3.1.2. The Analysis of Hotspot Areas for TP Concentration
3.1.2. TP 浓度热点区域分析
TP concentration in the YRB displays distinct spatial clustering, predominantly concentrated in low-lying plains, including the Chengdu Plain in the Sichuan Basin, the Pu River Basin in Yunnan, the Jianghan Plain, the Central Anhui Plain, and the Yangtze River Delta (Figure 4). TP concentration in hotspot areas ranges from 0.02 mg/L to 0.45 mg/L, which are classified below the Class II water quality standard. In contrast, TP concentration in cold spot areas remains consistently below 0.3 mg/L, all surpassing the Class III water quality standard. In non-hotspot regions, TP concentrations range from 0.005 mg/L to 0.25 mg/L, with pollution levels meeting or surpassing the Class IV standard.
YRB 中的 TP 浓度显示出明显的空间聚集,主要集中在低洼平原,包括四川盆地的成都平原、云南的普河流域、江汉平原、安徽中部平原和长江三角洲(图 4)。热点区域的 TP 浓度范围为 0.02 mg/L 至 0.45 mg/L,均低于 II 类水质标准。相比之下,冷点区域的 TP 浓度始终保持在 0.3 mg/L 以下,均超过 III 类水质标准。在非热点区域,TP 浓度范围为 0.005 mg/L 至 0.25 mg/L,污染水平达到或超过 IV 类标准。
![]()
Figure 4. Hotspot analysis and secondary water resource zoning-based TP concentration hot and cold zoning map in the Yangtze River Basin
图 4. 基于热点分析和二级水资源分区的长江流域 TP 浓度冷热区划图.
3.2. Spatial Distribution Characteristics of Land Use Patterns in the YRB
3.2. 黄河流域土地利用模式的空间分布特征
The land use in the YRB is predominantly composed of forests, grasslands, and croplands (Figure 5). The distribution of land use types is as follows: forests (53.5%), grasslands (22.1%), croplands (14.5%), built-up lands (2.9%), barelands (3.2%), and wetlands (0.2%). Forests are predominantly located in the middle reaches of the YRB, forming a concentric pattern around the Chengdu Plain. Grasslands are mainly found in the upper reaches of the basin, while croplands are concentrated in the middle and lower reaches, including the Sichuan Basin. Built-up lands, which occupy a significant proportion, are mainly located in the downstream sections of the basin and around the Chengdu Plain. Barelands are primarily located in the upper and lower reaches, with limited presence in the middle reaches. Wetlands are predominantly distributed in the lower reaches, especially within the Poyang Lake and Dongting Lake water systems.
YRB 的土地利用主要由森林、草地和农田组成(图 5)。土地利用类型的分布如下:森林(53.5%)、草地(22.1%)、农田(14.5%)、建设用地(2.9%)、裸地(3.2%)和湿地(0.2%)。森林主要分布在 YRB 的中游,形成围绕成都平原的同心模式。草地主要位于流域的上游,而农田则集中在中游和下游,包括四川盆地。占有相当比例的建设用地主要位于流域的下游和成都平原周边。裸地主要分布在上游和下游,中游的分布有限。湿地主要分布在下游,特别是在鄱阳湖和洞庭湖水系内。
![]()
Figure 5. Spatial distribution map of the 6 main land use types in the Yangtze River Basin: (a) forest; (b) grassland; (c) cropland; (d) built-up land; (e) bareland; (f) wetland
图 5. 长江流域 6 种主要土地利用类型的空间分布图:(a) 森林;(b) 草地;(c) 耕地;(d) 建成区;(e) 裸地;(f) 湿地.
3.3. Effects of Land Use Types on TP Concentration at Different Scales
3.3. 不同尺度下土地利用类型对总磷浓度的影响
3.3.1. The Impact of Land Use Patterns on TP Concentrations at the Whole Basin Scale
3.3.1. 土地利用模式对整个流域 TP 浓度的影响
Land use types in the YRB, including built-up lands, croplands, forests, grasslands, industrial and mining lands, and barelands, show significant correlations with TP concentration (Table 2). The top three land use types influencing TP concentration in the basin are built-up lands (q = 0.19, corr = 0.43, p < 0.001), croplands (q = 0.18, corr = 0.40, p < 0.001), and forests (q = 0.16, corr = −0.38, p < 0.001). Built-up lands, croplands, industrial and mining lands, and barelands significantly increase TP concentration, whereas forests and grasslands significantly reduce them. Wetlands have a negative effect on TP concentrations; however, the p-value exceeds 0.05, indicating statistical insignificance. Due to the limited distribution of wetlands in the YRB and the absence of a significant correlation, wetlands are excluded from the analysis of the impact of land use types on TP concentration in subsequent analyses of secondary water resource divisions and hotspot/coldspot areas.
