这是用户在 2024-8-2 1:30 为 https://app.immersivetranslate.com/pdf-pro/6b77e847-d780-4204-9571-7b7f62588262 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
2024_08_01_b711a31adf29c91005e8g

The Design of an Analogue Class-D Audio Amplifier Using Z-Domain Methods
设计使用 Z 域方法的模拟类-D 音频放大器

by 通过

Pieter Stephanus Kemp 皮特·斯蒂芬斯·肯普

Thesis presented in partial fulfilment of the requirements for the degree Master of Science in Engineering at the University of Stellenbosch
提交给斯泰伦博斯大学科学工程硕士学位部分要求的论文
Department of Electrical and Electronic Engineering
电子与信息工程系
University of Stellenbosch
斯坦陵布什大学
Private Bag X1, 7602 Matieland, South Africa
私人信箱 X1,7602 马蒂兰德,南非
Supervisor: Prof H. du T. Mouton
指导教师:胡德图·莫顿教授
Co-supervisor: B. Putzeys
联合导师:B. Putzeys

Declaration 声明

By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification.
通过电子方式提交此论文,我声明其中的全部工作是我自己的原创工作,我是该工作的唯一作者(除非另有明确说明),Stellenbosch 大学的复制和发表不会侵犯任何第三方权利,且我之前并未将其整体或部分提交以获得任何资格。
March 2012 三月 2012 年
Copyright (C) 2012 Stellenbosch University
版权所有 © 2012 斯特伦堡大学
All rights reserved. 版权所有。

Abstract 摘要

The class-D audio power amplifier has found widespread use in both the consumer and professional audio industry for one reason: efficiency. A higher efficiency leads to a smaller and cheaper design, and in the case of mobile devices, a longer battery life.
类-D 音频功率放大器在消费和专业音频行业得到了广泛的应用,原因只有一个:效率。更高的效率导致了更小、更便宜的设计,对于移动设备而言,这意味着更长的电池寿命。
Unfortunately, the basic class-D amplifier has some serious drawbacks. These include high distortion levels, a load dependent frequency response and the potential to radiate EMI.
不幸的是,基本的类-D 放大器有一些严重的缺点。这些包括高失真水平,负载依赖的频率响应和可能辐射 EMI 的风险。

Except for EMI, the aforementioned issues can be mitigated by the proper implementation of global negative feedback. Negative feedback also has the potential to indirectly reduce EMI, since the timing requirements of the output devices can be relaxed.
除了 EMI 外,上述问题可以通过正确实施全球负反馈来缓解。负反馈还有可能间接减少 EMI,因为输出设备的时间要求可以得到放松。
This thesis discusses the design of a clocked analogue controlled pulse-width modulated class-D audio amplifier with global negative feedback. The analogue control loop is converted to the z-domain by modeling the PWM comparator as a sampling operation.
本论文讨论了设计一个带有全球负反馈的时钟控制模拟控制脉冲宽度调制类-D 音频放大器的方案。模拟控制回路通过将 PWM 比较器建模为采样操作转换到 z 域。

A method is implemented that improves clip recovery and ensures stability during over-modulation. Loop gain is shaped to provide a high gain across the audio band, and ripple compensation is implemented to minimize the negative effect of ripple feedback.
实现了一种方法,该方法提高了剪辑恢复性能并确保了在过调制期间的稳定性。通过塑造环路增益来提供音频频带内的高增益,并实施了振铃补偿以最小化振铃反馈的负面影响。

Experimental results are presented.
实验结果呈现如下。

Uittreksel 摘要

Die klas-D klankversterker geniet wydverspreide gebruik in beide die verbruiker en professionele oudio industrie vir een rede: benuttingsgraad. 'n Hoër benuttingsgraad lei tot 'n kleiner en goedkoper ontwerp, en in die geval van draagbare toestelle, tot langer batterylewe.
D 类音频放大器广泛应用于消费和专业音频行业,原因在于其利用率。更高的利用率导致更小、更经济的设计,对于便携式设备而言,这意味着更长的电池寿命。
Ongelukkig het die basiese klas-D klankversterker ernstige tekortkominge, naamlik hoë distorsievlakke, 'n lasafhanklike frekwensierespons en die vermoë om EMI te genereer.
不幸的是,基本的类 D 音频放大器存在严重不足,包括高失真水平、频率响应的依赖性和产生电磁干扰的能力。

Behalwe vir EMI kan hierdie kwessies deur die korrekte toepassing van globale negatiewe terugvoer aangespreek word. Negatiewe terugvoer het ook die potensiaal om EMI indirek te verminder, aangesien die tydvereistes van die skakel stadium verlaag kan word.
为了 EMI,可以通过正确应用全球负反馈来解决这些问题。负反馈还有潜力间接减少 EMI,因为切换阶段的时间要求可以降低。
Hierdie tesis bespreek die ontwerp van 'n geklokte analoog-beheerde pulswydte-modulerende klas-D klankversterker met globale negatiewe terugvoer. Die analoogbeheerlus word omgeskakel na die z-vlak deur die PWM vlakvergelyker as 'n monster operasie te modelleer.
这篇论文讨论了一种全球负反馈控制的脉冲宽度调制类-D 音频放大器的设计,该放大器具有可切换的模拟控制级。模拟控制级通过将 PWM 平面模拟器作为操作放大器模型来切换到 z 平面。

'n Metode word geïmplementeer wat die stabiliteit van die lus verseker tydens oormodulasie. Die lusaanwins word gevorm om 'n hoë aanwins in die oudioband te verseker en riffelkompensasie word geïmplementeer om die negatiewe effek van terugvoerriffel teen te werk.
实施了一种方法,以确保在过模数转换期间环路的稳定性。环路增益形成以确保音频带中的高增益,并实施折返补偿以抵消反馈折返的负面影响。

Eksperimentele resultate word voorgelê.
实验结果被呈现。

Acknowledgements 致谢

The author would like to thank the following people for their contribution towards this project:
作者想感谢以下人员为本项目做出的贡献:
  • God, without whom none of this would be possible.
    没有神,这一切都不可能。
  • Professor Mouton for his guidance and endless humour.
    教授莫顿,感谢他的指导和无尽的幽默感。
  • Bruno Putzeys for his endless insights and eagerness to share his knowledge.
    布鲁诺·普特泽斯对于他的无尽洞察力和分享知识的热情。
  • All my fellow students in the PEG laboratory.
    我们 PEG 实验室的所有同学。
  • My family for their love and support.
    我的家人,因为他们对我的爱和支持。

Contents 目录

Declaration ..... i 声明 ..... i
Abstract ..... ii 摘要... ii
Uittreksel ..... iii 摘要 iii
Acknowledgements ..... iv
致谢 ..... iv

Contents ..... v 内容 ...... v
Nomenclature ..... viii 名词术语 ...... viii
List of Figures ..... x
目录插图 ...... x

List of Tables ..... xiv
目录中的表格......xiv

1 Introduction ..... 1
1 引言 ..... 1

1.1 Background ..... 1
1.1 背景 ..... 1

1.2 Thesis Objectives ..... 4
1.2 论文目标......4

1.3 Thesis Outline ..... 5
1.3 论文大纲 ... 5

2 Literature Review ..... 6
2 文献综述......6

2.1 The Harmonics of Ideal PWM ..... 6
2.1 理想 PWM 的谐波分析......6

2.2 Class-D Distortion Mechanisms ..... 7
2.2 类-D 失真机制......7

2.3 Discrete-Time Modelling of Continuous-Time Pulse-Width Modulator Loops ..... 13
2.3 离散时间建模连续时间脉冲宽度调制回路......13

2.4 Ripple Compensation ..... 17
2.4 溢流补偿......17

2.5 Stabilising a High-Order Modulator Under Overload Conditions ..... 20
2.5 在过载条件下稳定高阶调制器......20

2.6 Contribution to Existing Literature ..... 23
2.6 对现有文献的贡献......23

3 Output Stage Design ..... 25
3 输出阶段设计......25

3.1 Introduction ..... 25
3.1 引言 ..... 25

3.2 Overview ..... 25
3.2 概览......25

3.3 Gate Drive Circuitry ..... 27
3.3 门驱动电路......27

3.4 MOSFET Power Loss ..... 33
3.4 MOSFET 功率损耗 ..... 33

3.5 Heat-sink Design ..... 38
3.5 散热器设计 ..... 38

3.6 Snubber Design ..... 38
3.6 阻尼器设计......38

3.7 Demodulation Filter ..... 39
3.7 解调滤波器......39

3.8 Circuit Board Layout ..... 41
3.8 电路板布局......41

3.9 Adjustments ..... 42
3.9 调整......42

3.10 Open Loop Measurements ..... 44
3.10 开环测量......44

3.11 Summary ..... 48
3.11 总结......48

4 Carrier Generator ..... 50
4 信道生成器......50

4.1 Introduction ..... 50
4.1 引言 ..... 50

4.2 FPGA ..... 51
4.2 FPGA...... 51

4.3 DAC ..... 51
4.4 Power Distribution ..... 54
4.4 电源分配......54

4.5 Carrier Data Generation ..... 54
4.5 承载数据生成......54

4.6 Measurements ..... 55
4.6 测量......55

4.7 Summary ..... 55
4.7 总结......55

5 Developing the Control Loop Topology ..... 57
5 发展控制环路拓扑结构......57

5.1 Introduction ..... 57
5.1 引言 ..... 57

5.2 Building Blocks ..... 58
5.2 构建模块......58

5.3 The Complete Continuous-Time Control Loop ..... 62
5.3 完整的连续时间控制回路......62

5.4 Summary ..... 62
5.4 总结......62

6 Conversion to the Z-Domain ..... 64
6 转换至 Z 域......64

6.1 Introduction ..... 64
6.1 引言 ..... 64

6.2 The Impulse Invariant Transform ..... 64
6.2 冲击不变变换 .... 64

6.3 Calculating the Comparator Gain ..... 66
6.3 计算比较器增益......66

6.4 Embedding the Discrete-Time Comparator Model in the Control Loop ..... 69
6.4 在控制回路中嵌入离散时间比较器模型......69

6.5 Summary ..... 71
6.5 总结......71

7 Control Loop Design ..... 72
7 控制回路设计 ..... 72

7.1 Introduction ..... 72
7.1 引言 ..... 72

7.2 The Load and its Effect on Stability ..... 72
7.2 负载及其对稳定性的影响 ..... 72

7.3 Design Strategy ..... 75
设计策略......75

7.4 Selecting the Switching Frequency ..... 77
选择切换频率......77

7.5 The Optimal Loop ..... 77
7.5 最优循环......77

7.6 Estimation Filter ..... 81
7.6 估计滤波器......81

7.7 Scaling the Loop Filter Output Level ..... 82
7.7 调整环路滤波器输出级别......82

7.8 Analysis of the Control Loop Design ..... 84
7.8 控制回路设计的分析......84

7.9 Carrier Pre-Filter Transfer Function ..... 88
7.9 承载预滤器传输函数......88

7.10 Miscellaneous ..... 89
7.10 其他......89

7.11 Summary ..... 91
7.11 总结......91

8 Simulations ..... 92
8 模拟......92

8.1 Introduction ..... 92
8.1 引言 ..... 92

8.2 Simulink ..... 92
8.2 Simulink...... 92

8.3 SPICE ..... 95
8.4 Summary ..... 95
8.4 总结......95

9 Measurements ..... 97
9 测量......97

9.1 Introduction ..... 97
9.1 引言 ..... 97

9.2 Clipping Behaviour ..... 97
9.2 剪辑行为......97

9.3 Distortion ..... 97
9.3 扭曲......97

9.4 Spectral Analysis ..... 100
9.4 光谱分析......100

9.5 Frequency Response ..... 102
9.5 频率响应......102

9.6 Output Impedance ..... 104
9.6 输出阻抗......104

9.7 Power Supply Rejection Ratio ..... 105
9.7 电源拒绝比率......105

9.8 The Effect of Ripple Compensation ..... 106
9.8 滚动补偿的影响......106

9.9 Efficiency ..... 108
9.9 效率 ..... 108

9.10 Summary ..... 109
9.10 总结......109

10 Conclusions ..... 111
结论 10 ... 111

10.1 Overview ..... 111
10.1 概览 ..... 111

10.2 Improvements and Future Work ..... 112
10.2 改进和未来工作......112

10.3 General Conclusions ..... 113
10.3 总结 .... 113

Bibliography ..... 114 参考文献 ..... 114
Appendices ..... 118 附录 ..... 118
A Complete Circuit Schematics ..... 119
完整电路原理图......119

Nomenclature  术语

Variables 变量 sawtooth carrier amplitude
锯齿形载体幅度
switching frequency  切换频率 comparator gain  比较器增益 (amplitude) modulation index
幅度调制指数
frequency modulation index
频率调制指数
loop propagation delay
循环传播延迟
dead time  死时间 half-bridge power supply rail voltage
半桥式电源轨电压

Abbreviations 缩写
alternating current  交流电
DAC digital to analogue converter
DAC 数字到模拟转换器
DC direct current 直流电
EMI electromagnetic interference
EMI 电磁干扰
ETF error transfer function
ETF 误差转移函数
FFT fast Fourier transform
快速傅里叶变换
FPGA field-programmable gate array
FPGA 可编程门阵列
I/O input/output 输入/输出
LUT lookup table 查找表 LUT
MOSFET metal-oxide-semiconductor field-effect transistor
MOSFET 金属氧化物半导体场效应晶体管
NSPWM naturally sampled pulse-width modulation
自然采样脉冲宽度调制
NSSSPWM naturally sampled single-sided pulse-width modulation
NSSSPWM 自然采样单边脉冲宽度调制
PAE pulse amplitude error
PAE 脉冲幅度误差
PCB printed circuit board
PCB 印刷电路板
PLL phase-locked loop PLL 频率锁定环
PSRR power supply rejection ratio
PSRR 电源抑制比
PTE pulse timing error
PTE 脉冲定时误差
PWM pulse-width modulation/modulator
PWM 脉冲宽度调制/调制器
RMS root mean square
RMS 根均方
STF signal transfer function
STF 信号传输函数
THD total harmonic distortion
总谐波失真

Clarification of Terms 术语澄清

ETF The error transfer function is normally defined as the transfer function from the error source to the point directly after the error source. However, in this thesis the error transfer function is defined as the transfer function from the error source to the amplifier output.
ETF 错误转移函数通常定义为从错误源到错误源直接之后的点的转移函数。然而,在本论文中,错误转移函数定义为从错误源到放大器输出的转移函数。
Linear The term linear as used in this thesis may refer to three different concepts. Firstly, it may refer to the linearity of a system or process. A linear system is one that mathematically satisfies the superposition principle. In this sense PWM, for example, is non-linear.
线性 在本论文中使用的“线性”一词可能指三个不同的概念。首先,它可能指的是系统或过程的线性。线性系统是指在数学上满足叠加原理的系统。在这种意义上,例如 PWM 是非线性的。

Secondly, linear may refer to the "linear" operating region of a device. Thirdly, it may refer to something that is distortion free. The context in which the word is used should make its meaning self-explanatory.
其次,“线性”可能指的是设备的“线性”操作区域。第三,“线性”也可能指的是无失真现象。根据上下文,这个词的意思应该是显而易见的。

List of Figures 图目录

1.1 Basic class-D operation. ..... 2
1.1 基本的类-D 操作。...... 2

1.2 NSPWM waveforms for the converter of Figure 1.1. ..... 2
1.2 NSPWM 波形图 1.1 所示转换器的... 2

2.1 Calculated magnitude spectrum of ideal NSSSPWM. ..... 7
2.1 理想 NSSSPWM 的理想幅度谱......7

2.2 Simplified half-bridge inverter with current-source load. ..... 8
2.2 简化的一半桥式逆变器,带有电流源负载。..... 8

2.3 The effect of dead time on converter waveforms ..... 9
2.3 死时间对转换器波形的影响......9

2.4 Simplified half-bridge converter. ..... 11
2.4 简化的一半桥转换器. ..... 11

2.5 Idealised inductor and supply current waveforms. ..... 12
2.5 理想化电感器和电源电流波形。...... 12

2.6 Small-signal comparator model [1]. ..... 14
2.6 小信号比较器模型 [1]. ..... 14

2.7 Comparator waveforms [1]. ..... 14
2.7 比较器波形 [1] ..... 14

2.8 Comparator model embedded in a feedback loop. ..... 15
2.8 在反馈回路中嵌入比较器模型。...... 15

2.9 Discrete-time comparator model embedded in a feedback loop. ..... 15
2.9 离散时间比较器模型嵌入反馈回路中。...... 15

2.10 Simple PWM feedback loop with ripple compensation [2]. ..... 17
2.10 简单的 PWM 反馈回路,带有纹波补偿 [2] ..... 17

2.11 Ripple compensation waveforms for a first-order loop [2]. ..... 18
2.11 第一阶回路的 Ripple 补偿波形 [2] ..... 18

2.12 Three equivalent implementations of the ripple compensation technique. ..... 19
2.12 三种等效的移相补偿技术实现方法。...... 19

2.13 Generic output stage embedded in a feedback loop. ..... 21
2.13 通用输出阶段嵌入在反馈循环中。...... 21

2.14 Modified control loop with deviation detection filter. ..... 21
修改后的控制回路,带有偏差检测滤波器。......21

2.15 Output stage with passive lead network. ..... 22
2.15 输出阶段,被动负载网络。..... 22

2.16 Transistor-based loop filter saturation circuit. ..... 23
2.16 晶体管为基础的环路滤波器饱和电路。..... 23

3.1 Half-bridge topology. ..... 26
3.1 半桥拓扑结构. ..... 26

3.2 IRS20957S gate driver implementation. ..... 28
3.2 IRS20957S 门驱动器实现。...... 28

3.3 Low-side supply ..... 30
3.3 低侧 供电...... 30

3.4 IRFI4019H-117P gate charge versus gate-to-source voltage [3]. ..... 32
3.4 IRFI4019H-117P 栅极电荷与栅极-源极电压[3]......32

3.5 IRFI4019H-117P floating input voltage supply [3]. ..... 34
3.5 IRFI4019H-117P 浮输入电压供电 [3] ..... 34

3.6 Current through MOSFET with a sinusoidal current source as load. ..... 34
3.6 MOSFET 0#下的电流,作为负载的正弦波电流源。......34

3.7 Square of the current through MOSFET with a sinusoidal current source
3.7 MOSFET 通过正弦波电流源的电流的平方

as load. ..... 35
作为负载。......35

3.8 Current through MOSFET with a sinusoidal current source as load. ..... 36
3.8 MOSFET 在带有正弦电流源作为负载的情况下通过电流 。...... 36

3.9 Idealised MOSFET switching waveforms. ..... 36
3.9 理想化 MOSFET 开关波形。..... 36

LIST OF FIGURES ..... xi
目录插图 ...... xi

3.10 Calculated frequency response of the ideal demodulation filter. ..... 41
3.10 理想解调滤波器的计算频率响应。......41

3.11 Top layer of PCB. ..... 42
3.11 PCB 的顶层......42

3.12 Bottom layer of PCB. ..... 42
3.12 PCB 的底层......42

3.13 Calculated input impedance and magnitude response of the demodulation filter. ..... 44
3.13 计算了解调滤波器的输入阻抗和幅度响应。...... 44

3.14 Calculated demodulation filter input current ..... 44
3.14 计算解调滤波器输入电流......44

3.15 Oscilloscope measurement of the amplifier output signal. ..... 45
3.15 频率响应测量:放大器输出信号。......45

3.16 Oscilloscope measurement of switching node voltage with and without RC
3.16 无源 RC 时的示波器测量开关节点电压

snubber ..... 46 箝位器 ..... 46
3.17 Open loop THD+N versus output power ..... 47
3.17 开环 THD+N 与输出功率......47

3.18 FFT of distortion residue with 100 mW into . ..... 47
3.18 FFT of 100 mW distortion residue at . ..... 47

3.19 Open loop THD +N versus frequency for 10 W into and ..... 48
3.19 开环 THD+N 与频率的关系,功率为 10W,对应 ......48

3.20 Measured open loop frequency response for various output loads ..... 49
3.20 测量的开环频率响应对于各种输出负载......49

4.1 Block-diagram of the FPGA-based carrier generator. ..... 50
4.1 FPGA 基础的载波生成器的块图。......50

4.2 DAC output filter and buffer. ..... 52
4.2 DAC 输出滤波器和缓冲器......52

4.3 Filtered sawtooth signal for a 5th order Bessel and Butterworth filter ..... 53
4.3 五阶贝塞尔和巴特沃斯滤波器的过滤锯齿波信号......53

4.4 Frequency response of the DAC output filter. ..... 53
4.4 DAC 输出滤波器的频率响应。......53

4.5 Power distribution of the carrier generator board. ..... 54
4.5 载波生成板的功率分配. ..... 54

4.6 Measured carrier generator output for a sawtooth waveform. . ..... 56
4.6 测量锯齿波形的载波生成器输出。 . ..... 56

4.7 Measured carrier generator output for a sawtooth waveform. . ..... 56
4.7 测量锯齿波形的载波生成器输出。 . ..... 56

5.1 Basic control loop structure. ..... 57
5.1 基本控制回路结构. ..... 57

5.2 Shunt voltage feedback op-amp circuit and its balanced equivalent. ..... 58
5.2 并联电压反馈运算放大器电路及其平衡等效。......58

5.3 Output stage with passive lead compensation. ..... 58
5.3 输出阶段,带有被动负载补偿。......58

5.4 Control system block-diagram of output stage with passive compensation. ..... 59
5.4 输出阶段带有被动补偿的控制系统方块图。......59

5.5 Third-order integrating loop filter with local feedback and feed-forward sum-
第三级积分环路滤波器,带有局部反馈和前馈求和

mation. ..... 60 信息。......60
5.6 Single op-amp third-order integrating loop filter. ..... 60
5.6 单运放三级积分环路滤波器。......60

5.7 Control system block diagram of single op-amp third-order integrating loop
5.7 单运放第三阶积分环的控制系统的方块图

filter. ..... 61 过滤器。......61
5.8 Complete control system diagram ..... 62
5.8 完整的控制系统图 ..... 62

6.1 Block diagram illustration of the impulse invariant method ..... 64
6.1 冲击不变方法的块图说明 ..... 64

6.2 Continuous-time and discrete-time impulse responses. ..... 65
6.2 连续时间和离散时间的脉冲响应。..... 65

6.3 Block diagram for comparator gain calculation. ..... 67
6.3 比较器增益计算的块图. ..... 67

6.4 Continuous-time inner loop. ..... 69
6.4 连续时间内部循环。......69

6.5 Inner loop with sampling comparator model. ..... 69
6.5 内循环与采样比较器模型。..... 69

6.6 Continuous-time complete loop. ..... 70
6.6 连续时间完整环路. ..... 70

6.7 Complete loop with sampling comparator model ..... 70
6.7 完成采样比较器模型闭环......70

7.1 Simplified equivalent circuit of a moving-coil transducer. ..... 73
7.1 简化型动圈式转换器的电路图. ..... 73

7.2 Calculated impedance of the simplified loudspeaker and the first-order approx-
7.2 简化扬声器和一阶近似的计算阻抗

imation. ..... 74 信息。......74
7.3 Calculated demodulation filter transfer function. ..... 75
7.3 计算调制解调滤波器传输函数。......75

7.4 Output stage with single pole passive lead compensation ..... 78
7.4 输出阶段,单极被动领先补偿......78

7.5 Single op-amp third-order integrating loop filter. ..... 80
7.5 单运放第三阶积分环路滤波器。..... 80

7.6 Estimation filter stage circuit. ..... 81
7.6 估计滤波器阶段电路。...... 81

7.7 Calculated closed-loop transfer function of the inner loop. ..... 82
7.7 计算内部回路的闭环传递函数 ....... 82

7.8 General control system with estimation filter. ..... 82
7.8 一般控制系统与估计滤波器......82

7.9 Root locus of the inner control loop with an output load of . ..... 84
7.9 内部控制环路的根轨迹,输出负载为 ......84

7.10 Root locus of complete control loop with an output load of . ..... 85
7.10 完整控制回路在输出负载为 时的根轨迹.....85

7.11 Bode plot of for a and a propagation delay of ..... 85
7.11 Bode 图对于 和传播延迟 ......85

7.12 Bode plot of for a and a propagation delay of
7.12 Bode 图表示 和传播延迟下的值

. ..... 86
7.13 Gain margin and phase margin versus propagation delay for different loads ..... 86
7.13 不同负载下的增益裕度和相位裕度与传播延迟的关系......86

7.14 Calculated magnitude versus frequency of and for an
7.14 计算的幅度与频率对于

load. ..... 87 载荷。......87
7.15 Calculated closed-loop transfer function of the complete loop. ..... 88
7.15 计算完整闭环的闭环传递函数 ....... 88

7.16 Open-loop frequency response of the OPA1611 op-amp, and transfer functions
7.16 OPA1611 运算放大器的开环频率响应及其传输函数

and ..... 88
..... 88

7.17 The LM306 comparator circuit ..... 90
7.17 LM306 比较器电路......90

7.18 Transistor-based loop filter saturation circuit. ..... 90
7.18 由晶体管为基础的回路滤波器饱和电路。..... 90

8.1 Magnitude spectrum of simulated amplifier output with only the inner loop
8.1 模拟放大器内部回路输出的幅度谱

active and with both loops active. ..... 93
活跃的,且两个循环都处于激活状态。......93

8.2 Magnitude spectrum of simulated amplifier output without ripple compensa-
8.2 模拟放大器输出无纹波补偿后的幅度谱

tion with only the inner loop active and with both loops active. ..... 93
与仅内循环激活和两个循环都激活的情况。......93

8.3 Simulated comparator gain with and without ripple compensation. ..... 94
8.3 模拟比较器增益,有和无纹波补偿。......94

8.4 Simulated comparator input reference signal without ripple compensation and
8.4 仿真比较器输入参考信号无纹波补偿

with ripple compensation. ..... 94
带有涟漪补偿。......94

8.5 Spice simulation of amplifier output and outer loop filter output during over-
8.5 超载情况下放大器输出和外环滤波器输出的香料模拟

modulation for . ..... 95
调制对于 ... 95

8.6 Spice simulation of amplifier output and outer loop filter output during over-
8.6 超载情况下放大器输出和外环滤波器输出的香料模拟

modulation for . ..... 96
调制对于 ......96

9.1 Oscilloscope measurements of the output of the amplifier and the output of
9.1 示波器测量放大器输出和放大器输出

the outer loop filter for . ..... 98
外循环滤波器对于 . ..... 98

9.2 Measured THD+N versus output power at 1 kHz . ..... 99
9.2 测量的 THD+N 与 1 kHz 时的输出功率......99

LIST OF FIGURES ..... xiii
插图列表 ..... xiii

9.3 Measured THD +N versus frequency at 10 W . ..... 100
9.3 测量的 THD+N 随频率变化在 10W 时......100

9.4 FFT of the open loop distortion residue with 10 W at 1 kHz into . ..... 101
9.4 开环失真残留的 FFT,1kHz 处输入 10W, . ..... 101

9.5 FFT of the distortion residue with the inner loop active with 10 W at 1 kHz
9.5 内环激活时,1 kHz 处 10 瓦的失真残留的 FFT

into . ..... 101
输入 . ..... 101

9.6 FFT of the distortion residue with both loops active with 10 W at 1 kHz into
9.6 带两个环路激活时,10 W 在 1 kHz 时的失真残留的 FFT

. ..... 102
9.7 Normalised FFT of the amplifier output with 18 kHz and 20 kHz input tones. ..... 103
9.7 正常化的 FFT 放大器输出,针对 18 kHz 和 20 kHz 输入音调。...... 103

9.8 Measured closed loop frequency response of the inner loop. ..... 103
9.8 内环的测量闭环频率响应。......103

9.9 Measured closed loop frequency response of the complete control loop. ..... 104
9.9 完整控制回路的测量闭环频率响应。......104

9.10 Output impedance measurement setup ..... 105
9.10 输出阻抗测量设置......105

9.11 Measured output impedance for PS1 and PS2. ..... 105
9.11 PS1 和 PS2 的测量输出阻抗......105

9.12 PSRR measurement setup. ..... 106
9.12 PSRR 测量设置。...... 106

9.13 Measured PSRR as a function of frequency. ..... 107
9.13 测量的 PSRR 作为频率的函数。...... 107

9.14 Measured THD+N versus frequency of PS1 different values of . ..... 108
9.14 测量的 THD+N 与 PS1 的不同值的频率......108

9.15 Measured THD +N versus frequency of PS2 for different values of . ..... 108
9.15 测量的 THD+N 与 PS2 的频率之间的关系,对于不同的 值......108

9.16 Measured THD +N versus frequency of PS 1 at 10 W with and
9.16 测量的 THD+N 与 PS 1 在 10W 功率下的频率关系,使用

..... 109
9.17 FFT of the distortion residue of PS1 with 10 W at 1 kHz into for
9.17 FFT 分析在 1 kHz 频率下,PS1 在 10 W 功率下的失真残留进入 的结果。

..... 109
A. 1 Output stage schematic. ..... 120
A. 1 输出阶段示意图。......120

A. 2 Control stage schematic (part one) ..... 121
A. 第二控制阶段示意图(一)......121

A. 3 Control stage schematic (part two) ..... 122
A. 3 控制阶段示意图(第二部分)......122

A. 4 FPGA carrier generator schematic (part one). ..... 123
A. 4 FPGA 载体生成器原理图(第一部分)......123

A. 5 FPGA carrier generator schematic (part two). ..... 124
A. 5 FPGA 载体生成器原理图(第二部分)......124

A. 6 FPGA carrier generator schematic (part three). ..... 125
A. 6 FPGA 载体生成器原理图(第三部分)......125

A. 7 FPGA carrier generator schematic (part four) ..... 126
A. 第四部分 7 FPGA 承载生成器原理图 ..... 126

List of Tables 目录中的表格

3.1 IRFI4019H-117P characteristic values [3] ..... 27
3.1 IRFI4019H-117P 特性值 [3] ..... 27

3.2 Gate driver characteristic values [4]. ..... 28
3.2 门驱动特性值 [4]. ..... 28

3.3 Circuit and MOSFET parameter values. ..... 37
3.3 电路和 MOSFET 参数值。...... 37

4.1 Component values for the DAC post-filter and buffer. ..... 52
4.1 DAC 后滤波器和缓冲器的组件值......52

7.1 Component values for loudspeaker equivalent circuit. ..... 74
7.1 扬声器等效电路的元件值。..... 74

7.2 Optimisation constraints. ..... 77
7.2 最优化约束. ..... 77

7.3 Inner loop component and parameter values. ..... 79
7.3 内循环组件和参数值。...... 79

7.4 Complete loop component and parameter values. ..... 80
7.4 完成循环组件和参数值。......80

Chapter 1 第一章

Introduction 引言

1.1 Background 1.1 背景

A class-D audio amplifier is an amplifier in which the power devices are, ideally, either fully on or fully of at any given time.
类-D 音频放大器是在其中,理想情况下,功率器件在任何给定时间要么完全开启要么完全关闭的放大器。

No power is dissipated in the ideal class-D power stage, since the output devices never have a current through and a voltage across them at the same time.
理想类-D 功率阶段中,没有任何能量被消耗,因为输出设备在同一时间既没有电流通过,也没有电压作用于其上。

This is in contrast to class-A, class-B and other linear amplifier topologies where there is a current through and a voltage across the output devices for significant periods of time.
这与 A 类、B 类和其他线性放大器拓扑结构形成对比,在这些结构中,输出设备在相当长的时间内有电流通过和电压存在。

Consequently, the efficiency of class-D amplifiers is superior to that of conventional linear amplifiers.
因此,D 类放大器的效率高于传统线性放大器。
In its simplest form a class-D amplifier is similar to a DC to AC converter. Figure 1.1 illustrates the basic principle for a half-bridge converter.
在最简单的形式中,类-D 放大器类似于直流到交流转换器。图 1.1 说明了半桥转换器的基本原理。

The MOSFET switches are switched complementary and the gate-signals of the switches are generated through pulse-width modulation (PWM).
MOSFET 开关是互补切换的,开关的门信号通过脉冲宽度调制(PWM)生成。

The simplest way to generate the PWM signal is by comparing a low-frequency reference signal to a high-frequency carrier waveform, typically a sawtooth or triangle wave.
生成 PWM 信号最简单的方法是将一个低频参考信号与一个高频载波波形,通常是锯齿波或三角波进行比较。

This is called naturally sampled PWM (NSPWM), since the switching transition occurs at the natural intersection of the reference and carrier waveforms. Figure 1.2 shows the waveforms associated with NSPWM for a sawtooth carrier and a sinusoidal reference signal . The amplitude of the carrier and the reference signal is and , respectively. The amplitude modulation index, normally referred to as just the modulation index, is defined as the ratio between the reference and carrier amplitude, or
这称为自然采样 PWM(NSPWM),因为开关转换发生在参考波形和载波波形的自然交点处。图 1.2 展示了 NSPWM 与 0#锯齿波载波和 1#正弦参考信号相关的波形。载波和参考信号的幅度分别为 。幅度调制指数,通常简称为调制指数,定义为参考信号和载波幅度之间的比率,或
The frequency of the carrier is also the switching frequency, denoted by . The ratio between the reference signal frequency and the carrier frequency is the frequency modulation index, or
载波的频率也是开关频率,表示为 。参考信号频率 与载波频率 之间的比率是频率调制指数,或者
The amplified PWM waveform contains an amplified version of the reference waveform (assuming ) as well as components at harmonics of the switching frequency and their associated side-bands [5]. The high-frequency components are removed from the signal by a demodulation filter, which is typically a passive LC low-pass filter.
放大 PWM 波形 包含参考波形(假设 )的放大版本,以及开关频率的谐波及其相关的旁瓣[5]。通过通常的被动 LC 低通滤波器,高频成分从信号 中被移除。
The DC to AC inverter becomes an audio power amplifier when the sinusoidal reference is replaced by an audio signal. Both the modulation index and the frequency modulation index now varies with time.
直流到交流逆变器在将正弦波参考替换为音频信号时成为音频功率放大器。此时,调制度 和频率调制度 都随时间变化。

The switching frequency is chosen significantly higher than the maximum expected audio frequency (generally 20 kHz ) in order to minimise the magnitude of the carrier side-bands in the audio band and to allow proper attenuation of the high-frequency components by the filter.
切换频率被选择得远高于预期的最大音频频率(通常为 20 kHz),以最小化音频带内的载波旁瓣的幅度,并允许滤波器适当地衰减高频成分。
Figure 1.1: Basic class-D operation.
图 1.1:基本的类-D 操作。
Figure 1.2: NSPWM waveforms for the converter of Figure 1.1.
图 1.2:图 1.1 所示转换器的 NSPWM 波形。
Unfortunately, the basic class-D topology has some drawbacks. The basic class-D amplifier suffers from the following ailments that degrade sonic performance:
遗憾的是,基本的类-D 拓扑结构存在一些缺点。基本的类-D 放大器在声学性能方面存在以下问题:
  • Pulse timing errors (PTEs) and pulse amplitude errors (PAEs) due to non-ideal switching behaviour. This leads to distortion of the output signal.
    脉冲定时误差(PTEs)和脉冲幅度误差(PAEs)由于非理想开关行为导致。这导致输出信号的失真。
  • The amplitude of the output signal is modulated by the power supply. Hence power supply rejection is essentially zero.
    输出信号的幅度由电源调节,因此电源拒绝率基本上为零。
  • The frequency response of the demodulation filter is load dependent and the demodulation filter also contributes to distortion.
    解调滤波器的频率响应依赖于负载,且解调滤波器也对失真有所贡献。
The distortion in a class-D power stage is usually dominated by the non-linear PTE caused by dead time [5], which is required to prevent cross-conduction of the switching devices.
类-D 功率阶段中的失真通常由死时间[5]引起,死时间是为防止开关设备交叉导通而必需的,这种非线性 PTE 导致的失真。

Decreasing the dead time results in lower distortion, but decreases the efficiency due to increased shoot-through currents.
减少死时间导致失真降低,但因增加射穿电流而导致效率下降。
A class-D amplifier also has the potential to generate significant electromagnetic interference (EMI) due to the high rate of change of voltages and currents in the power switching stage.
类-D 放大器也有可能因功率开关阶段电压和电流变化率高而导致产生显著的电磁干扰(EMI)。

