这是用户在 2024-10-21 21:59 为 https://app.immersivetranslate.com/word/ 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

Chapter 4: Measures of Variability
第 4 章:可变性的测量

1. Measures of variability describe:
1. 变异性测量描述:

a) The distance between scores
a) 分数之间的距离

b) The shape of the distribution
b) 分布的形状

c) The difference between sample statistics and population parameters
c) 样本统计量和总体参数之间的差异

d) All of the above
d) 以上所有

Explanation: Variability describes the distance between scores within a group. They tell us about how the scores are spread out.
解释:变异性描述组内分数之间的距离。它们告诉我们分数是如何分布的。

2. What is the relationship between the standard deviation and variance?
2. 标准差和方差之间有什么关系?

a) Standard deviation is the square root of variance.
a) 标准差是方差的平方根。

b) Standard deviation equals the squared variance.
b) 标准差等于方差的平方。

c) Variance is the square root of standard deviation.
c) 方差是标准差的平方根。

d) These two measures are unrelated.
d) 这两个指标无关。

Explanation: Variance is the average squared distance from the mean. Standard deviation is the square root of variance. Variance (s2 or σ2)- Sigma-方差
解释:方差是与平均值的平均平方距离 标准差是方差的平方根。方差 (s2 或 σ2)- Sigma-方差

Standard Deviation (SD, s or σ)-标准差
标准差 (SD, s 或 σ)-标准差

3. What is the least precise measure of variability:
3. 最不精确的可变性度量是什么:

a) interquartile range
a) 四分位间距

b) range
b) 范围

c) standard deviation
c) 标准差

d) variance
d) 方差

Explanation: Range is simply the difference between the highest and lowest values in the dataset. While it’s easy to calculate, it doesn’t provide much information about the distribution of the data beyond these two points. Interquartile Range (IQR) measures the spread of the middle 50% of the data, which gives a better indication of variability by ignoring extreme values. Standard Deviation and Variance take into account all the data points and provide more detailed information about the spread of the dataset relative to the mean.
解释:Range 只是数据集中最高值和最低值之间的差值。虽然它很容易计算,但它并没有提供有关这两个点之外的数据分布的太多信息。四分位距 (IQR) 测量中间 50% 数据的散布,通过忽略极值来更好地指示可变性。标准差和方差考虑了所有数据点,并提供有关数据集相对于平均值的分布的更多详细信息。

4. The interquartile range represents:
4. 四分位距表示:

a) the middle 50% of scores of a distribution
a) 分布中中间 50% 的分数

b) the top 25% of scores of a distribution
b) 分配的前 25% 分数

c) 75% of scores of a distribution
c) 分配分数的 75%

d) none of the above
d) 以上都不是

Explanation: Interquartile Range (IQR) measures the spread of the middle 50% of the data
说明:四分位距 (IQR) 衡量中间 50% 数据的分布

5. When calculating the variance and the standard deviation of a sample we divide by n-1 rather than N in order to:
5. 在计算样本的方差和标准差时,我们除以 n-1 而不是 N,以便:

a)make the result smaller and therefore easier to interpret.
一)使结果更小,因此更易于解释。

b) compensate for the reduction in variability
b) 补偿可变性的减少

c)make sure it is equal to other measures of variability
c)确保它等于其他可变性度量

d)reduce dispersion
d)减少色散

Explanation: In sample statistics, we use n-1to account for the fact that a sample tends to underestimate the true population variability. By dividing by n-1 instead of N, we adjust for the loss of one degree of freedom (will be covered later) when estimating the mean from the sample itself. This adjustment compensates for the reduced variability due to using a sample rather than the entire population.
解释在样本统计中,我们使用 n-1 来说明样本往往低估真实总体变异性的事实。通过除以 n-1 而不是 N,我们在从样本本身估计平均值时调整了一个自由度的损失(将在后面介绍)。此调整补偿了由于使用样本而不是整个总体而导致的变异性降低。

6. Identify the item that will have the highest variability in a sample of n=50:
6. 确定 n=50 样本中具有最高变异性的项:

a)the number of cell phones people use
一)人们使用的手机数量

b)High school GPA
b 高中 GPA

c)the time people spent on exercising a week
c)人们一周锻炼所花费的时间

d) the number of kid(s) at home
d) 家中儿童的数量

Explanation: Time spent on exercising tends to have significant variability because people’s exercise habits can vary widely, depending on lifestyle, health, fitness goals, and preferences. Some people may exercise for hours each day, while others may not exercise at all.
解释: 花在锻炼上的时间往往具有显着的可变性,因为人们的运动习惯可能会有很大差异,具体取决于生活方式、健康状况、健身目标和偏好。有些人可能每天锻炼数小时,而另一些人可能根本不锻炼。

7. A sample consists of n = 20 scores. How many of the scores will be used to calculate the sample standard deviation?
7. 样本由 n = 20 个分数组成。将使用多少分数来计算样本标准差?

