Retinoic Acid and Germ Cell Development in the Ovary and Testis
卵巢和睾丸中的视黄酸和生殖细胞发育
大阪大学微生物病研究所免疫学前沿研究中心,日本吹田县山道县 3-1 565-0871
怀特黑德研究所, 剑桥, 马萨诸塞州 02142, 美国
麻省理工学院生物系, 剑桥, 马萨诸塞州 02139, 美国
霍华德休斯医学研究所,怀特黑德研究所,剑桥,马萨诸塞州 02142,美国
乌得勒支大学理学院生物系发育生物学部生殖生物学组,3584 CH Utrecht, The Netherlands
阿姆斯特丹大学学术医学中心生殖医学中心,1105 AZ 阿姆斯特丹,荷兰
应向其发送信件的作者。
这些作者对这项工作做出了同样的贡献。
生物分子 2019, 9(12), 775;https://doi.org/10.3390/biom9120775
收到意见书:2019 年 10 月 31 日 / 修订日期:2019 年 11 月 22 日 / 接受日期:2019 年 11 月 23 日 / 出版日期:2019 年 11 月 24 日
Abstract 抽象
视黄酸 (RA) 是维生素 A 的衍生物,对哺乳动物卵母细胞和精子的产生至关重要。这些配子来源于原始生殖细胞,这些细胞定植于新生的性腺,然后进行性分化以产生卵母细胞或精子。在胎儿发育过程中,卵巢中的生殖细胞响应 RA 启动减数分裂,而睾丸中的生殖细胞尚未启动减数分裂,因为它们与 RA 绝缘,并经历细胞周期停滞。出生后,雄性生殖细胞恢复增殖并过渡到精原细胞,精原细胞注定会通过精子发生发育成单倍体精子。最近的研究结果表明,成人睾丸的 RA 水平会周期性地变化,不仅指导减数分裂的开始,还指导其他关键的发育转变,以确保精子发生得到精确组织,以实现精子的惊人输出。本文重点介绍女性和男性生殖细胞在卵巢和睾丸中的发育方式,以及 RA 在此过程中的作用。
关键词:生殖细胞;视黄酸;减数分裂;卵巢;精子;在测试
1. Introduction 1. 引言
哺乳动物卵母细胞和精子来源于相同的胚胎前体细胞,称为原始生殖细胞 (PGC)。在发育过程中,PGC 迁移到体细胞性腺,在那里它们进行配子发生,最终产生卵母细胞或精子,具体取决于它们是在卵巢(女性)还是睾丸(男性)中。在小鼠中,卵巢和睾丸的体细胞组成之间的差异在胚胎日(E)12.5的显微镜下很明显[1,2,3]。然而,生殖细胞在性别之间在形态上仍然无法区分,直到 E13.5 [4,5]。随后,雌性生殖细胞进入减数分裂前期 I 并开始分化为卵母细胞,而雄性生殖细胞保持有丝分裂活性,随后停滞在有丝分裂细胞周期的 G0/G1 期 [4,5]。
在 1970 年代,Byskov 和 Saxen [6] 提出,生殖细胞启动减数分裂前期需要存在于胚胎卵巢中的“减数分裂诱导物质”。最近的研究发现,视黄酸 (RA) 是一种诱导减数分裂的物质,由性腺和中肾的体细胞产生 [7,8,9]。RA 是由膳食维生素 A(也称为视黄醇)通过一系列氧化反应产生的。RA 的局部水平受视黄醛脱氢酶(催化 RA 合成的最后一步)和细胞色素 p450 酶 (CYP26B1) 的调节,后者可降解 RA [10,11](见 [12,13])。RA 的这种代谢调节女性和男性生殖细胞是分别在胎儿卵巢还是成人睾丸中启动减数分裂。
雄性生殖细胞在胎儿睾丸细胞周期的G0/G1期被停滞,出生后恢复增殖并过渡到精原细胞[14,15]。精原细胞(包括种系干细胞)经历一个精心组织的过程,产生专门的单倍体配子,称为精子[16]。生殖细胞发育的完整过程,从精原细胞到精子,称为精子发生。在睾丸内,精子发生的几个发育转变,包括精原分化和减数分裂起始,在物理和时间上非常接近地发生。几十年来,药理学和遗传学研究表明,这些关键转变受到 RA 的严格控制 [17,18,19]。在这篇综述中,我们重点介绍生殖细胞发育如何在卵巢和睾丸中协调,以及 RA 在此过程中的指导作用。
2. Germ Cell Development in the Fetal Gonad
2. 胎儿性腺中的生殖细胞发育
进入性腺后不久,生殖细胞在胎儿性腺中获得减数分裂起始和性分化的能力。生殖细胞是启动减数分裂还是继续进行有丝分裂细胞周期取决于它们的性腺环境,而不是它们的性染色体构成(在 [20] 中综述)。胎儿卵巢中的生殖细胞暴露于 RA 并启动减数分裂,而胎儿睾丸中的生殖细胞与 RA 信号分离,直到出生后才开始减数分裂。
2.1. Formation of the Gonad and Migration of PGCs to the Gonad
2.1. 性腺的形成和 PGC 向性腺的迁移
在哺乳动物中,卵巢和睾丸都来源于一个共同的前体结构,即双电位性腺(图 1)[21]。双电位性腺的发育涉及两个同时发生的过程。体腔上皮发育成增厚的多层结构,称为生殖器嵴。这种分化始于体腔上皮的前端,并向后延伸[3,21]。在小鼠中,双电位性腺的发育从 E10.0 左右开始,一直持续到 E11.5-E12.0 [1,2,3]。此后,性腺的体细胞发生性分化[1,2,3]。
图 1.小鼠胎儿性腺中 Dazl 和 Stra8 的前后波表达从 E10.5 到 E14.5。生殖细胞以圆圈显示,表达 Dazl 的细胞以橙色显示,表达 Stra8 和 Dazl 的细胞以蓝色显示。性腺定植后,生殖细胞继续增殖,直到 E13.5 [22]。在胎鼠睾丸中,生殖细胞被体细胞包围,睾丸索形成于E12.5至E14.0之间[14,23]。
同时,PGCs是精子和卵子的前体,在胚胎发生的早期被诱导,然后迁移到发育中的生殖器脊[22]。在整个迁移过程中,PGC 维持着发育未定型细胞的转录程序,其特征是幼稚和一般多能性因子的表达 [24,25,26]。在新生性腺定植后,人和小鼠 PGC 诱导一组生殖细胞因子,包括生殖颗粒的进化保守标志物 [24]。到达性腺后,PGC随后下调多能性因子的表达,并失去产生多能细胞系(称为胚胎胚芽[EG]细胞)和畸胎瘤(一种由多能细胞引起的肿瘤)的能力[24,27,28]。这种转变在脊椎动物中广泛保守,有助于限制哺乳动物生殖系的发育潜力,这一过程称为生殖细胞决定[24]。
2.2. Initiation of Gametogenesis and Meiotic Entry
2.2. 配子发生和减数分裂进入
一旦确定,生殖细胞就会开始减数分裂,并进行雄性或雌性分化[29,30]。PGC 向定型生殖细胞的转变代表了生殖系向性功能状态的关键转变 [31],并且是由来自生殖器嵴的外源信号诱导的 [32]。在小鼠和人类中PGC定植时诱导的基因之一是Dazl [24],它编码一种进化上保守的生殖细胞特异性RNA结合蛋白(图2)[33]。在 Dazl 缺失小鼠胚胎中,PGC 到达性腺,但未能限制其发育潜力;相反,这些细胞保持增殖,继续表达多能因子,保留多能EG细胞的衍生能力,直到至少E15.5,并且无法分别在胎儿睾丸或卵巢中启动减数分裂或开始精子发生或卵子发生[24,31,34,35]。与未能限制种系潜力的情况一致,Dazl 缺陷小鼠和猪发生自发性畸胎瘤的频率较高 [24]。因此,Dazl 对于种系进行潜力限制以及进行配子发生的能力是必需的,配子发生定义为启动减数分裂和性分化的能力 [31]。
图 2.两性小鼠胎儿性腺的生殖细胞发育图。红框:女性性腺(卵巢)。蓝色框:雄性性腺(睾丸)。DAZL、STRA8、REC8 和 NANOS2 在生殖细胞中表达。ALDH1A1 和 CYP26B1 在胎儿性腺中表达。ALDH1A2 和 ALDH1A3 在性腺外表达。
在 DAZL 表达时,生殖细胞获得将 RA 解释为减数分裂诱导信号的能力(图 2)[7,8,35]。RA诱导生殖细胞表达减数分裂起始所需的基因Stra8(受视黄酸基因8刺激[36]和减数分裂进展所需的基因Rec8[37,38](图1和图2)[39,40]。这两个因子被RA独立激活(图2)[39,41],并先于其他减数分裂标志物的表达,如Dmc1、Sycp3和组蛋白H2AX(γH2AX)的磷酸化,后者是减数分裂双链断裂的标志物[26,40,42,43]。
与前面的体细胞分化一样,种系发育的许多方面都发生在沿性腺长度的前后 (A-P) 波中 [26,32,40,42,44]。在 E11.5 处,新到达的 PGC 显示出 Dazl 表达的梯度,该梯度在性腺的前部最高,在后部较低或不存在(图 1)[32]。
2.3. Stra8 and Its Inducer, RA, Regulate Meiotic Initiation in the Fetal Ovary
2.3. Stra8 及其诱导剂 RA 调节胎儿卵巢的减数分裂启动
Stra8 在减数分裂开始时在两性生殖细胞中都高度表达,然后在减数分裂早期迅速关闭 [18,36,40]。Stra8在卵巢生殖细胞中的表达从E12.5开始,并在随后的A-P波中进展,因此Stra8和其他减数分裂标志物的表达在生殖细胞群中是异质性的(图1)[26,39,40]。在胎儿卵巢中,Stra8 在可以观察到减数分裂生殖细胞特征性浓缩染色质之前的 1 天内首次检测到(图 1 和图 2)[40]。在 C57BL/6 遗传背景的小鼠中,Stra8 缺失的卵巢生殖细胞不进行减数分裂 DNA 复制 [36],它们也不强烈表达减数分裂因子或开始减数分裂前期 I 的染色体事件 [36,41];因此,Stra8 是小鼠减数分裂起始所必需的。STRA8 是一种转录激活剂,可与启动子结合并增强数千个基因的表达,包括减数分裂前期 I 基因、G1-S 细胞周期基因和特异性抑制有丝分裂程序的因子 [45]。在胎儿睾丸中,雄性生殖细胞不表达Stra8(图1和图2)[40]。相反,Stra8 在出生后睾丸的生殖细胞中首次表达的时间要晚得多,当它们发生分化时 [46,47,48]。
RA与减数分裂起始之间的潜在联系最初是由Stra8基因的体内研究提供的[36,40],该基因最初在体外胚胎癌细胞和胚胎干细胞中被鉴定为RA诱导基因[46]。在胎儿卵巢中,全反式 RA 强烈诱导 Stra8 表达,从而诱导减数分裂起始(图 2)[7,8]。外源性全反式 RA 足以诱导异位 Stra8 表达,并导致胎儿睾丸减数分裂早熟 [7,8]。后来的研究为 RA 在减数分裂起始中的作用提供了直接证据——在维生素 A 缺乏的大鼠胚胎的卵巢中,Stra8 没有被强烈激活,生殖细胞无法进入减数分裂 [49]。因此,RA 可以在胎儿性腺的雌性和雄性生殖细胞中诱导减数分裂起始。
两个核激素受体家族,称为 RA 受体 (RAR) 和类视黄醇 X 受体 (RXR),结合 RA。RAR 可结合全反式和 9-顺式 RA 立体异构体,而 RXR 仅结合 9-顺式 RA [50]。RXR还可以结合非RA来源的其他配体[51](在[52,53]中已论述),但尚不清楚这些配体是否有助于减数分裂起始。RAR 和 RXR 相互作用形成异二聚体,这些异二聚体与靶基因调控区域中的 RA 反应元件 (RARE) 结合 [54]。RXR 也可以与其他核激素受体异二聚化(在 [55] 中综述),但这些相互作用是否促进减数分裂起始尚不清楚。RARs 和 RXRs 各有 3 种同种型(RARα、RARβ 和 RARγ,以及 RXRα、RXRβ 和 RXRγ),并且每种同种型在许多组织中都表现出重叠的表达和功能冗余(在 [54,56,57] 中已论述)。RAR 和 RXR 同种型在每种性别的性腺中都有表达 [8,58,59,60,61]。在胚胎卵巢中,RARs很容易在生殖细胞中检测到,但在体细胞中的表达水平非常低[8,58\u201262],而RXRs在体细胞和生殖细胞中都存在[8,62]。Stra8 基因的启动子包含两个推定的 RARE,表明 RA 可能通过与 Stra8 启动子啮合的 RAR/RXR 异二聚体结合来直接上调 Stra8 转录 [46,63]。事实上,RARs 的拮抗剂会减少或阻断 Stra8 的表达,而外源性 RA 会诱导胎儿卵巢中 Stra8 的表达 [7,8]。
2.4. Source of RA in the Fetal Ovary
2.4. 胎卵巢 RA 的来源
源自胎儿卵巢体细胞和中肾的 RA 可能有助于减数分裂的启动(图 2)[8,9]。初步研究确定中肾是 RA 的可靠来源,因为这些细胞在 RARE 的控制下强烈表达 lacZ 报告基因转基因 [8]。在胎儿性腺中检测到较弱的 RARE-lacZ 信号,在前端检测到最强的性腺信号 [8]。中肾表达两种 RA 合成酶(图 2),醛脱氢酶 1A2 (Aldh1a2) [8] 和 Aldh1a3 [64]。当 Aldh1a2 或 Aldh1a2 和 Aldh1a3 缺失时,中肾无法产生 RA,转基因小鼠中 RARE-lacZ 信号的丢失证明了这一点 [65]。同时,来自这些突变胚胎的卵巢生殖细胞表达 Stra8 并启动减数分裂 [65]。因此,中肾衍生的 RA 并不是减数分裂起始的严格要求。
基于这些发现,一些人提出 RA 本身并不是卵巢减数分裂起始所必需的 [65]。然而,随后的工作表明,来自培养的胎儿卵巢的生殖细胞在没有中肾的情况下启动减数分裂,这表明 RA 的替代来源(例如胎儿卵巢)足以进行减数分裂启动 [66]。其他研究表明,胎儿性腺的体细胞表达 Aldh1a1,因此产生 RA(图 2)[9,66,67]。此外,Aldh1a1 的基因缺失会降低胎儿卵巢中的 RA 水平 [9]。虽然 Aldh1a1 缺陷的胎儿卵巢最初表现出 Stra8 和其他基因的表达降低,这些基因通常在减数分裂开始时上调,但这些减数分裂因子在一天后以相似的水平表达,表明来源于中肾的 RA 允许生殖细胞启动减数分裂并克服早期的延迟 [9]。与这种恢复一致,Aldh1a1 缺失的雌性小鼠具有生育能力 [68]。因此,通过 Aldh1a1 从胎儿卵巢衍生的 RA 调节减数分裂开始的时间,但并非严格要求。同时,Aldh1a1 提供足够的 RA 以启动 Aldh1a2-null 卵巢中的减数分裂;Aldh1a3 缺失胚胎。
Aldh1a1 对于减数分裂起始是多余的,这可能是由于它响应 RA 水平的逆表达。在缺乏 Cyp26b1 的胎儿睾丸中,内源性 RA 水平升高,Aldh1a1 表达大大降低,表明 RA 信号转导和 Aldh1a1 表达之间存在负反馈回路 [9]。因此,通过缺失 Aldh1a2 和 Aldh1a3 消除中肾源性 RA 可能导致性腺中 Aldh1a1 表达增加,从而提高胎儿卵巢中的 RA 水平 [9]。在胚胎卵巢中,中肾和体细胞性腺产生的 RA 可能有助于减数分裂的启动。
对 RA 活性的早期研究表明,RA 以 A-P 方式通过胎儿性腺扩散,产生减数分裂起始的 A-P 波(图 1 和图 2)(在 [69,70] 中综述)。虽然中肾沿其背长附着在性腺上,但只有前中肾小管是开放的,并与性腺直接相连(图1)[71,72]。因此,RA 可能通过这个前连接从中肾扩散到性腺中 [8](在 [69] 中已论述)。或者,一些产生 RA 的细胞可能会从前中肾迁移到前性腺(在 [69] 中综述)。这两种情况都可以建立一个 A-P 梯度,驱动观察到的减数分裂起始波。与该模型一致,在胎儿卵巢中以A-P方式检测到RARE-lacZ报告基因[8,9]。
Dazl 表达的 A-P 波先于随后的减数分裂起始波,也可能有助于随后的减数分裂起始波(图 1)[32]。在 Dazl 表达时,生殖细胞获得了以 A-P 方式将 RA 解释为减数分裂诱导因子的能力 [35](图 1)[32]。这种内在生殖细胞能力的波动可能会加强 RA 梯度,以诱导沿性腺减数分裂。或者,内在生殖细胞能力的 A-P 波可以驱动随后的减数分裂起始波,而与沿性腺长度的 RA 局部浓度的任何差异无关。无论如何,RA可以在培养的PGC样细胞中诱导Dazl表达[73],这表明RA在减数分裂开始前几天在携带XX和XY的细胞中生殖细胞的发育中具有额外的指导作用。
2.5. Prevention of Meiotic Initiation in the Fetal Testis
2.5. 预防胎儿睾丸减数分裂启动