Radiated EMI can be reduced by reducing the switching speed of the power switches, but this in turn increases PTE related distortion.
辐射电磁干扰可以通过降低电源开关的切换速度来减少,但这反过来又会增加与 PTE 相关的失真。
The only way to effectively address all of the problems associated with a class-D power stage is through the implementation of global feedback error control.
要有效地解决与类-D 功率阶段相关的所有问题,唯一的方法是通过实施全局反馈误差控制。

If properly implemented, global negative feedback will mitigate power stage and output filter errors, improve power supply rejection and ensure a less load dependent frequency response.
如果正确实施,全球负反馈将减轻功率阶段和输出滤波器的误差,提高电源拒绝率并确保频率响应较少依赖于负载。

When feedback is applied we can tolerate a higher level of open loop distortion and consequently lower the switching speeds to reduce EMI. Furthermore, we can allow a longer dead time and thereby increase efficiency.
当提供反馈时,我们可以容忍更高的开环失真水平,从而降低开关速度以减少 EMI。此外,我们可以允许更长的死时间,从而提高效率。
It should be noted, however, that closing a feedback loop around a pulse-width modulator is not without its problems. The comparator behaves like a sampling operation [1] and high-frequency components that are fed back through the loop can alias into the audio band.
然而,需要注意的是,围绕脉冲宽度调制器关闭反馈回路并非没有问题。比较器行为类似于采样操作[1],并通过回路反馈的高频成分可以混叠到音频带内。

This has been a topic of much research and recently several techniques to mitigate this effect have emerged .
这一直是研究的热点话题,最近已经出现了几种减轻这种影响的技术。
Closing a feedback loop around the output stage opens the door to another PWM scheme, which is self-oscillating modulation. A self-oscillating amplifier generates its own carrier by operating in a limit cycle [1]. This obviates the need for external carrier generator circuitry.
关闭反馈循环的输出阶段,打开了另一种 PWM 方案的大门,即自振荡调制。自振荡放大器通过在极限环中运行来生成自己的载波[1]。这消除了对外部载波生成电路的需求。

However, the switching frequency of a self-oscillating amplifier is a function of modulation index. In multichannel audio systems the difference in switching frequency between channels can lead to audible beat tones.
然而,自激放大器的切换频率是调制指数的函数。在多声道音频系统中,不同声道之间的切换频率差异可能导致可听的拍频音。
At this point we should make a distinction between digital and analogue with regard to class-D amplifiers. Class-D amplifiers are sometimes referred to as digital amplifiers.
到此为止,我们应该在类-D 放大器方面区分数字和模拟。有时类-D 放大器被称为数字放大器。
This term can be misleading since the power amplifier itself, consisting of the switching stage and demodulation filter, is inherently analogue and is delivering an analogue signal to the loudspeaker.
这个术语可能会误导人,因为它本身是由开关阶段和解调滤波器组成的功率放大器,本质上是模拟的,并向扬声器提供模拟信号。

We can make a distinction between analogue controlled and digitally controlled class-D amplifiers. In a digitally controlled class-D amplifier the gate signals of the switches are generated digitally.
我们可以将模拟控制和数字控制的类 D 放大器区分开。在数字控制的类 D 放大器中,开关的门信号是通过数字方式生成的。

Note that a digitally controlled class-D amplifier also suffers from all the non-idealities mentioned earlier, and as such will benefit greatly from global feedback.
请注意,数字控制的 D 类放大器也遭受之前提到的所有非理想性,因此将大大受益于全局反馈。

Global feedback can be implemented in a digitally controlled class-D amplifier through analogue-to-digital conversion of the amplifier output voltage.
全球反馈可以通过数字控制的类-D 放大器的输出电压的模数转换来实现。

Such a design can achieve very good performance, but performance is limited by the analogueto-digital converter in the feedback path [2].
这样的设计可以实现非常好的性能,但性能受到反馈路径中的模数转换器的限制 [2]。

1.2 Thesis Objectives 1.2 论文目标

The objective of this thesis is to design, simulate, build and measure a high-performance, analogue controlled, clocked (ie. not self-oscillating), class-D amplifier. This is a fairly general statement, but the following is specifically required:
本论文的目标是设计、模拟、构建并测量一个高性能、模拟控制、时钟驱动(即非自激振荡)的类 D 放大器。这是一个相当通用的陈述,但以下内容是具体要求:
  • The design should make use of discrete-time modelling techniques.
    设计应利用离散时间建模技术。
  • The possibility should be investigated of adapting the method documented in [10] to stabilise a high-order loop during over-modulation for self-oscillating modulators, to clocked modulators.
    应调查将文献[10]中记录的方法调整以适应在过调制期间稳定高阶环路,对于自振荡调制器和时钟调制器,的可能性。
  • The ripple compensation technique described in [2] should be implemented.
    [2] 中描述的涟漪补偿技术应该被实现。
In addition to the above, the measured results must be compared to theoretical expectations. In this context, high-performance refers to the audio performance of the amplifier and not the efficiency or EMI performance.
除了上述内容外,测量结果必须与理论预期进行比较。在此背景下,高性能指的是放大器的音频性能,而不是效率或电磁兼容性。

The primary research focus is on the control method and not the power converter itself.
主要研究重点是控制方法,而不是功率转换器本身。

Note that the performance of the control method is evaluated based on its ability to improve the performance of the amplifier compared to open loop class-D operation, and not on the absolute value of the closed-loop performance measurements.
请注意,控制方法的性能评估基于其相对于开环类-D 操作提高放大器性能的能力,而不是闭环性能测量的绝对值。
That being said, we would like the closed-loop amplifier to compare favourably with a high-performance linear amplifier. The following performance targets are set for the closed-loop amplifier:
既然如此,我们希望闭环放大器能够与高性能线性放大器相媲美。对于闭环放大器,我们设定了以下性能目标:
  • Total harmonic distortion and noise (THD +N in the audio band, and not increasing significantly with frequency inside the audio band.
    音频带内总谐波失真和噪声(THD +N ,并且在音频带内频率增加时不会显著增加。
  • Frequency response flat to within 0.1 dB in the audio band.
    音频带内频率响应平坦至 0.1 dB。
  • Output impedance in the audio band.
    音频带宽下的输出阻抗

1.3 Thesis Outline 1.3 论文大纲

Chapter 2 discusses the literature that forms the foundation for the remainder of the thesis. This includes, among other topics, the discrete-time modelling of continuous-time PWM loops and ripple compensation.
第二章讨论了构成论文其余部分基础的文献。这包括但不限于离散时间建模连续时间 PWM 环路和纹波补偿等主题。
Chapter 3 covers the design of the class-D output stage, which includes the power switching stage and associated circuitry, and the demodulation filter. Measurements of the open loop class-D amplifier are presented.
第三章涵盖了类-D 输出级的设计,包括功率开关阶段和相关电路,以及解调滤波器。展示了开环类-D 放大器的测量结果。
Chapter 4 discusses the design of an FPGA-based carrier generator. Carrier data is generated off-line and stored in a lookup table in the FPGA. The data is then clocked to a high-speed digital-to-analogue converter.
第四章讨论了基于 FPGA 的载波生成器的设计。载波数据在离线状态下生成,并存储在 FPGA 中的查找表中。然后将数据时钟到高速数字到模拟转换器。
Chapter 5 concerns the development of the control loop topology. The analogue circuitry that is required to implement the control loop is discussed and the complete continuous-time loop is presented.
第五章讨论了控制环路拓扑的发展。实现了控制环路所需的模拟电路进行了讨论,并呈现了完整的连续时间环路。
In Chapter 6 the continuous-time control loop developed in Chapter 5 is converted to the z-domain through the impulse invariant transform. An expression fot the equivalent gain of the comparator is derived by means of Fourier series. Important transfer functions are presented.
第 6 章中,通过脉冲不变变换,将第 5 章中开发的连续时间控制回路转换到 z 域。通过傅里叶级数推导出比较器等效增益的表达式。重要传输函数被呈现。
Chapter 7 covers the detail design of the control loop. The load that the loudspeaker presents to the amplifier, and its effect on stability, is investigated. A control loop is designed that provides at least 50.8 dB rejection of output stage errors in the audio band.
第七章详细介绍了控制回路的设计。探讨了扬声器对放大器的负载及其对稳定性的影响。设计了一个控制回路,该回路在音频频带内至少可以抵消输出级错误 50.8 dB。
It should be noted that Chapter 5, Chapter 6 and Chapter 7 are very closely knit and essentially form one unit.
应指出,第五章、第六章和第七章内容紧密相连,本质上形成一个整体。
Chapter 8 presents simulation results of the control loop that is designed in the preceding chapters. The simulation results verify the correct operation of the control loop.
第八章呈现了前几章设计的控制回路的仿真结果。这些仿真结果验证了控制回路的正确运行。
Chapter 9 presents and discusses measurements of the complete amplifier. The measurements are compared to theoretical expectations. It is confirmed that the control method effectively mitigates the non-idealities of the open loop system.
第九章介绍了并讨论了完整放大器的测量。这些测量结果与理论预期进行了比较。确认了控制方法有效地减轻了开环系统的非理想性。
This thesis ends with a conclusion in Chapter 10. Recommendations for further research are also given.
本论文在第 10 章结束时得出结论。还提出了进一步研究的建议。

Chapter 2 第二章

Literature Review 文献回顾

This chapter reviews the literature that forms the foundation of the remainder of the thesis.
本章回顾了构成论文其余部分基础的文献。

2.1 The Harmonics of Ideal PWM
2.1 理想 PWM 的谐波

In [11] it is shown that an ideal naturally sampled single-sided pulse-width modulating (NSSSPWM) waveform that is generated by comparing a reference signal with a sawtooth carrier can be decomposed as the sum of three functions
在[11]中显示,通过将参考信号与锯齿波载波进行比较生成的理想自然采样单边脉宽调制(NSSSPWM)波形 可以分解为三个函数的和
where 在哪里
over the interval . The last term in (2.1.1) can be written in terms of its Fourier series expansion to obtain
在区间 上。等式(2.1.1)的最后一项可以通过其傅里叶级数展开来表示,从而得到
For the special case where , we can use the Jacobi-Anger identity
对于特殊情况 ,我们可以使用雅可比-安格恒等式
to rewrite (2.1.3) as
将(2.1.3)重写为
where is the 'th order Bessel function of the first kind [11]. Equation (2.1.5) is the well-known double Fourier series expression for a NSSSPWM waveform [12]. Equation (2.1.5) shows that the PWM waveform contains the following signal components:
其中 是第 阶第一类贝塞尔函数 [11]。式 (2.1.5) 是 NSSSPWM 波形的广为人知的双傅里叶级数表达式 [12]。式 (2.1.5) 显示 PWM 波形 包含以下信号成分:
  • The original reference waveform .
    原始参考波形
  • An inverted sawtooth .
    倒锯齿形
  • Sine and cosine components at integer combinations of the reference waveform frequency and the carrier frequency. These primarily manifest as side-band harmonics centred around the carrier harmonics, though some will add to (or subtract from) the carrier harmonics.
    正弦和余弦分量在参考波形频率和载波频率的整数组合中。这些主要表现为围绕载波谐波的边带谐波,尽管有些会增加(或减少)载波谐波。
Figure 2.1 shows the spectrum of with a 1 Hz reference signal for a modulation index of and a frequency modulation index of . It should be clear that, in ideal PWM, only the side-band components contribute to distortion in the audio band, provided that the switching frequency is outside the audio band. Increasing will reduce the magnitude of the side-band components in the audio band.
图 2.1 展示了在调制指数为 和频率调制指数为 时, 的 1 Hz 参考信号的频谱。应清楚,在理想 PWM 中,只要开关频率位于音频带之外,仅边带成分对音频带的失真做出贡献。增加 将减少音频带中的边带成分的幅度。
Figure 2.1: Calculated magnitude spectrum of ideal NSSSPWM for and .
图 2.1:理想 NSSSPWM 在 时的计算幅值谱。
Note that the side-bands in Figure 2.1 decay fairly rapidly. However, non-ideal effects like dead-time and finite switching times will cause the side-bands to decay less rapidly than for ideal PWM [5].
注意图 2.1 中的边带衰减相当迅速。然而,非理想效应如死时间以及有限的切换时间会导致边带的衰减速度比理想 PWM [5] 慢。

2.2 Class-D Distortion Mechanisms
2.2 类-D 失真机制

In an ideal NSPWM class-D amplifier output stage, the only contribution to distortion in the audio band is the carrier side-bands [5]. However, several distortion mechanisms are
在理想的 NSPWM 类-D 放大器输出阶段,音频带中的失真仅由载波旁瓣贡献 [5]。然而,存在几种失真机制

present in a practical, non-ideal, class-D amplifier. This section gives a brief overview of the distortion mechanisms present in a class-D amplifier.
在实用的、非理想状态下的类-D 放大器中存在。本节简要介绍了类-D 放大器中存在的失真机制。

2.2.1 Dead Time 2.2.1 死时间

As mentioned earlier, the switches in a class-D power stage are switched complementary. However, A MOSFET is not an ideal switch and cannot switch from the on to off state and vice versa instantaneously.
如前所述,类-D 功率阶段中的开关是互补切换的。然而,MOSFET 并不是一个理想的开关,不能瞬间从开状态切换到关状态,反之亦然。

For a small time the MOSFET will operate in its linear region, having both a current through it and a voltage across it. To prevent both switches conducting simultaneously during a switching transition, the modulator waits for a time after one switch is off before switching on the next switch. The time in which both switches are off is known as the dead time. Dead time leads to pulse-timing errors (PTEs), and is a major source of distortion in a class-D power stage.
源文本:对于一小段时间,MOSFET 将在其线性区域工作,既有电流通过它,也有电压在其上。为了避免在开关转换期间两个开关同时导通,调制器在其中一个开关关闭后等待时间 ,然后再开启下一个开关。两个开关都关闭的时间被称为死时间。死时间会导致脉冲定时错误(PTEs),并且是 D 类功率级中失真的主要来源。 翻译文本:
Figure 2.2 shows a simplified half-bridge inverter with ideal switches and , and ideal diodes and . Figure 2.3 shows the gate signals of the switches and the unfiltered output voltage . The ideal gate and output waveforms are shown in grey.
图 2.2 显示了一个带有理想开关 以及理想二极管 的简化半桥逆变器。图 2.3 显示了开关的门信号和未滤波的输出电压 。理想门和输出波形以灰色显示。
Figure 2.2: Simplified half-bridge inverter with current-source load.
图 2.2:带有电流源负载的简化半桥逆变器。
Consider the case when switches from off to on and from on to off. If , conducts during the dead time interval and the output voltage is , while the ideal output voltage at this time is . If conducts during the dead time interval and the output voltage is , which is the correct output voltage.
考虑当 从关切换到开, 从开切换到关的情况。如果 在死时间间隔内导通,输出电压为 ,而此时的理想输出电压为 。如果 在死时间间隔内导通,输出电压为 ,这是正确的输出电压。
In a similar manner, when switches from on to off and from off to on the output voltage is correct when , and incorrect when .
类似地,当 从开切换到关, 从关切换到开时,输出电压正确,当 ;当 从关切换到开, 从开切换到关时,输出电压不正确,当
At small values of the inductor current changes polarity twice during a switching cycle and the effect of dead time is reduced to only a time delay of . At larger values of the inductor current polarity is primarily determined by the polarity of the reference signal and is distinctly positive or negative for several switching cycles at a time.
值较小时,电感电流在一个开关周期内改变极性两次,死时间的影响仅减少到 的时间延迟。在 值较大时,电感电流的极性主要由参考信号的极性决定,在一段时间内,电感电流的极性会明显为正或为负,同时存在多个开关周期。

The output voltage error now changes with the polarity of the reference signal, which results in distortion of the output waveform inside the audio band.
输出电压误差现在随参考信号的极性变化,导致音频带内的输出波形失真。
Figure 2.3: The effect of dead time on converter waveforms. Ideal waveforms are shown in grey.
图 2.3:死时间对转换器波形的影响。理想波形以灰色显示。
Viewed in isolation, dead time contributes only to odd harmonic distortion in the audio band. However, in [5] it was shown that introducing dead time also increases the magnitude of the side-band switching harmonics inside the audio band for larger values of . Distortion due to dead time increases for increasing values of . Also note that dead time distortion, and distortion due to PTEs in general, increase with an increase in switching frequency.
孤立地看,死时间仅对音频带内的奇次谐波失真有所贡献。然而,在[5]中显示,引入死时间也会在音频带内,对于 的较大值,增加边带切换谐波的幅度。随着 值的增加,死时间引起的失真也会增加。另外需要注意的是,死时间引起的失真,以及一般由 PTEs 引起的失真,随着开关频率的增加而增加。

2.2.2 MOSFET Turn-On and Turn-Off Delays and Non-Zero Switching Transitions
2.2.2 MOSFET 开关延迟和非零切换过渡

The turn-on and turn-off delays of a MOSFET is a function of the current through the MOSFET [5]. Since the current changes with the reference signal these delays will manifest as PTEs. At low values of , when the current changes polarity twice during a switching cycle, the change in turn-on on turn-off delays is continuous. This continuous change in delays results in even and odd baseband harmonics that decay fairly rapidly with frequency. However, at larger values of when the inductor current is distinctly positive or negative for several switching cycles at a time, the change in delays is discontinuous. The baseband harmonics do not decay as rapidly as was the case with small values of , and results in a significantly higher level of distortion.
MOSFET 的开启和关闭延迟是 MOSFET 中电流的函数[5]。由于电流随参考信号变化,这些延迟会表现为 PTE。在 值较低时,当一个开关周期内电流极性变化两次时,开启和关闭延迟的变化是连续的。这种连续的变化导致了频率较快衰减的偶数和奇数基带谐波。然而,在 值较大时,当电感电流在一段时间内明显为正或负时,延迟的变化是不连续的。基带谐波的衰减速度不如 值较小时的情况快,导致失真水平显著提高。
As with dead time, the turn-on and turn-off delays also increase the magnitude of the side-band switching harmonics in the audio band at larger values of . Distortion
如同死时间一样,开关延迟也会在音频带宽中,随着 值的增大,增加副边带切换谐波的幅度。失真

increases for longer delay times.
增加随着延迟时间的延长。
Non-linear non-zero switching transitions affect distortion in a similar manner to turnon and turn-off delays [5].
非线性非零开关转换对失真的影响与开启和关断延迟以相同的方式影响。

2.2.3 Parasitics and Reverse Recovery
2.2.3 寄生现象与反向恢复

In [5] it was shown that the ringing of the pulse output waveform due to circuit parasitics and reverse recovery leads to pulse amplitude errors (PAEs), but contributes negligible distortion compared to the PTEs mentioned above.
在[5]中显示,由于电路寄生效应和反向恢复导致的脉冲输出波形的振铃,会引起脉冲幅度误差(PAEs),但与上述 PTEs 相比,它造成的失真几乎可以忽略不计。

That being said, ringing of the pulse waveform increases radiated EMI and can therefore indirectly increase the distortion in an analogue modulator through self-pollution.
既然如此,脉冲波形的振铃会增加辐射的 EMI,并且因此可以通过自我污染间接增加模拟调制器中的失真。

2.2.4 Self-Pollution 2.2.4 自我污染

The PTEs discussed above can be minimised by increasing the switching speed. However, increasing the switching speed results in higher values of and in the PWM waveform before the demodulation filter. This leads to increased radiated EMI, which can contaminate the signals at the comparator input in an analogue modulator. This can potentially lead to severe distortion of the output waveform, especially at larger values of . A decrease in open-loop distortion due to faster switching times is therefore partially offset by an increase in distortion due to self-pollution.
上述讨论的 PTEs 可以通过提高切换速度来最小化。然而,提高切换速度会导致 PWM 波形在解调滤波器之前 的值增加。这会导致辐射 EMI 增加,可能污染模拟调制器比较器输入的信号。这可能导致输出波形严重失真,尤其是在 较大时。因此,由于更快的切换时间导致的开环失真减少部分被自我污染导致的失真增加所抵消。
Note that in an amplifier with a digital modulator, self-pollution will contribute much less to open-loop distortion.
请注意,在带有数字调制器的放大器中,自污染对开环失真贡献要小得多。

Indeed, it was found that a power stage with little regard for EMI performance yielded good distortion measurements in a digital feedback design [2], but was almost completely useless in an analogue control loop.
确实,发现了一个不太考虑电磁干扰性能的功率阶段,在数字反馈设计中 [2] 提供了良好的失真测量值,但在模拟控制回路中几乎完全无用。

In an analogue modulator the EMI performance of the amplifier directly influences the audio performance.
在模拟调制器中,放大器的 EMI 性能直接影响音频性能。

Even though this design is an experimental system and does not officially have to pass any EMI standards, careful attention still has to be paid to EMI performance, if only to maximise the audio performance.
尽管这个设计是一个实验系统,不需要正式通过任何电磁干扰(EMI)标准,但在 EMI 性能方面仍然需要仔细关注,仅为了最大化音频性能。

2.2.5 Bus Pumping 2.2.5 公交泵送

In a half-bridge converter the situation can occur where there is a net flow of energy from the load back to a supply rail [13]. Consider the circuit of Figure 2.4. We assume that the filter capacitor is large enough that the output voltage is approximately constant over a switching cycle. Figure 2.5 (a) shows the idealised inductor and supply current waveforms for a duty cycle of over a single switching cycle. The average inductor current, and load current, is zero. Current flows to and from both sources, but the net energy transfer is zero.
在半桥转换器中,可能出现负载向供电轨回流能量的情况[13]。考虑图 2.4 中的电路。我们假设滤波电容 足够大,使得在开关周期内输出电压 大致保持恒定。图 2.5(a)展示了在单个开关周期内,占空比为 的理想电感和供电电流波形。平均电感电流和负载电流为零。电流流向和来自两个源,但总的能量传输为零。
Figure 2.4: Simplified half-bridge converter.
图 2.4:简化的一半桥转换器。
Figure 2.5 (b) shows the same waveforms for a duty cycle of . The average inductor current is now greater than zero and energy flows from the positive supply to the load. However, it is observed that there is also a net flow of energy into the negative voltage supply.
图 2.5(b)显示了占空比为 时的相同波形。平均电感电流现在大于零,能量从正电源流向负载。然而,观察到也有净能量流入负电压电源。

If the power supply has no way to absorb the energy, as is the case with a passive power supply and most linear supplies, the bus voltage will increase [13]. This is known as "bus pumping". The open-loop gain of the amplifier is proportional to the power supply voltage.
如果电源无法吸收能量,就像被动电源和大多数线性电源的情况一样,总线电压会增加 [13]。这被称为“总线泵送”。放大器的开环增益与电源电压成正比。

If bus pumping causes significant supply voltage fluctuations, this will lead to distortion. However, with a large storage capacitance in the power supply and a control loop that provides error rejection in the audio band the effect of supply pumping should be negligible.
如果公交车泵送导致显著的供电电压波动,这将导致失真。然而,如果电源中具有大量存储电容,并且控制回路在音频带内提供误差抵消,那么供电泵送的影响应该可以忽略不计。

This, of course, assumes that the program material does not contain significant power at very low frequencies.
当然,这假设程序材料在非常低的频率下不包含显著的功率。
In open-loop tests the effect of bus pumping should be kept in mind. Contrary to an ideal PWM modulator, in a practical amplifier it is unlikely that a carrier with no DC offset will result in a PWM output signal with no DC offset.
在开环测试中,应考虑到公共线泵送的影响。与理想的 PWM 调制器不同,在实际放大器中,不太可能得到没有直流偏置的载波,从而导致 PWM 输出信号也没有直流偏置。

This is due to the difference in turn-on and turn-off delay times between the top and bottom power switches.
这是由于上下电源开关的开启和关闭延迟时间不同所导致的。

In openloop tests the carrier should be tuned such that the switching stage output signal does not have a significant DC offset, otherwise the supply voltage will increase and the amplifier might get damaged.
在开环测试中,应调整载波,使得开关阶段的输出信号没有显著的直流偏置,否则供电电压将增加,放大器可能会受损。

2.2.6 Demodulation Filter
2.2.6 解调滤波器

The passive components of the demodulation filter are not ideal and can contribute to distortion. Due to the high frequency power signal that enters the demodulation filter, it is necessary to use a ferrite core inductor. Unfortunately a ferrite core is non-linear [14].
解调滤波器中的被动元件并非理想,可能会导致失真。由于进入解调滤波器的高频功率信号,需要使用铁氧体磁芯电感器。不幸的是,铁氧体磁芯是非线性的 [14]。

The inductor will become increasingly non-linear as the flux density in the core nears the saturation flux density of the core material.
电感器在磁芯中的磁通密度接近磁芯材料的饱和磁通密度时,将变得越来越非线性。
It should be noted that the physical design of the output filter will also have an influence on distortion. The parasitic parallel capacitance of the filter inductor and the parasitic series inductance of the filter capacitor will cause the filter to behave like a high-
应注意到,输出滤波器的物理设计也会影响失真。滤波电感的寄生并联电容和滤波电容的寄生串联电感会使滤波器表现出高-
(a)
(b)
Figure 2.5: Idealised inductor and supply current waveforms for (a) and (b) .
图 2.5:理想化电感器和电源电流波形,(a) 和 (b)
pass filter at higher frequencies. If these parasitics are not minimised, the edges of the PWM waveform will show up as voltage spikes in the amplifier output waveform. These high-frequency spikes will radiate off attached cables, leading to increased self-pollution.
在较高频率下通过滤波器。如果这些寄生效应没有最小化,PWM 波形的边缘将在放大器输出波形中表现为电压尖峰。这些高频尖峰会从连接的电缆辐射出去,导致自污染增加。
All of the aforementioned distortion mechanisms can be mitigated by applying global negative feedback. However, closing a feedback loop around a class-D power stage introduces additional distortion mechanisms that are not present in an open loop system [7].
所有上述失真机制都可以通过应用全局负反馈来缓解。然而,在类-D 功率阶段周围闭合反馈回路引入了在开环系统中不存在的额外失真机制 [7]。

If these sources of distortion are not mitigated, they can dominate the overall distortion level.
如果这些失真来源没有得到缓解,它们可能会主导整体失真水平。
In [1] it was shown that the comparator is effectively a sampling operation. The PWM waveform that is fed back through the loop to the comparator input contains harmonics of the switching frequency and their associated side-bands.
在[1]中显示,比较器实际上是一种采样操作。通过闭环反馈到比较器输入的 PWM 波形包含开关频率的谐波及其相关的旁瓣。

When this signal is sampled at the comparator input, some of these components will alias into the audio band.
当这个信号在比较器输入处采样时,一些这些组件会混叠到音频带宽中。
Furthermore, the effective comparator gain is a function of the slope of the comparator input signal at the sampling instance [1]. Since the feedback ripple signal is a filtered
此外,有效比较器增益是采样时刻比较器输入信号斜率的函数[1]。由于反馈纹波信号是经过滤的
PWM waveform, its shape depends on duty cycle. It therefore follows that the slope of the signal at the comparator input, and hence the comparator gain, will depend on duty cycle. This is an additional non-linearity.
PWM 波形的形状取决于占空比。因此,比较器输入信号的斜率,以及因此的比较器增益,将取决于占空比。这是额外的非线性。
Distortion due to ripple feedback can be greatly minimised by implementing the ripple compensation technique described in Section 2.4.
由于振铃反馈引起的失真可以通过在第 2.4 节描述的振铃补偿技术的实施来大大减小。

2.3 Discrete-Time Modelling of Continuous-Time Pulse-Width Modulator Loops
2.3 离散时间建模连续时间脉冲宽度调制器回路

In an ideal pulse-width-modulator, the comparator is the only non-linear element and is traditionally linearised into an equivalent gain [14].
在理想的脉冲宽度调制器中,比较器是唯一的非线性元件,并且传统上被等效为等效增益[14]。

However, the linearised continuoustime model fails to account for the high frequency behaviour of the comparator, and stability margins cannot be determined accurately .
然而,线性化连续时间模型未能考虑到比较器的高频行为,因此无法准确确定稳定性裕度。
A very accurate model in which the comparator is modelled as a sampling operation and the continuous-time loop is converted to discrete-time was presented in [1] and [15].
在[1]和[15]中,提出了一种非常准确的模型,在该模型中,比较器被建模为采样操作,连续时间循环被转换为离散时间。

This model accounts for non-linear effects of pulse-width modulation like aliasing and the formation of image components. Furthermore, the comparator frequency response is accurately modelled to above the switching frequency and loop stability can be determined more accurately.
该模型考虑了脉冲宽度调制的非线性效应,如混叠和图像组件的形成。此外,比较器的频率响应被准确地建模到开关频率之上,从而可以更准确地确定闭环稳定性。

2.3.1 Small-Signal Model of the Ideal Comparator
2.3.1 理想比较器的小信号模型

A small-signal model describes the AC behaviour of a system linearised around a steadystate operating point. A pulse-width modulator operates in steady-state when the modulator output is a duty cycle periodic pulse waveform. Figure 2.6 shows the conceptual small-signal model of an ideal comparator [1]. The small-signal model consists of two identical comparator models. One receives a periodic carrier as input, while the other receives the same periodic carrier with a small superimposed perturbation signal . The comparator's small-signal response is the difference between the outputs of the two comparators. The ideal comparator and power stage is modelled as a gain followed by saturation to the power stage supply voltage .
小信号模型描述了系统在稳态运行点线性化后的 AC 行为。脉宽调制器在稳态运行时,调制器输出为具有 0#占空比的周期脉冲波形。图 2.6 展示了理想比较器的理想小信号模型[1]。小信号模型由两个完全相同的比较器模型组成。一个接收周期性载波 作为输入,而另一个接收相同的周期性载波,但带有小的叠加扰动信号 。比较器的小信号响应是两个比较器输出的差值。理想比较器和功率级被建模为增益 ,随后是到功率级供电电压 的饱和。
Figure 2.7 shows the waveforms associated with the small-signal model. The carrier is periodic with frequency and has two uniformly spaced zero crossings per period. For a short time at the zero crossings of the comparator acts as a linear gain . Outside this time interval the comparator is saturated and cannot respond to a change in input. The time interval is approximately
图 2.7 展示了小信号模型相关的波形。载波 是周期性的,频率为 ,每个周期有两个均匀间隔的零交叉。在 的零交叉点附近持续时间 的时间内,比较器作为线性增益 。在这一时间区间之外,比较器饱和,无法响应输入的变化。这个时间区间大约为
Figure 2.6: Small-signal comparator model [1].
图 2.6:小信号比较器模型 [1]。
where is the slope of the carrier signal at a zero-crossing. The small-signal PWM response is effectively the product between and a pulse train of amplitude and pulse duration .
在零穿越点处,载波信号 的斜率是 。小信号 PWM 响应 实际上是 与振幅为 、脉冲持续时间为 的脉冲串 的乘积。
Figure 2.7: Comparator waveforms [1].
图 2.7:比较器波形 [1]
The area of each pulse of is
每个脉冲的区域是 的面积
Note that the area of a pulse of is independent of the magnitude of a pulse and that for large values of . The periodic pulse waveform can therefore be
注意脉冲面积 与脉冲的幅度 无关,且对于较大的 值, 也成立。因此,周期性脉冲波形 可以

approximated by a Dirac comb of frequency [16]. Multiplication by a Dirac comb in the time domain is equivalent to sampling. The comparator therefore acts as a sampling operation with sampling frequency , followed by a gain which is the mean value of :
由频率 的狄拉克梳状函数近似表示[16]。时间域中的狄拉克梳状函数乘法等同于采样。因此,比较器作为具有频率 的采样操作,随后是增益 ,该增益是 的平均值:
In the case of natural sampling PWM where the carrier is a triangle or sawtooth wave with amplitude , the comparator gain is
在自然采样 PWM 的情况下,当载波 是一个幅度为 的三角波或锯齿波时,比较器增益

2.3.2 Closed-Loop Small-Signal Model
2.3.2 闭环小信号模型

Figure 2.8 shows the comparator model embedded in a feedback loop. is a loop filter and and model noise and distortion that is added at the comparator input and output, respectively.
图 2.8 显示了比较器模型嵌入在反馈回路中。 是环路滤波器, 模型在比较器输入和输出处添加的噪声和失真。
Figure 2.8: Comparator model embedded in a feedback loop.
图 2.8:嵌入反馈环路的比较器模型。
The small-signal output of the comparator and power stage approximates a series of delta impulses, or a sampled signal. Since the loop filter is fed by a sampled signal and its output is again sampled by the comparator, we only care about the loop filter response at the sampling instances.
比较器和功率级的小信号输出在 0#附近近似为一系列 delta 脉冲,或者是一个采样信号。由于环路滤波器由采样信号供电,其输出又被比较器再次采样,因此我们只关心环路滤波器在采样时刻的响应。

Hence the continuous-time loop filter can be replaced by a discrete-time equivalent, as shown in Figure 2.9.
因此,连续时间环路滤波器可以被离散时间等效替代,如图 2.9 所示。
Figure 2.9: Discrete-time comparator model embedded in a feedback loop.
图 2.9:嵌入反馈回路的离散时间比较器模型。
The input reference signal propagates through the loop filter before reaching the comparator input. Therefore the input reference signal has to be filtered in continuous-time by before sampling [1]. Similarly, is added in continuoustime. The error source represents timing errors in the power stage and manifests as errors in the values of the Dirac impulses of . Hence the power stage error source is added directly to the discrete-time loop as . The signal is a discrete-time signal that represents the deviation of the modulator from the steady-state operating point.
输入参考信号 通过环路滤波器 后到达比较器输入。因此,输入参考信号 必须在连续时间下由 进行过滤,然后进行采样 [1]。同样, 在连续时间下添加。误差源 表示功率级中的定时误差,并表现为 的狄拉克脉冲值的误差。因此,功率级误差源 直接添加到离散时间环路中作为 。信号 是一个离散时间信号,表示调制器偏离稳态运行点的偏差。

2.3.3 Conversion to the Z-Domain
2.3.3 转换至 Z 域

As mentioned earlier, the continuous-time loop filter is fed by a sampled signal (a series of Dirac impulses) and its output is again sampled.
如前所述,连续时间循环滤波器由采样信号(一系列狄拉克脉冲)提供输入,其输出再次被采样。

This operation is similar to the impulse-invariant method of discretisation, which involves taking the z-transform of the sampled impulse-response of a system [17]. Consequently, the continuous-time loop filter can be converted to its discrete-time equivalent through the impulse invariant transform.
此操作类似于离散化中的冲激一致法,该方法涉及对系统采样冲激响应进行 z 变换 [17]。因此,连续时间回路滤波器 可以通过冲激一致变换转换为其等效的离散时间形式
Since the real system has to be causal, the comparator can only respond to the loop's response to a previous output sample. This means that the actual system always has at least a one sample delay.
由于实际系统必须具有因果性,比较器只能响应环路对前一个输出样本的响应。这意味着实际系统总是至少有一个样本的延迟。

This can be taken into account in the impulse-invariant transform by removing the impulse response sample at time zero [1]:
这可以在脉冲不变变换中考虑,通过在时间零处移除脉冲响应样本 [1]:
where is the direct impulse-invariant transform of . In Section 6.2 a slightly different approach to the impulse-invariant transform is suggested.
其中 的直接脉冲不变变换。在第 6.2 节中,建议了一种稍微不同的脉冲不变变换方法。

2.3.4 Effect of Feedback Ripple on Comparator Gain
2.3.4 反馈回波对比较器增益的影响

The effective comparator gain depends on the slope of the comparator input signal at zero crossings. The large-signal output of the real system is a PWM waveform. The PWM signal is filtered by the loop filter prior to reaching the comparator input and causes a periodic ripple signal to be added to the carrier. The slope of the comparator input signal at zero-crossings is the sum of the slopes of the carrier and ripple signal. For a triangle wave carrier with amplitude , the comparator gain is
有效比较器增益 取决于比较器输入信号在零过零点的斜率。实际系统的大型信号输出是一个 PWM 波形。PWM 信号在到达比较器输入之前由环路滤波器进行滤波,导致在载波上添加周期性波动信号 。比较器输入信号在零过零点的斜率是载波和波动信号斜率的总和。对于具有幅度 的三角波载波,比较器增益
where is the slope of the ripple signal just prior to a rising edge zero crossing of the comparator [1]. It should be noted that the ripple feedback signal reduces the effective comparator gain relative to open-loop operation.
在比较器[1]的上升沿零穿越之前, 是振荡信号 的斜率。应该注意的是,振荡反馈信号相对于开环操作降低了比较器的有效增益。