a. 2
答 2

b. 10
生 10

c. 19
约19

d. 20
卒于 20

Explanation: All 20 scores contribute to the calculation of the mean.
解释:所有 20 个分数都有助于平均值的计算。

8. A sample consists of n = 20 scores. How many of the scores will be used to calculate the range?
8. 样本由 n = 20 个分数组成。将使用多少分数来计算范围?

a. 2
答 2

b. 10
生 10

c. 19
约19

d. 20
卒于 20

Explanation: When calculating range, we only need the max value and the minimum value. Range=the maximum value-the minimum value.
说明: 在计算范围时,我们只需要最大值和最小值。Range=最大值 - 最小值。

9. If you sum the deviations from the mean, they will:
9. 如果您将与平均值的偏差相加,它们将:

a)always be larger than the mean.
一)始终大于平均值。

b) add up to 1
b) 加起来最多 1

c)be equal to the sample standard deviation
c)等于样本标准差

d) add up to 0
d) 加起来最多 0

Explanation: The deviations from the mean are calculated as the difference between each score and the mean. By definition, the mean is the central value, so the positive deviations (scores above the mean) exactly cancel out the negative deviations (scores below the mean). Hence, the sum of all deviations from the mean always equals zero.
说明:与平均值的偏差计算为每个分数与平均值之间的差值。根据定义,均值是中心值,因此正偏差(分数高于平均值)正好抵消负偏差(分数低于平均值)。因此,所有与平均值的偏差之和始终等于零。

10. What value is obtained if you add all the deviation scores for a sample, then divide the sum by n-1?
10. 如果将样本的所有偏差分数相加,然后将总和除以 n-1,会得到什么值?

a. the population variance
A. 总体方差

b. the sample variance
b. 样本方差

c. you always will get zero
c. 你总是会得到零

d. the sample standard deviation
d. 样本标准差

Explanation: according to the formula:
说明:根据公式:

Variance is the average squared distance from the mean.
方差是与平均值的平均平方距离。

Computation
计算

11. For the following data set, what is the range of scores: 18, 23, 21, 22, 20, 20, 24, 16, 19, 17?
11. 对于以下数据集,分数范围是多少:18、23、21、22、20、20、24、16、19、17?

a. 5
一种 5

b. 6
生 6

c. 7
约 7

d. 8
卒 8

Explanation: Range=Max-Min=24-16=8
说明:范围 = 最大值-最小值 = 24-16=8

12. For the data set from the previous question, what is the inter-quartile range (use SPSS)?
12. 对于上一个问题的数据集,什么是四分位距(使用 SPSS)?

a. 3.5
答 3.5

b. 4.0

c. 4.5
约 4.5

d. 5.0

Explanation: interquartile range (IQR)=Q3-Q1
解释:四分位距 (IQR)=Q3-Q1

1.Enter your data into SPSS.
1.将数据输入到 SPSS 中。

2.Go to the menu: Analyze > Descriptive Statistics > Explore.
2.转到菜单:分析 > 描述性统计 > 探索。

3.Move your variable into the “Dependent List” box.
3.将变量移动到“Dependent List(依赖列表)”框中。

4.Click on “Statistics,” ensure that “Descriptives” and “Percentiles” are checked, then click “Continue.”
4.点击“统计”,确保选中“描述”和“百分位数”,然后点击“继续”。

5.Click on “OK.”
5.点击“确定”。

13. For the following data set, what is the range of scores: 5.4, 4.4, 4.7, 4.9, 5.3, 4.8, 4.4, 4.8, 5.1, 5.0, 4.6, 5.9, 5.0, 5.3, 4.6?
13. 对于以下数据集,分数范围是多少:5.4、4.4、4.7、4.9、5.3、4.8、4.4、4.8、5.1、5.0、4.6、5.9、5.0、5.3、4.6?

a. 1.4
答 1.4

b. 1.5
湾 1.5

c. 1.6
约 1.6

d. 1.7

Explanation: range=5.9-4.4=1.5
说明:范围 = 5.9-4.4=1.5

14. What is the variance of the following sample: 11, 9, 9, 10, 11, 9, 10, 9, 11?
14. 以下样本的方差是多少:11、9、9、10、11、9、10、9、11?

a. ≈0.84

b. ≈0.85
湾 ≈0.85

c. ≈0.86
约 ≈0.86

d. ≈0.87

According to the formula: Mean=89/9=9.88.
根据公式:平均值 = 89/9=9.88。

Thus, the answer=0.86
因此,答案 = 0.86

15. What is the variance of the following sample: 10, 9, 12, 9, 10, 10, 9, 11, 10, 8, 8, 9, 8, 10, 11?
15. 以下样本的方差是多少:10、9、12、9、10、10、9、11、10、8、8、9、8、10、11?