在胎儿睾丸中,CYP26B1降解 RA,从而排除 Stra8 的诱导,并阻止减数分裂的开始(图 2)[7,8]。Cyp26b1 在发育中的睾丸(生精)索的体细胞中表达 [7,8,74,75]。在 Cyp26b1 缺陷的胚胎中,胎儿睾丸中的生殖细胞表达异位 Stra8 并启动减数分裂 [8,76]。因此,表达 CYP26B1 的细胞形成分解代谢屏障,阻止在脊髓外产生的 RA 到达位于内部的生殖细胞。小鼠胎儿睾丸中 Cyp26b1 的表达水平维持到 E13.5,此后逐渐降低 [77]。随后 Cyp26b1 的减少可能会使雄性生殖细胞暴露于一些 RA,但雄性生殖细胞部分避免了通过 Nanos2 的直接反应,从而阻止了胎儿睾丸的减数分裂起始 [77,78,79](在 [70,80,81] 中已论述)。Nanos2编码生殖细胞特异性RNA结合蛋白[82],其表达从E13.5开始上调,仅限于雄性种系[77,83]。在 Nanos2 缺失胚胎中,雄性生殖细胞表达低水平的 Stra8 并在 E14.5 处启动异位减数分裂 [77],表明 Nanos2 在 Cyp26b1 的 RA 分解代谢之后发挥作用,以防止细胞启动减数分裂。作者还报道,Nanos2 在一定程度上通过破坏 Dazl 和其他下游靶标的稳定性来抑制减数分裂(图 2)[79]。 因此,Nanos2 是一种细胞内因子,可防止雄性种系将 RA 解释为减数分裂诱导因子。
2.6. A Role for RA in the Ovary after Birth
2.6. RA 在出生后卵巢中的作用
减数分裂开始后,卵巢生殖细胞进入扩展的减数分裂前期I,并开始分化为卵母细胞[36]。在小鼠中,通过减数分裂前期I的卵母细胞将在出生前后的diplotene阶段停滞,也称为dictyate或生发囊泡(GV)阶段([84,85,86])。出生后不久,卵母细胞的生长和分化与减数分裂的染色体事件无关 [87]。同时,卵母细胞组织支持体细胞(称为颗粒细胞)形成卵泡[88],卵泡随后在激素刺激下进行排卵。在青春期和青春期之后,卵泡群会通过颗粒细胞增殖和卵母细胞的生长而变大,卵母细胞在 GV 阶段仍然停滞不前(在 [86] 中综述)。在排卵前后,完全生长的 GV 期卵母细胞恢复减数分裂,打破核膜(GV 崩溃),经历减数分裂进展,并在减数分裂中期 II (MII) 再次停滞直至受精;从 GV 到 MII 阶段的过程称为卵母细胞成熟,由颗粒细胞促进(在 [84,85] 中已论述)。
最近的体外研究表明,全反式和9-顺式RA都可以作用于颗粒细胞,以改善几种哺乳动物的卵母细胞成熟,包括奶牛[89,90,91,92,93]、山羊[94]、猪[95]、大鼠[96]和小鼠[97,98]([99,100]综述)。RAR和RXR在成熟卵母细胞周围的颗粒细胞中表达[96,101,102]。在培养基中补充全反式或 9-顺式 RA 可诱导颗粒细胞表达调节分化和防止细胞凋亡的基因 [90,92,93,94,103,104](在 [99] 中已论述),表明 RA 作用于颗粒细胞以防止其异常分化状态和细胞凋亡。在体内,在 3 周龄小鼠卵巢卵泡的颗粒细胞中检测到 RARE-lacZ 信号,并在注射促性腺激素后增加 [102],支持 RA 在这些细胞上的作用。需要进一步的体内研究来确定颗粒细胞是否需要 RA 来支持卵巢中的卵母细胞成熟。
3. Development of Male Germ Cells after Birth
3. 出生后雄性生殖细胞的发育
出生后,雄性生殖细胞分化成精原细胞并启动精子发生,在这个过程中,精原干细胞最终每天产生数百万个单倍体精子。在整个精子发生过程中,几个转变以严格协调的方式发生,包括由周期性 RA 信号诱导的减数分裂起始,确保精子在雄性的整个生殖生活中以恒定的速度产生。
3.1. Organization of Spermatogenesis in the Postnatal and Adult Testis
3.1. 出生后和成人睾丸精子发生的组织
在胎鼠睾丸中,PGC 被体细胞包围,因为睾丸索在 E12.5 至 E14.0 之间形成(图 1)[14,23]。睾丸索内的生殖细胞在形态上与迁移性PGC不同,称为性腺细胞[14,15]。出生后不久,停滞在 G0/G1 期的淋病细胞 [4,5] 恢复增殖并迁移到脊髓基底,产生 A 型精原细胞(图 3)[14,15,105]。
图 3.小鼠睾丸的结构由生精小管组成。在任何给定的小管横截面中,人们可以观察到生殖细胞发育成细长精子细胞的不同步骤。这些生殖细胞类型是同心分层的;未分化的精原细胞位于肾小管的基底层,生殖细胞在分化时向肾小管腔移动[106]。生殖细胞分化的时间精确;因此,特定的发展步骤总是在物理上非常接近的情况下一起被发现。蓝线表示睾丸横截面的方向。VII-VIII 期的代表性小管横截面,用苏木精和过碘酸希夫 (He-PAS) 染色,以灰度版本显示。星号:支持细胞核。白色箭头:类型 spermatogonium。点:preleptotene(红色)精母细胞、厚层精母细胞(黄色)和第 7-8 步圆形精母细胞(绿色)。棕色区域:细长的精子细胞。比例尺 = 30 μm。
在小鼠中,精子发生从未分化的 A 型精原细胞开始,其中包括干细胞 [107,108,109,110](在 [111] 中已论述)。单个精原细胞,称为单个 (As) 精原细胞,传统上被认为包含精原干细胞(图 4)[107,108,112]。一些 As 精原细胞分裂成对的 A (Apr) 精原细胞,它们通过细胞间桥连接。Apr 精原细胞随后进一步分裂成 4、8 或 16 个细胞的延长链,称为 A对齐 (Aal) 精原细胞。As、Apr 和 Aal 精原细胞被称为未分化精原细胞(图 4)(在 [113] 中综述)。
图 4.未分化精原细胞的增殖和精原分化。分裂后,A单个 (As) 精原细胞可以自我更新并产生两个新的单精子,或者子细胞 A对 (Apr) 精原细胞通过细胞间桥保持连接。Apr 精原细胞随后进一步分裂成 4、8 或 16 个细胞的链,称为 A对齐 (Aal) 精原细胞,它们响应 RA 而经历精原分化(紫色)。As、Apr 和 Aal 精原细胞被称为未分化精原细胞。精原细胞分化后,Aal 精原细胞转运到 A1 分化的精原细胞,没有有丝分裂 [114]。PLZF 、 RARγ 、 STRA8 、 SALL4 和 KIT 的表达模式用实线表示。
未分化的精原细胞周期性地以 A al-to-A1 转变的形式进行分化,成为分化精原细胞,包括 A1、A2、A3、A4、中间和 B 精原细胞(图 4 和图 5)(在 [114,115] 中综述)。在分化过程中,精原细胞失去自我更新的能力[116],加速其细胞周期[117],并在小鼠中进行六次有丝分裂[118]。然后,生殖细胞分化为精母细胞并经历减数分裂起始(图 5)[18,36]。随后进行 DNA 复制和两次细胞分裂,形成单倍体圆形精子细胞,将其细胞核和细胞质拉长,成为细长的精子细胞。最后,这些精子细胞被释放到生精上皮的腔中,因此它们被称为精子(图 3 和 图 5)(在 [119] 中综述)。这些分层的生殖细胞代嵌入体细胞支持细胞中并得到其支持,这些细胞提供精子发生所必需的因子(图 3)(在 [120,121] 中已论述)。
图 5.小鼠精子发生图。Oakberg [106] 确定了 12 个不同的细胞关联,称为生精阶段 I-XII。一段生精小管及其所含的生殖细胞需要 8.6 天才能循环完成所有 12 个阶段 [122]。生殖细胞从未分化的精原细胞发育到精子需要这个生精循环的四圈。As、Apr 和 Aal:单个、A配对和 A对齐的精原细胞。A1-A 4:A1-A 4 分化精原细胞。In 和 B:中间和 B 型精原细胞。Pl、L、Z、P、D 和 SC2:preleptotene、leptotene、zygotene、pachytene、diplotene 和次级精母细胞。步骤 1-16:精子细胞分化的步骤。紫色:正在进行精原分化的生殖细胞;绿色:减数分裂起始;棕色:精子细胞伸长开始;灰色:细长的精子细胞释放。黑框:未分化精原细胞种群。灰色框:瘦素精母细胞从基底迁移到管腔隔室[123]。深蓝色:RA 浓度高的阶段。浅蓝线:STRA8 在未受干扰的睾丸中的表达。浅蓝色虚线:RA 注射在未分化精原细胞中诱导的 STRA8 表达。(RA 注射后,II-VI 期未分化的 Aal 精原细胞早熟表达 STRA8 [124])。
在生精上皮的横截面内,生殖细胞的刻板印象聚集或关联发生在分化的不同步骤(图 3 和 图 5)。这些步骤的精确协调称为“生精上皮循环”(或“生精循环”)。在小鼠中,生精周期被细分为12个不同的细胞关联,称为生精(上皮)I至XII期[106]。在精子发生过程中,四个转变指导生殖细胞发育的关键阶段:(i) 精原细胞分化,(ii) 减数分裂起始,(iii) 精子细胞伸长的起始,以及 (iv) 细长的精子细胞释放到生精小管的腔中(精子化)(图 5)。这四个转变在时间和空间上精确协调,每个转变都发生在生精上皮的VII期和VIII期(图5)[106](16,111)中综述)。这些转变在物理和时间上非常接近,周期性地发生,在小鼠中具有 8.6 d 的周期性 [122],表明存在严格的协调性。这些转变的紧密接近性在其他哺乳动物中基本保持不变,包括人类[125]、大鼠[112,126]、仓鼠[127]和公羊[127]。
3.2. Regulation of Spermatogenesis by Vitamin A and RA
3.2. 维生素 A 和 RA 对精子发生的调节
RA在哺乳动物精子发生中的核心作用最早于1925年被描述,当时发现喂食维生素A缺乏症(VAD)饮食的啮齿动物是不育的[128,129,130](131,132综述)。在 VAD 小鼠和大鼠中,大多数生殖细胞以未分化精原细胞的形式停滞 [133,134,135,136,137]。在VAD大鼠睾丸中,一些生殖细胞在减数分裂之前停滞,成为前肽素精母细胞[17,136,138]。当 VAD 动物注射全反式 RA 或维生素 A 时,停滞的精原细胞进行分化 [17,135,137],而停滞的前肽素精母细胞开始减数分裂 [17]。此外,每天用WIN18,446治疗的小鼠——它抑制视黄醛脱氢酶(ALDH1A1-3),从而阻止局部RA的产生[139,140]——在精原分化和减数分裂起始中都表现出阻滞[124,141,142]。因此,在雄性中,这两个减数分裂前转变——精原分化和减数分裂起始——都需要 RA。
3.3. The Role of RA and Stra8 at Spermatogonial Differentiation and Meiotic Initiation
3.3. RA 和 Stra8 在精原分化和减数分裂起始中的作用
Stra8 是减数分裂起始所必需的,也促进精原分化(但并非严格要求)[124]。在出生后小鼠睾丸中,早在出生后第 2 天 (P2) [47,143] 就在精原细胞中检测到 STRA8 蛋白,此时精原细胞分化的第一个证据出现 [144]。在成人睾丸中,STRA8 在 Aal 精原细胞的精原分化中表达,在减数分裂开始时在 preleptotene 精母细胞中表达;均发生在VII-VIII期(图4和图5)[124,145,146]。在缺乏Stra8的小鼠中,未分化的精原细胞早在P10就以异常高的数量积累[124],而剩余的生殖细胞在减数分裂之前停止,成为前瘦素精母细胞[18,36]。因此,RA 在精原分化中起着指导性作用,并且至少部分通过 STRA8 发挥作用,这与它在减数分裂起始中的关键功能不同 [124]。
与 RA 缺陷不同,Stra8 的基因消融并不排除精原分化 [124],这表明 RA 除了诱导 Stra8 表达外,在这个转变中还有其他作用。培养实验[48,147]表明,RA治疗未分化的精原细胞会刺激Stra8和Kit的表达,Kit是精原细胞分化的标志物[148,149,150]。在体内,Kit 在未分化精原细胞中的表达较低,部分原因是 PLZF (也称为 ZBTB16) 的作用。在生殖细胞中,PLZF 通过结合 Kit 启动子并抑制其表达 [153] 将精原细胞维持在未分化状态 [151,152](图 4)。在精原分化时,RA 诱导其靶基因 Sall4 的表达,该基因将 PLZF 与 Kit 启动子隔离开来,从而增加 Kit 的表达(图 4)[154,155](在 [156] 中已论述)。还发现 RA 以非基因组方式激活 PI3K-AKT-mTOR 信号级联反应,刺激 Kit mRNA 的翻译 [157](在 [158] 中已论述)。因此,RA 可能通过几个独立的途径诱导精原分化,包括 Stra8、Sall4 和 Kit。
在精原分化过程中,RA 通过 RAR 直接作用于生殖细胞。未分化的精原细胞表达几种RAR(图4)[159,160],同时消融生殖细胞中的RARγ和RARα会损害精原分化[159]([145]综述)。RA 的其他靶标可以通过 RA 对支持细胞的作用间接激活,因为在支持细胞中通过 RARα 的 RA 信号转导对于第一轮精原细胞分化 [63] 和青春期支持细胞的分化至关重要 [161]。
3.4. Role of RA at the Initiation of Spermatid Elongation and Spermiation
3.4. RA 在精子细胞伸长和精子形成开始时的作用
在 1980 年代,Huang 和 Marshall [162] 提出维生素 A 缺乏可能会延迟精精形成。此外,RARs 或 RA 合成酶(在生殖细胞和/或支持细胞中)的消融会导致减数分裂和减数分裂后转换中的各种缺陷,包括精子形成 [63,163,164,165,166,167,168]。最近的一项研究表明,RA 在减数分裂后的两个转变中起主要作用;精子细胞伸长和精子化的开始(图 5)[19]。注射抑制剂 WIN18,446 后,精子细胞伸长和精子化均延迟,相反,单次注射 RA 足以早熟诱导这两种转变。
在这两个减数分裂后转换中对 RA 的需求是由于 RA 对生殖细胞的直接作用,还是间接地通过支持细胞发生,仍有待确定。RAR和RXR在VII期和VIII期的圆形精子细胞中特异性表达[60],表明RA可能直接作用于圆形精子细胞以启动伸长。通过支持细胞中的 RAR/RXR 间接 RA 信号传导 [60] 也可能有助于这一过程。RA 可能通过支持细胞间接调节细长精子细胞的释放,因为这些精子细胞被认为在转录上是沉默的(在 [169] 中综述)。通过识别减数分裂后细胞中的 RA 功能,未来的研究可能会解决 RA 调节这两个减数分裂后转变的机制。
3.5. Source of RA in the Postnatal and Adult Testis
3.5. 产后和成人睾丸 RA 的来源
在出生后和成人睾丸中,RA降解酶(Cyp26a1、Cyp26b1和Cyp26c1)由围绕生精小管的肾小管周围肌样细胞表达[60]。这些肾小管周围肌样细胞形成分解代谢屏障,阻止生精上皮外产生的 RA 到达封闭的生殖细胞 [156]。在生精小管中,RA 由两种不同的细胞来源产生,即支持细胞和生殖细胞。支持细胞表达一种RA合成酶Aldh1a1[60,170]。另一种RA合成酶Aldh1a2在VII期至XII期的厚皮细胞和二柱细胞中表达[60,170]。事实上,RA 水平的直接定量证实,表达 Aldh1a1 的支持细胞和表达 Aldh1a2 的生殖细胞都有助于循环视黄醇产生 RA [19,171]。
支持细胞产生的 RA 是精原细胞分化所必需的。Aldh1a1-3 的支持细胞特异性消融导致出生后小鼠第一轮精原细胞分化完全停滞 [63]。在未受干扰的睾丸中,来自支持细胞的 RA 在功能上有助于精原细胞分化和减数分裂起始 [19]。最近的研究解决了厚壁精母细胞产生的RA是否是精子发生所必需的问题[19,171,172]。成人睾丸中厚壁精母细胞的化学或遗传耗竭导致圆形精母细胞的伸长和精子形成延迟,但不会延迟精原分化或减数分裂起始[19]。Aldh1a1-3 的生殖细胞特异性消融延迟了出生后第一轮精子发生,但这些动物在 8-10 周时在成人睾丸中表现出完全的精子发生 [171]。对这些发现的最简单解释是,在未受干扰的睾丸中,厚壁精母细胞与支持细胞协同工作,为四个转变产生 RA 水平。
在支持 Aldh1a1-3 支持细胞特异性缺失的小鼠中,RA 注射可以挽救第一轮精原细胞分化的停滞,因为随后观察到所有生殖细胞队列 [63]。相反,在 4 周龄注射 RA 后,支持细胞特异性 Aldh1a1-3 缺陷的成人在 24 周龄时表现出精子异常 [63],表明来自支持细胞的 RA 对这一过程的贡献适度。此外,精原分化所需的 RA 水平高于减数分裂起始所需的水平 [171,172],表明每个转变都对 RA 的局部水平敏感。由于减数分裂后转换在 RA 耗竭后最敏感 [19],因此减数分裂后转换可能需要比减数分裂前转换更高浓度的 RA,来自支持细胞和厚纤精母细胞。