2.4 Ripple Compensation 2.4 涌流补偿

Closing a feedback loop around a PWM modulator introduces distortion mechanisms that are not present in the open-loop system. The PWM output signal contains components at multiples of the carrier frequency, as well as additional components centred around these.
关闭反馈回路到 PWM 调制器周围引入了在开环系统中不存在的失真机制。PWM 输出信号包含载体频率的倍数处的成分,以及围绕这些成分的额外成分。

When the output is fed back through the loop to the comparator input, some of these components will be aliased into the audio band due to the sampling nature of the comparator . Aliased components that are harmonically related to the input signal will manifest as harmonic distortion.
当输出通过回路反馈到比较器输入时,由于比较器 的采样性质,这些组件将被映射到音频带宽中。与输入信号谐波相关的映射组件将表现为谐波失真。
In [7] a so-called minimum-aliasing-error loop filter is discussed that reduces the effect of feedback ripple aliasing by cancelling parts of the aliasing error.
在[7]中,讨论了一种所谓的最小伪影误差环路滤波器,它通过消除伪影误差的部分来减少反馈振铃伪影的影响。

In [6] the non-linearity is reduced by dynamically modifying the symmetry of the carrier to counteract the phase shift in the effective sampling instances due to ripple feedback.
在[6]中,通过动态修改载体的对称性来抵消有效采样实例中由于纹波反馈引起的相位移,从而减少非线性。

In [8] and [18] a simple and very effective ripple compensation method is presented to reduce the effect of ripple aliasing in pulse-width modulators.
在[8]和[18]中,提出了一种简单且非常有效的振荡补偿方法,以减少脉冲宽度调制器中振荡混叠的影响。

A great benefit of the ripple compensation technique is that it gives the designer freedom in designing the transfer function and topology of the control loop. This method is implemented in a digitally-controlled PWM amplifier with state-of-the-art performance in [2].
振荡补偿技术的一大好处是它赋予了设计者在设计控制回路的传递函数和拓扑结构方面的自由。这种方法在数字控制 PWM 放大器中实现,并具有最先进的性能,详情见[2]。

This section describes the basic operation of the ripple compensation strategy discussed in .
本节描述了在 中讨论的振荡补偿策略的基本操作。
Figure 2.10 shows the simplest ripple compensation implementation for a NSSSPWM loop. The loop filter provides gain for error rejection. The feedback signal is modified
图 2.10 展示了 NSSSPWM 环路中最简单的振荡补偿实现。滤波器 提供增益以拒绝误差。反馈信号被修改。
Figure 2.10: Simple PWM feedback loop with ripple compensation [2].
图 2.10:简单的 PWM 反馈回路,带有纹波补偿 [2]。
by adding the sawtooth carrier to the PWM output . This has the effect of cancelling the unmodulated edge of the PWM waveform, thereby making the ripple signal reaching the comparator input largely independent of duty cycle and reducing the effect of the ripple feedback to only a DC offset.
通过将锯齿形载体 添加到 PWM 输出 。这起到了抵消 PWM 波形未调制边缘的作用,从而使到达比较器输入的纹波信号很大程度上独立于占空比,并减少了纹波反馈仅对直流偏置的影响。

From a frequency domain perspective, this means that only components related to the carrier are aliased into the audio band.
从频域角度来看,这意味着只有与载波相关的成分会被映射到音频带宽内。
Figure 2.11 shows the waveforms associated with the modulator loop of Figure 2.10 for a first-order integrating loop filter. The signal , which is the sum of the PWM
图 2.11 展示了图 2.10 中一阶积分环路调制器回路相关的波形。信号 ,它是 PWM 信号的总和。
Figure 2.11: Ripple compensation waveforms for a first-order loop [2].
图 2.11:一阶环路的 Ripple 补偿波形 [2]
signal and the carrier , is a sawtooth waveform of which the time average over a switching period is equal to that of .
信号 和载波 ,是一个锯齿波形,其在开关周期内的时间平均值等于 的时间平均值。
The feedback loop ensures that the crossings of and coincide with the crossings of and . It is observed that the ripple component of is largely independent of the average value of . This greatly reduces the non-linearity associated with ripple aliasing. It was noted in Section 2.3 that the effective comparator gain is a function of the slope of the feedback ripple signal which, without ripple compensation, depends on the duty cycle.
反馈回路确保 的交叉点与 的交叉点相吻合。观察到 的振荡成分很大程度上独立于 的平均值。这大大降低了与振荡混叠相关的非线性。在第 2.3 节中指出,有效比较器增益是反馈振荡信号斜率的函数,而如果没有振荡补偿,其依赖于占空比。

Consequently, ripple compensation also makes the comparator gain independent of duty cycle.
因此,涟漪补偿也使得比较器的增益与占空比无关。
Figure 2.12 shows three equivalent implementations of the ripple compensation technique. Figure 2.12 (a) is a direct adaptation of Figure 2.10, with the inclusion of an equivalent power stage gain and a demodulation filter . However, the implementation of Figure 2.12 (a) is not feasible, since it involves adding an amplified carrier to the PWM signal before the demodulation filter. Figures 2.12 (b) and (c) are equivalent to Figure 2.12 (a), but can be implemented practically.
图 2.12 展示了三种等效的振铃补偿技术实现方式。图 2.12(a)是对图 2.10 的直接改编,加入了等效功率阶段增益 和解调滤波器 。然而,图 2.12(a)的实现方式不可行,因为它需要在解调滤波器之前将放大后的载波添加到 PWM 信号中。图 2.12(b)和(c)与图 2.12(a)等效,但可以实际实现。

The implementation of Figure 2.12 (c)
图 2.12(c)的实施

is especially suitable if the carrier is generated digitally, since a pre-filtered carrier can be generated off-line and stored in a lookup table.
如果载体是数字化生成的,这种特别适合,因为可以预先过滤的载体可以离线生成并存储在查找表中。
(a)
(b)
(c)
Figure 2.12: Three equivalent implementations of the ripple compensation technique obtained through block diagram manipulation .
图 2.12:通过块图操作获得的三种等效的振铃补偿技术实现。

2.5 Stabilising a High-Order Modulator Under Overload Conditions
2.5 在过载条件下稳定高阶调制器

2.5.1 The Deviation Detector
2.5.1 偏差检测器

When a loop is optimised for gain, it will tend to be conditionally stable. A conditionally stable loop will become unstable when loop gain collapses, as is the case during overmodulation.
当一个循环为了增益进行优化时,它往往会趋向于条件稳定。一个条件稳定的循环在循环增益崩溃时会变得不稳定,这在过调制的情况下就是如此。

This is not a problem for a digital controller, in which the input signal range is a known variable and can be restricted to a value that would not lead to overmodulation.
这并不是数字控制器的问题,因为在数字控制器中,输入信号范围是已知的变量,并且可以限制为不会导致过调制的值。
A method to stabilize an over-modulated conditionally stable loop is to modify the loop to become unconditionally stable during over-modulation. This can be achieved by reducing the loop order during over-modulation [10].
稳定过调制条件稳定回路的一种方法是在过调制期间使回路变得无条件稳定。这可以通过在过调制期间降低回路的阶数来实现 [10]。

In a higher-order loop, the loop filter will typically consist of a chain of integrators [2, 19-21]. When over modulation occurs, the difference between input and output is large.
在高级循环中,循环滤波器通常由积分器链组成 [2, 19-21]。当发生过调制时,输入和输出之间的差异会很大。

Since the amplifier output during over-modulation is primarily DC, the integrators will produce large output signals. One method of returning the loop to a stable condition when loop gain collapses is to limit the voltage range of each integrator [20].
由于放大器在过调制期间的主要输出为直流电,积分器将产生大输出信号。当闭环增益崩溃时,使回路恢复到稳定状态的一种方法是限制每个积分器的电压范围 [20]。

When an integrator saturates, the loop order is effectively decreased by one. The loop should be designed to be unconditionally stable when the order is reduced.
当集成器饱和时,环路顺序实际上减少了 1。当顺序减少时,环路应被设计为无条件稳定。
However, there is a problem with this method. Saturating the integrators is only effective if the integrator output is limited to a level significantly smaller than the unstable output level [10].
然而,这种方法存在一个问题。使积分器饱和只有效果,前提是积分器输出限制在一个远小于不稳定输出水平的水平上 [10]。

The problem is that the integrator output of an unstable amplifier with no input signal could be smaller than that of a stable amplifier under maximum modulation [10]. Hence the integrators will saturate during normal operation, reducing performance.
问题在于,不稳定放大器在没有输入信号的情况下,其积分器输出可能小于稳定放大器在最大调制下的输出[10]。因此,在正常操作过程中,积分器会饱和,从而降低性能。
In [10] a method was proposed to stabilize a conditionally stable loop during overmodulation, without saturating the integrator during normal operation. The method was specifically applied to a self-oscillating class-D device, but it can be adapted for a clocked modulator loop.
在[10]中,提出了一种方法,在过调制期间稳定条件稳定的环路,同时在正常操作期间不使积分器饱和。该方法特别应用于自振荡类-D 设备,但它可以适应时钟调制器环路。
Figure 2.13 shows a generic feedback loop with loop filter and inverting output stage . The error term represents output stage errors.
图 2.13 显示了一个通用的反馈回路,其中包含回路滤波器 和反相输出阶段 。误差项 代表输出阶段的误差。
The output of the loop filter is given by
环路滤波器的输出由以下给出
Equation (2.5.1) shows that the loop filter output contains components from both the output stage error and the loop input. When the modulation index is large, the input
方程(2.5.1)表明,环路滤波器输出包含输出级误差和环路输入的成分。当调制指数较大时,输入
Figure 2.13: Generic output stage embedded in a feedback loop.
图 2.13:嵌入反馈回路的通用输出阶段。
term will dominate the loop filter output. The goal is to make the loop filter output independent of the input signal.
术语 将主导循环滤波器输出。目标是使循环滤波器输出与输入信号无关。
Now consider the modified loop of Fig. 2.14. is a deviation detection transfer function that approximates the transfer function of the output stage . Assuming matches well, during stable operation the only difference between the output of and is the small error term. The loop filter output can therefore be limited to a very low level. The low saturation limit also has the benefit of improving cliprecovery. When over-modulation or instability occurs, the difference between the output of and is large, and the loop filter saturates. From a dynamic perspective the saturated loop filter acts as an open circuit. The output stage now receives only the direct input signal. When the amplifier comes out of over-modulation the loop filter resumes normal operation.
现在考虑图 2.14 修改后的循环。 是一个偏差检测传输函数,它近似输出阶段 的传输函数。假设 匹配良好,在稳定操作期间, 的输出之间的唯一差异是小误差项。因此,环路滤波器输出可以限制在非常低的水平。低饱和限制也有助于改善剪切恢复。当过调制或不稳定发生时, 的输出之间的差异很大,环路滤波器饱和。从动态角度看,饱和的环路滤波器相当于开路。输出阶段现在只接收直接输入信号。当放大器从过调制中恢复时,环路滤波器恢复正常操作。
Figure 2.14: Modified control loop with deviation detection filter.
图 2.14:带有偏差检测滤波器的修改后的控制回路。
The output of the loop filter in Fig. 2.14 is given by
图 2.14 中循环滤波器的输出由以下给出:
Clearly, if approximates well, the loop filter output will consist primarily of components related to the output stage error term.
显然,如果 接近 ,环路滤波器输出将主要包含与输出阶段误差项相关的成分。
For this method to work reliably we need to approximate accurately in the audio band. However, if the output stage is a switching power stage followed by a demodulation filter the frequency response will vary depending on load. To remedy this, a simple passive lead network is added around the switching stage and output filter, as depicted in Figure 2.15. This circuit replaces in Figure 2.14. The amplifier now has two feedback loops: an unconditionally stable inner loop to make the frequency response
为了使这种方法可靠地工作,我们需要 在音频带内准确地逼近 。然而,如果输出级 是一个开关电源级,随后是一个解调滤波器,频率响应将取决于负载。为了解决这个问题,在开关级和输出滤波器周围添加了一个简单的无源导线网络,如图 2.15 所示。这个电路取代了图 2.14 中的 。现在放大器有两个反馈回路:一个条件稳定的内部回路,用于使频率响应

of the power stage and demodulation filter insensitive to load variations, and an outer loop to increase loop gain in the audio band.
功率阶段和解调滤波器对负载变化不敏感,以及在音频带宽内增加闭环增益的外环。
Figure 2.15: Output stage with passive lead network.
图 2.15:带有被动导线网络的输出阶段。
Note that any control network that provides enough loop gain to make the frequency response of the output stage relatively insensitive to load variations and is unconditionally stable will be sufficient for the inner loop. Figure 2.15 simply shows a very simple implementation.
请注意,任何提供足够回路增益以使输出级的频率响应对负载变化相对不敏感,并且无条件稳定的控制网络将足以满足内部环路的要求。图 2.15 只是简单地展示了一个非常简单的实现方式。

2.5.2 Loop Filter Saturation
2.5.2 循环滤波器饱和

Saturation of the loop filter can be implemented in several ways [10]. An operational amplifier (op-amp) loop filter has an inherent saturation limit due to its finite output voltage swing.
闭环滤波器的饱和可以通过几种方式实现[10]。运算放大器(运放)闭环滤波器由于其有限的输出电压摆幅,固有地具有饱和限制。

Scaling the system gains such that the loop filter output voltage is large enough to operate close to this saturation limit is not practical. The op-amp closedloop gain will have to be very large, and the op-amp itself will contribute significantly to distortion.
放大系统以使环路滤波器输出电压足够大,接近这个饱和极限,是不实际的。运算放大器的闭环增益必须非常大,而运算放大器本身将显著贡献到失真中。
Another method is to place back-to-back zener diodes in the op-amp feedback path [20]. However, the non-linear capacitance and leakage current of the zener diodes will introduce distortion even if the clipping circuit is not operating.
另一种方法是在运算放大器反馈路径中并置反向电压二极管 [20]。然而,即使钳位电路不运行,反向电压二极管的非线性电容和泄漏电流也会引入失真。
Figure 2.16 shows an alternative limiting circuit. The loop filter is shown as a simple active RC integrator, but the principle applies to any inverting op-amp circuit. If the op-amp output voltage is positive and high enough will start to turn on, sinking collector current through . The resultant voltage drop across turns on the current mirror consisting of and . The current flowing from the collector of into the virtual ground node of the op-amp reduces the magnitude of the current flowing through the feedback impedance, thereby reducing the magnitude of the op-amp output voltage.
图 2.16 显示了一个替代的限制电路。回路滤波器被表示为简单的主动 RC 积分器,但原理适用于任何反相运算放大器电路。如果运算放大器输出电压为正且足够高, 将开始导通,通过 拉低集电极电流。结果, 上的电压降使由 组成的电流镜导通。从 的集电极流向运算放大器的虚拟地节点的电流减少了反馈阻抗中流过的电流的大小,从而减少了运算放大器输出电压的大小。
Operation is similar for a negative op-amp output voltage. This circuit is not as simple as the zener limiter, but its distortion performance is superior.
操作对于负运算放大器输出电压的情况类似。这个电路不像稳压限幅器那样简单,但其失真性能更优。
Figure 2.16: Transistor-based loop filter saturation circuit.
图 2.16:基于晶体管的环路滤波器饱和电路。
Assuming the transistors and zener diodes are ideal, the onset of saturation occurs at a voltage of
假设晶体管和齐纳二极管是理想的,饱和的开始发生在电压为
where is the zener forward voltage, is the zener reverse voltage and is the transistor base-emitter on-voltage of and . Note that if zener diodes and are omitted, the minimum saturation limit achievable with this circuit is limited by the base-emitter on-voltage of and .
其中, 是齐纳正向电压, 是齐纳反向电压, 的晶体管基极-发射极导通电压。请注意,如果省略齐纳二极管 ,此电路可实现的最小饱和限制将由 的基极-发射极导通电压决定。

2.6 Contribution to Existing Literature
2.6 对现有文献的贡献

The fundamental concepts on which the design is based are not new. However, to the best knowledge of the author, an analogue controlled class-D amplifier design incorporating all of the following concepts and properties, is as yet undocumented:
设计所基于的基本概念并非新颖。然而,据作者所知,将以下所有概念和特性结合在一起的模拟控制类-D 放大器设计尚未有记录。
  • Global (post-filter) feedback
    全球(后过滤)反馈
  • Ripple compensation 涟漪补偿
  • The stabilisation method of [10], adapted to a clocked modulator
    稳定化方法 [10],适用于时钟调制器
  • Design and analysis of the continuous-time control circuit using discrete-time modelling
    连续时间控制电路的设计与使用离散时间建模的分析
These concepts are all essential to realise a control method that achieves the level of performance of the one documented in this thesis.
这些概念都是实现能够达到本论文中记录的方法性能水平的控制方法所必需的。

Chapter 3 第三章

Output Stage Design 输出阶段设计

3.1 Introduction 3.1 引言

Initially the comparator and power stage of a commercial class-D amplifier module was used and very good closed-loop measured results were obtained [22].
最初,使用了商业级 D 类放大器模块中的比较器和功率级,并获得了非常优秀的闭环测量结果 [22]。

Unfortunately, the power stage of the commercial module has a minimum pulse width that results in reduced output at the fairly high switching frequency of 768 kHz . It was therefore decided to design a power stage without this limitation.
遗憾的是,商业模块的功率阶段存在最小脉冲宽度的限制,这导致在相当高的开关频率 768 kHz 下输出降低。因此,决定设计一个没有此限制的功率阶段。
This chapter focuses on the detail design of the power converter. This includes the design of the gate drive circuitry, thermal design and snubber design. Component selection for the demodulation filter is also discussed.
本章专注于功率转换器的详细设计。这包括门驱动电路的设计、热设计和箝位设计。还讨论了解调滤波器的元件选择。

Measurements are presented to confirm the correct operation of the converter.
测量结果呈现以确认转换器的正确运行。

3.2 Overview 3.2 概览

Generally, the converter topology is selected based on power level. In most cases a halfbridge topology is the most economical and compact choice. For large power levels where the voltage stress on the switches becomes significant, a full-bridge topology will be more appropriate.
通常,转换器拓扑结构是根据功率级别选择的。在大多数情况下,半桥拓扑是最经济和紧凑的选择。对于大功率级别,当开关上的电压应力变得显著时,全桥拓扑将更为合适。

For the purposes of this project a high power amplifier is not required and therefore a half-bridge topology was selected.
为了本项目的需要,并不需要使用高功率放大器,因此选择了半桥拓扑结构。
Figure 3.1 shows a simplified half-bridge power stage with an LC demodulation filter and output load . For the design of the converter we assume a resistive load equal to the nominal impedance of the loudspeaker. This will typically be or . The loudspeaker is, of course, not purely resistive and in the control design chapter the effect of a non-resistive load will be considered.
图 3.1 显示了一个带有 LC 解调滤波器和输出负载的简化半桥功率阶段。对于转换器的设计,我们假设负载电阻等于扬声器的名义阻抗。这通常为 。当然,扬声器并非纯电阻性,在控制设计章节中将考虑非电阻性负载的影响。
The half-bridge topology requires the use of a split-supply to deliver a ground-referenced output signal with no DC component to the load. In some implementations a half-bridge
半桥拓扑需要使用分立电源来提供与负载无关直流分量的参考地面输出信号。在某些实现中,半桥
Figure 3.1: Half-bridge topology.
图 3.1:半桥拓扑。
power stage is operated from a single supply [23]. However, this requires the use of an output DC blocking capacitor in series with the load.
功率阶段从单一电源运行[23]。然而,这需要在负载上串联使用输出直流阻断电容。

Placing a capacitor in series with the load is less than optimal since it leads to increased levels of distortion [24] and, unless the capacitor value is very large, a modified frequency response.
将电容串联到负载中不如最佳选择,因为它会导致失真水平增加 [24],除非电容值非常大,否则会改变频率响应。

Depending on the power level of the amplifier, the capacitor will also be physically large.
根据放大器的功率级别,电容器也将是物理上较大的。
The drawback when using a split supply is that the gate-drive circuitry operates relative to the negative supply rail. Level-shifting circuitry is needed for the gate-drive circuitry to interface with the control circuitry, which typically operates relative to ground potential.
使用分立电源的缺点是,门驱动电路相对于负电源轨运行。门驱动电路需要级联电路与控制电路接口,而控制电路通常相对于零电位运行。

The IRS20957S integrated half-bridge driver from International Rectifier has a floating PWM input which simplifies the half-bridge implementation [4]. The IRS20957S is selected as gate driver.
国际整流器的 IRS20957S 集成半桥驱动器具有浮动的 PWM 输入,这简化了半桥的实现[4]。选择 IRS20957S 作为门驱动器。
It was decided to operate the power stage from a standard regulated laboratory power supply capable of providing two supply rails of 30 V each. For an ideal power stage this results in a maximum continuous power output of 56.3 W into or 112.5 W into .
决定使用能够提供两个 30V 电源轨的标准稳压实验室电源来操作功率级。对于理想的功率级,这导致最大连续功率输出为 56.3 瓦特进入 或 112.5 瓦特进入
The IRFI4019H-117P integrated half-bridge from International Rectifier is selected for the switching stage. It is specifically designed for class-D audio applications and contains two power MOSFETs connected in a half-bridge configuration in a 5-pin isolated TO-220 package [3].
国际整流器公司选择的 IRFI4019H-117P 集成半桥用于开关阶段。它专门设计用于 D 类音频应用,并包含在隔离的 TO-220 封装中的两个功率 MOSFET,采用半桥配置,共有 5 个引脚 [3]。

Table 3.1 shows some of the characteristic values of the MOSFET.
表 3.1 列出了 MOSFET 的一些特征值。
A drawback of the isolated package is its high thermal resistance of . The amplifier will not be able to deliver a full-scale sinusoidal output voltage continuously to a load, even if the heat-sink was infinitely large. However, unlike with a conventional DC to AC inverter, a class-D amplifier reference signal is normally not a sinusoidal signal, but an audio signal.
孤立式封装的一个缺点是其热阻为 。放大器即使在散热器无限大的情况下,也无法连续向 负载提供全范围的正弦输出电压。然而,与传统的直流到交流转换器不同,类-D 放大器的参考信号通常不是正弦信号,而是一个音频信号。

Due to the dynamic nature of music and speech, the RMS value of a typical audio signal is less than that of a sinusoidal signal with the same peak amplitude.
由于音乐和语音的动态性质,典型音频信号的均方根值小于具有相同峰值幅度的正弦信号。

This assumes that the audio signal is not severely distorted, which is a reasonable assumption in a high-fidelity application. Therefore, for the thermal design of the converter we will assume a full-scale sinusoidal output signal and an load, while for the rest of the design we will assume a load. The resulting amplifier will be perfectly
这假设音频信号没有严重失真,这是一个在高保真应用中合理的假设。因此,在转换器的热设计中,我们将假设输出信号为全幅正弦波,并且为 0#负载,而对于设计的其余部分,我们将假设为 负载。由此产生的放大器将完美地
Table 3.1: IRFI4019H-117P characteristic values [3].
表 3.1:IRFI4019H-117P 特性值 [3]
Parameter 参数 Desciption 描述 Value 价值
Drain-to-source breakdown voltage
源极-漏极击穿电压
150 V 150 伏
Maximum continuous drain current
最大连续漏电流
8.7 A
Maximum pulsed drain current
最大脉冲漏极电流
34 A
Static drain-to-source on-resistance
静态漏极到源极电阻
Gate threshold voltage 门限电压 4.1 V
Maximum total gate charge
最大总门极电荷
20 nC
Gate-to-drain charge 源文本翻译:漏极到栅极电荷 目标文本:漏极到栅极电荷 3.9 nC
Switch charge 开关充电 4.7 nC
Internal gate resistance
内部闸门电阻
Diode forward voltage 二极管正向电压 1.3 V 1.3 伏
Junction-to-case thermal resistance
接头到壳体的热阻
capable of delivering a full-scale audio signal continuously into a load.
能够连续将完整的音频信号输送到 负载。

3.3 Gate Drive Circuitry
3.3 门驱动电路

3.3.1 Overview 3.3.1 概览

Figure 3.2 shows the IRS20957 half-bridge driver and its associated circuitry. Table 3.2 shows some of the characteristic values of the IRS20957. Power is provided to the PWM input circuitry from the positive supply through the combination of resistor and an internal 10.2 V zener diode between pins VDD and VSS. Capacitors and are bypass capacitors. Capacitor determines the start-up delay time and the time it takes the circuit to resume operation after an over-current condition has occurred. Resistors and set the low-side over-current limit and resistors and set the high-side overcurrent limit. Diode and resistor also form part of the high-side current sensing circuitry. Resistors and determine the dead-time setting. The low-side circuitry is powered from a voltage supply referenced to the negative supply rail . Power is provided to the high-side circuitry through the bootstrapping components and , as well as . Diode prevents the voltage at the COM pin from being significantly higher than the voltage at the VSS pin, which would damage the IC. This could happen if the negative voltage supply is missing or if the power MOSFETs fail.
图 3.2 展示了 IRS20957 半桥驱动器及其相关电路。表 3.2 列出了 IRS20957 的一些特性值。PWM 输入电路的功率通过正电源 和电阻 与内部 10.2 V 齐纳二极管(位于 VDD 和 VSS 引脚之间)的组合提供,该齐纳二极管位于 VDD 和 VSS 之间。电容 是旁路电容。电容 决定了启动延迟时间和电路在过电流条件发生后恢复操作的时间。电阻 设置了低侧过电流限制,而电阻 设置了高侧过电流限制。二极管 和电阻 也构成了高侧电流传感电路的一部分。电阻 决定了死区时间设置。低侧电路通过参考负电源轨 的电压电源 供电。高侧电路的功率通过启动组件 以及 提供。二极管 防止 COM 引脚的电压显著高于 VSS 引脚的电压,这可能会损坏集成电路。 这可能发生在负电压供应缺失或功率 MOSFET 失效的情况下。

All diodes are ES1D fast recovery diodes from Fairchild Semiconductor.
所有二极管均为 Fairchild 半导体的 ES1D 快速恢复二极管。

3.3.2 Bootstrap Components
3.3.2 框架组件

When conducts, the bootstrap capacitor is charged by the low-side supply through the bootstrap diode . The stored energy in the bootstrap capacitor then
执行时,启动电容器 通过启动二极管 由低侧电源 充电。然后,存储在启动电容器中的能量被释放。
Figure 3.2: IRS20957S gate driver implementation.
图 3.2:IRS20957S 门驱动器实现。
Table 3.2: Gate driver characteristic values [4].
表 3.2:门驱动特性值 [4]
Parameter 参数 Description 描述 Value 价值
Maximum high side floating supply voltage
最大高侧浮点供电电压
214 V
Maximum high side under-voltage threshold
最大高压侧欠电压阈值
9 V
High side quiescent current
高侧静止电流
1 mA
Low side quiescent current
低侧静止电流
3 mA
Gate driver output impedance
门驱动输出阻抗
powers the high-side gate-drive circuitry when is off.
关闭时,为高压侧门驱动电路提供电源。
The situation might occur where the bootstrap capacitor is not fully charged and the control loop wants the top switch to be on and the bottom switch to be off. This could happen during start-up when the loop has not yet stabilised.
情况可能发生在启动电容未完全充电,而控制回路希望顶部开关 处于开启状态,底部开关 处于关闭状态。这种情况可能发生在启动过程中,当回路尚未稳定时。

If the loop enters this condition it is likely to stay there indefinitely, since the bootstrap capacitor can only charge while the bottom switch is on, but the control loop is trying to turn on the top switch.
如果循环进入此条件,它可能无限期地停留在那里,因为启动电容只能在下部开关开启时充电,但控制循环却试图开启上部开关。

The IRS20957S contains an internal 15.3 V zener diode clamp between pins VB and VS. Connecting a resistor between and pin VB allows the bootstrap capacitor to be charged even if is not conducting. Resistor should be small enough to supply the necessary current to the bootstrap capacitor and high-side circuitry, and large enough that it does not drain significant charge from the bootstrap capacitor when is on. Assuming both switches and are off and the amplifier output voltage is at 0 V , the maximum value of is given by
IRS20957S 在引脚 VB 和 VS 之间包含一个内部 15.3V 稳压二极管钳位。在引脚 和 VB 之间连接一个电阻器 允许在引脚 不导通时,通过电容器充电。电阻器 的大小应该足够提供给电容器和高侧电路所需的电流,同时在 开启时,它不会从电容器中抽取大量的电荷。假设两个开关 都关闭,放大器输出电压为 0V, 的最大值由以下给出:
where is the internal zener diode clamp voltage. With and , we get . Charging resistor is chosen as . When conducts, the current flowing from the bootstrap capacitor into is approximately
其中 是内部齐纳二极管箝位电压。通过 ,我们得到 。充电电阻 选择为 。当 导通时,从启动电容流入 的电流大约为
Resistor , which is part of the high-side over-current sensing circuitry and has a value of , also drains charge from the bootstrap capacitor when is on. The current through when is on is approximately
电阻 是高压侧过流检测电路的一部分,其值为 ,当 接通时,它也会从启动电容中放电。当 接通时, 中的电流大约为
Normal procedure is to design for a maximum allowable voltage drop in the bootstrap supply over a switching cycle [25]. However, in an analogue modulator the possibility of over-modulation exists.
正常程序是在开关周期内为倍压供电的最大允许电压降设计 [25]。然而,在模拟调制器中,过调制的可能性存在。

During over-modulation the switches will remain in a certain state for more than one switching cycle, and the bootstrap capacitor needs to have enough stored charge to power the high-side circuitry during this time.
在过调制期间,开关将在某一状态持续超过一个开关周期,此时,启动电容需要有足够的存储电荷来为高侧电路供电这段时间。

The amount of time spent in this condition depends on the degree of over-modulation and the frequency of the modulator input reference waveform.
在这种情况下的时间花费取决于过调制的程度和调制器输入参考波形的频率。

For the bootstrap capacitor design we will assume a worst-case scenario in which the modulator is severely over-modulated with a 10 Hz reference signal. In this situation the bootstrap capacitor has to power the high-side circuitry for 50 ms .
对于启动电容的设计,我们将假设最坏的情况,即调制器严重过调制,使用 10 Hz 参考信号。在这种情况下,启动电容需要为高压电路供电 50 毫秒。
The value of the bootstrap capacitor is given by
bootstrap 电容器的值由给出
where is the charge drawn from the capacitor while is on and is the bootstrap supply voltage drop due to the reduction in the capacitor charge. Due to the long on-time of the charge drained from will be dominated by the quiescent current supplied by the bootstrap capacitor while is on. The charge is therefore approximately given by
开启时从电容器抽取的电荷为 ,而 是由于电容器电荷减少导致的自举供电电压下降。由于 的长开启时间,从 抽取的电荷主要由自举电容器提供的静止电流主导,当 开启时。因此,电荷 大约由以下给出:
where is the high-side supply quiescent current and is the time that is on. For and , we get .
高侧电源静电流 开启时间 。对于 ,我们得到
The maximum allowable voltage drop in the bootstrap supply is given by
Boost 电源允许的最大电压降由以下给出
where is the bootstrap diode forward voltage, is the maximum low-side MOSFET drain current, is the low-side MOSFET on-resistance and is the maximum under-voltage-lockout voltage of the high-side driver. The maximum drain current is equal to the maximum amplifier output current, which for a load is . For and , we get . Substituting and into (3.3.4), we get . This is the absolute minimum required bootstrap capacitor value and it is recommended that the actual bootstrap capacitor be made significantly larger [26]. Capacitor is chosen as the parallel combination of a electrolytic and a 100 nF ceramic capacitor.
源文本翻译为简体中文如下: 其中, 是启动二极管正向电压, 是低侧 MOSFET 漏极的最大电流, 是低侧 MOSFET 的导通电阻, 是高侧驱动器的最大欠压锁定电压。最大漏极电流 等于最大放大器输出电流,对于 负载,其值为 。对于 ,我们得到 。将 代入(3.3.4),我们得到 。这是绝对最小所需的启动电容值,建议实际的启动电容应显著大于此值 [26]。电容 选择为 电解电容和 100 nF 陶瓷电容的并联组合。

3.3.3 Low-Side Voltage Supply
3.3.3 低侧电压供应

The low-side drive circuitry of the requires a voltage supply referenced to the negative supply rail . The supply is shown as a battery in Figure 3.2 and is realised by the simple linear regulator circuit of Figure 3.3 [27]. Resistor biases the
低侧驱动电路的 需要一个参考负电源轨的电压供电 供电在图 3.2 中表示为电池,并由图 3.3 中的简单线性调节电路实现[27]。电阻器 用于偏置
Figure 3.3: Low-side supply.
图 3.3:低侧 供电。
zener diode . The voltage over the zener is buffered by a PZT2222A NPN transistor . Capacitor is a decoupling capacitor consisting of the parallel combination of a electrolytic and 100 nF ceramic capacitor. Resistor limits the collector and emitter current of the transistor. The output voltage is equal to
齐纳二极管 。齐纳上的电压由 PZT2222A NPN 晶体管 缓冲。电容 是由电解电容和 100 nF 陶瓷电容并联组合而成的去耦电容。电阻 限制了晶体管的集电极和发射极电流。输出电压 等于
where is the zener voltage and is the base-emitter on-voltage of is chosen as a 13 V zener, which results in an output voltage of if we assume .
其中 是齐纳电压, 是基极发射极导通电压, 选择为 13V 齐纳二极管,如果我们假设 ,这将导致输出电压为
The maximum average output current that the supply has to deliver is approximately given by
电源必须提供的最大平均输出电流 大约由 给出
where is the low-side quiescent supply current. For , and , we get . If we assume a worst-case transistor current gain of , the minimum required zener diode bias current is
其中 是低侧静止电源电流。对于 ,我们得到 。如果我们假设最坏情况下的晶体管电流增益为 ,所需的最小稳压二极管偏置电流为
and the maximum value of the bias resistor is
偏置电阻在 0#时的最大值为
We choose . Assuming transistor is ideal, the value of the current limiting resistor is given by
我们选择 。假设晶体管 是理想的,限流电阻 的值由以下给出:
where is the maximum allowable capacitor inrush current. Choosing limits the inrush current to 300 mA .
其中 是允许的最大电容涌流电流。选择 可将涌流电流限制为 300 mA。
The current limiting resistor is effectively in series with the load, and its power dissipation has to be considered. Worst-case power dissipation in is . is chosen as an 0102 MELF resistor, which has a power rating of 200 mW .
当前限制电阻器 负载串联,其功率损耗需要考虑。 下最坏情况的功率损耗为 。选择 作为 0102 MELF 电阻器,其功率等级为 200 mW 。
The power dissipation in is given by
的功率损耗由以下给出:
The junction temperature of will increase by
的接点温度将增加
where is the junction-to-ambient thermal resistance of the transistor package. For the SOT223 package of the PZT2222A, . From (3.3.14) it follows that . This is a significant, though not destructive, temperature rise and can be lowered by connecting a thermal copper plane on the PCB to the collector pad of the package.
其中 是晶体管封装的结-环境热阻。对于 PZT2222A 的 SOT223 封装, 。从(3.3.14)可知, 。这是一个显著的,但并非破坏性的温度升高,并可以通过在 PCB 上连接一个热铜平面到封装的集电极垫来降低。
The charge in the low-side supply decoupling capacitor is continuously replenished by the supply. Consequently, it does not have to be as large as the bootstrap capacitor. is chosen to consist of a electrolytic capacitor in parallel with a 100 nF ceramic capacitor. Diode ensures that the bootstrap capacitor does not receive its energy from the low-side supply decoupling capacitor , but only from .
低侧电源去耦电容器 的电荷由 电源持续补充,因此它不需要像启动电容器那样大。 电解电容器与 100 nF 的陶瓷电容器并联组成。二极管 确保启动电容器不会从低侧电源去耦电容器 获取能量,而是仅从 获取能量。

