生物活性成分、代谢物和功能
Hesperidin Alleviated Intestinal Barrier Injury, Mitochondrial Dysfunction, and Disorder of Endoplasmic Reticulum Mitochondria Contact Sites under Oxidative Stress
橙皮苷减轻氧化应激下的肠屏障损伤、线粒体功能障碍和内质网线粒体接触位点紊乱Click to copy article link
点击复制文章链接Article link copied!
点击复制文章链接Article link copied!
- Feiyang Gou 飞扬沟Feiyang GouKey Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, ChinaMore by Feiyang Gou
- Qian Lin 钱琳Qian LinKey Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, ChinaMore by Qian Lin
- Xiaodian Tu 涂小典Xiaodian Tu 涂小典Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
浙江大学动物科学学院, 分子动物营养教育部重点实验室(浙江大学), 杭州 310058More by Xiaodian Tu
更多涂晓电的作品 - Jiang Zhu 江珠
- Xin Li 李欣Xin LiKey Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, ChinaMore by Xin Li
- Shaokui Chen* 陈少奎*Shaokui Chen 陈少奎*Email: loveskchen@163.comKey Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
浙江大学动物科学学院, 分子动物营养教育部重点实验室(浙江大学), 杭州 310058School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
武汉工业大学动物科学与营养工程学院, 武汉 430023
*邮箱: loveskchen@163.comMore by Shaokui Chen
更多陈少奎的作品 - Caihong Hu* 胡彩虹*Caihong Hu*Email: chhu@zju.edu.cnKey Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, ChinaMore by Caihong Hu
Abstract 抽象的
单击复制部分链接Section link copied!
As primary flavonoids extracted from citrus fruits, hesperidin has been attracting attention widely for its capacity to act as antioxidants that are able to scavenge free radicals and reactive oxygen species (ROS). Many factors have made oxidative stress a risk factor for the occurrence of intestinal barrier injury, which is a serious health threat to human beings. However, little data are available regarding the underlying mechanism of hesperidin alleviating intestinal injury under oxidative stress. Recently, endoplasmic reticulum (ER) mitochondria contact sites (ERMCSs) have aroused increasing concerns among scholars, which participate in mitochondrial dynamics and Ca2+ transport. In our experiment, 24 piglets were randomly divided into 4 groups. Piglets in the diquat group and hesperidin + diquat group received an intraperitoneal injection of diquat (10 mg/kg), while piglets in the hesperidin group and hesperidin + diquat group received hesperidin (300 mg/kg) with feed. The results indicated that hesperidin alleviated growth restriction and intestinal barrier injury in piglets compared with the diquat group. Hesperidin ameliorated oxidative stress and restored antioxidant capacity under diquat exposure. The mitochondrial dysfunction was markedly alleviated via hesperidin versus diquat group. Meanwhile, hesperidin alleviated ER stress and downregulated the PERK pathway. Furthermore, hesperidin prevented the disorder of ERMCSs by downregulating the level of ERMCS proteins, decreasing the percentage of mitochondria with ERMCSs/total mitochondria and the ratio of ERMCSs length/mitochondrial perimeter. These results suggested hesperidin could alleviate ERMCS disorder and prevent mitochondrial dysfunction, which subsequently decreased ROS production and alleviated intestinal barrier injury of piglets under oxidative stress.
作为从柑橘类水果中提取的主要黄酮类化合物,橙皮苷因其作为抗氧化剂的能力而受到广泛关注,能够清除自由基和活性氧(ROS)。多种因素使得氧化应激成为肠道屏障损伤发生的危险因素,严重威胁人类的健康。然而,关于橙皮苷减轻氧化应激下肠道损伤的潜在机制的数据很少。近年来,内质网(ER)线粒体接触位点(ERMCSs)引起了学者们越来越多的关注,其参与线粒体动力学和Ca 2+转运。在我们的实验中,24 头仔猪被随机分为 4 组。敌草快组和橙皮苷+敌草快组仔猪腹腔注射敌草快(10 mg/kg),橙皮苷组和橙皮苷+敌草快组仔猪腹腔注射橙皮苷(300 mg/kg)随饲料。结果表明,与敌草快组相比,橙皮苷减轻了仔猪的生长受限和肠道屏障损伤。橙皮苷可改善敌草快暴露下的氧化应激并恢复抗氧化能力。 与敌草快组相比,橙皮苷显着减轻了线粒体功能障碍。同时,橙皮苷缓解ER应激并下调 PERK 通路。此外,橙皮苷通过下调ERMCS蛋白水平、降低具有ERMCS的线粒体/总线粒体的百分比以及ERMCS长度/线粒体周长的比率来预防ERMCS的紊乱。这些结果表明橙皮苷可以缓解ERMCS紊乱并预防线粒体功能障碍,从而减少ROS的产生并减轻氧化应激下仔猪的肠道屏障损伤。
This publication is licensed under the terms of your
institutional subscription.
Request reuse permissions.
本出版物根据您的条款获得许可
机构认购。
请求重用权限。
版权所有 © 2024 美国化学会
1. Introduction 一、简介
单击复制部分链接Section link copied!
据报道,橙皮苷(3,5,7-三羟基黄烷酮-7-鼠李糖苷,PubChem CID:10621)是芸香科植物中含量丰富的黄烷酮苷,具有多种生物活性,其中生物效应有近期受到广泛关注。 (1)一般来说,柑橘类水果中橙皮苷的含量在果皮中为 0 至 20 mg/g 干重 (DW),果肉中为 2 至 4 mg/g DW,果汁中为 0 至 0.199 mg/mL 鲜重。 (2,3)正如之前的研究报道,橙皮苷的药理特性,包括抗炎、抗氧化、抗肿瘤和神经保护特性,与其作为抗氧化剂清除自由基和活性氧的能力相关。物种(ROS)。 (4)小鼠研究表明橙皮苷在改善结肠炎和恢复肠道屏障功能方面具有优势。 (5)根据之前的一项研究,橙皮苷显示出缓解淀粉样蛋白-β (Aβ) 诱导的小鼠氧化应激和线粒体功能障碍的潜力。 (6)据我们所知,尽管有一些研究报告了橙皮苷对氧化应激和肠道屏障完整性损伤的影响,但具体的潜在机制尚不完全清楚。
肠上皮屏障被广泛认为是抵御抗原和病原体的重要屏障,这些抗原和病原体也主要攻击氧化应激的目标。 (7)已有大量报道表明,日常生活中许多因素可诱发氧化应激和肠道屏障损伤,包括病原体、污染物、辐射、饮食和生活方式。 (8)敌草快作为一种非选择性速效除草剂,进入体内后会长期释放,导致自由基过量产生,释放大量ROS等氧化性物质。 (9)此后,过量的ROS会损害脂质、蛋白质和DNA,最终导致肠道屏障受损。因此,敌草快被广泛用于建立仔猪氧化应激模型。因此,迫切需要安全有效的治疗措施来改善肠道氧化应激。
人们普遍认为线粒体是各种细胞的主要能量工厂,其中氧化呼吸链产生大量能量维持肠道屏障功能,而内质网(ER)作为真核生物最大的膜细胞器发挥着至关重要的作用参与碳水化合物、脂质、糖原的合成和代谢以及蛋白质的合成。 (10,11)有证据表明内质网应激(ERS) 和线粒体功能障碍与线粒体和内质网之间的串扰密切相关。 (12)最近,不同细胞器之间的物理接触,如线粒体、内质网和过氧化物酶体之间的膜接触位点(MCS)被发现负责限制区域内的信息和物质的运输,引起了人们的广泛关注。学者。 (13)随后报道称,线粒体和内质网之间密切相关的区域(被定义为内质网线粒体接触位点(ERMCS))富含一系列负责脂质合成以及线粒体和内质网之间转移的蛋白质。 (14,15)据充分报道,ERMCS 作为特殊结构存在,可促进协调能量代谢、Ca 2+转移和线粒体动力学。 (16)最近,ERMCSs被报道与许多病理学密切相关,例如,ERMCSs代谢活动的增加与阿尔茨海默病密切相关。 (17,18)虽然生命科学和医学领域对ERMCSs有很多研究,但目前尚未有关于橙皮苷对氧化应激下ERMCSs、线粒体功能和ERS影响的数据报道。
因此,我们采用广泛使用的敌草快仔猪氧化应激模型,这是研究肠道氧化应激的理想模型。 (19)我们假设橙皮苷可以通过恢复ERMCS的形成和功能、改善ERS和线粒体功能障碍来减轻氧化应激下的肠道屏障损伤。因此,我们研究了橙皮苷对氧化应激下 EMCS、肠屏障、ERS 和线粒体形成的影响。总的来说,这项研究为使用橙皮苷预防氧化应激下的肠道屏障损伤提供了一种有前途的策略。
2. Materials and Methods 2. 材料与方法
单击复制部分链接Section link copied!
2.1. Ethics Statement 2.1.道德声明
实验设计和程序经浙江大学动物保护与使用委员会批准。本实验的动物程序经浙江大学动物保护与使用委员会批准(批准号:ZJU20230247)。
2.2. Experimental Design and Diets
2.2.实验设计和饮食
本实验使用了二十四头仔猪。将仔猪(35日龄,21日断奶,杜洛克×长白×约夏,初始体重9.70 kg)采用随机完全区组设计分为4组。每组6头仔猪,雌雄各半,分为4组:对照组(基础日粮+0.9%生理盐水注射)、橙皮苷组(基础日粮+300 mg/kg橙皮苷+0.9%生理盐水注射)、敌草快组。组(基础饮食+敌草快注射液)、橙皮苷+敌草快组(基础饮食+敌草快注射液+300mg/kg橙皮苷) )。 (20)开始时,仔猪按10mg/kg体重腹腔注射敌草快或灭菌盐水。根据先前的研究,选择敌草快的剂量(10 毫克/千克)来诱导氧化应激。 (21)敌草快 (Sigma-Aldrich, St. louis, MO, USA) 和生理盐水在腹腔注射前过滤灭菌。基础饮食根据NRC(2012)制定(表S1 )。实验持续14天,期间免费提供水和饲料。在实验期间,我们计算了仔猪的平均日增重 (ADG)、平均日采食量 (ADFI) 和饲料增重比 (F:G)。
2.3. Sample Collection 2.3.样品采集
实验结束时,肌肉注射盐酸赛拉嗪对仔猪实施安乐死。小心切开腹腔前,用75%乙醇擦拭皮肤。之后,收获肠,切下一段肠组织并用冷生理盐水清洗。获得组织后,将肠道样本分别保存在甲醛和戊二醛中,用于免疫组化分析和透射电子显微镜(TEM)实验。此外,将肠粘膜冷冻在液氮中并保存在-80°C直至进一步研究。
2.4. Using Chamber Experiment
2.4.使用室实验
跨上皮电阻(TER,Ω·cm –2 )和异硫氰酸荧光素-葡聚糖4 kDa(FD4,ng·cm –2 ·h –1 )用于评估空肠通透性。 Ussing 室实验是根据 Hu 等人的报告进行的。 (22)基本上,我们使用 EasyMount Ussing 室系统来检测空肠粘膜的 TER。 FD4被放置在Ussing室的粘膜侧。通过荧光酶标仪(Flx800,Bio-Tek)记录FD4的通量。
2.5. Intestinal Morphology
2.5.肠道形态学
根据之前的研究,使用苏木精-伊红(H&E)染色来测量空肠的形态。 (23,24)简而言之,使用 4% 多聚甲醛固定新鲜分离的空肠段。石蜡包埋、切片、染色后,我们使用显微镜(Mshot,MF52,中国)捕获样品的图像。之后,我们使用 Caseviewer (V2.4) 计算隐窝深度、绒毛高度以及绒毛高度与隐窝深度的比率,以测量空肠形态。
2.6. Assay of Activity of Serum Transaminase, Antioxidative Enzyme, and Level of MDA
2.6。血清转氨酶、抗氧化酶活性及MDA水平测定
采用ELISA试剂盒(上海碧云天生物技术研究所)检测血清丙氨酸氨基转移酶(ALT)、天门冬氨酸氨基转移酶(AST)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性以及丙二醛(MDA)水平。 。
2.7. TEM Experiment 2.7.透射电镜实验
TEM实验按照Cao等人的方法进行。 (25)我们使用 2.5% 戊二醛将分离的空肠片段在 4°C 下固定过夜。之后,用1%OsO 4后固定样品。样品经过脱水、浸润、包埋、超薄切片、染色等一系列处理后,使用TEM(日本,日立型号H-7650)对样品进行观察。
2.8. Measurement of Mitochondrial Membrane Potential, ATP Content, Mitochondrial Calcium, and Activity of Mitochondria Respiratory Chain Complex I–III
2.8.线粒体膜电位、ATP 含量、线粒体钙和线粒体呼吸链复合物 I-III 活性的测量
使用JC-1测定试剂盒(碧云天生物技术研究所,上海,中国)测量线粒体膜电位(MMP)的变化。样品处理后,我们使用酶标仪测量荧光。采用ATP检测试剂盒(上海碧云天生物技术研究所)测定样品的ATP含量。根据先前的研究,使用钙测试试剂盒(Sigma-Aldrich),在线粒体膜透化和随后释放的Ca 2+后计算线粒体Ca 2+的浓度。 (26)通过定量测定试剂盒(上海吉迈科技有限公司)测定线粒体呼吸链复合物I-III的活性。线粒体呼吸链复合物的活性是通过测量其底物在各自激发波长下的 OD 值来确定的。
2.9. Real-Time Quantitative PCR Analysis
2.9.实时定量 PCR 分析
根据 Shi 等人的说法, (27)评估了相对 mRNA 表达水平。根据制造商的说明(qPCR,master mix,Vazyme,南京,中国)进行实时定量PCR(RT-qPCR)。用于RT-qPCR的引物信息列于表S2中。
2.10. Western Blotting Analysis
2.10.蛋白质印迹分析
根据He等人的说法,蛋白质的相对表达水平是通过Western blot测定来评估的。 (28)空肠粘膜样品经提取、纯化、变性等处理后,得到纯的总蛋白。通过 SDS-PAGE 运行并分离总蛋白。然后,将蛋白质与特定一抗孵育过夜,然后与二抗孵育。实验中使用的一抗列于表S3中。
2.11. Determination of Mitochondrial ROS Production
2.11.线粒体ROS 产生的测定
根据Yang等人的研究,使用DCFH-DA试剂盒(Beyotime Biotechnology,上海,中国)通过荧光法检测线粒体ROS水平。 (29)测量后,将每组的结果计算为相对于对照组的倍数变化。
2.12. Immunofluorescence of Jejunal Sections and Colocalization Analysis of Correlation Scatter Plots
2.12.空肠切片的免疫荧光和相关散点图的共定位分析
根据Yu等人的描述, (30)石蜡切片经过一系列程序,包括脱蜡至水、抗原修复、血清封闭以及与相应的一抗和二抗孵育。最后,在荧光显微镜(Mshot,MF52,中国)下观察和捕获样品,以可视化目标抗原的标记。使用Image-J分析线粒体标记和ER标记之间的相关散点图的共定位,证明线粒体和ER之间的相互作用。
2.13. Statistical Analysis
2.13.统计分析
通过 SPSS 20.0(SPSS Inc.,芝加哥,伊利诺斯州)对数据进行单向方差分析,采用 Duncan 的多范围检验。当P < 0.05 时,认为差异显着。与对照组相比,* < 0.05、** < 0.01 和 *** < 0.001,与敌草快组相比,# < 0.05、## < 0.01 和 ### < 0.001。每组有 6 个重复,“ns”表示不显着。
3. Results 3. 结果
单击复制部分链接Section link copied!
