可逆的锂离子消耗。同样,为了获得“更清洁”的表面,Si材料可以去除副反应,Chen等人。设计制备了B掺杂多孔硅(B掺杂pSi)纳米板作为高性能阳极
Fig. 10. Some methods to obtain a "cleaner" surface in SIBs. Potential reduction mechanism during pyrolysis process. Reprinted from Carbon, 129 , Youyu Zhu et al., A porous biomass-derived anode for high-performance sodium-ion batteries, 7, Copyright (2018), with permission from Elsevier. 图 10.在 SIB 中获得“更清洁”表面的一些方法。热解过程中的电位 还原机理。转载自 Carbon, 129 , Youyu Zhu et al., A porous biomass-derived anode for high-performance sodium-ion batteries, 7, Copyright (2018), with permission from Elsevier.
(c) (三)
Fig. 11. Some methods to enhance ICE by improving electron/ion transfer capability in LIBs. (a) The first discharge/charge curves of GeP compared with graphite, , and anodes and the comparison of the initial Coulombic efficiency of different anodes. Reproduced from Refs. [117] with permission from The Royal Society of Chemistry. (b) The crystal structure of . Reprinted from Electrochim. Acta, 187, Ying Su et al., Oxygen vacancy-rich mesoporous nanobelts with ultrahigh initial Coulombic efficiency toward high-performance lithium storage, 11, Copyright (2016), with permission from Elsevier. (c) Schematic illustration of the nanostructure self-transition from to . Reprinted with permission from Ref. [118], J. Electrochem. Soc., 165, A356-A358 (2018). Copyright 2018, The Electrochemical Society. 图 11.通过提高锂离子电池中的电子/离子转移能力来增强ICE的一些方法。(a) GeP与石墨、 、 负极 的第一放电/电荷曲线的比较,以及不同阳极初始库仑效率的比较。转载自参考文献。[117] 经英国皇家化学学会许可。(b) 的 晶体结构。转载自 Electrochim。Acta, 187, Ying Su et al., Oxygen vacancy-rich mesoporous nanobelts with ultrahigh initial Coulombic efficiency towards high-performance lithium storage, 11, 版权所有 (2016),经爱思唯尔许可。(c) 纳米结构自跃迁示 意图 。经参考文献 [118], J. Electrochem 许可转载。Soc., 165, A356-A358 (2018).版权所有 2018,电化学学会。
materials for lithium storage [78]. Doping with B and utilizing the high crystallinity of Si can greatly decrease the surface oxidation compared to that found for raw materials, which can significantly suppress the side electrochemical reactions derived from and reduce the irreversible consumption of lithium-ions. As a result, the ICE of B-doped pSi can reach as high as . Utilization of a protective layer for active materials to cover defects or harmful functional groups can also impede the occurrence of side reactions. For instance, Zhang et al. prepared nanotube composites as anode materials for LIBs through a facile hydrothermal method [114]. In this composite, the synchronically generated amorphous carbon, which is closely combined with , can diminish the unfavorable contact between and the electrolyte to inhibit the side reactions. Thus, the nanotube manifests a high ICE of 锂储能材料[78]。与原料相比,掺杂B并利用Si的高结晶度可以大大降低表面氧化,从而显着抑制锂离子衍生的副电化学反应 ,减少锂离子的不可逆消耗。因此,B掺杂pSi的ICE可以高达 。利用活性材料的保护层来覆盖缺陷或有害官能团也可以阻止副反应的发生。例如,Zhang等人通过简单的水热法制备 了纳米管复合材料作为锂离子电池的负极材料[114]。在这种复合材料中,同步生成的无定形碳与 紧密结合,可以减少与电解质之间的 不利接触,从而抑制副反应。因此, 纳米管表现出高 ICE
