Abstract 抽象的
We introduce a technique based on the spatial localization of electron and phonon Wannier functions to perform first-principles calculations of the electron-phonon interaction with an ultradense sampling of the Brillouin zone. After developing the basic theory, we describe the practical implementation within a density-functional framework. The proposed method is illustrated by considering a virtual crystal model of boron-doped diamond. For this test case, we first discuss the spatial localization of the electron-phonon matrix element in the Wannier representation. Then, we assess the accuracy of the Wannier-Fourier interpolation in momentum space. Finally, we study the convergence of the electron-phonon self-energies with the sampling of the Brillouin zone by calculating the electron and phonon linewidths, the Eliashberg spectral function, and the mass enhancement parameter of B-doped diamond. We show that more than
我们引入了一种基于电子和声子 Wannier 函数空间定位的技术,通过布里渊区的超密集采样来执行电子-声子相互作用的第一原理计算。在发展了基本理论之后,我们描述了密度泛函框架内的实际实现。通过考虑掺硼金刚石的虚拟晶体模型来说明所提出的方法。对于这个测试用例,我们首先讨论 Wannier 表示中电子声子矩阵元素的空间定位。然后,我们评估动量空间中 Wannier-Fourier 插值的准确性。最后,我们通过计算电子和声子线宽、Eliashberg 谱函数和掺硼金刚石的质量增强参数,研究了布里渊区采样时电子声子自能的收敛性。我们表明,超过
- Received 20 June 2007 2007 年 6 月 20 日收稿
DOI:https://doi.org/10.1103/PhysRevB.76.165108
©2007 American Physical Society
©2007 美国物理学会
Article Text 文章正文
The electron-phonon (e-ph) interaction manifests itself in a wide range of phenomena, including the electrical resistivity, superconductivity, 1 the Kohn effect, 2 the Peierls instability, 3 and polaronic transport in organic materials. 4 In recent years, considerable attention has been drawn to the e-ph problem by photoemission experiments which revealed sharp signatures of this interaction in the quasiparticle spectra of high-temperature cuprate superconductors.5,6 In addition, recently, the effect of the e-ph interaction in nanoscale electron transport has attracted considerable interest since there is evidence that phonon-limited carrier lifetimes might hinder the ballistic operation of carbon-based field-effect devices. 7
电子-声子 (e-ph) 相互作用表现在多种现象中,包括电阻率、超导性、 1 Kohn 效应、 2 Peierls 不稳定性、 3和有机材料中的极化子输运。 4近年来,光电发射实验引起了人们对 e-ph 问题的极大关注,这些实验揭示了高温铜酸盐超导体准粒子光谱中这种相互作用的鲜明特征。 5, 6此外,最近,纳米级电子传输中的 e-ph 相互作用的影响引起了人们极大的兴趣,因为有证据表明声子有限的载流子寿命可能会阻碍碳基场效应器件的弹道操作。 7
The e-ph interaction has been the subject of theoretical investigations since the early attempts to explain the temperature dependence of the electrical resistivity of metals. 8 Following the pioneering investigations of Fröhlich, 9 Holstein, 10 Bardeen and Pines, 11 and later the BCS theory of superconductivity, 1 the e-ph interaction has become the prototypical example of a fermion-boson interaction and is now used as a standard benchmark for field-theoretical Green’s functions methods. 12–15 Despite the continued interest in the e-ph problem, the computational methods developed so far, ranging from frozen-phonon approaches 16–18 to first-principles linear-response techniques, 19–22 still remain unpractical. As a consequence, many important aspects, such as the effects of anisotropy within the Eliashberg theory,23,24 the validity of the Migdal theorem in the normal state, 25 and the range of validity of the Migdal-Eliashberg theory in the superconducting state, 26 remain only partially explored. In some cases, such as the Holstein polaron problem, 15 a first-principles approach has not even been attempted to the authors’ knowledge. The present situation is equally unsatisfactory from the point of view of applications, since current calculations are still limited to simple systems with a few atoms per unit cell, and only very few attempts have been made to address complex systems such as carbon nanostructures, 27 doped superconductors, 28 or metallic nanowires. 29
自从早期尝试解释金属电阻率的温度依赖性以来,e-ph 相互作用一直是理论研究的主题。 8继 Fröhlich、 9 Holstein、 10 Bardeen 和 Pines、 11以及后来的 BCS 超导理论的开创性研究之后, 1 e-ph 相互作用已成为费米子-玻色子相互作用的典型例子,现在被用作标准基准用于场论格林函数方法。 12–15尽管人们对 e-ph 问题持续感兴趣,但迄今为止计算方法的发展,包括冻结声子方法16-18线性响应技术的第一原理, 19-22仍然不切实际。因此,许多重要方面,例如 Eliashberg 理论中各向异性的影响, 23、24正常状态下 Migdal 定理的有效性, 25以及超导状态下 Migdal-Eliashberg 理论的有效性范围, 26 个仍处于部分探索状态。在某些情况下,例如荷斯坦极化子问题, 15据作者所知,甚至还没有尝试过第一性原理方法。 从应用的角度来看,目前的情况同样不能令人满意,因为当前的计算仍然仅限于每个晶胞只有几个原子的简单系统,并且只有很少的尝试来解决复杂的系统,例如碳纳米结构, 27掺杂超导体, 28或金属纳米线。29
This situation is partly due to the significant computational burden of an e-ph calculation, which often requires a very accurate description of electron and phonon scattering processes in the proximity of the Fermi surface.30,31
这种情况部分是由于 e-ph 计算的巨大计算负担,这通常需要对费米表面附近的电子和声子散射过程进行非常准确的描述。 30, 31
Motivated by these considerations, we have developed a technique which makes use of Wannier functions to dramatically reduce the computational cost of an e-ph calculation. The basic idea is to exploit the localization of both electronic and lattice Wannier functions in order to compute only a limited set of electronic and vibrational states and e-ph matrix elements from first principles, and then using these results to obtain the corresponding quantities for arbitrary electron and phonon wave vectors by a generalized Fourier interpolation. In this way, it becomes possible to sample accurately the Brillouin zone at the computational cost of a standard phonon dispersion calculation. 32 Besides the significant computational advantage, the Wannier representation proves to be an ideal analytical tool for studying the e-ph interaction in terms of simplified tight-binding models (for the electrons) and force-constant models (for the phonons) while preserving the accuracy of a full first-principles calculation.
出于这些考虑,我们开发了一种技术,利用 Wannier 函数来显着降低 e-ph 计算的计算成本。基本思想是利用电子和晶格 Wannier 函数的局域性,以便根据第一原理仅计算一组有限的电子和振动状态以及 e-ph 矩阵元素,然后使用这些结果获得任意值的相应量通过广义傅里叶插值计算电子和声子波矢量。这样,就可以以标准声子色散计算的计算成本对布里渊区进行精确采样。 32除了显着的计算优势外,Wannier 表示法被证明是一种理想的分析工具,可用于研究简化的紧束缚模型(对于电子)和力常数模型(对于声子)的 e-ph 相互作用,同时保留完整第一性原理计算的准确性。
In order to illustrate our method, we present an application to boron-doped diamond. Superconductivity above liquid He temperature has recently been observed in B-doped diamond, 33 and investigations are ongoing to explore the possibility of increasing
为了说明我们的方法,我们提出了掺硼金刚石的应用。最近在 B 掺杂金刚石中观察到高于液态 He 温度的超导性, 33并且正在进行研究以探索增加超导性的可能性
The present paper is organized as follows. In Sec. II, we review the current techniques to compute the electron and phonon self-energies arising from the e-ph interaction. In Sec. III, we introduce the electron and phonon Wannier functions and derive the e-ph matrix element in the Wannier representation. Section IV describes the generalized Wannier-Fourier interpolation of the e-ph matrix element and its practical implementation within a density-functional framework. In Sec. VI, we illustrate the theory by calculating the electron and phonon linewidths, the Eliashberg function, and the electron-phonon mass enhancement parameter of boron-doped diamond.
本文的结构如下。在秒。 II ,我们回顾了当前计算 e-ph 相互作用产生的电子和声子自能的技术。在秒。第三,我们引入了电子和声子Wannier函数并推导了Wannier表示中的e-ph矩阵元素。第四节描述了 e-ph 矩阵元素的广义 Wannier-Fourier 插值及其在密度泛函框架内的实际实现。在秒。第六,我们通过计算掺硼金刚石的电子和声子线宽、Eliashberg函数和电子-声子质量增强参数来说明该理论。
The present work extends and improves upon the method proposed in Ref. 35. In particular, in the present work, the electron and phonon coordinates are treated on the same footing, leading to a joint electron-phonon Wannier representation and a simultaneous electron-phonon Fourier interpolation. In the Appendix, we establish the connection with the procedure outlined in Ref. 35, and we discuss the relative merits of the two strategies.