3.1. Dietary Hesperidin Alleviated Growth Restriction and Intestinal Barrier Injury in Piglets under Oxidative Stress
3.1.日粮橙皮苷减轻氧化应激下仔猪的生长受限和肠屏障损伤
图1 a-c显示,与对照相比,敌草快诱导的氧化应激显着降低了最终体重(FBW)( P < 0.001),而膳食橙皮苷显着缓解了氧化应激诱导的FBW降低( P < 0.01),这表明表明橙皮苷缓解了氧化应激下的生长限制。同时,与敌草快组相比,膳食橙皮苷组的 ADG ( P < 0.01) 和 ADFI ( P < 0.001) 显着升高,而敌草快处理则显着降低 ( P < 0.001)。四组间料重比(F:G)均不受影响( P > 0.05)。根据图1d 、e,与敌草快处理相比,补充橙皮苷显着减轻了氧化应激引起的TER减少( P <0.01)和FD4通量增加( P <0.01)。根据 H&E 染色,敌草快治疗引起空肠隐窝绒毛结构异常,补充橙皮苷可缓解这种异常(图 1 f)。从图 1 g,h 中可以看出,敌草快攻击后绒毛高度以及绒毛高度与隐窝深度之比显着降低( P < 0.001 和P < 0.01),而膳食橙皮苷则显着增加( P < 0.01 和 P < 0.01)。 P <0.05)。 同时,四组间隐窝深度差异无显着性( P >0.05)。图 1 i,j 显示与对照组相比,敌草快挑战显着降低了紧密连接蛋白(ZO-1、Occludin 和 Claudin-1)的水平(分别为P < 0.01、 P < 0.05 和P < 0.05) ,橙皮苷显着增加(分别为P < 0.001、 P < 0.001 和P < 0.01)。综合考虑,这些数据表明日粮橙皮苷可减轻氧化应激下仔猪的肠道屏障损伤和生长迟缓。
3.2. Dietary Hesperidin Decreased the Activity of Serum ALT and AST and Increased the Antioxidant Capacity in the Jejunum of Piglets under Oxidative Stress
3.2.日粮橙皮苷降低氧化应激下仔猪血清 ALT 和 AST 活性并增加空肠抗氧化能力
敌草快暴露下血清 ALT 和 AST 活性升高( P < 0.01),而与敌草快组相比,添加橙皮苷的饮食显着降低血清 ALT 和 AST 水平( P < 0.01)(图 2 a、b)。如图2c -e 所示,敌草快处理导致 CAT 和 SOD 活性显着降低,MDA 水平升高(分别为P < 0.05、 P < 0.01 和P < 0.01),而补充橙皮苷与对照组相比,CAT和SOD活性显着升高( P < 0.01, P < 0.05),MDA水平显着降低( P < 0.05)。敌草快治疗。 RT-qPCR结果显示,敌草快暴露下抗氧化酶( SOD1 、 GPX-1和GPX-4 )的mRNA水平显着降低(分别为P < 0.05、 P < 0.01和P < 0.01)。补充橙皮苷后显着增加(分别为P < 0.05、 P < 0.05 和P < 0.01)(图2f )。
3.3. Dietary Hesperidin Alleviated Mitochondrial Injury and Dysfunction in the Jejunum of Piglets under Oxidative Stress
3.3.日粮橙皮苷可减轻氧化应激下仔猪空肠的线粒体损伤和功能障碍
根据图 3 a、b,敌草快治疗引起线粒体显着升高( P < 0.001),并伴有超微结构异常,例如线粒体固缩和线粒体嵴破裂,通过补充橙皮苷可以缓解这种异常( P < 0.001)。根据图 3 c-f,与对照组相比,敌草快处理引起线粒体ROS 水平升高( P < 0.01),MMP 和 ATP 含量显着降低( P < 0.05, P < 0.01),而补充橙皮苷可显着缓解ROS水平的升高( P < 0.01)以及MMP和ATP含量的降低( P < 0.01, P < 0.05)由敌草快诱导。同时,膳食橙皮苷对空肠线粒体呼吸链复合物 I-III 的活性具有统计学意义的显着升高(分别为P < 0.05、 P < 0.01 和P < 0.05),而敌草快暴露则显着降低( P < 0.01)。 、 P < 0.01 和P < 0.05 分别)。根据RT-qPCR结果,敌草快暴露下线粒体生物发生蛋白( PGC- 1α和NRF-1 )的mRNA水平显着降低( P <0.001,P<0.05),而补充橙皮苷则显着增加(P<0.001, P <0.05)。 P < 0.05, P < 0.01)(图 3 g)。 如图 3 h,i 所示,与对照相比,敌草快处理导致 Bax 显着升高( P < 0.001),而 Bcl-2 在敌草快暴露下显着降低( P < 0.01)。同时,与敌草快组相比,补充橙皮苷减轻了Bax的升高( P <0.05)和Bcl-2的降低( P <0.001)。氧化应激下Cyto Cyt-c水平升高( P <0.01),Mtio Cyt-c水平降低( P <0.001),而橙皮苷则缓解了Cyto Cyt-c的升高( P <0.05)和Mtio Cyt-c的降低(P<0.05)。 Mtio Cyt-c( P < 0.001)如图 3 h-k 所示。如图 3 l-n 所示,与敌草快组相比,补充橙皮苷减轻了空肠线粒体Ca 2+浓度的增加( P < 0.01)。此外,与敌草快组相比,敌草快挑战诱导线粒体calpain-1 水平显着增加( P < 0.01),而橙皮苷补充显着降低了线粒体calpain-1 水平( P < 0.05)。结果表明日粮橙皮苷可以改善氧化应激下仔猪空肠的线粒体损伤和功能障碍。
3.4. Dietary Hesperidin Alleviated ERS and Downregulated Related Pathway in the Jejunum of Piglets under Oxidative Stress
3.4.日粮橙皮苷减轻氧化应激下仔猪空肠中的 ERS 并下调相关通路
根据图 4a 、b,敌草快暴露下 ERS 相关蛋白如 caspase-12、Grp78、CHOP 和 ATF6 的表达水平显着增加( P < 0.05、 P < 0.01、 P < 0.01 和P <分别为 0.05),而补充橙皮苷可导致 Caspase-12、Grp78 和 CHOP 的减少( P <分别为 0.01、 P < 0.05 和P < 0.05)。橙皮苷使ATF6降低,但差异无统计学意义( P >0.05)。根据图4c-e,在敌草快暴露下,p-PERK和p-PERK/PERK显着上调( P <0.01, P <0.05),这表明敌草快处理诱导仔猪的ERS途径。补充橙皮苷显着下调 p-PERK 和 p-PERK/PERK 水平( P < 0.001, P < 0.001)。此外,与对照相比,敌草快注射后 p-eIF2α 和 p-eIF2α/eIF2α 的水平显着增加( P < 0.05, P < 0.05)。与敌草快治疗相比,膳食橙皮苷导致 p-eIF2α 和 p-eIF2α/eIF2α 水平显着降低( P < 0.01, P < 0.05)。
3.5. Dietary Hesperidin Influenced the Formation of ERMCSs and ERMCSs-Related Proteins in the Jejunum of Piglets under Oxidative Stress
3.5.日粮橙皮苷影响氧化应激下仔猪空肠中ERMCS和ERMCS相关蛋白的形成
根据图5a -c,敌草快挑战导致带有ERMCS的线粒体/总线粒体的百分比显着升高( P <0.01)以及ERMCS的长度与线粒体周长的比率( P <0.01),这表明氧化应激下仔猪空肠中 EMCCS 的形成受到干扰。同时,与敌草快处理相比,补充橙皮苷后,ERMCSs的形成明显减少( P < 0.05)。根据线粒体标记和ER标记的相对IF(图5d ,e),敌草快挑战显着增加了仔猪空肠线粒体标记和ER标记的Pearson相关系数( P <0.01)。同时,补充橙皮苷导致敌草快暴露下线粒体标记物和ER标记物的皮尔逊相关系数显着降低( P < 0.01),这表明膳食橙皮苷减轻了线粒体和ER之间的相互作用。根据图5f -h,敌草快注射对ERMCSs的形成产生积极影响,ERMCSs相关蛋白如mfn2 、 VAPB 、 Grp75 、 IP3R和PACS2的mRNA水平显着增加( P <0.01) , P < 0.05, P < 0.001, P < 0.01, P < 0.05, 分别)。 同时,与敌草快组相比,膳食橙皮苷显着减轻了这些蛋白质 mRNA 水平的增加(分别为P < 0.05、 P < 0.01、 P < 0.05、 P < 0.05 和P < 0.01)。此外,四组间Mfn1 、 VDAC1 、 PTPIP51 mRNA水平差异均无统计学意义( P >0.05)。作为 EMCS 标志蛋白,Mfn2 和 Grp75 在敌草快暴露下表达水平显着升高( P < 0.01 和P < 0.05),而 Mfn1 和 VDAC1 在四组中未受影响( P > 0.05)。与敌草快组相比,添加橙皮苷后,Mfn2和Grp75的表达水平显着降低( P <0.05和P <0.01)。由图 5 i、j 可见,四组间 AMPKα 表达均未受影响( P > 0.05)。氧化应激显着上调 p-AMPKα 表达及 p-AMPKα/AMPKα 比值( P < 0.05),膳食橙皮苷显着增强 p-AMPKα 表达及 p-AMPKα/AMPKα 比值( P < 0.05)。 0.01 和P < 0.05)与敌草快组相比。在此,本研究表明膳食橙皮苷可减轻氧化应激下 EMCS 的紊乱。
4. Discussion 4. 讨论
单击复制部分链接Section link copied!
人们普遍认为,肠上皮屏障是抵御肠腔内恶劣环境的主要防线,对于保护身体免受毒素、抗原和病原体的侵害至关重要。 (31)作为柑橘类水果中最常见的黄酮类化合物之一,橙皮苷具有抗氧化和抗炎活性(4) ,并已被广泛应用。本研究采用成熟的仔猪腹腔注射敌草快氧化应激模型,探讨橙皮苷对氧化应激条件下仔猪生长性能、肠道屏障功能和抗氧化能力的影响。根据结果,膳食橙皮苷减轻了氧化应激引起的生长性能下降。同时,我们还发现,与敌草快组相比,补充橙皮苷后,仔猪的空肠绒毛高度以及绒毛高度与隐窝深度之比显着增加,这表明橙皮苷减轻了肠道屏障损伤。根据蛋白质印迹分析,与敌草快组相比,橙皮苷增加了紧密连接蛋白的水平。同样,陈等人。发现橙皮素(橙皮苷的一种苷元)增加了紧密连接蛋白的表达。 (32)此外,补充橙皮苷可增加 CAT 和 SOD 的活性,降低 MDA 水平,并上调相关抗氧化酶的 mRNA 水平,这表明空肠中橙皮苷可减轻氧化应激引起的抗氧化能力下降。仔猪。同样,陈等人。发现橙皮苷增强SOD和GPX以及谷胱甘肽还原酶的活性,这可能表明H 2 O 2 -损伤的软骨细胞的总抗氧化功能得到改善。 (33)在此,本研究表明橙皮苷减轻了仔猪肠道屏障损伤并恢复了仔猪空肠的抗氧化能力,从而提高了仔猪在氧化应激下的生长性能。此外,橙皮苷还能缓解氧化应激下血清ALT和AST的升高,说明橙皮苷对仔猪肝损伤具有保护作用。(34)
研究表明,线粒体是能量产生的主要场所,在肠道屏障功能中发挥着不可或缺的作用。 (11)应激情况下,线粒体氧化呼吸链产生大量内源性ROS,导致线粒体损伤,ATP产生减少。 (35)然而,目前几乎没有研究报道橙皮苷对氧化应激下仔猪线粒体功能障碍的影响。因此,我们着手评估橙皮苷对氧化应激下仔猪空肠线粒体功能的影响。根据TEM结果,我们发现橙皮苷组的线粒体超微结构具有完整的双层膜和致密的基质,这对线粒体功能至关重要(36) ,而敌草快组的线粒体超微结构受到干扰。 MMP作为线粒体功能最重要的指标之一,是能量储存过程的重要组成部分。 ROS是线粒体氧化磷酸化产生ATP的副产物,过量的ROS也是导致线粒体功能障碍的因素之一。 ATP 的产生很大程度上取决于线粒体呼吸链复合体的活性,这是线粒体功能的重要指标。在我们的实验中,橙皮苷补充剂通过增加 MMP 和 ATP 含量、减少 ROS 产生以及上调氧化应激下呼吸链复合物 I-III 的活性来改善线粒体功能障碍。蔡等人。发现橙皮苷补充剂恢复了人类关节软骨细胞中暴露于 H 2 O 2 的线粒体活性,这支持了我们的研究。 (37)同样,Wang 等人。发现橙皮苷显着提高了 APPswe/PS 1dE9 小鼠线粒体呼吸链复合物 I-IV 的活性,这支持了我们的发现。 (38)如图3g所示,膳食橙皮苷使PGC-1α和NRF-1的mRNA水平增加,这表明橙皮苷通过激活PGC-1α途径恢复线粒体生物发生。线粒体凋亡相关蛋白Western blotting结果显示,橙皮苷下调Bax和Cyto Cyt-C水平,上调Bcl-2和Mito Cyt-C水平,提示橙皮苷保护线粒体、抑制细胞凋亡的潜在机制。 。 (39)先前的一项研究表明,线粒体中的钙超载可能导致线粒体通透性转换孔打开,随后导致线粒体功能障碍和细胞死亡。 (40)在本研究中,结果表明,补充橙皮苷后,与敌草快组相比,线粒体钙含量和 calpain-1 水平降低,表明橙皮苷可以缓解线粒体钙超载。
ER作为真核生物中最大的膜细胞器,在碳水化合物、脂质、糖原的合成和代谢以及蛋白质的合成中发挥着重要作用。 (10)氧化应激下,ER稳态被扰乱,ER功能失调可激活未折叠蛋白反应(UPR)。 (41) ER 驻留分子伴侣 GRP78 可以与错误折叠的蛋白质结合,从 PERK、ATF6 和 IRE1 解离,进一步激活下游 ERS 信号传导并使 ER 恢复稳态。 (41)在本研究中,数据表明,ERS 相关蛋白(Caspase-12、Grp78、CHOP 和 ATF6)的水平在氧化应激下上调,而膳食橙皮苷可缓解这种情况。众所周知,PERK-eIF2α-CHOP-caspase-12 通路与 UPR 和 ERS 密切相关。 (42)结果表明,补充橙皮苷后,PERK 和 eIF-2α 的磷酸化水平下调,这反映出橙皮苷改善了 ERS。综上所述,这些结果表明橙皮苷可以通过 PERK-eIF2α-CHOP-caspase-12 途径提高蛋白质的折叠能力并减轻 ERS 诱导的细胞凋亡,最终使 ER 恢复稳态。
近年来,ERMCS作为线粒体外膜和内质网膜上一系列蛋白质组成的物理接触点,越来越受到生命科学研究人员的关注,并被证明是控制细胞生理学的信号中枢。 (13,14,16)自JE Vance发现ERMCS以来,学者们将ERMCS定义为线粒体膜和内质网膜之间跨度10~30 nm的动态脂筏,并研究了ERMCS中蛋白质的功能,如Mfn1、Mfn2 、VDAC1、Grp75、IP3R、VAPB、PTPTIP51 和 PACS2。 (15,43)然而,橙皮苷对仔猪 EMCS 形成和功能的影响却鲜有报道。因此,我们采用了广泛使用的仔猪氧化应激模型来研究橙皮苷对空肠中ERMCS形成的影响。通过TEM实验观察ERMCSs的形态结构,结果表明,与敌草快组相比,橙皮苷显着抑制ERMCSs的形成。此外,为了观察线粒体和 ER 之间的相互作用,Tomm20 和 PDI 被用作线粒体和 ER 的标记,因为它们分别很好地表征了线粒体和 ER。 (44)在荧光显微镜下,结果表明通过皮尔逊系数补充橙皮苷可以降低内质网和线粒体之间的耦合程度。 根据前期研究,AMPKα的激活有利于细胞稳态和预防衰老,与氧化应激密切相关。 (45)在我们的实验中,氧化应激上调了p-AMPKα/AMPKα的比率,这与之前的报道一致。 (46)敌草快处理后,橙皮苷显着增强 AMPK 磷酸化,这与 Li 等人的研究相似。 (47)因此,本研究表明AMPK可能通过与mfn2相互作用参与橙皮苷缓解ERMCS紊乱和线粒体功能障碍,还需要进一步研究。作为ERMCS形成的基础,ERMCS中的一系列束缚蛋白在该功能平台的形成中发挥着重要作用,例如Mfn1(Mfn2)-Mfn2、VDAC1-Grp75-IP3R和VAPB-PTPTIP51。因此,我们使用RT-qPCR来检测相关蛋白的mRNA水平。我们发现,补充橙皮苷后,ERMCS 的形成通过下调Mfn2、VDAC1、Grp75、IP3R、VAPB和PACS2的水平而减少。在这些束缚蛋白中,Mfn2、Grp75和VDAC1在之前的研究中被广泛认为是ERMCS标记:Mfn2主要维持ER和线粒体之间ERMCS的形成; VDAC1已被证明是介导多种离子和代谢物进出线粒体的重要靶标; Grp75 是胞质伴侣,通过 IP3R-GRP75-VDAC1 复合物促进 EMCS 形成。 (48) Western blot结果显示,与敌草快组相比,膳食橙皮苷减弱了Mfn2和Grp75表达水平的增加,这表明橙皮苷减轻了氧化应激下ERMCS的紊乱。
实际上,这些束缚蛋白不仅是ERMCS形成的基础,ERMCS的许多功能如ER-线粒体钙转移也依赖于它们。据我们所知,VDAC1-Grp75-IP3R复合物与线粒体和内质网之间的Ca 2+转运密切相关,这可能是线粒体钙超载和功能障碍的原因。 (49)李等人。已经证明,脱氧雪腐镰刀菌烯醇诱导仔猪空肠中 IP3R 和 VDAC1 相互作用强度的增加和线粒体钙超载,从而导致线粒体功能障碍和肠屏障损伤。 (50)根据我们所做的研究,橙皮苷减少线粒体钙可能与橙皮苷对ERMCSs的形成以及ER和线粒体之间的钙通道的负面影响有关。因此,基于所获得的结果,我们假设橙皮苷通过下调VDAC1-Grp75-IP3R复合物等钙通道并抑制Ca 2+从内质网到线粒体的转运来减轻线粒体钙超载和功能障碍。 为了进一步了解橙皮苷对氧化应激下仔猪空肠ERMCS紊乱影响的潜在机制,还需要开展更多的后续研究。例如,利用流式细胞术检测线粒体Ca 2+水平,利用免疫荧光和免疫沉淀测定VDAC1-Grp75-IP3R复合物等钙通道的共定位和相互作用,从而进一步研究其作用。橙皮苷在氧化应激下缓解线粒体钙超载和功能障碍中的ERMCS和钙通道的作用。
总的来说,目前的研究表明,橙皮苷可以减轻肠道屏障损伤,在氧化应激下保留仔猪肠道的抗氧化能力。重要的是,我们的工作表明,橙皮苷可以缓解 EMCS紊乱,减轻线粒体功能障碍和 ERS,从而减少 ROS 产生并防止氧化应激下的肠道屏障损伤。这些结果支持了营养疗法的可能应用,例如橙皮苷,其目标是恢复 EMCS 的形成和功能,这可能是解决氧化应激下仔猪肠道屏障损伤和线粒体功能障碍的有效方法。
Supporting Information 支持信息
单击复制部分链接Section link copied!
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jafc.4c02265IF: 5.7 Q1 .
支持信息可免费获取: https://pubs.acs.org/doi/10.1021/acs.jafc.4c02265如果:5.7 Q1 。
Ingredients and nutrient composition of the control diet, information on primers used for RT-qPCR, and the primary antibody used for Western blot experiment (PDF)