Hard carbon has been considered as one of the most promising anode material candidates for the application of SIBs. However, the low ICE of hard carbon limits their use. Thus, in order to achieve high ICE for hard carbon as anode materials for SIBs, Zhu et al. reported an effective route including a pyrolysis process and a reductive strategy to synthesize highperformance hard carbons from waste apricot [115]. In this work, various characterization methods have been utilized to reveal the role of reduction treatment (HRT) in reducing the oxygen-containing covalent bond and dangling bonds (as seen in Fig. 10). The elemental analyses directly confirm the impact of reduction on oxygen content with the use of HRT. FTIR spectra were also applied to investigate the functional groups variation. Combined with the elemental analysis, it can be concluded that the decreased oxygen content is mainly ascribed to the removal of the (peaks located at around ) and (peaks located at around ) by HRT. Furthermore, the Raman spectroscopy result shows that the values of samples with HRT are larger than that of the samples without HRT, further confirming the reduction of defects. Thus, they concluded that the high ICE of for hard carbon is the result of a fewer number of oxygen functional group and defect concentrations after HRT, which greatly reduces the occurrence of unwanted side reactions. 硬碳被认为是SIB应用中最有前途的阳极材料之一。然而,硬碳的低ICE限制了它们的使用。因此,为了实现硬碳作为SIBs负极材料的高ICE,Zhu等人报道了一种有效的途径,包括热解过程和还原策略,以从废杏中合成高性能硬碳[115]。在这项工作中,利用各种表征方法来揭示 还原处理(HRT)在还原含氧共价键和悬垂键中的作用(如图10所示)。元素分析直接证实了使用 HRT 还原对氧含量的影响。FTIR光谱也用于研究官能团的变化。结合元素分析,可以得出结论,氧含量的降低主要归因于HRT去除了 (位于附近的峰)和 (位于附近的 峰)。此外,拉曼光谱结果表明,有HRT的样品的 值大于没有HRT的样品,进一步证实了缺陷的减少。因此,他们得出结论,硬碳的高ICE 是HRT后氧官能团数量和缺陷浓度减少的结果,这大大减少了不必要的副反应的发生。
4.5. Improving electron/ion transfer capability of active materials 4.5. 提高活性材料的电子/离子转移能力
Improving the electron/ion transfer capability of anode materials is also an important way to enhance ICE. By facilitating the electron/ion 提高负极材料的电子/离子转移能力也是增强内燃机的重要途径。通过促进电子/离子
Fig. 12. Some examples of using SLMP in LIBs. (a) The process of using SLMP. Reprinted with permission from (Michael W. Forney et al., Prelithiation of silicon-carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP), Nano Lett., 13 (2013) 4158-4163). Copyright (2013) American Chemical Society. (b) First-cycle voltage profiles of graphite/lithiated Sn cell (75:15 by weight, red), graphite/lithiated Ge cell (78:12 by weight, orange) and graphite control cell (blue). (c) The composites for group IV elements and corresponding oxides before and after prelithiation. Reprinted from Energy Storage Mater., 10, Jie Zhao et al., A general prelithiation approach for group IV elements and corresponding oxides, 7, Copyright (2018), with permission from Elsevier. 图 12.在 LIB 中使用 SLMP 的一些示例。(a) 使用SLMP的过程。经许可转载自(Michael W. Forney et al., Prelithiation of silicon-carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP), Nano Lett., 13 (2013) 4158-4163)。版权所有 (2013) 美国化学学会。(b) 石墨/锂化Sn电池(重量比75:15,红色)、石墨/锂化锗电池(重量比78:12,橙色)和石墨控制电池(蓝色)的第一循环电压曲线。(c) 预锂化前后第四族元素和相应氧化物的复合材料。转载自 Energy Storage Mater., 10, Jie Zhao et al., A general prelithiation approach for group IV elements and corresponding oxides, 7, Copyright (2018), with permission from Elsevier.