目前的工作对参考文献中提出的方法进行了扩展和改进。 35 .特别是,在目前的工作中,电子和声子坐标被同等对待,从而产生联合电子-声子 Wannier 表示和同时电子-声子傅里叶插值。在附录中,我们建立了与参考文献中概述的程序的联系。 35 ,我们讨论了这两种策略的相对优点。
The formalism for addressing the e-ph interaction has been set by the seminal contributions of Fröhlich, 9 Bardeen and Pines, 11 and Engelsberg and Schrieffer. 38 The e-ph Hamiltonian derived in these studies is conveniently dealt with by standard Green’s functions techniques.1,14 The interacting electron and phonon propagators are, in principle, fully determined through Dyson’s equation once the corresponding electron
解决 e-ph 相互作用的形式主义是由 Fröhlich、 9 Bardeen 和 Pines、 11以及 Engelsberg 和 Schrieffer 的开创性贡献确定的。 38这些研究中导出的 e-ph 哈密顿量可以通过标准格林函数技术方便地处理。 1, 14一旦相应的电子和声子传播体相互作用,原则上就可以通过戴森方程完全确定
The electron and phonon self-energies arising from the e-ph interaction (Fig. 1) read 12
e-ph 相互作用产生的电子和声子自能(图1 )为12
where
在哪里
We make the following approximations: (i) we neglect the changes in the electronic wave functions and phonon eigendisplacements arising from the e-ph interaction, 40 (ii) we take the expectation value of the self-energy operators on the noninteracting electron and phonon states, and (iii) we restrict our discussion to the imaginary parts of the electron
我们进行以下近似:(i)我们忽略由 e-ph 相互作用引起的电子波函数和声子本征位移的变化, 40 (ii)我们取非相互作用电子和声子的自能算子的期望值状态,并且(iii)我们将讨论限制在电子的虚部
where
在哪里
where
在哪里
We adopt the superscript “SE” to distinguish between the matrix element appearing in the self-energy expressions (
我们采用上标“SE”来区分自能表达式中出现的矩阵元素(
Within the isotropic approximation to Eliashberg theory, 26 the phonon linewidths [Eq. (4)] constitute a key ingredient for calculating the Eliashberg function
在 Eliashberg 理论的各向同性近似中, 26声子线宽 [Eq. (4) ] 构成计算 Eliashberg 函数的关键要素
Inspection of Eq. (4) reveals that the calculation of the phonon linewidths requires a summation over electronic transitions where both the initial state
检查方程。 (4)表明声子线宽的计算需要对电子跃迁求和,其中初始态
Similar considerations apply to the calculations of the electron self-energy [Eq. (3)], to the Eliashberg function [Eq. (7)], and to the mass enhancement parameter [Eq. (8)]. In particular, the difficulty in the determination of the mass enhancement parameter translates into a large uncertainty in the calculated superconducting transition temperature through the McMillan equation. 35 Even within more sophisticated approaches where superconducting properties are determined directly from first principles, 47 the practical implementations suffer from a strong sensitivity to the sampling of e-ph scattering processes near the Fermi surface. 31 In the following sections, we describe how it is possible to circumvent such difficulties by reformulating the e-ph vertex in the Wannier representation.
类似的考虑也适用于电子自能的计算[方程1]。 (3) ], 到 Eliashberg 函数 [Eq. (7) ], 以及质量增强参数 [Eq. (8) ]。特别是,质量增强参数确定的困难转化为通过麦克米伦方程计算的超导转变温度存在很大的不确定性。 35即使在超导特性直接根据第一原理确定的更复杂的方法中, 47实际实现也会受到对费米表面附近 e-ph 散射过程采样的强烈敏感性的影响。 31在以下各节中,我们将描述如何通过在 Wannier 表示中重新表述 e-ph 顶点来规避此类困难。
In this section, we introduce the Wannier representation of the e-ph vertex. We first describe the electronic Wannier functions and the phonon perturbation potential in the Wannier representation. Then, we derive the relation between the e-ph matrix elements in the Wannier representation and those in the Bloch representation.
在本节中,我们介绍 e-ph 顶点的 Wannier 表示。我们首先描述电子 Wannier 函数和 Wannier 表示中的声子微扰势。然后,我们推导了Wannier表示中的e-ph矩阵元素与Bloch表示中的e-ph矩阵元素之间的关系。
Wannier functions were first introduced to study the excitonic levels of polar insulators using a localized representation. 48 In the most general case, the relation between the Bloch functions
Wannier 函数首次被引入以使用局域表示来研究极性绝缘体的激子能级。 48在最一般的情况下,布洛赫函数之间的关系
Whenever the mixing matrix
每当混合矩阵
We consider here a periodic lattice which is a supercell of the primitive cell of the crystal. Accordingly, we use discrete summations in Eqs. (9) and (10) instead of integrals over continuous variables. The expressions we derive are therefore ready to be implemented in existing computational schemes. In going from Eq. (9) to Eq. (10), we used the relation
我们在这里考虑周期性晶格,它是晶体原始晶胞的超晶胞。因此,我们在方程中使用离散求和。 (9)和(10)代替连续变量的积分。因此,我们导出的表达式可以在现有的计算方案中实现。从方程式开始。 (9)至等式。 (10) ,我们使用关系式
The usefulness of the Wannier representation relies on the spatial localization of the electronic states. Equation (9) indicates a large freedom associated with the transformation from Bloch to Wannier functions, since one has to choose both the manifold of the initial Bloch states and the unitary rotation associated with such a manifold. When the system under consideration presents a composite set of bands isolated from other bands by finite energy gaps, the choice of the Bloch manifold is natural and it remains to choose the unitary transform
万尼尔表示的有用性依赖于电子态的空间定位。方程(9)表明与从布洛赫函数到万尼尔函数的变换相关的很大的自由度,因为人们必须选择初始布洛赫状态的流形以及与这样的流形相关的酉旋转。当所考虑的系统呈现一组通过有限能隙与其他能带隔离的复合能带时,布洛赫流形的选择是自然的,并且仍然选择酉变换
In the case of metals, the relevant bands do not usually constitute a composite manifold, and the previous procedure cannot be applied directly. Nonetheless, a disentanglement strategy, which allows the extraction of an optimally connected subspace from an initial entangled manifold, has already been introduced and demonstrated for simple metals. 53 This procedure consists at projecting the electronic Hamiltonian onto an appropriate subspace to treat a metallic system in effectively the same way as a hole-doped insulator. This technique is currently in use for transport problems. 54
对于金属,相关能带通常不构成复合流形,并且不能直接应用先前的过程。尽管如此,已经针对简单金属引入并演示了一种解缠结策略,该策略允许从初始纠缠流形中提取最佳连接的子空间。 53该过程包括将电子哈密顿量投影到适当的子空间上,以与空穴掺杂绝缘体相同的方式有效地处理金属系统。该技术目前用于解决运输问题。 54
The potential
潜力
In Eq. (11), the sum extends over all the unit cells of the crystal centered at the lattice vectors
在等式中。 (11) ,总和延伸到以晶格向量为中心的晶体的所有晶胞
Denoting the vibrational eigenmodes by
振动本征模态表示为
Before transforming the phonon perturbation
变换声子扰动之前
By comparing Eqs. (14) and (10), we realize that (i) the maximally localized Wannier functions for vibrational modes (lattice Wannier functions) correspond to the displacement of individual ions
通过比较等式。 (14)和(10) ,我们认识到 (i) 振动模式的最大局域 Wannier 函数(晶格 Wannier 函数)对应于单个离子的位移
By combining Eqs. (11)–(13), we can express the variation of the self-consistent potential
通过结合等式。 (11)–(13) ,我们可以表达自洽势的变化
where the real-valued vector field
其中实值向量场
represents the gradient of the self-consistent potential with respect to the displacement of the ion
表示自洽势相对于离子位移的梯度
keeping in mind that the real-valued field in the right-hand side of Eq. (12) is obtained through
请记住,方程右侧的实值字段。 (12)得自
with
和
For our purposes, it is crucial that the phonon perturbation [Eq. (18)] be localized in real space. From a qualitative point of view,
就我们的目的而言,声子扰动[方程1]至关重要。 (18) ] 被定位在真实空间中。从定性的角度来看,
A quantitative assessment of the spatial localization of
空间定位的定量评估
with
和
The spatial decay of the force constants has been thoroughly discussed elsewhere,32,58 and we summarize here only the aspects which are relevant to the present work. In metals, the electrostatic interactions are efficiently screened within a few bond lengths; therefore, the force constants are short ranged. In some cases, the topology of the Fermi surface gives rise to Kohn anomalies, which correspond to long-ranged force constants propagating along the wave vector associated with the anomaly. In such cases, the spatial decay of
力常数的空间衰减已在其他地方进行了深入讨论, 32, 58 ,我们在这里仅总结与当前工作相关的方面。在金属中,静电相互作用在几个键长内被有效地屏蔽;因此,力常数是短范围的。在某些情况下,费米表面的拓扑会引起科恩异常,这对应于沿着与异常相关的波矢量传播的长程力常数。在这种情况下,空间衰减