在黄河流域的土地利用类型,包括建设用地、农田、森林、草地、工业和矿业用地以及裸地,与总磷浓度(TP 浓度)显示出显著的相关性(表 2)。影响流域 TP 浓度的前三种土地利用类型是建设用地(q = 0.19,corr = 0.43,p < 0.001)、农田(q = 0.18,corr = 0.40,p < 0.001)和森林(q = 0.16,corr = −0.38,p < 0.001)。建设用地、农田、工业和矿业用地以及裸地显著增加 TP 浓度,而森林和草地则显著降低 TP 浓度。湿地对 TP 浓度有负面影响;然而,p 值超过 0.05,表明统计上不显著。由于黄河流域湿地的分布有限且缺乏显著相关性,湿地在后续的二级水资源划分和热点/冷点区域分析中被排除在土地利用类型对 TP 浓度影响的分析之外。
Table 2. Land use impact factor (LUIF) of land use type and TP concentration across the Yangtze River Basin in 2021
表 2. 2021 年长江流域土地利用类型的土地利用影响因子(LUIF)与总磷浓度.
Land Use Type 土地利用类型 | q Value q 值 | Pearson Correlation (corr) 皮尔逊相关系数 (corr) | Direction 方向 |
Built-up land 建成区土地 | 0.19 *** | 0.43 *** | + |
Cropland 农田 | 0.18 *** | 0.40 *** | + |
Forest 森林 | 0.16 *** | −0.38 *** | - |
Bareland 光秃土地 | 0.10 *** | 0.24 *** | + |
Industrial and mining land 工业和矿业用地 | 0.06 *** | 0.24 *** | + |
Grassland 草原 | 0.05 *** | −0.16 *** | - |
Wetland 湿地 | 0.00 | −0.02 | - |
The interaction between any two land use types leads to either bilinear or nonlinear increases in explanatory power (Figure 6). Notably, the interaction between built-up lands and croplands demonstrates the highest explanatory power, reaching 0.30. The TP concentration increases under the influence of any two land use types, with a notable strengthening in the explanatory power of the interaction factor. This further validates the impact of combined land use types on TP concentration.
任何两种土地利用类型之间的相互作用导致了解释力的双线性或非线性增加(图 6)。值得注意的是,建设用地与农田之间的相互作用表现出最高的解释力,达到 0.30。在任何两种土地利用类型的影响下,TP 浓度增加,且相互作用因子的解释力显著增强。这进一步验证了组合土地利用类型对 TP 浓度的影响。
Figure 6. Interaction q value of different land use types and TP concentration in the Yangtze River Basin. Mining land refers to industrial and mining land.
图 6. 长江流域不同土地利用类型与总磷浓度的交互 q 值。矿业用地指工业和矿业用地。
3.3.2. The Impact of Land Use Patterns on TP Concentrations at the Sub-Basin Scale
3.3.2. 土地利用模式对子流域尺度总磷浓度的影响
The impact of land use patterns on TP concentrations varies across the sub-basins of the YRB. Figure 7 illustrates that TP concentration in the upper reaches of the Jinsha River, upstream of Shigu, primarily originates from grasslands. In contrast, TP concentration in the lower reaches of the Jinsha River, downstream of Shigu, primarily originates from industrial and mining lands. In the Minjiang and Tuojiang Rivers, TP concentration is predominantly derived from croplands, built-up lands, and industrial and mining lands, with croplands exerting the most significant impact on TP concentrations in these regions. In the Jialing River, TP concentration is primarily derived from croplands. Along the mainstem from Yibin to Yichang, TP concentration is driven primarily by croplands, built-up lands, and barelands, with croplands having the most significant impact on TP concentrations. In the Wujiang River, TP concentration originates mainly from built-up lands, industrial and mining lands, and barelands, with industrial and mining lands exerting the greatest impact on TP concentrations in this area. In the Han River, TP concentration is primarily derived from croplands, built-up lands, industrial and mining lands, and barelands, with built-up lands having the greatest impact on TP concentrations in this region. Along the mainstem from Yichang to Hukou, TP concentration is driven by grasslands, croplands, built-up lands, industrial and mining lands, and barelands, with croplands exerting the greatest impact on TP concentrations. In the Dongting Lake water system, TP concentration primarily originates from croplands, built-up lands, industrial and mining lands, and barelands, with croplands exerting the greatest impact on TP concentrations. Below Hukou, TP concentration along the mainstem originates from grasslands, croplands, built-up lands, industrial and mining lands, and barelands, with built-up lands exerting the greatest impact on TP concentrations. In the Taihu Lake water system, TP concentration is primarily derived from grasslands, croplands, and built-up lands, with croplands having the greatest impact on TP concentrations.