当支持细胞和生殖细胞中都缺乏 Aldh1a1-3 的小鼠在 P3 处注射 RA 时,一些生殖细胞立即发生精原分化,并在注射后 7 天开始减数分裂(表达 STRA8)[171]。基于这一观察,Teletin等[171]假设RA对于减数分裂起始是可有可无的。然而,在对出生后小鼠单次注射外源性 RA 后,睾丸中 RA 水平升高维持了 7 天以上,即使在每天使用 WIN18,446 治疗下,WIN18,446 抑制了内源性 RA 的产生 [172]。鉴于 RA 的低阈值可以诱导减数分裂起始 [171,172],残留在生精小管中的注射 RA 可能足以诱导出生后小鼠减数分裂起始。
3.6. Periodicity of Spermatogenesis and RA Levels
3.6. 精子发生和 RA 水平的周期性
在未受干扰的睾丸中,STRA8 在精原细胞中周期性表达,并且存在于生精周期的大部分时间。具体来说,STRA8很少在II-VI期(4个转换之前)表达,然后在VII-VIII期(转换期间)迅速增加,此后在IX-I期保持较高水平(图5)[124,145,146]。STRA8 的表达反映了 RA 的存在;当注射 RA 水平增加或注射 WIN18,446 降低 RA 水平时,根据免疫染色判断,在所有生精阶段分别立即诱导或不存在 STRA8 表达 [124]。与 STRA8 表达一致,RA 浓度在生精管中周期性变化 [124,146];RA水平的绝对定量发现,RA水平在II-VI期较低,在VII-VIII期升高,并且在XII/I期之前一直保持较高水平(图5)[124]。RA 代谢酶的表达可能有助于解释 RA 浓度的这种周期性是如何在成人睾丸中建立的。Aldh1a1 转录本存在于支持细胞的 I-VIII 期 [156,170],Aldh1a2 转录本在晚期厚细胞和双精母细胞的 VII-XII 期达到峰值 [60,170]。因此,在生精上皮的每个周期中,RA 的支持细胞产生可能先于 RA 的生殖细胞产生。相比之下,在I-VI/VII.阶段检测到RA贮存酶Lrat和Adfp的表达,这些酶的作用是降低局部RA水平[60,170]。因此,即使在 Aldh1a1 存在的情况下,II-VI 期的 RA 浓度也可能保持在较低水平。 此外,在支持细胞中表达的 CYP26 酶家族 [60,170,173,174] 可能会分解代谢 RA 以保持对生精环境的严格控制。
3.7. Competence of Germ Cells for Spermatogonial Differentiation
3.7. 生殖细胞的精原分化能力
尽管 IX-I 阶段 RA 水平持续升高,但在这些阶段未观察到精原分化(图 5)。早期未分化的 As 和 Apr 精原细胞(在所有阶段发现)和第 IX-I 期的未分化 Aal 精原细胞无法响应 RA 注射而表达 STRA8,并且不会发生分化(图 5)[124]。在 RA 存在的情况下,这些未分化的精原细胞反而进行自我更新和增殖,从而防止未分化精原细胞池不可逆地耗尽。这种精原细胞分化的能力或无能不能简单地用RAR的表达来解释,因为这些受体在整个生精周期中广泛表达[60,159,160]。相反,精原细胞分化的能力与细胞的增殖活性更密切相关。具体来说,具有分化能力的II-VIII期的未分化精原细胞[124]在细胞周期的G0/G1期被停滞,而IX-I期的未分化精原细胞正在积极增殖(图5)[107,117]。需要进一步的研究来确定赋予精原细胞分化能力的机制。
4. Summary and Perspectives
4. 总结和观点
几条证据线支持 RA 在指导胎儿卵巢减数分裂起始和成体精子发生的关键转变(包括减数分裂起始)中起关键作用。在发育过程中,胚胎生殖细胞获得响应 RA 启动减数分裂的能力。雄性生殖细胞通过 RA 的分解代谢从 RA 诱导的胎儿睾丸减数分裂起始中逃脱,首先发育为未分化的精原细胞,随后获得精原分化的能力。雄性生殖细胞随后获得减数分裂起始(可能开始精子细胞伸长)的能力。必须严格监管这些应对 RA 的不同能力。RA 注射后,未分化的精原细胞不能直接启动减数分裂;相反,未分化的精原细胞开始精原分化程序,然后是 6 次有丝分裂细胞分裂 [124]。对这些不同能力的进一步研究将有助于我们理解控制生殖细胞发育的基本机制,并推进辅助生殖技术,如体外配子的产生[175,176,177,178]。
Author Contributions 作者贡献
概念化,TE;撰写原始草稿并准备数字,T.E.;审阅和编辑手稿、T.E.、M.M.M.、P.K.N.、D.C.P. 和 D.G.D.R.
Funding 资金
TE 得到了日本科学振兴会 (JSPS) KAKENHI 的支持,资助号 JP19K06439。MMM 得到了 NICHD 的 NRSA 博士后奖学金的支持,资助号 F32HD093391。D.C.P 是霍华德休斯医学研究所的研究员。
Conflicts of Interest
References
- Hacker, A.; Capel, B.; Goodfellow, P.; Lovell-Badge, R. Expression of Sry, the mouse sex determining gene. Development 1995, 121, 1603–1614. [Google Scholar] [PubMed]
- Schmahl, J.; Eicher, E.M.; Washburn, L.L.; Capel, B. Sry induces cell proliferation in the mouse gonad. Development 2000, 127, 65–73. [Google Scholar] [PubMed]
- Hu, Y.C.; Okumura, L.M.; Page, D.C. Gata4 is required for formation of the genital ridge in mice. PLoS Genet. 2013, 9, e1003629. [Google Scholar] [CrossRef]
- Hilscher, B.; Hilscher, W.; Bulthoff-Ohnolz, B.; Kramer, U.; Birke, A.; Pelzer, H.; Gauss, G. Kinetics of gametogenesis. I. Comparative histological and autoradiographic studies of oocytes and transitional prospermatogonia during oogenesis and prespermatogenesis. Cell Tissue Res. 1974, 154, 443–470. [Google Scholar]
- McLaren, A. Meiosis and differentiation of mouse germ cells. Symp. Soc. Exp. Biol. 1984, 38, 7–23. [Google Scholar]
- Byskov, A.G.; Saxen, L. Induction of meiosis in fetal mouse testis in vitro. Dev. Biol. 1976, 52, 193–200. [Google Scholar] [CrossRef]
- Koubova, J.; Menke, D.B.; Zhou, Q.; Capel, B.; Griswold, M.D.; Page, D.C. Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc. Natl. Acad. Sci. USA 2006, 103, 2474–2479. [Google Scholar] [CrossRef]
- Bowles, J.; Knight, D.; Smith, C.; Wilhelm, D.; Richman, J.; Mamiya, S.; Yashiro, K.; Chawengsaksophak, K.; Wilson, M.J.; Rossant, J.; et al. Retinoid signaling determines germ cell fate in mice. Science 2006, 312, 596–600. [Google Scholar] [CrossRef]
- Bowles, J.; Feng, C.W.; Miles, K.; Ineson, J.; Spiller, C.; Koopman, P. ALDH1A1 provides a source of meiosis-inducing retinoic acid in mouse fetal ovaries. Nat. Commun. 2016, 7, 10845. [Google Scholar] [CrossRef]
- Abu-Abed, S.; Dolle, P.; Metzger, D.; Beckett, B.; Chambon, P.; Petkovich, M. The retinoic acid-metabolizing enzyme, CYP26A1, is essential for normal hindbrain patterning, vertebral identity, and development of posterior structures. Genes Dev. 2001, 15, 226–240. [Google Scholar] [CrossRef]
- Niederreither, K.; Abu-Abed, S.; Schuhbaur, B.; Petkovich, M.; Chambon, P.; Dolle, P. Genetic evidence that oxidative derivatives of retinoic acid are not involved in retinoid signaling during mouse development. Nat. Genet. 2002, 31, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Niederreither, K.; Dolle, P. Retinoic acid in development: Towards an integrated view. Nat. Rev. Genet. 2008, 9, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Duester, G. Retinoic acid synthesis and signaling during early organogenesis. Cell 2008, 134, 921–931. [Google Scholar] [CrossRef] [PubMed]
- Clermont, Y.; Perey, B. Quantitative study of the cell population of the seminiferous tubules in immature rats. Am. J. Anat. 1957, 100, 241–267. [Google Scholar] [CrossRef]
- Huckins, C.; Clermont, Y. Evolution of gonocytes in the rat testis during late embryonic and early post-natal life. Arch. Anat. Histol. Embryol. 1968, 51, 341–354. [Google Scholar]
- Russell, L.D.; Ettlin, R.A.; Sinha Hikim, A.P.; Clegg, E.D. Histological and Histopathological Evaluation of the Testis; Cache River Press: Clearwater, FL, USA, 1990. [Google Scholar]
- van Pelt, A.M.; de Rooij, D.G. Retinoic acid is able to reinitiate spermatogenesis in vitamin A-deficient rats and high replicate doses support the full development of spermatogenic cells. Endocrinology 1991, 128, 697–704. [Google Scholar] [CrossRef]
- Anderson, E.L.; Baltus, A.E.; Roepers-Gajadien, H.L.; Hassold, T.J.; de Rooij, D.G.; van Pelt, A.M.; Page, D.C. Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. Proc. Natl. Acad. Sci. USA 2008, 105, 14976–14980. [Google Scholar] [CrossRef]
- Endo, T.; Freinkman, E.; de Rooij, D.G.; Page, D.C. Periodic production of retinoic acid by meiotic and somatic cells coordinates four transitions in mouse spermatogenesis. Proc. Natl. Acad. Sci. USA 2017, 114, E10132–E10141. [Google Scholar] [CrossRef]
- McLaren, A. Primordial germ cells in the mouse. Dev. Biol. 2003, 262, 1–15. [Google Scholar] [CrossRef]
- Brambell, F.W.R. The development and morphology of the gonads of the mouse - Part I The morphogenesis of the indifferent gonad and of the ovary. Proc. R. Soc. B 1927, 101, 391–409. [Google Scholar] [CrossRef]
- Tam, P.P.; Snow, M.H. Proliferation and migration of primordial germ cells during compensatory growth in mouse embryos. J. Embryol. Exp. Morphol. 1981, 64, 133–147. [Google Scholar] [PubMed]
- Sapford, C.S. Changes in the cells of the Sex Cords and Seminiferous Tubules during the development of the Testis of the rat and mouse. Aust. J. Zool. 1962, 10, 178–192. [Google Scholar] [CrossRef]
- Nicholls, P.K.; Schorle, H.; Naqvi, S.; Hu, Y.C.; Fan, Y.; Carmell, M.A.; Dobrinski, I.; Watson, A.L.; Carlson, D.F.; Fahrenkrug, S.C.; et al. Mammalian germ cells are determined after PGC colonization of the nascent gonad. Proc. Natl. Acad. Sci. USA 2019. [Google Scholar] [CrossRef]
- Pesce, M.; Wang, X.; Wolgemuth, D.J.; Scholer, H. Differential expression of the Oct-4 transcription factor during mouse germ cell differentiation. Mech. Dev. 1998, 71, 89–98. [Google Scholar] [CrossRef]