In order to obtain the e-ph vertex in the joint electron-phonon Wannier representation, we combine Eqs. (6), (10), and (17). After rearranging the terms, we find
为了获得联合电子声子 Wannier 表示中的 e-ph 顶点,我们结合等式: (6) 、 (10)和(17) 。重新排列条款后,我们发现
Now, we exploit the translational invariance of the “three-point” matrix element:
现在,我们利用“三点”矩阵元素的平移不变性:
which is obtained by writing the integral over the infinite crystal and performing a change of variables. In Eq. (21),
这是通过在无限晶体上写入积分并执行变量的变化而获得的。在等式中。 (21) ,
having introduced the e-ph vertex in the Wannier representation:
在 Wannier 表示中引入 e-ph 顶点:
In Eq. (22), we omitted band and branch indices for clarity, keeping in mind that the electronic matrices
在等式中。 (22) ,为了清楚起见,我们省略了能带和分支索引,请记住电子矩阵
The striking feature of the Wannier vertex [Eq. (24)] is the localization in both the electron and phonon variables. As illustrated in Fig. 2,
万尼尔顶点的显着特征[方程。 (24) ] 是电子和声子变量的局域化。如图2所示,
The relevant range of
相关范围
Equations (22) and (24) provide a compact and elegant transformation between the e-ph matrix element in the Bloch and the Wannier representations. Interestingly, Eq. (22) is reminiscent of the expressions used in tight-binding calculations to model the e-ph interaction. 60 We notice, however, that our expressions [Eqs. (22) and (24)] provide a fully first-principles description of the e-ph interaction. This observation suggests a systematic approach to determine tight-binding parameters for the e-ph interaction by first performing ab initio calculations in the Bloch representation and then determining the e-ph vertex in the Wannier representation through Eq. (24). An accurate tight-binding parametrization of the e-ph interaction would prove useful in the study of large-scale systems or systems with disorder. 35
方程(22)和(24)提供了Bloch和Wannier表示中的e-ph矩阵元素之间的紧凑而优雅的变换。有趣的是,等式。 (22)让人想起用于模拟 e-ph 相互作用的紧束缚计算中的表达式。 60然而,我们注意到,我们的表达式 [Eqs. (22)和(24) ] 提供了 e-ph 相互作用的完整第一原理描述。这一观察结果提出了一种系统方法来确定 e-ph 相互作用的紧束缚参数,首先在 Bloch 表示中执行从头计算,然后通过方程 2 确定 Wannier 表示中的 e-ph 顶点。 (24) 。 e-ph 相互作用的精确紧束缚参数化将在大规模系统或无序系统的研究中被证明是有用的。 35
In this section, we describe how to exploit the spatial localization in the Wannier representation to calculate the quantities required in the self-energies [Eqs. (3) and (4)] by a generalized Wannier-Fourier interpolation. We first discuss the transformation of the electron eigenstates and eigenvalues, the vibrational modes and frequencies, as well as the e-ph matrix elements from a coarse Brillouin-zone grid
在本节中,我们将描述如何利用 Wannier 表示中的空间定位来计算自能 [方程 1] 所需的量。 (3)和(4) ] 通过广义 Wannier-Fourier 插值。我们首先讨论电子本征态和本征值、振动模式和频率以及粗布里渊区网格的 e-ph 矩阵元素的变换
We calculate the one-particle electronic eigenstates
我们计算单粒子电子本征态
In Eq. (25), the
在等式中。 (25) ,
Once the unitary matrix
一旦酉矩阵
where band indices are omitted for clarity. By construction, the Hamiltonian in the Wannier representation
为了清楚起见,其中省略了频带索引。通过构造,Wannier 表示中的哈密顿量
We calculate vibrational eigenmodes
我们计算振动本征模态
Using Eq. (27) and the completeness relation
使用方程式(27)和完备性关系
If we collect the atom label
如果我们收集原子标签
In order to make connection with the standard terminology, we observe that the left-hand side of Eq. (28) is related to the matrix of the interatomic force constants by 58
为了与标准术语联系起来,我们观察到等式的左侧。 (28)与原子间力常数矩阵的关系为58
So far, the formalism for the lattice dynamics has been described in complete analogy with the electronic case. There is, however, an important difference between these cases when it comes to the spatial decay of the operators
到目前为止,晶格动力学的形式主义已经与电子案例完全类比地被描述。然而,当涉及到算子的空间衰减时,这些情况之间存在一个重要的区别
The e-ph matrix elements are computed after the electronic eigenstates and eigenvalues and the phonon eigenmodes and eigenfrequencies have been determined. We calculate the matrix elements
在确定电子本征态和本征值以及声子本征模式和本征频率后,计算 e-ph 矩阵元素。我们计算矩阵元素
The computation of the dynamical matrix is the most expensive step in the procedure; therefore, it is convenient to restrict the set of
动态矩阵的计算是该过程中最昂贵的步骤;因此,限制集合是很方便的
Once the e-ph matrix elements are calculated in the Bloch representation, we use Eq. (24) to transform them into the Wannier representation. The required transformation matrices
一旦以 Bloch 表示计算出 e-ph 矩阵元素,我们就可以使用等式: (24)将它们转化为Wannier表示。所需的变换矩阵
We wish to calculate electronic eigenstates
我们希望计算电子本征态
By combining Eqs. (10), (25), and (26), we obtain
通过结合等式。 (10) 、 (25)和(26) ,我们得到
where we have omitted band indices for clarity. In Eq. (31), the sum extends over the unit cells
为了清楚起见,我们省略了频带索引。在等式中。 (31) ,总和扩展到晶胞上
In Eq. (31), the only known quantity is contained within the brackets. We do not know at this stage the transformation matrices
在等式中。 (31) ,唯一已知的量包含在括号内。我们现阶段不知道变换矩阵
The calculation of phonon eigenmodes and eigenfrequencies at a new set of
计算一组新的声子本征模式和本征频率
in complete analogy with the corresponding expression for the electrons [Eq. (31)]. In Eq. (32), the sum extends over the unit cells
与电子的相应表达式完全类似[方程。 (31) ]。在等式中。 (32) ,总和延伸到晶胞上
As for the electrons (cf. Sec. IV B 1), the known quantity in Eq. (31) is the term within the brackets, and the matrix on the left-hand side is diagonal by construction [cf. Eq. (27)]. Hence, the eigenmodes
至于电子(参见第IV B 1节),方程中的已知数量。 (31)是括号内的项,左侧的矩阵通过构造是对角的[参见.等式。 (27) ]。因此,本征模态
The calculation of the e-ph matrix element in the new sets of points
新点集中e-ph矩阵元素的计算
Summary of the Wannier-Fourier interpolation scheme from a set of matrix elements on a uniform grid
均匀网格上一组矩阵元素的 Wannier-Fourier 插值方案摘要
Bloch 布洛赫 |
|
Wannier 万尼尔 |
|
Bloch 布洛赫 | |
---|---|---|---|---|---|
Electrons 电子 |
|
Rotate 旋转 |
|
Inverse Fourier transform 傅里叶逆变换 |
|
|
Fourier transform [Eq. (26)] 傅里叶变换 [Eq. (26) ] |
to 到 |
|
||
Phonons 声子 |
|
Rotate 旋转 |
|
Inverse Fourier transform 傅里叶逆变换 |
|
|
Fourier transform [Eq. (29)] 傅立叶变换 [Eq. (29) ] |
to 到 |
|
||
e-ph matrix e-ph矩阵 |
|
Rotate 旋转 |
|
Inverse Fourier transform 傅里叶逆变换 |
|
elements 元素 |
|
and Fourier transform [Eq. (24)] 和傅立叶变换 [Eq. (24) ] |
and rotate with 并旋转 |
In some applications, we could be interested in the self-energy of only a limited set of phonon modes (for instance, modes at high-symmetry points), rather than the whole vibrational spectrum in the Brillouin zone. In such cases, calculating the dynamical matrix for every
在某些应用中,我们可能只对一组有限的声子模式(例如,高对称点处的模式)的自能感兴趣,而不是布里渊区的整个振动谱。在这种情况下,计算每个的动态矩阵
The easiest way to proceed in such cases consists in transforming the electronic states in the Wannier representation (Sec. III A) while keeping the phonon perturbation (Sec. III B) in the Bloch representation. The transformation laws of the e-ph vertex in such electron-only Wannier representation read
在这种情况下,最简单的方法是转换 Wannier 表示中的电子态(第III A节),同时保持 Bloch 表示中的声子扰动(第III B节)。这种纯电子 Wannier 表示中 e-ph 顶点的变换定律为
with the e-ph matrix element in the mixed representation given by
混合表示中的 e-ph 矩阵元素由下式给出
In this case, the wave vector
在这种情况下,波矢量
In the case of a very large system in a supercell geometry, it could be convenient to restrict the sampling of the vibrational Brillouin zone to the
在超级单元几何结构中的非常大的系统的情况下,将振动布里渊区的采样限制在
This situation is also interesting because the procedure described so far can be performed without resorting to linear-response techniques: the matrix of the interatomic force constants [Eq. (30)] can be calculated by taking finite differences of the total energy (frozen-phonon approach), 67 and our procedure can be implemented as a postprocessing step in any electronic-structure package performing total-energy calculations.