对照饮食的成分和营养成分、RT-qPCR 所用引物信息以及 Western blot 实验所用一抗 ( PDF )
Terms & Conditions 条款及条件
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
大多数电子支持信息文件无需订阅 ACS 网络版即可获得。此类文件可以按文章下载用于研究用途(如果有链接到相关文章的公共使用许可证,则该许可证可能允许其他用途)。可以通过 RightsLink 许可系统提出请求,从 ACS 获得许可用于其他用途: http ://pubs.acs.org/page/copyright/permissions.html。
Acknowledgments 致谢
单击复制部分链接Section link copied!
This research was supported by the National Natural Science Foundation of China (32172740 and 32372888), the Zhejiang Provincial Natural Science Foundation of China under grant no. LZ24C170001, and the Key R&D Program of Zhejiang Province (2024C02004).
该研究得到国家自然科学基金(32172740和32372888)、浙江省自然科学基金(批准号:32172740和32372888)的支持。 LZ24C170001,浙江省重点研发计划(2024C02004)。
References 参考
单击复制部分链接Section link copied!
This article references
50 other publications.
本文参考
50 种其他出版物。
- 1Jia, M.; Gu, H.; Lu, Y.; Lv, L. Effects of hesperidin combined with synephrine on the capture of acrolein in a mouse model, or in humans by citrus consumption. Food Funct 2023, 14 (11), 5417– 5428, DOI: 10.1039/D2FO03522GIF: 5.1 Q1
; ; ; 。 , (), – , DOI: 10.1039/D2FO03522GIF: 5.1 Q1Google Scholar 谷歌学术1https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BB3sXhtVOgtrvM&md5=29e798b3fe207e95885d0f6150bd24f2Effects of hesperidin combined with synephrine on the capture of acrolein in a mouse model, or in humans by citrus consumptionJia, Mengwei; Gu, Huihui; Lu, Yongling; Lv, LishuangFood & Function (2023), 14 (11), 5417-5428CODEN: FFOUAI; ISSN:2042-6496. (Royal Society of Chemistry)Acrolein is a highly reactive α, β-unsatd. aldehyde that plays a key role in the pathogenesis of human diseases, such as atherosclerosis and pulmonary, cardiovascular, and neurodegenerative disorders. We investigated the capture capacity of hesperidin and synephrine on ACR by individual and combined means in vitro, in vivo (utilizing a mouse model), and via a human study. After proving that HES and SYN could efficiently capture ACR by generating ACR adducts in vitro, we further detected the adducts of SYN-2ACR, HES-ACR-1, and hesperetin (HESP)-ACR in mouse urine by ultraperformance liq. chromatog.-tandem mass spectrometry. Quant. assays revealed that adduct formation occurred in a dose-dependent manner, and that there was a synergistic effect of HES and SYN on capturing ACR in vivo. Moreover, quant. anal. suggested that SYN-2ACR, HES-ACR-1, and HESP-ACR were formed and excreted through the urine of healthy volunteers consuming citrus. The max. excretions of SYN-2ACR, HES-ACR-1, and HESP-ACR were at 2-4, 8-10, and 10-12 h, resp., after dosing. Our findings propose a novel strategy for eliminating ACR from the human body via the simultaneous consumption of a flavonoid and an alkaloid. - 2Chen, Q.; Wang, D.; Tan, C.; Hu, Y.; Sundararajan, B.; Zhou, Z. Profiling of flavonoid and antioxidant activity of fruit tissues from 27 chinese local citrus cultivars. Plants 2020, 9 (2), 196, DOI: 10.3390/plants9020196IF: 4.0 Q1
; ; ; ; ; 。 , (), , DOI: 10.3390/plants9020196IF: 4.0 Q1 - 3Pyrzynska, K. Hesperidin: a review on extraction methods, stability and biological activities. Nutrients 2022, 14 (12), 2387, DOI: 10.3390/nu14122387IF: 4.8 Q1
。 , (), , DOI: 10.3390/nu14122387IF: 4.8 Q1Google Scholar 谷歌学术3https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BB38Xhs1Kqtb7F&md5=6f4ba17e744affe88ebc564ea2c474c8Hesperidin: A Review on Extraction Methods, Stability and Biological ActivitiesPyrzynska, KrystynaNutrients (2022), 14 (12), 2387CODEN: NUTRHU; ISSN:2072-6643. (MDPI AG)A review. Hesperidin is a bioflavonoid occurring in high concns. in citrus fruits. Its use has been assocd. with a great no. of health benefits, including antioxidant, antibacterial, antimicrobial, anti-inflammatory and anticarcinogenic properties. The food industry uses large quantities of citrus fruit, esp. for the prodn. of juice. It results in the accumulation of huge amts. of byproducts such as peels, seeds, cell and membrane residues, which are also a good source of hesperidin. Thus, its extn. from these byproducts has attracted considerable scientific interest with aim to use as natural antioxidants. In this review, the extn. and detn. methods for quantification of hesperidin in fruits and byproducts are presented and discussed as well as its stability and biol. activities. - 4Choi, S. S.; Lee, S. H.; Lee, K. A. A comparative study of hesperetin, hesperidin and hesperidin glucoside: antioxidant, anti-inflammatory, and antibacterial activities in vitro. Antioxidants 2022, 11 (8), 1618, DOI: 10.3390/antiox11081618IF: 6.0 Q1
; ; 。 , (), , DOI: 10.3390/antiox11081618IF: 6.0 Q1 - 5Guo, K.; Ren, J.; Gu, G.; Wang, G.; Gong, W.; Wu, X.; Ren, H.; Hong, Z.; Li, J. Hesperidin protects against intestinal inflammation by restoring intestinal barrier function and up-regulating Treg cells. Mol. Nutr. Food Res. 2019, 63 (11), e1800975 DOI: 10.1002/mnfr.201800975IF: 4.5 Q1
; ; ; ; ; ; ; ; 。 , (), DOI: 10.1002/mnfr.201800975IF: 4.5 Q1 - 6Wang, D.; Liu, L.; Zhu, X.; Wu, W.; Wang, Y. Hesperidin alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress in a mouse model of Alzheimer’s disease. Cell Mol. Neurobiol 2014, 34 (8), 1209– 1221, DOI: 10.1007/s10571-014-0098-xIF: 3.6 Q2
; ; ; ; 。 , (), – , DOI: 10.1007/s10571-014-0098-xIF: 3.6 Q2 - 7Zhu, H.; Wang, H.; Wang, S.; Tu, Z.; Zhang, L.; Wang, X.; Hou, Y.; Wang, C.; Chen, J.; Liu, Y. Flaxseed oil attenuates intestinal damage and inflammation by regulating necroptosis and tlr4/nod signaling pathways following lipopolysaccharide challenge in a piglet model. Mol. Nutr. Food Res. 2018, 62 (9), e1700814 DOI: 10.1002/mnfr.201700814IF: 4.5 Q1
; ; ; ; ; ; ; ; ; 。 , (), DOI: 10.1002/mnfr.201700814IF: 4.5 Q1Google ScholarThere is no corresponding record for this reference. - 8Gambini, J.; Stromsnes, K. Oxidative stress and inflammation: from mechanisms to therapeutic approaches. Biomedicines 2022, 10 (4), 753, DOI: 10.3390/biomedicines10040753IF: 3.9 Q1Google ScholarThere is no corresponding record for this reference.
- 9Magalhães, N.; Carvalho, F.; Dinis-Oliveira, R. J. Human and experimental toxicology of diquat poisoning: Toxicokinetics, mechanisms of toxicity, clinical features, and treatment. Hum. Exp. Toxicol. 2018, 37 (11), 1131– 1160, DOI: 10.1177/0960327118765330IF: 2.7 Q3Google ScholarThere is no corresponding record for this reference.
- 10Sun, J.; Zhang, M.; Qi, X.; Doyle, C.; Zheng, H. Armadillo-repeat kinesin1 interacts with Arabidopsis atlastin RHD3 to move ER with plus-end of microtubules. Nat. Commun. 2020, 11 (1), 5510, DOI: 10.1038/s41467-020-19343-2IF: 14.7 Q1Google ScholarThere is no corresponding record for this reference.
- 11Yan, W.; Diao, S.; Fan, Z. The role and mechanism of mitochondrial functions and energy metabolism in the function regulation of the mesenchymal stem cells. Stem. Cell Res. Ther. 2021, 12 (1), 140, DOI: 10.1186/s13287-021-02194-zIF: 7.1 Q1Google ScholarThere is no corresponding record for this reference.
- 12Hu, F.; Liu, F. Mitochondrial stress: a bridge between mitochondrial dysfunction and metabolic diseases?. Cell Signal. 2011, 23 (10), 1528– 1533, DOI: 10.1016/j.cellsig.2011.05.008IF: 4.4 Q2Google Scholar12https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3MXpslaisLs%253D&md5=f32f5ee8622ea0efd57c4dd3437cc9eaMitochondrial stress: A bridge between mitochondrial dysfunction and metabolic diseases?Hu, Fang; Liu, FengCellular Signalling (2011), 23 (10), 1528-1533CODEN: CESIEY; ISSN:0898-6568. (Elsevier)A review. Under pathophysiol. conditions such as obesity, excessive oxidn. of nutrients may induce mitochondrial stress, leading to mitochondrial unfolded protein response (UPRmt) and initiation of a retrograde stress signaling pathway. Defects in the UPRmt and the retrograde signaling pathways may disrupt the integrity and homeostasis of the mitochondria, resulting in endoplasmic reticulum stress and insulin resistance. Improving the capacity of mitochondria to reduce stress may be an effective approach to improve mitochondria function and to suppress obesity-induced metabolic disorders such as insulin resistance and type 2 diabetes.
- 13Phillips, M. J.; Voeltz, G. K. Structure and function of ER membrane contact sites with other organelles. Nature reviews. Mol. Cell. Biol. 2016, 17 (2), 69– 82, DOI: 10.1038/nrm.2015.8IF: 81.3 Q1Google ScholarThere is no corresponding record for this reference.
