這是用戶在 2024-11-11 21:54 為 https://app.immersivetranslate.com/pdf-pro/e252e0cd-5ea3-4683-b61f-a597665d92c4 保存的雙語快照頁面,由 沉浸式翻譯 提供雙語支持。了解如何保存?

2013, Hardcover 2013年,精裝

ISBN 978-1-60918-230-4
7" x 10", 494 Pages, $65.00
7" x 10",494 頁,$65.00

DISCOUNT PRICE: $55.25 折扣價: $55.25
E-book Coming Soon** 電子書即將推出**
www.guilford.com/p/hayes3

Introduction to Mediation, Moderation, and Conditional Process Analysis
中介、調節和條件過程分析簡介

A Regression-Based Approach
基於回歸的方法

Andrew F. Hayes

“This decidedly readable, informative book is perfectly suited for a range of audiences, from the novice graduate student not quite ready for SEM to the advanced statistics instructor. Even the seasoned quantitative methodologist will benefit from Hayes’s years of accumulated wisdom as he expertly navigates this burgeoning-and at times inconsistent-literature. This book is particularly well suited for graduate-level courses. Hayes brings conditional process analysis to life with such passion that even the most ‘stat-o-phobic’ will become convinced that they too can master SPSS (or SAS) process. The thoughtful use of real-life examples, accompanied by SPSS and SAS syntax and output, makes the book highly accessible.”
"這本可讀性極佳、資訊豐富的書完全適合各種讀者,從尚未準備好學習 SEM 的研究生到進階統計學講師。即使是經驗豐富的定量方法學家,也能從 Hayes 多年累積的智慧中獲益良多,因為他能專業地瀏覽這本數量激增、有時甚至不一致的文獻。這本書特別適合研究生程度的課程。Hayes 以充沛的熱情將條件過程分析帶入生活,即使是最有「統計恐懼症」的人也會深信他們也能掌握 SPSS (或 SAS) 過程。真實例子的貼心使用,搭配 SPSS 和 SAS 的語法和輸出,讓這本書非常容易上手"。

—Shelley Brown, PhD, Department of Psychology, Carleton University, Canada
-Shelley Brown 博士,加拿大卡爾頓大學心理學系

“A welcome contribution. This book’s accessible language and diverse set of examples will appeal to a wide variety of substantive researchers looking to explore how or why, and under what conditions, relationships among variables exist. Hayes has a unique ability to effectively communicate technical material to nontechnical audiences. He facilitates application of several cutting-edge statistical models by providing practical, well-oiled machinery for conducting the analyses in practice. I can use this book to enhance my graduate-level mediation class by extending the course to include more coverage on differentiating mediation versus moderation and on conditional process models that simultaneously evaluate both effects together.”
"值得歡迎的貢獻。這本書以通俗易懂的語言和多樣化的範例,吸引了許多希望探索變數之間的關係如何或為何存在,以及在何種條件下存在的實務研究人員。Hayes 擁有獨特的能力,能有效地將技術資料傳達給非技術讀者。他提供了在實務中進行分析的實用、完善的機器,有助於幾個尖端統計模型的應用。我可以利用這本書來加強我的研究所級調解課程,將課程延長,以涵蓋更多關於區分調解與調制以及同時評估兩種效果的條件過程模型的內容"。

—Amanda Jane Fairchild, PhD, Department of Psychology, University of South Carolina
-Amanda Jane Fairchild,南卡羅來納大學心理學系博士

“Mediation and moderation are two of the most widely used statistical tools in the social sciences. Students and experienced researchers have been waiting for a clear, engaging, and comprehensive book on these topics for years, but the wait has been worth it-this book is an absolute winner. With his usual clarity, Hayes has written what will become the default resource on mediation and moderation for many years to come.”
"中介和調節是社會科學中使用最廣泛的兩種統計工具。多年來,學生和有經驗的研究人員一直在等待一本關於這些主題的清晰、引人入勝且全面的書籍,但等待是值得的--這本書是絕對的贏家。Hayes 以其一貫的清晰度,寫出了這本將在未來多年內成為中介和調節的預設資源"。

-Andy Field, PhD, School of Psychology, University of Sussex, United Kingdom
-Andy Field,英國薩塞克斯大學心理學院博士

Abstract 摘要

“Hayes provides an accessible, thorough introduction to the analysis of models containing mediators, moderators, or both. The text is easy to follow and written at a level appropriate for an introductory graduate course on mediation and moderation analysis. The book is also an extremely useful resource for applied researchers interested in analyzing conditional process models. One strength is the inclusion of numerous examples using real data, with step-by-step instructions for analysis of the data and interpretation of the results. This book’s largest contribution to the field is its replacement of the confusing terminology of mediated moderation and moderated mediation with the clearer and broader term conditional process model.” -Matthew Fritz, PhD, Department of Psychology, Virginia Polytechnic Institute and State University
"Hayes對包含中介者、調節者或兩者的模型分析進行了通俗易懂、深入淺出的介紹。這本書的文字通俗易懂,其寫作水準適合中介和調節分析的研究生入門課程。對於有興趣分析條件過程模型的應用研究人員來說,這本書也是非常有用的資源。本書的優點之一是包含大量使用真實資料的範例,並逐步說明如何分析資料和詮釋結果。這本書對這個領域最大的貢獻,就是用更清晰、更廣泛的名詞條件過程模型,取代了令人困惑的中介調節和中介調節的術語"。-弗吉尼亞理工學院暨州立大學心理學系博士 Matthew Fritz

This engaging book explains the fundamentals of mediation and moderation analysis and their integration as “conditional process analysis.” Procedures are described for testing hypotheses about the mechanisms by which causal effects operate, the conditions under which they occur, and the moderation of mechanisms. Relying on the principles of ordinary least squares regression, Andrew Hayes carefully explains the estimation and interpretation of direct and indirect effects, probing and visualization of interactions, and testing of questions about moderated mediation. Examples using data from published studies illustrate how to conduct and report the analyses described in the book. Of special value, the book introduces and documents PROCESS, a macro for SPSS and SAS that does all the computations described in the book. The author’s website (www.afhayes.com) offers free downloads of PROCESS plus data files for the book’s examples.
這本引人入勝的書籍闡述了中介分析和調節分析的基本原理,並將它們整合為「條件過程分析」。書中描述了測試因果效應運作機制、發生條件和機制調節的假設程序。Andrew Hayes 依據普通最小二乘迴歸的原則,仔細解釋了直接與間接效應的估計與詮釋、互動作用的探測與可視化,以及有關調節中介的測試問題。使用已發表研究資料的範例說明了如何進行和報告書中所描述的分析。特別值得一提的是,本書介紹並記錄了 PROCESS 這個 SPSS 和 SAS 的巨集,它可以完成書中描述的所有計算。作者的網站(www.afhayes.com)提供 PROCESS 和書中範例的資料檔案免費下載。

Guilford Publications, Inc.

72 Spring Street, New York, NY 10012
紐約 Spring 街 72 號 10012
Use promotional code 2E when ordering online for a 15% discount
線上訂購時請使用促銷代碼 2E 以獲得 15% 的折扣
Order Online: 線上訂購: www.guilford.com
Call Toll-Free: 請撥打免付費電話: 9 AM -5 PM Eastern
東部時間上午 9 點至下午 5 點
800 365 7006 800 365 7006 800-365-7006800-365-7006 (or 212-431-9800)
800 365 7006 800 365 7006 800-365-7006800-365-7006 (或 212-431-9800)。
Fax: 傳真: 212 966 6708 212 966 6708 212-966-6708212-966-6708 (24 hrs)  212 966 6708 212 966 6708 212-966-6708212-966-6708 (24 小時)
Professor Copies: 教授副本: www.guilford.com/professors
Order Online: www.guilford.com Call Toll-Free: 9 AM -5 PM Eastern 800-365-7006 (or 212-431-9800) Fax: 212-966-6708 (24 hrs) Professor Copies: www.guilford.com/professors| Order Online: | www.guilford.com | | :--- | :--- | | Call Toll-Free: | 9 AM -5 PM Eastern | | | $800-365-7006$ (or 212-431-9800) | | Fax: | $212-966-6708$ (24 hrs) | | Professor Copies: | www.guilford.com/professors |

Name 名稱

Address 1 地址 1
Address 2 地址 2
City State/Prov. Zip/Postal Code
城市 州/省 郵遞區號
Daytime Phone # (To be used only if there is a question about your order)
日間電話號碼 (僅在對您的訂單有疑問時使用)

E-mail (You will receive a shipment confirmation. Your e-mail address and phone # will not be released to any third party.)
電子郵件 (您將收到一份發貨確認。您的電子郵件地址和電話號碼不會透露給任何第三方)。
Sign me up for e-Alerts offering exclusive discounts!
註冊以獲得提供專屬折扣的電子報!
Order Introduction to Mediation, Moderation, and Conditional Process Analysis
訂單中介、調節和條件過程分析簡介

Copies in Hardcover 精裝複印本
qquad\qquad ISBN 978-1-60918-230-4, $65.00, $55.25*
qquad\qquad ISBN 978-1-60918-230-4,$65.00,$55.25*。

Amount 金額
Shipping: In US (via USPS Media Mail), add $ 5 $ 5 $5\$ 5 for 1 st book, $ 2.50 $ 2.50 $2.50\$ 2.50 each add’l. To Canada (via CanPar), $ 9.00 $ 9.00 $9.00\$ 9.00 per order.
運費:在美國(通過 USPS Media Mail),第 1 本加 $ 5 $ 5 $5\$ 5 ,每本加 $ 2.50 $ 2.50 $2.50\$ 2.50 。寄往加拿大(透過 CanPar),每張訂單 $ 9.00 $ 9.00 $9.00\$ 9.00

$ Subtotal $ 小計
$ qquad\qquad C A , N Y C A , N Y CA,NYC A, N Y, and PA residents add sales tax; Canadian residents add GST
$ qquad\qquad C A , N Y C A , N Y CA,NYC A, N Y ,而賓夕法尼亞州居民需另加銷售稅;加拿大居民需另加 GST

$ qquad\qquad Total $ qquad\qquad 總計
Method of Payment: 付款方式:
\square Check or Money Order Enclosed (US Dollars Only)
\square 附上支票或匯票(僅限美元)

IInstitutional PO Attached
附有機構 PO

BILL MY: \square MasterCard \square Visa \square American Express
我的帳單: \square 萬事達卡 \square Visa \square 美國運通卡
Account # 帳戶 # CVV #
Signature (Required on credit card orders)
簽名 (信用卡訂單必須簽名)
Exp. Date 到期。日期
Account # CVV # Signature (Required on credit card orders) Exp. Date| Account # | CVV # | | :--- | :--- | | Signature (Required on credit card orders) | Exp. Date |
*List prices slightly higher outside the US and Canada and are subject to change. Special offers valid in the US and Canada only.
* 美國和加拿大以外地區的列名價格略高,且可能隨時變更。特別優惠僅在美國和加拿大有效。

Public Seminars 公開研討會

On-Site Seminars 現場研討會

Integrating Mediation and Moderation Analysis: Fundamentals using PROCESS
整合中介與調節分析:使用 PROCESS 的基本原理

A short seminar by Andrew Hayes, Ph.D.
Andrew Hayes 博士的簡短研討會
Conditional Process Analysis, also known as the analysis of moderated mediation, is the integration of mediation and moderation analysis and used when one’s analytical goal is to describe and understand the conditional nature of the mechanism or mechanisms by which a variable transmits its effect on another (see Hayes, 2013). After a brief introduction to principles of mediation and moderation analysis, this half-day seminar introduces the fundamentals of conditional process analysis and its implementation using the PROCESS tool for SPSS or SAS. Using OLS regression-based path analysis, it covers the estimation of various classes of models which allow indirect and/or direct effects to be moderated, the estimation of conditional indirect effects, testing a moderated mediation hypothesis, and how to compare conditional indirect effects.
條件過程分析(Conditional Process Analysis),也稱為調節中介分析,是中介分析和調節分析的整合,當分析目標是描述和理解一個變數傳遞其對另一個變數影響的機制的條件性時使用(見 Hayes, 2013)。在簡短介紹中介和調節分析的原則之後,這個為期半天的研討會將介紹條件過程分析的基本原理,以及使用 SPSS 或 SAS 的 PROCESS 工具來實作。使用以 OLS 迴歸為基礎的路徑分析,它涵蓋了允許間接和/或直接效應被調節的各類模型的估算、條件間接效應的估算、測試調節中介假設,以及如何比較條件間接效應。

WHO SHOULD ATTEND? 誰應該參加?