这种情况也很有趣,因为到目前为止描述的过程可以在不诉诸线性响应技术的情况下执行:原子间力常数的矩阵[方程1]。 (30) ] 可以通过总能量的有限差分来计算(冻结声子方法), 67并且我们的程序可以作为任何执行总能量计算的电子结构包中的后处理步骤来实现。
The diagonalization of the Kohn-Sham single-particle Hamiltonian determines the eigenfunctions
Kohn-Sham 单粒子哈密顿量的对角化确定了本征函数
Different phase settings may arise, for instance, (i) when the eigenstates used to determine
例如,可能会出现不同的相位设置,(i) 当本征态用于确定
It is therefore desirable to fix a unique and unambiguous gauge for the wave functions. We can accomplish this in two separate steps: we first set the gauge within each degenerate manifold, and then we set the phase of every eigenstate individually. The latter step is straightforwardly performed by requiring the wave functions
and we diagonalize the perturbation to find the new eigenstates:
with
和
which diagonalize the Hamiltonian
对哈密顿量进行对角化
It is worth noting at this point that the e-ph matrix element
此时值得注意的是 e-ph 矩阵元素
The most computationally intensive part of the procedure described thus far is represented by the calculation of the vibrational eigenmodes, eigenfrequencies, and the associated phonon perturbation for all the
迄今为止所描述的过程中计算量最大的部分是通过计算所有的振动本征模式、本征频率和相关的声子扰动来表示的。
The irreducible
不可约的
Once the dynamical matrix and the phonon perturbation for an irreducible
一旦动力学矩阵和声子扰动为不可约
where the unitary matrix
其中酉矩阵
In Eq. (40)
在等式中。 (40)
The transformation law of the phonon perturbation
声子摄动变换定律
(ii) the dielectric function is invariant under the symmetry operation
(ii) 介电函数在对称运算下不变
and (iii) the ionic (pseudo)potentials are rotationally invariant:
(iii) 离子(赝)势旋转不变:
By replacing Eqs. (41)–(43) into Eqs. (11)–(13), we obtain, after some algebra,
通过替换方程式。 (41)–(43)代入等式。 (11)–(13) ,经过一些代数计算,我们得到,
It is important to realize that the derivation of Eq. (44) rests on the choice of the phases of the vibrational eigenmodes at
重要的是要认识到方程的推导。 (44)取决于振动本征模态相位的选择
We can now exploit Eq. (44) to calculate the e-ph matrix element corresponding to a momentum transfer of
我们现在可以利用方程。 (44)计算对应于动量传递的 e-ph 矩阵元素
In a pseudopotential plane-wave formulation, if the electronic eigenfunctions
在赝势平面波公式中,如果电子本征函数
At this point, it may be tempting to apply the same arguments discussed for the dynamical matrix to the electronic Hamiltonian to express
此时,可能会很想将针对动力学矩阵讨论的相同论点应用于电子哈密顿量来表达
However, Eq. (47) implicitly assumes a specific phase relation between electronic states at
然而,等式。 (47)隐含地假设电子态之间存在特定的相位关系
Of course, an alternative approach would be to enforce Eq. (47) from the very beginning in the gauge-fixing procedure described in Sec. V C. In both cases, the application of the symmetry operation
当然,另一种方法是强制执行等式。 (47)从一开始就在第 2 节中描述的量规固定程序中。 VC 。在这两种情况下,对称运算的应用
In order to illustrate the scheme developed in Secs. III and IV with a practical calculation, we present here an application to a virtual crystal model of B-doped diamond. We first provide the technical details of the calculation. Then, we discuss the localization properties of the Hamiltonian, the dynamical matrix and the e-ph vertex in the Wannier representation, and the ensuing accuracy of the Fourier interpolation in momentum space. Finally, we present our results for the electron and phonon self-energy arising from the e-ph interaction, for the Eliashberg function, and for the mass enhancement parameter.
为了说明秒中开发的方案。 III和IV通过实际计算,我们在这里提出了B掺杂金刚石虚拟晶体模型的应用。我们首先提供计算的技术细节。然后,我们讨论了 Wannier 表示中哈密顿量、动力学矩阵和 e-ph 顶点的局域化性质,以及动量空间中傅立叶插值的精度。最后,我们展示了 e-ph 相互作用产生的电子和声子自能、Eliashberg 函数和质量增强参数的结果。
Following Refs. 28,35, we consider B-doped diamond with a B content of 1.85%, which is close to the original experimental value. 33 The calculations are performed within the framework of density-functional theory in the local-density approximation.72,73 We account for the core-valence interaction by using norm-conserving pseudopotentials.70,74 Lattice-dynamical properties are calculated within density-functional perturbation theory with the method of Refs. 32,75 and maximally localized Wannier functions obtained by minimizing the Berry-phase spread functional with the method of Refs. 49,53,64. The electronic wave functions are described by a plane-wave basis63,76 with a kinetic energy cutoff of
以下参考文献。如图 28、 35所示,我们考虑 B 掺杂金刚石,其 B 含量为 1.85%,与原始实验值接近。 33计算是在局部密度近似的密度泛函理论框架内进行的。 72, 73我们通过使用范数守恒赝势来解释核价相互作用。 70, 74晶格动力学性质是用参考文献的方法在密度泛函微扰理论中计算的。 32、75和通过使用Refs的方法最小化 Berry 相扩展函数获得的最大局部 Wannier 函数。 49、53、64 。电子波函数由平面波基63、76描述,动能截断为
Figure 3 shows the calculated band structure of B-doped diamond compared to the band structure of pristine diamond. The calculation for pristine diamond was performed with the same lattice parameter of the doped system for the purpose of comparison (the relaxed lattice parameter of B-doped diamond with a B content of 2% is 0.2% larger than that of intrinsic diamond). After aligning the top of the valence bands, the one-particle eigenvalues corresponding to the occupied subspace are found to differ by
图3显示了计算得出的 B 掺杂金刚石的能带结构与原始金刚石的能带结构的比较。为了进行比较,对原始金刚石采用相同的掺杂体系晶格参数进行计算(B含量为2%的掺硼金刚石的弛豫晶格参数比本征金刚石大0.2%)。对齐价带顶部后,发现对应于占据子空间的单粒子特征值有以下差异:
Figure 4 shows the calculated phonon dispersions of B-doped diamond, together with the phonon dispersions of pristine diamond with the same lattice parameter. Within the virtual crystal approximation, the doping with boron induces a softening of the optical phonon frequencies around the zone center. The largest softening is observed at the
图4显示了计算得出的 B 掺杂金刚石的声子色散,以及具有相同晶格参数的原始金刚石的声子色散。在虚拟晶体近似中,硼掺杂导致区域中心周围的光学声子频率软化。最大的软化发生在
In order to determine the electronic states in the Wannier representation, we need to define an appropriate energy subspace for projecting the electronic Hamiltonian. The identification of this subspace is particularly simple in the present case, since (i) boron doping shifts the Fermi down into the valence bands of diamond. (ii) As discussed in Sec. II, only electronic states close to the Fermi level need to be considered to compute the phonon linewidths, and only electronic states with energy close to the initial state
为了确定 Wannier 表示中的电子态,我们需要定义一个适当的能量子空间来投影电子哈密顿量。在本例中,该子空间的识别特别简单,因为 (i) 硼掺杂将费米向下移动到金刚石的价带中。 (ii) 正如第 2 节中所讨论的。 II ,只有接近费米能级的电子态才需要考虑计算声子线宽,并且只有能量接近初始态的电子态
Figure 5 shows the spatial decay of the Hamiltonian matrix elements in the Wannier representation
图5显示了 Wannier 表示中哈密顿矩阵元素的空间衰减
Figure 6 shows the spatial decay of the phonon dynamical matrix in the Wannier representation [Eq. (29)]. It is well known that the interatomic force constants of intrinsic diamond exhibit a rather fast spatial decay because of the vanishing Born dynamical charges (the first nonzero contribution is a quadropole-quadrupole interaction). In the case of B-doped diamond considered here, the metallic screening produces a softening of the phonons around the zone center. However, this does not significantly alter the range of the interatomic force constants with respect to intrinsic diamond. Accordingly, for the lattice-dynamical matrix, we also observe exponential localization.