transfer capability, the charge generated during the electrochemical reaction process have a high mobility and will not accumulate, which is beneficial for the reaction kinetics of reversible reaction. In order to achieve a high electro/ion transfer capability, one of the most useful ways is to prepare materials with an intrinsic high conductivity. For example, Li et al. used a facile high energy mechanical ball milling method to synthesize a pure nanocomposite at ambient temperature and pressure [117]. The synthesized possesses a two-dimensional layered structure and a high conductivity , which is 10000 and 10 times higher than that of black and graphite . Due to its high conductivity, the anode materials deliver a high ICE of when used for LIBs (as seen in Fig. 11a). Similarly, in order to improve the conductivity of , Sun et al. demonstrated the synthesis of mesoporous nanobelts ( ) with rich oxygen vacancies (O-vacancies) by a simple solvothermal method followed by a calcination treatment without any templates and catalysts [81] (Fig. 11b). When used as anode materials in LIBs, NBs exhibit an ultrahigh ICE of . This excellent ICE is ascribed to the existence of abundant O -vacancies, which can significantly increase electronic conductivity and offered sufficient fast lithium-ion diffusion pathways. Another way to enhance the electro/ion transfer capability of materials is to fabricate a well-dispersed composition between target materials and metal/graphene that has excellent conductivity. For instance, He et al. pointed out that the low ICE of is attributed to the poor reversibility of the lithiated [118]. To overcome this issue, fabricating nanostructured materials with unobstructed channels for free insertion/extraction of lithium-ions can be an effective solution. Based on this speculation, they reported a facile self-transition strategy to prepare a hierarchically nanostructured composite. The prepared anode materials delivered superior ICE of . The reason for the improvement of ICE is that the homogeneous dispersion of Cu metal nanocrystallites among the crystals that can not only create the conductive path in the whole structure, but also provide additional channels for lithium-ion insertion/extraction (as shown in Fig. 11c). 转移能力强,电化学反应过程中产生的电荷具有较高的迁移率,不会积聚,有利于可逆反应的反应动力学。为了实现高电/离子转移能力,最有用的方法之一是制备具有固有高电导率的材料。例如,Li等人使用一种简单的高能机械球磨方法在环境温度和压力下合成了纯 纳米复合材料[117]。合成 的具有二维层状结构和高导电性 ,比黑色 和石墨高10000和10倍 。由于其高导电性, 阳极材料在用于锂离子电池时可提供高 ICE(如图 11a 所示)。同样,为了提高电 导率,Sun等人演示了通过简单的溶剂热法合成具有丰富氧空位(O空位)的介孔 纳米带( ),然后在没有任何模板和催化剂的情况下进行煅烧处理[81](图11b)。当用作锂离子电池的负极材料时, NBs表现出超 高的ICE。这种优异的ICE归因于丰富的O-空位的存在,它可以显着提高电子电导率,并提供足够的快速锂离子扩散途径。增强材料电/离子转移能力的另一种方法是在目标材料和具有优异导电性的金属/石墨烯之间制造分散良好的组合物。例如,He et al. 指出,低ICE 归因于锂化 物的可逆性差[118]。为了克服这个问题,制造具有畅通无阻通道的纳米结构 材料,以便自由插入/提取锂离子,这可能是一种有效的解决方案。基于这一推测,他们报告了一种简单的自跃迁策略来制备分层纳米结构 复合材料。制备 的负极材料具有优异的 ICE。ICE改进的原因是Cu金属纳米晶在 晶体中的均匀分散,不仅可以在整个结构中产生导电路径,还可以为锂离子的插入/提取提供额外的通道(如图11c所示)。
4.6. Prelithiation and prelithiated material 4.6. 预锂化和预锂化材料
Prelithiation is one of the most powerful techniques to improve ICE. Generally, prelithiation can be realized by (i) mixing prelithiation reagents with anode materials and (ii) inducing electrical shorting between anode materials and lithium metal foil. Prelithiation reagents, including stabilized lithium metal power (SLMP), nanoparticles (NP), , etc.) alloys, and composites, have been explored for use in the synthesis of various anode materials in LIBs. For example, Jarvis et al. verified that the SLMP can be incorporated into anodes using standard slurry coating techniques [121, 122]. The SLMP powder can be activated by contact with the liquid electrolyte and provide a lithium source both for the formation