3.3.4 Gate Resistors 3.3.4 门电阻

Figure 3.4 shows a graph of gate charge versus gate-to-source voltage for the IRFI4019H117P MOSFET.
图 3.4 显示了 IRFI4019H117P MOSFET 的门电荷与门极-源极电压的关系图。
Figure 3.4: IRFI4019H-117P gate charge versus gate-to-source voltage [3].
图 3.4:IRFI4019H-117P 的门电荷与门极-源极电压的关系[3]。
The MOSFET voltage fall time is given by [28]
MOSFET 的电压下降时间由[28]给出
where is the total gate resistance, is the high level output voltage of the gate driver and is the switching-point voltage as defined in Figure 3.4. The MOSFET voltage rise time is given by [28]
其中, 是总门极电阻, 是门极驱动器的高电平输出电压, 是在图 3.4 中定义的开关点电压。MOSFET 电压上升时间由 [28] 给出。
Where is the low level output voltage of the gate driver. The total gate resistance is the sum of the gate driver output resistance , the external gate resistor and the internal gate resistance of the MOSFET. The high level output voltage is 1.4 V lower than the voltage at pin VCC and the low level output voltage is . In this case
源电压 是门驱动器的输出电压。总门电阻 是门驱动器输出电阻 、外部门电阻 和 MOSFET 内部门电阻 的总和。高电平输出电压 比 VCC 引脚的电压低 1.4V,低电平输出电压是 。在这种情况下
Theoretically, reducing the MOSFET switching transition times will reduce openloop distortion [5]. However, faster switching transitions will lead to increased radiated EMI.
理论上,降低 MOSFET 开关转换时间可以减少开环失真[5]。然而,更快的开关转换将导致增加的辐射 EMI。

When EMI from the power stage couples into the analogue modulator self-pollution occurs, resulting in increased distortion at larger values of modulation. The gate resistors are therefore not designed to yield the fastest possible switching times.
当功率阶段的 EMI 耦合到模拟调制器时,自污染发生,导致调制值较大时失真增加。因此,门电阻并不是设计用于提供尽可能快的切换时间。

It was decided to design for voltage rise and fall times of around 25 ns . Choosing results in and .
决定设计电压上升和下降时间为大约 25 ns。选择 导致

3.3.5 Miscellaneous 3.3.5 其他

Capacitor sets the start-up time of the IRS20957S, as well as the self-reset time after an over-current condition. The data sheet recommends a value of , which gives a start-up time of 714 ms and a self-reset time of 1.122 s .
电容器 设置 IRS20957S 的启动时间以及过电流条件后的自我复位时间。数据表建议使用 的值,这将给出启动时间为 714 毫秒和自我复位时间为 1.122 秒。
Resistors and set the gate driver blanking time. To avoid a negative dead-time and consequent cross-conduction of the power MOSFETs, the blanking time has to be greater than and . Choosing and sets the blanking time to 35 ns . It should be noted that in an amplifier design in which audio performance has a higher priority than efficiency a certain amount of transistor cross-conduction is tolerated.
电阻器 设置门驱动器的延时时间。为了避免负的死时间以及随之而来的功率 MOSFETs 的交叉导通,延时时间必须大于 。选择 将延时时间设置为 35 ns 。应该注意,在音频性能优先于效率的放大器设计中,可以容忍一定程度的晶体管交叉导通。

The blanking time of 35 ns is only an initial value and the final value will be determined through measurement.
屏蔽时间为 35ns 只是一个初始值,最终值将通过测量来确定。
Resistors and set the low-side current limit; and set the high-side current limit. The current limit was chosen to be 10 A. Choosing , and sets the low-side and high-side current limits to 10.24 A and 9.86 A , respectively. Resistor and diode prevents high voltages reaching the CSH pin when is on.
电阻器 设置低侧电流限制; 设置高侧电流限制。电流限制被选择为 10 A。选择 将低侧和高侧电流限制设置为 10.24 A 和 9.86 A 分别。电阻器 和二极管 防止当 接通时 CSH 引脚出现高电压。
Power is provided to the floating PWM input circuitry through resistor and the internal zener diode clamp, as shown in Figure 3.5. Resistor is chosen as , based on the recommendations in the data sheet [4]. is chosen as a electrolytic in parallel with a 100 nF ceramic capacitor.
电源通过电阻器 和内部齐纳二极管箝位提供给浮点 PWM 输入电路,如图 3.5 所示。根据数据手册[4]的建议,选择电阻器 。选择一个 并联一个 100 nF 的陶瓷电容的电解电容作为

3.4 MOSFET Power Loss
3.4 MOSFET 功率损耗

For power loss calculations, the inductor current is approximated by a current source with value
对于功率损失计算,电感电流通过具有特定值的电流源进行近似
where is the peak value of the sinusoidal load current and is the frequency of the amplifier output signal. Figure 3.6 shows the idealised current through switch , if it is assumed that the parasitic diode of the MOSFET does not become forward biased due
其中 是正弦负载电流的峰值, 是放大器输出信号的频率。图 3.6 显示了假设 MOSFET 的寄生二极管未正向偏置时开关 的理想电流。
Figure 3.5: IRFI4019H-117P floating input voltage supply [3].
图 3.5:IRFI4019H-117P 浮置输入电压供电[3]。
to the voltage drop over . When the amplifier delivers a 30 V output signal into a load the voltage drop over is . This is less than the diode forward voltage of 1.3 V. It is assumed that the conduction loss of the diodes are negligible compared to the conduction loss of the MOSFETs, since the diodes only conduct during dead-time. Ideal diodes are assumed.
将电压降设置为 。当放大器向 负载输出 30 V 信号时, 上的电压降为 。这小于二极管的正向电压 1.3 V。假设二极管的传导损耗相对于 MOSFET 的传导损耗可以忽略不计,因为二极管仅在死时间期间导通。假设二极管是理想的。
Figure 3.6: Current through MOSFET with a sinusoidal current source as load.
图 3.6:MOSFET 在正弦波电流源作为负载时的电流。

3.4.1 Conduction Loss 3.4.1 传导损耗

The power dissipated in MOSFET due to its non-zero on-resistance is given by
由于 MOSFET 的非零导通电阻 ,在 MOSFET 中由于功率损耗给出的公式为
where is the RMS current through the MOSFET. Figure 3.7 shows the square of the current through over three switching cycles. Each pulse is approximated by a rectangular pulse when calculating the area of a pulse, as indicated in Figure 3.7.
其中 是 MOSFET 中的 RMS 电流。图 3.7 显示了在三个开关周期内通过 的电流的平方。在计算脉冲面积时,每个脉冲近似为矩形脉冲,如图 3.7 所示。
Figure 3.7: Square of the current through MOSFET with a sinusoidal current source as load. Three switching cycles are shown.
图 3.7:MOSFET 在正弦电流源作为负载时的电流平方。显示了三个开关周期。
The area of rectangular pulse is given by
矩形脉冲 的面积 由以下给出: Translated Text: 矩形脉冲 的面积 给出如下:
where 在哪里
Consequently, the average value of , or the square of the RMS current through , is approximately given by
因此, 的平均值,或者通过 的 RMS 电流的平方,大约由以下给出:
where is the number of switching cycles during time . Equation (3.4.5) can be approximated by the integral [29]
在时间 期间的切换周期数量 。方程(3.4.5)可以近似为积分[29]
Substituting (3.4.7) into (3.4.2) we obtain
将(3.4.7)代入(3.4.2),我们得到

3.4.2 Switching Loss 3.4.2 切换损耗

Figure 3.8 shows the current through with a sinusoidal current source as load for three switching cycles. Figure 3.9 shows the idealised MOSFET turn-on and turn-off transitions. During time and the switch has both a voltage over it and a current through it.
图 3.8 显示了在正弦电流源作为负载的三个开关周期中,通过 的电流情况。图 3.9 展示了理想化的 MOSFET 开通和关断过渡。在时间 期间,开关在上面有电压,并且有电流通过。
Figure 3.8: Current through MOSFET with a sinusoidal current source as load. Three switching cycles are shown.
图 3.8:MOSFET 在正弦电流源作为负载时的电流。显示了三个开关周期。
(a)
(b)
Figure 3.9: Idealised MOSFET switching waveforms during (a) turn-on and (b) turn-off.
图 3.9:理想化的 MOSFET 开关波形,在(a)开启和(b)关断期间。
Assuming ideal diodes, the energy dissipated in a switching cycle is approximately given by
假设理想的二极管,一个开关周期中消耗的能量大约由以下给出:
where and are the on- and off transition times of the MOSFET, respectively. The average switching loss is the average energy dissipated over time . It therefore follows
其中 分别是 MOSFET 的开关转换时间,一个是开启时间,另一个是关闭时间。平均开关损耗是在时间 内平均消耗的能量。因此,它遵循

that 
In the negative half-cycle of diode is forced into conduction during dead-time, limiting the voltage over to the forward voltage of the diode. Consequently, the switching energy dissipated in during the negative half-cycle of is negligible compared to that of the positive half-cycle. Therefore, unlike with the calculation of the conduction loss, is now the number of switching cycles during time . Equation (3.4.10) can be approximated by the integral
二极管的负半周期中, 在死时间期间被强迫导通,限制了 上的电压到二极管的正向电压。因此,在 的负半周期中, 上的开关能量损耗与正半周期相比可以忽略不计。因此,与导通损耗的计算不同, 现在是在时间 内的开关周期数。式(3.4.10)可以近似为积分
The switching transition times are approximately given by [28]
切换过渡时间大约由[28]给出
and 
where is the switching charge, is the total gate resistance, is the gate driver output-high voltage and is the switching point voltage as defined in Figure 3.4.
开关电荷 ,总栅极电阻 ,栅极驱动输出高电压 ,以及在图 3.4 中定义的开关点电压

3.4.3 Total Dissipation 3.4.3 总耗散

The total dissipation is the sum of the conduction loss and switching loss. Table 3.3 shows the values required for the calculation. A full-scale output voltage into an load results in a peak output current of .
总损耗是传导损耗和开关损耗的总和。表 3.3 列出了计算所需的数据。将全幅输出电压施加到 负载上,导致峰值输出电流为
Table 3.3: Circuit and MOSFET parameter values.
表 3.3:电路和 MOSFET 参数值。
Parameter 参数 Value 价值
30 V 30 伏
3.75 A
768 kHz
4.7 nC
10.4 V
5.6 V 5.6 伏
From (3.4.8), we calculate . From (3.4.12), (3.4.13) and (3.4.14), we obtain . The total power dissipated in is therefore
从(3.4.8),我们计算得到 。从(3.4.12)、(3.4.13)和(3.4.14),我们得到 。因此,在 中消耗的总功率为
Due to the symmetry of the reference waveform the power dissipation of both MOSFETs are the same, thus . The total dissipation in the package is .
由于参考波形的对称性,两个 MOSFET 的功率损耗相同,因此 。封装中的总损耗为

3.5 Heat-sink Design 3.5 散热器设计

The transistor junction temperature rise due to the power dissipated in the MOSFET package is given by [14]
MOSFET 封装中耗散的功率导致的晶体管结温上升由[14]给出
where is the total power dissipated in the package, and and are the junction-to-case, case-to-sink and sink-to-ambient thermal resistances of the package, respectively. If we design for a maximum temperature rise of and estimate , the minimum required thermal resistance of the heat-sink is . This is approximately the thermal resistance of a aluminium plate of 1 mm thickness. Due to the circuit layout the actual heat-sink is smaller than this.
源文本:其中, 是封装中消耗的总功率, 分别是封装的结到外壳、外壳到散热器和散热器到环境的热阻。如果我们设计的最大温度升高为 ,并估计 ,则所需的最小热阻为 。这大约相当于厚度为 1mm 的 铝板的热阻。由于电路布局,实际的散热器比这要小。 翻译文本:其中, 是封装中消耗的总功率, 分别是封装的结到外壳、外壳到散热器和散热器到环境的热阻。如果我们设计的最大温度升高为 ,并估计 ,则所需的最小热阻为 。这大约相当于厚度为 1mm 的 铝板的热阻。由于电路布局,实际的散热器比这要小。

However, the heat-sink has an L-shape and provision is made to attach an off-board heat-sink to one of the sides of the on-board heat-sink, thereby decreasing the overall thermal resistance.
然而,散热器呈 L 形,并设有附件,可以在板上散热器的一侧连接外部散热器,从而降低整体热阻。

3.6 Snubber Design 3.6 阻尼器设计

The resonance caused by the parasitic series inductance and parallel output capacitance of each MOSFET leads to overshoot and ringing of the switching waveform. This in turn leads to greater stress on the switches and increased EMI.
parasitic 串联电感和每个 MOSFET 的并联输出电容引起的共振导致了开关波形的过冲和振铃现象。这进而增加了开关的应力并导致了更多的电磁干扰。

The voltage overshoot will not damage the IRFI4019-117P MOSFETs, since their voltage ratings are substantially larger than the voltages in the circuit. However, the increased EMI will lead to increased distortion in the analogue modulator due to self-pollution.
电压过冲不会损害 IRFI4019-117P MOSFET,因为它们的电压额定值远大于电路中的电压。然而,增加的 EMI 会导致模拟调制器中的自污染增加,从而导致失真增加。
A simple RC snubber is added over each MOSFET to absorb the energy stored in the parasitics.
在每个 MOSFET 上添加一个简单的 RC 缓冲器,以吸收寄生元件中存储的能量。

When the snubber resistor is selected to be equal to the characteristic impedance of the resonant circuit the resonance is critically damped, and theoretically there will be no overshoot [31]. The snubber capacitor must be larger than the parasitic
当消弧电阻被选择为谐振电路的特征阻抗相等时,谐振被临界阻尼,理论上将不会出现超调[31]。消弧电容必须大于寄生电容。

capacitance, which is normally dominated by the output capacitance of the MOSFET. The characteristic impedance of the resonant circuit is given by
电容,通常由 MOSFET 的输出电容 主导。谐振电路的特性阻抗由给出。
where is the series inductance of the MOSFET. The parasitic series inductance includes the inductance of tracks and vias and the internal inductance of the package, and is estimated to be . With , we get .
其中 是 MOSFET 的串联电感。寄生串联电感包括轨道和过孔的电感以及封装的内部电感,估计为 。使用 ,我们得到
Ideally, the snubber capacitor should be able to store the energy stored in the parasitic inductance [33]. This means that
理想情况下,箝位电容应该能够存储寄生电感[33]中存储的能量。这意味着,
For and , (3.6.2) evaluates to . We have already stated that the snubber capacitor should be larger than the MOSFET output capacitance of , so (3.6.2) will be satisfied. However, we also need to consider the power dissipation in the snubber resistor when choosing a snubber capacitor value.
对于 ,(3.6.2) 的值为 。我们已经指出,箝位电容应该大于 MOSFET 输出电容的 ,因此(3.6.2)将得到满足。然而,在选择箝位电容值时,我们还需要考虑箝位电阻上的功率损耗。
The worst-case power dissipated in the snubber resistor can be estimated by [31]
承受钳位电阻中可能产生的最大功率损耗可以通过[31]进行估算
According to [31] the optimal value for the snubber capacitor is approximately three times the MOSFET output capacitance, which in this case gives a snubber capacitor of 291 pF .
根据[31],箝位电容的最佳值大约是 MOSFET 输出电容的三倍,这在这种情况下给出箝位电容为 291 pF。

A snubber capacitor of 291 pF will result in 805 mW being dissipated in the snubber resistor, which is too high. This is mainly due to the high switching frequency. The snubber capacitor was chosen as . This gives a dissipation of 418 mW in the snubber resistor. The snubber resistor was chosen as the parallel combination of two 0805 0.25 W Panasonic anti-surge resistors, effectively creating a resistor. Note that the snubber capacitor has to withstand a voltage of .
一个 291 pF 的吸收电容会导致在吸收电阻中消耗 805 mW 的功率,这个数值太高。主要原因是开关频率过高。选择的吸收电容为 。这使得在吸收电阻中消耗的功率为 418 mW。选择的吸收电阻是两个 0805 0.25 W 的松下防浪涌电阻的并联组合,实际上形成了一个 的电阻。请注意,吸收电容需要承受 的电压。

3.7 Demodulation Filter 3.7 解调滤波器

The PWM signal produced by the power switching stage contains an amplified version of the reference (audio) signal, as well as harmonics of the switching frequency and their associated side-bands [5].
功率开关阶段产生的 PWM 信号包含参考(音频)信号的放大版本,以及开关频率的谐波及其相关的旁瓣 [5]。

The purpose of the demodulation filter is to remove the energy outside the audio band from the PWM signal.
解调滤波器的目的是从 PWM 信号中去除音频带外的能量。
The demodulation filter is commonly realised by a second order LC low-pass filter. Unfortunately, placing a passive filter between the PWM output and the loudspeaker
解调滤波器通常由二级 LC 低通滤波器实现。不幸的是,在 PWM 输出和扬声器之间放置一个被动滤波器会导致信号失真。

introduces several non-idealities into the system. These include a load dependent frequency response, high output impedance and restricted bandwidth. The demodulation filter also introduces distortion, since a ferrite core inductor is inherently non-linear.
在系统中引入了几种非理想性。这些包括负载相关的频率响应、高输出阻抗和受限的带宽。解调滤波器也会引入失真,因为铁氧体芯电感器本质上是非线性的。

In an open-loop or pre-filter feedback design most of these non-idealities are mitigated by increasing the resonant frequency of the filter. However, this reduces the ability of the filter to perform its primary purpose.
在开环或预滤波反馈设计中,通过增加滤波器的谐振频率,可以减轻这些非理想性。然而,这会降低滤波器执行其主要功能的能力。

In a global feedback design the open loop nonidealities are mitigated by the control loop. The result is that the resonant frequency of the demodulation filter can be much lower than in an open loop or pre-filter feedback design.
在全局反馈设计中,开环的非理想性通过控制回路得以减轻。结果是,解调滤波器的谐振频率可以远低于开环或预滤波反馈设计。

Choosing the resonant frequency of the demodulation filter as low as possible is also important from a control perspective. A lower cut-off frequency will result in a lower unity gain crossover frequency, which increases phase margin.
从控制的角度来看,选择解调滤波器的谐振频率尽可能低也很重要。较低的截止频率会导致单位增益交叉频率降低,从而增加相位裕量。
Typically, we want the inductor value to be as small as possible. There are several reasons for this.
通常,我们希望电感值尽可能小。原因有几个。

We want to keep the peak flux density in the inductor core as small as possible to minimise distortion and we want as few turns as possible to minimise parasitic winding capacitance. For a given ferrite core this means that the inductor value should be as low as possible.
我们希望在电感器铁芯中的峰值磁通密度尽可能小,以最小化失真,并希望绕组尽可能少,以最小化寄生绕线电容。对于给定的铁氧体芯,这意味着电感值应该尽可能低。

Furthermore, if the inductor ripple current is large enough that it changes polarity twice during every switching cycle, the distortion resulting from dead-time is much reduced [5].
此外,如果电感器的纹波电流足够大,在每个开关周期内改变极性两次,死时间导致的失真会大大减少 [5]。
For a given resonant frequency a smaller inductor value will necessarily result in a larger capacitor value. However, there is a limit on the physical size and the capacitance value of the capacitor. A physically large capacitor will have a large parasitic inductance.
给定的共振频率下,电感值越小,必然会导致电容值越大。然而,电容的物理尺寸和电容值都有一个限制。物理尺寸大的电容将具有大的寄生电感。

The parasitic parallel capacitance of the inductor and the parasitic series inductance of the capacitor causes the inductor and capacitor to each have a self-resonant frequency. Above these resonant frequencies the capacitor is inductive and the inductor is capacitive.
电感的寄生并联电容和电容的寄生串联电感导致电感器和电容器各自具有自谐振频率。在这些谐振频率以上,电容器表现为电感性,电感器表现为电容性。

Consequently the LC low-pass filter is an LC high-pass filter at high frequencies. From an EMI perspective it is therefore important to minimise these parasitics. This means that we require a physically small capacitor.
因此,在高频时 LC 低通滤波器变成了 LC 高通滤波器。从电磁干扰(EMI)的角度来看,因此重要的是要尽量减少这些寄生效应。这意味着我们需要一个物理上很小的电容器。

A polyester dielectric capacitor is a good choice, since they have good high frequency behaviour and are physically small for a given capacitance value. The problem with polyester capacitors is that their RMS voltage handling capability reduces with frequency.
聚酯介质电容器是一个不错的选择,因为它们在高频行为方面表现出色,并且在给定的电容值下物理体积小。聚酯电容器的问题在于,它们的 RMS 电压处理能力会随着频率的增加而降低。

This phenomenon gets worse for higher capacitance values. This places a limit on the maximum capacitance value and therefore on the minimum inductor value.
这种现象在更高的电容值时会变得更糟。这限制了最大电容值,因此也限制了最小电感值。
Selecting the inductor and capacitor of the demodulation filter is a compromise between all of the aforementioned factors. Three parallel pitch, polyester capacitors are used in the filter. The inductor is a modified version of the inductor found on a commercial UcD180LP class-D module from Hypex Electronics. The UcD180LP inductor has an 18 turn copper foil winding and a nominal value of . Three turns
选择解调滤波器中的电感器和电容器是在上述所有因素之间的权衡。滤波器中使用了三个并联的 间距、聚酯电容器。电感器是 Hypex Electronics 商业 UcD180LP 类-D 模块中发现的电感器的修改版本。UcD180LP 电感器有 18 圈铜箔绕线,名义值为 。三圈

were removed to obtain a value of . Figure 3.10 shows the calculated frequency response of the filter for various output loads. The resonant frequency of the ideal filter is 24.4 kHz and it has a Q factor of 2.57 into an load.
为了获得 的值,移除了某些元素。图 3.10 显示了滤波器在不同输出负载下的计算频率响应。理想滤波器的共振频率为 24.4 kHz,其在 负载下的 Q 因子为 2.57。
Figure 3.10: Calculated frequency response of the ideal demodulation filter for various output loads.
图 3.10:理想解调滤波器在不同输出负载下的计算频率响应。

3.8 Circuit Board Layout
3.8 电路板布局

The high frequency currents associated with a class-D power stage requires us to pay careful attention to the printed circuit board (PCB) layout. An ill-conceived PCB layout will greatly increase EMI.
与类-D 功率阶段相关的高频电流要求我们仔细关注印刷电路板(PCB)布局。构思不当的 PCB 布局会大大增加电磁干扰(EMI)。

There are a few basic principles that have to be adhered to in the PCB design [34]:
在 PCB 设计中必须遵循以下几点基本原则[34]:
  • The PCB should have a single contiguous ground plane.
    印制电路板应有一个单一连续的接地平面。
  • Connections should be kept together.
    连接应保持在一起。
  • Current loop areas should be minimised.
    当前的回路区域应尽量减小。
Figure 3.11 and Figure 3.12 show the top layer and bottom layer of the power stage PCB , respectively. Surface mount components are mounted on the bottom layer and the ground plane is on the top layer.
图 3.11 和图 3.12 分别展示了电源阶段 PCB 的顶层和底层。表面贴装组件安装在底层,地平面位于顶层。
Figure 3.11: Top layer of PCB.
图 3.11:PCB 的顶层。
Figure 3.12: Bottom layer of PCB.
图 3.12:PCB 的底层。

3.9 Adjustments 3.9 调整

This section describes the modifications that were made to the original power stage design after initial measurements were taken.
本节描述了在进行初始测量后,对原始功率级设计所进行的修改。

3.9.1 Dead Time and Gate Resistor Selection
3.9.1 死时间与门电阻的选择

To minimise distortion the final value of the blanking-time is selected by decreasing the dead-time until the contribution of the shoot-through current of the output devices to the idle loss of the amplifier is about of the rated maximum power of the amplifier. For
为了最小化失真,最终的屏蔽时间值通过减少死时间,直到输出设备的漏通电流对放大器的空载损耗的贡献大约是放大器额定最大功率的 ,来选择。

a 100 W amplifier operated from rails, this corresponds to an average current of 33.3 mA drawn from each supply rail. This should be measured through the positive supply rail, because the negative rail also sinks current from the gate driver supply.
一个 100 瓦的放大器从 电源轨运行,这对应于从每个电源轨平均抽取 33.3 毫安的电流。这应该通过正电源轨测量,因为负电源轨也从门驱动 电源抽取电流。
The blanking time of the gate driver was decreased to its minimum value of 15 ns by removing resistor in Figure 3.2. The effective dead-time was further decreased by increasing the value of the gate resistors from to . This reduces the switching time which decreases the effective dead-time. With a blanking time of 15 ns and gate resistors of the average current drawn from the supply due to shoot-through is measured as 32 mA .
通过移除图 3.2 中的电阻器 ,门驱动器的延时时间减少到最小值 15 ns。通过将门电阻器的值从 增加到 ,进一步减少了有效死时间。这减少了转换时间,从而减少了有效死时间。使用 15 ns 的延时时间和门电阻器 ,由于漏通导致从电源抽取的平均电流测量为 32 mA。

3.9.2 Current Limit Setting
3.9.2 当前限制设置

The over-current protection of the IRS20957 gate driver triggered regularly during initial measurements. A factor that was not taken into account during the initial design phase is the decreasing impedance of the demodulation filter capacitor at higher frequencies.
初始测量期间,IRS20957 门驱动器的过流保护定期触发。在初始设计阶段未考虑的一个因素是,随着频率的增加,解调滤波电容的阻抗会降低。

In a conventional design in which the resonant frequency is significantly higher than 20 kHz this is not a problem. However, in this design the resonant frequency of the output filter is 24.4 kHz .
在常规设计中,当谐振频率远高于 20kHz 时,这不是一个问题。然而,在这个设计中,输出滤波器的谐振频率为 24.4kHz。

The current flowing into the filter capacitor becomes significant at higher audio frequencies. In the open loop system this situation is aggravated when the filter is not well damped, for example under no-load conditions.
滤波电容器中的电流在较高的音频频率下变得显著。在开环系统中,当滤波器没有很好地阻尼,例如在空载条件下,这种情况会加剧。
Figure 3.13 (a) shows the calculated magnitude of the input impedance of the demodulation filter as a function of frequency for various output load resistances. Figure 3.13 (b) shows the calculated magnitude response of the demodulation filter. Ideal components are assumed.
图 3.13(a)显示了不同输出负载电阻下的解调滤波器输入阻抗的计算大小作为频率的函数。图 3.13(b)显示了解调滤波器的计算幅频响应。假设理想组件。

The input impedance at 20 kHz is down to for a load and for a load. Figure 3.14 (a) shows the calculated demodulation filter input current for and no feedback. The 10 A current limit of the gate driver is reached at about 12 kHz for a load. For a load resistance of the current at 20 kHz is 20 A , even though the load resistance is very large.
20 kHz 时,对于 负载,输入阻抗降至 ,对于 负载,降至 。图 3.14(a)显示了对于 和无反馈情况的解调滤波器输入电流。门驱动器的 10 A 电流限制大约在 12 kHz 时达到,对于 负载。对于负载电阻为 的情况,在 20 kHz 时电流为 20 A,尽管负载电阻非常大。
Figure 3.14 (b) shows that when the output voltage of the filter is kept constant by a feedback control loop, the situation is markedly different. The filter input current still increases with frequency, but only rises to 10.5 A at 20 kHz for a load and 7.5 A for a load.
图 3.14(b)显示,当滤波器的输出电压通过反馈控制回路保持恒定时,情况大为不同。滤波器的输入电流仍然随频率增加,但在 20 kHz 的负载( )下仅上升到 10.5 A,在 7.5 A 的负载( )下上升到 7.5 A。
It was decided to raise the current limit of the gate driver from 10 A to approximately 15 A . This ensures that the current limiting will not be triggered unnecessary in the closed loop amplifier and it enables the open loop system to be sufficiently measured.
决定将当前门驱动器的电流限制从 10A 提高到大约 15A。这确保了闭环放大器中不会无谓地触发电流限制,同时使开环系统能够得到充分测量。

However, making high power measurements in the upper part of the audio band will not be possible with the open loop power stage. The new values for the current limiting components in
然而,在音频带的上部进行高功率测量将无法使用开环功率阶段。新的电流限制组件值无法实现。
Figure 3.13: (a) Calculated input impedance of the demodulation filter. (b) Calculated magnitude response of the demodulation filter.
图 3.13:(a) 解调滤波器的计算输入阻抗。(b) 解调滤波器的计算幅度响应。
Figure 3.14: Calculated demodulation filter input current for an output voltage of 30 V at 1 kHz for (a) the open loop converter and (b) the closed loop converter.
图 3.14:在输出电压为 30V,频率为 1kHz 时,开环转换器和闭环转换器的解调滤波器输入电流计算结果,(a) 开环转换器,(b) 闭环转换器。
Figure 3.2 are and . This results in a high-side current limit of 14.7 A and a low-side current limit of 15.6 A .
图 3.2 中的 。这导致了高侧电流限制为 14.7 A,低侧电流限制为 15.6 A。

3.10 Open Loop Measurements
3.10 开环测量

The open loop system has to be characterised through measurements before an optimal control loop can be designed. The PWM input signal for the power stage is generated by comparing a sawtooth carrier of frequency and amplitude to a sinusoidal reference waveform. The sawtooth carrier is generated by the FPGA waveform generator described in Chapter 4. A DC offset of 13 mV is added to the carrier
开环系统在设计最优控制环之前,必须通过测量来表征。功率级的 PWM 输入信号通过将频率为 且振幅为 的锯齿波载波与一个正弦参考波形进行比较来生成。锯齿波载波由第 4 章中描述的 FPGA 波形生成器产生。在载波上添加 13 mV 的直流偏置。

to compensate for the unequal on- and off-times of the switches which would otherwise lead to a DC offset in the amplifier output signal. The comparator circuit is discussed in Chapter 7 .
为了补偿开关的开闭时间不均,否则会导致放大器输出信号产生直流偏置。比较器电路在第 7 章中进行了讨论。
Figure 3.15 shows the differential mode amplifier output signal with no applied reference input. With ideal filter components the demodulation filter output signal should be approximately sinusoidal.
图 3.15 显示了没有应用参考输入的差分模式放大器输出信号。理想滤波组件的情况下,解调滤波器输出信号应大致呈正弦波形状。

The measurement shows that this is not entirely the case and some of the high frequency components of the PWM signal are still present in the output signal.
测量结果显示,这并非完全如此,PWM 信号的某些高频成分仍然存在于输出信号中。

These high frequency spikes correspond to the switching transition of the switching stage and will radiate from attached cables and cause EMI. It should be noted, however, that these spikes are small in amplitude ( 20 mV peak-to-peak common mode).
这些高频尖峰对应于开关阶段的转换过程,并将从附接的电缆辐射出来,导致电磁干扰。然而,值得注意的是,这些尖峰的幅度较小(共模峰值到峰值为 20 毫伏)。

There are some class-D amplifiers on the market that perform better in this regard, but there are also some that perform substantially worse [35].
市场上有一些 D 类放大器在这方面表现更好,但也有一些表现明显更差 [35]。
Figure 3.15: Oscilloscope measurement of the amplifier output signal with no input reference signal. Measurement bandwidth is 100 MHz .
图 3.15:无输入参考信号时放大器输出信号的示波器测量。测量带宽为 100 MHz。
Figure 3.16 shows the switching node voltage with and without the RC snubber. Without the snubber there is some overshoot and significant ringing. The snubber effectively reduces the ringing.
图 3.16 显示了带 RC 消弧器和不带 RC 消弧器的开关节点电压。不带消弧器时,存在一些过冲和显著的振铃。消弧器有效地减少了振铃。
The following measurements were performed with an Audio Precision SYS-2722 analyser through an AUX-0025 switching amplifier measurement filter. Unless otherwise stated, the AES-17 20 kHz filter of the analyser was enabled.
以下测量使用 Audio Precision SYS-2722 分析仪通过 AUX-0025 交换放大器测量滤波器进行。除非另有说明,分析仪的 AES-17 20 kHz 滤波器被启用。

To make the measurements between different output loads comparable, power is measured relative to an
为了使不同输出负载之间的测量可比,功率相对于 进行测量
Figure 3.16: Oscilloscope measurement of switching node voltage with and without RC snubber.
图 3.16:带有和不带有 RC 消弧的开关节点电压的示波器测量。
load. Note that this means the actual power into a load is twice the indicated amount.
负载。请注意,这意味着实际加载到 负载的功率是指示量的两倍。
Figure 3.17 shows a measurement of total harmonic distortion and noise (THD+N) as a function of output power for a and . The frequency of the test signal is 1 kHz . A measurement of the commercial power stage is shown in grey for reference. Note the decrease in distortion with an increase in output power at lower power levels.
图 3.17 显示了在输出功率为 时,总谐波失真和噪声(THD+N)的测量结果,作为输出功率的函数。测试信号的频率为 1 kHz。展示了商业功率级的测量结果,以灰色表示供参考。注意,在较低功率水平下,输出功率增加时失真减少。

Normally this shows that the measurement is dominated by noise over the specific power range. For the measurement of Figure 3.17 this is not the case. Figure 3.18 shows an FFT of the output when the amplifier is delivering 100 mW into an load. The measurement is clearly not dominated by noise. The dominant source of distortion, namely dead time distortion, decreases with an increase in [5]. However, at 100 mW the inductor current changes polarity twice during each switching cycle and the distortion due to dead time should be very low [5]. The source of the low-level distortion is unclear.
通常这表明测量在特定功率范围内主要由噪声主导。对于图 3.17 的测量,情况并非如此。图 3.18 显示了放大器向 0#负载输出 100 mW 时的 FFT。测量显然并未主要由噪声主导。失真的主要来源,即死时间失真,随着 的增加而减少[5]。然而,在 100 mW 时,电感电流在每个开关周期中改变极性两次,因此由于死时间导致的失真应该非常低[5]。低水平失真的来源尚不清楚。

Note that the THD +N of the commercial power stage is greater than the designed power stage above 1 W .
请注意,商业功率阶段的 THD +N 在 1 W 以上时大于设计的功率阶段。
Above 10 W there is an increase in even harmonic distortion. This increase in even harmonic distortion is due to the DC offset in the carrier waveform causing unsymmetrical over-modulation.
超过 10W 时,偶次谐波失真增加。这种偶次谐波失真的增加是由于载波波形中的直流偏置导致了不均衡过调制所致。

Self-pollution also contributes to the increase in even harmonic components at higher levels of .
自我污染也导致了更高水平 上偶次谐波成分的增加。
Figure 3.19 shows a measurement of over frequency at 10 W output power. The rise in distortion with frequency for the load is due to the demodulation filter
图 3.19 显示了在 10 瓦输出功率下的频率上的 测量值。随着频率的增加, 负载中的失真上升是由于解调滤波器的原因。
Figure 3.17: Open loop THD +N versus output power for and with a 1 kHz test signal.
图 3.17:在 1 kHz 测试信号下, 的开环 THD +N 与输出功率的关系。
Figure 3.18: FFT of distortion residue with 100 mW into . The suppressed fundamental is at 0 dBV .
图 3.18:100 毫瓦输入到 时的失真残留的 FFT。被抑制的基本频率为 0 分贝伏特。
that amplifies the harmonics at higher frequencies. With a load the filter is better damped and there is less of a rise in distortion with frequency. The drop in distortion at 6.6 kHz is due to the third harmonic falling outside the passband of the AES-17 20 kHz filter.
放大高频处的泛音。在 0 负载下,滤波器的阻尼更好,频率增加时失真较少。在 6.6 kHz 处失真下降的原因是第三阶泛音落在了 AES-17 20 kHz 滤波器的通带之外。