- Bullejos, M.; Koopman, P. Germ cells enter meiosis in a rostro-caudal wave during development of the mouse ovary. Mol. Reprod. Dev. 2004, 68, 422–428. [Google Scholar] [CrossRef]
- Stevens, L.C. Development of resistance to teratocarcinogenesis by primordial germ cells in mice. J. Natl. Cancer Inst. 1966, 37, 859–867. [Google Scholar]
- Matsui, Y.; Tokitake, Y. Primordial germ cells contain subpopulations that have greater ability to develop into pluripotential stem cells. Dev. Growth Differ. 2009, 51, 657–667. [Google Scholar] [CrossRef]
- McLaren, A.; Southee, D. Entry of mouse embryonic germ cells into meiosis. Dev. Biol. 1997, 187, 107–113. [Google Scholar] [CrossRef]
- Adams, I.R.; McLaren, A. Sexually dimorphic development of mouse primordial germ cells: Switching from oogenesis to spermatogenesis. Development 2002, 129, 1155–1164. [Google Scholar]
- Gill, M.E.; Hu, Y.C.; Lin, Y.; Page, D.C. Licensing of gametogenesis, dependent on RNA binding protein DAZL, as a gateway to sexual differentiation of fetal germ cells. Proc. Natl. Acad. Sci. USA 2011, 108, 7443–7448. [Google Scholar] [CrossRef]
- Hu, Y.C.; Nicholls, P.K.; Soh, Y.Q.; Daniele, J.R.; Junker, J.P.; van Oudenaarden, A.; Page, D.C. Licensing of primordial germ cells for gametogenesis depends on genital ridge signaling. PLoS Genet. 2015, 11, e1005019. [Google Scholar] [CrossRef] [PubMed]
- Seligman, J.; Page, D.C. The Dazh gene is expressed in male and female embryonic gonads before germ cell sex differentiation. Biochem. Biophys. Res. Commun. 1998, 245, 878–882. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.H.; Welling, M.; Bloch, D.B.; Munoz, J.; Mientjes, E.; Chen, X.; Tramp, C.; Wu, J.; Yabuuchi, A.; Chou, Y.F.; et al. DAZL limits pluripotency, differentiation, and apoptosis in developing primordial germ cells. Stem Cell Rep. 2014, 3, 892–904. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Gill, M.E.; Koubova, J.; Page, D.C. Germ cell-intrinsic and -extrinsic factors govern meiotic initiation in mouse embryos. Science 2008, 322, 1685–1687. [Google Scholar] [CrossRef]
- Baltus, A.E.; Menke, D.B.; Hu, Y.C.; Goodheart, M.L.; Carpenter, A.E.; de Rooij, D.G.; Page, D.C. In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication. Nat. Genet. 2006, 38, 1430–1434. [Google Scholar] [CrossRef]
- Bannister, L.A.; Reinholdt, L.G.; Munroe, R.J.; Schimenti, J.C. Positional cloning and characterization of mouse mei8, a disrupted allelle of the meiotic cohesin Rec8. Genesis 2004, 40, 184–194. [Google Scholar] [CrossRef]
- Xu, H.; Beasley, M.D.; Warren, W.D.; van der Horst, G.T.; McKay, M.J. Absence of mouse REC8 cohesin promotes synapsis of sister chromatids in meiosis. Dev. Cell 2005, 8, 949–961. [Google Scholar] [CrossRef] [Green Version]
- Koubova, J.; Hu, Y.C.; Bhattacharyya, T.; Soh, Y.Q.; Gill, M.E.; Goodheart, M.L.; Hogarth, C.A.; Griswold, M.D.; Page, D.C. Retinoic Acid activates two pathways required for meiosis in mice. PLoS Genet. 2014, 10, e1004541. [Google Scholar] [CrossRef] [Green Version]
- Menke, D.B.; Koubova, J.; Page, D.C. Sexual differentiation of germ cells in XX mouse gonads occurs in an anterior-to-posterior wave. Dev. Biol. 2003, 262, 303–312. [Google Scholar] [CrossRef] [Green Version]
- Soh, Y.Q.; Junker, J.P.; Gill, M.E.; Mueller, J.L.; van Oudenaarden, A.; Page, D.C. A Gene Regulatory Program for Meiotic Prophase in the Fetal Ovary. PLoS Genet. 2015, 11, e1005531. [Google Scholar] [CrossRef] [Green Version]
- Yao, H.H.; DiNapoli, L.; Capel, B. Meiotic germ cells antagonize mesonephric cell migration and testis cord formation in mouse gonads. Development 2003, 130, 5895–5902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Western, P.S.; van den Bergen, J.A.; Miles, D.C.; Sinclair, A.H. Male fetal germ cell differentiation involves complex repression of the regulatory network controlling pluripotency. FASEB J. 2010, 24, 3026–3035. [Google Scholar] [CrossRef] [PubMed]
- Ginsburg, M.; Snow, M.H.; McLaren, A. Primordial germ cells in the mouse embryo during gastrulation. Development 1990, 110, 521–528. [Google Scholar] [PubMed]
- Kojima, M.L.; de Rooij, D.G.; Page, D.C. Amplification of a broad transcriptional program by a common factor triggers the meiotic cell cycle in mice. Elife 2019, 8, e43738. [Google Scholar] [CrossRef]
- Oulad-Abdelghani, M.; Bouillet, P.; Decimo, D.; Gansmuller, A.; Heyberger, S.; Dolle, P.; Bronner, S.; Lutz, Y.; Chambon, P. Characterization of a premeiotic germ cell-specific cytoplasmic protein encoded by Stra8, a novel retinoic acid-responsive gene. J. Cell Biol. 1996, 135, 469–477. [Google Scholar] [CrossRef]
- Zhou, Q.; Nie, R.; Li, Y.; Friel, P.; Mitchell, D.; Hess, R.A.; Small, C.; Griswold, M.D. Expression of stimulated by retinoic acid gene 8 (Stra8) in spermatogenic cells induced by retinoic acid: An in vivo study in vitamin A-sufficient postnatal murine testes. Biol. Reprod. 2008, 79, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Li, Y.; Nie, R.; Friel, P.; Mitchell, D.; Evanoff, R.M.; Pouchnik, D.; Banasik, B.; McCarrey, J.R.; Small, C.; et al. Expression of stimulated by retinoic acid gene 8 (Stra8) and maturation of murine gonocytes and spermatogonia induced by retinoic acid in vitro. Biol. Reprod. 2008, 78, 537–545. [Google Scholar] [CrossRef]
- Li, H.; Clagett-Dame, M. Vitamin A deficiency blocks the initiation of meiosis of germ cells in the developing rat ovary in vivo. Biol. Reprod. 2009, 81, 996–1001. [Google Scholar] [CrossRef] [Green Version]
- Allenby, G.; Bocquel, M.T.; Saunders, M.; Kazmer, S.; Speck, J.; Rosenberger, M.; Lovey, A.; Kastner, P.; Grippo, J.F.; Chambon, P.; et al. Retinoic acid receptors and retinoid X receptors: Interactions with endogenous retinoic acids. Proc. Natl. Acad. Sci. USA 1993, 90, 30–34. [Google Scholar] [CrossRef] [Green Version]
- Ruhl, R.; Krzyzosiak, A.; Niewiadomska-Cimicka, A.; Rochel, N.; Szeles, L.; Vaz, B.; Wietrzych-Schindler, M.; Alvarez, S.; Szklenar, M.; Nagy, L.; et al. 9-cis-13,14-Dihydroretinoic Acid Is an Endogenous Retinoid Acting as RXR Ligand in Mice. PLoS Genet. 2015, 11, e1005213. [Google Scholar] [CrossRef] [Green Version]
- Ruhl, R.; Krezel, W.; de Lera, A.R. 9-Cis-13,14-dihydroretinoic acid, a new endogenous mammalian ligand of retinoid X receptor and the active ligand of a potential new vitamin A category: Vitamin A5. Nutr. Rev. 2018, 76, 929–941. [Google Scholar] [CrossRef] [PubMed]
- Dawson, M.I.; Xia, Z. The retinoid X receptors and their ligands. Biochim. Biophys. Acta 2012, 1821, 21–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambon, P. A decade of molecular biology of retinoic acid receptors. FASEB J. 1996, 10, 940–954. [Google Scholar] [CrossRef] [PubMed]
- Evans, R.M.; Mangelsdorf, D.J. Nuclear Receptors, RXR, and the Big Bang. Cell 2014, 157, 255–266. [Google Scholar] [CrossRef] [Green Version]
- Mark, M.; Ghyselinck, N.B.; Chambon, P. Function of retinoic acid receptors during embryonic development. Nucl. Recept. Signal. 2009, 7, e002. [Google Scholar] [CrossRef] [Green Version]