of SEI layers and the prelithiation of the carbon. Thus, the partially prelithiated carbon anode can deliver a high ICE of , compared to for the carbon anode without prelithiation. Forney et al. applied SLMP to prelithiate the high capacity (1500-2500 mAh g ) silicon-carbon nanotube (Si-CNT) anodes [123]. As a result, the Si-CNT anodes, which are prelithiated with SLMP, can successfully counteract the initial cycle capacity loss (as seen in Fig. 12a). Besides SLMP, in order to enhance the air-stability and the ability of practical application for prelithiation reagents, various kinds of prelithiation reagents have been explored. For example, Cui et al. developed , and , etc.) alloys as new prelithiation reagents [56,76]. These new prelithiation reagents can effectively prelithiate graphite and Si anode materials, which can deliver exceptionally high ICE of and , respectively, after simply mixing with the prelithiation reagents (Fig. 12b and c). These new prelithiation reagents can suppress the undesired consumption of lithium from cathode materials during SEI formation, which is of great importance for next-generation high-energy-density LIBs. 预锂化是改善内燃机的最强大技术之一。通常,预锂化可以通过(i)将预锂化试剂与阳极材料混合和(ii)在阳极材料和锂金属箔之间诱导电短路来实现。预锂化试剂,包括稳定锂金属功率(SLMP)、 纳米颗粒(NP) 等)合金和 复合材料已被探索用于合成锂离子电池中的各种负极材料。例如,Jarvis等人验证了SLMP可以使用标准浆料涂层技术掺入阳极[121,122]。SLMP粉末可以通过与液体电解质接触来活化,并为SEI层的形成和碳的预锂化提供锂源。因此,与没有预锂化的碳阳极相比 ,部分预锂化的碳阳极可以提供 的高 ICE。Forney等人应用SLMP对高容量(1500-2500 mAh g )硅碳纳米管(Si-CNT)阳极进行预锂化[123]。因此,用SLMP预锂化的Si-CNT阳极可以成功地抵消初始循环容量损失(如图12a所示)。除SLMP外,为了增强预锂化试剂的空气稳定性和实际应用能力,还探索了各种预锂化试剂。例如,Cui 等人开发 了 、 和 等)合金作为新的预锂化试剂[56\u201276]。这些新型预锂化试剂可以有效地预锂化石墨和硅负极材料,在与预锂化试剂混合后,它们可以分别提供极高的 ICE 和 (图 12b 和 c)。 这些新型预锂化试剂可以抑制正极材料在SEI形成过程中对锂的不良消耗,这对下一代高能量密度锂离子电池具有重要意义。
Inducing electrical shorting between anode materials and lithium metal foil is another way to realize the prelithiation of anode materials. For example, Liu et al. presented a facile method for prelithiating a Si nanowire (SiNW) anode by a self-discharge mechanism [124]. In the prelithiation process, SiNWs were directly attached to a piece of Li metal foil in the presence of electrolyte. Pressure was applied to induce electrical shorting between the SiNWs and the Li foil (as seen in Fig. 13a). As 在负极材料和锂金属箔之间诱导电短路是实现负极材料预锂化的另一种方式。例如,Liu等人提出了一种通过自放电机制预锂化Si纳米线(SiNW)阳极的简单方法[124]。在预锂化过程中,SiNWs在电解质存在下直接附着在一块锂金属箔上。施加压力以诱导SiNWs和Li箔之间的电短路(如图13a所示)。如
(a) (一)
(b) (二)
Protective layer (e.g. PMMA) 保护层(例如PMMA)
(c) (三)
Fig. 13. Some examples of prelithiation methods in LIBs. (a) Schematic diagrams showing the prelithiation of SiNWs on stainless steel (SS) foil, and the internal electron and pathways during the prelithiation. Reprinted with permission from (Nian Liu et al., Prelithiated silicon nanowires as an anode for lithium ion batteries, ACS Nano, 5 (2011) 6487-6493). Copyright (2011) American Chemical Society. (b) Schematic of the process to prepare ambientair-stable lithiated anode. Reprinted with permission from (Zeyuan Cao et al., Ambient-air stable lithiated anode for rechargeable Li-ion batteries with high energy density, Nano Lett., 16 (2016) 7235-7240). Copyright (2016) American Chemical Society. (c) Graphical illustration of prelithiation process of electrode and its scalable roll-to-roll process scheme. Reprinted with permission from (Hye Jin Kim et al., Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells, Nano Lett., 16 (2016) 282-288). Copyright (2016) American Chemical Society. soon as the SiNWs and Li foil are shorted, the SiNWs begin to be electrochemically lithiated. The prelithiation mechanism is similar to the battery shorting mechanism. As shown in Fig. 13b, Cao et al. [57] presented a trilayer structure of active