This seminar will be helpful for researchers in any field-including psychology, sociology, education, business, human development, political science, public health, and communication-who want to learn how to conduct a conditional process analysis using SPSS and SAS. Participants should have a basic working knowledge of the principles and practice of multiple regression and elementary statistical inference. No knowledge of matrix algebra is required or assumed.
本研討會對任何領域的研究人員都有幫助,包括心理學、社會學、教育、商業、人類發展、政治科學、公共衛生和通訊領域,這些領域的研究人員想要學習如何使用 SPSS 和 SAS 進行條件過程分析。參加者應具備多元回归原理與實務的基本工作知識,以及基本的統計推論。不需要或假定需要矩陣代數的知識。

REGISTRATION 註冊

The fee of $ 250.00 $ 250.00 $250.00\$ 250.00 includes all seminar materials.
$ 250.00 $ 250.00 $250.00\$ 250.00 的費用包含所有研討會資料。

REGISTER NOW 立即註冊

seminaR

INFORMATION 資訊

Wednesday, August 7, 2013 1:00 PM - 5:00
2013 年 8 月 7 日(星期三)下午 1:00 - 5:00

PM (Eastern Time) 下午(美東時間)
Renaissance Washington, DC Downtown Hotel
華盛頓特區市中心萬麗酒店

999 Ninth Street NW 西北第九街 999 號
Washington, DC 20001 華盛頓特區 20001
United States 美國
View Map 檢視地圖
CONTACT 聯繫
INFORMATION 資訊
Phone: 610-642-1941 電話610-642-1941
Fax: 419-818-1220 傳真:419-818-1220
Email: info@statisticalhorizons.com
電子郵件:info@statisticalhorizons.com

PAYmENT 付款

INSTRUCTIONS 說明

The fee of $ 250 $ 250 $250\$ 250 includes all course materials.
$ 250 $ 250 $250\$ 250 的費用包含所有教材。
PayPal and all major credit cards are accepted.
接受 PayPal 和所有主要信用卡。
Our Tax ID number is 26-4576270.
我們的稅號是 26-4576270。

REGISTER NOW 立即註冊

Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 1 型號 1

Conceptual Diagram 概念圖
Statistical Diagram 統計圖表
Conditional effect of X X XX on Y = b 1 + b 3 M Y = b 1 + b 3 M Y=b_(1)+b_(3)MY=b_{1}+b_{3} M
X X XX Y = b 1 + b 3 M Y = b 1 + b 3 M Y=b_(1)+b_(3)MY=b_{1}+b_{3} M 的條件效應
Created with 以下列方式建立
Model Templates for PROCESS for SPSS and SAS (C2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 (C2013 Andrew F. Hayes, http://www.afhayes.com/)

Model 2 型號 2

Conditional effect of X X XX on Y = b 1 + b 4 M + b 5 W Y = b 1 + b 4 M + b 5 W Y=b_(1)+b_(4)M+b_(5)WY=b_{1}+b_{4} M+b_{5} W
X X XX Y = b 1 + b 4 M + b 5 W Y = b 1 + b 4 M + b 5 W Y=b_(1)+b_(4)M+b_(5)WY=b_{1}+b_{4} M+b_{5} W 的條件效應
Created with 以下列方式建立
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 3 型號 3

Conceptual Diagram 概念圖
Statistical Diagram 統計圖表
Conditional effect of X X XX on Y = b 1 + b 4 M + b 5 W + b 7 M W Y = b 1 + b 4 M + b 5 W + b 7 M W Y=b_(1)+b_(4)M+b_(5)W+b_(7)MWY=b_{1}+b_{4} M+b_{5} W+b_{7} M W
X X XX Y = b 1 + b 4 M + b 5 W + b 7 M W Y = b 1 + b 4 M + b 5 W + b 7 M W Y=b_(1)+b_(4)M+b_(5)W+b_(7)MWY=b_{1}+b_{4} M+b_{5} W+b_{7} M W 的條件效應
Created with 以下列方式建立
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 4 型號 4

Conceptual Diagram 概念圖

Statistical Diagram 統計圖表
Indirect effect of X X XX on Y Y YY through M i = a i b i M i = a i b i M_(i)=a_(i)b_(i)M_{i}=a_{i} b_{i}
X X XX 透過 M i = a i b i M i = a i b i M_(i)=a_(i)b_(i)M_{i}=a_{i} b_{i} Y Y YY 產生間接影響

Direct effect of X X XX on Y = c Y = c Y=c^(')Y=c^{\prime}
X X XX Y = c Y = c Y=c^(')Y=c^{\prime} 的直接影響

*Model 4 allows up to 10 mediators operating in parallel
*Model 4 最多允許 10 個調解器並行運作
Created with 以下列方式建立
Model Templates for PROCESS for SPSS and SAS (C2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 (C2013 Andrew F. Hayes, http://www.afhayes.com/)

Model 5 型號 5

Conceptual Diagram 概念圖

Statistical Diagram 統計圖表
Indirect effect of X X XX on Y Y YY through M i = a i b i M i = a i b i M_(i)=a_(i)b_(i)M_{i}=a_{i} b_{i}
X X XX 透過 M i = a i b i M i = a i b i M_(i)=a_(i)b_(i)M_{i}=a_{i} b_{i} Y Y YY 產生間接影響

Conditional direct effect of X X XX on Y = c 1 + c 3 W Y = c 1 + c 3 W Y=c_(1)^(')+c_(3)^(')WY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} W
X X XX Y = c 1 + c 3 W Y = c 1 + c 3 W Y=c_(1)^(')+c_(3)^(')WY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} W 的條件直接效應

*Model 5 allows up to 10 mediators operating in parallel
*5 型允許多達 10 個調解器並行運作
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 6 型號 6

(2 mediators) (2名調解員)

Conceptual Diagram 概念圖

Statistical Diagram 統計圖表
Indirect effect of X X XX on Y Y YY through M i M i M_(i)M_{i} only = a i b i = a i b i =a_(i)b_(i)=a_{i} b_{i}
X X XX Y Y YY 經由 M i M i M_(i)M_{i} 僅對 = a i b i = a i b i =a_(i)b_(i)=a_{i} b_{i} 的間接影響

Indirect effect of X X XX on Y Y YY through M 1 M 1 M_(1)M_{1} and M 2 M 2 M_(2)M_{2} in serial = a 1 d 21 b 2 = a 1 d 21 b 2 =a_(1)d_(21)b_(2)=a_{1} d_{21} b_{2} Direct effect of X X XX on Y = c Y = c Y=c^(')Y=c^{\prime}
X X XX Y Y YY 經由 M 1 M 1 M_(1)M_{1} M 2 M 2 M_(2)M_{2} 在序列 = a 1 d 21 b 2 = a 1 d 21 b 2 =a_(1)d_(21)b_(2)=a_{1} d_{21} b_{2} 中的間接影響 X X XX Y = c Y = c Y=c^(')Y=c^{\prime} 的直接影響
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 6 型號 6

(3 mediators) (3位調解員)

Conceptual Diagram 概念圖

Statistical Diagram 統計圖表
Indirect effect of X X XX on Y Y YY through M i M i M_(i)M_{i} only = a i b i = a i b i =a_(i)b_(i)=a_{i} b_{i}
X X XX Y Y YY 經由 M i M i M_(i)M_{i} 僅對 = a i b i = a i b i =a_(i)b_(i)=a_{i} b_{i} 的間接影響

Indirect effect of X X XX on Y Y YY through M 1 M 1 M_(1)M_{1} and M 2 M 2 M_(2)M_{2} in serial = a 1 d 21 b 2 = a 1 d 21 b 2 =a_(1)d_(21)b_(2)=a_{1} d_{21} b_{2}
X X XX Y Y YY 經由 M 1 M 1 M_(1)M_{1} M 2 M 2 M_(2)M_{2} 在序列 = a 1 d 21 b 2 = a 1 d 21 b 2 =a_(1)d_(21)b_(2)=a_{1} d_{21} b_{2} 中的間接影響

Indirect effect of X X XX on Y Y YY through M 1 M 1 M_(1)M_{1} and M 3 M 3 M_(3)M_{3} in serial = a 1 d 31 b 3 = a 1 d 31 b 3 =a_(1)d_(31)b_(3)=a_{1} d_{31} b_{3}
X X XX Y Y YY 經由 M 1 M 1 M_(1)M_{1} M 3 M 3 M_(3)M_{3} 在序列 = a 1 d 31 b 3 = a 1 d 31 b 3 =a_(1)d_(31)b_(3)=a_{1} d_{31} b_{3} 中的間接影響

Indirect effect of X X XX on Y Y YY through M 2 M 2 M_(2)M_{2} and M 3 M 3 M_(3)M_{3} in serial = a 2 d 32 b 3 = a 2 d 32 b 3 =a_(2)d_(32)b_(3)=a_{2} d_{32} b_{3}
X X XX Y Y YY 經由 M 2 M 2 M_(2)M_{2} M 3 M 3 M_(3)M_{3} 在序列 = a 2 d 32 b 3 = a 2 d 32 b 3 =a_(2)d_(32)b_(3)=a_{2} d_{32} b_{3} 中的間接影響

Indirect effect of X X XX on Y Y YY through M 1 , M 2 M 1 , M 2 M_(1),M_(2)M_{1}, M_{2}, and M 3 M 3 M_(3)M_{3} in serial = a 1 d 21 d 32 b 3 = a 1 d 21 d 32 b 3 =a_(1)d_(21)d_(32)b_(3)=a_{1} d_{21} d_{32} b_{3}
X X XX Y Y YY M 1 , M 2 M 1 , M 2 M_(1),M_(2)M_{1}, M_{2} 的間接影響,以及 M 3 M 3 M_(3)M_{3} 在序列 = a 1 d 21 d 32 b 3 = a 1 d 21 d 32 b 3 =a_(1)d_(21)d_(32)b_(3)=a_{1} d_{21} d_{32} b_{3} 中的間接影響

Direct effect of X X XX on Y = c Y = c Y=c^(')Y=c^{\prime}
X X XX Y = c Y = c Y=c^(')Y=c^{\prime} 的直接影響
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 6 型號 6

(4 mediators) (4位調解員)

Conceptual Diagram 概念圖

Statistical Diagram 統計圖表
Indirect effect of X X XX on Y Y YY through M i M i M_(i)M_{i} only = a i b i = a i b i =a_(i)b_(i)=a_{i} b_{i}
X X XX Y Y YY 經由 M i M i M_(i)M_{i} 僅對 = a i b i = a i b i =a_(i)b_(i)=a_{i} b_{i} 的間接影響

Indirect effect of X X XX on Y Y YY through M 1 M 1 M_(1)M_{1} and M 2 M 2 M_(2)M_{2} in serial = a 1 d 21 b 2 = a 1 d 21 b 2 =a_(1)d_(21)b_(2)=a_{1} d_{21} b_{2} Indirect effect of X X XX on Y Y YY through M 1 M 1 M_(1)M_{1} and M 3 M 3 M_(3)M_{3} in serial = a 1 d 31 b 3 = a 1 d 31 b 3 =a_(1)d_(31)b_(3)=a_{1} d_{31} b_{3} Indirect effect of X X XX on Y Y YY through M 1 M 1 M_(1)M_{1} and M 4 M 4 M_(4)M_{4} in serial = a 1 d 41 b 4 = a 1 d 41 b 4 =a_(1)d_(41)b_(4)=a_{1} d_{41} b_{4} Indirect effect of X X XX on Y Y YY through M 2 M 2 M_(2)M_{2} and M 3 M 3 M_(3)M_{3} in serial = a 2 d 32 b 3 = a 2 d 32 b 3 =a_(2)d_(32)b_(3)=a_{2} d_{32} b_{3} Indirect effect of X X XX on Y Y YY through M 2 M 2 M_(2)M_{2} and M 4 M 4 M_(4)M_{4} in serial = a 2 d 42 b 4 = a 2 d 42 b 4 =a_(2)d_(42)b_(4)=a_{2} d_{42} b_{4} Indirect effect of X X XX on Y Y YY through M 3 M 3 M_(3)M_{3} and M 4 M 4 M_(4)M_{4} in serial = a 3 d 43 b 4 = a 3 d 43 b 4 =a_(3)d_(43)b_(4)=a_{3} d_{43} b_{4} Indirect effect of X X XX on Y Y YY through M 1 , M 2 M 1 , M 2 M_(1),M_(2)M_{1}, M_{2}, and M 3 M 3 M_(3)M_{3} in serial = a 1 d 21 d 32 b 3 = a 1 d 21 d 32 b 3 =a_(1)d_(21)d_(32)b_(3)=a_{1} d_{21} d_{32} b_{3} Indirect effect of X X XX on Y Y YY through M 1 , M 2 M 1 , M 2 M_(1),M_(2)M_{1}, M_{2}, and M 4 M 4 M_(4)M_{4} in serial = a 1 d 21 d 42 b 4 = a 1 d 21 d 42 b 4 =a_(1)d_(21)d_(42)b_(4)=a_{1} d_{21} d_{42} b_{4} Indirect effect of X X XX on Y Y YY through M 1 , M 3 M 1 , M 3 M_(1),M_(3)M_{1}, M_{3}, and M 4 M 4 M_(4)M_{4} in serial = a 1 d 31 d 43 b 4 = a 1 d 31 d 43 b 4 =a_(1)d_(31)d_(43)b_(4)=a_{1} d_{31} d_{43} b_{4} Indirect effect of X X XX on Y Y YY through M 2 , M 3 M 2 , M 3 M_(2),M_(3)M_{2}, M_{3}, and M 4 M 4 M_(4)M_{4} in serial = a 2 d 32 d 43 b 4 = a 2 d 32 d 43 b 4 =a_(2)d_(32)d_(43)b_(4)=a_{2} d_{32} d_{43} b_{4}
X X XX 對序列 = a 1 d 21 b 2 = a 1 d 21 b 2 =a_(1)d_(21)b_(2)=a_{1} d_{21} b_{2} Y Y YY M 1 M 1 M_(1)M_{1} M 2 M 2 M_(2)M_{2} 的間接影響 X X XX Y Y YY M 1 M 1 M_(1)M_{1} M 3 M 3 M_(3)M_{3} 的間接影響 連續 = a 1 d 31 b 3 = a 1 d 31 b 3 =a_(1)d_(31)b_(3)=a_{1} d_{31} b_{3} X X XX Y Y YY M 1 M 1 M_(1)M_{1} M 4 M 4 M_(4)M_{4} 的間接影響 連續 = a 1 d 41 b 4 = a 1 d 41 b 4 =a_(1)d_(41)b_(4)=a_{1} d_{41} b_{4} X X XX Y Y YY 的間接影響 通過 M 2 M 2 M_(2)M_{2} M 3 M 3 M_(3)M_{3} 中的序列 = a 2 d 32 b 3 = a 2 d 32 b 3 =a_(2)d_(32)b_(3)=a_{2} d_{32} b_{3} X X XX Y Y YY 的間接影響,通過 M 2 M 2 M_(2)M_{2} M 4 M 4 M_(4)M_{4} 中的序列 = a 2 d 42 b 4 = a 2 d 42 b 4 =a_(2)d_(42)b_(4)=a_{2} d_{42} b_{4} X X XX Y Y YY 通過 M 3 M 3 M_(3)M_{3} M 4 M 4 M_(4)M_{4} 在連續 = a 3 d 43 b 4 = a 3 d 43 b 4 =a_(3)d_(43)b_(4)=a_{3} d_{43} b_{4} 的間接影響 X X XX Y Y YY 通過 M 1 , M 2 M 1 , M 2 M_(1),M_(2)M_{1}, M_{2} 的間接影響、和 M 3 M 3 M_(3)M_{3} 在序列 = a 1 d 21 d 32 b 3 = a 1 d 21 d 32 b 3 =a_(1)d_(21)d_(32)b_(3)=a_{1} d_{21} d_{32} b_{3} X X XX Y Y YY M 1 , M 2 M 1 , M 2 M_(1),M_(2)M_{1}, M_{2} 的間接影響,和 M 4 M 4 M_(4)M_{4} 在序列 = a 1 d 21 d 42 b 4 = a 1 d 21 d 42 b 4 =a_(1)d_(21)d_(42)b_(4)=a_{1} d_{21} d_{42} b_{4} X X XX Y Y YY M 1 , M 3 M 1 , M 3 M_(1),M_(3)M_{1}, M_{3} 的間接影響、和 M 4 M 4 M_(4)M_{4} 在序列 = a 1 d 31 d 43 b 4 = a 1 d 31 d 43 b 4 =a_(1)d_(31)d_(43)b_(4)=a_{1} d_{31} d_{43} b_{4} 的間接影響 X X XX Y Y YY 通過 M 2 , M 3 M 2 , M 3 M_(2),M_(3)M_{2}, M_{3} ,和 M 4 M 4 M_(4)M_{4} 在序列 = a 2 d 32 d 43 b 4 = a 2 d 32 d 43 b 4 =a_(2)d_(32)d_(43)b_(4)=a_{2} d_{32} d_{43} b_{4} 的間接影響