图6显示了 Wannier 表示中声子动力学矩阵的空间衰减 [方程 1]。 (29) ]。众所周知,由于玻恩动力电荷的消失(第一个非零贡献是四极-四极相互作用),本征金刚石的原子间力常数表现出相当快的空间衰减。就此处考虑的 B 掺杂金刚石而言,金属屏蔽会软化区域中心周围的声子。然而,这并没有显着改变本征金刚石的原子间力常数的范围。因此,对于晶格动力学矩阵,我们也观察到指数局域化。
After having examined the spatial decay of the Hamiltonian and the dynamical matrix, we now turn to the e-ph matrix element
在检查了哈密顿量和动力学矩阵的空间衰减之后,我们现在转向 e-ph 矩阵元素
In order to have an idea of the Brillouin-zone sampling required to obtain matrix elements encompassing a given spatial range
为了了解获得包含给定空间范围的矩阵元素所需的布里渊区采样
In order to assess the accuracy of the interpolation method introduced in Sec. IV, we need to compare the various quantities needed for studying the e-ph interaction (single-particle electronic eigenvalues, vibrational frequencies, and e-ph matrix elements) obtained by Wannier-Fourier interpolation with those obtained directly from first principles. The interpolation procedures for the band structure and for the phonon dispersions have already been addressed elsewhere;32,53,58 therefore, we restrict ourselves here to the e-ph matrix elements.
为了评估第 2 节中介绍的插值方法的准确性。第四,我们需要将通过Wannier-Fourier插值获得的研究e-ph相互作用所需的各种量(单粒子电子特征值、振动频率和e-ph矩阵元素)与直接从第一原理获得的量进行比较。能带结构和声子色散的插值程序已经在其他地方讨论过; 32, 53, 58因此,我们在这里将自己限制在 e-ph 矩阵元素上。
The e-ph vertex
e-ph 顶点
Figure 8(c) shows the variation of the e-ph matrix element along the described energy and/or momentum path, as computed directly from first principles, together with the values obtained by the joint electron-phonon interpolation procedure outlined in Sec. IV. We considered 50 phonon momenta in the ab initio calculation and unshifted Brillouin-zone grids with
图8(c)显示了 e-ph 矩阵元素沿所描述的能量和/或动量路径的变化,直接根据第一原理计算,以及通过第 2 节中概述的联合电子声子插值过程获得的值。四.我们在从头计算中考虑了 50 个声子动量和未移动的布里渊区网格
It is clear that our interpolation scheme is very effective, and already a
很明显,我们的插值方案非常有效,并且已经
For a quantitative assessment of the accuracy of our method, we report here the absolute deviations of the interpolated e-ph matrix elements with respect to the first-principles calculations on a uniform Brillouin-zone grid with
为了定量评估我们方法的准确性,我们在此报告插值 e-ph 矩阵元素相对于均匀布里渊区网格上的第一性原理计算的绝对偏差
At the end of this section, it is worth pointing out that, compared to other possible interpolation schemes, the one discussed in the present work relies on a physical property of the system, which could be designated as the “near-sightedness” of the electron-phonon interaction, in analogy with a very general concept introduced for the electron-electron interaction. 81 In favorable cases (such as the application discussed here), our scheme shows exponentially increasing accuracy with the spacing of the coarse grid on which the first-principles calculations are performed.
在本节的最后,值得指出的是,与其他可能的插值方案相比,本工作中讨论的插值方案依赖于系统的物理属性,可以将其称为系统的“近视性”电子-声子相互作用,类似于电子-电子相互作用引入的非常普遍的概念。 81在有利的情况下(例如这里讨论的应用程序),我们的方案显示,随着执行第一性原理计算的粗网格的间距,精度呈指数级增长。
C. Electron and phonon linewidths, Eliashberg function, and mass enhancement parameter
C. 电子和声子线宽、Eliashberg 函数和质量增强参数
Once the accuracy of the Wannier-Fourier interpolation is established, we proceed to investigate the convergence of the electron and phonon linewidths [Eqs. (3) and (4)] with the sampling of the Brillouin zone. All the calculations described in this section were performed by interpolating the electron Hamiltonian, the lattice-dynamical matrix, and the e-ph vertex evaluated on the unshifted
一旦确定了 Wannier-Fourier 插值的精度,我们就继续研究电子和声子线宽的收敛性 [方程 1]。 (3)和(4) ]与布里渊区采样。本节中描述的所有计算都是通过对电子哈密顿量、晶格动力学矩阵和在未平移的上评估的 e-ph 顶点进行插值来执行的。
Figure 9 shows the calculated electron linewidths arising from the e-ph interaction for the electronic states indicated in Fig. 8 (
图9显示了由图8所示电子态的 e-ph 相互作用产生的计算电子线宽(
It is worth mentioning that most current calculations of the e-ph interaction are performed with grids including considerably fewer irreducible phonon momenta, since the direct computation of the lattice-dynamical matrix corresponds to several total-energy minimizations for each
值得一提的是,当前大多数 e-ph 相互作用的计算都是使用包含相当少的不可约声子动量的网格来执行的,因为晶格动力学矩阵的直接计算对应于每个的几个总能量最小化。
The calculated electron linewidths show a peculiar suppression when the electron momentum lies close to the zone center. Careful analysis indicates that this happens for all electronic states with energy
当电子动量靠近区域中心时,计算出的电子线宽显示出特殊的抑制。仔细分析表明,所有具有能量的电子态都会发生这种情况
Figure 10 shows the phonon linewidths corresponding to the longitudinal optical mode of B-doped diamond [cf. 8(b)] calculated with different Brillouin-zone grids and smearing parameters. The transverse optical modes behave similarly, while the linewidths associated with the acoustic modes were found to be negligibly small (less than
图10显示了与 B 掺杂金刚石的纵向光学模式相对应的声子线宽 [cf. 8(b)]用不同的布里渊区网格和涂抹参数计算。横向光学模式的行为类似,而与声学模式相关的线宽被发现小得可以忽略不计(小于
In Fig. 10, the linewidths close to the zone center are consistent with the values of
图10中,靠近区域中心的线宽与
Figure 11 shows the Eliashberg function [Eq. (7)] obtained with the phonon linewidths discussed in Sec. VI C 2. As already pointed out, 1000
图11显示了 Eliashberg 函数 [Eq. (7) ] 用第 2 节中讨论的声子线宽获得。六、C 2 .正如已经指出的,1000
The mass enhancement parameter
质量增强参数
Table II reports our calculated e-ph coupling strengths corresponding to the Eliashberg functions shown in Fig. 11. We find that a grid of 1000 points in the irreducible wedge of the Brillouin zone yields
表II报告了我们计算出的与图11中所示的 Eliashberg 函数相对应的 e-ph 耦合强度。我们发现布里渊区不可约楔形中的 1000 个点的网格产生
The present work was motivated by the long-standing difficulty of studying the electron-phonon interaction from first principles. This difficulty arises from the necessity of a very careful description of the e-ph scattering processes in the Brillouin zone, in particular, in proximity of the Fermi surface. We have shown that this difficulty can be overcome by performing a generalized Wannier-Fourier interpolation of the e-ph vertex, leading to results as accurate as a full ab initio calculation but at a comparably negligible computational cost. In order to assess the accuracy of our methodology, we have performed a comprehensive set of tests on a virtual crystal model of B-doped diamond. In particular, we calculated the electron and phonon linewidths arising from the e-ph interaction as well as the Eliashberg spectral function, and we discussed the dependence of these quantities on the sampling of the Brillouin zone. Our study revealed that, contrary to common assumptions, the momentum dependence of the e-ph matrix element is significant throughout the Brillouin zone and cannot be neglected.