material/polymer/lithium anode, which can realize the stability in ambient air relative humidity) for a period that is sufficient to manufacture the desired anode materials. With this strategy, a high ICE of for a graphite anodes and ICE of for silicon nanoparticles can be achieved, respectively. Kim et al. introduced a scalable but delicate prelithiation technique where the degree of prelithiation can be controlled via voltage monitoring [75] (Fig. 13c). This technique allows the ICE to reach as high as without sacrificing the structural stability of throughout cycling. In order to evaluate the enhancement of the electrochemical performance of anode materials by this technique, they tested the gravimetric energy density (ED) of pristine ( full-cells and prelithiated full-cells. The conventional graphite/NCA full-cells can deliver a theoretical ED of 448 Wh based on . Based on the same metric, the experimental ED data of pristine and prelithiated -NCA full-cells are and , respectively, which indicate that this prelithiation technique can have a considerable effect on the EDs of the practical LIBs. 图 13.锂离子电池预锂化方法的一些例子。(a) 显示SiNWs在不锈钢(SS)箔上的预锂化以及预锂化过程中的内部电子和 通路的示意图。经许可转载自(Nian Liu et al., Prelithiated silicon nanowires as an anode for lithium ion batteries, ACS Nano, 5 (2011) 6487-6493)。版权所有 (2011) 美国化学学会。(b) 制备环境空气稳定的锂化阳极的工艺示意图。经许可转载自 (Zeyuan Cao et al., Ambient-air stable lithiated anode for rechargeable Li-ion batteries with high energy density, Nano Lett., 16 (2016) 7235-7240)。版权所有 (2016) 美国化学学会。(c) 电极预锂化工艺及其可扩展的卷对卷工艺方案的图示。经许可转载自 (Hye Jin Kim et al., Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells, Nano Lett., 16 (2016) 282-288)。版权所有 (2016) 美国化学学会。一旦SiNWs和Li箔短路,SiNWs就开始电化学锂化。预锂化机制类似于电池短路机制。如图13b所示,Cao等[57]提出了活性材料/聚合物/锂阳极的三层结构,可以实现在环境空气 相对湿度下稳定一段时间,足以制造所需的负极材料。通过这种策略,可以分别 实现石墨阳极的高ICE和硅纳米颗粒的高ICE 。Kim等人介绍了一种可扩展但精细的预锂化技术,该技术可以通过电压监测来控制预锂化程度[75](图13c)。 这种技术使内燃机在不牺牲 整个循环结构稳定性 的情况下达到尽可能高的水平。为了评估该技术对 负极材料电化学性能的增强,他们测试了原始 ( 全电池和预锂化 全电池)的重量能量密度(ED)。传统的石墨/NCA 全电池可以 提供 448 Wh 的理论 ED 基于 。基于相同的指标,原始和预锂化 -NCA全细胞的实验ED数据分别为 和 ,表明这种预锂化技术可以对实际LIB的ED产生相当大的影响。
Fig. 14. (a) Refinement for powder XRD pattern of as-prepared ; inset is the crystal structure from the refinement. (b) Selected galvanostatic chargedischarge curves in the potential range of at 50,200 and . Reprinted from Nano Energy, 44, Jiexi Wang et al., as a novel electrode material with good lithium storage properties and improved initial Coulombic efficiency, 7, Copyright (2018), with permission from Elsevier. 图 14.(a) 制备 的粉末XRD图谱的细化;插图是精炼后的晶体结构。(b) 在 50,200 和.转载自 Nano Energy, 44, Jiexi Wang et al., as a novel electrode material with good lithium storage properties and improved initial Coulombic efficiency, 7, Copyright (2018), with permission from Elsevier.
Besides using prelithiation reagents and inducing electrical shorting between anode materials and lithium metal foil, liquid prelithiation is also an important method to improve ICE of anode in LIBs. Liquid prelithiation shows good uniformity and the degree of lithiation can be easily controlled. For instance, Ai et al. developed a facile prelithiation strategy using lithium naphthalenide to partially prelithiate Si into a anode, which was realized by immersing the Si electrode into lithium naphthalenide in the glovebox [125]. After prelithiation, the ICE of prelithiated Si anode could reach as high as . In order to explore a feasible prelithiation approach for enabling anode materials with high ICE, Guo et al. developed a liquid chemical prelithiation strategy [126]. By using this strategy, the homogeneity of was optimized due to this unique prelithiation process and the degree of lithiation could be adjusted by adding different amounts of lithium and biphenyl. Consequently, the ICE of lithium-biphenyl (LiBp)- could reach as high as when the dosage of lithium was . 液体预锂化除了使用预锂化试剂和诱导阳极材料与锂金属箔之间的电短路外,也是提高锂离子电池中阳极ICE的重要方法。液体预锂化表现出良好的均匀性,锂化程度易于控制。例如,Ai等人开发了一种简单的预锂化策略,使用萘化锂将Si部分预锂化到阳极中 ,这是通过将Si电极浸入手套箱中的萘化锂来实现的[125]。预锂化后,预锂化Si阳极的ICE可高达 .为了探索一种可行的预锂化方法,使 负极材料具有高ICE,Guo等人开发了一种液体化学预锂化策略[126]。通过使用这种策略,由于这种独特的预锂化工艺,优化了锂 化的均匀性,并且可以通过添加不同量的锂和联苯来调节锂化程度。因此,锂联苯 (LiBp)- 的 ICE 可以达到与 锂的剂量一样高 。