Direct effect of X X XX on Y = c Y = c Y=c^(')Y=c^{\prime}
X X XX Y = c Y = c Y=c^(')Y=c^{\prime} 的直接影響
Model Templates for PROCESS for SPSS and SAS (C2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 (C2013 Andrew F. Hayes, http://www.afhayes.com/)

Model 7 型號 7

Conceptual Diagram 概念圖

Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 3 i W ) b i M i = a 1 i + a 3 i W b i M_(i)=(a_(1i)+a_(3i)W)b_(i)M_{i}=\left(a_{1 i}+a_{3 i} W\right) b_{i}
X X XX Y Y YY 經由 M i = ( a 1 i + a 3 i W ) b i M i = a 1 i + a 3 i W b i M_(i)=(a_(1i)+a_(3i)W)b_(i)M_{i}=\left(a_{1 i}+a_{3 i} W\right) b_{i} 的條件間接影響

Direct effect of X X XX on Y = c Y = c Y=c^(')Y=c^{\prime}
X X XX Y = c Y = c Y=c^(')Y=c^{\prime} 的直接影響

*Model 7 allows up to 10 mediators operating in parallel
*7 型允許多達 10 個調解器並行運作

Created with 以下列方式建立

Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 8 型號 8

Conceptual Diagram 概念圖

Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 3 i W ) b i M i = a 1 i + a 3 i W b i M_(i)=(a_(1i)+a_(3i)W)b_(i)M_{i}=\left(a_{1 i}+a_{3 i} W\right) b_{i} Conditional direct effect of X X XX on Y = c 1 + c 3 W Y = c 1 + c 3 W Y=c_(1)^(')+c_(3)^(')WY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} W
X X XX Y Y YY M i = ( a 1 i + a 3 i W ) b i M i = a 1 i + a 3 i W b i M_(i)=(a_(1i)+a_(3i)W)b_(i)M_{i}=\left(a_{1 i}+a_{3 i} W\right) b_{i} 的條件間接影響 X X XX Y = c 1 + c 3 W Y = c 1 + c 3 W Y=c_(1)^(')+c_(3)^(')WY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} W 的條件直接影響

*Model 8 allows up to 10 mediators operating in parallel
*8 型允許多達 10 個調解器並行運作
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 9 型號 9

Conceptual Diagram 概念圖

Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z ) b i M i = a 1 i + a 4 i W + a 5 i Z b i M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z)b_(i)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z\right) b_{i}
X X XX Y Y YY 經由 M i = ( a 1 i + a 4 i W + a 5 i Z ) b i M i = a 1 i + a 4 i W + a 5 i Z b i M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z)b_(i)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z\right) b_{i} 的條件間接影響

Direct effect of X X XX on Y = c Y = c Y=c^(')Y=c^{\prime}
X X XX Y = c Y = c Y=c^(')Y=c^{\prime} 的直接影響

*Model 9 allows up to 10 mediators operating in parallel
*9 型允許多達 10 個調解器並行運作
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 10 型號 10

Conceptual Diagram 概念圖

Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z ) b i M i = a 1 i + a 4 i W + a 5 i Z b i M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z)b_(i)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z\right) b_{i}
X X XX Y Y YY 經由 M i = ( a 1 i + a 4 i W + a 5 i Z ) b i M i = a 1 i + a 4 i W + a 5 i Z b i M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z)b_(i)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z\right) b_{i} 的條件間接影響

Conditional direct effect of X X XX on Y = c 1 + c 4 W + c 5 Z Y = c 1 + c 4 W + c 5 Z Y=c_(1)^(')+c_(4)^(')W+c_(5)^(')ZY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} W+c_{5}{ }^{\prime} Z
X X XX Y = c 1 + c 4 W + c 5 Z Y = c 1 + c 4 W + c 5 Z Y=c_(1)^(')+c_(4)^(')W+c_(5)^(')ZY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} W+c_{5}{ }^{\prime} Z 的條件直接效應

*Model 10 allows up to 10 mediators operating in parallel
*10 型允許多達 10 個調解器並行運作
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 11 型號 11

Conceptual Diagram 概念圖
Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) b i M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z b i M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)b_(i)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right) b_{i}
X X XX Y Y YY 經由 M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) b i M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z b i M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)b_(i)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right) b_{i} 的條件間接影響

Direct effect of X X XX on Y = c Y = c Y=c^(')Y=c^{\prime}
X X XX Y = c Y = c Y=c^(')Y=c^{\prime} 的直接影響

*Model 11 allows up to 10 mediators operating in parallel
*11 型允許多達 10 個調解器並行運作

Created with 以下列方式建立

Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 12 型號 12

Conceptual Diagram 概念圖
Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) b i M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z b i M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)b_(i)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right) b_{i} Conditional direct effect of X X XX on Y = c 1 + c 4 W + c 5 Z + c 7 W Z Y = c 1 + c 4 W + c 5 Z + c 7 W Z Y=c_(1)^(')+c_(4)^(')W+c_(5)^(')Z+c_(7)^(')WZY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} W+c_{5}{ }^{\prime} Z+c_{7}{ }^{\prime} W Z
X X XX Y Y YY M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) b i M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z b i M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)b_(i)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right) b_{i} 的條件間接影響 X X XX Y = c 1 + c 4 W + c 5 Z + c 7 W Z Y = c 1 + c 4 W + c 5 Z + c 7 W Z Y=c_(1)^(')+c_(4)^(')W+c_(5)^(')Z+c_(7)^(')WZY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} W+c_{5}{ }^{\prime} Z+c_{7}{ }^{\prime} W Z 的條件直接影響

*Model 12 allows up to 10 mediators operating in parallel
*12 型允許多達 10 個調解器並行運作
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 13 型號 13

Conceptual Diagram 概念圖
Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) b i M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z b i M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)b_(i)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right) b_{i} Conditional direct effect of X X XX on Y = c 1 + c 3 W Y = c 1 + c 3 W Y=c_(1)^(')+c_(3)^(')WY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} W
X X XX Y Y YY M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) b i M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z b i M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)b_(i)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right) b_{i} 的條件間接影響 X X XX Y = c 1 + c 3 W Y = c 1 + c 3 W Y=c_(1)^(')+c_(3)^(')WY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} W 的條件直接影響

*Model 13 allows up to 10 mediators operating in parallel
*Model 13 最多允許 10 個調解器並行運作
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 14 型號 14

Conceptual Diagram 概念圖

Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = a i ( b 1 i + b 3 i V ) M i = a i b 1 i + b 3 i V M_(i)=a_(i)(b_(1i)+b_(3i)V)M_{i}=a_{i}\left(b_{1 i}+b_{3 i} V\right)
X X XX Y Y YY 經由 M i = a i ( b 1 i + b 3 i V ) M i = a i b 1 i + b 3 i V M_(i)=a_(i)(b_(1i)+b_(3i)V)M_{i}=a_{i}\left(b_{1 i}+b_{3 i} V\right) 的條件間接影響

Direct effect of X X XX on Y = c Y = c Y=c^(')Y=c^{\prime}
X X XX Y = c Y = c Y=c^(')Y=c^{\prime} 的直接影響

*Model 14 allows up to 10 mediators operating in parallel
*14 型允許多達 10 個調解器並行運作

Created with 以下列方式建立

Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 15 型號 15

Conceptual Diagram 概念圖

Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = a i ( b 1 i + b 2 i V ) M i = a i b 1 i + b 2 i V M_(i)=a_(i)(b_(1i)+b_(2i)V)M_{i}=a_{i}\left(b_{1 i}+b_{2 i} V\right)
X X XX Y Y YY 經由 M i = a i ( b 1 i + b 2 i V ) M i = a i b 1 i + b 2 i V M_(i)=a_(i)(b_(1i)+b_(2i)V)M_{i}=a_{i}\left(b_{1 i}+b_{2 i} V\right) 的條件間接影響

Conditional direct effect of X X XX on Y = c 1 + c 3 V Y = c 1 + c 3 V Y=c_(1)^(')+c_(3)^(')VY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} V
X X XX Y = c 1 + c 3 V Y = c 1 + c 3 V Y=c_(1)^(')+c_(3)^(')VY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} V 的條件直接效應

*Model 15 allows up to 10 mediators operating in parallel
*15 型允許多達 10 個調解器並行運作
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 16 型號 16

Conceptual Diagram 概念圖

Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = a i ( b 1 i + b 4 i V + b 5 i Q ) M i = a i b 1 i + b 4 i V + b 5 i Q M_(i)=a_(i)(b_(1i)+b_(4i)V+b_(5i)Q)M_{i}=a_{i}\left(b_{1 i}+b_{4 i} V+b_{5 i} Q\right)
X X XX Y Y YY 經由 M i = a i ( b 1 i + b 4 i V + b 5 i Q ) M i = a i b 1 i + b 4 i V + b 5 i Q M_(i)=a_(i)(b_(1i)+b_(4i)V+b_(5i)Q)M_{i}=a_{i}\left(b_{1 i}+b_{4 i} V+b_{5 i} Q\right) 的條件間接影響

Direct effect of X X XX on Y = c Y = c Y=c^(')Y=c^{\prime}
X X XX Y = c Y = c Y=c^(')Y=c^{\prime} 的直接影響

*Model 16 allows up to 10 mediators operating in parallel
*16 型允許多達 10 個調解器並行運作

Created with 以下列方式建立

Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 17 型號 17

Conceptual Diagram 概念圖

Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = a i ( b 1 i + b 2 i V + b 3 i Q ) M i = a i b 1 i + b 2 i V + b 3 i Q M_(i)=a_(i)(b_(1i)+b_(2i)V+b_(3i)Q)M_{i}=a_{i}\left(b_{1 i}+b_{2 i} V+b_{3 i} Q\right) Conditional direct effect of X X XX on Y = c 1 + c 4 V + c 5 Q Y = c 1 + c 4 V + c 5 Q Y=c_(1)^(')+c_(4)^(')V+c_(5)^(')QY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} V+c_{5}{ }^{\prime} Q
X X XX Y Y YY M i = a i ( b 1 i + b 2 i V + b 3 i Q ) M i = a i b 1 i + b 2 i V + b 3 i Q M_(i)=a_(i)(b_(1i)+b_(2i)V+b_(3i)Q)M_{i}=a_{i}\left(b_{1 i}+b_{2 i} V+b_{3 i} Q\right) 的條件間接影響 X X XX Y = c 1 + c 4 V + c 5 Q Y = c 1 + c 4 V + c 5 Q Y=c_(1)^(')+c_(4)^(')V+c_(5)^(')QY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} V+c_{5}{ }^{\prime} Q 的條件直接影響

*Model 17 allows up to 10 mediators operating in parallel
*17 型允許多達 10 個調解器並行運作

Created with 以下列方式建立

Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 18 型號 18

Conceptual Diagram 概念圖
Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = a i ( b 1 i + b 4 i V + b 5 i Q + b 7 i V Q ) M i = a i b 1 i + b 4 i V + b 5 i Q + b 7 i V Q M_(i)=a_(i)(b_(1i)+b_(4i)V+b_(5i)Q+b_(7i)VQ)M_{i}=a_{i}\left(b_{1 i}+b_{4 i} V+b_{5 i} Q+b_{7 i} V Q\right)
X X XX Y Y YY 經由 M i = a i ( b 1 i + b 4 i V + b 5 i Q + b 7 i V Q ) M i = a i b 1 i + b 4 i V + b 5 i Q + b 7 i V Q M_(i)=a_(i)(b_(1i)+b_(4i)V+b_(5i)Q+b_(7i)VQ)M_{i}=a_{i}\left(b_{1 i}+b_{4 i} V+b_{5 i} Q+b_{7 i} V Q\right) 的條件間接影響

Direct effect of X X XX on Y = c Y = c Y=c^(')Y=c^{\prime}
X X XX Y = c Y = c Y=c^(')Y=c^{\prime} 的直接影響