a. 1.40
答 1.40

b. 1.44
生于 1.44

c. 1.48
约 1.48

d. 1.45

Mean= (10+9+12+9+10+10+9+11+10+8+8+9+8+10+11)/15=9.67
平均值 = 10+9+12+9+10+10+9+11+10+8+9+8+10+11)/15=9.67

Sum of squared
平方和

differences=0.11+0.44+5.44+0.44+0.11+0.11+0.44+1.78+0.11+2.78+2.78+0.44+2.78+0.11+1.78=19.65
差值=0.11+0.44+5.44+0.44+0.11+0.11+0.44+1.78+0.11+2.78+2.78+0.44+2.78+0.11+1.78=19.65

Variance= 19.65/14=1.40
方差 = 19.65/14=1.40

16. What is the variance of the combined data set from the two previous problems?
16. 组合数据集与前两个问题的方差是多少?

a. ≈1.16

b. ≈1.17

c. ≈1.18

d. ≈1.19

Explanation: Sum of the first data set: 10 + 9 + 12 + 9 + 10 + 10 + 9 + 11 + 10 + 8 + 8 + 9 + 8 + 10 + 11 = 145; Sum of the second data set: 11 + 9 + 9 + 10 + 11 + 9 + 10 + 9 + 11 = 89; Combined sum: 145 + 89 = 234; Mean=234/24=9.75;Sum of squared deviations=26.91, Variance=26.91/23≈1.17
说明:第一个数据集的总和:10 + 9 + 12 + 9 + 10 + 10 + 9 + 11 + 10 + 8 + 8 + 9 + 8 + 10 + 11 = 145;第二个数据集的总和:11 + 9 + 9 + 10 + 11 + 9 + 10 + 9 + 11 = 89;总和:145 + 89 = 234;平均值 = 234/24=9.75;平方差之和 = 26.91,方差 = 26.91/23≈1.17

17. What is the standard deviation of this data set: 0, 0, 0, 0, 1, 1, 0, 0, 1, 0?
17. 这个数据集的标准差是多少:0、0、0、0、1、1、0、0、1、0?

a. ≈0.45

b. ≈0.46
湾 ≈0.46

c. ≈0.47
约 ≈0.47

d. ≈0.48

Explanation: mean=3/10=0.3, Sum the squared deviations=0.09 + 0.09 + 0.09 + 0.09 + 0.49 + 0.49 + 0.09 + 0.09 + 0.49 + 0.09 = 2.1; Variance=2.1/9≈0.233; thus, standard deviation of this data set=0.233≈0.48
说明:平均值=3/10=0.3,平方偏差之和=0.09 + 0.09 + 0.09 + 0.49 + 0.49 + 0.09 + 0.09 + 0.09 + 0.09 = 2.1;方差=2.1/9≈0.233;因此,该数据集的标准差=0.233≈0.48

18. What is the standard deviation of this data set: 10, 9, 10, 9, 10, 10, 9, 10, 10, 10?
18. 这个数据集的标准差是多少:10、9、10、9、10、10、9、10、10、10?

a. ≈0.46

b. ≈0.47
湾≈0.47

c. ≈0.48
约 ≈0.48

d. ≈0.49

Explanation: Mean=97/10=9.7; Sum the squared deviations=0.09 + 0.49 + 0.09 + 0.49 + 0.09 + 0.09 + 0.49 + 0.09 + 0.09 + 0.09 = 2.1;Variance=2.1/9≈0.233, SD=√0.233≈0.48
解释:平均值=97/10=9.7;平方差之和=0.09 + 0.49 + 0.09 + 0.49 + 0.09 + 0.09 + 0.49 + 0.09 + 0.09 + 0.09 = 2.1;方差 = 2.1/9≈0.233,标准差 = √0.233≈0.48

Questions 20-22 refer to the following data set: 20, 18, 28, 24, 23, 32, 19, 27, 28, 27, 24, 28, 26, 28, 31, 25, 24, 28, 25, 22.
问题 20-22 是指以下数据集:20、18、28、24、23、32、19、27、28、27、24、28、28、31、25、24、28、25、22。

20. What is the range?
20. 范围是多少?

a. 16
答 16

b. 15
生 15

c. 14
约14

d. 13
卒于 13

Explanation: Range=32-18=14
说明:范围 = 32-18=14

21. What is the variance?
21. 什么是方差?

a. ≈14.8

b. ≈13.8
湾 ≈13.8

c. ≈12.8

d. ≈11.8

Explanation: Mean=507/20=25.35; SD=3.71; Vairance=13.818
解释:平均值=507/20=25.35;标准差=3.71;瓦伊兰斯=13.818

you can refer to SPSS:
您可以参考 SPSS:

22. What is the standard deviation?
22. 什么是标准差?

a. ≈3.7

b. ≈3.8

c. ≈3.9

d. ≈4.7