Prelithiated anode materials are also promising for the enhancement of ICE. For instance, Wang et al. synthesized high-crystalline nanoparticles decorated with carbon by a facile mechanochemical route followed by low-temperature calcination [127]. The lithium storage mechanism of has been studied by CV analysis associated with in situ XRD measurement (as seen in Fig. 14). It is interesting that during the first cycle, the electrode stores 21 mol lithium-ions and releases 22 mol lithium-ions per mol Li . As a result, the can be considered as a prelithiated anode material and its ICE can reach as high as . 预锂化负极材料也有望增强内燃机。例如,Wang等人通过简单的机械化学途径合成了用碳装饰的高晶 纳米颗粒,然后进行低温煅烧[127]。通过与原位XRD测量相关的CV分析研究了锂 的储锂机理(如图14所示)。有趣的是,在第一个循环中, 电极存储 21 mol 锂离子,每 mol Li 释放 22 mol 锂离子 。因此,可以认为是 预锂化阳极材料,其ICE可以高达 。
5. Summary and outlook 5. 总结与展望
In order to develop LIBs with enhanced energy density and realize the practical application of SIBs, high ICE for anode materials is of great significance because of the overall improved performance and the elimination of the negative consequences that an unnecessary excess amount of cathode materials has on the value of the battery useable energy density. 为了开发具有更高能量密度的锂离子电池,实现SIB的实际应用,阳极材料的高ICE具有重要意义,因为整体性能的提高和消除了不必要的过量正极材料对电池可用能量密度价值的负面影响。
Extensive efforts have been made to understand the reasons for low ICE. We have summarized the reasons for low ICE based on three types of anode materials. Specifically, (1) for intercalation-type anode materials, the low ICE is associated with the formation of SEI layer and the irreversible adsorption of lithium-ions/sodium-ions; (2) for conversiontype anode materials, the low ICE is associated with the formation of SEI layer, the irreversible decomposition of some oxides and sulfides, the irreversible adsorption of lithium-ions/sodium-ions and some adverse side reactions; (3) for alloying-type anode materials, the low ICE is associated with the formation of SEI layer, the irreversible decomposition of some oxides and the incomplete reversible reaction due to the coarsening of active material nanocrystals. 人们已经做出了广泛的努力来了解低ICE的原因。我们根据三种类型的负极材料总结了ICE低的原因。具体而言,(1)对于插层型负极材料,低ICE与SEI层的形成和锂离子/钠离子的不可逆吸附有关;(2)对于转化型负极材料,低ICE与SEI层的形成、部分氧化物和硫化物的不可逆分解、锂离子/钠离子的不可逆吸附和一些不良副反应有关;(3)对于合金型负极材料,低ICE与SEI层的形成、某些氧化物的不可逆分解以及活性材料纳米晶体粗化导致的不完全可逆反应有关。
Based on these reasons, various intriguing methods have been utilized to explore effective ways to enhance ICE. We have summarized the recent advances to improve ICE and related mechanisms. Specifically, these methods can be divided into 6 categories based on the mechanisms to enhance ICE (as seen in Scheme 2): (1) limiting the formation of SEI layer; (2) facilitating the reversible decomposition of oxides; (3) preventing the active nano-materials from coarsening; (4) reducing the 基于这些原因,人们利用各种有趣的方法来探索增强ICE的有效方法。我们总结了最近在改进ICE和相关机制方面取得的进展。具体而言,这些方法根据增强ICE的机制可分为6类(如方案2所示):(1)限制SEI层的形成;(2)促进氧化物的可逆分解;(3)防止活性纳米材料粗化;(4)减少
Scheme 2. An overall schematic of the method to enhance ICE in LIBs/SIBs and the relationship between the enhancement of ICE and the energy density. 方案 2.在锂离子电池/SIB中增强ICE的方法的总体示意图以及ICE增强与能量密度之间的关系。
Corresponding author. Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, 93106, United States 通讯作者。加州大学化学与生物化学系,加利福尼亚州圣巴巴拉,93106,美国