*Model 18 allows up to 10 mediators operating in parallel
*Model 18 最多允許 10 個調解器並行運作
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 19 型號 19

Conceptual Diagram 概念圖
Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = a i ( b 1 i + b 2 i V + b 3 i Q + b 4 i V Q ) M i = a i b 1 i + b 2 i V + b 3 i Q + b 4 i V Q M_(i)=a_(i)(b_(1i)+b_(2i)V+b_(3i)Q+b_(4i)VQ)M_{i}=a_{i}\left(b_{1 i}+b_{2 i} V+b_{3 i} Q+b_{4 i} V Q\right)
X X XX Y Y YY 經由 M i = a i ( b 1 i + b 2 i V + b 3 i Q + b 4 i V Q ) M i = a i b 1 i + b 2 i V + b 3 i Q + b 4 i V Q M_(i)=a_(i)(b_(1i)+b_(2i)V+b_(3i)Q+b_(4i)VQ)M_{i}=a_{i}\left(b_{1 i}+b_{2 i} V+b_{3 i} Q+b_{4 i} V Q\right) 的條件間接影響

Conditional direct effect of X X XX on Y = c 1 + c 4 V + c 5 Q + c 7 V Q Y = c 1 + c 4 V + c 5 Q + c 7 V Q Y=c_(1)^(')+c_(4)^(')V+c_(5)^(')Q+c_(7)^(')VQY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} V+c_{5}{ }^{\prime} Q+c_{7}{ }^{\prime} V Q
X X XX Y = c 1 + c 4 V + c 5 Q + c 7 V Q Y = c 1 + c 4 V + c 5 Q + c 7 V Q Y=c_(1)^(')+c_(4)^(')V+c_(5)^(')Q+c_(7)^(')VQY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} V+c_{5}{ }^{\prime} Q+c_{7}{ }^{\prime} V Q 的條件直接效應

*Model 19 allows up to 10 mediators operating in parallel
*19 型允許多達 10 個調解器並行運作
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 20 型號 20

Conceptual Diagram 概念圖
Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = a i ( b 1 i + b 3 i V + b 4 i Q + b 6 i V Q ) M i = a i b 1 i + b 3 i V + b 4 i Q + b 6 i V Q M_(i)=a_(i)(b_(1i)+b_(3i)V+b_(4i)Q+b_(6i)VQ)M_{i}=a_{i}\left(b_{1 i}+b_{3 i} V+b_{4 i} Q+b_{6 i} V Q\right)
X X XX Y Y YY 經由 M i = a i ( b 1 i + b 3 i V + b 4 i Q + b 6 i V Q ) M i = a i b 1 i + b 3 i V + b 4 i Q + b 6 i V Q M_(i)=a_(i)(b_(1i)+b_(3i)V+b_(4i)Q+b_(6i)VQ)M_{i}=a_{i}\left(b_{1 i}+b_{3 i} V+b_{4 i} Q+b_{6 i} V Q\right) 的條件間接影響

Conditional direct effect of X X XX on Y = c 1 + c 3 V Y = c 1 + c 3 V Y=c_(1)^(')+c_(3)^(')VY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} V
X X XX Y = c 1 + c 3 V Y = c 1 + c 3 V Y=c_(1)^(')+c_(3)^(')VY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} V 的條件直接效應

*Model 20 allows up to 10 mediators operating in parallel
*Model 20 最多允許 10 個調解器並行運作
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 21 型號 21

Conceptual Diagram 概念圖
Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 3 i W ) ( b 1 i + b 3 i V ) M i = a 1 i + a 3 i W b 1 i + b 3 i V M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(3i)V)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{3 i} V\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 3 i W ) ( b 1 i + b 3 i V ) M i = a 1 i + a 3 i W b 1 i + b 3 i V M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(3i)V)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{3 i} V\right) 的條件間接影響

Direct effect of X X XX on Y = c Y = c Y=c^(')Y=c^{\prime}
X X XX Y = c Y = c Y=c^(')Y=c^{\prime} 的直接影響

*Model 21 allows up to 10 mediators operating in parallel
*21 型允許多達 10 個調解器並行運作
Model Templates for PROCESS for SPSS and SAS (C2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 (C2013 Andrew F. Hayes, http://www.afhayes.com/)

Model 22 型號 22

Conceptual Diagram 概念圖

Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 3 i W ) ( b 1 i + b 3 i V ) M i = a 1 i + a 3 i W b 1 i + b 3 i V M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(3i)V)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{3 i} V\right) Conditional direct effect of X X XX on Y = c 1 + c 3 W Y = c 1 + c 3 W Y=c_(1)^(')+c_(3)^(')WY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} W
X X XX Y Y YY M i = ( a 1 i + a 3 i W ) ( b 1 i + b 3 i V ) M i = a 1 i + a 3 i W b 1 i + b 3 i V M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(3i)V)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{3 i} V\right) 的條件間接影響 X X XX Y = c 1 + c 3 W Y = c 1 + c 3 W Y=c_(1)^(')+c_(3)^(')WY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} W 的條件直接影響

*Model 22 allows up to 10 mediators operating in parallel
*22 型允許多達 10 個調解器並行運作

Created with 以下列方式建立

Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 23 型號 23

Conceptual Diagram 概念圖
Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z ) ( b 1 i + b 3 i V ) M i = a 1 i + a 4 i W + a 5 i Z b 1 i + b 3 i V M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z)(b_(1i)+b_(3i)V)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z\right)\left(b_{1 i}+b_{3 i} V\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 4 i W + a 5 i Z ) ( b 1 i + b 3 i V ) M i = a 1 i + a 4 i W + a 5 i Z b 1 i + b 3 i V M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z)(b_(1i)+b_(3i)V)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z\right)\left(b_{1 i}+b_{3 i} V\right) 的條件間接影響

Direct effect of X X XX on Y = c Y = c Y=c^(')Y=c^{\prime}
X X XX Y = c Y = c Y=c^(')Y=c^{\prime} 的直接影響

*Model 23 allows up to 10 mediators operating in parallel
*23 型允許多達 10 個調解器並行運作
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 24 型號 24

Conceptual Diagram 概念圖
Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z ) ( b 1 i + b 3 i V ) M i = a 1 i + a 4 i W + a 5 i Z b 1 i + b 3 i V M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z)(b_(1i)+b_(3i)V)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z\right)\left(b_{1 i}+b_{3 i} V\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 4 i W + a 5 i Z ) ( b 1 i + b 3 i V ) M i = a 1 i + a 4 i W + a 5 i Z b 1 i + b 3 i V M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z)(b_(1i)+b_(3i)V)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z\right)\left(b_{1 i}+b_{3 i} V\right) 的條件間接影響

Conditional direct effect of X X XX on Y = c 1 + c 4 W + c 5 Z Y = c 1 + c 4 W + c 5 Z Y=c_(1)^(')+c_(4)^(')W+c_(5)^(')ZY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} W+c_{5}{ }^{\prime} Z
X X XX Y = c 1 + c 4 W + c 5 Z Y = c 1 + c 4 W + c 5 Z Y=c_(1)^(')+c_(4)^(')W+c_(5)^(')ZY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} W+c_{5}{ }^{\prime} Z 的條件直接效應

*Model 24 allows up to 10 mediators operating in parallel
*24 型允許多達 10 個調解器並行運作
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 25 型號 25

Conceptual Diagram 概念圖

Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) ( b 1 i + b 3 i V ) M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z b 1 i + b 3 i V M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)(b_(1i)+b_(3i)V)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right)\left(b_{1 i}+b_{3 i} V\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) ( b 1 i + b 3 i V ) M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z b 1 i + b 3 i V M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)(b_(1i)+b_(3i)V)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right)\left(b_{1 i}+b_{3 i} V\right) 的條件間接影響

Direct effect of X X XX on Y = c Y = c Y=c^(')Y=c^{\prime}
X X XX Y = c Y = c Y=c^(')Y=c^{\prime} 的直接影響

*Model 25 allows up to 10 mediators operating in parallel
*25 型允許多達 10 個調解器並行運作
Model 26 型號 26
Conceptual Diagram 概念圖
Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) ( b 1 i + b 3 i V ) M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z b 1 i + b 3 i V M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)(b_(1i)+b_(3i)V)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right)\left(b_{1 i}+b_{3 i} V\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) ( b 1 i + b 3 i V ) M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z b 1 i + b 3 i V M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)(b_(1i)+b_(3i)V)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right)\left(b_{1 i}+b_{3 i} V\right) 的條件間接影響

Conditional direct effect of X X XX on Y = c 1 + c 4 W + c 5 Z + c 7 W Z Y = c 1 + c 4 W + c 5 Z + c 7 W Z Y=c_(1)^(')+c_(4)^(')W+c_(5)^(')Z+c_(7)^(')WZY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} W+c_{5}{ }^{\prime} Z+c_{7}{ }^{\prime} W Z
X X XX Y = c 1 + c 4 W + c 5 Z + c 7 W Z Y = c 1 + c 4 W + c 5 Z + c 7 W Z Y=c_(1)^(')+c_(4)^(')W+c_(5)^(')Z+c_(7)^(')WZY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} W+c_{5}{ }^{\prime} Z+c_{7}{ }^{\prime} W Z 的條件直接效應

*Model 26 allows up to 10 mediators operating in parallel
*26 型允許多達 10 個調解器並行運作

Created with 以下列方式建立

Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/
Model 27 型號 27

Conceptual Diagram 概念圖

Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) ( b 1 i + b 3 i V ) M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z b 1 i + b 3 i V M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)(b_(1i)+b_(3i)V)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right)\left(b_{1 i}+b_{3 i} V\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) ( b 1 i + b 3 i V ) M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z b 1 i + b 3 i V M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)(b_(1i)+b_(3i)V)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right)\left(b_{1 i}+b_{3 i} V\right) 的條件間接影響

Conditional direct effect of X X XX on Y = c 1 + c 3 W Y = c 1 + c 3 W Y=c_(1)^(')+c_(3)^(')WY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} W
X X XX Y = c 1 + c 3 W Y = c 1 + c 3 W Y=c_(1)^(')+c_(3)^(')WY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} W 的條件直接效應

*Model 27 allows up to 10 mediators operating in parallel
*27 型允許多達 10 個調解器並行運作

Created with 以下列方式建立

Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 28 型號 28

Conceptual Diagram 概念圖

Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 3 i W ) ( b 1 i + b 2 i V ) M i = a 1 i + a 3 i W b 1 i + b 2 i V M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(2i)V)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{2 i} V\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 3 i W ) ( b 1 i + b 2 i V ) M i = a 1 i + a 3 i W b 1 i + b 2 i V M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(2i)V)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{2 i} V\right) 的條件間接影響

Conditional direct effect of X X XX on Y = c 1 + c 3 V Y = c 1 + c 3 V Y=c_(1)^(')+c_(3)^(')VY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} V
X X XX Y = c 1 + c 3 V Y = c 1 + c 3 V Y=c_(1)^(')+c_(3)^(')VY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} V 的條件直接效應

*Model 28 allows up to 10 mediators operating in parallel
*28 型允許多達 10 個調解器並行運作

Created with 以下列方式建立

Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 29 型號 29

Conceptual Diagram 概念圖

Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 3 i W ) ( b 1 i + b 2 i V ) M i = a 1 i + a 3 i W b 1 i + b 2 i V M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(2i)V)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{2 i} V\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 3 i W ) ( b 1 i + b 2 i V ) M i = a 1 i + a 3 i W b 1 i + b 2 i V M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(2i)V)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{2 i} V\right) 的條件間接影響

Conditional direct effect of X X XX on Y = c 1 + c 4 W + c 5 V Y = c 1 + c 4 W + c 5 V Y=c_(1)^(')+c_(4)^(')W+c_(5)^(')VY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} W+c_{5}{ }^{\prime} V
X X XX Y = c 1 + c 4 W + c 5 V Y = c 1 + c 4 W + c 5 V Y=c_(1)^(')+c_(4)^(')W+c_(5)^(')VY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} W+c_{5}{ }^{\prime} V 的條件直接效應

*Model 29 allows up to 10 mediators operating in parallel
*29 型允許多達 10 個調解器並行運作
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 30 型號 30

Conceptual Diagram 概念圖
Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z ) ( b 1 i + b 2 i V ) M i = a 1 i + a 4 i W + a 5 i Z b 1 i + b 2 i V M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z)(b_(1i)+b_(2i)V)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z\right)\left(b_{1 i}+b_{2 i} V\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 4 i W + a 5 i Z ) ( b 1 i + b 2 i V ) M i = a 1 i + a 4 i W + a 5 i Z b 1 i + b 2 i V M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z)(b_(1i)+b_(2i)V)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z\right)\left(b_{1 i}+b_{2 i} V\right) 的條件間接影響

Conditional direct effect of X X XX on Y = c 1 + c 3 V Y = c 1 + c 3 V Y=c_(1)^(')+c_(3)^(')VY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} V
X X XX Y = c 1 + c 3 V Y = c 1 + c 3 V Y=c_(1)^(')+c_(3)^(')VY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} V 的條件直接效應

*Model 30 allows up to 10 mediators operating in parallel
*30 型允許多達 10 個調解器並行運作
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 31 型號 31

Conceptual Diagram 概念圖
Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z ) ( b 1 i + b 2 i V ) M i = a 1 i + a 4 i W + a 5 i Z b 1 i + b 2 i V M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z)(b_(1i)+b_(2i)V)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z\right)\left(b_{1 i}+b_{2 i} V\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 4 i W + a 5 i Z ) ( b 1 i + b 2 i V ) M i = a 1 i + a 4 i W + a 5 i Z b 1 i + b 2 i V M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z)(b_(1i)+b_(2i)V)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z\right)\left(b_{1 i}+b_{2 i} V\right) 的條件間接影響