土地利用模式对长江上游各子流域总磷浓度的影响各不相同。图 7 显示,金沙江上游(石鼓上游)的总磷浓度主要来源于草地。相比之下,金沙江下游(石鼓下游)的总磷浓度主要来源于工业和采矿用地。在岷江和沱江,总磷浓度主要来源于农田、建设用地以及工业和采矿用地,其中农田对这些地区的总磷浓度影响最大。在嘉陵江,总磷浓度主要来源于农田。在从宜宾到宜昌的主干流中,总磷浓度主要受农田、建设用地和裸地的驱动,其中农田对总磷浓度的影响最为显著。在乌江,总磷浓度主要来源于建设用地、工业和采矿用地以及裸地,其中工业和采矿用地对该地区的总磷浓度影响最大。 在汉江中,总磷(TP)浓度主要来源于农田、建设用地、工业和矿业用地以及裸地,其中建设用地对该地区 TP 浓度的影响最大。在从宜昌到湖口的主干流中,TP 浓度受草地、农田、建设用地、工业和矿业用地以及裸地的驱动,其中农田对 TP 浓度的影响最大。在洞庭湖水系中,TP 浓度主要来源于农田、建设用地、工业和矿业用地以及裸地,其中农田对 TP 浓度的影响最大。在湖口以下,主干流的 TP 浓度来源于草地、农田、建设用地、工业和矿业用地以及裸地,其中建设用地对 TP 浓度的影响最大。在太湖水系中,TP 浓度主要来源于草地、农田和建设用地,其中农田对 TP 浓度的影响最大。
![]()
Figure 7. Histogram of land use impact factor (LUIF) of secondary water resources in the Yangtze River Basin. Mine refers to industrial and mining land.
图 7.长江流域二级水资源的土地利用影响因子(LUIF)直方图。矿地指工业和采矿用地。
3.3.3. The Impact of Land Use Patterns on TP Concentrations at the Regional Scale
3.3.3. 土地利用模式对区域尺度总磷浓度的影响
Significant differences in the impact of land use patterns on TP concentrations exist across different hotspot zones (Figure 8a–g). In the three high-value hotspot areas, forests play a mitigating role, with TP concentration primarily originating from built-up lands and industrial and mining lands. In the three low-value coldspot areas, grasslands exert a mitigating effect, with TP concentration primarily stemming from built-up lands, croplands, and industrial and mining lands. In non-hotspot areas, both forests and grasslands provide a mitigating effect, with TP concentration primarily emanating from built-up lands, croplands, and industrial and mining lands. According to Figure 8h, TP concentration hotspots are predominantly located in areas with a higher proportion of croplands and built-up lands, while coldspot areas are more prevalent in regions dominated by forests and grasslands. From coldspot low-value areas to hotspot high-value areas, the proportion of forests decreases progressively (area proportion from 70.4% to 40.7%), while the proportion of croplands increases (area proportion from 7.2% to 33.7%), along with a rise in the proportion of built-up lands (area proportion from 1.2% to 10.2%).
不同热点区域的土地利用模式对总磷(TP)浓度的影响存在显著差异(图 8a–g)。在三个高价值热点区域,森林发挥了缓解作用,TP 浓度主要来源于建设用地和工业及矿业用地。在三个低价值冷点区域,草地发挥了缓解作用,TP 浓度主要源于建设用地、农田以及工业和矿业用地。在非热点区域,森林和草地均提供了缓解作用,TP 浓度主要来自建设用地、农田和工业及矿业用地。根据图 8h,TP 浓度热点主要位于农田和建设用地比例较高的区域,而冷点区域则更常见于以森林和草地为主的地区。从低价值冷点区域到高价值热点区域,森林的比例逐渐减少(面积比例从 70.4%降至 40.7%),而农田的比例则增加(面积比例从 7.2%增至 33%)。7%),同时建成区土地的比例也有所上升(面积比例从 1.2%上升至 10.2%)。
![]()
Figure 8. Impact index of land use type in hot and cold zones in the Yangtze River Basin
图 8.长江流域热区和冷区土地利用类型的影响指数.