Above 10 kHz all harmonics fall outside the measurement bandwidth and only noise contributes to the THD +N measurement.
在 10 kHz 以上,所有谐波都超出了测量带宽范围,只有噪声对 THD +N 测量做出贡献。
Figure 3.19: Open loop THD+N versus frequency for 10 W into and .
图 3.19:10 瓦输入时, 下的开环 THD+N 与频率的关系。
Figure 3.20 shows the measured frequency response of the open loop amplifier for various output loads. This measurement was performed without the AUX-0025 and AES17 filter. Note that the load is the input impedance of the analyser. The theoretical low-frequency gain of the open loop amplifier is , or 40 dB . The measured gain is in accordance with the theoretical value, although there is some variation in low frequency gain due to the output resistance of the power stage.
图 3.20 显示了开环放大器在不同输出负载下的测量频率响应。此测量未使用 AUX-0025 和 AES17 滤波器。请注意, 负载是分析仪的输入阻抗。开环放大器的理论低频增益为 ,或 40 dB。测量的增益与理论值相符,尽管由于功率级的输出电阻,低频增益存在一些变化。

Most of the output resistance is in series with the filter inductor and is a combination of the resistance of the power supply rail, the on-resistance of the MOSFET and the series resistance of the filter inductor. We model these resistances as a single resistance in series with the filter inductor. The value of can be calculated from the measured change in low frequency amplifier gain due to an applied output load. The value of the equivalent inductor series resistance is .
大部分输出电阻与滤波电感串联,是电源轨电阻、MOSFET 的导通电阻以及滤波电感的串联电阻的组合。我们将这些电阻视为与滤波电感串联的单个电阻 的值可以通过测量施加输出负载时低频放大器增益的变化来计算。等效电感串联电阻的值为
The value of the filter inductor and capacitor was measured as and , respectively. The propagation delay of the comparator and power stage was measured as 160 ns and 122 ns for a rising and falling edge of the switching node voltage, respectively.
滤波电感和电容的值分别测量为 。比较器和功率级的传播延迟分别测量为上升和下降开关节点电压边缘时的 160 ns 和 122 ns。

3.11 Summary 3.11 总结

This chapter discussed all the aspects of the detail design of the output stage. The IRS20957S was selected as gate driver and the IRFI4019H-117P integrated half-bridge as power MOSFET. Total harmonic distortion and noise at 1 kHz was measured as
本章讨论了输出阶段详细设计的所有方面。选择了 IRS20957S 作为栅极驱动器,以及 IRFI4019H-117P 集成半桥作为功率 MOSFET。在 1 kHz 时测量了总谐波失真和噪声,结果为
Figure 3.20: Measured open loop frequency response for various output loads. Bandwidth is .
图 3.20:不同输出负载的测量开环频率响应。带宽为
with 10 W into and with 20 W into . This is not very low, but it should be kept in mind that the output stage is not designed for open loop operation.
将 10 瓦输入到 ,将 20 瓦输入到 。这并不低,但需要记住的是,输出阶段并未设计用于开环操作。

Chapter 4 第四章

Carrier Generator 载波生成器

4.1 Introduction 4.1 引言

It was decided to use an FPGA-based arbitrary waveform generator for carrier generation, since this allows easy manipulation of the carrier waveform. Figure 4.1 shows a blockdiagram of the FPGA-based carrier generator.
决定使用基于 FPGA 的任意波形生成器进行载波生成,因为这允许对载波波形进行容易的操纵。图 4.1 展示了基于 FPGA 的载波生成器的块图。

The carrier data is generated off-line and stored in a lookup table (LUT) in the FPGA. The LUT data is clocked to a high speed parallel input digital to analogue converter (DAC), which converts the digital data to an analogue differential current.
载体数据在离线状态下生成,并存储在 FPGA 中的查找表(LUT)中。LUT 数据被时钟到高速并行输入数字到模拟转换器(DAC),该转换器将数字数据转换为模拟差分电流。

The DAC is followed by a filter and buffer stage that converts the differential current to a differential voltage.
DAC 后面跟着一个滤波和缓冲阶段,将差分电流转换为差分电压。
Figure 4.1: Block-diagram of the FPGA-based carrier generator.
图 4.1:基于 FPGA 的载波生成器的块图。

4.2 FPGA

The programmable logic of the FPGA allows us to retrieve data from the LUT in a single clock cycle, provided that the timing requirements of the FPGA are met.
FPGA 的可编程逻辑允许我们在满足 FPGA 的时序要求的情况下,在单个时钟周期内从查找表检索数据。

The FPGA does not require many logic elements or a large amount of memory, because the carrier is generated off-line and only the data of one cycle is stored in memory. The FPGA is an Altera Cyclone III EP3C10E144C8.
FPGA 不需要许多逻辑元素或大量内存,因为载体是在离线状态下生成的,只有一周期的数据存储在内存中。FPGA 是 Altera Cyclone III EP3C10E144C8。

It is one of the smallest FPGAs in the Cyclone series and has 10320 logic elements, 414 Kb memory and pins [36]. The system clock is a 98.304 MHz low-jitter oscillator from Crystek.
这是 Cyclone 系列中最小的 FPGA 之一,拥有 10320 个逻辑单元,414 千字节的内存和 引脚[36]。系统时钟是一个 Crystek 提供的 98.304 MHz 低抖动振荡器。
The FPGA is configured through a download cable by means of a JTAG interface. The FPGA can also be configured by programming a non-volatile serial configuration device through the JTAG interface.
FPGA 通过 JTAG 接口和下载电缆进行配置。FPGA 还可以通过 JTAG 接口编程非易失性串行配置设备进行配置。

Configuration data is then transferred from the serial configuration device to the FPGA at system start-up.
配置数据然后在系统启动时从串行配置设备传输到 FPGA。

4.3 DAC

The quantization noise of the DAC will be greatly attenuated by the control loop. Hence a high-resolution DAC is not required. However, since this is an experimental system the assumption cannot be made that the entire output range of the DAC will be utilized.
量化噪声 DAC 的量化噪声将通过控制回路大大衰减。因此,不需要高分辨率的 DAC。然而,由于这是一个实验系统,不能假设 DAC 的整个输出范围将被充分利用。

The 12-bit, 165 MSPS, advanced segmentation, DAC902 from Texas Instruments was selected. The DAC902 is also pin-compatible with the 8 -, 10- and 14-bit DAC908, DAC900 and DAC904, respectively.
选择的 12 位、165 MSPS、高级分段的 TI DAC902。DAC902 与 8 位、10 位、14 位的 DAC908、DAC900 和 DAC904 在引脚上兼容。

The DAC902 provides a differential current output, with the fullscale current set to 18.04 mA by an external resistor.
DAC902 提供差分电流输出,全量程电流通过外部电阻设置为 18.04 mA。
The output of the DAC feeds into the differential low-pass filter and output buffer shown in Figure 4.2. The component values for the circuit in Figure 4.2 are shown in Table 4.1. The purpose of the filter is twofold.
DAC 的输出连接到图 4.2 所示的差分低通滤波器和输出缓冲器。图 4.2 中的电路组件值在表 4.1 中显示。滤波器的目的有两个。

Firstly, it converts the differential current output of the DAC to a differential voltage. Secondly, it attenuates unwanted image frequency components present in the DAC output signal and prevents slew-rate limiting of the buffer op-amps.
首先,它将 DAC 的差分电流输出转换为差分电压。其次,它衰减 DAC 输出信号中出现的不需要的图像频率成分,并防止缓冲运算放大器的斜率限制。

The filter is a matched impedance, 5th order, Bessel low-pass filter with a resonant frequency of 30 MHz [37]. The filter converts the 18.04 mA full-scale DAC output current to a 505 mV differential voltage.
滤波器是一个匹配阻抗的 5 阶贝塞尔低通滤波器,具有 30 MHz 的共振频率[37]。滤波器将 18.04 mA 的全尺度 DAC 输出电流转换为 505 mV 的差分电压。
A Bessel filter is chosen, because it has a very good transient response with no overshoot to a pulse input [38].
选择贝塞尔滤波器,因为它对脉冲输入具有非常好的瞬态响应且无过冲现象 [38]。

The superior transient response of the Bessel filter can be seen in Figure 4.3, which shows the calculated output of a Bessel and Butterworth filter with a sawtooth as input. The downside of a Bessel filter is its slow rate of attenuation above the cut-off frequency [38].
贝塞尔滤波器的优越瞬态响应如图 4.3 所示,图中显示了以锯齿波作为输入时,贝塞尔滤波器和巴特沃斯滤波器的计算输出。贝塞尔滤波器的缺点是其在截止频率以上衰减速率较慢 [38]。

The image frequency components present in the DAC output signal will therefore not be as well rejected as would be the case for a Butterworth or Chebychev filter of the same order. This is not a problem, because the comparator itself has a finite
DAC 输出信号中的图像频率成分因此不会像 Butterworth 或 Chebychev 滤波器(相同阶数)那样很好地被拒绝。这不是一个问题,因为比较器本身具有有限的特性。
Figure 4.2: DAC output filter and buffer.
图 4.2:DAC 输出滤波器和缓冲器。
Table 4.1: Component values for the DAC post-filter and buffer.
表 4.1:DAC 后滤波器和缓冲器的组件值。
Component 组件 Value 价值
220 nH 220 微亨
12 pF
120 pF 120 法拉 (fǎlā)
18 pF 18 微微法拉
82 pF 82 法拉
bandwidth and will not respond to the very high frequency content in the carrier signal. For example, the LM306 comparator used in this design has an approximate bandwidth of 18.5 MHz [1]. Figure 4.4 shows the calculated frequency response of the DAC output filter.
带宽,并且不会响应载体信号中的非常高频内容。例如,本设计中使用的 LM306 比较器的约带宽为 18.5 MHz [1]。图 4.4 显示了 DAC 输出滤波器的计算频率响应。
Refer to Figure 4.2. is an OPA2690 high-bandwidth, low noise, dual op-amp from Texas Instruments. Resistors and isolate the inverting input capacitance from the output pin and provides DC-bias current cancellation [39].
参考图 4.2。 是德州仪器公司的高带宽、低噪声双运算放大器 OPA2690。电阻器 隔离反相输入电容与输出引脚,并提供直流偏置电流抵消[39]。
A capacitive load decreases the phase margin of an op-amp due to an additional pole in the feedback path created by the output resistance of the op-amp and the capacitive load [40]. Resistor shifts the pole and introduces a zero that cancels the phase lag of the capacitive pole, thereby improving stability [39]. The data sheet of the OPA2690 provides a graph of the recommended resistance value for a specified load capacitance.
电容性负载由于运算放大器输出电阻和电容性负载在反馈路径中创建的额外极点,导致运算放大器的相位裕度降低[40]。电阻器 移动了极点并引入了一个零点,以抵消电容性极点的相位滞后,从而改善稳定性[39]。OPA2690 的数据表提供了针对指定负载电容推荐的电阻值的图表。

The lower the load capacitance, the higher the recommended resistance value. The carrier generator will not drive a very large capacitive load. To minimise the required output resistance, we intentionally increase the load capacitance by adding and . Note that
负载电容越低,推荐的电阻值越高。载波生成器不会驱动非常大的电容负载。为了最小化所需的输出电阻,我们故意通过添加 增加负载电容。请注意,
Figure 4.3: Filtered sawtooth signal for a 5th order Bessel and Butterworth filter.
图 4.3:5 阶贝塞尔和巴特沃斯滤波器的过滤锯齿波信号。
Figure 4.4: Frequency response of the DAC output filter.
图 4.4:DAC 输出滤波器的频率响应。
the addition of and , and and , reduces the bandwidth of the buffer stage. Choosing and limits the bandwidth of the buffer stage to 88 MHz . This will not have a significant impact on the carrier signal.
在缓冲阶段中添加 ,以及 ,减少了缓冲阶段的带宽。选择 将缓冲阶段的带宽限制为 88 MHz。这不会对载波信号产生显著影响。
It should be noted that the output current of the DAC is limited to positive values only. The output voltage will therefore have a common-mode DC-offset. However, this should not be a problem as we are working differentially.
应指出,DAC 的输出电流仅限于正值。因此,输出电压将具有共模直流偏置。然而,这不应该成为问题,因为我们正在差分工作。

4.4 Power Distribution 4.4 电力分配

The carrier generator PCB contains nine linear voltage regulators, as shown in Figure 4.5. The internal logic and PLL's of the FPGA require a 1.2 V and 2.5 V supply, respectively.
载体生成 PCB 包含九个线性电压调节器,如图 4.5 所示。FPGA 的内部逻辑和 PLL 分别需要 1.2V 和 2.5V 的供电。

The FPGA has eight I/O banks and each I/O bank can operate at a different voltage level depending on the circuitry a particular bank has to interface with. The clock operates at 1.8 V, hence there is a bank. There is also a 3.3 V bank for an expansion interface. It was decided to interface with the DAC through 3 V LVCMOS logic, since the maximum output toggle rate of the 3 V logic is significantly faster than that of the 3.3 V logic [36].
FPGA 拥有八个 I/O 银行,每个 I/O 银行可以根据特定银行需要与之接口的电路的电压水平不同而操作。时钟以 1.8 V 运行,因此有一个 银行。还有一个 3.3 V 银行用于 扩展接口。决定通过 3 V LVCMOS 逻辑与 DAC 接口,因为 3 V 逻辑的最大输出翻转速率明显快于 3.3 V 逻辑 [36]。

The DAC is provided with a 3 V and 5 V digital and analogue supply, respectively. The output buffer op-amps receive a bipolar supply of 5 V per supply rail.
DAC 提供 3V 和 5V 的数字和模拟电源。输出缓冲运算放大器接收每条电源轨提供的 5V 双极电源。
Figure 4.5: Power distribution of the carrier generator board.
图 4.5:承载生成器主板的功率分布。

4.5 Carrier Data Generation
4.5 携带数据生成

With reference to Section 2.4, ripple compensation is implemented by filtering the sawtooth carrier by the loop transfer function and adding the resultant signal to the original sawtooth. Additional filtering is required to cancel the effect of the pre-filtering of the
参考第 2.4 节,通过使用环路传递函数对锯齿波载波进行滤波,并将结果信号添加到原始锯齿波中,实现了纹波补偿。还需要额外的滤波来抵消预滤波的影响。

passive inner control loop, as discussed in Section 5.2. The details of the filtering transfer function is discussed in Section 7.9. For now we will assume the sawtooth carrier has to be filtered by an arbitrary transfer function . The Fourier series of a sawtooth with fundamental frequency is given by [16]
被动内部控制回路,在第 5.2 节中讨论过。滤波传输函数的细节在第 7.9 节中讨论。目前,我们假设锯齿波载波需要通过任意传输函数 进行滤波。频率为 的基本频率的锯齿波的傅里叶级数由[16]给出。
Consequently, the Fourier series of the filtered sawtooth is given by
因此,经过滤波的锯齿波的傅立叶级数表示为
The filtered sawtooth is approximated by calculating the Fourier summation up to . The DAC clock frequency of 98.304 MHz is 128 times the fundamental frequency of the sawtooth. Limiting the Fourier summation to 63 terms ensures that the carrier contains no frequency components above the Nyquist frequency, thereby avoiding aliasing.
滤后的锯齿波通过计算 Fourier 级数直到 来近似。DAC 时钟频率为 98.304 MHz,是锯齿波的基本频率的 128 倍。将 Fourier 级数限制到 63 项确保了载波中不包含高于尼奎斯特频率的频率成分,从而避免了混叠。

The resulting waveform is discretised in time and quantised to 12 bits.
结果波形在时间上离散化,并量化为 12 位。

4.6 Measurements 4.6 测量

Figure 4.6 shows the measured output of the waveform generator for a sawtooth carrier. The signal is measured between (see Figure 4.2) and ground. The differential amplitude of the sawtooth, measured between and , is 800 mV peak-topeak. The Fourier summation is limited to terms. Note that the ringing at the peaks of the waveform is due to the finite number of Fourier terms included in the summation.
图 4.6 显示了波形发生器对锯齿波载波的测量输出。信号在 (参见图 4.2)和接地之间进行测量。锯齿波的差分幅度,在 之间测量,为 800 毫伏峰-峰值。傅立叶级数限制在 项。请注意,波形峰值处的振铃是由于在级数中包含的傅立叶项数量有限引起的。
Figure 4.7 shows the output of the waveform generator when . Notice that the peaks are now free of ringing. Theoretically the sawtooth waveform generated with contains aliasing components. However, the Nyquist frequency of 49.152 MHz is significantly higher than the fundamental frequency of the sawtooth waveform and the magnitude of the aliased components is small. For the closedloop amplifier there was no measurable difference between using or .
图 4.7 显示了波形发生器在 时的输出。注意,峰值现在没有振铃。理论上,使用 生成的锯齿波包含混叠成分。然而,49.152 MHz 的奈奎斯特频率远高于锯齿波的基本频率 ,混叠成分的幅度较小。对于闭环放大器,使用 之间没有可测量的差异。

4.7 Summary 4.7 总结

This chapter presented the details of the FPGA-based waveform generator that was designed for generating the carrier signal. Carrier data is generated off-line in MATLAB, stored in a lookup table in the FPGA, and clocked to a high-speed DAC.
本章介绍了为生成载波信号而设计的基于 FPGA 的波形发生器的详细信息。载波数据在 MATLAB 中离线生成,存储在 FPGA 中的查找表中,并通过高速 DAC 进行时钟驱动。

Measurements were presented that confirmed the operation of the waveform generator.
测量结果得到了确认,证实了波形发生器的运行。
Figure 4.6: Measured carrier generator output at for a sawtooth waveform. The Fourier summation is limited to terms.
图 4.6:锯齿波形下测量的载波生成器输出在 点。傅立叶级数限制在 项。
Figure 4.7: Measured carrier generator output at for a sawtooth waveform. The Fourier summation is limited to terms.
图 4.7:锯齿波形的载波生成器输出测量结果。傅立叶级数限制在 项。

Chapter 5 第 5 章

Developing the Control Loop Topology
开发控制环路拓扑

5.1 Introduction 5.1 引言

The basic control loop structure follows from Section 2.5 and is shown in Figure 5.1. contains the power stage and demodulation filter as well as an unconditionally stable control loop. is a loop filter that provides high gain throughout the audio band. is a deviation detector, or estimation filter, that approximates the behaviour of in the audio band.
基本控制回路结构源自第 2.5 节,并在图 5.1 中显示。 包含功率阶段、解调滤波器以及一个无条件稳定的控制回路。 是一个环路滤波器,整个音频带内提供高增益。 是一个偏差检测器,或估计滤波器,在音频带内近似 的行为。
Figure 5.1: Basic control loop structure.
图 5.1:基本控制回路结构。
Implementing the control system of Figure 5.1 with actual analogue circuitry requires us to introduce a few additional control blocks. This chapter will expand the basic control loop of Figure 5.1 to include elements that are required for practical implementation.
使用实际的模拟电路实现图 5.1 中的控制系统需要我们引入一些额外的控制模块。本章将扩展图 5.1 的基本控制回路,包括实际实施所需的元素。

Section 5.2 introduces the basic control system building blocks based on the underlying analogue circuitry. The complete control loop is presented in Section 5.3.
第 5.2 节介绍了基于底层模拟电路的基本控制系统构建模块。完整的控制回路在第 5.3 节中呈现。
Note that for simplicity all circuits are shown as single-ended implementations. The final implementation, however, will be balanced to improve the rejection of ground noise and other external noise sources.
请注意,为了简化,所有电路都表示为单端实现。然而,最终实现将被平衡以提高对地噪声和其他外部噪声源的抑制。

This requires the single-ended equivalent circuits to use shunt feedback. Conversion to a balanced circuit is simply a matter of "mirroring" the passive components with regard to ground. Figure 5.2 illustrates the basic principle for a simple inverting op-amp circuit.
这需要单端等效电路使用分流反馈。将转换为平衡电路只是将无源元件“镜像”到地即可。图 5.2 说明了简单反相运算放大器电路的基本原理。

A similar transformation applies if fully differential op-amps are used.
如果使用全差分运算放大器,类似的转换同样适用。
(a)
(b)
Figure 5.2: Shunt voltage feedback op-amp circuit (a) and its balanced equivalent (b).
图 5.2:分流电压反馈运算放大器电路(a)及其平衡等效电路(b)。

5.2 Building Blocks 5.2 构建模块

5.2.1 Output Stage and Inner Feedback Loop
5.2.1 输出阶段和内部反馈回路

For the control scheme to work effectively the frequency response of , which includes the power stage and demodulation filter, has to be relatively load independent. The frequency response is made load independent by closing a feedback loop around the power stage and demodulation filter.
为了使控制方案有效工作,频率响应 ,包括功率阶段和解调滤波器,必须相对负载无关。通过在功率阶段和解调滤波器周围建立反馈回路,使频率响应变得负载无关。

A simple passive lead compensator, as shown in Figure 5.3, is sufficient for this purpose [41]. The circuit receives three input signals: a control input signal from the output of the loop filter, a feed-forward signal from the main amplifier input and the carrier signal.
为了这个目的,如图 5.3 所示,一个简单的被动滞后补偿器就足够了 [41]。该电路接收三个输入信号:来自环路滤波器输出的控制输入信号、主放大器输入的前馈信号以及载波信号。

The input summation resistors are selected to be of equal value to simplify design.
输入的求和电阻被选择为相等的值,以简化设计。
Figure 5.3: Output stage with passive lead compensation.
图 5.3:带有被动领先补偿的输出级。
Figure 5.4 shows the equivalent control system block-diagram of Figure 5.3. We will refer to the feedback loop in Figure 5.4 as the inner loop, and to as the inner loop filter. Note that the passive compensation network causes the input terms to be filtered
图 5.4 展示了图 5.3 的等效控制系统框图。我们将图 5.4 中的反馈回路称为内部回路,并将 称为内部回路滤波器。请注意,被动补偿网络导致输入项被滤波。

by . The carrier will have to be pre-distorted to compensate for this. is the power stage supply voltage and is the demodulation filter transfer function.
. 为了补偿这一点,载体将需要预先畸变。 是功率阶段供电电压, 是解调滤波器传输函数。
Figure 5.4: Control system block-diagram of output stage with passive compensation.
图 5.4:输出阶段带有被动补偿的控制系统的块图。
For the circuit of Figure 5.3 the transfer function of the inner loop filter is given by
对于图 5.3 中的电路,内环滤波器在 0#点的传输函数由给出。
with and .
带有
Assuming the demodulation filter is an ideal LC filter with a resistive load , its transfer function is given by
假设解调滤波器 是一个理想的 LC 滤波器,并且负载 是一个电阻性负载,其传输函数由以下给出:

5.2.2 Outer Loop Filter
5.2.2 外循环滤波器

includes a feedback loop, with the inner loop filter , around the power stage and demodulation filter. We will therefore refer to the loop filter in Figure 5.1 as the outer loop filter and name it . The purpose of the outer loop filter is to improve error rejection by providing an increase in loop gain throughout the audio band. The amount of loop gain achievable is limited by the order of the loop filter and the required stability margins.
包含一个反馈回路,其中内环滤波器 围绕功率阶段和解调滤波器。因此,我们将图 5.1 中的回路滤波器 称为外环滤波器,并将其命名为 。外环滤波器的目的在于通过在整个音频带宽内提供增益来改善错误拒绝。可实现的回路增益受到回路滤波器的阶数和所需的稳定性裕量的限制。
The outer loop filter can be implemented in several ways. The simplest loop filter is a single integrator. However, a single integrator is not a very good loop filter because of its limited gain at the upper end of the audio band.
外环滤波器可以通过多种方式实现。最简单的环路滤波器是一个单一的积分器。然而,单一的积分器并不是一个很好的环路滤波器,因为其在音频带的高端的增益有限。

The most common approach when implementing a higher order loop filter, is to realise it with a series of integrators [2,19,21, 42, 43]. Figure 5.5 shows a typical third-order loop filter topology. Note that
实现高阶循环滤波器时最常用的方法是使用一系列积分器 [2,19,21, 42, 43]。图 5.5 展示了一个典型的第三阶循环滤波器拓扑结构。请注意,

the loop filter can also be extended to higher orders and is similar to that of a modulator .
循环滤波器也可以扩展到更高阶,并且类似于 调制器 的结构。
Figure 5.5: Third-order integrating loop filter with local feedback and feed-forward summation.
图 5.5:具有局部反馈和前馈求和的三级积分环路滤波器。
The transfer function of the loop filter of Figure 5.5 is given by
图 5.5 中的环路滤波器的传递函数由给出
The loop filter of Figure 5.5 is easy to implement with three active RC op-amp integrators. However, for the third-order case a much simpler circuit yields a similar transfer function. Consider the active filter circuit of Figure 5.6.
图 5.5 中的环路滤波器使用三个主动 RC 运算放大器积分器很容易实现。然而,对于第三阶情况,一个更简单的电路可以得到类似的传输函数。考虑图 5.6 中的主动滤波器电路。
Figure 5.6: Single op-amp third-order integrating loop filter.
图 5.6:单运放第三阶积分环路滤波器。
The output of the circuit of Figure 5.6 is given by
电路图 5.6 的输出由给出
where 在哪里
and 
Equation (5.2.8) is similar to (5.2.4), except that the zeros of (5.2.4) can be complex and the complex pole pair of (5.2.4) is fully imaginary. It was decided to use the circuit of Figure 5.6 as outer loop filter due to its simplicity compared to the circuit of Figure 5.5.
第 5.2.8 号方程与第 5.2.4 号方程类似,不同之处在于第 5.2.4 号方程的零点可以是复数,而第 5.2.4 号方程的复共轭极点是完全虚数。由于与第 5.5 号图中的电路相比,第 5.6 号图中的电路更简单,因此决定使用第 5.6 号图作为外环滤波器。
Figure 5.7 shows the equivalent control system block-diagram of Figure 5.6, based on (5.2.6). Note that higher order implementations can easily be obtained by cascading multiple circuits.
图 5.7 基于(5.2.6)展示了图 5.6 的等效控制系统块图。请注意,通过级联多个电路,可以轻松获得更高阶的实现。
Figure 5.7: Control system block diagram of single op-amp third-order integrating loop filter.
图 5.7:单运放第三阶积分环路滤波器的控制系统的方块图。

5.2.3 Estimation Filter 5.2.3 估计滤波器

The final circuit topology of the estimation filter will depend on the closed-loop transfer function of the inner loop. However, if is an active filter, the only modification required to the basic loop is the inclusion of an additional gain term in the
估计滤波器 的最终电路拓扑将取决于内环的闭环传递函数。然而,如果 是一个主动滤波器,基本环路所需的唯一修改是在其中添加额外的增益项

estimation filter. This gives us more freedom in choosing the gain of the estimation filter stage. If we select , the output of the outer loop filter will consist only of components related to the output stage error.
估计滤波器。这为我们提供了在估计滤波器阶段选择增益的更多自由度。如果我们选择 ,外部环路滤波器 的输出将仅包含与输出阶段误差相关的成分。

However, if the circuit that is responsible for limiting the output of the outer loop filter cannot saturate to a very low level it will be necessary to scale the output level of the loop filter to improve clip recovery.
然而,如果负责限制外环滤波器输出的电路不能饱和到非常低的水平,那么将需要调整环路滤波器的输出水平以改善削波恢复。

This is done by increasing the magnitude of the loop filter output signal component that is related to the input signal by introducing a mismatch between and .
这是通过增加与输入信号相关的环路滤波器输出信号成分的幅度,引入 之间的不匹配来实现的。

5.3 The Complete Continuous-Time Control Loop
5.3 完整的连续时间控制回路

We can now construct the complete control loop by incorporating Figure 5.4 and Figure 5.7 into Figure 5.1. Figure 5.8 shows the complete control loop. Gain is chosen to realise the desired loop gain. Gain is chosen to realise the desired estimation filter stage gain. Gain is chosen to obtain the desired magnitude of the input signal component present in the outer loop filter output signal. If , the outer loop filter output will contain only signals related to the output stage error.
我们现在可以通过将图 5.4 和图 5.7 整合到图 5.1 中来构建完整的控制回路。图 5.8 显示了完整的控制回路。 增益被选择以实现所需的闭环增益。 增益被选择以实现所需的估计滤波器阶段增益。 增益被选择以获得外环滤波器输出信号中输入信号成分的期望幅度。如果 ,外环滤波器输出将只包含与输出级误差相关的信号。
Figure 5.8: Complete control system diagram.
图 5.8:完整的控制系统图。
Note that the estimator and associated gains and are not enclosed in a feedback loop. This means that we can scale the outer loop filter output level without directly affecting the stability and loop gain of the control system.
请注意,估计器 和相关增益 没有包含在反馈回路中。这意味着我们可以调整外环滤波器输出级别,而不会直接影响控制系统的稳定性和环路增益。

However, this also means that any noise and distortion present in the estimation filter cannot be attenuated by the loop and will be reproduced at the amplifier output.
然而,这也意味着,估计滤波器中的任何噪声和失真都无法通过闭环系统衰减,并将在放大器输出处被复制。

5.4 Summary 5.4 总结

In this chapter the analogue circuitry that is required to implement the control loop was discussed. The control circuit consists of a passive first-order inner loop around the
本章讨论了实现控制回路所需的模拟电路。控制电路包括围绕系统的被动一阶内部回路。

power switching stage and demodulation filter, and a single op-amp third-order loop filter around the inner loop.
功率切换阶段和解调滤波器,以及围绕内环的单运放第三阶环路滤波器。

The various analogue circuit building blocks were converted to control system blocks and the original general control circuit was expanded to include these additional control blocks.
各种模拟电路构建模块被转换为控制系统模块,并将原始的一般控制电路扩展以包含这些额外的控制模块。

Chapter 6 第 6 章

Conversion to the Z-Domain
Z 域转换

6.1 Introduction 6.1 引言

In this chapter the s-domain feedback loop described in Chapter 5 is converted to the zdomain. In Section 6.2 an expression is derived for the transformation between the s- and z-domain.
本章中,将第 5 章中描述的 s 域反馈回路转换为 z 域。在第 6.2 节中,推导了 s 域和 z 域之间的转换表达式。

Section 6.3 discusses the calculation of the equivalent gain of the comparator when ripple compensation is implemented. In Section 6.4 the discrete-time comparator model is embedded in the control loop and expressions for the most important transfer functions are derived.
第 6.3 节讨论了在实施纹波补偿时比较器的等效增益的计算。在第 6.4 节中,将离散时间比较器模型嵌入控制回路,并推导了最重要的传递函数的表达式。

The final control loop is a function of both s- and z-domain parameters, with the feedback being only in the z-domain.
最终的控制回路是 s 域和 z 域参数的函数,反馈仅在 z 域中。

6.2 The Impulse Invariant Transform
6.2 冲量不变变换

In Section 2.3 it was said that the continuous-time loop can be converted to its discretetime equivalent through the impulse invariant transform. The impulse invariant transform involves taking the z -transform of the discretised impulse response of a system.
在第 2.3 节中提到,连续时间循环可以通过脉冲不变变换转换为其离散时间等效形式。脉冲不变变换涉及对系统离散化脉冲响应的 z 变换。

Figure 6.1 illustrates the basic principle.
图 6.1 描述了基本原理。
Figure 6.1: Block diagram illustration of the impulse invariant method.
图 6.1:脉冲保真方法的块图示例。
We will assume that the system transfer function is of the form , where accounts for a delay in the system. The continuous-time impulse response of is [17]
我们将假设系统传递函数的形式为 ,其中 考虑了系统的延迟。连续时间冲激响应为 ,具体内容见[17]
where 在哪里
The corresponding discrete-time impulse response is obtained by letting :
对应的离散时间冲激响应通过让 获得:
Figure 6.2 shows the continuous- and discrete-time impulse responses of . As noted in Section 2.3, the time delay causes the first sample of the discrete-time impulse response to be zero.
图 6.2 展示了 的连续时间和离散时间脉冲响应。如第 2.3 节中所指出的,时间延迟 导致离散时间脉冲响应的第一个样本为零。
Figure 6.2: Continuous-time and discrete-time impulse responses.
图 6.2:连续时间与离散时间脉冲响应。
Assuming , the z -transform of (6.2.3) is given by
假设 ,(6.2.3)的 z 变换由以下给出
The infinite series sum in (6.2.4) can be expressed in a closed form [46]:
(6.2.4) 中的无穷级数和可以用闭合形式表示 [46]:
Substituting (6.2.5) into (6.2.4) and simplifying yields
将(6.2.5)代入(6.2.4)并简化得到
We now have a transformation between the s-domain and z-domain:
我们现在有了 s 域和 z 域之间的转换: Translation: 我们现在有了 s 域和 z 域之间的转换:
Note that even though it was assumed that , it can be shown that (6.2.7) is also valid for . Since the z-transform is a summation, (6.2.7) can be expressed in a more general form as
请注意,尽管假设了 ,但可以证明(6.2.7)对于 也是有效的。由于 z 变换是一个求和,(6.2.7)可以表示为更一般的形式为
For loop design and analysis purposes, it will be convenient to match the DC gain of the transfer function in the s- and z-domain. This is done by multiplying the z-domain transfer function with the sample period :
在 s 域和 z 域的循环设计和分析中,为了方便,我们将通过将采样周期 乘以 z 域的传递函数来匹配传递函数的直流增益。
Transfer functions that can be written in the form
可以以形式书写的转移函数
can be transformed to the z-domain using (6.2.9). Transfer functions of the form
可以使用(6.2.9)转换到 z 域。形式为的传递函数
can be written in the form of (6.2.10) by means of partial fraction expansion if and if the poles are distinct [47].
可以通过部分分式展开的形式,按照(6.2.10)来书写,如果 成立,并且如果极点是不同的 [47]。

6.3 Calculating the Comparator Gain
6.3 计算比较器增益

In Section 2.3 it was shown that the ideal comparator can be modelled by a sampling operation followed by a gain . For a triangle carrier the equivalent comparator gain is given by
在第 2.3 节中,我们展示了理想比较器可以通过采样操作和增益 来建模。对于三角波载波,等效比较器增益 由以下给出:
For a triangle carrier the reference signal is sampled twice in a single cycle of the carrier waveform. However, when a sawtooth carrier is used, the reference signal is sampled only once per carrier cycle. It therefore follows that, for a sawtooth carrier,
对于三角形载波,参考信号在一个载波波形周期内采样两次。然而,当使用锯齿形载波时,参考信号只在每个载波周期内采样一次。因此,对于锯齿形载波,
Since ripple compensation involves the modification of the ripple feedback signal, it will have an influence on the equivalent comparator gain. Figure 6.3 shows a feedback loop with ripple compensation.
由于褶皱补偿涉及到褶皱反馈信号的修改,因此会对等效比较器增益产生影响。图 6.3 显示了具有褶皱补偿的反馈回路。

The power stage, demodulation filter and inner loop filter are all incorporated into . It is assumed that the demodulation filter is of second order and that the loop filter has at least as many poles as zeros. The gain sets the amplitude of the carrier at the comparator input. We will now proceed to calculate the value of for the loop of Figure 6.3.
功率阶段、解调滤波器和内部环路滤波器都集成在 中。假设解调滤波器为二阶,环路滤波器的极点数量至少与零点数量相等。增益 设置比较器输入处载波的幅度。我们现在将计算图 6.3 中环路的 值。
Figure 6.3: Block diagram for comparator gain calculation.
图 6.3:比较器增益计算的块图。
The Fourier series representation of the sawtooth carrier and steady-state comparator output, which is a square wave, is given by [46]
锯齿波载波和稳态比较器输出的傅立叶级数表示,该输出为方波,由[46]给出
and 
respectively. 各自。
The steady-state output of an LTI system with transfer function and input is
LTI 系统具有传递函数 和输入 的稳态输出为
where is the angle of [16].
其中 的角度 [16]。
Using (6.3.5) we can express the steady-state input to the comparator as
使用(6.3.5),我们可以将比较器的稳态输入表示为
with 
and 
Note that is an amplitude scaled version of the carrier, is the carrier propagated through the loop and is the comparator output propagated through the loop.
注意, 是载波的幅度缩放版本, 是通过环路传播的载波, 是通过环路传播的比较器输出。
We now need to find the derivative of and evaluate it at . Note that is discontinuous at and therefore its derivative is undefined at . However, the signal arriving at the comparator input is delayed by and therefore its derivative does exist at . The slope of the sawtooth waveform that adds directly at the comparator input does not have to be approximated, and is given by
我们现在需要找到 的导数,并在 处对其进行评估。注意, 处不连续,因此在 处其导数未定义。然而,到达比较器输入的信号 被延迟了 ,因此在 处其导数存在。比较器输入直接相加的锯齿波形的斜率不需要近似,由以下给出:
The slope of the filtered carrier and comparator output signal is given by
滤波载波和比较器输出信号的斜率由以下给出
and 
respectively. We can now calculate :
分别。我们现在可以计算
The transfer function contains the second order demodulation filter and the loop filter. The signals and will see the pole pair of the demodulation filter as a double integrator. Hence the signals and will be approximately sinusoidal and we can approximate them by their fundamental components. The first-order approximation for the derivative of when the comparator output changes state is
转移函数 包含二次解调滤波器和环路滤波器。信号 将看到解调滤波器的极点对作为双积分器。因此,信号 将大致为正弦波,并且我们可以用它们的基本成分来近似。当比较器输出状态改变时,对于 的导数的第一阶近似是
Substituting (6.3.14) into (6.3.2), we obtain
将(6.3.14)代入(6.3.2),我们得到
An important point that should be noted is that the outer loop will have a negligible effect on the comparator gain. This is because the outer loop filter has a low-pass filter characteristic, while the inner loop filter does not.
一个需要注意的重要点是,外部循环对比较器增益的影响可以忽略不计。这是因为外部循环滤波器具有低通滤波器特性,而内部循环滤波器则不具备这一特性。