- 14Poston, C. N.; Krishnan, S. C.; Bazemore-Walker, C. R. In-depth proteomic analysis of mammalian mitochondria-associated membranes (MAM). J. Proteomics 2013, 79, 219– 230, DOI: 10.1016/j.jprot.2012.12.018IF: 2.8 Q2Google Scholar14https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3sXivFOrsbs%253D&md5=5db13928ef697f0636d967b81642c74aIn-depth proteomic analysis of mammalian mitochondria-associated membranes (MAM)Poston, Chloe N.; Krishnan, Srinivasan C.; Bazemore-Walker, Carthene R.Journal of Proteomics (2013), 79 (), 219-230CODEN: JPORFQ; ISSN:1874-3919. (Elsevier B.V.)The endoplasmic reticulum (ER) and mitochondria communicate via contact sites known as mitochondria-assocd. ER membranes or MAM. The region has emerged as the primary area of Ca2+ traffic between the two organelles, and as such, has been implicated in the regulation of protein folding, oxidative phosphorylation, and Ca2+-mediated apoptosis. In order to better understand biol. processes and mol. functions at the MAM, we report a global mass spectrometry-based proteomic evaluation of the MAM obtained from mouse brain samples. Gel-assisted sample prepn. in conjunction with our two-dimensional chromatog. approach allowed for the identification of 1,212 high confidence proteins. Bioinformatic interrogation of this protein catalog using Ingenuity Pathway Anal. revealed new potential connections between our list of MAM proteins and neurodegenerative diseases in addn. to anticipated biol. processes. Based on our results, we postulate that proteins of the MAM may play essential roles in dysfunctions responsible for several neurol. disorders in addn. to facilitating key cellular survival processes.
- 15Vance, J. E. Phospholipid synthesis in a membrane fraction associated with mitochondria. J. Biol. Chem. 1990, 265 (13), 7248– 7256, DOI: 10.1016/S0021-9258(19)39106-9IF: 4.0 Q2Google Scholar15https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADyaK3cXktF2mur4%253D&md5=bd516d9acb181ec971e41f707011f9b9Phospholipid synthesis in a membrane fraction associated with mitochondriaVance, Jean E.Journal of Biological Chemistry (1990), 265 (13), 7248-56CODEN: JBCHA3; ISSN:0021-9258.A crude rat liver mitochondrial fraction that was capable of the rapid, linked synthesis of phosphatidylserine (PtdSer), phosphatidylethanolamine (PtdEtn), and phosphatidylcholine (PtdCho) labeled from [3-3H] serine has been fractionated. PtdSer synthase, PtdEtn methyltransferase, and CDP-choline:diacylglycerol cholinephosphotransferase activities were present in the crude mitochondrial prepn. but were absent from highly purified mitochondria and could be attributed to the presence of a membrane fraction, X. Thus, previous claims of the mitochondrial location of some of these enzymes might be explained by the presence of fraction X in the mitochondrial prepn. Fraction X had many similarities to microsomes except that it sedimented with mitochondria (at 10,000 g). However, the specific activities of PtdSer synthase and glucose-6-phosphate phosphatase in fraction X were almost twice that of microsomes, and the specific activities of CTP:phosphocholine cytidyltransferase and NADPH:cytochrome c reductase in fraction X were much lower than in microsomes. The marker enzymes for mitochondria, Golgi app., plasma membrane, lysosomes, and peroxisomes all had low activities in fraction X. PAGE revealed distinct differences, as well as similarities, among the proteins of fraction X, microsomes, and rough and smooth endoplasmic reticulum. The combined mitochondria-fraction X membranes can synthesize PtdSer, PtdEtn, and PtdCho from serine. Thus, fraction X in combination with mitochondria might be responsible for the obsd. compartmentalization of a serine-labeled pool of phospholipids previously identified and might be involved in the transfer of lipids between the endoplasmic reticulum and mitochondria.
- 16Rizzuto, R.; Pinton, P.; Carrington, W.; Fay, F. S.; Fogarty, K. E.; Lifshitz, L. M.; Tuft, R. A.; Pozzan, T. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 1998, 280 (5370), 1763– 1766, DOI: 10.1126/science.280.5370.1763IF: 44.7 Q1Google ScholarThere is no corresponding record for this reference.
- 17Xu, L.; Wang, X.; Tong, C. Endoplasmic Reticulum-Mitochondria Contact Sites and Neurodegeneration. Front. Cell Dev. Biol. 2020, 8, 428, DOI: 10.3389/fcell.2020.00428IF: 4.6 Q1Google Scholar17https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A280%3ADC%252BB38noslShtg%253D%253D&md5=d368c79a73b479306ed9eef4cc00f100Endoplasmic Reticulum-Mitochondria Contact Sites and NeurodegenerationXu Lingna; Wang Xi; Tong Chao; Xu Lingna; Wang Xi; Tong ChaoFrontiers in cell and developmental biology (2020), 8 (), 428 ISSN:2296-634X.Endoplasmic reticulum-mitochondria contact sites (ERMCSs) are dynamic contact regions with a distance of 10-30 nm between the endoplasmic reticulum and mitochondria. Endoplasmic reticulum-mitochondria contact sites regulate various biological processes, including lipid transfer, calcium homeostasis, autophagy, and mitochondrial dynamics. The dysfunction of ERMCS is closely associated with various neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. In this review, we will summarize the current knowledge of the components and organization of ERMCSs, the methods for monitoring ERMCSs, and the physiological functions of ERMCSs in different model systems. Additionally, we will emphasize the current understanding of the malfunction of ERMCSs and their potential roles in neurodegenerative diseases.
- 18Perrone, M.; Caroccia, N.; Genovese, I.; Missiroli, S.; Modesti, L.; Pedriali, G.; Vezzani, B.; Vitto, V. A. M.; Antenori, M.; Lebiedzinska-Arciszewska, M.; Wieckowski, M. R. The role of mitochondria-associated membranes in cellular homeostasis and diseases. Int. Rev. Cel. Mol. Bio. 2020, 350, 119– 196, DOI: 10.1016/bs.ircmb.2019.11.002Google ScholarThere is no corresponding record for this reference.
- 19Koch, R. E.; Hill, G. E. An assessment of techniques to manipulate oxidative stress in animals. Funct. Ecol. 2017, 31 (1), 9– 21, DOI: 10.1111/1365-2435.12664IF: 4.6 Q1Google ScholarThere is no corresponding record for this reference.
- 20Liu, Y.; Wang, Z.-S.; Zhou, A.-G. Effects of hesperidin and chlorogenic acid on performance, antioxidance and immunity of weaned piglets. Chinese J. Vet. Sci. 2009, 29, 1233– 1236Google ScholarThere is no corresponding record for this reference.
- 21Liu, J.; Zhang, Y.; Li, Y.; Yan, H.; Zhang, H. L-tryptophan enhances intestinal integrity in diquat-challenged piglets associated with improvement of redox status and mitochondrial function. Animals 2019, 9 (5), 266, DOI: 10.3390/ani9050266IF: 2.7 Q1Google ScholarThere is no corresponding record for this reference.
- 22Hu, C. H.; Xiao, K.; Luan, Z. S.; Song, J. Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs. J. Anim. Sci. 2013, 91 (3), 1094– 1101, DOI: 10.2527/jas.2012-5796IF: 2.7 Q1Google Scholar22https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3sXmsFKnt7c%253D&md5=a3d11fab727d8d1ea7f862533be331a0Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigsHu, C. H.; Xiao, K.; Luan, Z. S.; Song, J.Journal of Animal Science (Champaign, IL, United States) (2013), 91 (3), 1094-1101CODEN: JANSAG; ISSN:0021-8812. (American Society of Animal Science)Although weaning stress has been reported to impair intestinal barrier function, the mechanisms have not yet been elucidated. In the present study, the intestinal morphol. and permeability and mRNA expressions of tight junction proteins and cytokines in the intestine of piglets during the 2 wk after weaning were assessed. The phosphorylated (activated) ratios of p38, c-Jun NH2-terminal kinase (JNK), and extracellular regulated kinases (ERK1/2) were detd. to investigate whether mitogen-activated protein kinase (MAPK) signaling pathways are involved in the early weaning process. A shorter villus and deeper crypt were obsd. on d 3 and 7 postweaning. Although damaged intestinal morphol. recovered to preweaning values on d 14 postweaning, the intestinal mucosal barrier, which was reflected by transepithelial elec. resistance (TER) and paracellular flux of dextran (4 kDa) in the Ussing chamber and tight junction protein expression, was not recovered. Compared with the preweaning stage (d 0), jejunal TER and mRNA expressions of occludin and claudin-1 on d 3, 7, and 14 postweaning and Zonula occludens-1 (ZO-1) mRNA on d 3 and 7 postweaning were reduced, and paracellular flux of dextran on d 3, 7, and 14 postweaning was increased. An increase (P < 0.05) of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) mRNA on d 3 and d 7 postweaning and an increase (P < 0.05) of interferon-γ (IFN-γ) mRNA on d 3 postweaning were obsd. compared with d 0. No significant increase of transforming growth factor β1 (TGF-β1) and interleukin-10 (IL-10) mRNA after weaning was obsd. The phosphorylated (activated) ratios of JNK and p38 on d 3 and 7 postweaning and the phosphorylated ratio of ERK1/2 on d 3 postweaning were increased (P < 0.05) compared with d 0. The results indicated that early weaning induced sustained impairment in the intestinal barrier, decreased mRNA expression of tight junction proteins, and upregulated the expression of proinflammatory cytokines, but anti-inflammatory cytokines were not affected in the intestine of piglets. The recovery of the intestinal barrier function was slower than that of the intestinal mucosal morphol. The weaning stress activated MAPK signaling pathways in the intestine, which may be an important mechanism of weaning-assocd. enteric disorders of piglets.
- 23He, Y.; Peng, X.; Liu, Y.; Wu, Q.; Zhou, Q.; Hu, L.; Fang, Z.; Lin, Y.; Xu, S.; Feng, B. Effects of maternal fiber intake on intestinal morphology, bacterial profile and proteome of newborns using pig as model. Nutrients 2020, 13 (1), 42, DOI: 10.3390/nu13010042IF: 4.8 Q1Google ScholarThere is no corresponding record for this reference.
- 24Xue, C.; Li, Y.; Lv, H.; Zhang, L.; Bi, C.; Dong, N.; Shan, A.; Wang, J. Oleanolic Acid Targets the Gut-Liver Axis to Alleviate Metabolic Disorders and Hepatic Steatosis. J. Agric. Food Chem. 2021, 69 (28), 7884– 7897, DOI: 10.1021/acs.jafc.1c02257IF: 5.7 Q1Google Scholar24https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BB3MXhsFWnt7rF&md5=e86a3d12bada94a8f4fb8a4a4b61d6e9Oleanolic Acid Targets the Gut-Liver Axis to Alleviate Metabolic Disorders and Hepatic SteatosisXue, Chenyu; Li, Ying; Lv, Hao; Zhang, Lei; Bi, Chongpeng; Dong, Na; Shan, Anshan; Wang, JialiJournal of Agricultural and Food Chemistry (2021), 69 (28), 7884-7897CODEN: JAFCAU; ISSN:0021-8561. (American Chemical Society)This study investigated the effects of oleanolic acid (OA) on hepatic lipid metab. and gut-liver axis homeostasis in an obesity-related non-alc. fatty liver disease (NAFLD) nutritional animal model and explored possible mol. mechanisms behind its effects. The results revealed that OA ameliorated the development of metabolic disorders, insulin resistance, and hepatic steatosis in obese rats. Meanwhile, OA restored high-fat-diet (HFD)-induced intestinal barrier dysfunction and endotoxin-mediated induction of toll-like-receptor-4-related pathways, subsequently inhibiting endotoxemia and systemic inflammation and balancing the homeostasis of the gut-liver axis. OA also reshaped the compn. of the gut microbiota of HFD-fed rats by reducing the Firmicutes/Bacteroidetes ratio and increasing the abundance of butyrate-producing bacteria. Our results support the applicability of OA as a treatment for obesity-related NAFLD through its anti-inflammatory, antioxidant, and prebiotic integration responses mediated by the gut-liver axis.
- 25Cao, S.; Shen, Z.; Wang, C.; Zhang, Q.; Hong, Q.; He, Y.; Hu, C. Resveratrol improves intestinal barrier function, alleviates mitochondrial dysfunction and induces mitophagy in diquat challenged piglets(1). Food Funct. 2019, 10 (1), 344– 354, DOI: 10.1039/C8FO02091DIF: 5.1 Q1Google ScholarThere is no corresponding record for this reference.
- 26Hutcheson, J. D.; Goettsch, C.; Bertazzo, S.; Maldonado, N.; Ruiz, J. L.; Goh, W.; Yabusaki, K.; Faits, T.; Bouten, C.; Franck, G.; Quillard, T. Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques. Nat. Mater. 2016, 15 (3), 335– 343, DOI: 10.1038/nmat4519IF: 37.2 Q1Google ScholarThere is no corresponding record for this reference.
- 27Shi, S.; Zhou, X.; Li, J.; Zhang, L.; Hu, Y.; Li, Y.; Yang, G.; Chu, G. MiR-214–3p promotes proliferation and inhibits estradiol synthesis in porcine granulosa cells. J. Anim. Sci. Biotechnol. 2020, 11, 94, DOI: 10.1186/s40104-020-00500-yIF: 6.3 Q1Google ScholarThere is no corresponding record for this reference.
- 28He, Y.; Fan, X.; Liu, N.; Song, Q.; Kou, J.; Shi, Y.; Luo, X.; Dai, Z.; Yang, Y.; Wu, Z. l-Glutamine Represses the Unfolded Protein Response in the Small Intestine of Weanling Piglets. J. Nutr. 2019, 149 (11), 1904– 1910, DOI: 10.1093/jn/nxz155IF: 3.7 Q2Google ScholarThere is no corresponding record for this reference.
- 29Yang, L.; Xie, P.; Wu, J.; Yu, J.; Yu, T.; Wang, H.; Wang, J.; Xia, Z.; Zheng, H. Sevoflurane postconditioning improves myocardial mitochondrial respiratory function and reduces myocardial ischemia-reperfusion injury by up-regulating HIF-1. Am. J. Transl. Res. 2016, 8 (10), 4415– 4424Google ScholarThere is no corresponding record for this reference.
- 30Yu, J.; Song, Y.; Yu, B.; He, J.; Zheng, P.; Mao, X.; Huang, Z.; Luo, Y.; Luo, J.; Yan, H. Tannic acid prevents post-weaning diarrhea by improving intestinal barrier integrity and function in weaned piglets. J. Anim. Sci. Biotechnol. 2020, 11, 87, DOI: 10.1186/s40104-020-00496-5IF: 6.3 Q1Google ScholarThere is no corresponding record for this reference.