4. Discussion
4. 讨论
4.1. Significant Spatial Clustering of TP Concentration in the YRB
4.1. 黄河流域 TP 浓度的显著空间聚集
This study reveals the spatial clustering of TP pollution in the YRB using hotspot analysis. Hotspot regions of TP concentration include the Pudu River Basin, Chengdu Plain, Jianghan Plain, and the Yangtze River Delta. In comparison to the studies by Ji et al. [29,30] and Chen et al. [31], this study also identifies the Chengdu and Hanjiang Plains as hotspots for TP concentration. This distribution corresponds to areas rich in China’s renowned phosphate mineral deposits, such as the Jinhua-Qingping mines in Sichuan, Dianchi mines in Yunnan, Yichang mines in Hubei, and Fuquan mines in Guizhou [10,32,33]. These areas, rich in phosphate resources, experience elevated TP concentrations due to intensive mining activities and high-load emissions from phosphate chemical industries, which significantly contribute to persistent pollution levels.
本研究通过热点分析揭示了黄河流域 TP 污染的空间聚集。TP 浓度的热点区域包括普渡河流域、成都平原、江汉平原和长江三角洲。与季等人[29,30]和陈等人[31]的研究相比,本研究还将成都平原和汉江平原确定为 TP 浓度的热点。这一分布与中国著名的磷矿资源丰富地区相对应,如四川的金华-青平矿、云南的滇池矿、湖北的宜昌矿和贵州的福泉矿[10,32,33]。这些富含磷资源的地区由于集中的采矿活动和磷化工行业的高负荷排放,导致 TP 浓度升高,显著加剧了持续的污染水平。
In August 2019, the Ministry of Ecology and Environment published a rectification report, revealing that 276 out of 692 “three-phosphate” enterprises (phosphate mines, storage, and chemical industries) were found to have ecological and environmental issues (Figure 9). Upstream of the four primary hotspots for elevated TP concentrations, a dense cluster of “three-phosphate” enterprises requiring rectification is observed. TP concentrations from these enterprises accumulate through tributaries, eventually flowing into the main rivers, forming high-value hotspot areas along the river. Research by Yan et al. [34] also highlights significant spatial variations in phosphorus loads entering the river from “three-phosphate” enterprises in the YRB. Sub-basins such as the downstream of the Jinsha River, Wujiang River, Min and Tuo Rivers, and Han River contribute 32.8% to the TP flux in the Yangtze River, marking them as key sources of phosphorus in the basin. In addition, in the 12 secondary water resource zones within the basin, TP concentration in the Jinsha River (below Shigu) and Wujiang River is primarily attributed to industrial and mining lands. Industrial and mining lands are also key contributors to TP concentration in the Min-Tuo River, Han River, the stretch from Yichang to Hukou, the Dongting Lake system, and downstream of Hukou. Furthermore, in the high-value areas identified through hotspot analysis, TP concentration primarily originates from built-up and industrial-mining lands, emphasizing that the major sources of TP concentration in these hotspots are mining activities and high-load emissions from phosphate mining and chemical industries.
2019 年 8 月,生态环境部发布了一份整改报告,揭示在 692 家“三磷”企业(磷矿、储存和化工行业)中,有 276 家存在生态和环境问题(见图 9)。在四个主要的总磷浓度升高热点的上游,观察到需要整改的“三磷”企业密集聚集。这些企业的总磷浓度通过支流累积,最终流入主河流,形成沿河的高价值热点区域。严等人的研究[34]也强调了来自“三磷”企业进入长江的磷负荷存在显著的空间变化。金沙江、乌江、岷江和沱江、汉江等下游子流域对长江的总磷通量贡献了 32.8%,标志着它们是流域内磷的主要来源。此外,在流域内的 12 个二级水资源区中,金沙江(石鼓以下)和乌江的总磷浓度主要归因于工业和矿区土地。 工业和矿业用地也是长江、汉江、宜昌至湖口段、洞庭湖系统以及湖口下游 TP 浓度的主要贡献者。此外,在热点分析中识别出的高价值区域,TP 浓度主要来源于城市建设和工业矿业用地,强调了这些热点中 TP 浓度的主要来源是矿业活动以及磷矿和化工行业的高负荷排放。
![]()
Figure 9. Distribution map of enterprises that need to be rectified in the self-examination of “three phosphorus” in the Yangtze River Basin in 2019
图 9. 2019 年长江流域“三磷”自查中需要整改的企业分布图.