Conditional direct effect of X X XX on Y = c 1 + c 4 W + c 5 Z + c 7 V Y = c 1 + c 4 W + c 5 Z + c 7 V Y=c_(1)^(')+c_(4)^(')W+c_(5)^(')Z+c_(7)^(')VY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} W+c_{5}{ }^{\prime} Z+c_{7}{ }^{\prime} V
X X XX Y = c 1 + c 4 W + c 5 Z + c 7 V Y = c 1 + c 4 W + c 5 Z + c 7 V Y=c_(1)^(')+c_(4)^(')W+c_(5)^(')Z+c_(7)^(')VY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} W+c_{5}{ }^{\prime} Z+c_{7}{ }^{\prime} V 的條件直接效應

*Model 31 allows up to 10 mediators operating in parallel
*31 型允許多達 10 個調解器並行運作
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 32 型號 32

Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) ( b 1 i + b 2 i V ) M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z b 1 i + b 2 i V M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)(b_(1i)+b_(2i)V)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right)\left(b_{1 i}+b_{2 i} V\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) ( b 1 i + b 2 i V ) M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z b 1 i + b 2 i V M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)(b_(1i)+b_(2i)V)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right)\left(b_{1 i}+b_{2 i} V\right) 的條件間接影響

Conditional direct effect of X X XX on Y = c 1 + c 3 V Y = c 1 + c 3 V Y=c_(1)^(')+c_(3)^(')VY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} V
X X XX Y = c 1 + c 3 V Y = c 1 + c 3 V Y=c_(1)^(')+c_(3)^(')VY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} V 的條件直接效應

*Model 32 allows up to 10 mediators operating in parallel
*32 型允許多達 10 個調解器並行運作

Created with 以下列方式建立

Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 33 型號 33

Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) ( b 1 i + b 2 i V ) M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z b 1 i + b 2 i V M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)(b_(1i)+b_(2iV))M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right)\left(b_{1 i}+b_{2 i V}\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) ( b 1 i + b 2 i V ) M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z b 1 i + b 2 i V M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)(b_(1i)+b_(2iV))M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right)\left(b_{1 i}+b_{2 i V}\right) 的條件間接影響

Conditional direct effect of X X XX on Y = c 1 + c 4 W + c 5 Z + c 7 W Z + c 9 V Y = c 1 + c 4 W + c 5 Z + c 7 W Z + c 9 V Y=c_(1)^(')+c_(4)^(')W+c_(5)^(')Z+c_(7)^(')WZ+c_(9)^(')VY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} W+c_{5}{ }^{\prime} Z+c_{7}{ }^{\prime} W Z+c_{9}{ }^{\prime} V
X X XX Y = c 1 + c 4 W + c 5 Z + c 7 W Z + c 9 V Y = c 1 + c 4 W + c 5 Z + c 7 W Z + c 9 V Y=c_(1)^(')+c_(4)^(')W+c_(5)^(')Z+c_(7)^(')WZ+c_(9)^(')VY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} W+c_{5}{ }^{\prime} Z+c_{7}{ }^{\prime} W Z+c_{9}{ }^{\prime} V 的條件直接效應

*Model 33 allows up to 10 mediators operating in parallel
*33 型允許多達 10 個調解器並行運作
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 34 型號 34

Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) ( b 1 i + b 2 i V ) M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z b 1 i + b 2 i V M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)(b_(1i)+b_(2i)V)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right)\left(b_{1 i}+b_{2 i} V\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) ( b 1 i + b 2 i V ) M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z b 1 i + b 2 i V M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)(b_(1i)+b_(2i)V)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right)\left(b_{1 i}+b_{2 i} V\right) 的條件間接影響

Conditional direct effect of X X XX on Y = c 1 + c 3 W + c 5 V Y = c 1 + c 3 W + c 5 V Y=c_(1)^(')+c_(3)^(')W+c_(5)^(')VY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} W+c_{5}{ }^{\prime} V
X X XX Y = c 1 + c 3 W + c 5 V Y = c 1 + c 3 W + c 5 V Y=c_(1)^(')+c_(3)^(')W+c_(5)^(')VY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} W+c_{5}{ }^{\prime} V 的條件直接效應

*Model 34 allows up to 10 mediators operating in parallel
*34 型允許多達 10 個調解器並行運作
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 35 型號 35

Conceptual Diagram 概念圖
Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 3 i W ) ( b 1 i + b 4 i V + b 5 i Q ) M i = a 1 i + a 3 i W b 1 i + b 4 i V + b 5 i Q M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(4i)V+b_(5i)Q)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{4 i} V+b_{5 i} Q\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 3 i W ) ( b 1 i + b 4 i V + b 5 i Q ) M i = a 1 i + a 3 i W b 1 i + b 4 i V + b 5 i Q M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(4i)V+b_(5i)Q)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{4 i} V+b_{5 i} Q\right) 的條件間接影響

Direct effect of X X XX on Y = c Y = c Y=c^(')Y=c^{\prime}
X X XX Y = c Y = c Y=c^(')Y=c^{\prime} 的直接影響

*Model 35 allows up to 10 mediators operating in parallel
*35 型允許多達 10 個調解器並行運作
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 36 型號 36

Conceptual Diagram 概念圖

Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 3 i W ) ( b 1 i + b 2 i V + b 3 i Q ) M i = a 1 i + a 3 i W b 1 i + b 2 i V + b 3 i Q M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(2i)V+b_(3i)Q)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{2 i} V+b_{3 i} Q\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 3 i W ) ( b 1 i + b 2 i V + b 3 i Q ) M i = a 1 i + a 3 i W b 1 i + b 2 i V + b 3 i Q M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(2i)V+b_(3i)Q)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{2 i} V+b_{3 i} Q\right) 的條件間接影響

Conditional direct effect of X X XX on Y = c 1 + c 4 V + c 5 Q Y = c 1 + c 4 V + c 5 Q Y=c_(1)^(')+c_(4)^(')V+c_(5)^(')QY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} V+c_{5}{ }^{\prime} Q
X X XX Y = c 1 + c 4 V + c 5 Q Y = c 1 + c 4 V + c 5 Q Y=c_(1)^(')+c_(4)^(')V+c_(5)^(')QY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} V+c_{5}{ }^{\prime} Q 的條件直接效應

*Model 36 allows up to 10 mediators operating in parallel
*36 型允許多達 10 個調解器並行運作

Created with 以下列方式建立

Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 37 型號 37

Conceptual Diagram 概念圖
Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 3 i W ) ( b 1 i + b 4 i V + b 5 i Q + b 7 i V Q ) M i = a 1 i + a 3 i W b 1 i + b 4 i V + b 5 i Q + b 7 i V Q M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(4i)V+b_(5i)Q+b_(7i)VQ)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{4 i} V+b_{5 i} Q+b_{7 i} V Q\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 3 i W ) ( b 1 i + b 4 i V + b 5 i Q + b 7 i V Q ) M i = a 1 i + a 3 i W b 1 i + b 4 i V + b 5 i Q + b 7 i V Q M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(4i)V+b_(5i)Q+b_(7i)VQ)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{4 i} V+b_{5 i} Q+b_{7 i} V Q\right) 的條件間接影響

Direct effect of X X XX on Y = c Y = c Y=c^(')Y=c^{\prime}
X X XX Y = c Y = c Y=c^(')Y=c^{\prime} 的直接影響

*Model 37 allows up to 10 mediators operating in parallel
*37 型允許多達 10 個調解器並行運作

Created with 以下列方式建立

Model Templates for PROCESS for SPSS and SAS (C2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 (C2013 Andrew F. Hayes, http://www.afhayes.com/)

Model 38 型號 38

Conceptual Diagram 概念圖

Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 3 i W ) ( b 1 i + b 2 i V + b 3 i Q + b 4 i V Q ) M i = a 1 i + a 3 i W b 1 i + b 2 i V + b 3 i Q + b 4 i V Q M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(2i)V+b_(3i)Q+b_(4i)VQ)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{2 i} V+b_{3 i} Q+b_{4 i} V Q\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 3 i W ) ( b 1 i + b 2 i V + b 3 i Q + b 4 i V Q ) M i = a 1 i + a 3 i W b 1 i + b 2 i V + b 3 i Q + b 4 i V Q M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(2i)V+b_(3i)Q+b_(4i)VQ)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{2 i} V+b_{3 i} Q+b_{4 i} V Q\right) 的條件間接影響

Conditional direct effect of X X XX on Y = c 1 + c 4 V + c 5 Q + c 7 V Q Y = c 1 + c 4 V + c 5 Q + c 7 V Q Y=c_(1)^(')+c_(4)^(')V+c_(5)^(')Q+c_(7)^(')VQY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} V+c_{5}{ }^{\prime} Q+c_{7}{ }^{\prime} V Q
X X XX Y = c 1 + c 4 V + c 5 Q + c 7 V Q Y = c 1 + c 4 V + c 5 Q + c 7 V Q Y=c_(1)^(')+c_(4)^(')V+c_(5)^(')Q+c_(7)^(')VQY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} V+c_{5}{ }^{\prime} Q+c_{7}{ }^{\prime} V Q 的條件直接效應
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 39 型號 39

Conceptual Diagram 概念圖

Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 3 i W ) ( b 1 i + b 3 i V + b 4 i Q + b 6 i V Q ) M i = a 1 i + a 3 i W b 1 i + b 3 i V + b 4 i Q + b 6 i V Q M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(3i)V+b_(4i)Q+b_(6i)VQ)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{3 i} V+b_{4 i} Q+b_{6 i} V Q\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 3 i W ) ( b 1 i + b 3 i V + b 4 i Q + b 6 i V Q ) M i = a 1 i + a 3 i W b 1 i + b 3 i V + b 4 i Q + b 6 i V Q M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(3i)V+b_(4i)Q+b_(6i)VQ)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{3 i} V+b_{4 i} Q+b_{6 i} V Q\right) 的條件間接影響

Conditional direct effect of X X XX on Y = c 1 + c 3 V Y = c 1 + c 3 V Y=c_(1)^(')+c_(3)^(')VY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} V
X X XX Y = c 1 + c 3 V Y = c 1 + c 3 V Y=c_(1)^(')+c_(3)^(')VY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} V 的條件直接效應

*Model 39 allows up to 10 mediators operating in parallel
*39 型允許多達 10 個調解器並行運作

Created with 以下列方式建立

Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 40 型號 40

Conceptual Diagram 概念圖
Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 3 i W ) ( b 1 i + b 4 i V + b 5 i Q ) M i = a 1 i + a 3 i W b 1 i + b 4 i V + b 5 i Q M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(4i)V+b_(5i)Q)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{4 i} V+b_{5 i} Q\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 3 i W ) ( b 1 i + b 4 i V + b 5 i Q ) M i = a 1 i + a 3 i W b 1 i + b 4 i V + b 5 i Q M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(4i)V+b_(5i)Q)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{4 i} V+b_{5 i} Q\right) 的條件間接影響

Conditional direct effect of X X XX on Y = c 1 + c 3 W Y = c 1 + c 3 W Y=c_(1)^(')+c_(3)^(')WY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} W
X X XX Y = c 1 + c 3 W Y = c 1 + c 3 W Y=c_(1)^(')+c_(3)^(')WY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} W 的條件直接效應

*Model 40 allows up to 10 mediators operating in parallel
*Model 40 最多允許 10 個調解器並行運作
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 41 型號 41

Conceptual Diagram 概念圖
Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 3 i W ) ( b 1 i + b 2 i V + b 3 i Q ) M i = a 1 i + a 3 i W b 1 i + b 2 i V + b 3 i Q M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(2i)V+b_(3i)Q)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{2 i} V+b_{3 i} Q\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 3 i W ) ( b 1 i + b 2 i V + b 3 i Q ) M i = a 1 i + a 3 i W b 1 i + b 2 i V + b 3 i Q M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(2i)V+b_(3i)Q)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{2 i} V+b_{3 i} Q\right) 的條件間接影響

Conditional direct effect of X X XX on Y = c 1 + c 3 W + c 6 V + c 7 Q Y = c 1 + c 3 W + c 6 V + c 7 Q Y=c_(1)^(')+c_(3)^(')W+c_(6)^(')V+c_(7)^(')QY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} W+c_{6}{ }^{\prime} V+c_{7}{ }^{\prime} Q
X X XX Y = c 1 + c 3 W + c 6 V + c 7 Q Y = c 1 + c 3 W + c 6 V + c 7 Q Y=c_(1)^(')+c_(3)^(')W+c_(6)^(')V+c_(7)^(')QY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} W+c_{6}{ }^{\prime} V+c_{7}{ }^{\prime} Q 的條件直接效應

*Model 41 allows up to 10 mediators operating in parallel
*41 型允許多達 10 個調解器並行運作
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 42 型號 42

Conceptual Diagram 概念圖

Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 3 i W ) ( b 1 i + b 4 i V + b 5 i Q + b 7 i V Q ) M i = a 1 i + a 3 i W b 1 i + b 4 i V + b 5 i Q + b 7 i V Q M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(4i)V+b_(5i)Q+b_(7i)VQ)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{4 i} V+b_{5 i} Q+b_{7 i} V Q\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 3 i W ) ( b 1 i + b 4 i V + b 5 i Q + b 7 i V Q ) M i = a 1 i + a 3 i W b 1 i + b 4 i V + b 5 i Q + b 7 i V Q M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(4i)V+b_(5i)Q+b_(7i)VQ)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{4 i} V+b_{5 i} Q+b_{7 i} V Q\right) 的條件間接影響

Conditional direct effect of X X XX on Y = c 1 + c 3 W Y = c 1 + c 3 W Y=c_(1)^(')+c_(3)^(')WY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} W
X X XX Y = c 1 + c 3 W Y = c 1 + c 3 W Y=c_(1)^(')+c_(3)^(')WY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} W 的條件直接效應

*Model 42 allows up to 10 mediators operating in parallel
*42 型允許多達 10 個調解器並行運作

Created with 以下列方式建立

Model Templates for PROCESS for SPSS and SAS (C2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 (C2013 Andrew F. Hayes, http://www.afhayes.com/)