目前的工作是由从第一原理研究电子-声子相互作用的长期困难推动的。这一困难源于需要非常仔细地描述布里渊区(特别是费米面附近)的 e-ph 散射过程。我们已经证明,可以通过对 e-ph 顶点执行广义 Wannier-Fourier 插值来克服这一困难,从而获得与完整的从头计算一样准确的结果,但计算成本相对可忽略不计。为了评估我们方法的准确性,我们对 B 掺杂金刚石的虚拟晶体模型进行了一套全面的测试。特别是,我们计算了由 e-ph 相互作用以及 Eliashberg 谱函数产生的电子和声子线宽,并讨论了这些量对布里渊区采样的依赖性。我们的研究表明,与常见的假设相反,e-ph 矩阵元素的动量依赖性在整个布里渊区都很显着,不能被忽视。
It is interesting to consider future directions and possible developments of the present theory. The first obvious application of our method consists in using the e-ph matrix elements in the Wannier representation to investigate how electrons and ions interact at the atomistic scale. Indeed, we could decompose the various contributions to the electron and phonon self-energies into their atomistic components in the spirit of the analysis of Ref. 56.
考虑当前理论的未来方向和可能的发展是很有趣的。我们的方法的第一个明显应用在于使用 Wannier 表示中的 e-ph 矩阵元素来研究电子和离子如何在原子尺度上相互作用。事实上,我们可以本着参考文献 2 的分析精神,将对电子和声子自能的各种贡献分解为其原子成分。 56 .
A further step in the same direction could be taken by reformulating the electron-phonon problem in a fully localized representation based on Wannier functions. This possibility is appealing since, as we have shown in this work, all the information needed to describe the e-ph interaction is encoded in a small number of matrix elements in the Wannier representation. Therefore, in principle, there is no need to go back to Bloch space by Wannier-Fourier interpolation. It is interesting to note that a similar idea has been suggested in Ref. 87, where the authors were interested in reformulating the Eliashberg equations in a localized Wannier representation.
通过在基于 Wannier 函数的完全局部化表示中重新表述电子声子问题,可以朝同一方向迈出进一步的一步。这种可能性很有吸引力,因为正如我们在这项工作中所展示的,描述 e-ph 相互作用所需的所有信息都被编码在 Wannier 表示中的少量矩阵元素中。因此,原则上不需要通过Wannier-Fourier插值回到Bloch空间。有趣的是,参考文献中提出了类似的想法。 87 ,作者有兴趣以局部 Wannier 表示形式重新表述 Eliashberg 方程。
Even without attempting an all-Wannier calculation as suggested above, our Wannier-Fourier interpolation method will prove useful for solving the Eliashberg equations appearing in the theory of strong-coupling superconductivity,23,24,26 or the Bogoliubov–de Gennes-type equations to be solved in the density-functional theory for superconductors.31,47 In both cases, a very fine description of the e-ph scattering processes near the Fermi surface is strictly required.
即使不尝试如上所述的全 Wannier 计算,我们的 Wannier-Fourier 插值方法也将证明对于求解强耦合超导理论中出现的 Eliashberg方程23、24、26或Bogoliubov-de Gennes 型方程非常有用在超导体的密度泛函理论中需要解决。 31, 47在这两种情况下,都严格要求对费米表面附近的 e-ph 散射过程进行非常精细的描述。
The availability of electron and phonon eigenstates and the associated e-ph matrix elements at a very small computational cost could also be used as a starting point to explore the effects of the vertex corrections to the Migdal approximation. Indeed, while, in principle, Migdal theorem does not apply in the presence of Fermi-surface nesting, 26 we are not aware of any attempts to go beyond this approximation within first-principles approaches.
以非常小的计算成本获得电子和声子本征态以及相关的 e-ph 矩阵元素也可以用作探索顶点校正对 Migdal 近似的影响的起点。事实上,虽然原则上米格达勒定理不适用于费米面嵌套的情况, 26但我们不知道有任何尝试在第一性原理方法中超越这种近似。
Finally, we mention the possibility of using the present method to directly address the e-ph interaction in complex systems with many atoms in the unit cell, 35 or to define tight-binding parametrizations for large-scale systems.
最后,我们提到使用本方法直接解决晶胞中具有许多原子的复杂系统中的 e-ph 相互作用的可能性, 35或定义大型系统的紧束缚参数化。
We wish to thank J. R. Yates and I. Souza for their contribution to the initial stages of this work. In particular, we acknowledge J. R. Yates for providing a preliminary interface between the PWSCF and the WANNIER computer codes and I. Souza for useful discussions on the Wannier interpolation of electronic band structures. We also wish to thank C.-H. Park and J. Noffsinger for extensively testing the methodology presented in this work and S. De Gironcoli and X. Blase for fruitful interactions. This work was supported by the National Science Foundation Grant No. DMR04-39768 and by the Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U. S. Department of Energy under Contract No. DE-AC02-05CH11231. Computational resources were provided by NPACI and NERSC. Part of the calculations were performed using the QUANTUM-ESPRESSO 75 and WANNIER 64 packages.
我们要感谢 JR Yates 和 I. Souza 对这项工作初始阶段的贡献。我们特别感谢 JR Yates 在PWSCF和WANNIER计算机代码之间提供了初步接口,并感谢 I. Souza 对电子能带结构的 Wannier 插值进行了有益的讨论。我们还要感谢 C.-H. Park 和 J. Noffsinger 对本工作中提出的方法进行了广泛测试,S. De Gironcoli 和 X. Blase 进行了富有成效的互动。这项工作得到了国家科学基金会拨款号DMR04-39768和美国能源部基础能源科学办公室、材料科学与工程司科学办公室的支持,合同号为DE-AC02-05CH11231 。计算资源由 NPACI 和 NERSC 提供。部分计算是使用QUANTUM-ESPRESSO 75和WANNIER 64软件包进行的。
For completeness, in this appendix, we provide a formal justification of the approach proposed in Ref. 35. The procedure introduced in Ref. 35 is similar in spirit to the present work, altough the practical implementation differs considerably. Maintaining the notation of Sec. IV, the squared e-ph matrix element in the Bloch representation introduced in Ref. 35 is
为了完整起见,在本附录中,我们提供了参考文献中提出的方法的正式理由。 35 .参考文献中介绍的程序。 35在精神上与目前的工作相似,尽管实际实施有很大不同。维护 Sec 的符号。 IV ,参考文献中介绍的 Bloch 表示中的平方 e-ph 矩阵元素。 35是
while the corresponding matrix element in the phonon Wannier representation is
而声子 Wannier 表示中相应的矩阵元素是
The interpolation formula for an arbitrary phonon momentum
任意声子动量的插值公式
The interpolation by means of Eq. (A3) is convenient when the matrix elements
通过方程进行插值。 (A3)当矩阵元素
By changing the integration variable to
通过将积分变量更改为
It is convenient to Fourier analyze the potential
方便傅立叶分析势
with the integration extending over the entire reciprocal space. We now combine Eqs. (A5) and (A6), decompose the real-space integral into a sum over
积分延伸到整个互易空间。我们现在结合等式。 (A5)和(A6) ,将实空间积分分解为总和
where
在哪里
Now we observe that (i) the largest nonvanishing Fourier component
现在我们观察到 (i) 最大的非零傅立叶分量
It should be pointed out that in this derivation, we did not make use of the electron Wannier representation. This constitutes the main difference with the strategy outlined in Sec. III. The advantage of the formulation introduced in Ref. 35 and described in this appendix is that the interpolation over the phonon momentum
需要指出的是,在这个推导中,我们没有使用电子Wannier表示。这是与第 2 节中概述的策略的主要区别。三.参考文献中介绍的配方的优点。 35并在本附录中描述的是声子动量的插值
References 参考
- J. R. Schrieffer, Theory of Superconductivity (Benjamin, New York, 1964).
JR Schrieffer, 《超导理论》 (本杰明,纽约,1964 年)。 - W. Kohn, Phys. Rev. Lett. 2, 393 (1959).
W.科恩,物理学家。莱特牧师。 2、393 (1959) 。 - R. E. Peierls, Quantum Theory of Solids (Clarendon, Oxford, 1964).