- Kastner, P.; Mark, M.; Chambon, P. Nonsteroid nuclear receptors: What are genetic studies telling us about their role in real life? Cell 1995, 83, 859–869. [Google Scholar] [CrossRef] [Green Version]
- Morita, Y.; Tilly, J.L. Segregation of retinoic acid effects on fetal ovarian germ cell mitosis versus apoptosis by requirement for new macromolecular synthesis. Endocrinology 1999, 140, 2696–2703. [Google Scholar] [CrossRef]
- Dolle, P.; Ruberte, E.; Leroy, P.; Morriss-Kay, G.; Chambon, P. Retinoic acid receptors and cellular retinoid binding proteins. I. A systematic study of their differential pattern of transcription during mouse organogenesis. Development 1990, 110, 1133–1151. [Google Scholar]
- Vernet, N.; Dennefeld, C.; Rochette-Egly, C.; Oulad-Abdelghani, M.; Chambon, P.; Ghyselinck, N.B.; Mark, M. Retinoic acid metabolism and signaling pathways in the adult and developing mouse testis. Endocrinology 2006, 147, 96–110. [Google Scholar] [CrossRef] [Green Version]
- Boulogne, B.; Levacher, C.; Durand, P.; Habert, R. Retinoic acid receptors and retinoid X receptors in the rat testis during fetal and postnatal development: Immunolocalization and implication in the control of the number of gonocytes. Biol. Reprod. 1999, 61, 1548–1557. [Google Scholar] [CrossRef] [Green Version]
- Childs, A.J.; Cowan, G.; Kinnell, H.L.; Anderson, R.A.; Saunders, P.T. Retinoic Acid signalling and the control of meiotic entry in the human fetal gonad. PLoS ONE 2011, 6, e20249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raverdeau, M.; Gely-Pernot, A.; Feret, B.; Dennefeld, C.; Benoit, G.; Davidson, I.; Chambon, P.; Mark, M.; Ghyselinck, N.B. Retinoic acid induces Sertoli cell paracrine signals for spermatogonia differentiation but cell autonomously drives spermatocyte meiosis. Proc. Natl. Acad. Sci. USA 2012, 109, 16582–16587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Sirbu, I.O.; Mic, F.A.; Molotkova, N.; Molotkov, A.; Kumar, S.; Duester, G. Retinoic acid promotes limb induction through effects on body axis extension but is unnecessary for limb patterning. Curr. Biol. 2009, 19, 1050–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Chatzi, C.; Brade, T.; Cunningham, T.J.; Zhao, X.; Duester, G. Sex-specific timing of meiotic initiation is regulated by Cyp26b1 independent of retinoic acid signalling. Nat. Commun. 2011, 2, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mu, X.; Wen, J.; Guo, M.; Wang, J.; Li, G.; Wang, Z.; Wang, Y.; Teng, Z.; Cui, Y.; Xia, G. Retinoic acid derived from the fetal ovary initiates meiosis in mouse germ cells. J. Cell Physiol. 2013, 228, 627–639. [Google Scholar] [CrossRef]
- Bowles, J.; Feng, C.W.; Knight, D.; Smith, C.A.; Roeszler, K.N.; Bagheri-Fam, S.; Harley, V.R.; Sinclair, A.H.; Koopman, P. Male-specific expression of Aldh1a1 in mouse and chicken fetal testes: Implications for retinoid balance in gonad development. Dev. Dyn. 2009, 238, 2073–2080. [Google Scholar] [CrossRef]
- Fan, X.; Molotkov, A.; Manabe, S.; Donmoyer, C.M.; Deltour, L.; Foglio, M.H.; Cuenca, A.E.; Blaner, W.S.; Lipton, S.A.; Duester, G. Targeted disruption of Aldh1a1 (Raldh1) provides evidence for a complex mechanism of retinoic acid synthesis in the developing retina. Mol. Cell Biol. 2003, 23, 4637–4648. [Google Scholar] [CrossRef] [Green Version]
- Bowles, J.; Koopman, P. Retinoic acid, meiosis and germ cell fate in mammals. Development 2007, 134, 3401–3411. [Google Scholar] [CrossRef] [Green Version]
- Spiller, C.; Koopman, P.; Bowles, J. Sex Determination in the Mammalian Germline. Annu. Rev. Genet. 2017, 51, 265–285. [Google Scholar] [CrossRef]
- Byskov, A.G. The anatomy and ultrastructure of the rete system in the fetal mouse ovary. Biol. Reprod. 1978, 19, 720–735. [Google Scholar] [CrossRef]
- Karl, J.; Capel, B. Three-dimensional structure of the developing mouse genital ridge. Philos. Trans. R Soc. Lond. B Biol. Sci. 1995, 350, 235–242. [Google Scholar] [PubMed]
- Miyauchi, H.; Ohta, H.; Nagaoka, S.; Nakaki, F.; Sasaki, K.; Hayashi, K.; Yabuta, Y.; Nakamura, T.; Yamamoto, T.; Saitou, M. Bone morphogenetic protein and retinoic acid synergistically specify female germ-cell fate in mice. EMBO J. 2017, 36, 3100–3119. [Google Scholar] [CrossRef] [PubMed]
- Abu-Abed, S.; MacLean, G.; Fraulob, V.; Chambon, P.; Petkovich, M.; Dolle, P. Differential expression of the retinoic acid-metabolizing enzymes CYP26A1 and CYP26B1 during murine organogenesis. Mech Dev. 2002, 110, 173–177. [Google Scholar] [CrossRef]
- Menke, D.B.; Page, D.C. Sexually dimorphic gene expression in the developing mouse gonad. Gene Expr. Patterns 2002, 2, 359–367. [Google Scholar] [CrossRef]
- MacLean, G.; Li, H.; Metzger, D.; Chambon, P.; Petkovich, M. Apoptotic extinction of germ cells in testes of Cyp26b1 knockout mice. Endocrinology 2007, 148, 4560–4567. [Google Scholar] [PubMed] [Green Version]
- Suzuki, A.; Saga, Y. Nanos2 suppresses meiosis and promotes male germ cell differentiation. Genes Dev. 2008, 22, 430–435. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, A.; Igarashi, K.; Aisaki, K.; Kanno, J.; Saga, Y. NANOS2 interacts with the CCR4-NOT deadenylation complex and leads to suppression of specific RNAs. Proc. Natl. Acad. Sci. USA 2010, 107, 3594–3599. [Google Scholar] [CrossRef] [Green Version]
- Kato, Y.; Katsuki, T.; Kokubo, H.; Masuda, A.; Saga, Y. Dazl is a target RNA suppressed by mammalian NANOS2 in sexually differentiating male germ cells. Nat. Commun. 2016, 7, 11272. [Google Scholar] [CrossRef] [Green Version]
- Saga, Y. Function of Nanos2 in the male germ cell lineage in mice. Cell. Mol. Life Sci. 2010, 67, 3815–3822. [Google Scholar] [CrossRef]
- Suzuki, A.; Hirasaki, M.; Okuda, A. Does MAX open up a new avenue for meiotic research? Dev. Growth Differ. 2017, 59, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, R.; Nusslein-Volhard, C. The maternal gene nanos has a central role in posterior pattern formation of the Drosophila embryo. Development 1991, 112, 679–691. [Google Scholar] [PubMed]
- Tsuda, M.; Sasaoka, Y.; Kiso, M.; Abe, K.; Haraguchi, S.; Kobayashi, S.; Saga, Y. Conserved role of nanos proteins in germ cell development. Science 2003, 301, 1239–1241. [Google Scholar] [PubMed]
- Eppig, J.J. Oocyte control of ovarian follicular development and function in mammals. Reproduction 2001, 122, 829–838. [Google Scholar] [PubMed]
- Handel, M.A.; Eppig, J.J. Sexual dimorphism in the regulation of mammalian meiosis. Curr. Top Dev. Biol. 1998, 37, 333–358. [Google Scholar] [PubMed]
- Bolcun-Filas, E.; Handel, M.A. Meiosis: The chromosomal foundation of reproduction. Biol. Reprod. 2018, 99, 112–126. [Google Scholar] [CrossRef] [Green Version]
- Dokshin, G.A.; Baltus, A.E.; Eppig, J.J.; Page, D.C. Oocyte differentiation is genetically dissociable from meiosis in mice. Nat. Genet. 2013, 45, 877–883. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.Q.; Sugiura, K.; Eppig, J.J. Mouse oocyte control of granulosa cell development and function: Paracrine regulation of cumulus cell metabolism. Semin. Reprod. Med. 2009, 27, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Duque, P.; Diez, C.; Royo, L.; Lorenzo, P.L.; Carneiro, G.; Hidalgo, C.O.; Facal, N.; Gomez, E. Enhancement of developmental capacity of meiotically inhibited bovine oocytes by retinoic acid. Hum. Reprod. 2002, 17, 2706–2714. [Google Scholar]