4.2. Regional Differences in the Impact of Land Use Patterns on TP Concentration in the YRB
4.2. 土地利用模式对黄河流域 TP 浓度影响的区域差异
At the basin-wide scale, the primary sources of TP concentration are ranked as follows: built-up land, cropland, industrial and mining land, and bareland. However, the main sources of TP concentration vary significantly across the sub-basins. Specifically, TP concentration in seven sub-basins is primarily attributed to cropland, in two sub-basins it is predominantly sourced from built-up land, and in two others, industrial and mining land are the major contributors (Figure 10). These findings align with the general trend observed by Zou et al. [35], which indicates that 83% of TP concentrations in China originate from agricultural non-point source pollution. However, discrepancies between the basin-wide results and those at the sub-basin scale may be related to the scale-dependent nature of land use impacts on water quality [19]
在流域范围内,总磷浓度的主要来源排名如下:建设用地、农田、工业和矿业用地以及裸地。然而,总磷浓度的主要来源在各个子流域之间差异显著。具体而言,七个子流域的总磷浓度主要归因于农田,两个子流域主要来源于建设用地,而另外两个子流域则以工业和矿业用地为主要贡献者(图 10)。这些发现与 Zou 等人[35]观察到的一般趋势一致,表明中国 83%的总磷浓度源于农业非点源污染。然而,流域范围内的结果与子流域尺度的结果之间的差异可能与土地利用对水质影响的尺度依赖性特征有关[19]。.
In this study, the sources of TP pollution in the sub-basins of the Yangtze River exhibit considerable complexity, with four predominant types of pollution sources identified: industrial-mining land type, cropland type, cropland-dominant type, and built-up land-dominant type. In the downstream section of the Jinsha River, below Shigu, TP concentration primarily originates from industrial-mining land. This is primarily due to the region’s status as a major phosphate mining area in the Dianchi region, where the proven P2O5 reserves amount to 8.94 × 108 tons. The extraction and processing of phosphate ores have caused significant vegetation degradation, contributing to persistently high TP concentrations in this sub-basin [18,33,36]. Therefore, the focus for TP concentration control in this region should be directed towards the management of mining areas and regulation of phosphorus emissions.
在本研究中,长江流域子水系的 TP 污染源表现出相当复杂性,识别出四种主要的污染源类型:工业矿业用地类型、农田类型、农田主导类型和建设用地主导类型。在金沙江下游,石鼓以下,TP 浓度主要来源于工业矿业用地。这主要是由于该地区作为滇池地区主要的磷矿开采区,已探明的 P 2 O 5 储量达到 8.94 × 10 8 吨。磷矿石的开采和加工导致了显著的植被退化,导致该子水系 TP 浓度持续偏高[18,33,36]。因此,该地区 TP 浓度控制的重点应放在矿区管理和磷排放的监管上。
In the Jialing River, TP concentration arises predominantly from cropland, a finding consistent with the results of Wu et al. [37], which indicates that cropland contributes the most to TP concentration in the Jialing River. Consequently, TP control efforts in this sub-basin should prioritize preventing soil erosion and implementing ecological fertilization techniques to reduce pollution in agricultural lands.
在嘉陵江,TP 浓度主要来源于农田,这一发现与吴等人的研究结果一致[37],表明农田对嘉陵江 TP 浓度的贡献最大。因此,该支流的 TP 控制工作应优先考虑防止土壤侵蚀和实施生态施肥技术,以减少农业用地的污染。
The sources of TP concentration in the Min-Tuo River, the Dongting Lake system, the mainstream from Yibin to Hukou, and the Taihu Lake system are characterized as cropland-dominant. Within these regions, the influence of built-up and industrial-mining lands is also substantial, further exacerbating TP concentration levels. Notable examples include the phosphate mines in the Jinhe-Qingping area of Sichuan and the dense concentration of phosphorus chemical industries along the Yichang section of the Yangtze River [38,39]. In these cropland-dominant sub-basins, TP concentration control should focus on large-scale agricultural management practices, including optimizing fertilizer use and promoting conservation tillage.
在岷沱河、洞庭湖系统、从宜宾到湖口的主流以及太湖系统中,TP 浓度的来源以农田为主。在这些地区,城市建设和工业矿区的影响也相当显著,进一步加剧了 TP 浓度水平。显著的例子包括四川金河-青平地区的磷矿和长江宜昌段沿线的磷化工产业的密集分布。在这些以农田为主的子流域中,TP 浓度控制应重点关注大规模农业管理实践,包括优化施肥和推广保护性耕作。
In the Han River and the downstream section below Hukou, the primary source of TP concentration is built-up land, although cropland and industrial-mining lands also significantly influence the TP concentrations in these areas, such as the concentration of phosphorus enterprises below the Danjiangkou section of the Han River [24]. For sub-basins dominated by built-up land, the control of TP concentration should focus on the management of domestic sewage discharge and waste treatment.