Consequently, the ripple component at the output of the outer loop filter will be negligible compared to the ripple component at the output of the inner loop filter.
因此,外环滤波器输出的纹波成分与内环滤波器输出的纹波成分相比将可以忽略不计。

6.4 Embedding the Discrete-Time Comparator Model in the Control Loop
6.4 在控制回路中嵌入离散时间比较器模型

We will assume that the carrier has been pre-filtered by a transfer function . This cancels the filtering of the carrier by the passive compensation network so that the carrier is effectively added directly at the comparator input.
我们将假设载体已经被转移函数 预过滤。这取消了被动补偿网络对载体的过滤,使得载体可以直接有效地添加到比较器输入端。
Figure 6.4 shows the continuous-time inner loop. Error source models timing errors in the power switching stage, which is the dominant source of distortion in an openloop class-D amplifier. The power stage supply voltage and the propagation delay of the active electronics are integrated into the comparator.
图 6.4 显示了连续时间内部循环。误差源 模拟了功率开关阶段的时间误差,这是开环 D 类放大器中失真的主要来源。功率阶段供电电压 和有源电子器件的传播延迟 被整合到比较器中。
Figure 6.4: Continuous-time inner loop.
图 6.4:连续时间内部循环。
Figure 6.5 shows the loop of Figure 6.4 converted to the z-domain as per Section 2.3, with the only difference being the addition of an impulse reconstructor. The impulse reconstructor is effectively a DAC that converts the discrete-time impulses to continuoustime impulses.
图 6.5 展示了根据第 2.3 节将图 6.4 转换为 z 域的闭环,唯一的区别是添加了一个脉冲重构器。脉冲重构器本质上是一个 DAC,将离散时间的脉冲转换为连续时间的脉冲。

The impulse reconstructor is followed by the propagation delay and the demodulation filter .
脉冲重构器后面是传播延迟 和解调滤波器
Figure 6.5: Inner loop with sampling comparator model.
图 6.5:带采样比较器的内部循环模型。
In Figure 6.5, is the impulse-invariant transform of , or
在图 6.5 中, 的脉冲不变变换,或
Note that the transfer function of the estimation filter has to approximate
请注意,估计滤波器的转移函数 必须近似于

given by 由给出
Figure 6.6 shows the complete continuous-time control loop and Figure 6.7 its discretetime equivalent. In Figure 6.7, is given by (6.4.1) and is given by
图 6.6 显示了完整的连续时间控制回路,图 6.7 显示了其离散时间等效。在图 6.7 中, 由(6.4.1)给出, 由给出。
Figure 6.6: Continuous-time complete loop.
图 6.6:连续时间完整闭环。
Figure 6.7: Complete loop with sampling comparator model.
图 6.7:完整的闭环采样比较器模型。
Inspection of (6.4.3) and (6.4.7) shows that we need to maximise the comparator gain and the gain of the loop filters to reduce the magnitude of the error transfer functions.
检查(6.4.3)和(6.4.7)显示,我们需要最大化比较器增益和环路滤波器的增益,以减少误差传递函数的幅度。

Note that since the inner loop filter is passive, the comparator, which includes the power stage, is the only element that contributes gain to the inner loop.
请注意,由于内部循环滤波器是被动的,比较器,包括功率级,是唯一贡献内部循环增益的元素。

6.5 Summary 6.5 总结

In this chapter the discrete-time comparator model was embedded into the control loop developed in Chapter 5. The feedback loops are converted to discrete-time through the impulse invariant transform.
本章中,将离散时间比较器模型嵌入了第 5 章中开发的控制回路中。通过脉冲不变变换,反馈回路被转换为离散时间。

The effect of ripple compensation on comparator gain was considered and a first-order approximation to the comparator gain was derived.
回波补偿对比较器增益的影响被考虑,并推导出了比较器增益的一阶近似值。

General forms of the signal transfer functions (STFs) and error transfer functions (ETFs) for both the inner loop and complete loop were presented.
内环和完整环的信号传输函数(STF)和误差传输函数(ETF)的一般形式被呈现。

Chapter 7 第 7 章

Control Loop Design 控制回路设计

7.1 Introduction 7.1 引言

This chapter covers the design of the control loop. The load presented to the amplifier by the loudspeaker, and how it affects stability, is investigated. Thereafter an optimal control loop is designed and analysed. Component values for the control circuitry are calculated.
本章涵盖了控制回路的设计。研究了扬声器向放大器提供的负载以及它对稳定性的影响。随后设计并分析了最优控制回路。计算了控制电路的元件值。

Finally, the carrier pre-distortion transfer function is presented.
最终,给出了载波预失真传输函数。

7.2 The Load and its Effect on Stability
7.2 负载及其对稳定性的影响

The frequency response of the demodulation filter is load dependent. Since the demodulation filter is enclosed in the feedback loop, we need to consider how a change in load will affect stability. If we model the load as a resistor and take the effect of the equivalent series resistance of the inductor into account, the transfer function of the second-order LC demodulation filter is given by
解调滤波器的频率响应依赖于负载。由于解调滤波器位于反馈回路中,我们需要考虑负载变化如何影响稳定性。如果我们将负载建模为电阻器 ,并考虑电感的等效串联电阻 的影响,二阶 LC 解调滤波器的传递函数给出为
The resistance forms a voltage divider with the load resistance , which reduces the overall loop gain. If the loop is unconditionally stable, this reduction in loop gain reduces the gain margin of the system. Lowering the load resistance increases the damping of the demodulation filter.
电阻 与负载电阻 形成分压器,降低了整个回路增益。如果回路无条件稳定,这种回路增益的降低减少了系统的增益裕度。降低负载电阻增加了解调滤波器的阻尼。

This increases the phase margin since the demodulation filter now contributes less phase shift at the unity-gain frequency of the loop. When the load resistance is increased, the opposite happens: loop gain is increased, which increases gain margin, but phase margin is reduced.
这增加了相位裕度,因为解调滤波器现在在环路增益的单位增益频率处贡献的相位偏移较少。当负载电阻增加时,情况正好相反:环路增益增加,这增加了增益裕度,但相位裕度减少。

Note that the resonant frequency becomes load dependant if . Compared to the other aforementioned factors, the slight change in resonant frequency does not significantly affect stability.
请注意,当 时,谐振频率变得依赖于负载。与上述其他因素相比,谐振频率的小变化对稳定性的影响并不显著。
A loudspeaker is, however, not a purely resistive load. Figure 7.1 shows a simplified equivalent circuit of a moving-coil transducer [48]. Inductance and resistance are the inductance and resistance of the voice coil, respectively. Capacitance , resistance and inductance are the electrical analogies of mechanical properties of the speaker, and are given by
然而,扬声器并非纯粹的电阻性负载。图 7.1 展示了动圈式转换器的简化等效电路 [48]。电感 和电阻 是音圈的电感和电阻。电容 、电阻 和电感 是扬声器的机械性质的电气对应,它们由以下给出:
and 
where is the equivalent mass of the cone, is the suspension compliance, is the mechanical resistance of the system and ( is velocity) is the electromotive force due to the movement of the speaker coil through the magnetic field of the motor [48].
等式中, 代表圆锥的等效质量, 代表悬挂的顺应性, 代表系统的机械阻力, 代表速度)是由于扬声器线圈在电机的磁场中移动产生的电动势 [48]。

Note that the equivalent circuit model of Figure 7.1 neglects eddy currents in the iron core and skin-effect in the coil of the loudspeaker, but it is sufficient for our purposes.
注意,图 7.1 中的等效电路模型忽略了铁芯中的涡流和扬声器线圈中的集肤效应,但这对于我们的目的足够了。
Figure 7.1: Simplified equivalent circuit of a moving-coil transducer.
图 7.1:动圈式转换器的简化等效电路图。
The loudspeaker impedance has a low-frequency resonance where the impedances of the parallel capacitor and inductor cancel. At frequencies significantly higher than the resonant frequency the capacitor is effectively a short-circuit and the impedance can be approximated by the series combination of and . Figure 7.2 shows the modelled impedance of a typical loudspeaker [49], based on Figure 7.1. The first-order approximation, where is the series combination of and , is also shown. The component values for the equivalent circuit are given in Table 7.1. The quoted nominal impedance of the loudspeaker is .
扬声器阻抗 在低频共振点处具有极低频率共振,此时并联电容 和电感 的阻抗相互抵消。在远高于共振频率的频率下,电容 可以视为短路,阻抗可以近似为 的串联组合。图 7.2 基于图 7.1,展示了典型扬声器的模型阻抗 [49]。第一阶近似也显示出来,其中 的串联组合。等效电路的组件值在表 7.1 中给出。扬声器的标称阻抗为
For control purposes, we are concerned with the transfer function of the demodulation filter at frequencies above the audio band, because this is where stability margins will be determined. Inspection of Figure 7.2 shows that we clearly cannot model the loudspeaker as an resistive load when designing the control loop. A high-order control loop designed with tight stability margins for an resistive load will most likely not be
为了控制目的,我们关注音频带以上频率下的解调滤波器的传递函数,因为在这些频率下将确定稳定性裕度。查看图 7.2 可知,在设计控制回路时,我们显然不能将扬声器建模为一个 电阻性负载。为一个 电阻性负载设计的具有严格稳定性裕度的高阶控制回路很可能不会
Figure 7.2: Calculated impedance of the simplified loudspeaker and the first-order approximation.
图 7.2:简化扬声器和一阶近似计算的阻抗。
Table 7.1: Component values for loudspeaker equivalent circuit.
表 7.1:扬声器等效电路的组件值。
Component 组件 Value 价值
2.8 mH
79.7 mH
stable into an actual moving coil transducer rated at . At the unity-gain frequency of the control loop, which will be above 20 kHz , the impedance of the loudspeaker is dominated by the inductance of the voice-coil and is much greater than . In fact, with regard to stability, the loudspeaker looks more like an open-circuit than an load.
稳定转换为实际的动圈扬声器,额定值为 。在控制回路的增益为 1 的频率上,即在 20 kHz 以上,扬声器的阻抗主要由音圈的电感决定,远大于 。实际上,从稳定性角度看,扬声器更像是开路而非 负载。
Figure 7.3 shows the frequency response of the demodulation filter for different output loads. The frequency response with an loudspeaker load and a resistive load is indiscernible. The frequency response with an resistive load is shown in grey for comparison. From Figure 7.3 we also see that, if the unity gain crossover frequency of the control loop is below 100 kHz , phase margin will be reduced when an loudspeaker rather than an resistive load is connected to the demodulation filter.
图 7.3 显示了不同输出负载下的解调滤波器频率响应。在 0#扬声器负载和 1#电阻负载下的频率响应无法辨认。在 2#电阻负载下的频率响应以灰色显示,用于比较。从图 7.3 中我们还看到,如果控制回路的单位增益交叉频率低于 100 kHz,连接到解调滤波器的 3#扬声器而不是 4#电阻负载时,相位裕度将被减小。
We might consider adding an impedance-correction network in parallel with the loudspeaker to reduce the phase shift at the unity-gain frequency, and thereby increase the phase margin for high-impedance loads. However, in this particular design the resonant
我们可能考虑在扬声器并联上添加一个阻抗校正网络,以在单位增益频率处减少相移,从而提高高阻抗负载的相位裕度。然而,在这个特定的设计中,共振
Figure 7.3: Calculated demodulation filter transfer function for a resistor, an loudspeaker, and an resistor as load, respectively.
图 7.3:分别对于 电阻、 扬声器和 电阻作为负载时的解调滤波器传递函数计算结果。
frequency of the demodulation filter is not far above the audio band and significant audioband energy will have to be dissipated in the compensation network if it is to have any effect. Adding an impedance-correction network at the amplifier output is therefore not an option.
解调滤波器的频率不太远高于音频带,如果要产生效果,补偿网络中必须消耗大量的音频带能量。因此,在放大器输出端添加阻抗校正网络不是一个可行的选择。
Many loudspeaker systems contain more than one transducer and a passive crossover filter network that may or may not flatten the impedance of the loudspeaker system.
许多扬声器系统包含一个以上的扬声器单元和一个被动分频滤波网络,该网络可能或可能不会使扬声器系统的阻抗平滑。

If the loudspeaker system contains a crossover network with an impedance-correction network, the loudspeaker will more closely represent a resistive load with value equal to the rated impedance of the loudspeaker.
如果扬声器系统包含一个具有阻抗校正网络的分频网络,扬声器将更准确地表示一个阻值等于扬声器额定阻抗的电阻性负载。
To summarise, the worst-case load with regard to phase margin is an open-circuit, and with regard to gain margin is a low-impedance load. A loudspeaker can present itself as either of these. It was decided to design the amplifier to be stable for all resistive loads from to infinity. This should be enough to ensure that the amplifier is stable into all conventional loudspeaker loads rated and higher.
总结而言,关于相位裕度的最坏情况负载是开路,关于增益裕度的最坏情况负载是低阻抗负载。扬声器可以呈现为这两种情况之一。决定设计放大器使其对于从 0Ω到无穷大的所有电阻负载都稳定。这应该足以确保放大器对于所有标称阻抗为 1Ω及以上的常规扬声器负载都稳定。

7.3 Design Strategy 设计策略:7.3

In a high-order control loop there are many free variables and to achieve maximum performance some form of optimisation is required. However, there are a few constraints that have to placed on the optimisation.
在高级控制回路中,存在许多自由变量,为了达到最佳性能,需要某种形式的优化。然而,必须对优化施加一些限制。

It is noted that the impulse invariant transform of (6.2.9) provides a direct mapping between s-domain and z-domain poles through the equa-
注意到(6.2.9)中的冲激不变变换提供了 s 域和 z 域极点之间的直接映射,通过等式实现。

tion , where is the z-domain pole location. However, the mapping of zeros is not so simple and depends on the residues obtained through partial fraction expansion of the transfer function. In fact, the number of zeros in the s-domain and z-domain is not necessarily equal.
转换 ,其中 是 z 域的极点位置。然而,零点的映射并不那么简单,且依赖于通过传递函数的部分分式展开所获得的残数。实际上,s 域和 z 域中的零点数量并不一定相等。

In an analogue control loop the form of the s-domain equivalent of the z-domain transfer function is dictated by the analogue circuitry.
在模拟控制回路中,z 域传递函数的 s 域等效形式由模拟电路决定。

This makes it difficult to design the control loop by placing poles and zeros directly in the z-domain, since the s-domain equivalent will most likely not be implementable. The fact that we have a nested feedback loop makes the process even more complicated.
这使得在 z 域中直接放置极点和零点来设计控制回路变得困难,因为 s 域的等效形式很可能无法实现。我们有一个嵌套的反馈回路的事实使这个过程更加复杂。

It was therefore decided to design the loop through an iterative process of converting different s-domain loops with the correct form to the z-domain, analysing their z-domain behaviour, and selecting the optimal solution.
因此,决定通过将不同 s 域环路转换为 z 域,具有正确的形式,分析它们的 z 域行为,并选择最优解的迭代过程来设计环路。
Theoretically it is possible to optimise both loops and all free variables simultaneously for a given set of constraints, but to be practical this would require a greatly optimised optimisation algorithm - which is a subject in itself.
理论上,对于给定的约束条件集,有可能同时优化所有循环和自由变量,但要实际实现这一点,需要一个高度优化的优化算法——这本身就是个主题。

Instead the inner loop is designed and optimised to meet a set of specifications and the outer loop is then optimised around the inner loop.
相反,内部循环被设计和优化以满足一组规范,然后将外部循环优化围绕内部循环。
The optimisation algorithm works by sweeping selected variables of the s-domain transfer function, analysing the z-domain behaviour, and identifying those solutions that meet or exceed a specified set of requirements. For the inner loop the gain of is chosen and the pole and zero positions are swept from 30 kHz to , with the frequency of the pole being greater than the frequency of the zero. For the outer loop the frequency of the complex pole pair is chosen and the positions of the zeros are swept. The one zero is swept from 100 Hz to the frequency of the complex pole pair.
优化算法通过扫掠 s 域传递函数中的选定变量,分析 z 域行为,并识别那些满足或超过指定要求的解决方案。对于内部循环,选择 的增益,并从 30 kHz 扫掠到 的极点和零点位置,极点的频率大于零点的频率。对于外部循环,选择复极点对的频率,并扫掠零点的位置。一个零点从 100 Hz 扫掠到复极点对的频率。

The other zero is swept from 30 kHz to 384 kHz . The design requirements that are used as constraints in the optimisation algorithm are listed in Table 7.2. In addition to the requirements in Table 7.2 , the inner loop must be unconditionally stable.
另一个零点从 30 kHz 扫至 384 kHz。优化算法中用作约束的设计要求列在表 7.2 中。除了表 7.2 中的要求,内部循环必须无条件稳定。

The requirements in Table 7.2 are for an open-circuit load, since this was found to be the most difficult load with regard to stability. A propagation delay of is assumed. Note that the stability of the final loop will have to be verified for all specified loads and possible values of .
表 7.2 中的要求适用于开路负载,因为这被发现是最难以稳定化的负载。假设传播延迟为 。请注意,最终环路的稳定性必须对所有指定的负载和 的所有可能值进行验证。
It should be noted that the development and implementation of the control loop went through several iterations before arriving at its final form. The values chosen in Table 7.2 are based on the practical evaluation of several design iterations.
应指出,控制回路的开发和实施经历了多次迭代,最终形成了其最终形式。表 7.2 中选择的值基于对多个设计迭代的实用评估。
In Section 2.5 it was mentioned that the inner loop requires enough loop gain to make its closed-loop frequency response relatively insensitive to load variations. Choosing means that the inner loop will have at least 25 dB of loop gain. To a rough approximation, with 25 dB of loop gain a 6 dB variation in the open loop frequency response will be reduced to a 0.234 dB variation in the closed-loop frequency
在第 2.5 节中提到,内部循环需要足够的循环增益,使其闭环频率响应对负载变化相对不敏感。选择 意味着内部循环将至少具有 25 分贝的循环增益。粗略地讲,具有 25 分贝的循环增益,开环频率响应的变化为 6 分贝,将被减少到 0.234 分贝的闭环频率变化。
Table 7.2: Optimisation constraints.
表 7.2: 最优化约束。
Parameter 参数 Desciption 描述 Value 价值

音频带内循环内部误差传递函数幅度的最大值
Maximum value of inner loop error transfer
function magnitude in the audio band
Maximum value of complete loop error trans-
完整环路误差的最大值
fer function magnitude in the audio band
音频带的滤波器功能幅度
Gain margin of inner loop
内环的增益裕度
Phase margin of inner loop
内环的相位裕度
Gain margin of complete loop
完整环路的增益裕度
Phase margin of complete loop
完整闭环的相位裕度
response, which should be sufficient. Ideally, with we expect the open loop THD +N level of for 10 W into to be reduced by 50 dB to about .
响应,这应该是足够的。理想情况下,使用 ,我们期望在 输入 10W 到 时, 的开环 THD +N 水平降低 50dB 至大约

7.4 Selecting the Switching Frequency
7.4 选择切换频率

The switching frequency should be significantly higher than the bandwidth of the reference signal, which is 20 kHz . Increasing the switching frequency increases the achievable loop gain for a given set of stability margins.
转换频率应远高于参考信号的带宽,该带宽为 20 kHz。增加转换频率可以在给定的稳定性裕量下实现更高的闭环增益。

However, a higher switching frequency leads to increased distortion due to PTEs (primarily dead-time) and increased switching losses. In this particular design the switching frequency is selected based on the required loop gain of the inner loop.
然而,较高的开关频率会导致由于 PTEs(主要是死时间)引起的失真增加以及增加的开关损耗。在这一特定设计中,开关频率的选择基于内环所需的闭环增益。

It was found that a switching frequency of allows us to achieve the gain and stability specifications as listed in Table 7.2. The particular value of is chosen, because it allows the generation of a 128 samples per cycle sawtooth when the FPGA and DAC of the carrier generator is clocked at 98.304 MHz .
发现当开关频率设置为 时,我们可以达到表 7.2 中列出的增益和稳定性规格。选择特定的 值,因为它允许在 FPGA 和载波生成器的 DAC 以 98.304 MHz 时钟频率运行时生成每周期 128 个采样点的锯齿波。

7.5 The Optimal Loop
最优循环:7.5

7.5.1 The Inner Loop
7.5.1 内循环

Figure 7.4 again shows the passive compensation of the inner loop. The transfer function of the inner loop filter is given by
图 7.4 再次显示了内环的被动补偿。内环滤波器在 0#处的传递函数由给出。
Figure 7.4: Output stage with single pole passive lead compensation.
图 7.4:单极被动领先补偿的输出阶段。
Due to the passive summation network the input signals are filtered by the transfer function
由于被动求和网络,输入信号通过传输函数进行过滤
where 在哪里
and 
During carrier generation the carrier is pre-filtered by a transfer function , such that the carrier is effectively added directly at the comparator input and scaled by a gain (see Section 7.9). The carrier arriving at the comparator input has an amplitude of , where is the carrier amplitude at the output of the carrier generator. The component values for the circuit of Figure 7.4 are given by
在载波生成期间,载波通过转移函数 预过滤,使得载波直接在比较器输入端添加,并通过增益 放大(参见第 7.9 节)。到达比较器输入端的载波幅度为 ,其中 是载波生成器输出端的载波幅度。图 7.4 电路的组件值由以下给出:
and 
The value of capacitor can be freely chosen. Note that the resistor values scale inversely proportional to . We want to keep the resistor values as small as possible
电容器 的值可以自由选择。请注意,电阻器的值与 成反比缩放。我们希望保持电阻器的值尽可能小。

to minimise Johnson noise and to minimise the interaction with the non-linear input impedance of the comparator, but large enough to ensure that the preceding stages are not excessively loaded.
为了最小化约翰逊噪声并最小化与比较器的非线性输入阻抗的相互作用,但同时确保前级不会过度负载。
The high-frequency gain of the inner loop filter is chosen as and the sawtooth amplitude is chosen as . From (7.5.4) it follows that , and hence the effective carrier amplitude is . The swept parameters for optimisation are and . Table 7.3 shows the component values and loop characteristics for the optimal component values and for the selected standard value components. Note that ten terms were used in the Fourier approximation of the comparator gain .
内环滤波器的高频增益选择为 ,锯齿波幅度选择为 。从(7.5.4)可以得出 ,因此有效载波幅度为 。优化的参数为 。表 7.3 显示了最优组件值和选定的标准值组件的组件值和环路特性。请注意,在比较器增益的傅立叶近似中使用了十项术语。
Table 7.3: Inner loop component and parameter values.
表 7.3:内部循环组件及参数值。
Item 项目 Optimal value 最优值 Standard component value
标准组件值
270 pF 270 法拉 (fǎlā) 270 pF 270 法拉 (fǎlā)
0.26 0.285
-26.4 dB -26.4 分贝 -27.2 dB -27.2 分贝
5.15 dB 5.15 分贝 4.59 dB 4.59 分贝
50.9 dB 50.9 分贝 51.1 dB 51.1 分贝

7.5.2 The Outer Loop
7.5.2 外循环

Figure 7.5 shows the circuit that realises the difference amplifier and outer loop filter. The transfer function of the outer loop filter is given by
图 7.5 显示了实现差分放大器和外环滤波器的电路。外环滤波器的传递函数由给出。
The component values for the circuit of Figure 7.5 are given by
电路图 7.5 中的元件值由以下给出:
and 
Figure 7.5: Single op-amp third-order integrating loop filter.
图 7.5:单运放第三阶积分环路滤波器。
Capacitor can be freely chosen. The value of resistor is selected to optimise the clipping behaviour of the amplifier and is determined in Section 7.7. The frequency of the complex pole pair is chosen as . The swept parameters are and , as well as the product of the feedback gain term and . Table 7.4 shows the component values and loop characteristics for the optimal component values and for the selected standard value components. Note that a negative gain margin indicates conditional stability.
电容器 可以自由选择。电阻 的值被选择以优化放大器的削波行为,并在第 7.7 节中确定。复极对的频率选择为 。扫频参数为 ,以及反馈增益项 的乘积。表 7.4 显示了最优组件值和选定的标准组件值的最佳组件值以及环路特性的组件值。请注意,负的增益裕度表示条件稳定。
Table 7.4: Complete loop component and parameter values.
表 7.4:完整闭环组件及参数值。
Item 项目 Optimal value 最优值 Standard component value
标准组件值
3.34 nF 3.9 nF
2.2 nF 2.2 nF
-51.2 dB -51.2 分贝 -50.8 dB -50.8 分贝
-3.02 dB -3.02 分贝 -3.43 dB -3.43 分贝

7.6 Estimation Filter 7.6 估计滤波器

Figure 7.6 shows the second-order multiple feedback active low-pass filter that realises the estimation filter stage .
图 7.6 显示了实现估计滤波器阶段的二阶多重反馈主动低通滤波器。
Figure 7.6: Estimation filter stage circuit.
图 7.6:估计滤波器阶段电路。
The transfer function of the circuit of Figure 7.6 is given by
电路图 7.6 的传递函数由给出:
We choose the DC gain of the estimation filter stage as . Since we are designing , we can calculate as
我们选择估计滤波器阶段的直流增益为 。既然我们正在设计 ,我们可以计算
The component values for the estimation filter stage are chosen as , and . Capacitor is chosen as , such that when the circuit is converted to its differential form, will be a single 820 pF capacitor. The resultant low-pass filter has a complex pole pair at 153 kHz with a damping ratio of 0.74 .
估计滤波器阶段的组件值选择为 。电容器 选择为 ,这样当电路转换为其差分形式时, 将是一个单一的 820 pF 电容器。最终的低通滤波器在 153 kHz 处具有一个复数极点对,阻尼比为 0.74。
Figure 7.7 shows a bode plot of the transfer function for various output loads, as well as a bode plot of the transfer function of the estimation filter . The value of is calculated for an load and is 0.206 . Figure 7.7 confirms that the inner loop has enough loop gain in the audio band to make insensitive to load variations. The maximum audio band change in the magnitude of between a and a output load is 0.07 dB , while the maximum change in phase is . The estimation filter matches the inner loop transfer function to within 0.03 dB and in the audio band.
图 7.7 展示了不同输出负载下的转移函数 的伯德图,以及估计滤波器转移函数的伯德图 。对于 负载,计算得到的 值为 0.206。图 7.7 证实了音频带内内环有足够的闭环增益,使得 对负载变化不敏感。在 输出负载和 输出负载之间,音频带内 幅度的最大变化为 0.07 分贝,而相位的最大变化为 。估计滤波器 在音频带内与内环转移函数 的匹配误差为 0.03 分贝,并且 的匹配精度为 0.03 分贝。
Figure 7.7: Calculated closed-loop transfer function of the inner loop for various output loads . From top to bottom: and . The dotted line is the transfer function of the estimation filter.
图 7.7:不同输出负载下的内环闭环传递函数 的计算结果。从上到下: 。虚线表示估计滤波器的传递函数

7.7 Scaling the Loop Filter Output Level
7.7 调整环路滤波器输出级别

Consider the continuous-time control loop of Figure 7.8. is inverting. The loop filter output signal is given by
考虑图 7.8 中的连续时间控制回路。 是反相的。回路滤波器输出信号 由给出。
Figure 7.8: General control system with estimation filter.
图 7.8:带有估计滤波器的一般控制系统。
If we choose , the loop is similar to the loop in Section 2.5 and if the loop filter output signal will consist only of a component related to the output
如果选择 ,循环类似于第 2.5 节中的循环,如果 ,循环滤波器输出信号将仅包含与输出相关的成分。

stage error. Measurements showed that the output level of a typical loop filter will be around 50 mV or less under maximum modulation.
阶段误差。测量显示,在最大调制情况下,典型环路滤波器的输出电平大约为 50 mV 或更小。

The lowest saturation threshold of the saturation circuit introduced in Section 2.5 is around 550 mV , which is still significantly higher than the expected output of the loop filter.
引入的第 2.5 节中的饱和电路的最低饱和阈值约为 550 毫伏,这仍然远高于环路滤波器预期的输出。

To improve the clipping behaviour of the amplifier we increase the input related component of the loop filter output signal such that the loop filter output signal is just below the saturation threshold at the onset of clipping.
为了改善放大器的削波行为,我们增加闭环滤波器输出信号与输入相关的部分,使得在削波开始时,闭环滤波器输出信号刚好在饱和阈值之下。
The transfer function from input to output is given by
输入 到输出 的传递函数由给出
If we assume and that the loop filter output signal is dominated by the component, we can approximate (7.7.2) as
如果我们假设 并且假设环路滤波器输出信号主要由 组件主导,我们可以将(7.7.2)近似为
and as  作为
From (7.7.4) can be seen that the polarity of the loop filter output signal depends on the relationship between the gains and . Care should be taken to ensure that the loop filter output signal has the correct polarity. When the modulator is over-modulated, the loop filter output will saturate and be out of phase with the amplifier output signal . The loop filter output should therefore also be out of phase with the amplifier output during normal operation. Hence it is required that . We can now calculate the value of the gain term as
从(7.7.4)可以看出,环路滤波器输出信号的极性取决于增益 之间的关系。应注意确保环路滤波器输出信号具有正确的极性。当调制器过调制时,环路滤波器输出 会饱和并与放大器输出信号 相位相反。因此,在正常操作期间,环路滤波器输出 也应与放大器输出 相位相反。因此需要 。我们现在可以计算增益项 的值为
where is the maximum amplifier output voltage, is the saturation limit of the loop filter and is the DC gain of . For this specific design, , and , with and as in Figure 7.5. Thus the value of is given by
其中 是放大器的最大输出电压, 是闭环滤波器的饱和限制, 的直流增益。对于这个特定的设计, ,其中 如图 7.5 所示。因此, 的值由以下给出:
For and , we get . We choose . It should be noted that the value of directly affects the clipping behaviour of the amplifier. The value selected here for is only an initial value and the final value will be determined through measurement.
对于 ,我们得到 。我们选择 。应当注意, 的值直接影响放大器的削波行为。在这里选择的 的值只是一个初始值,最终值将通过测量确定。
Also note that in (7.7.6) it is assumed that the maximum amplifier output voltage is equal to the supply rail . However, in reality the maximum amplifier output voltage will be slightly lower, and load dependant, due to the equivalent output resistance of the power stage.
请注意,在(7.7.6)中假设放大器的最大输出电压等于电源轨 。然而,在实际情况中,最大放大器输出电压会略低,并且取决于负载,这是由于功率级的等效输出电阻所导致的。
Another important point to note is that scaling the loop filter output by introducing a mismatch between and will modify the closed-loop response of the entire amplifier. The approximate closed-loop transfer function given by (7.7.3) does not explain this. However, the change in frequency response becomes apparent when the exact transfer function, given by (6.4.6), is evaluated.
另一个需要注意的重要点是,通过在 之间引入不匹配来放大环路滤波器输出,将修改整个放大器的闭环响应。由(7.7.3)给出的近似闭环传递函数无法解释这一点。然而,当评估由(6.4.6)给出的确切传递函数时,频率响应的变化就会变得明显。

This is shown in Section 7.8.
这在第 7.8 节中显示。

7.8 Analysis of the Control Loop Design
7.8 控制回路设计的分析

Figure 7.9 shows the root locus of the inner loop for an output load of . The inner loop is unconditionally stable; a reduction in gain will not lead to instability. Note that there are two zeros in the z-domain, while the s-domain transfer function only had one zero.
图 7.9 显示了输出负载为 时内部回路的根轨迹。内部回路是无条件稳定的;减小增益不会导致不稳定。请注意,在 z 域中有两个零点,而 s 域的传递函数只有一个零点。

Figure 7.10 shows the root locus of the complete control loop, which is conditionally stable.
图 7.10 显示了完整控制回路的根轨迹,其条件稳定。
Figure 7.9: Root locus of the inner control loop with an output load of .
图 7.9:带输出负载 的内部控制回路的根轨迹。
Figure 7.11 shows a bode plot of , from which the stability margins of the inner loop are determined. Figure 7.12 shows a bode plot of , from which the
图 7.11 展示了 的伯德图,从中可以确定内部回路的稳定性裕度。图 7.12 展示了 的伯德图,从中可以确定
Figure 7.10: Root locus of complete control loop with an output load of .
图 7.10:完全控制回路在输出负载为 时的根轨迹。
stability margins of the complete control system are determined. Both Figure 7.11 and Figure 7.12 are for a load and a propagation delay of .
完整控制系统的工作稳定性边界被确定。图 7.11 和图 7.12 都是在负载为 和传播延迟为 的情况下进行的。
Figure 7.11: Bode plot of for a load and a propagation delay of . Gain margin is 4.59 dB and phase margin is .
图 7.11:对于负载 和传播延迟 的 Bode 图。增益裕度为 4.59 dB,相位裕度为
Figure 7.13 shows the stability margins of the complete loop as a function of the propagation delay for different output loads. As expected, the absolute value of the
图 7.13 显示了完整环路的稳定性裕度作为传播延迟 和不同输出负载的函数。如预期的那样,绝对值的
Figure 7.12: Bode plot of for a load and a propagation delay of . Gain margin is -3.43 dB and phase margin is .
图 7.12:对于负载 和传播延迟 的 Bode 图。增益裕度为-3.43 dB,相位裕度为
gain margin increases and phase margin decreases for an increase in load resistance, and vice versa. Also, an increase in the propagation delay reduces the stability of the system. Although not shown in Figure 7.13, the system is unstable for a load resistance lower than when . It should be noted that the actual propagation delay is not constant, but is a function of the output current of the power stage. For , the longest propagation delay was measured as (see Section 3.10).
增益裕度随负载电阻的增加而增加,随负载电阻的减少而减少,反之亦然。此外,传播延迟的增加会降低系统的稳定性。虽然图 7.13 中没有显示,但当负载电阻低于 时,系统不稳定。需要注意的是,实际的传播延迟并非恒定,而是输出功率级电流的函数。对于 ,测量到的最大传播延迟为 (参见第 3.10 节)。
Figure 7.13: Gain margin (a), and phase margin (b), versus propagation delay for different loads.
图 7.13:不同负载下传播延迟与增益裕度(a)和相位裕度(b)的关系。
Figure 7.14 shows the magnitudes of the error transfer functions and
图 7.14 显示了误差传递函数 的大小。

versus frequency for an load. The inner loop error transfer function is fairly constant across the audio band with a value of -27.2 dB . Adding the outer loop improves this to a maximum value of -50.8 dB in the audio band.
对于 负载的频率。内部循环误差传递函数在整个音频带宽内相当稳定,值为-27.2 dB。添加外部循环将此值提高到音频带宽内的最大值-50.8 dB。
Figure 7.14: Calculated magnitude versus frequency of and for an load.
图 7.14:对于 负载, 的计算幅度与频率的关系。
Figure 7.15 shows the frequency response of the complete control system for various resistive output loads, calculated from (6.4.6) using the component values as determined in this chapter.
图 7.15 显示了在不同电阻性输出负载下完整控制系统频率响应的计算结果,使用本章中确定的组件值,依据(6.4.6)进行计算。