- Gomez, E.; Royo, L.J.; Duque, P.; Carneiro, G.; Hidalgo, C.; Goyache, F.; Lorenzo, P.L.; Alvarez, I.; Facal, N.; Diez, C. 9-cis-retinoic acid during in vitro maturation improves development of the bovine oocyte and increases midkine but not IGF-I expression in cumulus-granulosa cells. Mol. Reprod. Dev. 2003, 66, 247–255. [Google Scholar] [CrossRef]
- Hidalgo, C.O.; Diez, C.; Duque, P.; Facal, N.; Gomez, E. Pregnancies and improved early embryonic development with bovine oocytes matured in vitro with 9-cis-retinoic acid. Reproduction 2003, 125, 409–416. [Google Scholar]
- Deb, G.K.; Dey, S.R.; Bang, J.I.; Lee, J.G.; Kong, I.K. 9-cis Retinoic acid inhibits cumulus cell apoptosis during the maturation of bovine cumulus-oocyte-complexes. J. Anim. Sci. 2012, 90, 1798–1806. [Google Scholar] [CrossRef] [PubMed]
- Read, C.C.; Dyce, P.W. All-trans retinoic acid exposure increases connexin 43 expression in cumulus cells and improves embryo development in bovine oocytes. Mol. Reprod. Dev. 2019. [Google Scholar] [CrossRef] [PubMed]
- Pu, Y.; Wang, Z.; Bian, Y.; Zhang, F.; Yang, P.; Li, Y.; Zhang, Y.; Liu, Y.; Fang, F.; Cao, H.; et al. All-trans retinoic acid improves goat oocyte nuclear maturation and reduces apoptotic cumulus cells during in vitro maturation. Anim. Sci. J. 2014, 85, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Alminana, C.; Gil, M.A.; Cuello, C.; Caballero, I.; Roca, J.; Vazquez, J.M.; Gomez, E.; Martinez, E.A. In vitro maturation of porcine oocytes with retinoids improves embryonic development. Reprod. Fertil. Dev. 2008, 20, 483–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suwa, H.; Kishi, H.; Imai, F.; Nakao, K.; Hirakawa, T.; Minegishi, T. Retinoic acid enhances progesterone production via the cAMP/PKA signaling pathway in immature rat granulosa cells. Biochem. Biophys. Rep. 2016, 8, 62–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tahaei, L.S.; Eimani, H.; Yazdi, P.E.; Ebrahimi, B.; Fathi, R. Effects of retinoic acid on maturation of immature mouse oocytes in the presence and absence of a granulosa cell co-culture system. J. Assist. Reprod. Genet. 2011, 28, 553–558. [Google Scholar] [CrossRef] [Green Version]
- Nasiri, E.; Mahmoudi, R.; Bahadori, M.H.; Amiri, I. The Effect of Retinoic Acid on in vitro Maturation and Fertilization Rate of Mouse Germinal Vesicle Stage Oocytes. Cell J. 2011, 13, 19–24. [Google Scholar]
- Ikeda, S.; Kitagawa, M.; Imai, H.; Yamada, M. The roles of vitamin A for cytoplasmic maturation of bovine oocytes. J. Reprod. Dev. 2005, 51, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Gomez, E.; Caamano, J.N.; Rodriguez, A.; De Frutos, C.; Facal, N.; Diez, C. Bovine early embryonic development and vitamin A. Reprod. Domest. Anim. 2006, 41, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Mohan, M.; Thirumalapura, N.R.; Malayer, J. Bovine cumulus-granulosa cells contain biologically active retinoid receptors that can respond to retinoic acid. Reprod. Biol. Endocrinol. 2003, 1, 104. [Google Scholar] [CrossRef] [Green Version]
- Kawai, T.; Yanaka, N.; Richards, J.S.; Shimada, M. De Novo-Synthesized Retinoic Acid in Ovarian Antral Follicles Enhances FSH-Mediated Ovarian Follicular Cell Differentiation and Female Fertility. Endocrinology 2016, 157, 2160–2172. [Google Scholar] [CrossRef] [PubMed]
- Minegishi, T.; Karino, S.; Tano, M.; Ibuki, Y.; Miyamoto, K. Regulation of midkine messenger ribonucleic acid levels in cultured rat granulosa cells. Biochem. Biophys. Res. Commun. 1996, 229, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Hattori, M.; Takesue, K.; Nishida, N.; Kato, Y.; Fujihara, N. Inhibitory effect of retinoic acid on the development of immature porcine granulosa cells to mature cells. J. Mol. Endocrinol. 2000, 25, 53–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novi, A.M.; Saba, P. An electron microscopic study of the development of rat testis in the first 10 postnatal days. Z Zellforsch Mikrosk Anat 1968, 86, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Oakberg, E.F. A description of spermiogenesis in the mouse and its use in analysis of the cycle of the seminiferous epithelium and germ cell renewal. Am. J. Anat. 1956, 99, 391–413. [Google Scholar] [CrossRef]
- Oakberg, E.F. Spermatogonial stem-cell renewal in the mouse. Anat. Rec. 1971, 169, 515–531. [Google Scholar] [CrossRef]
- de Rooij, D.G. Spermatogonial stem cell renewal in the mouse. I. Normal situation. Cell Tissue Kinet. 1973, 6, 281–287. [Google Scholar] [CrossRef]
- Nakagawa, T.; Nabeshima, Y.; Yoshida, S. Functional identification of the actual and potential stem cell compartments in mouse spermatogenesis. Dev. Cell 2007, 12, 195–206. [Google Scholar] [CrossRef] [Green Version]
- Chan, F.; Oatley, M.J.; Kaucher, A.V.; Yang, Q.E.; Bieberich, C.J.; Shashikant, C.S.; Oatley, J.M. Functional and molecular features of the Id4+ germline stem cell population in mouse testes. Genes Dev. 2014, 28, 1351–1362. [Google Scholar] [CrossRef] [Green Version]
- de Rooij, D.G. Stem cells in the testis. Int. J. Exp. Pathol. 1998, 79, 67–80. [Google Scholar] [CrossRef]
- Huckins, C. The spermatogonial stem cell population in adult rats. I. Their morphology, proliferation and maturation. Anat. Rec. 1971, 169, 533–557. [Google Scholar] [CrossRef] [PubMed]
- de Rooij, D.G. The nature and dynamics of spermatogonial stem cells. Development 2017, 144, 3022–3030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Rooij, D.G.; Russell, L.D. All you wanted to know about spermatogonia but were afraid to ask. J. Androl. 2000, 21, 776–798. [Google Scholar] [PubMed]
- de Rooij, D.G. Proliferation and differentiation of spermatogonial stem cells. Reproduction 2001, 121, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, T.; Orwig, K.E.; Avarbock, M.R.; Brinster, R.L. Spermatogonial stem cell enrichment by multiparameter selection of mouse testis cells. Proc. Natl. Acad. Sci. USA 2000, 97, 8346–8351. [Google Scholar] [CrossRef] [Green Version]
- Lok, D.; de Rooij, D.G. Spermatogonial multiplication in the Chinese hamster. III. Labelling indices of undifferentiated spermatogonia throughout the cycle of the seminiferous epithelium. Cell Tissue Kinet. 1983, 16, 31–40. [Google Scholar]
- Monesi, V. Autoradiographic study of DNA synthesis and the cell cycle in spermatogonia and spermatocytes of mouse testis using tritiated thymidine. J. Cell Biol. 1962, 14, 1–18. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, L.; Nicholls, P.K.; O’Bryan, M.K.; McLachlan, R.I.; Stanton, P.G. Spermiation: The process of sperm release. Spermatogenesis 2011, 1, 14–35. [Google Scholar] [CrossRef]
- Sylvester, S.R.; Griswold, M.D. The testicular iron shuttle: A “nurse” function of the Sertoli cells. J. Androl. 1994, 15, 381–385. [Google Scholar]
- Franca, L.R.; Hess, R.A.; Dufour, J.M.; Hofmann, M.C.; Griswold, M.D. The Sertoli cell: One hundred fifty years of beauty and plasticity. Andrology 2016, 4, 189–212. [Google Scholar] [CrossRef] [Green Version]