在汉江及其下游的壶口以下段落,TP 浓度的主要来源是建设用地,尽管农田和工业矿区也显著影响这些地区的 TP 浓度,例如汉江丹江口段下游的磷企业浓度[24]。对于以建设用地为主的子流域,TP 浓度的控制应重点关注生活污水排放和废物处理的管理。
In the Wujiang River, TP concentration is predominantly from industrial-mining land, with substantial contributions from built-up and bare lands. The basin contains strategically significant national-level phosphate mines, such as the Kaiyang and Wengfu mines, which have been in continuous development, contributing notably to TP concentration due to mining activities and the associated phosphate chemical industries [40]. Therefore, TP concentration control in these sub-basins should focus on the regulation of mining areas, emissions from phosphate production, and the management of domestic wastewater and solid waste disposal.
在吴江河中,总磷浓度主要来自工业采矿用地,建设用地和裸地也有显著贡献。该流域包含具有战略意义的国家级磷矿,如开阳矿和翁福矿,这些矿山一直在持续开发,由于采矿活动及相关的磷化学工业,显著增加了总磷浓度。因此,这些子流域的总磷浓度控制应重点关注采矿区的管理、磷生产的排放以及生活污水和固体废物处置的管理。
The land use types in the Poyang Lake watershed did not pass the significance test, and the main factors driving TP pollution have yet to be identified. However, studies by Sun et al. [41] and Wang et al. [42] indicated that the TP concentration in Poyang Lake is primarily influenced by five rivers: Xiu River, Gan River, Fu River, Xin River, and Rao River. The pollution load from these rivers, along with hydrological changes, are key factors influencing the TP concentration in the lake’s waters. Therefore, the control and mitigation of TP concentration in the Poyang Lake watershed should focus on the management of these five rivers. In conclusion, effective TP concentration management in the YRB requires a tailored approach, with zonal management and systematic governance based on regional characteristics.
鄱阳湖流域的土地利用类型未通过显著性检验,导致总磷(TP)污染的主要驱动因素尚未确定。然而,孙等人[41]和王等人[42]的研究表明,鄱阳湖的 TP 浓度主要受五条河流的影响:秀水、赣江、抚河、新河和饶河。这些河流的污染负荷以及水文变化是影响湖水 TP 浓度的关键因素。因此,控制和减轻鄱阳湖流域的 TP 浓度应重点关注这五条河流的管理。总之,黄河流域的有效 TP 浓度管理需要量身定制的方法,基于区域特征进行分区管理和系统治理。
![]()
Figure 10. The distribution map of the dominant land use types for TP concentration sources in the 12 sub-basins of the Yangtze River.
图 10. 长江 12 个子流域 TP 浓度源的主要土地利用类型分布图。
4.3. Limitations and Future Works
4.3. 限制与未来工作
Although this study has made significant progress in examining the impact of land use on TP pollution, several limitations need to be addressed in future research. First, the water quality data used in this study consist solely of national monitoring data from 2021, which limits the ability to analyze the spatiotemporal variations and trends of TP concentration in the YRB. Second, the land use types considered in this study, except for industrial and mining land, are based on the primary classification of land use, which may obscure spatial heterogeneity within these categories. For example, the influence of different crop types within cropland on TP concentration can vary significantly. In this study, TP concentration in many sub-basins primarily originates from croplands, representing agricultural non-point source pollution. Future research could explore the impact of different farming practices on TP concentration.
尽管本研究在考察土地利用对总磷(TP)污染的影响方面取得了显著进展,但未来研究中仍需解决几个局限性。首先,本研究使用的水质数据仅包括 2021 年的国家监测数据,这限制了对黄河流域(YRB)TP 浓度时空变化和趋势的分析。其次,本研究考虑的土地利用类型,除了工业和矿业用地外,均基于土地利用的主要分类,这可能掩盖了这些类别内的空间异质性。例如,农田内不同作物类型对 TP 浓度的影响可能存在显著差异。在本研究中,许多子流域的 TP 浓度主要来源于农田,代表了农业非点源污染。未来的研究可以探讨不同农业实践对 TP 浓度的影响。
5. Conclusions
5. 结论
This study provides a systematic analysis of the impact of land use on TP concentration at various scales, including both watershed and sub-watershed levels. In 2021, 98.8% of the state-controlled sections in the YRB were classified with TP concentration as “good” or better. TP concentration showed clear spatial clustering, with notable pollution detected in the Pudu River Basin, Chengdu Plain, Jianghan Plain, and the Yangtze River Delta. At the basin-wide scale, built-up land and cropland were identified as the most significant land use types influencing TP concentration levels. A significant regional variation exists in the sources of TP concentration within the YRB, with over half of the sub-basins identifying cropland as the primary source of pollution. Notably, phosphorus concentrations in hotspot regions, including the Pudu River Basin, Chengdu Plain, and Jianghan Plain, are strongly correlated with the distribution of industrial and mining lands. Therefore, TP concentration management in the YRB should implement targeted strategies that address the specific sources of pollution in individual sub-basins.