- 31quiz 21–2.Groschwitz, K. R.; Hogan, S. P. Intestinal barrier function: molecular regulation and disease pathogenesis. J. Allergy Clin. Immunol. 2009, 124 (1), 3– 20, DOI: 10.1016/j.jaci.2009.05.038IF: 11.4 Q1Google Scholar31https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD1MXnsl2gu7k%253D&md5=17859071e7857780c60011b93a7b2dd8Intestinal barrier function: Molecular regulation and disease pathogenesisGroschwitz, Katherine R.; Hogan, Simon P.Journal of Allergy and Clinical Immunology (2009), 124 (1), 3-20CODEN: JACIBY; ISSN:0091-6749. (Elsevier)A review. The intestinal epithelium is a single-cell layer that constitutes the largest and most important barrier against the external environment. It acts as a selectively permeable barrier, permitting the absorption of nutrients, electrolytes, and water while maintaining an effective defense against intraluminal toxins, antigens, and enteric flora. The epithelium maintains its selective barrier function through the formation of complex protein-protein networks that mech. link adjacent cells and seal the intercellular space. The protein networks connecting epithelial cells form 3 adhesive complexes: desmosomes, adherens junctions, and tight junctions. These complexes consist of transmembrane proteins that interact extracellularly with adjacent cells and intracellularly with adaptor proteins that link to the cytoskeleton. Over the past decade, there has been increasing recognition of an assocn. between disrupted intestinal barrier function and the development of autoimmune and inflammatory diseases. In this review we summarize the evolving understanding of the mol. compn. and regulation of intestinal barrier function. We discuss the interactions between innate and adaptive immunity and intestinal epithelial barrier function, as well as the effect of exogenous factors on intestinal barrier function. Finally, we summarize clin. and exptl. evidence demonstrating intestinal epithelial barrier dysfunction as a major factor contributing to the predisposition to inflammatory diseases, including food allergy, inflammatory bowel diseases, and celiac disease.
- 32Chen, F.; Chu, C.; Wang, X.; Yang, C.; Deng, Y.; Duan, Z.; Wang, K.; Liu, B.; Ji, W.; Ding, W. Hesperetin attenuates sepsis-induced intestinal barrier injury by regulating neutrophil extracellular trap formation via the ROS/autophagy signaling pathway. Food Funct. 2023, 14 (9), 4213– 4227, DOI: 10.1039/D2FO02707KIF: 5.1 Q1Google ScholarThere is no corresponding record for this reference.
- 33Chen, M.-C.; Ye, Y.-Y.; Ji, G.; Liu, J.-W. Hesperidin upregulates heme oxygenase-1 to attenuate hydrogen peroxide-induced cell damage in hepatic L02 cells. J. Agric. Food Chem. 2010, 58 (6), 3330– 3335, DOI: 10.1021/jf904549sIF: 5.7 Q1Google Scholar33https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3cXitFyhtrw%253D&md5=443bb2d1ba5f65db246b3d975dbac2d3Hesperidin Upregulates Heme Oxygenase-1 To Attenuate Hydrogen Peroxide-Induced Cell Damage in Hepatic L02 CellsChen, Ming-cang; Ye, Yi-yi; Ji, Guang; Liu, Jian-wenJournal of Agricultural and Food Chemistry (2010), 58 (6), 3330-3335CODEN: JAFCAU; ISSN:0021-8561. (American Chemical Society)Hesperidin, a naturally occurring flavonoid presents in fruits and vegetables, has been reported to exert a wide range of pharmacol. effects that include antioxidant, anti-inflammatory, antihypercholesterolemic, and anticarcinogenic actions. However, the cytoprotection and mechanism of hesperidin to neutralize oxidative stress in human hepatic L02 cells remain unclear. In this work, we assessed the capability of hesperidin to attenuate hydrogen peroxide (H2O2)-induced cell damage by augmenting the cellular antioxidant defense. Real-time quant. polymerase chain reaction, Western blot, and enzyme activity assay demonstrated that hesperidin upregulated heme oxygenase-1 (HO-1) expression to protect hepatocytes against oxidative stress. In addn., hesperidin also promoted nuclear translocation of nuclear factor erythroid 2-related factor (Nrf2). What's more, hesperidin exhibited activation of extracellular signal-regulated protein kinase 1/2 (ERK1/2). Besides, ERK1/2 inhibitor significantly inhibited hesperidin-mediated HO-1 upregulation and Nrf2 nuclear translocation. Taken together, the above findings suggested that hesperidin augmented cellular antioxidant defense capacity through the induction of HO-1 via ERK/Nrf2 signaling. Therefore, hesperidin has potential as a therapeutic agent in the treatment of oxidative stress-related hepatocyte injury and liver dysfunctions.
- 34Liu, S.; Liu, K.; Wang, Y.; Wu, C.; Xiao, Y.; Liu, S.; Yu, J.; Ma, Z.; Liang, H.; Li, X. Hesperidin methyl chalcone ameliorates lipid metabolic disorders by activating lipase activity and increasing energy metabolism. Biochim Biophys Acta. Mol. Basis. Dis. 2023, 1869 (2), 166620 DOI: 10.1016/j.bbadis.2022.166620IF: 4.2 Q1Google ScholarThere is no corresponding record for this reference.
- 35Ung, L.; Pattamatta, U.; Carnt, N.; Wilkinson-Berka, J. L.; Liew, G.; White, A. J. R. Oxidative stress and reactive oxygen species: a review of their role in ocular disease. Clin. Sci. 2017, 131 (24), 2865– 2883, DOI: 10.1042/CS20171246IF: 6.7 Q1Google ScholarThere is no corresponding record for this reference.
- 36Benard, G.; Rossignol, R. Ultrastructure of the mitochondrion and its bearing on function and bioenergetics. Antioxid. Redox Signaling 2008, 10 (8), 1313– 1342, DOI: 10.1089/ars.2007.2000IF: 5.9 Q1Google Scholar36https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD1cXms1eqs7Y%253D&md5=edb0408a6bad880afaf26f4898e9e8e9Ultrastructure of the mitochondrion and its bearing on function and bioenergeticsBenard, Giovanni; Rossignol, RodrigueAntioxidants & Redox Signaling (2008), 10 (8), 1313-1342CODEN: ARSIF2; ISSN:1523-0864. (Mary Ann Liebert, Inc.)A review. The recently ascertained network and dynamic organization of the mitochondrion, as well as the demonstration of energy protein and metabolite subcompartmentalization, have led to a reconsideration of the relations between organellar form and function. In particular, the impact of mitochondrial morphol. changes on bioenergetics is inseparable. Several observations indicate that mitochondrial energy prodn. may be controlled by structural rearrangements of the organelle both interiorly and globally, including the remodeling of cristae morphol. and elongation or fragmentation of the tubular network organization, resp. These changes are mediated by fusion or fission reactions in response to physiol. signals that remain unidentified. They lead to important changes in the internal diffusion of energy metabolites, the sequestration and conduction of the elec. membrane potential (ΔΨ), and possibly the delivery of newly synthesized ATP to various cellular areas. Moreover, the physiol. or even pathol. context also dets. the morphol. of the mitochondrion, suggesting a tight and mutual control between mitochondrial form and bioenergetics. Here, the authors delve into the link between mitochondrial structure and energy metab.
- 37Tsai, Y.-F.; Chen, Y.-R.; Chen, J.-P.; Tang, Y.; Yang, K.-C. Effect of hesperidin on anti-inflammation and cellular antioxidant capacity in hydrogen peroxide-stimulated human articular chondrocytes. Process Biochem. 2019, 85, 175– 184, DOI: 10.1016/j.procbio.2019.07.014IF: 3.7 Q2Google ScholarThere is no corresponding record for this reference.
- 38Wang, D.; Liu, L.; Zhu, X.; Wu, W.; Wang, Y. Hesperidin alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress in a mouse model of Alzheimer’s Disease. Cell. Mol. Neurobiol. 2014, 34 (8), 1209– 1221, DOI: 10.1007/s10571-014-0098-xIF: 3.6 Q2
- 39Vince, J. E.; De Nardo, D.; Gao, W.; Vince, A. J.; Hall, C.; McArthur, K.; Simpson, D.; Vijayaraj, S.; Lindqvist, L. M.; Bouillet, P. The mitochondrial apoptotic effectors BAX/BAK activate Caspase-3 and −7 to trigger NLRP3 inflammasome and Caspase-8 driven IL-1β activation. Cell Rep. 2018, 25 (9), 2339– 2353.e4, DOI: 10.1016/j.celrep.2018.10.103IF: 7.5 Q1Google ScholarThere is no corresponding record for this reference.
- 40Walkon, L. L.; Strubbe-Rivera, J. O.; Bazil, J. N. Calcium overload and mitochondrial metabolism. Biomolecules 2022, 12 (12), 1891, DOI: 10.3390/biom12121891IF: 4.8 Q1Google Scholar40https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BB3sXlt1WrtA%253D%253D&md5=851c11922fd7f87a345e177918faa465Calcium Overload and Mitochondrial MetabolismWalkon, Lauren L.; Strubbe-Rivera, Jasiel O.; Bazil, Jason N.Biomolecules (2022), 12 (12), 1891CODEN: BIOMHC; ISSN:2218-273X. (MDPI AG)A review. Mitochondria calcium is a double-edged sword. While low levels of calcium are essential to maintain optimal rates of ATP prodn., extreme levels of calcium overcoming the mitochondrial calcium retention capacity leads to loss of mitochondrial function. In moderate amts., however, ATP synthesis rates are inhibited in a calcium-titratable manner. While the consequences of extreme calcium overload are well-known, the effects on mitochondrial function in the moderately loaded range remain enigmatic. These observations are assocd. with changes in the mitochondria ultrastructure and cristae network. The present mini review/perspective follows up on previous studies using well-established cryo-electron microscopy and poses an explanation for the observable depressed ATP synthesis rates in mitochondria during calcium-overloaded states. The results presented herein suggest that the inhibition of oxidative phosphorylation is not caused by a direct decoupling of energy metab. via the opening of a calcium-sensitive, proteinaceous pore but rather a sep. but related calcium-dependent phenomenon. Such inhibition during calcium-overloaded states points towards mitochondrial ultrastructural modifications, enzyme activity changes, or an interplay between both events.
- 41Tsai, T.-C.; Lai, K.-H.; Su, J.-H.; Wu, Y.-J.; Sheu, J.-H. 7-Acetylsinumaximol B induces apoptosis and autophagy in human gastric carcinoma cells through mitochondria dysfunction and activation of the PERK/eIF2α/ATF4/CHOP signaling pathway. Mar. Drugs 2018, 16 (4), 104, DOI: 10.3390/md16040104IF: 4.9 Q1Google ScholarThere is no corresponding record for this reference.
- 42Rozpedek, W.; Pytel, D.; Mucha, B.; Leszczynska, H.; Diehl, J. A.; Majsterek, I. The role of the PERK/eIF2α/ATF4/CHOP signaling pathway in tumor progression during endoplasmic reticulum stress. Curr. Mol. Med. 2016, 16 (6), 533– 44, DOI: 10.2174/1566524016666160523143937IF: 2.2 Q3Google Scholar42https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC28Xht1Grsb7P&md5=cf5df88e15616a9170c3c1bc969c8b01The Role of the PERK/eIF2α/ATF4/CHOP Signaling Pathway in Tumor Progression During Endoplasmic Reticulum StressRozpedek, W.; Pytel, D.; Mucha, B.; Leszczynska, H.; Diehl, J. A.; Majsterek, I.Current Molecular Medicine (2016), 16 (6), 533-544CODEN: CMMUBP; ISSN:1566-5240. (Bentham Science Publishers Ltd.)Hypoxia is a major hallmark of the tumor microenvironment that is strictly assocd. with rapid cancer progression and induction of metastasis. Hypoxia inhibits disulfide bond formation and impairs protein folding in the Endoplasmic Reticulum (ER). The stress in the ER induces the activation of Unfolded Protein Response (UPR) pathways via the induction of protein kinase RNA-like endoplasmic reticulum kinase (PERK). As a result, the level of phosphorylated Eukaryotic Initiation Factor 2 alpha (eIF2α) is markedly elevated, resulting in the promotion of a pro-adaptive signaling pathway by the inhibition of global protein synthesis and selective translation of Activating Transcription Factor 4 (ATF4). On the contrary, during conditions of prolonged ER stress, pro-adaptive responses fail and apoptotic cell death ensues. Interestingly, similar to the activity of the mitochondria, the ER may also directly activate the apoptotic pathway through ER stress-mediated leakage of calcium into the cytoplasm that leads to the activation of death effectors. Apoptotic cell death also ensues by ATF4-CHOP- mediated induction of several pro-apoptotic genes and suppression of the synthesis of anti-apoptotic Bcl-2 proteins. Advancing mol. insight into the transition of tumor cells from adaptation to apoptosis under hypoxia-induced ER stress may provide answers on how to overcome the limitations of current anti-tumor therapies. Targeting components of the UPR pathways may provide more effective elimination of tumor cells and as a result, contribute to the development of more promising anti-tumor therapeutic agents.
- 43He, Q.; Qu, M.; Shen, T.; Su, J.; Xu, Y.; Xu, C.; Barkat, M. Q.; Cai, J.; Zhu, H.; Zeng, L. H. Control of mitochondria-associated endoplasmic reticulum membranes by protein S-palmitoylation: Novel therapeutic targets for neurodegenerative diseases. Ageing Res. Rev. 2023, 87, 101920 DOI: 10.1016/j.arr.2023.101920IF: 12.5 Q1Google ScholarThere is no corresponding record for this reference.
- 44Ilamathi, H. S.; Benhammouda, S.; Lounas, A.; Al-Naemi, K.; Desrochers-Goyette, J.; Lines, M. A.; Richard, F. J.; Vogel, J.; Germain, M. Contact sites between endoplasmic reticulum sheets and mitochondria regulate mitochondrial DNA replication and segregation. iScience 2023, 26 (7), 107180 DOI: 10.1016/j.isci.2023.107180IF: 4.6 Q1Google ScholarThere is no corresponding record for this reference.
- 45Han, X.; Tai, H.; Wang, X.; Wang, Z.; Zhou, J.; Wei, X.; Ding, Y.; Gong, H.; Mo, C.; Zhang, J. AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation. Aging cell 2016, 15 (3), 416– 27, DOI: 10.1111/acel.12446IF: 8.0 Q1Google ScholarThere is no corresponding record for this reference.
- 46Auciello, F. R.; Ross, F. A.; Ikematsu, N.; Hardie, D. G. Oxidative stress activates AMPK in cultured cells primarily by increasing cellular AMP and/or ADP. FEBS letters 2014, 588 (18), 3361– 6, DOI: 10.1016/j.febslet.2014.07.025IF: 3.0 Q2Google ScholarThere is no corresponding record for this reference.
- 47Li, J.-J.; Jiang, H.-C.; Wang, A.; Bu, F.-T.; Jia, P.-C.; Zhu, S.; Zhu, L.; Huang, C.; Li, J. Hesperetin derivative-16 attenuates CCl4-induced inflammation and liver fibrosis by activating AMPK/SIRT3 pathway. Eur. J. Pharmacol. 2022, 915, 174530 DOI: 10.1016/j.ejphar.2021.174530IF: 4.2 Q1Google ScholarThere is no corresponding record for this reference.
- 48Wang, X.; Xing, C.; Li, G.; Dai, X.; Gao, X.; Zhuang, Y.; Cao, H.; Hu, G.; Guo, X.; Yang, F. The key role of proteostasis at mitochondria-associated endoplasmic reticulum membrane in vanadium-induced nephrotoxicity using a proteomic strategy. Sci. Total Environ. 2023, 869, 161741 DOI: 10.1016/j.scitotenv.2023.161741IF: 8.2 Q1Google ScholarThere is no corresponding record for this reference.