- Oakberg, E.F. Duration of spermatogenesis in the mouse and timing of stages of the cycle of the seminiferous epithelium. Am. J. Anat. 1956, 99, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Mruk, D.D.; Cheng, C.Y. Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr. Rev. 2004, 25, 747–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endo, T.; Romer, K.A.; Anderson, E.L.; Baltus, A.E.; de Rooij, D.G.; Page, D.C. Periodic retinoic acid-STRA8 signaling intersects with periodic germ-cell competencies to regulate spermatogenesis. Proc. Natl. Acad. Sci. USA 2015, 112, E2347–E2356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muciaccia, B.; Boitani, C.; Berloco, B.P.; Nudo, F.; Spadetta, G.; Stefanini, M.; de Rooij, D.G.; Vicini, E. Novel stage classification of human spermatogenesis based on acrosome development. Biol. Reprod. 2013, 89, 60. [Google Scholar] [CrossRef] [PubMed]
- Leblond, C.P.; Clermont, Y. Spermiogenesis of rat, mouse, hamster and guinea pig as revealed by the “periodic acid-fuchsin sulfurous acid” technique. Am J Anat 1952, 90, 167–215. [Google Scholar] [CrossRef]
- Lok, D.; Weenk, D.; De Rooij, D.G. Morphology, proliferation, and differentiation of undifferentiated spermatogonia in the Chinese hamster and the ram. Anat. Rec. 1982, 203, 83–99. [Google Scholar] [CrossRef]
- Wolbach, S.B.; Howe, P.R. Tissue Changes Following Deprivation of Fat-Soluble a Vitamin. J. Exp. Med. 1925, 42, 753–777. [Google Scholar] [CrossRef] [Green Version]
- Mason, K.E. Differences in testis injury and repair after vitamin A-deficiency, vitamin E-deficiency, and inanition. Am. J. Anat. 1933, 52, 153–239. [Google Scholar] [CrossRef]
- Thompson, J.N.; Howell, J.M.; Pitt, G.A. Vitamin a and Reproduction in Rats. Proc R Soc Lond B Biol Sci 1964, 159, 510–535. [Google Scholar]
- Livera, G.; Rouiller-Fabre, V.; Pairault, C.; Levacher, C.; Habert, R. Regulation and perturbation of testicular functions by vitamin A. Reproduction 2002, 124, 173–180. [Google Scholar] [CrossRef]
- Hogarth, C.A.; Griswold, M.D. Driving asynchronous spermatogenesis: Is retinoic acid the answer? Anim. Reprod. 2012, 9, 742–750. [Google Scholar]
- Mitranond, V.; Sobhon, P.; Tosukhowong, P.; Chindaduangrat, W. Cytological changes in the testes of vitamin-A-deficient rats. I. Quantitation of germinal cells in the seminiferous tubules. Acta Anat. 1979, 103, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Unni, E.; Rao, M.R.; Ganguly, J. Histological & ultrastructural studies on the effect of vitamin A depletion & subsequent repletion with vitamin A on germ cells & Sertoli cells in rat testis. Indian J. Exp. Biol. 1983, 21, 180–192. [Google Scholar] [PubMed]
- Morales, C.; Griswold, M.D. Retinol-induced stage synchronization in seminiferous tubules of the rat. Endocrinology 1987, 121, 432–434. [Google Scholar] [CrossRef] [PubMed]
- van Pelt, A.M.; De Rooij, D.G. The origin of the synchronization of the seminiferous epithelium in vitamin A-deficient rats after vitamin A replacement. Biol. Reprod. 1990, 42, 677–682. [Google Scholar] [CrossRef]
- van Pelt, A.M.; de Rooij, D.G. Synchronization of the seminiferous epithelium after vitamin A replacement in vitamin A-deficient mice. Biol. Reprod. 1990, 43, 363–367. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.F.; Hembree, W.C. Spermatogenic response to vitamin A in vitamin A deficient rats. Biol. Reprod. 1979, 21, 891–904. [Google Scholar] [CrossRef] [Green Version]
- Amory, J.K.; Muller, C.H.; Shimshoni, J.A.; Isoherranen, N.; Paik, J.; Moreb, J.S.; Amory, D.W., Sr.; Evanoff, R.; Goldstein, A.S.; Griswold, M.D. Suppression of spermatogenesis by bisdichloroacetyldiamines is mediated by inhibition of testicular retinoic acid biosynthesis. J. Androl. 2011, 32, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Hogarth, C.A.; Evanoff, R.; Snyder, E.; Kent, T.; Mitchell, D.; Small, C.; Amory, J.; Griswold, M.D. Suppression of Stra8 Expression in the Mouse Gonad by WIN 18,446. Biol. Reprod. 2011, 84, 957–965. [Google Scholar] [CrossRef] [Green Version]
- Brooks, N.L.; van der Horst, G. Short-term effects of N’N-bis(dichloroacetyl)-1,8-octamethylenediamine (WIN 18446) on the testes, selected sperm parameters and fertility of male CBA mice. Lab Anim. 2003, 37, 363–373. [Google Scholar] [CrossRef]
- Hogarth, C.A.; Evanoff, R.; Mitchell, D.; Kent, T.; Small, C.; Amory, J.K.; Griswold, M.D. Turning a spermatogenic wave into a tsunami: Synchronizing murine spermatogenesis using WIN 18,446. Biol. Reprod. 2013, 88, 40. [Google Scholar] [CrossRef] [PubMed]
- Snyder, E.M.; Small, C.; Griswold, M.D. Retinoic acid availability drives the asynchronous initiation of spermatogonial differentiation in the mouse. Biol. Reprod. 2010, 83, 783–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drumond, A.L.; Meistrich, M.L.; Chiarini-Garcia, H. Spermatogonial morphology and kinetics during testis development in mice: A high-resolution light microscopy approach. Reproduction 2011, 142, 145–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mark, M.; Teletin, M.; Vernet, N.; Ghyselinck, N.B. Role of retinoic acid receptor (RAR) signaling in post-natal male germ cell differentiation. Biochim. et Biophys. Acta 2015, 1849, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Hogarth, C.A.; Arnold, S.; Kent, T.; Mitchell, D.; Isoherranen, N.; Griswold, M.D. Processive pulses of retinoic acid propel asynchronous and continuous murine sperm production. Biol. Reprod. 2015, 92, 37. [Google Scholar] [CrossRef] [Green Version]
- Pellegrini, M.; Filipponi, D.; Gori, M.; Barrios, F.; Lolicato, F.; Grimaldi, P.; Rossi, P.; Jannini, E.A.; Geremia, R.; Dolci, S. ATRA and KL promote differentiation toward the meiotic program of male germ cells. Cell Cycle 2008, 7, 3878–3888. [Google Scholar] [CrossRef] [Green Version]
- Yoshinaga, K.; Nishikawa, S.; Ogawa, M.; Hayashi, S.; Kunisada, T.; Fujimoto, T. Role of c-kit in mouse spermatogenesis: Identification of spermatogonia as a specific site of c-kit expression and function. Development 1991, 113, 689–699. [Google Scholar]
- Schrans-Stassen, B.H.; van de Kant, H.J.; de Rooij, D.G.; van Pelt, A.M. Differential expression of c-kit in mouse undifferentiated and differentiating type A spermatogonia. Endocrinology 1999, 140, 5894–5900. [Google Scholar] [CrossRef]
- de Rooij, D.G.; Okabe, M.; Nishimune, Y. Arrest of spermatogonial differentiation in jsd/jsd, Sl17H/Sl17H, and cryptorchid mice. Biol. Reprod. 1999, 61, 842–847. [Google Scholar] [CrossRef] [Green Version]
- Costoya, J.A.; Hobbs, R.M.; Barna, M.; Cattoretti, G.; Manova, K.; Sukhwani, M.; Orwig, K.E.; Wolgemuth, D.J.; Pandolfi, P.P. Essential role of Plzf in maintenance of spermatogonial stem cells. Nat. Genet. 2004, 36, 653–659. [Google Scholar] [CrossRef] [Green Version]
- Buaas, F.W.; Kirsh, A.L.; Sharma, M.; McLean, D.J.; Morris, J.L.; Griswold, M.D.; de Rooij, D.G.; Braun, R.E. Plzf is required in adult male germ cells for stem cell self-renewal. Nat. Genet. 2004, 36, 647–652. [Google Scholar] [CrossRef] [PubMed]