RE Peierls,固体量子理论(克拉伦登,牛津,1964 年)。 - E. M. Conwell, Proc. Natl. Acad. Sci. U.S.A. 22, 8795 (2005).
EM 康威尔,国家。阿卡德。科学美国22 , 8795 (2005)。 - A. Lanzara, P. V. Bogdanov, X. J. Zhou, S. A. Kellar, D. L. Feng, E. D. Lu, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio, J.-I. Shimoyama, T. Noda, S. Uchida, Z. Hussain, and Z. X. Shen, Nature (London) 412, 510 (2001).
A. Lanzara、PV Bogdanov、XJ Zhou、SA Kellar、DL Feng、ED Lu、T. Yoshida、H. Eisaki、A. Fujimori、K. Kishio、J.-I。 Shimoyama、T. Noda、S. Uchida、Z. Hussain 和 ZX Shen, 《自然》(伦敦) 412、510 (2001) 。 - A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003).
A. Damascelli、Z. Hussain 和 Z.-X。沉牧师模组。物理。 75、473 (2003) 。 - M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robertson, Phys. Rev. Lett. 95, 236802 (2005).
M. Lazzeri、S. Piscanec、F. Mauri、AC Ferrari 和 J. Robertson,物理学家。莱特牧师。 95、236802 (2005) 。 - N. F. Mott, Proc. Phys. Soc. London 46, 680 (1934). and references therein.
NF 莫特, Proc。物理。苏克。伦敦46 , 680 (1934) 。以及其中的参考文献。 - H. Fröhlich, Phys. Rev. 79, 845 (1950).
H. Fröhlich,物理学家。修订版79 , 845 (1950) 。 - T. Holstein, Ann. Phys. (N.Y.) 8, 325 (1959).
T.荷斯坦,安。物理。 (纽约) 8 , 325 (1959) 。 - J. Bardeen and D. Pines, Phys. Rev. 99, 1140 (1955).
J. Bardeen 和 D. Pines,物理学家。修订版99 , 1140 (1955) 。 - G. Grimvall, The Electron-Phonon Interaction in Metals (North-Holland, New York, 1981).
G. Grimvall, 《金属中的电子-声子相互作用》 (北荷兰,纽约,1981 年)。 - T. K. Mitra, A. Chatterjee, and S. Mukhopadhyay, Phys. Rep. 153, 91 (1987); J. Devreese, editor, Polarons in Ionic Crystals and Polar Semiconductors (North-Holland, Amsterdam, (, 1972).
TK Mitra、A. Chatterjee 和 S. Mukhopadhyay,物理学家。报告153 , 91 (1987) ; J. Devreese, 《离子晶体和极性半导体中的极化子》编辑(北荷兰,阿姆斯特丹,1972 年)。 - G. D. Mahan, Many-Particle Physics (Plenum, New York, 1981).
GD Mahan,多粒子物理学(Plenum,纽约,1981 年)。 - M. Berciu, Phys. Rev. Lett. 97, 036402 (2006).
M. Berciu,物理学家。莱特牧师。 97、036402 (2006) 。 - P. B. Allen, M. L. Cohen, L. M. Falicov, and R. V. Kasowski, Phys. Rev. Lett. 21, 1794 (1968).
PB Allen、ML Cohen、LM Falicov 和 RV Kasowski,物理学家。莱特牧师。 21 , 1794 (1968) 。 - M. M. Dacorogna, M. L. Cohen, and P. K. Lam, Phys. Rev. Lett. 55, 837 (1985).
MM Dacorogna、ML Cohen 和 PK Lam,物理学家。牧师。莱特。 55、837 (1985) 。 - P. K. Lam, M. M. Dacorogna, and M. L. Cohen, Phys. Rev. B 34, 5065 (1986).
PK Lam,MM Dacorogna 和 ML Cohen, Phys Rev. B 34 , 5065 (1986) 。 - S. Y. Savrasov, D. Y. Savrasov, and O. K. Andersen, Phys. Rev. Lett. 72, 372 (1994).
SY Savrasov、DY Savrasov 和 OK Andersen,物理学牧师。 72、372 (1994) 。 - S. Y. Savrasov and O. K. Andersen, Phys. Rev. Lett. 77, 4430 (1996).
SY Savrasov 和 OK Andersen,物理学牧师。 77、4430 (1996) 。 - S. Y. Savrasov and D. Y. Savrasov, Phys. Rev. B 54, 16487 (1996).
SY Savrasov 和 DY Savrasov,物理学 Rev. B 54 , 16487 (1996) 。 - R. Bauer, A. Schmid, P. Pavone, and D. Strauch, Phys. Rev. B 57, 11276 (1998).
R. Bauer、A. Schmid、P. Pavone 和 D. Strauch,物理学家。修订版 B 57 , 11276 (1998) 。 - H. J. Choi, D. Roundy, H. Sun, M. L. Cohen, and S. G. Louie, Nature (London) 418, 758 (2002).
HJ Choi、D. Roundy、H. Sun、ML Cohen 和 SG Louie, 《自然》(伦敦) 418、758 (2002) 。 - H. J. Choi, M. L. Cohen, and S. G. Louie, Phys. Rev. B 73, 104520 (2006).
HJ Choi、ML Cohen 和 SG Louie,物理学家。修订版 B 73 , 104520 (2006) 。 - A. B. Migdal, Zh. Eksp. Teor. Fiz. 34, 1438 (1958); [Sov. Phys. JETP 7, 996 (1958)].
AB 米格达勒,Zh。埃克斯普。泰奥.菲兹。 34、1438 (1958); [索夫。物理。 JETP 7 , 996 (1958)]。 - P. B. Allen and B. Mikovic, in Solid State Physics edited by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic, New York, 1982), p. 1, Vol. 32.
PB Allen 和 B. Mikovic, 《固体物理学》 ,由 H. Ehrenreich、F. Seitz 和 D. Turnbull 编辑(学术界,纽约,1982 年),第 17 页。 1,卷。 32 . - D. Connétable, V. Timoshevskii, B. Masenelli1, J. Beille, J. Marcus, B. Barbara, A. M. Saitta, G.-M. Rignanese, P. Mélinon, S. Yamanaka, and X. Blase, Phys. Rev. Lett. 91, 247001 (2003).
D. Connétable、V. Timoshevskii、B. Masenelli1、J. Beille、J. Marcus、B. Barbara、AM Saitta、G.-M。 Rignanese、P. Mélinon、S. Yamanaka 和 X. Blase,物理学。莱特牧师。 91、247001 (2003) 。 - X. Blase, Ch. Adessi, and D. Connétable, Phys. Rev. Lett. 93, 237004 (2004).
X.布莱斯,Ch。 Adessi 和 D. Connétable,物理学家。莱特牧师。 93、237004 (2004) 。 - M. J. Verstraete and Xavier Gonze, Phys. Rev. B 74, 153408 (2006).
MJ Verstraete 和 Xavier Gonze,物理学家。修订版 B 74 , 153408 (2006) 。 - D. Kasinathan, K. Koepernik, J. Kunes, H. Rosner, and W. E. Pickett, Physica C 460, 133 (2007).
D. Kasinathan、K. Koepernik、J. Kunes、H. Rosner 和 WE Pickett,Physica C 460 , 133 (2007)。 - M. A. L. Marques, M. Lüders, N. N. Lathiotakis, G. Profeta, A. Floris, L. Fast, A. Continenza, E. K. U. Gross, and S. Massidda, Phys. Rev. B 72, 024546 (2005).
MAL Marques、M. Lüders、NN Lathiotakis、G. Profeta、A. Floris、L. Fast、A. Continenza、EKU Gross 和 S. Massidda,物理学家。修订版 B 72 , 024546 (2005) 。 - S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).
S. Baroni、S. de Gironcoli、A. Dal Corso 和 P. Giannozzi, Rev. Mod。物理。 73、515 (2001) 。 - E. A. Ekimov, V. A. Sidorov, E. D. Bauer, N. N. Mel’nik, N. J. Curro, J. D. Thompson, and S. M. Stishov, Nature (London) 428, 542 (2004).
EA Ekimov、VA Sidorov、ED Bauer、NN Mel'nik、NJ Curro、JD Thompson 和 SM Stishov, 《自然》(伦敦) 428、542 (2004) 。 - Y. Takano, M. Nagao, I. Sakaguchi, M. Tachiki, T. Hatano, K. Kobayashi, H. Umezawa, and H. Kawarada, Appl. Phys. Lett. 85, 2851 (2004).