- 49Yuan, M.; Gong, M.; He, J.; Xie, B.; Zhang, Z.; Meng, L.; Tse, G.; Zhao, Y.; Bao, Q.; Zhang, Y. IP3R1/GRP75/VDAC1 complex mediates endoplasmic reticulum stress-mitochondrial oxidative stress in diabetic atrial remodeling. Redox Biol. 2022, 52, 102289 DOI: 10.1016/j.redox.2022.102289IF: 10.7 Q1Google Scholar49https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BB38XosVajtrw%253D&md5=62f83696a5c8214f7d540e68cdba1728IP3R1/GRP75/VDAC1 complex mediates endoplasmic reticulum stress-mitochondrial oxidative stress in diabetic atrial remodelingYuan, Ming; Gong, Mengqi; He, Jinli; Xie, Bingxin; Zhang, Zhiwei; Meng, Lei; Tse, Gary; Zhao, Yungang; Bao, Qiankun; Zhang, Yue; Yuan, Meng; Liu, Xing; Luo, Cunjin; Wang, Feng; Li, Guangping; Liu, TongRedox Biology (2022), 52 (), 102289CODEN: RBEIB3; ISSN:2213-2317. (Elsevier B.V.)Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are important mechanisms of atrial remodeling, predisposing to the development of atrial fibrillation (AF) in type 2 diabetes mellitus (T2DM). However, the mol. mechanisms underlying these processes esp. their interactions have not been fully elucidated. To explore the potential role of ER stress-mitochondrial oxidative stress in atrial remodeling and AF induction in diabetes. Mouse atrial cardiomyocytes (HL-1 cells) and rats with T2DM were used as study models. Significant ER stress was obsd. in the diabetic rat atria. After treatment with tunicamycin (TM), an ER stress agonist, mass spectrometry (MS) identified several known ER stress and calmodulin proteins, including heat shock protein family A (HSP70) member [HSPA] 5 [GRP78]) and HSPA9 (GRP75, glucose-regulated protein 75). In situ proximity ligation assay indicated that TM led to increased protein expression of the IP3R1-GRP75-VDAC1 (inositol 1,4,5-trisphosphate receptor 1-glucose-regulated protein 75-voltage-dependent anion channel 1) complex in HL-1 cells. Small interfering RNA silencing of GRP75 in HL-1 cells and GRP75 conditional knockout in a mouse model led to impaired calcium transport from the ER to the mitochondria and alleviated mitochondrial oxidative stress and calcium overload. Moreover, GRP75 deficiency attenuated atrial remodeling and AF progression in Myh6-Cre+/Hspa9flox/flox + TM mice. The IP3R1-GRP75-VDAC1 complex mediates ER stress-mitochondrial oxidative stress and plays an important role in diabetic atrial remodeling.
- 50Li, X.; Gou, F.; Xiao, K.; Zhu, J.; Lin, Q.; Yu, M.; Hong, Q.; Hu, C. Effects of DON on mitochondrial function, endoplasmic reticulum stress, and endoplasmic reticulum mitochondria contact sites in the jejunum of piglets. J. Agric. Food Chem. 2023, 71 (36), 13234– 13243, DOI: 10.1021/acs.jafc.3c03380IF: 5.7 Q1Google ScholarThere is no corresponding record for this reference.
Cited By
This article has not yet been cited by other publications.
Article Views 文章浏览量
Altmetric 替代度量
Citations 引文
了解这些指标
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
Recommended Articles 推荐文章
Salidroside Alleviates Furan-Induced Impaired Gut Barrier and Inflammation via Gut Microbiota–SCFA–TLR4 Signaling
红景天苷通过肠道微生物群 – SCFA – TLR4 信号传导减轻呋喃引起的肠道屏障受损和炎症
Interaction between the Neuroprotective and Hyperglycemia Mitigation Effects of Walnut-Derived Peptide LVRL via the Wnt3a/β-Catenin/GSK-3β Pathway in a Type 2 Diabetes Mellitus Model
核桃衍生肽 LVRL通过Wnt3a/β-Catenin/GSK-3β 通路在 2 型糖尿病模型中的神经保护和高血糖缓解作用之间的相互作用
Interactive Effects of Arabinoxylan Oligosaccharides and Green Tea Polyphenols on Obesity Management and Gut Microbiota Modulation in High-Fat Diet-Fed Mice
The Flavonoid Glycoside from Abrus cantoniensis Hance Alleviates Alcoholic Liver Injury by Inhibiting Ferroptosis in an AMPK-Dependent Manner
Drp1 Aggravates Copper Nanoparticle-Induced ER-Phagy by Disturbing Mitochondria-Associated Membranes in Chicken Hepatocytes
References
This article references 50 other publications.
- 1Jia, M.; Gu, H.; Lu, Y.; Lv, L. Effects of hesperidin combined with synephrine on the capture of acrolein in a mouse model, or in humans by citrus consumption. Food Funct 2023, 14 (11), 5417– 5428, DOI: 10.1039/D2FO03522GIF: 5.1 Q11https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BB3sXhtVOgtrvM&md5=29e798b3fe207e95885d0f6150bd24f2Effects of hesperidin combined with synephrine on the capture of acrolein in a mouse model, or in humans by citrus consumptionJia, Mengwei; Gu, Huihui; Lu, Yongling; Lv, LishuangFood & Function (2023), 14 (11), 5417-5428CODEN: FFOUAI; ISSN:2042-6496. (Royal Society of Chemistry)Acrolein is a highly reactive α, β-unsatd. aldehyde that plays a key role in the pathogenesis of human diseases, such as atherosclerosis and pulmonary, cardiovascular, and neurodegenerative disorders. We investigated the capture capacity of hesperidin and synephrine on ACR by individual and combined means in vitro, in vivo (utilizing a mouse model), and via a human study. After proving that HES and SYN could efficiently capture ACR by generating ACR adducts in vitro, we further detected the adducts of SYN-2ACR, HES-ACR-1, and hesperetin (HESP)-ACR in mouse urine by ultraperformance liq. chromatog.-tandem mass spectrometry. Quant. assays revealed that adduct formation occurred in a dose-dependent manner, and that there was a synergistic effect of HES and SYN on capturing ACR in vivo. Moreover, quant. anal. suggested that SYN-2ACR, HES-ACR-1, and HESP-ACR were formed and excreted through the urine of healthy volunteers consuming citrus. The max. excretions of SYN-2ACR, HES-ACR-1, and HESP-ACR were at 2-4, 8-10, and 10-12 h, resp., after dosing. Our findings propose a novel strategy for eliminating ACR from the human body via the simultaneous consumption of a flavonoid and an alkaloid.
- 2Chen, Q.; Wang, D.; Tan, C.; Hu, Y.; Sundararajan, B.; Zhou, Z. Profiling of flavonoid and antioxidant activity of fruit tissues from 27 chinese local citrus cultivars. Plants 2020, 9 (2), 196, DOI: 10.3390/plants9020196IF: 4.0 Q1There is no corresponding record for this reference.
- 3Pyrzynska, K. Hesperidin: a review on extraction methods, stability and biological activities. Nutrients 2022, 14 (12), 2387, DOI: 10.3390/nu14122387IF: 4.8 Q13https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BB38Xhs1Kqtb7F&md5=6f4ba17e744affe88ebc564ea2c474c8Hesperidin: A Review on Extraction Methods, Stability and Biological ActivitiesPyrzynska, KrystynaNutrients (2022), 14 (12), 2387CODEN: NUTRHU; ISSN:2072-6643. (MDPI AG)A review. Hesperidin is a bioflavonoid occurring in high concns. in citrus fruits. Its use has been assocd. with a great no. of health benefits, including antioxidant, antibacterial, antimicrobial, anti-inflammatory and anticarcinogenic properties. The food industry uses large quantities of citrus fruit, esp. for the prodn. of juice. It results in the accumulation of huge amts. of byproducts such as peels, seeds, cell and membrane residues, which are also a good source of hesperidin. Thus, its extn. from these byproducts has attracted considerable scientific interest with aim to use as natural antioxidants. In this review, the extn. and detn. methods for quantification of hesperidin in fruits and byproducts are presented and discussed as well as its stability and biol. activities.
- 4Choi, S. S.; Lee, S. H.; Lee, K. A. A comparative study of hesperetin, hesperidin and hesperidin glucoside: antioxidant, anti-inflammatory, and antibacterial activities in vitro. Antioxidants 2022, 11 (8), 1618, DOI: 10.3390/antiox11081618IF: 6.0 Q1There is no corresponding record for this reference.
- 5Guo, K.; Ren, J.; Gu, G.; Wang, G.; Gong, W.; Wu, X.; Ren, H.; Hong, Z.; Li, J. Hesperidin protects against intestinal inflammation by restoring intestinal barrier function and up-regulating Treg cells. Mol. Nutr. Food Res. 2019, 63 (11), e1800975 DOI: 10.1002/mnfr.201800975IF: 4.5 Q1There is no corresponding record for this reference.
- 6Wang, D.; Liu, L.; Zhu, X.; Wu, W.; Wang, Y. Hesperidin alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress in a mouse model of Alzheimer’s disease. Cell Mol. Neurobiol 2014, 34 (8), 1209– 1221, DOI: 10.1007/s10571-014-0098-xIF: 3.6 Q2There is no corresponding record for this reference.
- 7Zhu, H.; Wang, H.; Wang, S.; Tu, Z.; Zhang, L.; Wang, X.; Hou, Y.; Wang, C.; Chen, J.; Liu, Y. Flaxseed oil attenuates intestinal damage and inflammation by regulating necroptosis and tlr4/nod signaling pathways following lipopolysaccharide challenge in a piglet model. Mol. Nutr. Food Res. 2018, 62 (9), e1700814 DOI: 10.1002/mnfr.201700814IF: 4.5 Q1There is no corresponding record for this reference.
- 8Gambini, J.; Stromsnes, K. Oxidative stress and inflammation: from mechanisms to therapeutic approaches. Biomedicines 2022, 10 (4), 753, DOI: 10.3390/biomedicines10040753IF: 3.9 Q1There is no corresponding record for this reference.
- 9Magalhães, N.; Carvalho, F.; Dinis-Oliveira, R. J. Human and experimental toxicology of diquat poisoning: Toxicokinetics, mechanisms of toxicity, clinical features, and treatment. Hum. Exp. Toxicol. 2018, 37 (11), 1131– 1160, DOI: 10.1177/0960327118765330IF: 2.7 Q3There is no corresponding record for this reference.
- 10Sun, J.; Zhang, M.; Qi, X.; Doyle, C.; Zheng, H. Armadillo-repeat kinesin1 interacts with Arabidopsis atlastin RHD3 to move ER with plus-end of microtubules. Nat. Commun. 2020, 11 (1), 5510, DOI: 10.1038/s41467-020-19343-2IF: 14.7 Q1There is no corresponding record for this reference.
- 11Yan, W.; Diao, S.; Fan, Z. The role and mechanism of mitochondrial functions and energy metabolism in the function regulation of the mesenchymal stem cells. Stem. Cell Res. Ther. 2021, 12 (1), 140, DOI: 10.1186/s13287-021-02194-zIF: 7.1 Q1There is no corresponding record for this reference.
- 12Hu, F.; Liu, F. Mitochondrial stress: a bridge between mitochondrial dysfunction and metabolic diseases?. Cell Signal. 2011, 23 (10), 1528– 1533, DOI: 10.1016/j.cellsig.2011.05.008IF: 4.4 Q212https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3MXpslaisLs%253D&md5=f32f5ee8622ea0efd57c4dd3437cc9eaMitochondrial stress: A bridge between mitochondrial dysfunction and metabolic diseases?Hu, Fang; Liu, FengCellular Signalling (2011), 23 (10), 1528-1533CODEN: CESIEY; ISSN:0898-6568. (Elsevier)A review. Under pathophysiol. conditions such as obesity, excessive oxidn. of nutrients may induce mitochondrial stress, leading to mitochondrial unfolded protein response (UPRmt) and initiation of a retrograde stress signaling pathway. Defects in the UPRmt and the retrograde signaling pathways may disrupt the integrity and homeostasis of the mitochondria, resulting in endoplasmic reticulum stress and insulin resistance. Improving the capacity of mitochondria to reduce stress may be an effective approach to improve mitochondria function and to suppress obesity-induced metabolic disorders such as insulin resistance and type 2 diabetes.
- 13Phillips, M. J.; Voeltz, G. K. Structure and function of ER membrane contact sites with other organelles. Nature reviews. Mol. Cell. Biol. 2016, 17 (2), 69– 82, DOI: 10.1038/nrm.2015.8IF: 81.3 Q1There is no corresponding record for this reference.
- 14Poston, C. N.; Krishnan, S. C.; Bazemore-Walker, C. R. In-depth proteomic analysis of mammalian mitochondria-associated membranes (MAM). J. Proteomics 2013, 79, 219– 230, DOI: 10.1016/j.jprot.2012.12.018IF: 2.8 Q214https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3sXivFOrsbs%253D&md5=5db13928ef697f0636d967b81642c74aIn-depth proteomic analysis of mammalian mitochondria-associated membranes (MAM)Poston, Chloe N.; Krishnan, Srinivasan C.; Bazemore-Walker, Carthene R.Journal of Proteomics (2013), 79 (), 219-230CODEN: JPORFQ; ISSN:1874-3919. (Elsevier B.V.)The endoplasmic reticulum (ER) and mitochondria communicate via contact sites known as mitochondria-assocd. ER membranes or MAM. The region has emerged as the primary area of Ca2+ traffic between the two organelles, and as such, has been implicated in the regulation of protein folding, oxidative phosphorylation, and Ca2+-mediated apoptosis. In order to better understand biol. processes and mol. functions at the MAM, we report a global mass spectrometry-based proteomic evaluation of the MAM obtained from mouse brain samples. Gel-assisted sample prepn. in conjunction with our two-dimensional chromatog. approach allowed for the identification of 1,212 high confidence proteins. Bioinformatic interrogation of this protein catalog using Ingenuity Pathway Anal. revealed new potential connections between our list of MAM proteins and neurodegenerative diseases in addn. to anticipated biol. processes. Based on our results, we postulate that proteins of the MAM may play essential roles in dysfunctions responsible for several neurol. disorders in addn. to facilitating key cellular survival processes.
- 15Vance, J. E. Phospholipid synthesis in a membrane fraction associated with mitochondria. J. Biol. Chem. 1990, 265 (13), 7248– 7256, DOI: 10.1016/S0021-9258(19)39106-9IF: 4.0 Q215https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADyaK3cXktF2mur4%253D&md5=bd516d9acb181ec971e41f707011f9b9Phospholipid synthesis in a membrane fraction associated with mitochondriaVance, Jean E.Journal of Biological Chemistry (1990), 265 (13), 7248-56CODEN: JBCHA3; ISSN:0021-9258.A crude rat liver mitochondrial fraction that was capable of the rapid, linked synthesis of phosphatidylserine (PtdSer), phosphatidylethanolamine (PtdEtn), and phosphatidylcholine (PtdCho) labeled from [3-3H] serine has been fractionated. PtdSer synthase, PtdEtn methyltransferase, and CDP-choline:diacylglycerol cholinephosphotransferase activities were present in the crude mitochondrial prepn. but were absent from highly purified mitochondria and could be attributed to the presence of a membrane fraction, X. Thus, previous claims of the mitochondrial location of some of these enzymes might be explained by the presence of fraction X in the mitochondrial prepn. Fraction X had many similarities to microsomes except that it sedimented with mitochondria (at 10,000 g). However, the specific activities of PtdSer synthase and glucose-6-phosphate phosphatase in fraction X were almost twice that of microsomes, and the specific activities of CTP:phosphocholine cytidyltransferase and NADPH:cytochrome c reductase in fraction X were much lower than in microsomes. The marker enzymes for mitochondria, Golgi app., plasma membrane, lysosomes, and peroxisomes all had low activities in fraction X. PAGE revealed distinct differences, as well as similarities, among the proteins of fraction X, microsomes, and rough and smooth endoplasmic reticulum. The combined mitochondria-fraction X membranes can synthesize PtdSer, PtdEtn, and PtdCho from serine. Thus, fraction X in combination with mitochondria might be responsible for the obsd. compartmentalization of a serine-labeled pool of phospholipids previously identified and might be involved in the transfer of lipids between the endoplasmic reticulum and mitochondria.