本研究对土地利用对总磷(TP)浓度的影响进行了系统分析,涵盖了流域和子流域两个层面。2021 年,雅鲁藏布江流域(YRB)中 98.8%的国家控制区域被分类为“良好”或更好的 TP 浓度,且 TP 浓度显示出明显的空间聚集,普渡河流域、成都平原、江汉平原和长江三角洲等地的污染尤为显著。在流域范围内,建设用地和农田被确定为影响 TP 浓度水平的最重要土地利用类型。YRB 内 TP 浓度的来源存在显著的区域差异,超过一半的子流域将农田识别为主要污染源。值得注意的是,普渡河流域、成都平原和江汉平原等热点地区的磷浓度与工业和矿业用地的分布密切相关。因此,YRB 的 TP 浓度管理应实施针对性的策略,以解决各个子流域特定的污染源。
Author Contributions: Methodology, F.D. and Y.X.; Investigation, F.D. and Y.Y.; Data curation, W.L.(Wenhui Liu)and W.L.(Wei Liu); Writing—original draft, F.D., W.L.(Wenhui Liu), W.L.(Wei Liu), Y.X., Y.S., C.Z., M.S., and Y.Y.; Writing—review & editing, F.D., Y.X., W.L.(Wenhui Liu), W.L.(Wei Liu), and Y.S.; Visualization, W.L.(Wei Liu) and M.S. All authors have read and agreed to the published version of the manuscript.
作者贡献:方法论,F.D. 和 Y.X.;调查,F.D. 和 Y.Y.;数据整理,W.L.(刘文辉) 和 W.L.(刘伟);撰写—初稿,F.D.,W.L.(刘文辉),W.L.(刘伟),Y.X.,Y.S.,C.Z.,M.S. 和 Y.Y.;撰写—审阅与编辑,F.D.,Y.X.,W.L.(刘文辉),W.L.(刘伟) 和 Y.S.;可视化,W.L.(刘伟) 和 M.S. 所有作者均已阅读并同意发表的手稿版本。
Funding: This research was funded by the Xiamen Natural Science Foundation Project (3502Z202372044) and the Xiamen Natural Science Foundation Project (3502Z202471079)
资助:本研究由厦门市自然科学基金项目(3502Z202372044)和厦门市自然科学基金项目(3502Z202471079)资助.
Data Availability Statement: The raw data supporting the conclusions of this article will be made available by the authors on request.
数据可用性声明:支持本文结论的原始数据将由作者根据请求提供。
Conflicts of Interest: The authors declare no conflict of interest.
利益冲突:作者声明没有利益冲突。
Appendix A
附录 A
Figure A1. Box plot of TP concentration in 2021 for secondary water resources in the Yangtze River Basin
图 A1. 2021 年长江流域二级水资源中 TP 浓度的箱线图.
Figure A2. Accumulation histogram of land use area proportion and TP concentration curve of secondary water resources in the Yangtze River Basin. ASJR is the above Shigu of the Jinsha River; BSJR is the below Shigu of the Jinsha River; MTR is the Minjiang and Tuojiang River; YTY is the mainstream from Yibin to Yichang; WR is the Wujiang River; JR is the Jialing River; HR is the Han River; YTH is the mainstream from Yibin to Yichang; DTL is the Dongting Lake Water System; PYL is the Poyang Lake Water System; BHMS is the Below Hukou of Main Stream; THL is the Taihu Lake Water System
图 A2. 长江流域二级水资源的土地利用面积比例累积直方图和 TP 浓度曲线。ASJR 是金沙江上游的石鼓;BSJR 是金沙江下游的石鼓;MTR 是岷江和沱江;YTY 是从宜宾到宜昌的主流;WR 是乌江;JR 是嘉陵江;HR 是汉江;YTH 是从宜宾到宜昌的主流;DTL 是洞庭湖水系;PYL 是鄱阳湖水系;BHMS 是主流的下游湖口;THL 是太湖水系。.