Model 43 型號 43

Conceptual Diagram 概念圖
Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 3 i W ) ( b 1 i + b 2 i V + b 3 i Q + b 4 i V Q ) M i = a 1 i + a 3 i W b 1 i + b 2 i V + b 3 i Q + b 4 i V Q M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(2i)V+b_(3i)Q+b_(4i)VQ)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{2 i} V+b_{3 i} Q+b_{4 i} V Q\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 3 i W ) ( b 1 i + b 2 i V + b 3 i Q + b 4 i V Q ) M i = a 1 i + a 3 i W b 1 i + b 2 i V + b 3 i Q + b 4 i V Q M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(2i)V+b_(3i)Q+b_(4i)VQ)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{2 i} V+b_{3 i} Q+b_{4 i} V Q\right) 的條件間接影響

Conditional direct effect of X X XX on Y = c 1 + c 3 W + c 6 V + c 7 Q + c 9 V Q Y = c 1 + c 3 W + c 6 V + c 7 Q + c 9 V Q Y=c_(1)^(')+c_(3)^(')W+c_(6)^(')V+c_(7)^(')Q+c_(9)^(')VQY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} W+c_{6}{ }^{\prime} V+c_{7}{ }^{\prime} Q+c_{9}{ }^{\prime} V Q
X X XX Y = c 1 + c 3 W + c 6 V + c 7 Q + c 9 V Q Y = c 1 + c 3 W + c 6 V + c 7 Q + c 9 V Q Y=c_(1)^(')+c_(3)^(')W+c_(6)^(')V+c_(7)^(')Q+c_(9)^(')VQY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} W+c_{6}{ }^{\prime} V+c_{7}{ }^{\prime} Q+c_{9}{ }^{\prime} V Q 的條件直接效應
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 44 型號 44

Conceptual Diagram 概念圖
Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 3 i W ) ( b 1 i + b 3 i V + b 4 i Q + b 6 i V Q ) M i = a 1 i + a 3 i W b 1 i + b 3 i V + b 4 i Q + b 6 i V Q M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(3i)V+b_(4i)Q+b_(6i)VQ)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{3 i} V+b_{4 i} Q+b_{6 i} V Q\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 3 i W ) ( b 1 i + b 3 i V + b 4 i Q + b 6 i V Q ) M i = a 1 i + a 3 i W b 1 i + b 3 i V + b 4 i Q + b 6 i V Q M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(3i)V+b_(4i)Q+b_(6i)VQ)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{3 i} V+b_{4 i} Q+b_{6 i} V Q\right) 的條件間接影響

Conditional direct effect of X X XX on Y = c 1 + c 3 W + c 5 V Y = c 1 + c 3 W + c 5 V Y=c_(1)^(')+c_(3)^(')W+c_(5)^(')VY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} W+c_{5}{ }^{\prime} V
X X XX Y = c 1 + c 3 W + c 5 V Y = c 1 + c 3 W + c 5 V Y=c_(1)^(')+c_(3)^(')W+c_(5)^(')VY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} W+c_{5}{ }^{\prime} V 的條件直接效應

*Model 44 allows up to 10 mediators operating in parallel
*44 型允許多達 10 個調解器並行運作

Created with 以下列方式建立

Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 45 型號 45

Conceptual Diagram 概念圖

Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z ) ( b 1 i + b 4 i V + b 5 i Q ) M i = a 1 i + a 4 i W + a 5 i Z b 1 i + b 4 i V + b 5 i Q M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z)(b_(1i)+b_(4i)V+b_(5i)Q)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z\right)\left(b_{1 i}+b_{4 i} V+b_{5 i} Q\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 4 i W + a 5 i Z ) ( b 1 i + b 4 i V + b 5 i Q ) M i = a 1 i + a 4 i W + a 5 i Z b 1 i + b 4 i V + b 5 i Q M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z)(b_(1i)+b_(4i)V+b_(5i)Q)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z\right)\left(b_{1 i}+b_{4 i} V+b_{5 i} Q\right) 的條件間接影響

Direct effect of X X XX on Y = c Y = c Y=c^(')Y=c^{\prime}
X X XX Y = c Y = c Y=c^(')Y=c^{\prime} 的直接影響

*Model 45 allows up to 10 mediators operating in parallel
*45 型允許多達 10 個調解器並行運作

Created with 以下列方式建立

Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 46 型號 46

Conceptual Diagram 概念圖

Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) ( b 1 i + b 4 i V + b 5 i Q ) M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z b 1 i + b 4 i V + b 5 i Q M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)(b_(1i)+b_(4i)V+b_(5i)Q)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right)\left(b_{1 i}+b_{4 i} V+b_{5 i} Q\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) ( b 1 i + b 4 i V + b 5 i Q ) M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z b 1 i + b 4 i V + b 5 i Q M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)(b_(1i)+b_(4i)V+b_(5i)Q)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right)\left(b_{1 i}+b_{4 i} V+b_{5 i} Q\right) 的條件間接影響

Direct effect of X X XX on Y = c Y = c Y=c^(')Y=c^{\prime}
X X XX Y = c Y = c Y=c^(')Y=c^{\prime} 的直接影響

*Model 46 allows up to 10 mediators operating in parallel
*46 型允許多達 10 個調解器並行運作
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/
Model 47 型號 47
Conceptual Diagram 概念圖
Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z ) ( b 1 i + b 4 i V + b 5 i Q + b 7 i V Q ) M i = a 1 i + a 4 i W + a 5 i Z b 1 i + b 4 i V + b 5 i Q + b 7 i V Q M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z)(b_(1i)+b_(4i)V+b_(5i)Q+b_(7i)VQ)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z\right)\left(b_{1 i}+b_{4 i} V+b_{5 i} Q+b_{7 i} V Q\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 4 i W + a 5 i Z ) ( b 1 i + b 4 i V + b 5 i Q + b 7 i V Q ) M i = a 1 i + a 4 i W + a 5 i Z b 1 i + b 4 i V + b 5 i Q + b 7 i V Q M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z)(b_(1i)+b_(4i)V+b_(5i)Q+b_(7i)VQ)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z\right)\left(b_{1 i}+b_{4 i} V+b_{5 i} Q+b_{7 i} V Q\right) 的條件間接影響

Direct effect of X X XX on Y = c Y = c Y=c^(')Y=c^{\prime}
X X XX Y = c Y = c Y=c^(')Y=c^{\prime} 的直接影響

*Model 47 allows up to 10 mediators operating in parallel
*47 型允許多達 10 個調解器並行運作

Created with 以下列方式建立

Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 48 型號 48

Conceptual Diagram 概念圖

Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right).
X X XX Y Y YY 透過 M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right) 的條件間接影響。

Direct effect of X X XX on Y = c Y = c Y=c^(')Y=c^{\prime}
X X XX Y = c Y = c Y=c^(')Y=c^{\prime} 的直接影響
( b 1 i + b 4 i V + b 5 i Q + b 7 i V Q ) b 1 i + b 4 i V + b 5 i Q + b 7 i V Q (b_(1i)+b_(4i)V+b_(5i)Q+b_(7i)VQ)\left(b_{1 i}+b_{4 i} V+b_{5 i} Q+b_{7 i} V Q\right)
*Model 48 allows up to 10 mediators operating in parallel
*48 型允許多達 10 個調解器並行運作

Created with 以下列方式建立

Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 49 型號 49

Conceptual Diagram 概念圖

Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z ) ( b 1 i + b 4 i V + b 5 i Q ) M i = a 1 i + a 4 i W + a 5 i Z b 1 i + b 4 i V + b 5 i Q M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z)(b_(1i)+b_(4i)V+b_(5i)Q)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z\right)\left(b_{1 i}+b_{4 i} V+b_{5 i} Q\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 4 i W + a 5 i Z ) ( b 1 i + b 4 i V + b 5 i Q ) M i = a 1 i + a 4 i W + a 5 i Z b 1 i + b 4 i V + b 5 i Q M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z)(b_(1i)+b_(4i)V+b_(5i)Q)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z\right)\left(b_{1 i}+b_{4 i} V+b_{5 i} Q\right) 的條件間接影響

Conditional direct effect of X X XX on Y = + c 1 + c 4 W + c 5 Z Y = + c 1 + c 4 W + c 5 Z Y=+c_(1)^(')+c_(4)^(')W+c_(5)^(')ZY=+c_{1}{ }^{\prime}+c_{4}{ }^{\prime} W+c_{5}{ }^{\prime} Z
X X XX Y = + c 1 + c 4 W + c 5 Z Y = + c 1 + c 4 W + c 5 Z Y=+c_(1)^(')+c_(4)^(')W+c_(5)^(')ZY=+c_{1}{ }^{\prime}+c_{4}{ }^{\prime} W+c_{5}{ }^{\prime} Z 的條件直接效應

*Model 49 allows up to 10 mediators operating in parallel
*49 型允許多達 10 個調解器並行運作

Created with 以下列方式建立
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 50 50 型號

Conceptual Diagram 概念圖

Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z ) ( b 1 i + b 2 i V + b 3 i Q ) M i = a 1 i + a 4 i W + a 5 i Z b 1 i + b 2 i V + b 3 i Q M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z)(b_(1i)+b_(2i)V+b_(3i)Q)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z\right)\left(b_{1 i}+b_{2 i} V+b_{3 i} Q\right) Conditional direct effect of X X XX on Y = c 1 + c 4 V + c 5 Q Y = c 1 + c 4 V + c 5 Q Y=c_(1)^(')+c_(4)^(')V+c_(5)^(')QY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} V+c_{5}{ }^{\prime} Q
X X XX Y Y YY M i = ( a 1 i + a 4 i W + a 5 i Z ) ( b 1 i + b 2 i V + b 3 i Q ) M i = a 1 i + a 4 i W + a 5 i Z b 1 i + b 2 i V + b 3 i Q M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z)(b_(1i)+b_(2i)V+b_(3i)Q)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z\right)\left(b_{1 i}+b_{2 i} V+b_{3 i} Q\right) 的條件間接影響 X X XX Y = c 1 + c 4 V + c 5 Q Y = c 1 + c 4 V + c 5 Q Y=c_(1)^(')+c_(4)^(')V+c_(5)^(')QY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} V+c_{5}{ }^{\prime} Q 的條件直接影響

*Model 50 allows up to 10 mediators operating in parallel
*50 型允許多達 10 個調解器並行運作

Created with 以下列方式建立

Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/
Model 51 51 型號
Conceptual Diagram 概念圖
Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) ( b 1 i + b 4 i V + b 5 i Q ) M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z b 1 i + b 4 i V + b 5 i Q M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)(b_(1i)+b_(4i)V+b_(5i)Q)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right)\left(b_{1 i}+b_{4 i} V+b_{5 i} Q\right) Conditional direct effect of X X XX on Y = c 1 + c 4 W + c 5 Z + c 7 W Z Y = c 1 + c 4 W + c 5 Z + c 7 W Z Y=c_(1)^(')+c_(4)^(')W+c_(5)^(')Z+c_(7)^(')WZY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} W+c_{5}{ }^{\prime} Z+c_{7}{ }^{\prime} W Z
X X XX Y Y YY M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) ( b 1 i + b 4 i V + b 5 i Q ) M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z b 1 i + b 4 i V + b 5 i Q M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)(b_(1i)+b_(4i)V+b_(5i)Q)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right)\left(b_{1 i}+b_{4 i} V+b_{5 i} Q\right) 的條件間接影響 X X XX Y = c 1 + c 4 W + c 5 Z + c 7 W Z Y = c 1 + c 4 W + c 5 Z + c 7 W Z Y=c_(1)^(')+c_(4)^(')W+c_(5)^(')Z+c_(7)^(')WZY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} W+c_{5}{ }^{\prime} Z+c_{7}{ }^{\prime} W Z 的條件直接影響

*Model 51 allows up to 10 mediators operating in parallel Created with
*51 型允許多達 10 個調解器並行運作 創建與
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 52 型號 52

Conceptual Diagram 概念圖

Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) ( b 1 i + b 2 i V + b 3 i Q ) M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z b 1 i + b 2 i V + b 3 i Q M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)(b_(1i)+b_(2i)V+b_(3i)Q)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right)\left(b_{1 i}+b_{2 i} V+b_{3 i} Q\right) Conditional direct effect of X X XX on Y = c 1 + c 4 V + c 5 Q Y = c 1 + c 4 V + c 5 Q Y=c_(1)^(')+c_(4)^(')V+c_(5)^(')QY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} V+c_{5}{ }^{\prime} Q
X X XX Y Y YY M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) ( b 1 i + b 2 i V + b 3 i Q ) M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z b 1 i + b 2 i V + b 3 i Q M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)(b_(1i)+b_(2i)V+b_(3i)Q)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right)\left(b_{1 i}+b_{2 i} V+b_{3 i} Q\right) 的條件間接影響 X X XX Y = c 1 + c 4 V + c 5 Q Y = c 1 + c 4 V + c 5 Q Y=c_(1)^(')+c_(4)^(')V+c_(5)^(')QY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} V+c_{5}{ }^{\prime} Q 的條件直接影響
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/
Model 53 53 型號
Conceptual Diagram 概念圖
Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z ) ( b 1 i + b 4 i V + b 5 i Q + b 7 i V Q ) M i = a 1 i + a 4 i W + a 5 i Z b 1 i + b 4 i V + b 5 i Q + b 7 i V Q M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z)(b_(1i)+b_(4i)V+b_(5i)Q+b_(7i)VQ)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z\right)\left(b_{1 i}+b_{4 i} V+b_{5 i} Q+b_{7 i} V Q\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 4 i W + a 5 i Z ) ( b 1 i + b 4 i V + b 5 i Q + b 7 i V Q ) M i = a 1 i + a 4 i W + a 5 i Z b 1 i + b 4 i V + b 5 i Q + b 7 i V Q M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z)(b_(1i)+b_(4i)V+b_(5i)Q+b_(7i)VQ)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z\right)\left(b_{1 i}+b_{4 i} V+b_{5 i} Q+b_{7 i} V Q\right) 的條件間接影響