For reference, the frequency response of the approximate transfer function given by (7.7.3) is plotted in grey for an load. As expected, scaling the outer loop filter output level results in a frequency response that is different to that of the inner loop.
为参考,根据公式(7.7.3)给出的近似传输函数的频率响应被绘制为灰色,针对 负载。如预期的那样,调整外环滤波器输出级别会导致频率响应与内环的不同。

However, despite this the frequency response is flat to within 0.08 dB and, due to the high loop gain, there is very little variation in magnitude with a variation in load.
然而,尽管如此,频率响应在 0.08 dB 以内平坦,由于高闭环增益,负载变化时幅度变化非常小。
The outer loop filter is implemented with an OPA1611 operational amplifier from Texas Instruments. It is important to verify that the op-amp is able to produce the desired closed-loop transfer function.
外环滤波器使用德州仪器的 OPA1611 运算放大器实现。重要的是要验证运算放大器是否能够产生所需的闭环传递函数。

The open-loop gain of the operational amplifier has to be significantly higher than its closed-loop gain, otherwise the closed-loop gain will not be accurate and the op-amp itself will start to add noise and distortion.
运算放大器的开环增益必须远高于其闭环增益,否则闭环增益将不准确,运算放大器本身将开始添加噪声和失真。

Figure 7.16 shows that the op-amp does indeed have enough loop gain to accurately realise the closed-loop transfer functions and . Only at frequencies close to DC will the op-amp run out of loop gain due to the integrator in the loop filter. However, in this case the closed-loop gain of the operational amplifier at very low frequencies is not critical, as long as it is very large.
图 7.16 显示,运算放大器确实具有足够的闭环增益来准确实现闭合环路传输函数 。只有在接近直流频率时,由于闭环滤波器中的积分器,运算放大器会因闭环增益耗尽而停止工作。然而,在这种情况下,运算放大器在非常低频率下的闭环增益并不关键,只要它非常大。
Figure 7.15: Calculated closed-loop transfer function of the complete loop for output loads and . The grey line is an approximation.
图 7.15:完整环路输出负载 的闭环传递函数计算结果 。灰色线条为近似值。
Figure 7.16: Open-loop frequency response of the OPA1611 op-amp, and transfer functions and .
图 7.16:OPA1611 运算放大器的开环频率响应,以及 0#和 1#的传输函数。

7.9 Carrier Pre-Filter Transfer Function
7.9 携带者预过滤器传输函数

Referring to Section 2.4, one way to implement ripple compensation is to add a sawtooth carrier filtered by the transfer function through which the comparator output signal is filtered before reaching the comparator input to the original sawtooth carrier.
参考第 2.4 节,实现纹波补偿的一种方法是在原始锯齿波载波到达比较器输入之前,通过比较器输出信号经过的传输函数进行滤波的锯齿波载波。

In this design, the comparator output signal propagates through two different loops before reaching the comparator input. However, the outer loop filter has a low-pass characteristic with a cut-off frequency significantly lower than the carrier frequency.
在这个设计中,比较器输出信号通过两个不同的环路到达比较器输入。然而,外部环路滤波器具有低通特性,其截止频率远低于载波频率。

The inner loop filter does
内循环滤波器执行

not have a low-pass characteristic. Consequently, the contribution of the outer loop to the feedback ripple component is negligible compared to that of the inner loop. Thus, we ignore the outer loop when implementing ripple compensation.
没有低通特性。因此,外环对反馈纹波成分的贡献相对于内环来说可以忽略不计。因此,在实现纹波补偿时,我们忽略外环。
In addition to ripple compensation, the carrier has to be pre-filtered to cancel the filtering of the passive summation network. The output of the carrier generator is a unity amplitude sawtooth filtered by the transfer function
除了补偿纹波之外,载体还需要预滤波以抵消被动求和网络的滤波作用。载体生成器的输出是通过传递函数进行统一幅度的锯齿波滤波。
The first term in (7.9.1) scales the unity amplitude sawtooth to have an amplitude of . Also, the first term cancels the pole and zero of the passive summation pre-filter . Note that the gain term of the passive summation is not cancelled. This means that the effective amplitude of the sawtooth arriving at the input of the comparator is . The second term in (7.9.1) is the ripple compensation term filtered by the inverse of the passive summation pre-filter.
(7.9.1)中的第一个术语将单位幅度的锯齿波缩放为幅度为 。同时,第一个术语消除了无源求和预滤波器 的极点和零点。请注意,无源求和的增益项 并未被取消。这意味着到达比较器输入的锯齿波的有效幅度为 。(7.9.1)中的第二个术语是通过无源求和预滤波器的逆运算进行滤波的纹波补偿项。

7.10 Miscellaneous 7.10 其他

This section discusses the implementation of hardware related to the control loop circuitry that was not discussed in the preceding sections.
本节讨论了与前几节未涉及的控制回路电路相关的硬件实现。

7.10.1 Control Circuit Power Supply
7.10.1 控制电路电源

A bipolar supply voltage of 12 V per rail is provided to the op-amps and the comparator of the control circuit through LM7812 and LM7912 linear regulators. The output of the comparator is pulled up to a 5 V supply, which is provided by an LM7805 linear regulator.
控制电路通过 LM7812 和 LM7912 线性调节器为运算放大器和控制器的比较器提供每路 12 伏的双极电源电压。比较器的输出被拉高至 5 伏电源,该电源由 LM7805 线性调节器提供。

7.10.2 Comparator 7.10.2 比较器

Figure 7.17 shows the LM306 comparator circuit used in the control loop. The LM306 is powered from the same voltage supply as the op-amps in the control loop. The output of the comparator is pulled up to a 5 V supply through resistor . The value of the pull-up resistor is . Resistor helps to reduce the voltage undershoot caused by the high rate of change in output voltage when the current-sinking output transistor of the comparator switches on, and has a value of .
图 7.17 显示了用于控制回路的 LM306 比较器电路。LM306 从控制回路中的运放相同的电压电源供电。比较器的输出通过电阻器 拉高至 5V 电源。拉高电阻器的值为 。电阻器 有助于减少输出电压快速变化时比较器电流抽头输出晶体管接通引起的电压下冲,其值为

7.10.3 Loop Filter Saturation Circuit
7.10.3 循环滤波器饱和电路

Figure 7.18 shows the loop filter saturation circuit that was described in Section 2.5. The transistor circuit is powered from the same voltage supply as the loop filter op-amps. The
图 7.18 显示了在第 2.5 节中描述的环路滤波器饱和电路。晶体管电路从与环路滤波器运算放大器相同的电压电源供电。
Figure 7.17: The LM306 comparator circuit.
图 7.17:LM306 比较器电路。
zener diodes are omitted to reduce the saturation threshold. The Transistors and are integrated in a single BCV62C dual-transistor package. Transistors and are BCV61C transistors, and is also in a single package. Transistors and are BC849C and BC859C transistors, respectively. The choice of transistors for this circuit is not critical, as long as they have a high current gain and collector-emitter voltage ratings of greater than 24 V .
译文:zener diodes 被省略以降低饱和阈值。Transistors 集成在单个 BCV62C 双晶体管封装中。Transistors 是 BCV61C 晶体管,也集成在单个封装中。Transistors 分别是 BC849C 和 BC859C 晶体管。此电路中晶体管的选择并不关键,只要它们具有高电流增益和大于 24V 的集电极-发射极电压额定值即可。
Figure 7.18: Transistor-based loop filter saturation circuit.
图 7.18:基于晶体管的环路滤波器饱和电路。
The values of and are not critical either. Resistors and have to be small enough to not turn on the current mirrors due to leakage currents when and are off, and large enough to properly turn on the current mirrors when or are turned on by the loop filter op-amp. They are chosen as . Resistor limits the maximum transistor current. We choose to limit the maximum current to 120 mA .
的值也不重要。电阻器 必须足够小,以防止在 关闭时由于泄漏电流而开启电流镜,同时在 通过环路滤波器运放开启时,它们足够大以正确开启电流镜。它们被选择为 。电阻器 限制了最大晶体管电流。我们选择 以限制最大电流为 120 mA 。

7.11 Summary 7.11 总结

In this chapter an optimal control loop was designed by means of an iterative optimisation algorithm. Component values of the analogue circuits were calculated. The complete control system is conditionally stable and provides at least 50 dB rejection of output stage errors.
本章中,通过迭代优化算法设计了一个最优控制环路。计算了模拟电路的元件值。完整的控制系统条件稳定,并至少提供 50 dB 的输出级错误抑制。

The estimation filter is realised with a second order multiple-feedback opamp filter, and the outer loop filter output level is scaled to improve clipping behaviour.
估计滤波器通过二级多反馈运算放大器滤波器实现,外部环路滤波器输出级别被调整以改善削波行为。

Chapter 8 第 8 章

Simulations 模拟

8.1 Introduction 8.1 引言

The designed control loop is simulated in both MATLAB Simulink and a SPICE-based simulator to verify its operation. All simulations are done with an load, unless stated otherwise. The first section primarily concerns the effect of ripple compensation on the performance of the control loop. The second section focusses on the behaviour of the control loop when over-modulation occurs.
设计的控制回路在 MATLAB Simulink 和基于 SPICE 的模拟器中进行模拟,以验证其运行情况。所有模拟均使用 负载进行,除非另有说明。第一部分主要关注电容补偿对控制回路性能的影响。第二部分专注于当过调制发生时,控制回路的行为。
Figure 8.1 (a) shows a spectrum of the Simulink simulated amplifier output with only the passive inner loop active. The modulation index is and the input frequency is 1 kHz . Note that the magnitude of the noise is not representative of the actual amplifier noise.
图 8.1(a)显示了仅主动内环路激活的 Simulink 模拟放大器输出的频谱。调制指数为 ,输入频率为 1 kHz。请注意,噪声的幅度并不代表实际放大器的噪声。

The noise in the simulation is due to the finite simulation time-step and a small amount of Gaussian noise added as a timing error at the comparator output.
模拟中的噪声是由于有限的模拟时间步长和在比较器输出处添加的小量高斯噪声造成的。

The important observation here is that the shape of the noise approximately follows the shape of the error transfer function . Figure 8.1 (b) shows a spectrum of the simulated amplifier output under the same conditions with both loops active. Again, the shape of the noise matches that of the error transfer function .
重要观察是,噪声的形状大约遵循误差传递函数 的形状。图 8.1(b)显示了在两个回路都激活的情况下模拟放大器输出的频谱。再次,噪声的形状与误差传递函数 的形状相匹配。
Figure 8.2 shows the data for the same simulation as Figure 8.1, but this time without ripple compensation. Although the shape of the noise still follows that of the error transfer functions, harmonics of the fundamental signal are now clearly visible.
图 8.2 显示了与图 8.1 相同的模拟数据,但这次没有进行振荡补偿。尽管噪声的形状仍然遵循误差传递函数的模式,但基本信号的谐波现在变得明显可见。

These harmonics are not present in the open loop system, and is a direct consequence of feedback ripple aliasing .
这些谐波在开环系统中不存在,是反馈纹波混叠的结果。
Figure 8.3 shows the simulated comparator gain with and without ripple compensation for an amplifier input signal of 1 kHz and . The simulated gain is calculated
图 8.3 显示了对于 1 kHz 和 的放大器输入信号,有和没有纹波补偿时模拟比较器增益的情况。模拟增益是通过计算得出的。
Figure 8.1: Magnitude spectrum of simulated amplifier output with only the inner loop active (a) and with both loops active (b). The error transfer functions are shown in grey for comparison.
图 8.1:仅内环激活时模拟放大器输出的幅度频谱(a),以及两个环都激活时的幅度频谱(b)。错误传输函数以灰色显示,用于比较。
Figure 8.2: Magnitude spectrum of simulated amplifier output without ripple compensation with only the inner loop active (a) and with both loops active (b). The error transfer functions are shown in grey for comparison.
图 8.2:模拟放大器输出无纹波补偿时的幅度频谱,仅内环激活(a)和内外环都激活(b)。错误传递函数以灰色显示,用于比较。
using the derivative of the comparator input signal at a sampling instant. The dashed line indicates the theoretical value of the comparator gain , and closely matches the simulation. Without ripple compensation there is a 4.2 dB variation in comparator gain, which is reduced to 0.04 dB when ripple compensation is implemented. Note the sudden changes in the gain when ripple compensation is not used.
在采样瞬间使用比较器输入信号的导数。虚线表示比较器增益 的理论值,与模拟结果非常接近。如果没有纹波补偿,比较器增益会有 4.2 dB 的变化,而当实施纹波补偿时,这一变化减少到 0.04 dB。请注意,如果没有使用纹波补偿,增益会发生突然的变化。

At these points the ripple component has shifted in phase relative to the sawtooth to such an extent that the slope of the ripple component at the sampling instant is reversed.
在这些点上,波动成分相对于锯齿波的相位发生了偏移,以至于在采样瞬间,波动成分的斜率被反转。
Figure 8.4 shows the reference input signal that the comparator compares to the sawtooth carrier. The top waveform is not ripple compensated and inspection of the
图 8.4 显示了比较器与锯齿波载波进行比较的参考输入信号。顶部波形未进行纹波补偿,检查该
Figure 8.3: Simulated comparator gain with and without ripple compensation. The input signal frequency is 1 kHz and .
图 8.3:带通和不带通的模拟比较器增益模拟。输入信号频率为 1 kHz 和
envelope of the signal clearly shows that the superimposed ripple component is duty cycle dependent. The bottom waveform is ripple compensated and the ripple component is virtually independent of duty cycle.
信号的包封清楚地表明叠加的纹波成分依赖于占空比。底部波形经过纹波补偿,纹波成分几乎与占空比无关。
Figure 8.4: Simulated comparator input reference signal without ripple compensation (top) and with ripple compensation (bottom). The input signal frequency is 1 kHz and .
图 8.4:无纹波补偿(顶部)和有纹波补偿(底部)的模拟比较器输入参考信号。输入信号频率为 1 kHz,

8.3 SPICE

Figure 8.5 shows SPICE simulation waveforms of when the modulator is over-modulated. The output signal of the amplifier, shown in Figure 8.5 (a), recovers from over-modulation with only a slight oscillation.
图 8.5 展示了调制器过调制时的 SPICE 仿真波形。如图 8.5(a)所示,放大器的输出信号从过调制中恢复,仅伴有轻微的振荡。

The reason for this oscillation becomes apparent when the output signal of the outer loop filter, shown in Figure 8.5 (b), is considered.
当考虑外环滤波器的输出信号,如图 8.5(b)所示,这种振荡的原因就变得明显了。

When the amplifier saturates, the output of the outer loop filter is not yet at the saturation threshold of the loop filter saturation circuit.
当放大器饱和时,外环滤波器的输出尚未达到环路滤波器饱和电路的饱和阈值。

This is because the equivalent series resistance of the power stage, which causes the amplifier to saturate to a voltage lower than the 30 V supply rails, was not taken into account in (7.7.6).
这是因为功率阶段的等效串联电阻没有被考虑进去,这个电阻导致放大器在低于 30V 电源轨的电压下饱和,在(7.7.6)中没有被考虑。
The slight recovery oscillation is unlikely to be audible, since at this point the outer loop filter is active and providing error rejection in the audio band. However, the cliprecovery can be improved by increasing the magnitude of the loop filter output signal.
轻微的恢复振荡可能不易察觉,因为在这一点上,外部环路滤波器处于活动状态,提供音频带中的错误拒绝。然而,可以通过增加环路滤波器输出信号的幅度来改善剪辑恢复。

Figure 8.6 shows the waveforms when the loop filter output has been increased by decreasing the value of resistor (Figure 7.5) from to . The amplifier and loop filter now saturates almost simultaneously, and consequently the clip-recovery is almost perfect.
图 8.6 显示了当通过将电阻器 (图 7.5)的值从 减小到 时,回路滤波器输出增加时的波形。放大器和回路滤波器现在几乎同时饱和,因此剪切恢复几乎完美。

Note that the control loop has no control over the output voltage when the modulator is in saturation and the overshoot of the output waveform at the start of clipping is the natural response of the demodulation filter.
请注意,在调制器处于饱和状态时,控制回路无法控制输出电压,输出波形开始削波时的过冲是解调滤波器的自然响应。
Figure 8.5: Spice simulation of amplifier output (a) and outer loop filter output (b) during over-modulation for .
图 8.5:放大器输出(a)和外环滤波器输出(b)在过调制期间的香料模拟结果。

8.4 Summary 8.4 总结

This chapter presented some simulation results that confirmed the correct operation of the control loop that was designed in the preceding chapters. The simulations correlated
本章呈现了一些模拟结果,这些结果证实了前几章设计的控制回路的正确运行。模拟结果与实际情况相吻合。
Figure 8.6: Spice simulation of amplifier output (a) and outer loop filter output (b) during over-modulation for .
图 8.6:放大器输出(a)和外环滤波器输出(b)在过调制期间的香料模拟结果。
well with theoretical expectations. Furthermore, the simulations illustrated the ability of the ripple compensation technique to minimise ripple aliasing and comparator gain fluctuations.
与理论预期相符。此外,模拟演示了抖动补偿技术能够最小化抖动混叠和比较器增益波动的能力。

It was also confirmed that the conditionally stable loop remains stable when loop gain collapses due to over-modulation.
也证实了,条件稳定的环路在环路增益因过调制而崩溃时仍然保持稳定。

Chapter 9 第 9 章

Measurements 测量

9.1 Introduction 9.1 引言

This chapter presents detailed measurements of the amplifier. Except for oscilloscope measurements, all measurements were performed with an Audio Precision SYS-2722 audio analyser. In earlier design iterations the power stage of a commercial class-D amplifier module was used.
本章呈现了放大器的详细测量数据。除了示波器测量,所有测量均使用 Audio Precision SYS-2722 音频分析仪进行。在早期的设计迭代中,使用了商用类-D 放大器模块的功率级。

In most cases measurements of the amplifier with the commercial power stage will also be given for comparison. We will refer to the power stage that was designed in this thesis as power stage one (PS1) and the commercial power stage as power stage two (PS2).
在大多数情况下,将提供使用商业功率级的放大器的测量结果进行比较。我们将在此论文中设计的功率级称为功率级一(PS1),将商业功率级称为功率级二(PS2)。

PS1 is assumed if no reference is made to a specific power stage. Unless stated otherwise, ripple compensation is implemented and the delay in the pre-filter transfer function is .
PS1 被假定,如果未提及特定的功率阶段。除非另有说明,否则实施了纹波补偿,并且预滤波器传递函数在 0#处的延迟为

9.2 Clipping Behaviour 9.2 剪辑行为

Figure 9.1 shows the behaviour of the amplifier during clipping. The value of resistor is (see Section 7.7). Loop filter saturation and modulator overload happens almost simultaneously. Hence, the clip-recovery is very good and no further adjustment is necessary.
图 9.1 显示了放大器在削波期间的行为。电阻器 的值为 (参见第 7.7 节)。环路滤波器饱和和调制器过载几乎同时发生。因此,削波恢复非常好,不需要进一步的调整。

9.3 Distortion 9.3 扭曲

A measurement of total harmonic distortion and noise (THD +N gives an indication of the linearity of the amplifier. All THD +N measurements are measured through an AUX-0025 switching amplifier measurement filter [50]. The measurement bandwidth is restricted to 20 kHz by enabling the 20 kHz AES17 filter of the analyser.
总谐波失真和噪声(THD +N )的测量给出了放大器线性度的指示。所有 THD +N 测量都是通过一个 AUX-0025 开关放大器测量滤波器[50]进行的。测量带宽限制在 20 kHz,通过启用分析仪的 20 kHz AES17 滤波器实现。

This is required because a THD +N measurement does not differentiate between distortion and noise. The noise
这是因为 THD +N 测量无法区分失真和噪声。噪声
Figure 9.1: Oscilloscope measurements of (a) the output of the amplifier and (b) the output of the outer loop filter for .
图 9.1:示波器测量结果,(a) 放大器的输出和(b) 外环滤波器在 时的输出。
shaping characteristic of the control loop results in a rapid increase in noise just above 20 kHz (see Section 8.2), which will contaminate the measurement if the bandwidth is not restricted.
控制回路的特性导致在 20 kHz 略上方噪声迅速增加(见第 8.2 节),如果带宽不受到限制,这将污染测量结果。

Note that restricting the measurement bandwidth to 20 kHz means that any THD +N measurement above 10 kHz will consist of only noise. Unless indicated otherwise, power is measured relative to an load. This makes it easier to compare measurements with different output loads.
注意,将测量带宽限制为 20 kHz 意味着 10 kHz 以上的任何总谐波失真+噪声测量将仅由噪声组成。除非另有说明,功率是在相对于 负载的情况下测量的。这使得比较不同输出负载下的测量结果变得更容易。
Figure 9.2 shows measurements of THD +N as a function of output power. Figure 9.2 (a) is for an output load and (b) for a load. The top trace is the THD +N of the open loop system, and the centre and bottom traces are with the inner control loop and the complete control loop active, respectively. Closing the inner loop around the output stage reduces THD +N at 10 W into from to . This is a reduction of 22.3 dB , which is less than we expect, because in the audio band. Closing the outer loop further reduces THD +N by 25.7 dB from to . This is more in line with theoretical expectations, since the outer loop reduces the error transfer function by at least 23.6 dB . The total reduction in THD +N compared to open loop operation at 10 W into is 48 dB . We expected a reduction of at least 50.8 dB
图 9.2 展示了 THD +N 随输出功率的变化情况。图 9.2(a)是针对 输出负载的情况,而(b)是针对 负载的情况。顶部的波形是开环系统的 THD +N,中间和底部的波形分别是内环控制和完整控制环路激活时的 THD +N,分别对应。在输出级周围关闭内环可以将 10 W 输入下的 的 THD +N 从 降低到 ,降低幅度为 22.3 dB,这低于我们的预期,因为 在音频频带内。进一步关闭外环可以将 THD +N 从 降低到 ,降低幅度为 25.7 dB,这更符合理论预期,因为外环至少可以减少 23.6 dB 的误差传递函数。在 10 W 输入下与开环操作相比,THD +N 的总降低幅度为 48 dB。我们预期至少可以降低 50.8 dB。
We can gain some insight into the discrepancy between the expected and measured values of THD +N by comparing the measurements of PS1 and PS2.
通过比较 PS1 和 PS2 的测量值,我们可以对 THD +N 的预期值和测量值之间的差异获得一些见解。

From Figure 9.2 we see that the "shape" of the THD+N versus power measurement for PS2 does not change when the inner loop and outer loop is closed around the output stage, except at very low and very high power levels.
从图 9.2 我们可以看到,PS2 的 THD+N 与功率测量的“形状”在内部环路和外部环路围绕输出级闭合时不会改变,除了在非常低和非常高的功率水平时。

In other words, the error rejection capability of the control loops do not depend on modulation index. This is correct, because with ripple compensation we do not expect the effectiveness of the control loops to depend on
换句话说,控制回路的错误拒绝能力并不依赖于调制指数。这是正确的,因为在纹波补偿的情况下,我们不期望控制回路的有效性依赖于
Figure 9.2: Measured THD +N versus output power at 1 kHz with (a) and (b) . From top to bottom: open loop, with the inner control loop active, and with the complete control loop active.
图 9.2:在 1 kHz 时,输出功率为(a) 和(b) 时测量的 THD +N 与输出功率的关系。从上到下:开环,内环控制回路激活,以及完整的控制回路激活。
modulation index. In contrast, for PS1 the reduction in THD +N varies with modulation index. The inner loop reduces THD +N by 33 dB at 1 W into , which is more than the loop gain, and only by 22.3 dB at 10 W . Furthermore, the outer loop does the opposite: it reduces THD +N more effectively at higher values of .
调制指数。相比之下,对于 PS1,THD +N 的减少量随调制指数变化。内部回路在 1 W 输入到 时通过 33 dB 降低 THD +N,这超过了环路增益,而在 10 W 时仅降低 22.3 dB。此外,外部回路则相反:在 值较高时更有效地降低 THD +N。
It should be understood that PS1 and PS2 are completely different power stage designs. PS2 has discrete comparator and gate drive circuitry that are not equivalent to the integrated circuits used in PS1. Furthermore, the EMI performance of PS2 is superior to that of PS1 [35].
应理解,PS1 和 PS2 是完全不同的功率级设计。PS2 具有独立的比较器和门驱动电路,这些电路与 PS1 中使用的集成电路不等同。此外,PS2 的 EMI 性能优于 PS1 [35]。

It is believed that self-pollution is the main reason for the non-ideal behaviour of the control loop with regards to PS1.
人们认为自我污染是控制回路在处理 PS1 时非理想行为的主要原因。
It is noted that the measurements of THD +N versus power for PS2 is not entirely as expected either. Although the reduction in THD +N is largely independent of modulation index, the inner loop reduces THD +N by 24.4 dB and not 27.2 dB as expected.
注意到 PS2 的 THD +N 与功率的测量结果并不完全如预期。尽管 THD +N 的减少在很大程度上与调制指数无关,但内部回路减少了 24.4 dB 的 THD +N,而不是如预期的 27.2 dB。

When both loops are active THD +N is reduced by 53.2 dB . The measurements for PS2 are more in line with theoretical expectations than those of PS1.
当两个循环都活跃时,THD +N 减少了 53.2 dB。对于 PS2 的测量结果比 PS1 更符合理论预期。

In Section 9.8 it will be shown that the delay in the ripple compensation pre-filter transfer function also affects the performance of the control loop.
在第 9.8 节中,将展示振铃补偿预滤波器传递函数中的延迟也会影响控制回路的性能。
With reference to Figure 9.2, with both loops active THD + N for PS1 exceeds at about 51 W into and 98.6 W (49.3 W on the graph) into . The sudden rise in distortion just above 30 W is due to the power stage reaching its minimum pulse width. At this point the outer loop filter is still active.
参考图 9.2,当两个环路都处于活动状态时,PS1 的 THD + N 在 51 瓦进入 和 98.6 瓦(图上为 49.3 瓦)进入 时超过 。30 瓦上方突然增加的失真归因于功率阶段达到其最小脉冲宽度。在这个点,外环滤波器仍然处于活动状态。

At about 50 W over-modulation occurs, at which point the outer loop filter saturates due to the large output stage error. Note that the THD +N measurement with both loops active is dominated by noise for power levels below about 1 W .
在大约 50 瓦时过调制发生,此时由于输出级误差较大,外环滤波器饱和。请注意,当两个环路都处于活动状态时,THD +N 测量在功率水平低于大约 1 瓦时主要由噪声主导。
Figure 9.3 shows measurements of as a function of frequency at 10 W into and 20 W into . The open loop THD +N changes with frequency in accordance with the frequency response of the demodulation filter. With an load the demodulation filter has a low damping ratio and distortion rises with frequency. With a load there is less of a rise in open loop THD +N with frequency due to the increased damping ratio.
图 9.3 显示了在 10 W 输入 和 20 W 输入 时, 在不同频率下的测量值。开环 THD +N 随频率变化,与解调滤波器的频率响应一致。在 负载下,解调滤波器的阻尼比低,失真随频率增加。在 负载下,由于阻尼比增加,开环 THD +N 随频率变化的上升较少。
Figure 9.3: Measured THD +N versus frequency at 10 W with (a) and (b) . From top to bottom: open loop, with the inner control loop active, and with the complete control loop active.
图 9.3:在 10 W 功率下,(a) 和(b) 时测量的 THD+N 与频率的关系。从上到下:开环,内部控制环路激活,以及完整控制环路激活。
Closing the inner loop around the output stage makes the error transfer function independent of the transfer function of the demodulation filter, and constant in the audio band. Consequently, THD +N does not rise with frequency when the inner loop is active.
关闭内部循环到输出阶段,使得误差传递函数与解调滤波器的传递函数无关,并且在音频带内保持恒定。因此,当内部循环激活时,THD +N 不会随着频率的增加而上升。

Above 6.7 kHz the third harmonic falls outside the measurement bandwidth. However, this does not cause a significant reduction in THD +N , because with the inner loop active distortion is mainly second harmonic.
超过 6.7 kHz 后,第三谐波位于测量带宽之外。然而,这并不会导致 THD +N 显著减少,因为当内部回路激活时,主要的失真为第二谐波。

THD +N only drops significantly above 10 kHz when the second harmonic falls outside the measurement bandwidth. With both control loops active the distortion varies with frequency as dictated by the total noise transfer function .
THD +N 只有在第二谐波落在测量带宽之外时,当频率高于 10 kHz 时才会显著降低。当两个控制回路都处于活动状态时,失真随频率变化,遵循由总噪声传递函数 所规定的方式。

9.4 Spectral Analysis 9.4 光谱分析

Figure 9.4 (a) shows an FFT of the distortion residue when PS1 is operated open loop and delivering 10 W at 1 kHz into . THD +N is . Figure 9.4 (b) shows the same measurement for PS2, and THD+N is . The distortion residue of both PS1 and PS2 is dominated by the second and third harmonic, although significant higher order
图 9.4(a)显示了当 PS1 以开环方式操作,并在 1 kHz 时向 输出 10 W 时,失真残留的 FFT。THD +N 为 。图 9.4(b)显示了 PS2 的相同测量结果,THD+N 为 。PS1 和 PS2 的失真残留主要由第二和第三谐波主导,尽管存在显著的高阶谐波。

components are also present. Note that while the distortion of PS1 is lower than that of PS2, the noise floor of PS2 is about 13 dB lower than that of PS1.
组件也存在。请注意,尽管 PS1 的失真低于 PS2,但 PS2 的噪声底座比 PS1 低约 13 dB。
Figure 9.4: FFT of the open loop distortion residue with 10 W at 1 kHz into for (a) PS1 and (b) PS2. THD +N is (a) and (b) . The suppressed fundamental is at 0 dB .
图 9.4:在 1 kHz 处,10 W 输入到 时的开环失真残留的 FFT 结果,对于(a) PS1 和(b) PS2。THD +N 分别为(a) 和(b) 。被抑制的基本频率为 0 dB。
Figure 9.5 shows FFT's of the distortion residues for the same conditions as in Figure 9.4 when the inner loop is active. Note that, as expected, the noise floor is now constant with frequency.
图 9.5 展示了在图 9.4 相同条件下,内循环激活时畸变残留的 FFT 图。请注意,正如预期的那样,噪声底现在随着频率的增加保持恒定。

The noise floor is reduced by roughly 30 dB for PS1 and 25 dB for PS2 compared to open loop operation.
PS1 和 PS2 相对于开环操作,噪声底降低约 30 分贝和 25 分贝。
Figure 9.5: FFT of the distortion residue with the inner loop active with 10 W at 1 kHz into for (a) PS1 and (b) PS2. THD +N is (a) and (b) . The suppressed fundamental is at 0 dB .
图 9.5:在 1 kHz 时,内环激活,输入功率为 10 W,对于(a) PS1 和(b) PS2,失真残留的 FFT。THD +N 为(a) 和(b) 。被抑制的基本频率为 0 dB。
Figure 9.6 shows FFT's of the distortion residues when both loops are active. The noise is still constant with frequency, despite the fact that the gain of the outer loop filter
图 9.6 显示了两个环路都激活时失真残留的 FFT 图。尽管外环滤波器的增益发生变化,但频率的噪声仍然保持恒定。

is not constant with frequency. Ideally, we expect a dip in the noise floor at 15 kHz , which is the frequency of the complex pole pair of the outer loop filter.
不是频率的常数。理想情况下,我们期望在 15 kHz 处噪声底面出现下降,这是外环滤波器复极对的频率。

Furthermore, the noise floor is only down by 10 dB for PS 1 and 3 dB for PS2 compared to the noise floor with the inner loop active. Also, the open loop noise floor of PS2 is 13 dB lower than that of PS1, while with both loops active the noise floor of PS1 and PS2 is the same.
此外,与内环激活时的噪声地板相比,PS 1 的噪声地板降低了 10 dB,PS 2 降低了 3 dB。另外,PS 2 的开环噪声地板比 PS 1 低 13 dB,而两个环都激活时,PS 1 和 PS 2 的噪声地板相同。

This suggests that with both loops active, the noise of the control circuitry itself and the noise of the analyser start to become significant. The measured unweighed noise of the amplifier is ( bandwidth) when both loops are active.
这表明,在两个循环都激活的情况下,控制电路本身的噪声和分析器的噪声开始变得重要。当两个循环都激活时,放大器的测量未加权噪声为 带宽)。
Figure 9.6: FFT of the distortion residue with both loops active with 10 W at 1 kHz into for (a) PS1 and (b) PS2. THD +N is (a) and (b) . The suppressed fundamental is at 0 dB .
图 9.6:在 1 kHz 处,10 W 输入到 时,两个回路都激活的失真残留的 FFT。对于(a) PS1 和(b) PS2。THD +N 是(a) 和(b) 。被抑制的基本频率为 0 dB。
Figure 9.7 shows FFT's of the amplifier output with both loops active for a twin-tone input. The frequencies of the input tones are 18 kHz and 20 kHz and the output power is 10 W into . A twin-tone test can assess the linearity of the amplifier at frequencies above half the measurement bandwidth, where standard THD +N or single tone FFT measurements are not meaningful. Figure 9.7 shows that there are no unexpected excessive intermodulation components.
图 9.7 显示了双音输入时,两个环路都激活的放大器输出的 FFT 图。输入音调的频率为 18 kHz 和 20 kHz,输出功率为 10 W。在测量带宽的一半以上的频率处,双音测试可以评估放大器的线性度,而标准的总谐波失真+噪声(THD +N)或单音 FFT 测量在这个频率范围内没有意义。图 9.7 表明,没有出现任何意外的过度互调成分。

The intermodulation components that are present correspond reasonably well with the harmonic components of the distortion residuals in Figure 9.6. Note that the components that are not at integer multiples of 2 kHz are those of the DAC and ADC of the analyser.
图 9.6 中的失真残留的谐波成分与存在的交调成分相对应得相当好。请注意,那些不是 2 kHz 的整数倍的成分是分析仪的 DAC 和 ADC 的。

9.5 Frequency Response 9.5 频率响应

Figure 9.8 shows the measured frequency response when the inner loop is closed around the output stage. The measurement bandwidth is 80 kHz and the measurement was taken at an output power of 1 W into . There is only a 0.05 dB variation in magnitude
图 9.8 显示了闭环内环在输出级周围时测量的频率响应。测量带宽为 80 kHz,测量时输出功率为 1 W。在 负载下,幅度变化仅为 0.05 dB。
Figure 9.7: Normalised FFT of the amplifier output with 18 kHz and 20 kHz input tones for (a) PS1 and (b) PS2. Output power is 10 W into .
图 9.7:放大器输出在 18 kHz 和 20 kHz 输入音调下的归一化 FFT,对于(a) PS1 和(b) PS2。输出功率为 10 W 入
when the output load is changed from to . The dashed line is the calculated frequency response of the inner loop for an output load of and matches the measured response to within 0.01 dB and .
当输出负载从 更改为 时。虚线表示输出负载为 时内环的计算频率响应,并与测量响应在 0.01 dB 以内以及 相匹配。
Figure 9.8: Measured closed loop frequency response of the inner loop for various output loads. From top to bottom: and . The dashed line is the theoretical frequency response for an load.
图 9.8:不同输出负载下内环的闭环频率响应测量结果。从上到下: 。虚线是 负载的理论频率响应。
Figure 9.9 shows the measured frequency response when both loops are closed around the output stage. There is almost no distinguishable difference in frequency response with a variation in load. This indicates a very low output impedance. The measured frequency
图 9.9 显示了当两个环路都围绕输出级闭合时测量到的频率响应。负载变化时,频率响应几乎没有可区分的差异。这表明输出阻抗非常低。测量到的频率

response correlates very well with the theoretical calculation, except for a 0.39 dB difference in DC gain. This deviation is likely due to component tolerances. The frequency response of the amplifier is flat to within 0.08 dB in the audio band.
响应与理论计算非常吻合,除了在直流增益上存在 0.39 分贝的差异。这种偏差可能归因于元件的公差。放大器的频率响应在音频带内,在 0.08 分贝的范围内平坦。
Figure 9.9: Measured closed loop frequency response of the complete control loop for various output loads. From top to bottom: and . The dashed line is the theoretical frequency response for an load.
图 9.9:完整控制回路在不同输出负载下的测量闭环频率响应。从上到下: 。虚线是 负载的理论频率响应。