- Filipponi, D.; Hobbs, R.M.; Ottolenghi, S.; Rossi, P.; Jannini, E.A.; Pandolfi, P.P.; Dolci, S. Repression of kit expression by Plzf in germ cells. Mol. Cell Biol. 2007, 27, 6770–6781. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, R.M.; Fagoonee, S.; Papa, A.; Webster, K.; Altruda, F.; Nishinakamura, R.; Chai, L.; Pandolfi, P.P. Functional antagonism between Sall4 and Plzf defines germline progenitors. Cell Stem Cell 2012, 10, 284–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gely-Pernot, A.; Raverdeau, M.; Teletin, M.; Vernet, N.; Feret, B.; Klopfenstein, M.; Dennefeld, C.; Davidson, I.; Benoit, G.; Mark, M.; et al. Retinoic Acid Receptors Control Spermatogonia Cell-Fate and Induce Expression of the SALL4A Transcription Factor. PLoS Genet. 2015, 11, e1005501. [Google Scholar] [CrossRef] [PubMed]
- Teletin, M.; Vernet, N.; Ghyselinck, N.B.; Mark, M. Roles of Retinoic Acid in Germ Cell Differentiation. Curr. Top Dev. Biol. 2017, 125, 191–225. [Google Scholar]
- Busada, J.T.; Chappell, V.A.; Niedenberger, B.A.; Kaye, E.P.; Keiper, B.D.; Hogarth, C.A.; Geyer, C.B. Retinoic acid regulates Kit translation during spermatogonial differentiation in the mouse. Dev. Biol. 2015, 397, 140–149. [Google Scholar] [CrossRef] [Green Version]
- Busada, J.T.; Geyer, C.B. The Role of Retinoic Acid (RA) in Spermatogonial Differentiation. Biol. Reprod. 2016, 94, 10. [Google Scholar] [CrossRef] [Green Version]
- Gely-Pernot, A.; Raverdeau, M.; Celebi, C.; Dennefeld, C.; Feret, B.; Klopfenstein, M.; Yoshida, S.; Ghyselinck, N.B.; Mark, M. Spermatogonia differentiation requires retinoic acid receptor gamma. Endocrinology 2012, 153, 438–449. [Google Scholar] [CrossRef] [Green Version]
- Ikami, K.; Tokue, M.; Sugimoto, R.; Noda, C.; Kobayashi, S.; Hara, K.; Yoshida, S. Hierarchical differentiation competence in response to retinoic acid ensures stem cell maintenance during mouse spermatogenesis. Development 2015, 142, 1582–1592. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, P.K.; Harrison, C.A.; Rainczuk, K.E.; Wayne Vogl, A.; Stanton, P.G. Retinoic acid promotes Sertoli cell differentiation and antagonises activin-induced proliferation. Mol. Cell Endocrinol. 2013, 377, 33–43. [Google Scholar] [CrossRef]
- Huang, H.F.; Marshall, G.R. Failure of spermatid release under various vitamin A states - an indication of delayed spermiation. Biol. Reprod. 1983, 28, 1163–1172. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.S.; Sung, W.; Wang, X.; Wolgemuth, D.J. Retinoic acid receptor alpha is required for synchronization of spermatogenic cycles and its absence results in progressive breakdown of the spermatogenic process. Dev. Dyn. 2004, 230, 754–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, S.S.W.; Wang, X.Y.; Wolgemuth, D.J. Male sterility in mice lacking retinoic acid receptor alpha involves specific abnormalities in spermiogenesis. Differentiation 2005, 73, 188–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, S.S.; Wang, X.; Wolgemuth, D.J. Expression of retinoic acid receptor alpha in the germline is essential for proper cellular association and spermiogenesis during spermatogenesis. Development 2009, 136, 2091–2100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, S.S.; Wang, X.; Roberts, S.S.; Griffey, S.M.; Reczek, P.R.; Wolgemuth, D.J. Oral administration of a retinoic Acid receptor antagonist reversibly inhibits spermatogenesis in mice. Endocrinology 2011, 152, 2492–2502. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, K.; Saga, Y. Retinoic acid signaling in Sertoli cells regulates organization of the blood-testis barrier through cyclical changes in gene expression. Development 2012, 139, 4347–4355. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.S.; Wang, X.; Wolgemuth, D.J. Prolonged Oral Administration of a Pan-Retinoic Acid Receptor Antagonist Inhibits Spermatogenesis in Mice With a Rapid Recovery and Changes in the Expression of Influx and Efflux Transporters. Endocrinology 2016, 157, 1601–1612. [Google Scholar] [CrossRef]
- Hosken, D.J.; Hodgson, D.J. Why do sperm carry RNA? Relatedness, conflict, and control. Trends Ecol. Evol. 2014, 29, 451–455. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, R.; Nabeshima, Y.I.; Yoshida, S. Retinoic acid metabolism links the periodical differentiation of germ cells with the cycle of Sertoli cells in mouse seminiferous epithelium. Mech. Dev. 2012, 128, 610–624. [Google Scholar] [CrossRef]
- Teletin, M.; Vernet, N.; Yu, J.; Klopfenstein, M.; Jones, J.W.; Feret, B.; Kane, M.A.; Ghyselinck, N.B.; Mark, M. Two functionally redundant sources of retinoic acid secure spermatogonia differentiation in the seminiferous epithelium. Development 2019, 146, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Beedle, M.T.; Stevison, F.; Zhong, G.; Topping, T.; Hogarth, C.; Isoherranen, N.; Griswold, M.D. Sources of all-trans retinal oxidation independent of the aldehyde dehydrogenase 1A isozymes exist in the postnatal testis. Biol. Reprod. 2019, 100, 547–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masaki, K.; Sakai, M.; Kuroki, S.; Jo, J.I.; Hoshina, K.; Fujimori, Y.; Oka, K.; Amano, T.; Yamanaka, T.; Tachibana, M.; et al. FGF2 Has Distinct Molecular Functions from GDNF in the Mouse Germline Niche. Stem Cell Rep. 2018, 10, 1782–1792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parekh, P.A.; Garcia, T.X.; Waheeb, R.; Jain, V.; Gandhi, P.; Meistrich, M.L.; Shetty, G.; Hofmann, M.C. Undifferentiated spermatogonia regulate Cyp26b1 expression through NOTCH signaling and drive germ cell differentiation. FASEB J. 2019, 33, 8423–8435. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Ohta, H.; Kurimoto, K.; Aramaki, S.; Saitou, M. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 2011, 146, 519–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashi, K.; Ogushi, S.; Kurimoto, K.; Shimamoto, S.; Ohta, H.; Saitou, M. Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science 2012, 338, 971–975. [Google Scholar] [CrossRef] [Green Version]
- Hikabe, O.; Hamazaki, N.; Nagamatsu, G.; Obata, Y.; Hirao, Y.; Hamada, N.; Shimamoto, S.; Imamura, T.; Nakashima, K.; Saitou, M.; et al. Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature 2016, 539, 299–303. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, M.; Yuan, Y.; Wang, X.; Fu, R.; Wan, H.; Xie, M.; Liu, M.; Guo, X.; Zheng, Y.; et al. Complete Meiosis from Embryonic Stem Cell-Derived Germ Cells In Vitro. Cell Stem Cell 2016, 18, 330–340. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Endo, T.; Mikedis, M.M.; Nicholls, P.K.; Page, D.C.; de Rooij, D.G. Retinoic Acid and Germ Cell Development in the Ovary and Testis. Biomolecules 2019, 9, 775. https://doi.org/10.3390/biom9120775
Endo T, Mikedis MM, Nicholls PK, Page DC, de Rooij DG. Retinoic Acid and Germ Cell Development in the Ovary and Testis. Biomolecules. 2019; 9(12):775. https://doi.org/10.3390/biom9120775
Chicago/Turabian StyleEndo, Tsutomu, Maria M. Mikedis, Peter K. Nicholls, David C. Page, and Dirk G. de Rooij. 2019. "Retinoic Acid and Germ Cell Development in the Ovary and Testis" Biomolecules 9, no. 12: 775. https://doi.org/10.3390/biom9120775