Conditional direct effect of X X XX on Y = c 1 + c 4 W + c 5 Z Y = c 1 + c 4 W + c 5 Z Y=c_(1)^(')+c_(4)^(')W+c_(5)^(')ZY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} W+c_{5}{ }^{\prime} Z
X X XX Y = c 1 + c 4 W + c 5 Z Y = c 1 + c 4 W + c 5 Z Y=c_(1)^(')+c_(4)^(')W+c_(5)^(')ZY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} W+c_{5}{ }^{\prime} Z 的條件直接效應

*Model 53 allows up to 10 mediators operating in parallel
*53 型允許最多 10 個調解器並行運作

Created with 以下列方式建立
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/
Model 54 型號 54
Conceptual Diagram 概念圖
Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z ) ( b 1 i + b 2 i V + b 3 i Q + b 4 i V Q ) M i = a 1 i + a 4 i W + a 5 i Z b 1 i + b 2 i V + b 3 i Q + b 4 i V Q M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z)(b_(1i)+b_(2i)V+b_(3i)Q+b_(4i)VQ)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z\right)\left(b_{1 i}+b_{2 i} V+b_{3 i} Q+b_{4 i} V Q\right) Conditional direct effect of X X XX on Y = c 1 + c 4 V + c 5 Q + c 7 V Q Y = c 1 + c 4 V + c 5 Q + c 7 V Q Y=c_(1)^(')+c_(4)^(')V+c_(5)^(')Q+c_(7)^(')VQY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} V+c_{5}{ }^{\prime} Q+c_{7}{ }^{\prime} V Q
X X XX Y Y YY M i = ( a 1 i + a 4 i W + a 5 i Z ) ( b 1 i + b 2 i V + b 3 i Q + b 4 i V Q ) M i = a 1 i + a 4 i W + a 5 i Z b 1 i + b 2 i V + b 3 i Q + b 4 i V Q M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z)(b_(1i)+b_(2i)V+b_(3i)Q+b_(4i)VQ)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z\right)\left(b_{1 i}+b_{2 i} V+b_{3 i} Q+b_{4 i} V Q\right) 的條件間接影響 X X XX Y = c 1 + c 4 V + c 5 Q + c 7 V Q Y = c 1 + c 4 V + c 5 Q + c 7 V Q Y=c_(1)^(')+c_(4)^(')V+c_(5)^(')Q+c_(7)^(')VQY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} V+c_{5}{ }^{\prime} Q+c_{7}{ }^{\prime} V Q 的條件直接影響
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 55 型號 55

Conceptual Diagram 概念圖

Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right). ( b 1 i + b 4 i V + b 5 i Q + b 7 i V Q ) b 1 i + b 4 i V + b 5 i Q + b 7 i V Q (b_(1i)+b_(4i)V+b_(5i)Q+b_(7i)VQ)\left(b_{1 i}+b_{4 i} V+b_{5 i} Q+b_{7 i} V Q\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right) 的條件間接影響。 ( b 1 i + b 4 i V + b 5 i Q + b 7 i V Q ) b 1 i + b 4 i V + b 5 i Q + b 7 i V Q (b_(1i)+b_(4i)V+b_(5i)Q+b_(7i)VQ)\left(b_{1 i}+b_{4 i} V+b_{5 i} Q+b_{7 i} V Q\right)

Conditional direct effect of X X XX on Y = c 1 + c 4 W + c 5 Z + c 7 W Z Y = c 1 + c 4 W + c 5 Z + c 7 W Z Y=c_(1)^(')+c_(4)^(')W+c_(5)^(')Z+c_(7)^(')WZY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} W+c_{5}{ }^{\prime} Z+c_{7}{ }^{\prime} W Z
X X XX Y = c 1 + c 4 W + c 5 Z + c 7 W Z Y = c 1 + c 4 W + c 5 Z + c 7 W Z Y=c_(1)^(')+c_(4)^(')W+c_(5)^(')Z+c_(7)^(')WZY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} W+c_{5}{ }^{\prime} Z+c_{7}{ }^{\prime} W Z 的條件直接效應

*Model 55 allows up to 10 mediators operating in parallel
*55 型允許多達 10 個調解器並行運作
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/
Model 56 型號 56

Conceptual Diagram 概念圖

Statistical Diagram 統計圖表

Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 55 Z + a 7 i W Z ) M i = a 1 i + a 4 i W + a 55 Z + a 7 i W Z M_(i)=(a_(1i)+a_(4i)W+a_(55)Z+a_(7i)WZ)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{55} Z+a_{7 i} W Z\right).
X X XX Y Y YY 透過 M i = ( a 1 i + a 4 i W + a 55 Z + a 7 i W Z ) M i = a 1 i + a 4 i W + a 55 Z + a 7 i W Z M_(i)=(a_(1i)+a_(4i)W+a_(55)Z+a_(7i)WZ)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{55} Z+a_{7 i} W Z\right) 的條件間接影響。

( b 1 i + b 2 i V + b 3 i Q + b 4 i V Q ) b 1 i + b 2 i V + b 3 i Q + b 4 i V Q (b_(1i)+b_(2i)V+b_(3i)Q+b_(4i)VQ)\left(b_{1 i}+b_{2 i} V+b_{3 i} Q+b_{4 i} V Q\right)
Conditional direct effect of X X XX on Y = ( c 1 + c 4 V + c 5 Q + c 7 V Q ) Y = c 1 + c 4 V + c 5 Q + c 7 V Q Y=(c_(1)^(')+c_(4)^(')V+c_(5)^(')Q+c_(7)^(')VQ)Y=\left(c_{1}{ }^{\prime}+c_{4}{ }^{\prime} V+c_{5}{ }^{\prime} Q+c_{7}{ }^{\prime} V Q\right)
X X XX Y = ( c 1 + c 4 V + c 5 Q + c 7 V Q ) Y = c 1 + c 4 V + c 5 Q + c 7 V Q Y=(c_(1)^(')+c_(4)^(')V+c_(5)^(')Q+c_(7)^(')VQ)Y=\left(c_{1}{ }^{\prime}+c_{4}{ }^{\prime} V+c_{5}{ }^{\prime} Q+c_{7}{ }^{\prime} V Q\right) 的條件直接效應

*Model 56 allows up to 10 mediators operating in parallel
*56 型允許多達 10 個調解器並行運作

Created with 以下列方式建立

Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/
Model 57 型號 57

Conceptual Diagram 概念圖

Statistical Diagram 統計圖表
Model Templates for PROCESS for SPSS and SAS (C2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 (C2013 Andrew F. Hayes, http://www.afhayes.com/)

Model 58 型號 58

Conceptual Diagram 概念圖
Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 3 i W ) ( b 1 i + b 3 i W ) M i = a 1 i + a 3 i W b 1 i + b 3 i W M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(3i)W)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{3 i} W\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 3 i W ) ( b 1 i + b 3 i W ) M i = a 1 i + a 3 i W b 1 i + b 3 i W M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(3i)W)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{3 i} W\right) 的條件間接影響

Direct effect of X X XX on Y = c Y = c Y=c^(')Y=c^{\prime}
X X XX Y = c Y = c Y=c^(')Y=c^{\prime} 的直接影響

*Model 58 allows up to 10 mediators operating in parallel
*58 型允許多達 10 個調解器並行運作
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 59 型號 59

Conceptual Diagram 概念圖
Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 3 i W ) ( b 1 i + b 2 i W ) M i = a 1 i + a 3 i W b 1 i + b 2 i W M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(2i)W)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{2 i} W\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 3 i W ) ( b 1 i + b 2 i W ) M i = a 1 i + a 3 i W b 1 i + b 2 i W M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(2i)W)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{2 i} W\right) 的條件間接影響

Conditional direct effect of X X XX on Y = c 1 + c 3 W Y = c 1 + c 3 W Y=c_(1)^(')+c_(3)^(')WY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} W
X X XX Y = c 1 + c 3 W Y = c 1 + c 3 W Y=c_(1)^(')+c_(3)^(')WY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} W 的條件直接效應

*Model 59 allows up to 10 mediators operating in parallel
*59 型允許多達 10 個調解器並行運作
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 60 型號 60

Conceptual Diagram 概念圖
Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z ) ( b 1 i + b 3 i W ) M i = a 1 i + a 4 i W + a 5 i Z b 1 i + b 3 i W M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z)(b_(1i)+b_(3i)W)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z\right)\left(b_{1 i}+b_{3 i} W\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 4 i W + a 5 i Z ) ( b 1 i + b 3 i W ) M i = a 1 i + a 4 i W + a 5 i Z b 1 i + b 3 i W M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z)(b_(1i)+b_(3i)W)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z\right)\left(b_{1 i}+b_{3 i} W\right) 的條件間接影響

Direct effect of X X XX on Y = c Y = c Y=c^(')Y=c^{\prime}
X X XX Y = c Y = c Y=c^(')Y=c^{\prime} 的直接影響

*Model 60 allows up to 10 mediators operating in parallel
*60 型允許最多 10 個調解器並行運作
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 61 型號 61

Conceptual Diagram 概念圖
Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z ) ( b 1 i + b 2 i W ) M i = a 1 i + a 4 i W + a 5 i Z b 1 i + b 2 i W M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z)(b_(1i)+b_(2i)W)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z\right)\left(b_{1 i}+b_{2 i} W\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 4 i W + a 5 i Z ) ( b 1 i + b 2 i W ) M i = a 1 i + a 4 i W + a 5 i Z b 1 i + b 2 i W M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z)(b_(1i)+b_(2i)W)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z\right)\left(b_{1 i}+b_{2 i} W\right) 的條件間接影響

Conditional direct effect of X X XX on Y = c 1 + c 3 W Y = c 1 + c 3 W Y=c_(1)^(')+c_(3)^(')WY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} W
X X XX Y = c 1 + c 3 W Y = c 1 + c 3 W Y=c_(1)^(')+c_(3)^(')WY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} W 的條件直接效應

*Model 61 allows up to 10 mediators operating in parallel
*61 型允許多達 10 個調解器並行運作

Created with 以下列方式建立

Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 62 型號 62

Conceptual Diagram 概念圖
Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z ) ( b 1 i + b 3 i W ) M i = a 1 i + a 4 i W + a 5 i Z b 1 i + b 3 i W M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z)(b_(1i)+b_(3i)W)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z\right)\left(b_{1 i}+b_{3 i} W\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 4 i W + a 5 i Z ) ( b 1 i + b 3 i W ) M i = a 1 i + a 4 i W + a 5 i Z b 1 i + b 3 i W M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z)(b_(1i)+b_(3i)W)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z\right)\left(b_{1 i}+b_{3 i} W\right) 的條件間接影響

Conditional direct effect of X X XX on Y = c 1 + c 3 Z Y = c 1 + c 3 Z Y=c_(1)^(')+c_(3)^(')ZY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} Z
X X XX Y = c 1 + c 3 Z Y = c 1 + c 3 Z Y=c_(1)^(')+c_(3)^(')ZY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} Z 的條件直接效應

*Model 62 allows up to 10 mediators operating in parallel
*62 型允許多達 10 個調解器並行運作

Created with 以下列方式建立

Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 63 63 型號

Conceptual Diagram 概念圖
Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z ) ( b 1 i + b 2 i W ) M i = a 1 i + a 4 i W + a 5 i Z b 1 i + b 2 i W M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z)(b_(1i)+b_(2i)W)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z\right)\left(b_{1 i}+b_{2 i} W\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 4 i W + a 5 i Z ) ( b 1 i + b 2 i W ) M i = a 1 i + a 4 i W + a 5 i Z b 1 i + b 2 i W M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z)(b_(1i)+b_(2i)W)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z\right)\left(b_{1 i}+b_{2 i} W\right) 的條件間接影響

Conditional direct effect of X X XX on Y = c 1 + c 4 W + c 5 Z Y = c 1 + c 4 W + c 5 Z Y=c_(1)^(')+c_(4)^(')W+c_(5)^(')ZY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} W+c_{5}{ }^{\prime} Z
X X XX Y = c 1 + c 4 W + c 5 Z Y = c 1 + c 4 W + c 5 Z Y=c_(1)^(')+c_(4)^(')W+c_(5)^(')ZY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} W+c_{5}{ }^{\prime} Z 的條件直接效應

*Model 63 allows up to 10 mediators operating in parallel
*63 型允許多達 10 個調解器並行運作

Created with 以下列方式建立

Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 64 型號 64

Conceptual Diagram 概念圖
Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 3 i W ) ( b 1 i + b 4 i W + b 5 i V ) M i = a 1 i + a 3 i W b 1 i + b 4 i W + b 5 i V M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(4i)W+b_(5i)V)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{4 i} W+b_{5 i} V\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 3 i W ) ( b 1 i + b 4 i W + b 5 i V ) M i = a 1 i + a 3 i W b 1 i + b 4 i W + b 5 i V M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(4i)W+b_(5i)V)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{4 i} W+b_{5 i} V\right) 的條件間接影響

Direct effect of X X XX on Y = c Y = c Y=c^(')Y=c^{\prime}
X X XX Y = c Y = c Y=c^(')Y=c^{\prime} 的直接影響

*Model 64 allows up to 10 mediators operating in parallel
*64 型允許多達 10 個調解器並行運作

Created with 以下列方式建立

Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 65 型號 65

Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 3 i W ) ( b 1 i + b 3 i W + b 4 i V ) M i = a 1 i + a 3 i W b 1 i + b 3 i W + b 4 i V M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(3i)W+b_(4i)V)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{3 i} W+b_{4 i} V\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 3 i W ) ( b 1 i + b 3 i W + b 4 i V ) M i = a 1 i + a 3 i W b 1 i + b 3 i W + b 4 i V M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(3i)W+b_(4i)V)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{3 i} W+b_{4 i} V\right) 的條件間接影響