9.6 Output Impedance 9.6 输出阻抗

The output impedance of the amplifier is very low and cannot be accurately calculated by simply measuring the change in output voltage with a change in load. Instead we make use of Kelvin sensing to measure the output impedance of the amplifier.
放大器的输出阻抗非常低,不能仅通过测量负载变化时输出电压的变化来准确计算。相反,我们利用凯尔文感应来测量放大器的输出阻抗。

Figure 9.10 shows the measurement setup. Current is forced into the output impedance of the device-under-test (DUT) by the differential current source . This generates a voltage over the output impedance which is measured by the audio analyser. The magnitude of the output impedance is then given by . We can use the generator output of the analyser as a current source, because its output impedance of is significantly larger than the output impedance of the amplifier. The magnitude of the current forced into the output of the amplifier is .
图 9.10 显示了测量设置。差分电流源 将电流施加到被测设备(DUT)的输出阻抗 上。这在输出阻抗上产生了电压 ,该电压由音频分析仪测量。输出阻抗的大小由 给出。我们可以使用分析仪的输出作为电流源,因为其输出阻抗 远大于放大器的输出阻抗。施加到放大器输出的电流的大小为
Figure 9.11 shows the measured magnitude of the output impedance as a function of frequency for both PS1 and PS2. The output impedance is exceptionally low and only exceeds at 20 kHz for PS1.
图 9.11 显示了 PS1 和 PS2 的输出阻抗测量值随频率变化的函数。输出阻抗非常低,仅在 20 kHz 时 PS1 超过
Figure 9.10: Output impedance measurement setup.
图 9.10:输出阻抗测量设置。
Figure 9.11: Measured output impedance for PS1 and PS2.
图 9.11:PS1 和 PS2 的测量输出阻抗。

9.7 Power Supply Rejection Ratio
9.7 电源拒绝比

In a self-oscillating modulator the equivalent carrier scales proportionally to the supply rails. Consequently, a self-oscillating modulator has an inherent mechanism for rejecting supply voltage variations.
在自振荡调制器中,等效载波与电源轨成比例。因此,自振荡调制器具有抵抗电源电压变化的内在机制。

A clocked modulator has no such mechanism and the control loop is solely responsible for rejecting supply voltage fluctuations. In most cases supply voltage fluctuations consist of components related to the AC mains frequency.
计时调制器没有这样的机制,控制回路完全负责拒绝电源电压波动。在大多数情况下,电源电压波动包括与交流主电源频率相关的成分。

The integrator in the outer loop filter will help to provide increased immunity against mains related power supply noise.
外环滤波器中的整合器将有助于提高对电源供应噪声的抗性,特别是针对电源相关的噪声。
To measure the power supply rejection ratio (PSRR) we inject a signal into the supply rail of the amplifier and measure the magnitude of the signal that is present at the output of the amplifier.
为了测量功率供应拒绝比(PSRR),我们在放大器的电源轨中注入一个信号,并测量放大器输出端存在的信号幅度。

The PSRR is the ratio between the signal at the output of the amplifier and the signal injected into the supply rail.
PSRR 是放大器输出信号与注入供电轨的信号之间的比率。
There are several ways to inject a signal into the supply rail [51]. One method is to couple a signal into the supply rail through a transformer. Another method is to connect the floating generator output of the analyser in series with the power supply.
注入供电轨的信号有几种方法[51]。一种方法是通过变压器将信号耦合到供电轨。另一种方法是将分析器的浮置发电机输出与电源串联连接。

However, this can potentially damage the analyser. It was decided to inject a signal into the supply rail through a buffer amplifier, thereby protecting the generator output of the analyser.
然而,这可能会损害分析器。决定通过缓冲放大器将信号注入供电轨,从而保护分析器的输出。
Figure 9.12 shows the measurement setup. The buffer amplifier is a commercial UcD180ST class-D amplifier module from Hypex Electronics [52]. The resistor in series with the output of the buffer amplifier limits the maximum inrush current into the decoupling capacitors of the DUT and has a value of . The signal injected into the supply rail is regulated to .
图 9.12 显示了测量设置。缓冲放大器是 Hypex Electronics [52]的商业级 UcD180ST 类-D 放大器模块。与缓冲放大器输出串联的电阻器 限制了 DUT 的去耦电容器中的最大涌入电流,并具有 的值。注入电源轨的信号被调节为
Figure 9.12: PSRR measurement setup.
图 9.12:PSRR 测量设置。
Figure 9.13 shows the measured PSRR as a function of frequency. The effect of the integrator in the outer loop filter is clearly visible. At 50 Hz the PSRR is -78 dB , increasing to -62.5 dB at 1 kHz .
图 9.13 显示了测量的 PSRR 随频率的变化。外环滤波器中的积分器效果明显可见。在 50 Hz 时,PSRR 为-78 dB,增加到 1 kHz 时为-62.5 dB。

9.8 The Effect of Ripple Compensation
9.8 液晶补偿的效果

With reference to Section 7.9, the ripple compensation pre-filter contains a constant time delay equal to the propagation delay of the loop. The actual propagation delay of the loop is, of course, not constant and is a function of the output current which varies with time. It was found that the pre-filter time delay greatly affects the performance of the control loop. Figure 9.14 shows a measurement of versus output power
参考第 7.9 节,振荡补偿预滤波器 包含一个常数时间延迟 ,等于环路的传播延迟。环路的实际传播延迟当然不是常数,而是随输出电流随时间变化的函数。发现预滤波器时间延迟 极大地影响了控制环路的性能。图 9.14 显示了 与输出功率的关系测量。
Figure 9.13: Measured PSRR as a function of frequency.
图 9.13:测量的 PSRR 随频率的变化。
for PS1 with different values of when both control loops are active. The load is and the frequency of the input signal is 1 kHz . Note the significant variation in the measurements between different values of . When there is a substantial improvement in THD +N below 20 W , with THD +N as low as at 13 W . It was found that decreasing below 125 ns resulted in reduced performance. Also note that, as expected, distortion is significantly higher when ripple compensation is absent.
对于 PS1,在两个控制回路都激活时,使用不同的 值。负载为 ,输入信号的频率为 1 kHz。注意在不同 值之间的测量结果有显著差异。当 时,在低于 20 W 的功率下,THD +N 有显著改善,THD +N 在 13 W 时甚至低至 。发现将 减少到 125 ns 以下会导致性能下降。同时,如预期的那样,当没有纹波补偿时,失真显著更高。
Figure 9.15 shows a similar measurement for PS2. In this case there is an improvement in THD +N for increasing values of . Increasing the value of above 225 ns results in reduced performance.
图 9.15 显示了 PS2 的类似测量。在这种情况下,随着 值的增加,THD +N 有所改善。将 的值增加到 225 ns 以上会导致性能降低。
The propagation delays for PS1 and PS2 were measured as 160 ns and 108 ns , respectively, when . It is at present unclear as to how exactly the actual, time-variant, propagation delay and the constant delay in the ripple compensation transfer function interacts to affect distortion in this way.
PS1 和 PS2 的传播延迟分别在 时测量为 160 ns 和 108 ns。目前尚不清楚实际的、随时间变化的传播延迟与振铃补偿传递函数中的恒定延迟是如何相互作用以这种方式影响失真的。
For completeness, Figure 9.16 shows a measurement of THD +N versus frequency for PS1 when for 10 W into . Figure 9.17 shows an FFT of the distortion residue for 10 W into with a 1 kHz test tone. Comparing Figure 9.6 (a) and Figure 9.17, we see that the main difference between and is the magnitude of the second harmonic. With the second harmonic is about 17 dB lower compared to when .
为了完整性,图 9.16 展示了当输入功率为 10 W 时,PS1 在 下的 THD +N 随频率的变化测量。图 9.17 展示了当输入功率为 10 W 时,针对 的 1 kHz 测试音,失真残留的 FFT。比较图 9.6(a)和图 9.17,我们发现 之间的主要区别在于第二谐波的幅度。当 时,第二谐波大约比 时低 17 dB。
Figure 9.14: Measured THD+N versus frequency of PS1 with 1 kHz into for different values of . From top to bottom: no ripple compensation, , and
图 9.14:PS1 在 1 kHz 输入下的 THD+N 与频率的关系,针对不同的 值。从上到下:无纹波补偿, ,和
Figure 9.15: Measured THD +N versus frequency of PS 2 with 1 kHz into for different values of . From top to bottom: no ripple compensation, , , and .
图 9.15:在 1 kHz 输入下,不同 值时 PS 2 的测量 THD +N 与频率的关系。从上到下:无纹波补偿, ,和

9.9 Efficiency 9.9 效率

Optimising efficiency was not the focus of this thesis. Nevertheless, the efficiency of the amplifier is with 100 W into . Total idle losses are 2.54 W , with power stage
优化效率并非本论文的重点,但放大器在 100 W 负载下的效率为 。总空载损耗为 2.54 W,功率级
Figure 9.16: Measured THD +N versus frequency of PS1 at 10 W with and .
图 9.16:在 10 W 功率下,PS1 的测量 THD +N 随频率的变化,
Figure 9.17: FFT of the distortion residue of PS1 with 10 W at 1 kHz into for is . The suppressed fundamental is at 0 dB .
图 9.17:在 1 kHz 处,10 W 输入到 的 PS1 的失真残留的 FFT 结果为 。被抑制的基本频率为 0 dB。
shoot-through due to the small blanking time contributing 1.94 W .
射穿由于空白时间很小,贡献了 1.94 W。

9.10 Summary 9.10 总结

This chapter presented measurements of the amplifier as designed in the previous chapters. Most measurements correlated well with theoretical expectations. It is shown that the
本章呈现了根据前几章设计的放大器的测量结果。大多数测量结果与理论预期相符。显示了放大器的性能符合设计预期。

control loop is capable of improving the relatively poor open loop performance of the amplifier to state-of-the-art levels. THD+N levels as low as at 1 kHz with 13 W into is achievable. The frequency response is flat to within 0.08 dB in the audio band and output impedance does not exceed . PSRR is lower than -62 dB for frequencies below 1 kHz .
控制回路能够将放大器相对较差的开环性能提升至行业领先水平。在 1 kHz 时,以 13 W 的功率输入,THD+N 水平可以低至 。实现这一性能是可能的。音频频带内频率响应平坦,误差在 0.08 dB 以内,输出阻抗不超过 。对于低于 1 kHz 的频率,PSRR 低于-62 dB。

Chapter 10 第十章

Conclusions 结论

10.1 Overview 10.1 概览

10.1.1 Hardware Design 10.1.1 硬件设计

Chapter 3 documented the design of a half-bridge class-D output stage. The output stage was designed with closed-loop operation in mind and specific attention was paid to EMI considerations. The output stage is capable of delivering 100 W into a load. Measured THD +N is with 10 W into at 1 kHz .
第三章详细记录了一半桥式类-D 输出阶段的设计。设计时考虑了闭环操作,并特别关注了 EMI 问题。该输出阶段能够向 负载提供 100 W 的功率。在 1 kHz 时,以 10 W 的功率输入 负载时,测量到的总谐波失真+噪声为
In Chapter 4 the design of an FPGA-based carrier generator was discussed. The advantage of an FPGA carrier generator lies in the fact that an arbitrary carrier can be generated, which is very useful in a prototype design.
第 4 章讨论了基于 FPGA 的载波生成器的设计。FPGA 载波生成器的优势在于可以生成任意的载波,这对于原型设计非常有用。

Furthermore, it is very simple to implement the ripple compensation technique.
此外,实现抖动补偿技术非常简单。

10.1.2 Control Design 10.1.2 控制设计

Chapter 5 concerned the development of the control loop topology. The final control loop consists of two feedback loops: a passive, unconditionally stable inner loop and an active, conditionally stable outer loop.
第五章讨论了控制回路拓扑的发展。最终的控制回路包含两个反馈回路:一个被动的、无条件稳定的内部回路和一个主动的、有条件稳定的外部回路。

When over-modulation occurs, the outer loop is deactivated in order to maintain stability.
当过调制发生时,外环被禁用以保持稳定性。
In Chapter 6 the control loop of Chapter 5 was modified by modelling the comparator as a sampling operation. The feedback loops were converted to the z -domain through the impulse invariant transform. Signal transfer functions and error transfer functions were derived.
第 6 章中,通过将比较器建模为采样操作,对第 5 章的控制回路进行了修改。通过脉冲不变变换,将反馈回路转换到了 z 域。获得了信号传输函数和误差传输函数。
Chapter 7 concerned the detail design of the control loop. The effect of the impedance of the loudspeaker on stability was investigated. It was found that the loudspeaker can be modelled as a resistor, but not necessarily a resistor with value equal to the nominal
第 7 章讨论了控制回路的详细设计。研究了扬声器阻抗对稳定性的影响。发现扬声器可以被建模为一个电阻器,但不一定是一个阻值等于名义值的电阻器。

impedance of the loudspeaker. The error transfer function was optimised and has a maximum value of -50.8 dB in the audio band.
扬声器的阻抗。误差传递函数进行了优化,其在音频带内的最大值为-50.8 dB。

10.1.3 Design Verification
10.1.3 设计验证

Chapter 8 showed simulation results that confirmed the correct operation of the control loop. It was confirmed that the control loop scales the power stage error in accordance with the error transfer function and that the system remains stable during over-modulation.
第八章展示了验证控制回路正确运行的模拟结果。确认了控制回路根据误差传递函数调整功率阶段误差,且在过调制期间系统保持稳定。
Detailed measurements of the amplifier were presented in Chapter 9. Most measurements correlated well with theoretical expectations. It was found that the delay in the ripple compensation transfer function significantly affects the performance of the control loop.
第 9 章中详细呈现了放大器的测量数据。大多数测量结果与理论预期相符。发现补偿传递函数中的振铃延时显著影响了控制回路的性能。

Measurements confirmed that excellent performance can be achieved with relatively high levels of open loop distortion. The performance goals listed in Section 1.2 were all surpassed. Efficiency was measured as at 100 W , which is far greater than any linear amplifier of similar power and performance can achieve.
测量结果证实,即使在相对较高的开环失真水平下,也可以实现出色的表现。第 1.2 节列出的性能目标全部被超越。效率在 100 瓦时测量为 ,远超过任何同类功率和性能线性放大器所能达到的水平。

10.2 Improvements and Future Work
10.2 改进与未来工作

10.2.1 Switching Frequency
10.2.1 切换频率

The switching frequency of 768 kHz is very high and leads to unnecessarily high switching losses. We needed a high switching frequency to obtain the necessary loop gain for the inner loop to make its frequency response insensitive to load variations.
768 kHz 的切换频率非常高,导致不必要的高切换损耗。我们需要高切换频率以获得内环所需的闭环增益,使内环的频率响应对负载变化不敏感。

In hindsight, however, the author is of the opinion that a lower loop gain would have been sufficient for the inner loop.
然而,事后看来,作者认为内环一个较低的回路增益就足够了。

It should also be noted that a reduction in switching frequency lowers the total required loop gain, since open loop distortion scales approximately proportional to switching frequency.
也应注意到,降低切换频率会降低所需的总闭环增益,因为开环失真大致与切换频率成正比。

10.2.2 Robustness 10.2.2 坚固性

In Chapter 7 the system is designed for a phase margin of . This is a fairly large phase margin considering the accuracy with which the system is modelled. Initial designs had smaller phase margins and, consequently, higher loop gains. However, these designs were not always stable into high impedance loads.
在第 7 章中,系统设计的相位裕度为 。考虑到系统建模的准确性,这是一个相当大的相位裕度。最初的方案相位裕度较小,因此环路增益较高。然而,这些设计在高阻抗负载下并不总是稳定的。

It is believed that the modulator might be plagued by a problem that is also found in high-order continuous-time sigma-delta modulators. The noise transfer function of an ideal high-order sigma-delta modulator has significant out-of-band gain.
人们认为,该调制器可能面临的问题与高阶连续时间 sigma-delta 调制器中发现的问题相同。理想高阶 sigma-delta 调制器的噪声传递函数具有显著的带外增益。

The amplified out-of-band noise can cause instability by overloading the quantiser [45]. Further investigation is needed to improve robustness.
扩频带外噪声可能会通过使量化器过载而导致不稳定[45]。需要进一步的研究来提高其鲁棒性。

10.2.3 Carrier Generation
10.2.3 传输体产生

The FPGA-based carrier generator worked very well, but it is not feasible in a costoptimised design. It is suggested that an analogue carrier generator be developed.
基于 FPGA 的载波生成器工作得很好,但从成本优化设计的角度来看,它并不可行。建议开发一个模拟载波生成器。

Note that while this might seem simple in principle, the generation of a highly accurate sawtooth waveform is not a trivial matter.
请注意,尽管在原则上这可能看起来很简单,但生成一个高度准确的锯齿波形并不是一件简单的事情。

10.2.4 Design Optimisation
10.2.4 设计优化

The optimisation algorithm that is used in Chapter 7 to optimise the control loop is very crude and computationally inefficient. It is suggested that other design optimisation methods are investigated.
第 7 章中用于优化控制回路的优化算法非常原始且计算效率低下。建议研究其他设计优化方法。

The possibility of designing directly in the z-domain, instead of continually transforming between the s- and z-domain, should also be investigated.
直接在 z 域进行设计的可能性,而不是不断地在 s 域和 z 域之间转换,也应该进行研究。

10.2.5 The Effect of a Non-Constant Propagation Delay on Ripple Compensation
10.2.5 非恒定传播延迟对振铃补偿的影响

The value of the constant delay in the ripple compensation transfer function, which should ideally match the propagation delay in the loop, has a significant impact on THD.
级联补偿传递函数中的常数延迟值,理想情况下应与环路中的传播延迟相匹配,对总谐波失真(THD)有显著影响。

The behaviour of ripple compensation in a loop with a non-constant propagation delay should therefore be investigated.
环路中非常数传播延迟的情况下的褶皱补偿行为因此应该被研究。

10.3 General Conclusions
10.3 总结

The thesis objectives as set out in Section 1.2 have been reached. It has been shown that, if properly implemented, feedback error control can make high-fidelity clocked class-D amplification possible without necessarily sacrificing efficiency or EMI performance.
在第 1.2 节中设定的论文目标已经实现。已经证明,如果正确实施,反馈误差控制可以使高保真时钟类-D 放大成为可能,而无需牺牲效率或电磁干扰性能。

Also, it should be understood that the work presented in this thesis is not limited to class-D audio power amplifiers. Many other PWM based power electronic converter applications can benefit from the same techniques.
此外,应理解,本文中呈现的工作不仅限于 D 类音频功率放大器。许多其他基于 PWM 的功率电子转换器应用也可以从相同的技术中获益。
As a closing remark, the author greatly enjoyed the research topic. The knowledge and experience gained is invaluable.
作为总结,作者非常享受这个研究主题。获得的知识和经验是无价的。

Bibliography 参考文献

[1] L. Risbo, "Discrete-time modeling of continuous-time pulse width modulator loops," in AES 27th International Conference, Sep. 2005.
[1] L. Risbo, "连续时间脉冲宽度调制回路的离散时间建模", 在 AES 第 27 届国际会议上,2005 年 9 月。
[2] T. Mouton and B. Putzeys, "Digital control of a PWM switching amplifier with global feedback." in AES 37th International Conference, Aug. 2009, pp. 748-758.
[2] T. Mouton 和 B. Putzeys, "PWM 开关放大器的全局反馈数字控制." 在 AES 第 37 届国际会议,2009 年 8 月,第 748-758 页。
[3] International Rectifier. (2006, August) IRFI4019-117P data sheet. [Online]. Available: www.irf.com
[3] 国际整流器. (2006 年 8 月) IRFI4019-117P 数据表. [在线]. 可用: www.irf.com
[4] -. (2009, March) IRS20957S data sheet. [Online]. Available: www.irf.com
[4] -. (2009 年 3 月) IRS20957S 数据手册。[在线]. 可用: www.irf.com
[5] F. Koeslag, "A detailed analysis of the imperfections of pulsewidth modulated waveforms on the output stage of a class D audio amplifier," Ph.D. dissertation, University of Stellenbosch, 2008
[5] F. 科斯拉格, "对 D 类音频放大器输出级的脉冲宽度调制波形不完美性的详细分析", 2008 年, 斯特伦布什大学, 博士论文
[6] B. H. Candy and S. M. Cox, "Improved analogue class-D amplifier with carrier symmetry modulation," in Audio Engineering Society Convention 117, Oct. 2004.
[6] B. H. Candy 和 S. M. Cox, "改进的类-D 放大器模拟类,带有载波对称调制", 在音频工程师协会会议 117, 2004 年 10 月。
[7] L. Risbo and C. Neesgaard, "PWM amplifier control loops with minimum aliasing distortion," in AES 120th Convention, May 2006.
[7] L. Risbo 和 C. Neesgaard, "PWM 放大器控制回路的最小混叠失真", 在 AES 第 120 届会议, 2006 年 5 月.
[8] B. Putzeys, "Simple, ultralow distortion digital pulse width modulator," in Audio Engineering Society Convention 120, May 2006.
[8] B. Putzeys, "简单,超低失真数字脉冲宽度调制器",在 2006 年 5 月的音频工程师协会会议 120 上。
[9] K. Nielsen, "PEDEC - a novel pulse referenced control method for high quality digital PWM switching power amplification ," in Power Electronics Specialists Conference. IEEE, May 1998.
[9] K. Nielsen, "PEDEC -一种新颖的脉冲参考控制方法,用于高质量数字 PWM 开关功率放大", 在电力电子专家会议. IEEE, 1998 年 5 月.
[10] B. Putzeys, "Self oscillating class D amplification device," European Patent 2221964 (A1), Aug., 2010.
[10] B. Putzeys, "自我振荡类 D 放大设备", 欧洲专利 2221964 (A1), 2010 年 8 月.
[11] H. Mouton and B. Putzeys, "Understanding the PWM nonlinearity: Single sidedmodulation," IEEE Transactions on Power Electronics, vol. PP, no. 99, p. 1, 2011.
[11] H. Mouton 和 B. Putzeys, "理解 PWM 非线性:单边调制", 《电力电子技术》, 卷 PP, 期 99, 第 1 页, 2011 年.
[12] H. S. Black, Modulation Theory. Van Nostrand, 1953.
[12] H. S. Black, 调制理论. Van Nostrand, 1953.
[13] J. Honda and J. Adams. (2005, Aug) AN-1071: Class D audio amplifier basics. International Rectifier. [Online]. Available: www.irf.com
[13] Honda J. 和 Adams J. (2005 年 8 月) AN-1071:D 类音频放大器基础。国际整流器公司。[在线]. 可用:www.irf.com
[14] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronincs, 3rd ed., B. Zobrist, Ed. United States of America: John Wiley and Sons, 2003.
[14] Mohan, N., Undeland, T. M., 及 Robbins, W. P., 《电力电子学》,第 3 版,B. Zobrist,编. 美国:约翰·威利与 Sons 出版公司,2003 年.
[15] L. Risbo, M. Hoyerby, and M. Andersen, "A versatile discrete-time approach for modeling switch-mode controllers," in Power Electronics Specialists Conference, 2008. PESC 2008. IEEE, Jun. 2008, pp. 1008 -1014.
[15] L. Risbo, M. Hoyerby, 和 M. Andersen, "一种灵活的离散时间方法在建模开关模式控制器中的应用," 在电力电子专家会议, 2008 年. PESC 2008. IEEE, 2008 年 6 月, pp. 1008 -1014.
[16] J. W. Nilsson and S. A. Riedel, Electric Circuits, 7th ed. Pearson Prentice Hall, 2005 .
[16] J. W. 尼尔森和 S. A. 里德尔, 《电路》, 第 7 版, 2005 年, 皮尔森普伦蒂堂出版社.
[17] M. Gopal, Digital Control and State Variable Methods, 2nd ed. McGraw Hill, 2004.
[17] M.高帕尔, 数字控制与状态变量方法, 第 2 版, 麦格劳-希尔, 2004 年.
[18] B. Putzeys, "Method and control circuit for controlling pulse width modulation," International Patent 131440 (A1), Oct., 2009.
[18] B. Putzeys, "脉冲宽度调制的控制方法和控制电路", 国际专利 131440 (A1), 2009 年 10 月.
[19] P. Midya, B. Roeckner, and T. Paulo, "Digital control of a PWM switching amplifier with global feedback." in AES 37th International Conference, Aug. 2009.
[19] P.米迪亚, B.罗克纳, 和 T.保罗, "PWM 开关放大器的全球反馈数字控制." 在 AES 第 37 届国际会议上, 2009 年 8 月.
[20] W. L. Lee, "PWM digital amplifier with high-order loop filter," US Patent 7038535 , May, 2006.
[20] W. L. Lee, "PWM 数字放大器与高阶环路滤波器", 美国专利 7038535, 2006 年 5 月.
[21] Y. Fujimoto, P. Re, and M. Miyamoto, "A delta-sigma modulator for a 1-bit digital switching amplifier," Solid-State Circuits, IEEE Journal of, vol. 40, no. 9, pp. 1865 - 1871, Sep. 2005.
[21] 服部洋, Re 彼得, 迷宫明, "1 比特数字开关放大器用的 delta-sigma 调制器", 《固态电路》, IEEE 期刊, 第 40 卷, 第 9 期, 页 1865 - 1871, 2005 年 9 月.
[22] P. Kemp, T. Mouton, and B. Putzeys, "High-order analog control of a clocked class-d audio amplifier with global feedback using z-domain methods," in Audio Engineering Society Convention 131, Oct 2011. [Online]. Available: http://www.aes.org/e-lib/browse.cfm?elib=15994
[22] P.肯普, T.莫顿, 和 B.普特齐斯, "使用 z 域方法的全局反馈控制的时钟类-d 音频放大器的高阶模拟控制", 在音频工程师协会会议 131, 2011 年 10 月。[在线]. 可用: http://www.aes.org/e-lib/browse.cfm?elib=15994
[23] Texas Instruments. (2007, Dec) TPA3122D2 data sheet. [Online]. Available: www.ti.com
[23] 德州仪器. (2007 年 12 月) TPA3122D2 数据表. [在线]. 可用: www.ti.com
[24] D. Self, Audio power amplifier design handbook, 1st ed. Oxford: Newnes, 1996.
[24] D. Self, 音频功率放大器设计手册, 第 1 版. 1996 年. 氧化学: 新内斯.
[25] Laszlo Balogh. Design and application guide for high speed MOSFET gate drive circuits. Texas Instruments. [Online]. Available: www.ti.com
[25] 拉斯洛·巴拉赫. 高速 MOSFET 门驱动电路的设计与应用指南. 德州仪器. [在线]. 可用: www.ti.com
[26] International Rectifier. HV floating MOS-gate driver ICs. [Online]. Available: www.irf.com
[26] 国际整流器. 高压浮置 MOS 门驱动 IC. [在线]. 可用: www.irf.com
[27] P. Horowitz and W. Hill, The Art of Electronics, 2nd ed. Cambridge, United Kingdom: Cambridge University Press, 2004.
[27] P.霍罗威茨和 W.希尔, 《电子艺术》, 第 2 版。英国剑桥:剑桥大学出版社,2004 年。
[28] J. Klein. (2006, April) AN-6005: Synchronous buck loss calculation. Fairchild Semiconductor. [Online]. Available: www.fairchildsemi.com
[28] J. Klein. (2006, 4 月) AN-6005: 同步降压损耗计算. Fairchild 半导体. [在线]. 可用: www.fairchildsemi.com
[29] M. Wolf, H. du T. Mouton, J. van der Merwe, and F. Koeslag, "An investigation of switching and conduction losses in inverters under varying inductor ripple current," in AFRICON, 2009. AFRICON '09., sept. 2009, pp. .
[29] M. Wolf, H. du T. Mouton, J. van der Merwe, 和 F. Koeslag, "在不同电感纹波电流下,逆变器的切换和传导损耗的调查研究", 在 AFRICON, 2009. AFRICON '09., 2009 年 9 月, pp. .
[30] B. Roehr. (2001, May) Mounting Considerations For Power Semiconductors. ON Semiconductor. [Online]. Available: www.onsemi.com
[30] B. Roehr. (2001, 5 月) 功率半导体的考虑因素不断增加。ON Semiconductor。[在线]. 可用:www.onsemi.com
[31] P. C. Todd. (1993) Snubber circuits: Theory, design and application. Texas Instruments. [Online]. Available: www.ti.com
[31] P. C. Todd. (1993) 抑制电路:理论、设计与应用。德州仪器。[在线]. 可用:www.ti.com
[32] J. Ardizzoni. (2005) A practical guide to high-speed printer-circuit-board layout. Analog Devices. [Online]. Available: www.analog.com
[32] J. Ardizzoni. (2005) 高速打印机电路板布局的实用指南. Analog Devices. [在线]. 可用: www.analog.com
[33] Cornell Dubilier. Application guide: Snubber capacitors. [Online]. Available: www.cde.com
[33] 康奈尔杜比尔. 抑制电容器的应用指南. [在线]. 可用: www.cde.com
[34] B. Putzeys. (2007, May) A universal grammar of class D amplification. Hypex Electronics. [Online]. Available: www.hypex.nl
[34] B. Putzeys. (2007, 5 月) 类 D 放大器的普遍语法。Hypex 电子。[在线]. 可用:www.hypex.nl
[35] B. Putzeys. UcD and EMI. Hypex Electronics. [Online]. Available: www.hypex.nl
[35] B. Putzeys. UcD 和 EMI. Hypex Electronics. [在线]. 可用:www.hypex.nl
[36] Altera Corporation. (2008, Oct) Cyclone III Device Handbook. [Online]. Available: www.altera.com
[36] Altera 公司. (2008, 十月) Cyclone III 装置手册. [在线]. 可用: www.altera.com
[37] F. Ku, C. Liao, M. Tsay, C. Shyn, and T. Yang, "Complete LC ladder bessel filter tabulation," in Military Communications Conference, 2007. MILCOM 2007. IEEE, Oct. 2007, pp. .
[37] F. Ku, C. Liao, M. Tsay, C. Shyn, 和 T. Yang, "完全 LC 阶梯贝塞尔滤波器表列", 在 2007 年军事通信会议, MILCOM 2007. IEEE, 2007 年 10 月, pp. .
[38] J. Karki. (2000, Oct) Active low-pass filter design. Texas Instruments. [Online]. Available: www.ti.com
[38] J. Karki. (2000, 10 月) 活动式低通滤波器设计. Texas Instruments. [在线]. 可用: www.ti.com
[39] Texas Instruments. (2002, June) OPA2690 data sheet. [Online]. Available: www.ti.com
[39] 德州仪器公司. (2002 年 6 月) OPA2690 数据表. [在线]. 可用: www.ti.com
[40] B. Harvey and C. Siu. (1998, March) Driving Reactive Loads with High Frequency Op-Amps. Intersil. [Online]. Available: www.intersil.com
[40] B. Harvey 和 C. Siu. (1998 年 3 月) 使用高频运算放大器驱动反应性负载。Intersil. [在线]. 可用:www.intersil.com
[41] B. Putzeys, "Simple self-oscillating class D amplifier with full output filter control," in Audio Engineering Society Convention 118, May 2005.
[41] B. Putzeys, "简单自振荡类 D 放大器,具有完整的输出滤波器控制", 在音频工程师协会第 118 届会议,2005 年 5 月。
[42] A. Magrath, I. Clark, and M. Sandler, "Design and implementation of a FPGA sigma-delta power DAC," in Signal Processing Systems, 1997. SIPS 97 - Design and Implementation., 1997 IEEE Workshop on, nov 1997, pp. 511 -521.
[42] A. Magrath, I. Clark, 和 M. Sandler, "FPGA sigma-delta 功率 DAC 的设计与实现", 在 1997 年 IEEE 研讨会信号处理系统, 1997 年 11 月, 第 511-521 页.
[43] T. Ido, S. Ishizuka, L. Risbo, F. Aoyagi, and T. Hamasaki, "A digital input controller for audio class-D amplifiers with 100W THD + N and 113dB DR," in SolidState Circuits Conference, 2006. ISSCC 2006. Digest of Technical Papers. IEEE International, feb. 2006, pp. 1366 -1375.
[43] T. Ido, S. Ishizuka, L. Risbo, F. Aoyagi, 和 T. Hamasaki, "音频类-D 放大器的数字输入控制器,具有 100W THD + N 和 113dB DR", 在 2006 年国际固态电路会议(ISSCC 2006)的技术摘要文集中,2006 年 2 月,第 1366-1375 页。
[44] A. Leuciuc, "On the nonlinearity of integrators in continuous-time delta-sigma modulators," in Circuits and Systems, 2001. MWSCAS 2001. Proceedings of the 44 th IEEE 2001 Midwest Symposium on, vol. 2, 2001, pp. 862 -865 vol.2.
[44] A. Leuciuc, "关于连续时间 delta-sigma 调制器中积分器的非线性性",在 2001 年 IEEE 第 44 届中西部电路与系统会议的会议记录中,卷 2,2001 年,第 862-865 页。
[45] M. Ortmanns and F. Gerfers, Continuous-Time Sigma-Delta A/D Conversion, 1st ed. Springer, 2006.
[45] M. Ortmanns 和 F. Gerfers, 连续时间σ-Δ模数转换, 第 1 版, Springer, 2006 年.
[46] M. R. Spiegel, J. Lui, and S. Lipschutz, Mathematical Handbook of Formulas and Tables, 2nd ed. McGraw Hill, 1999.
[46] M. R. 斯皮格尔,J. 刘,和 S. 唇施特,数学公式和表格手册,第二版。麦格劳-希尔,1999 年。
[47] J. Proakis and D. Manolakis, Digital Signal Processing: Principles, Algorithms and Applications, 4th ed. Prentice Hall, 2007.
[47] J. Proakis 和 D. Manolakis, 数字信号处理:原理、算法和应用,第 4 版。Prentice Hall, 2007 年。
[48] K. Thorborg, A. D. Unruh, and C. J. Struck, "An improved electrical equivalent circuit model for dynamic moving coil transducers," in AES 122th Convention, May 2007 .
[48] K. 罗伯格, A. D. 乌恩胡, 和 C. J. 斯特拉克, "改进的动态动圈转换器的电气等效电路模型", 在 AES 第 122 届会议, 2007 年 5 月.
[49] Tymphany. (2009) Peerless 830843 data sheet. [Online]. Available: www.tymphany. com
[49] Tymphany. (2009) 无与伦比 830843 数据表。[在线]. 可用: www.tymphany. com
[50] Audio Precision. AUX-0025 data sheet. [Online]. Available: www.ap.com
[50] 音频精密度。AUX-0025 数据表。[在线]. 可用: www.ap.com
[51] B. Hofer. (2003, Oct) Measuring switch-mode power amplifiers. Audio Precision. [Online]. Available: www.ap.com
[51] B. 霍弗. (2003, 10 月) 测量开关模式功率放大器. 音频精密度. [在线]. 可用: www.ap.com
[52] Hypex Electronics. (2011, Aug) UcD180 data sheet. [Online]. Available: www.hypex.nl
[52] Hypex Electronics. (2011, Aug) UcD180 数据表。[在线]. 可用: www.hypex.nl
Stellenbosch University http://scholar.sun.ac.za
斯泰伦博斯大学 http://scholar.sun.ac.za

Appendices 附录

Appendix A 附录 A

Complete Circuit Schematics
完整电路原理图

This appendix contains complete circuit schematics, as used in the PCB design.
本附录包含完整的电路原理图,这些在 PCB 设计中使用。
Figure A.1: Output stage schematic.
图 A.1:输出级示意图。
Figure A.2: Control stage schematic (part one).
图 A.2:控制阶段示意图(第一部分)。
Figure A.3: Control stage schematic (part two).
图 A.3:控制阶段示意图(第二部分)。
Figure A.4: FPGA carrier generator schematic (part one).
图 A.4:FPGA 载体生成原理图(第一部分)。
Figure A.5: FPGA carrier generator schematic (part two).
图 A.5:FPGA 载体生成原理图(第二部分)。
Figure A.6: FPGA carrier generator schematic (part three).
图 A.6:FPGA 载体生成原理图(第三部分)。
Figure A.7: FPGA carrier generator schematic (part four).
图 A.7:FPGA 载体生成原理图(第四部分)。