Y. Takano、M. Nagao、I. Sakaguchi、M. Tachiki、T. Hatano、K. Kobayashi、H. Umezawa 和 H. Kawarada,应用。物理。莱特。 85、2851 (2004) 。 - F. Giustino, Jonathan R. Yates, I. Souza, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 98, 047005 (2007).
F. Giustino、Jonathan R. Yates、I. Souza、ML Cohen 和 SG Louie,物理学家。莱特牧师。 98、047005 (2007) 。 - K. W. Lee and W. E. Pickett, Phys. Rev. Lett. 93, 237003 (2004).
KW Lee 和 WE Pickett,物理学家。莱特牧师。 93、237003 (2004) 。 - L. Boeri, J. Kortus, and O. K. Andersen, Phys. Rev. Lett. 93, 237002 (2004).
L. Boeri、J. Kortus 和 OK Andersen,物理学家。莱特牧师。 93、237002 (2004) 。 - S. Engelsberg and J. R. Schrieffer, Phys. Rev. 131, 993 (1963).
S. Engelsberg 和 JR Schrieffer,物理学家。修订版131 , 993 (1963) 。 - The spin variable is not shown explicitly since we consider here spin-unpolarized systems. The extension of the present formalism to include spin-dependent electron-phonon interaction does not pose any problems.
自旋变量没有明确显示,因为我们在这里考虑自旋非极化系统。将当前形式主义扩展到包括自旋相关的电子-声子相互作用不会造成任何问题。 - M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390 (1986).
MS Hybertsen 和 SG Louie,物理学家。修订版 B 34 , 5390 (1986) 。 - F. Giustino, M. L. Cohen, and S. G. Louie (unpublished).
F. Giustino、ML Cohen 和 SG Louie(未发表)。 - L. Hedin and S. Lundqvist, in Solid State Physics edited by F. Seitz, D. Turnbull, and H. Ehrenreich (Academic, New York, 1969), p. 1, Vol. 23.
L. Hedin 和 S. Lundqvist, 《固体物理学》 ,由 F. Seitz、D. Turnbull 和 H. Ehrenreich 编辑(学术界,纽约,1969 年),第 17 页。 1,卷。 23 . - P. B. Allen, Phys. Rev. B 6, 2577 (1972).
PB 艾伦,物理学家。修订版 B 6,2577 (1972) 。 - W. L. McMillan, Phys. Rev. 167, 331 (1968).
WL 麦克米兰,物理学家。修订版167 , 331 (1968) 。 - D. Kasinathan, J. Kunes, A. Lazicki, H. Rosner, C. S. Yoo, R. T. Scalettar, and W. E. Pickett, Phys. Rev. Lett. 96, 047004 (2006).
D. Kasinathan、J. Kunes、A. Lazicki、H. Rosner、CS Yoo、RT Scalettar 和 WE Pickett,物理学家。莱特牧师。 96、047004 (2006) 。 - M. Calandra and F. Mauri, Phys. Rev. B 71, 064501 (2005).
M. Calandra 和 F. Mauri,物理学家。修订版 B 71 , 064501 (2005) 。 - M. Lüders, M. A. L. Marques, N. N. Lathiotakis, A. Floris, G. Profeta, L. Fast, A. Continenza, S. Massidda, and E. K. U. Gross, Phys. Rev. B 72, 024545 (2005).
M. Lüders、MAL Marques、NN Lathiotakis、A. Floris、G. Profeta、L. Fast、A. Continenza、S. Massidda 和 EKU Gross, Phys。修订版 B 72 , 024545 (2005) 。 - G. H. Wannier, Phys. Rev. 52, 191 (1937).
GH 万尼尔,物理学家。修订版52 , 191 (1937) 。 - N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997).
N. Marzari 和 D. Vanderbilt,物理学家。修订版 B 56 , 12847 (1997) 。 - R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).
RD King-Smith 和 D. Vanderbilt,物理学家。修订版 B 47 , 1651 (1993) 。 - R. Resta, Rev. Mod. Phys. 66, 899 (1994).
R. Resta, Rev. Mod。物理。 66、899 (1994) 。 - L. He and D. Vanderbilt, Phys. Rev. Lett. 86, 5341 (2001).
L. He 和 D. Vanderbilt,物理学家。修订版莱特。 86、5341 (2001) 。 - I. Souza, N. Marzari, and D. Vanderbilt, Phys. Rev. B 65, 035109 (2001).
I. Souza、N. Marzari 和 D. Vanderbilt,物理学家。修订版B 65 , 035109 (2001) 。 - A. Calzolari, N. Marzari, I. Souza, and M. B. Nardelli, Phys. Rev. B 69, 035108 (2004).
A. Calzolari、N. Marzari、I. Souza 和 MB Nardelli,物理学家。修订版 B 69 , 035108 (2004) 。 - W. Kohn, Phys. Rev. B 7, 2285 (1973).
- F. Giustino and A. Pasquarello, Phys. Rev. Lett. 96, 216403 (2006).
- Since the dynamical matrix is Hermitian, the eigenmodes satisfy the following relation:
.𝐞 𝜈 − 𝐪 𝜅 = [ 𝐞 𝜈 𝐪 𝜅 ] ⋆ - X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997).
- M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, Oxford, England, 1954).
- S. Barišić, J. Labbé, and J. Friedel, Phys. Rev. Lett. 25, 919 (1970); L. Pietronero, S. Strässler, H. R. Zeller, and M. J. Rice, Phys. Rev. B 22, 904 (1980).
- P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
- W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
- J. Ihm, A. Zunger, and M. L. Cohen, J. Phys. C 12, 4409 (1979).
- A. Mostofi, J. R. Yates, N. Marzari, I. Souza, and D. Vanderbilt, http://www.wannier.org/.
- X. Wang, J. R. Yates, I. Souza, and D. Vanderbilt, Phys. Rev. B 74, 195118 (2006).
- J. R. Yates, X. Wang, D. Vanderbilt, and I. Souza, Phys. Rev. B 75, 195121 (2007).
- P. K. Lam and M. L. Cohen, Phys. Rev. B 25, 6139 (1982).
- E. Merzbacher, Quantum Mechanics, 2nd ed. (Wiley, New York, 1970).
- A. A. Maradudin and S. H. Vosko, Rev. Mod. Phys. 40, 1 (1968).
- N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
- D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
- D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
- J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
- M. Fuchs and M. Scheffler, Comput. Phys. Commun. 119, 67 (1999).
- S. Baroni, A. Dal Corso, S. de Gironcoli, P. Giannozzi, C. Cavazzoni, G. Ballabio, S. Scandolo, G. Chiarotti, P. Focher, A. Pasquarello, K. Laasonen, A. Trave, R. Car, N. Marzari, and A. Kokalj, http://www.pwscf.org/.
- M. L. Cohen, Phys. Scr., T T1, 5 (1982).
- M. Methfessel and A. T. Paxton, Phys. Rev. B 40, 3616 (1989).
- M. Hoesch, T. Fukuda, T. Takenouchi, J. P. Sutter, S. Tsutsui, A. Q. R. Baron, M. Nagao, Y. Takano, H. Kawarada, and J. Mizu, Phys. Rev. B 75, 140508 (2007).
- J. Kulda, H. Kainzmaier, D. Strauch, B. Dorner, M. Lorenzen, and M. Krisch, Phys. Rev. B 66, 241202(R) (2002).
- J. Jiang, R. Saito, Ge. G. Samsonidze, S. G. Chou, A. Jorio, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 72, 235408 (2005).
- W. Kohn, Phys. Rev. Lett. 76, 3168 (1996).
- If we assume that a total-energy minimization within a linear-response computer code requires
on a modern supercomputer and consider that B-doped diamond in the virtual crystal approximation has six phonon modes for every point, we would need to peform the calculations, corresponding to approximately and . - T. Yokoya, T. Nakamura, T. Matsushita, T. Muro, Y. Takano, M. Nagao, T. Takenouchi, H. Kawarada, and T. Oguchi, Nature (London) 438, 647 (2005).
- Y. Ma, J. S. Tse, T. Cui, D. D. Klug, L. Zhang, Y. Xie, Y. Niu, and G. Zou, Phys. Rev. B 72, 014306 (2005).
- P. B. Allen and R. C. Dynes, Phys. Rev. B 12, 905 (1975).
- H. J. Xiang, Z. Li, J. Yang, J. G. Hou, and Q. Zhu, Phys. Rev. B 70, 212504 (2004).
- J. Appel and W. Kohn, Phys. Rev. B 4, 2162 (1971).
- P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Material Properties, 2nd ed. (Springer-Verlag, Berlin, 1999).