Conditional direct effect of X X XX on Y = c 1 + c 3 W Y = c 1 + c 3 W Y=c_(1)^(')+c_(3)^(')WY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} W
X X XX Y = c 1 + c 3 W Y = c 1 + c 3 W Y=c_(1)^(')+c_(3)^(')WY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} W 的條件直接效應

*Model 65 allows up to 10 mediators operating in parallel
*65 型允許最多 10 個調解器並行運作

Created with 以下列方式建立

Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 66 型號 66

Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 3 i W ) ( b 1 i + b 3 i W + b 4 i V ) M i = a 1 i + a 3 i W b 1 i + b 3 i W + b 4 i V M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(3i)W+b_(4i)V)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{3 i} W+b_{4 i} V\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 3 i W ) ( b 1 i + b 3 i W + b 4 i V ) M i = a 1 i + a 3 i W b 1 i + b 3 i W + b 4 i V M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(3i)W+b_(4i)V)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{3 i} W+b_{4 i} V\right) 的條件間接影響

Conditional direct effect of X X XX on Y = c 1 + c 3 V Y = c 1 + c 3 V Y=c_(1)^(')+c_(3)^(')VY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} V
X X XX Y = c 1 + c 3 V Y = c 1 + c 3 V Y=c_(1)^(')+c_(3)^(')VY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} V 的條件直接效應

*Model 66 allows up to 10 mediators operating in parallel
*66 型允許多達 10 個調解器並行運作

Created with 以下列方式建立

Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 67 型號 67

Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 3 i W ) ( b 1 i + b 2 i W + b 3 i V ) M i = a 1 i + a 3 i W b 1 i + b 2 i W + b 3 i V M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(2i)W+b_(3i)V)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{2 i} W+b_{3 i} V\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 3 i W ) ( b 1 i + b 2 i W + b 3 i V ) M i = a 1 i + a 3 i W b 1 i + b 2 i W + b 3 i V M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(2i)W+b_(3i)V)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{2 i} W+b_{3 i} V\right) 的條件間接影響

Conditional direct effect of X X XX on Y = c 1 + c 3 W + c 5 V Y = c 1 + c 3 W + c 5 V Y=c_(1)^(')+c_(3)^(')W+c_(5)^(')VY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} W+c_{5}{ }^{\prime} V
X X XX Y = c 1 + c 3 W + c 5 V Y = c 1 + c 3 W + c 5 V Y=c_(1)^(')+c_(3)^(')W+c_(5)^(')VY=c_{1}{ }^{\prime}+c_{3}{ }^{\prime} W+c_{5}{ }^{\prime} V 的條件直接效應

*Model 67 allows up to 10 mediators operating in parallel
*67 型允許多達 10 個調解器並行運作

Created with 以下列方式建立

Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 68 型號 68

Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) ( b 1 i + b 3 i W ) M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z b 1 i + b 3 i W M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)(b_(1i)+b_(3i)W)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right)\left(b_{1 i}+b_{3 i} W\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) ( b 1 i + b 3 i W ) M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z b 1 i + b 3 i W M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)(b_(1i)+b_(3i)W)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right)\left(b_{1 i}+b_{3 i} W\right) 的條件間接影響

Direct effect of X X XX on Y = c Y = c Y=c^(')Y=c^{\prime}
X X XX Y = c Y = c Y=c^(')Y=c^{\prime} 的直接影響

*Model 68 allows up to 10 mediators operating in parallel
*68 型允許多達 10 個調解器並行運作
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 69 69 型號

Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) ( b 1 i + b 2 i W ) M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z b 1 i + b 2 i W M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)(b_(1i)+b_(2i)W)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right)\left(b_{1 i}+b_{2 i} W\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) ( b 1 i + b 2 i W ) M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z b 1 i + b 2 i W M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)(b_(1i)+b_(2i)W)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right)\left(b_{1 i}+b_{2 i} W\right) 的條件間接影響

Conditional direct effect of X X XX on Y = c 1 + c 4 W + c 5 Z + c 7 W Z Y = c 1 + c 4 W + c 5 Z + c 7 W Z Y=c_(1)^(')+c_(4)^(')W+c_(5)^(')Z+c_(7)^(')WZY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} W+c_{5}{ }^{\prime} Z+c_{7}{ }^{\prime} W Z
X X XX Y = c 1 + c 4 W + c 5 Z + c 7 W Z Y = c 1 + c 4 W + c 5 Z + c 7 W Z Y=c_(1)^(')+c_(4)^(')W+c_(5)^(')Z+c_(7)^(')WZY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} W+c_{5}{ }^{\prime} Z+c_{7}{ }^{\prime} W Z 的條件直接效應

*Model 69 allows up to 10 mediators operating in parallel
*69 型允許最多 10 個調解器並行運作
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/
Model 70 型號 70
Conceptual Diagram 概念圖
Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 3 i W ) ( b 1 i + b 4 i W + b 5 i V + b 7 i W V ) M i = a 1 i + a 3 i W b 1 i + b 4 i W + b 5 i V + b 7 i W V M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(4i)W+b_(5i)V+b_(7i)WV)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{4 i} W+b_{5 i} V+b_{7 i} W V\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 3 i W ) ( b 1 i + b 4 i W + b 5 i V + b 7 i W V ) M i = a 1 i + a 3 i W b 1 i + b 4 i W + b 5 i V + b 7 i W V M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(4i)W+b_(5i)V+b_(7i)WV)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{4 i} W+b_{5 i} V+b_{7 i} W V\right) 的條件間接影響

Direct effect of X X XX on Y = c Y = c Y=c^(')Y=c^{\prime}
X X XX Y = c Y = c Y=c^(')Y=c^{\prime} 的直接影響

*Model 70 allows up to 10 mediators operating in parallel
*70 型允許多達 10 個調解器並行運作
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 71 型號 71

Conceptual Diagram 概念圖
Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 3 i W ) ( b 1 i + b 2 i W + b 3 i V + b 4 i W V ) M i = a 1 i + a 3 i W b 1 i + b 2 i W + b 3 i V + b 4 i W V M_(i)=(a_(1i)+a_(3i)W)(b_(1i)+b_(2i)W+b_(3i)V+b_(4i)WV)M_{i}=\left(a_{1 i}+a_{3 i} W\right)\left(b_{1 i}+b_{2 i} W+b_{3 i} V+b_{4 i} W V\right)
Conditional direct effect of X X XX on Y = c 1 + c 4 W + c 5 V + c 7 W V Y = c 1 + c 4 W + c 5 V + c 7 W V Y=c_(1)^(')+c_(4)^(')W+c_(5)^(')V+c_(7)^(')WVY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} W+c_{5}{ }^{\prime} V+c_{7}{ }^{\prime} W V
*Model 71 allows up to 10 mediators operating in parallel
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 72 型號 72

Conceptual Diagram 概念圖
Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right).
X X XX Y Y YY 透過 M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right) 的條件間接影響。
( b 1 i + b 4 i W + b 5 i Z + b 7 i W Z ) b 1 i + b 4 i W + b 5 i Z + b 7 i W Z (b_(1i)+b_(4i)W+b_(5i)Z+b_(7i)WZ)\left(b_{1 i}+b_{4 i} W+b_{5 i} Z+b_{7 i} W Z\right)
Direct effect of X X XX on Y = c Y = c Y=c^(')Y=c^{\prime}
X X XX Y = c Y = c Y=c^(')Y=c^{\prime} 的直接影響

*Model 72 allows up to 10 mediators operating in parallel
*72 型允許多達 10 個調解器並行運作

Created with 以下列方式建立
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 73 型號 73

Conceptual Diagram 概念圖

Statistical Diagram 統計圖表
Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right). ( b 1 i + b 2 i W + b 3 i Z + b 4 i W Z ) b 1 i + b 2 i W + b 3 i Z + b 4 i W Z (b_(1i)+b_(2i)W+b_(3i)Z+b_(4i)WZ)\left(b_{1 i}+b_{2 i} W+b_{3 i} Z+b_{4 i} W Z\right)
X X XX Y Y YY 經由 M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right) 的條件間接影響。 ( b 1 i + b 2 i W + b 3 i Z + b 4 i W Z ) b 1 i + b 2 i W + b 3 i Z + b 4 i W Z (b_(1i)+b_(2i)W+b_(3i)Z+b_(4i)WZ)\left(b_{1 i}+b_{2 i} W+b_{3 i} Z+b_{4 i} W Z\right)

Conditional direct effect of X X XX on Y = c 1 + c 4 W + c 5 Z + c 7 W Z Y = c 1 + c 4 W + c 5 Z + c 7 W Z Y=c_(1)^(')+c_(4)^(')W+c_(5)^(')Z+c_(7)^(')WZY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} W+c_{5}{ }^{\prime} Z+c_{7}{ }^{\prime} W Z
X X XX Y = c 1 + c 4 W + c 5 Z + c 7 W Z Y = c 1 + c 4 W + c 5 Z + c 7 W Z Y=c_(1)^(')+c_(4)^(')W+c_(5)^(')Z+c_(7)^(')WZY=c_{1}{ }^{\prime}+c_{4}{ }^{\prime} W+c_{5}{ }^{\prime} Z+c_{7}{ }^{\prime} W Z 的條件直接效應

*Model 73 allows up to 10 mediators operating in parallel
*73 型允許多達 10 個調解器並行運作

Created with 以下列方式建立
Model Templates for PROCESS for SPSS and SAS ©2013 Andrew F. Hayes, http://www.afhayes.com/
SPSS 和 SAS 的 PROCESS 模型範本 ©2013 Andrew F. Hayes, http://www.afhayes.com/

Model 74 74 型號

Conditional indirect effect of X X XX on Y Y YY through M i = a i ( b 1 i + c 2 i X ) M i = a i b 1 i + c 2 i X M_(i)=a_(i)(b_(1i)+c_(2i)^(')X)M_{i}=a_{i}\left(b_{1 i}+c_{2 i}{ }^{\prime} X\right) Conditional direct effect of X = c 1 + c 2 i M X = c 1 + c 2 i M X=c_(1)^(')+c_(2i)^(')MX=c_{1}{ }^{\prime}+c_{2 i}{ }^{\prime} M
X X XX Y Y YY M i = a i ( b 1 i + c 2 i X ) M i = a i b 1 i + c 2 i X M_(i)=a_(i)(b_(1i)+c_(2i)^(')X)M_{i}=a_{i}\left(b_{1 i}+c_{2 i}{ }^{\prime} X\right) 的條件間接影響 X = c 1 + c 2 i M X = c 1 + c 2 i M X=c_(1)^(')+c_(2i)^(')MX=c_{1}{ }^{\prime}+c_{2 i}{ }^{\prime} M 的條件直接影響

*Model 74 allows up to 10 mediators operating in parallel. PROCESS does not produce a table of conditional direct effects for model 74 . With only one mediator, use model 1 to generate the conditional direct effects, specifying M M MM as moderator.
*模型 74 最多允許 10 個中介同時運作。PROCESS 不會產生模型 74 的條件直接效應表。如果只有一個中介人,請使用模型 1 來產生條件直接效應,指定 M M MM 為中介人。

Created with 以下列方式建立

download the free trial online at nitropdicom/profersional
線上下載免費試用版,網址為 nitropdicom/profersional

  1. Conditional indirect effect of X X XX on Y Y YY through M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right).
    X X XX Y Y YY 透過 M i = ( a 1 i + a 4 i W + a 5 i Z + a 7 i W Z ) M i = a 1 i + a 4 i W + a 5 i Z + a 7 i W Z M_(i)=(a_(1i)+a_(4i)W+a_(5i)Z+a_(7i)WZ)M_{i}=\left(a_{1 i}+a_{4 i} W+a_{5 i} Z+a_{7 i} W Z\right) 的條件間接影響。

    ( b 1 i + b 2 i V + b 3 i Q + b 4 i V Q ) b 1 i + b 2 i V + b 3 i Q + b 4 i V Q (b_(1i)+b_(2i)V+b_(3i)Q+b_(4i)VQ)\left(b_{1 i}+b_{2 i} V+b_{3 i} Q+b_{4 i} V Q\right)
    Conditional direct effect of X X XX on Y = ( c 1 + c 4 W + c 5 Z + c 7 W Z + c 10 V + c 11 Q + c 13 V Q ) Y = c 1 + c 4 W + c 5 Z + c 7 W Z + c 10 V + c 11 Q + c 13 V Q Y=(c_(1)^(')+c_(4)^(')W+c_(5)^(')Z+c_(7)^(')WZ+c_(10)^(')V+c_(11)^(')Q+c_(13)^(')VQ)Y=\left(c_{1}{ }^{\prime}+c_{4}{ }^{\prime} W+c_{5}{ }^{\prime} Z+c_{7}{ }^{\prime} W Z+c_{10}{ }^{\prime} V+c_{11}{ }^{\prime} Q+c_{13}{ }^{\prime} V Q\right)
    X X XX Y = ( c 1 + c 4 W + c 5 Z + c 7 W Z + c 10 V + c 11 Q + c 13 V Q ) Y = c 1 + c 4 W + c 5 Z + c 7 W Z + c 10 V + c 11 Q + c 13 V Q Y=(c_(1)^(')+c_(4)^(')W+c_(5)^(')Z+c_(7)^(')WZ+c_(10)^(')V+c_(11)^(')Q+c_(13)^(')VQ)Y=\left(c_{1}{ }^{\prime}+c_{4}{ }^{\prime} W+c_{5}{ }^{\prime} Z+c_{7}{ }^{\prime} W Z+c_{10}{ }^{\prime} V+c_{11}{ }^{\prime} Q+c_{13}{ }^{\prime} V Q\right) 的條件直接效應

    *Model 57 allows up to 10 mediators operating in parallel
    *57 型允許多達 10 個調解器並行運作