- 16Rizzuto, R.; Pinton, P.; Carrington, W.; Fay, F. S.; Fogarty, K. E.; Lifshitz, L. M.; Tuft, R. A.; Pozzan, T. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 1998, 280 (5370), 1763– 1766, DOI: 10.1126/science.280.5370.1763IF: 44.7 Q1There is no corresponding record for this reference.
- 17Xu, L.; Wang, X.; Tong, C. Endoplasmic Reticulum-Mitochondria Contact Sites and Neurodegeneration. Front. Cell Dev. Biol. 2020, 8, 428, DOI: 10.3389/fcell.2020.00428IF: 4.6 Q117https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A280%3ADC%252BB38noslShtg%253D%253D&md5=d368c79a73b479306ed9eef4cc00f100Endoplasmic Reticulum-Mitochondria Contact Sites and NeurodegenerationXu Lingna; Wang Xi; Tong Chao; Xu Lingna; Wang Xi; Tong ChaoFrontiers in cell and developmental biology (2020), 8 (), 428 ISSN:2296-634X.Endoplasmic reticulum-mitochondria contact sites (ERMCSs) are dynamic contact regions with a distance of 10-30 nm between the endoplasmic reticulum and mitochondria. Endoplasmic reticulum-mitochondria contact sites regulate various biological processes, including lipid transfer, calcium homeostasis, autophagy, and mitochondrial dynamics. The dysfunction of ERMCS is closely associated with various neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis. In this review, we will summarize the current knowledge of the components and organization of ERMCSs, the methods for monitoring ERMCSs, and the physiological functions of ERMCSs in different model systems. Additionally, we will emphasize the current understanding of the malfunction of ERMCSs and their potential roles in neurodegenerative diseases.
- 18Perrone, M.; Caroccia, N.; Genovese, I.; Missiroli, S.; Modesti, L.; Pedriali, G.; Vezzani, B.; Vitto, V. A. M.; Antenori, M.; Lebiedzinska-Arciszewska, M.; Wieckowski, M. R. The role of mitochondria-associated membranes in cellular homeostasis and diseases. Int. Rev. Cel. Mol. Bio. 2020, 350, 119– 196, DOI: 10.1016/bs.ircmb.2019.11.002There is no corresponding record for this reference.
- 19Koch, R. E.; Hill, G. E. An assessment of techniques to manipulate oxidative stress in animals. Funct. Ecol. 2017, 31 (1), 9– 21, DOI: 10.1111/1365-2435.12664IF: 4.6 Q1There is no corresponding record for this reference.
- 20Liu, Y.; Wang, Z.-S.; Zhou, A.-G. Effects of hesperidin and chlorogenic acid on performance, antioxidance and immunity of weaned piglets. Chinese J. Vet. Sci. 2009, 29, 1233– 1236There is no corresponding record for this reference.
- 21Liu, J.; Zhang, Y.; Li, Y.; Yan, H.; Zhang, H. L-tryptophan enhances intestinal integrity in diquat-challenged piglets associated with improvement of redox status and mitochondrial function. Animals 2019, 9 (5), 266, DOI: 10.3390/ani9050266IF: 2.7 Q1There is no corresponding record for this reference.
- 22Hu, C. H.; Xiao, K.; Luan, Z. S.; Song, J. Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs. J. Anim. Sci. 2013, 91 (3), 1094– 1101, DOI: 10.2527/jas.2012-5796IF: 2.7 Q122https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3sXmsFKnt7c%253D&md5=a3d11fab727d8d1ea7f862533be331a0Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigsHu, C. H.; Xiao, K.; Luan, Z. S.; Song, J.Journal of Animal Science (Champaign, IL, United States) (2013), 91 (3), 1094-1101CODEN: JANSAG; ISSN:0021-8812. (American Society of Animal Science)Although weaning stress has been reported to impair intestinal barrier function, the mechanisms have not yet been elucidated. In the present study, the intestinal morphol. and permeability and mRNA expressions of tight junction proteins and cytokines in the intestine of piglets during the 2 wk after weaning were assessed. The phosphorylated (activated) ratios of p38, c-Jun NH2-terminal kinase (JNK), and extracellular regulated kinases (ERK1/2) were detd. to investigate whether mitogen-activated protein kinase (MAPK) signaling pathways are involved in the early weaning process. A shorter villus and deeper crypt were obsd. on d 3 and 7 postweaning. Although damaged intestinal morphol. recovered to preweaning values on d 14 postweaning, the intestinal mucosal barrier, which was reflected by transepithelial elec. resistance (TER) and paracellular flux of dextran (4 kDa) in the Ussing chamber and tight junction protein expression, was not recovered. Compared with the preweaning stage (d 0), jejunal TER and mRNA expressions of occludin and claudin-1 on d 3, 7, and 14 postweaning and Zonula occludens-1 (ZO-1) mRNA on d 3 and 7 postweaning were reduced, and paracellular flux of dextran on d 3, 7, and 14 postweaning was increased. An increase (P < 0.05) of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) mRNA on d 3 and d 7 postweaning and an increase (P < 0.05) of interferon-γ (IFN-γ) mRNA on d 3 postweaning were obsd. compared with d 0. No significant increase of transforming growth factor β1 (TGF-β1) and interleukin-10 (IL-10) mRNA after weaning was obsd. The phosphorylated (activated) ratios of JNK and p38 on d 3 and 7 postweaning and the phosphorylated ratio of ERK1/2 on d 3 postweaning were increased (P < 0.05) compared with d 0. The results indicated that early weaning induced sustained impairment in the intestinal barrier, decreased mRNA expression of tight junction proteins, and upregulated the expression of proinflammatory cytokines, but anti-inflammatory cytokines were not affected in the intestine of piglets. The recovery of the intestinal barrier function was slower than that of the intestinal mucosal morphol. The weaning stress activated MAPK signaling pathways in the intestine, which may be an important mechanism of weaning-assocd. enteric disorders of piglets.
- 23He, Y.; Peng, X.; Liu, Y.; Wu, Q.; Zhou, Q.; Hu, L.; Fang, Z.; Lin, Y.; Xu, S.; Feng, B. Effects of maternal fiber intake on intestinal morphology, bacterial profile and proteome of newborns using pig as model. Nutrients 2020, 13 (1), 42, DOI: 10.3390/nu13010042IF: 4.8 Q1There is no corresponding record for this reference.
- 24Xue, C.; Li, Y.; Lv, H.; Zhang, L.; Bi, C.; Dong, N.; Shan, A.; Wang, J. Oleanolic Acid Targets the Gut-Liver Axis to Alleviate Metabolic Disorders and Hepatic Steatosis. J. Agric. Food Chem. 2021, 69 (28), 7884– 7897, DOI: 10.1021/acs.jafc.1c02257IF: 5.7 Q124https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BB3MXhsFWnt7rF&md5=e86a3d12bada94a8f4fb8a4a4b61d6e9Oleanolic Acid Targets the Gut-Liver Axis to Alleviate Metabolic Disorders and Hepatic SteatosisXue, Chenyu; Li, Ying; Lv, Hao; Zhang, Lei; Bi, Chongpeng; Dong, Na; Shan, Anshan; Wang, JialiJournal of Agricultural and Food Chemistry (2021), 69 (28), 7884-7897CODEN: JAFCAU; ISSN:0021-8561. (American Chemical Society)This study investigated the effects of oleanolic acid (OA) on hepatic lipid metab. and gut-liver axis homeostasis in an obesity-related non-alc. fatty liver disease (NAFLD) nutritional animal model and explored possible mol. mechanisms behind its effects. The results revealed that OA ameliorated the development of metabolic disorders, insulin resistance, and hepatic steatosis in obese rats. Meanwhile, OA restored high-fat-diet (HFD)-induced intestinal barrier dysfunction and endotoxin-mediated induction of toll-like-receptor-4-related pathways, subsequently inhibiting endotoxemia and systemic inflammation and balancing the homeostasis of the gut-liver axis. OA also reshaped the compn. of the gut microbiota of HFD-fed rats by reducing the Firmicutes/Bacteroidetes ratio and increasing the abundance of butyrate-producing bacteria. Our results support the applicability of OA as a treatment for obesity-related NAFLD through its anti-inflammatory, antioxidant, and prebiotic integration responses mediated by the gut-liver axis.
- 25Cao, S.; Shen, Z.; Wang, C.; Zhang, Q.; Hong, Q.; He, Y.; Hu, C. Resveratrol improves intestinal barrier function, alleviates mitochondrial dysfunction and induces mitophagy in diquat challenged piglets(1). Food Funct. 2019, 10 (1), 344– 354, DOI: 10.1039/C8FO02091DIF: 5.1 Q1There is no corresponding record for this reference.
- 26Hutcheson, J. D.; Goettsch, C.; Bertazzo, S.; Maldonado, N.; Ruiz, J. L.; Goh, W.; Yabusaki, K.; Faits, T.; Bouten, C.; Franck, G.; Quillard, T. Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques. Nat. Mater. 2016, 15 (3), 335– 343, DOI: 10.1038/nmat4519IF: 37.2 Q1There is no corresponding record for this reference.
- 27Shi, S.; Zhou, X.; Li, J.; Zhang, L.; Hu, Y.; Li, Y.; Yang, G.; Chu, G. MiR-214–3p promotes proliferation and inhibits estradiol synthesis in porcine granulosa cells. J. Anim. Sci. Biotechnol. 2020, 11, 94, DOI: 10.1186/s40104-020-00500-yIF: 6.3 Q1There is no corresponding record for this reference.
- 28He, Y.; Fan, X.; Liu, N.; Song, Q.; Kou, J.; Shi, Y.; Luo, X.; Dai, Z.; Yang, Y.; Wu, Z. l-Glutamine Represses the Unfolded Protein Response in the Small Intestine of Weanling Piglets. J. Nutr. 2019, 149 (11), 1904– 1910, DOI: 10.1093/jn/nxz155IF: 3.7 Q2There is no corresponding record for this reference.
- 29Yang, L.; Xie, P.; Wu, J.; Yu, J.; Yu, T.; Wang, H.; Wang, J.; Xia, Z.; Zheng, H. Sevoflurane postconditioning improves myocardial mitochondrial respiratory function and reduces myocardial ischemia-reperfusion injury by up-regulating HIF-1. Am. J. Transl. Res. 2016, 8 (10), 4415– 4424There is no corresponding record for this reference.
- 30Yu, J.; Song, Y.; Yu, B.; He, J.; Zheng, P.; Mao, X.; Huang, Z.; Luo, Y.; Luo, J.; Yan, H. Tannic acid prevents post-weaning diarrhea by improving intestinal barrier integrity and function in weaned piglets. J. Anim. Sci. Biotechnol. 2020, 11, 87, DOI: 10.1186/s40104-020-00496-5IF: 6.3 Q1There is no corresponding record for this reference.
- 31quiz 21–2.Groschwitz, K. R.; Hogan, S. P. Intestinal barrier function: molecular regulation and disease pathogenesis. J. Allergy Clin. Immunol. 2009, 124 (1), 3– 20, DOI: 10.1016/j.jaci.2009.05.038IF: 11.4 Q131https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD1MXnsl2gu7k%253D&md5=17859071e7857780c60011b93a7b2dd8Intestinal barrier function: Molecular regulation and disease pathogenesisGroschwitz, Katherine R.; Hogan, Simon P.Journal of Allergy and Clinical Immunology (2009), 124 (1), 3-20CODEN: JACIBY; ISSN:0091-6749. (Elsevier)A review. The intestinal epithelium is a single-cell layer that constitutes the largest and most important barrier against the external environment. It acts as a selectively permeable barrier, permitting the absorption of nutrients, electrolytes, and water while maintaining an effective defense against intraluminal toxins, antigens, and enteric flora. The epithelium maintains its selective barrier function through the formation of complex protein-protein networks that mech. link adjacent cells and seal the intercellular space. The protein networks connecting epithelial cells form 3 adhesive complexes: desmosomes, adherens junctions, and tight junctions. These complexes consist of transmembrane proteins that interact extracellularly with adjacent cells and intracellularly with adaptor proteins that link to the cytoskeleton. Over the past decade, there has been increasing recognition of an assocn. between disrupted intestinal barrier function and the development of autoimmune and inflammatory diseases. In this review we summarize the evolving understanding of the mol. compn. and regulation of intestinal barrier function. We discuss the interactions between innate and adaptive immunity and intestinal epithelial barrier function, as well as the effect of exogenous factors on intestinal barrier function. Finally, we summarize clin. and exptl. evidence demonstrating intestinal epithelial barrier dysfunction as a major factor contributing to the predisposition to inflammatory diseases, including food allergy, inflammatory bowel diseases, and celiac disease.
- 32Chen, F.; Chu, C.; Wang, X.; Yang, C.; Deng, Y.; Duan, Z.; Wang, K.; Liu, B.; Ji, W.; Ding, W. Hesperetin attenuates sepsis-induced intestinal barrier injury by regulating neutrophil extracellular trap formation via the ROS/autophagy signaling pathway. Food Funct. 2023, 14 (9), 4213– 4227, DOI: 10.1039/D2FO02707KIF: 5.1 Q1There is no corresponding record for this reference.
- 33Chen, M.-C.; Ye, Y.-Y.; Ji, G.; Liu, J.-W. Hesperidin upregulates heme oxygenase-1 to attenuate hydrogen peroxide-induced cell damage in hepatic L02 cells. J. Agric. Food Chem. 2010, 58 (6), 3330– 3335, DOI: 10.1021/jf904549sIF: 5.7 Q133https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3cXitFyhtrw%253D&md5=443bb2d1ba5f65db246b3d975dbac2d3Hesperidin Upregulates Heme Oxygenase-1 To Attenuate Hydrogen Peroxide-Induced Cell Damage in Hepatic L02 CellsChen, Ming-cang; Ye, Yi-yi; Ji, Guang; Liu, Jian-wenJournal of Agricultural and Food Chemistry (2010), 58 (6), 3330-3335CODEN: JAFCAU; ISSN:0021-8561. (American Chemical Society)Hesperidin, a naturally occurring flavonoid presents in fruits and vegetables, has been reported to exert a wide range of pharmacol. effects that include antioxidant, anti-inflammatory, antihypercholesterolemic, and anticarcinogenic actions. However, the cytoprotection and mechanism of hesperidin to neutralize oxidative stress in human hepatic L02 cells remain unclear. In this work, we assessed the capability of hesperidin to attenuate hydrogen peroxide (H2O2)-induced cell damage by augmenting the cellular antioxidant defense. Real-time quant. polymerase chain reaction, Western blot, and enzyme activity assay demonstrated that hesperidin upregulated heme oxygenase-1 (HO-1) expression to protect hepatocytes against oxidative stress. In addn., hesperidin also promoted nuclear translocation of nuclear factor erythroid 2-related factor (Nrf2). What's more, hesperidin exhibited activation of extracellular signal-regulated protein kinase 1/2 (ERK1/2). Besides, ERK1/2 inhibitor significantly inhibited hesperidin-mediated HO-1 upregulation and Nrf2 nuclear translocation. Taken together, the above findings suggested that hesperidin augmented cellular antioxidant defense capacity through the induction of HO-1 via ERK/Nrf2 signaling. Therefore, hesperidin has potential as a therapeutic agent in the treatment of oxidative stress-related hepatocyte injury and liver dysfunctions.
- 34Liu, S.; Liu, K.; Wang, Y.; Wu, C.; Xiao, Y.; Liu, S.; Yu, J.; Ma, Z.; Liang, H.; Li, X. Hesperidin methyl chalcone ameliorates lipid metabolic disorders by activating lipase activity and increasing energy metabolism. Biochim Biophys Acta. Mol. Basis. Dis. 2023, 1869 (2), 166620 DOI: 10.1016/j.bbadis.2022.166620IF: 4.2 Q1There is no corresponding record for this reference.
- 35Ung, L.; Pattamatta, U.; Carnt, N.; Wilkinson-Berka, J. L.; Liew, G.; White, A. J. R. Oxidative stress and reactive oxygen species: a review of their role in ocular disease. Clin. Sci. 2017, 131 (24), 2865– 2883, DOI: 10.1042/CS20171246IF: 6.7 Q1There is no corresponding record for this reference.
- 36Benard, G.; Rossignol, R. Ultrastructure of the mitochondrion and its bearing on function and bioenergetics. Antioxid. Redox Signaling 2008, 10 (8), 1313– 1342, DOI: 10.1089/ars.2007.2000IF: 5.9 Q136https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD1cXms1eqs7Y%253D&md5=edb0408a6bad880afaf26f4898e9e8e9Ultrastructure of the mitochondrion and its bearing on function and bioenergeticsBenard, Giovanni; Rossignol, RodrigueAntioxidants & Redox Signaling (2008), 10 (8), 1313-1342CODEN: ARSIF2; ISSN:1523-0864. (Mary Ann Liebert, Inc.)A review. The recently ascertained network and dynamic organization of the mitochondrion, as well as the demonstration of energy protein and metabolite subcompartmentalization, have led to a reconsideration of the relations between organellar form and function. In particular, the impact of mitochondrial morphol. changes on bioenergetics is inseparable. Several observations indicate that mitochondrial energy prodn. may be controlled by structural rearrangements of the organelle both interiorly and globally, including the remodeling of cristae morphol. and elongation or fragmentation of the tubular network organization, resp. These changes are mediated by fusion or fission reactions in response to physiol. signals that remain unidentified. They lead to important changes in the internal diffusion of energy metabolites, the sequestration and conduction of the elec. membrane potential (ΔΨ), and possibly the delivery of newly synthesized ATP to various cellular areas. Moreover, the physiol. or even pathol. context also dets. the morphol. of the mitochondrion, suggesting a tight and mutual control between mitochondrial form and bioenergetics. Here, the authors delve into the link between mitochondrial structure and energy metab.
- 37Tsai, Y.-F.; Chen, Y.-R.; Chen, J.-P.; Tang, Y.; Yang, K.-C. Effect of hesperidin on anti-inflammation and cellular antioxidant capacity in hydrogen peroxide-stimulated human articular chondrocytes. Process Biochem. 2019, 85, 175– 184, DOI: 10.1016/j.procbio.2019.07.014IF: 3.7 Q2There is no corresponding record for this reference.
- 38Wang, D.; Liu, L.; Zhu, X.; Wu, W.; Wang, Y. Hesperidin alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress in a mouse model of Alzheimer’s Disease. Cell. Mol. Neurobiol. 2014, 34 (8), 1209– 1221, DOI: 10.1007/s10571-014-0098-xIF: 3.6 Q2There is no corresponding record for this reference.
- 39Vince, J. E.; De Nardo, D.; Gao, W.; Vince, A. J.; Hall, C.; McArthur, K.; Simpson, D.; Vijayaraj, S.; Lindqvist, L. M.; Bouillet, P. The mitochondrial apoptotic effectors BAX/BAK activate Caspase-3 and −7 to trigger NLRP3 inflammasome and Caspase-8 driven IL-1β activation. Cell Rep. 2018, 25 (9), 2339– 2353.e4, DOI: 10.1016/j.celrep.2018.10.103IF: 7.5 Q1There is no corresponding record for this reference.
- 40Walkon, L. L.; Strubbe-Rivera, J. O.; Bazil, J. N. Calcium overload and mitochondrial metabolism. Biomolecules 2022, 12 (12), 1891, DOI: 10.3390/biom12121891IF: 4.8 Q140https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BB3sXlt1WrtA%253D%253D&md5=851c11922fd7f87a345e177918faa465Calcium Overload and Mitochondrial MetabolismWalkon, Lauren L.; Strubbe-Rivera, Jasiel O.; Bazil, Jason N.Biomolecules (2022), 12 (12), 1891CODEN: BIOMHC; ISSN:2218-273X. (MDPI AG)A review. Mitochondria calcium is a double-edged sword. While low levels of calcium are essential to maintain optimal rates of ATP prodn., extreme levels of calcium overcoming the mitochondrial calcium retention capacity leads to loss of mitochondrial function. In moderate amts., however, ATP synthesis rates are inhibited in a calcium-titratable manner. While the consequences of extreme calcium overload are well-known, the effects on mitochondrial function in the moderately loaded range remain enigmatic. These observations are assocd. with changes in the mitochondria ultrastructure and cristae network. The present mini review/perspective follows up on previous studies using well-established cryo-electron microscopy and poses an explanation for the observable depressed ATP synthesis rates in mitochondria during calcium-overloaded states. The results presented herein suggest that the inhibition of oxidative phosphorylation is not caused by a direct decoupling of energy metab. via the opening of a calcium-sensitive, proteinaceous pore but rather a sep. but related calcium-dependent phenomenon. Such inhibition during calcium-overloaded states points towards mitochondrial ultrastructural modifications, enzyme activity changes, or an interplay between both events.
- 41Tsai, T.-C.; Lai, K.-H.; Su, J.-H.; Wu, Y.-J.; Sheu, J.-H. 7-Acetylsinumaximol B induces apoptosis and autophagy in human gastric carcinoma cells through mitochondria dysfunction and activation of the PERK/eIF2α/ATF4/CHOP signaling pathway. Mar. Drugs 2018, 16 (4), 104, DOI: 10.3390/md16040104IF: 4.9 Q1There is no corresponding record for this reference.
- 42Rozpedek, W.; Pytel, D.; Mucha, B.; Leszczynska, H.; Diehl, J. A.; Majsterek, I. The role of the PERK/eIF2α/ATF4/CHOP signaling pathway in tumor progression during endoplasmic reticulum stress. Curr. Mol. Med. 2016, 16 (6), 533– 44, DOI: 10.2174/1566524016666160523143937IF: 2.2 Q342https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC28Xht1Grsb7P&md5=cf5df88e15616a9170c3c1bc969c8b01The Role of the PERK/eIF2α/ATF4/CHOP Signaling Pathway in Tumor Progression During Endoplasmic Reticulum StressRozpedek, W.; Pytel, D.; Mucha, B.; Leszczynska, H.; Diehl, J. A.; Majsterek, I.Current Molecular Medicine (2016), 16 (6), 533-544CODEN: CMMUBP; ISSN:1566-5240. (Bentham Science Publishers Ltd.)Hypoxia is a major hallmark of the tumor microenvironment that is strictly assocd. with rapid cancer progression and induction of metastasis. Hypoxia inhibits disulfide bond formation and impairs protein folding in the Endoplasmic Reticulum (ER). The stress in the ER induces the activation of Unfolded Protein Response (UPR) pathways via the induction of protein kinase RNA-like endoplasmic reticulum kinase (PERK). As a result, the level of phosphorylated Eukaryotic Initiation Factor 2 alpha (eIF2α) is markedly elevated, resulting in the promotion of a pro-adaptive signaling pathway by the inhibition of global protein synthesis and selective translation of Activating Transcription Factor 4 (ATF4). On the contrary, during conditions of prolonged ER stress, pro-adaptive responses fail and apoptotic cell death ensues. Interestingly, similar to the activity of the mitochondria, the ER may also directly activate the apoptotic pathway through ER stress-mediated leakage of calcium into the cytoplasm that leads to the activation of death effectors. Apoptotic cell death also ensues by ATF4-CHOP- mediated induction of several pro-apoptotic genes and suppression of the synthesis of anti-apoptotic Bcl-2 proteins. Advancing mol. insight into the transition of tumor cells from adaptation to apoptosis under hypoxia-induced ER stress may provide answers on how to overcome the limitations of current anti-tumor therapies. Targeting components of the UPR pathways may provide more effective elimination of tumor cells and as a result, contribute to the development of more promising anti-tumor therapeutic agents.
- 43He, Q.; Qu, M.; Shen, T.; Su, J.; Xu, Y.; Xu, C.; Barkat, M. Q.; Cai, J.; Zhu, H.; Zeng, L. H. Control of mitochondria-associated endoplasmic reticulum membranes by protein S-palmitoylation: Novel therapeutic targets for neurodegenerative diseases. Ageing Res. Rev. 2023, 87, 101920 DOI: 10.1016/j.arr.2023.101920IF: 12.5 Q1There is no corresponding record for this reference.
- 44Ilamathi, H. S.; Benhammouda, S.; Lounas, A.; Al-Naemi, K.; Desrochers-Goyette, J.; Lines, M. A.; Richard, F. J.; Vogel, J.; Germain, M. Contact sites between endoplasmic reticulum sheets and mitochondria regulate mitochondrial DNA replication and segregation. iScience 2023, 26 (7), 107180 DOI: 10.1016/j.isci.2023.107180IF: 4.6 Q1There is no corresponding record for this reference.
- 45Han, X.; Tai, H.; Wang, X.; Wang, Z.; Zhou, J.; Wei, X.; Ding, Y.; Gong, H.; Mo, C.; Zhang, J. AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation. Aging cell 2016, 15 (3), 416– 27, DOI: 10.1111/acel.12446IF: 8.0 Q1There is no corresponding record for this reference.
- 46Auciello, F. R.; Ross, F. A.; Ikematsu, N.; Hardie, D. G. Oxidative stress activates AMPK in cultured cells primarily by increasing cellular AMP and/or ADP. FEBS letters 2014, 588 (18), 3361– 6, DOI: 10.1016/j.febslet.2014.07.025IF: 3.0 Q2There is no corresponding record for this reference.
- 47Li, J.-J.; Jiang, H.-C.; Wang, A.; Bu, F.-T.; Jia, P.-C.; Zhu, S.; Zhu, L.; Huang, C.; Li, J. Hesperetin derivative-16 attenuates CCl4-induced inflammation and liver fibrosis by activating AMPK/SIRT3 pathway. Eur. J. Pharmacol. 2022, 915, 174530 DOI: 10.1016/j.ejphar.2021.174530IF: 4.2 Q1There is no corresponding record for this reference.
- 48Wang, X.; Xing, C.; Li, G.; Dai, X.; Gao, X.; Zhuang, Y.; Cao, H.; Hu, G.; Guo, X.; Yang, F. The key role of proteostasis at mitochondria-associated endoplasmic reticulum membrane in vanadium-induced nephrotoxicity using a proteomic strategy. Sci. Total Environ. 2023, 869, 161741 DOI: 10.1016/j.scitotenv.2023.161741IF: 8.2 Q1There is no corresponding record for this reference.
- 49Yuan, M.; Gong, M.; He, J.; Xie, B.; Zhang, Z.; Meng, L.; Tse, G.; Zhao, Y.; Bao, Q.; Zhang, Y. IP3R1/GRP75/VDAC1 complex mediates endoplasmic reticulum stress-mitochondrial oxidative stress in diabetic atrial remodeling. Redox Biol. 2022, 52, 102289 DOI: 10.1016/j.redox.2022.102289IF: 10.7 Q149https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BB38XosVajtrw%253D&md5=62f83696a5c8214f7d540e68cdba1728IP3R1/GRP75/VDAC1 complex mediates endoplasmic reticulum stress-mitochondrial oxidative stress in diabetic atrial remodelingYuan, Ming; Gong, Mengqi; He, Jinli; Xie, Bingxin; Zhang, Zhiwei; Meng, Lei; Tse, Gary; Zhao, Yungang; Bao, Qiankun; Zhang, Yue; Yuan, Meng; Liu, Xing; Luo, Cunjin; Wang, Feng; Li, Guangping; Liu, TongRedox Biology (2022), 52 (), 102289CODEN: RBEIB3; ISSN:2213-2317. (Elsevier B.V.)Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are important mechanisms of atrial remodeling, predisposing to the development of atrial fibrillation (AF) in type 2 diabetes mellitus (T2DM). However, the mol. mechanisms underlying these processes esp. their interactions have not been fully elucidated. To explore the potential role of ER stress-mitochondrial oxidative stress in atrial remodeling and AF induction in diabetes. Mouse atrial cardiomyocytes (HL-1 cells) and rats with T2DM were used as study models. Significant ER stress was obsd. in the diabetic rat atria. After treatment with tunicamycin (TM), an ER stress agonist, mass spectrometry (MS) identified several known ER stress and calmodulin proteins, including heat shock protein family A (HSP70) member [HSPA] 5 [GRP78]) and HSPA9 (GRP75, glucose-regulated protein 75). In situ proximity ligation assay indicated that TM led to increased protein expression of the IP3R1-GRP75-VDAC1 (inositol 1,4,5-trisphosphate receptor 1-glucose-regulated protein 75-voltage-dependent anion channel 1) complex in HL-1 cells. Small interfering RNA silencing of GRP75 in HL-1 cells and GRP75 conditional knockout in a mouse model led to impaired calcium transport from the ER to the mitochondria and alleviated mitochondrial oxidative stress and calcium overload. Moreover, GRP75 deficiency attenuated atrial remodeling and AF progression in Myh6-Cre+/Hspa9flox/flox + TM mice. The IP3R1-GRP75-VDAC1 complex mediates ER stress-mitochondrial oxidative stress and plays an important role in diabetic atrial remodeling.
- 50Li, X.; Gou, F.; Xiao, K.; Zhu, J.; Lin, Q.; Yu, M.; Hong, Q.; Hu, C. Effects of DON on mitochondrial function, endoplasmic reticulum stress, and endoplasmic reticulum mitochondria contact sites in the jejunum of piglets. J. Agric. Food Chem. 2023, 71 (36), 13234– 13243, DOI: 10.1021/acs.jafc.3c03380IF: 5.7 Q1There is no corresponding record for this reference.
Supporting Information
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jafc.4c02265IF: 5.7 Q1 .
Ingredients and nutrient composition of the control diet, information on primers used for RT-qPCR, and the primary antibody used for Western blot experiment (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.