References
参考文献
Qin, Y.W.; Ma, Y.Q.; Wang, L.J.; Zheng, B.; Ren, C.; Tong, H.; Wang, H. Pollution of the total phosphorus in the Yangtze River Basin: Distribution characteristics, source and control strategy. Res. Environ. Sci. 2018, 31, 9–14
秦, Y.W.; 马, Y.Q.; 王, L.J.; 郑, B.; 任, C.; 童, H.; 王, H. 长江流域总磷污染:分布特征、来源及控制策略。环境科学研究 2018 319–14.
Yao, J.Z.; Fan, X.J.; Yang, X.; Huang, Y.B. Current situation, causes and control measures of water bloom in the key tributaries of the Three Gorges Reservoir. Chin. J. Environ. Eng. 2022, 16, 2041–2048
姚建忠,范小军,杨旭,黄艳波。三峡水库主要支流水华的现状、成因及控制措施。《中国环境工程》2022,162041–2048。.
Song, J.W.; Zhang, X.X.; Jiang, D.Y.; Zhao, C.H.Z.; Li, P.F. Impact of Land Use Types at Different Scales on Surface Water Environment Quality and Its Driving Mechanism. Environ. Sci. 2022, 43, 3016–3026. https://doi.org/10.13227/j.hjkx.202108234.
宋, J.W.; 张, X.X.; 蒋, D.Y.; 赵, C.H.Z.; 李, P.F. 不同尺度土地利用类型对地表水环境质量的影响及其驱动机制. 环境科学. 2022 433016–3026 https://doi.org/10.13227/j.hjkx.202108234.
Zhang, J.; Li, S.Y.; Jiang, C.S. Effects of land use on water quality in a River Basin (Daning) of the Three Gorges Reservoir Area, China: Watershed versus riparian zone. Ecol. Indic. 2020, 113, 106226. https://doi.org/10.1016/j.ecolind.2020.106226.
张, J.; 李, S.Y.; 蒋, C.S. 中国三峡水库区大宁河流域土地利用对水质的影响:流域与河岸带的比较. 生态指标. 2020 113106226 https://doi.org/10.1016/j.ecolind.2020.106226.
Xu, S.; Li, S.L.; Zhong, J.; Li, C. Spatial scale effects of the variable relationships between landscape pattern and water quality: Example from an agricultural karst river basin, Southwestern China. Agric. Ecosyst. Environ. 2020, 300, 106999. https://doi.org/10.1016/j.agee.2020.106999.
徐, S.; 李, S.L.; 钟, J.; 李, C. 景观格局与水质之间变量关系的空间尺度效应:以中国西南部一个农业喀斯特河流域为例. 农业生态系统与环境. 2020 300106999 https://doi.org/10.1016/j.agee.2020.106999.
Xu, E.Q. Research progress in the impact of land use on water nutrients. Chin. J. Eco-Agric. 2019, 27, 1880–1891. https://doi.org/10.13930/j.cnki.cjea.190110.
徐, E.Q. 土地利用对水体营养物质影响的研究进展. 中国生态农业学报. 2019 271880–1891 https://doi.org/10.13930/j.cnki.cjea.190110.
Wen, J.W.; Wang, P.; Huang, G.X.; Zahng, H.; Nie, M.H.; Ding, M.J.; She, Y.Y. Influence of Land Use Structure and Spatial Pattern on Water Quality of Small and Medium-sized Rivers in Poyang Lake Basin. Environ. Sci. 2023, 44, 6728–6743. https://doi.org/10.13227/j.hjkx.202212093.
温, J.W.; 王, P.; 黄, G.X.; 张, H.; 聂, M.H.; 丁, M.J.; 佘, Y.Y. 鄱阳湖流域小中型河流水质的土地利用结构和空间格局影响. 环境科学. 2023446728–6743 https://doi.org/10.13227/j.hjkx.202212093.
Xu, Y.X.; Wu, X.; Lu, R.; Yang, W.J.; Zhao, Y. Total Phosphorus Pollution, Countermeasures and Suggestions of the Yangtze River Economic Belt. Environ. Conform. Assess. 2018, 10, 70–74. https://doi.org/10.16868/j.cnki.1674-6252.2018.01.070.
徐勇新,吴晓,卢瑞,杨文杰,赵勇。长江经济带总磷污染、对策与建议。《环境符合性评估》2018,1070–74。https://doi.org/10.16868/j.cnki.1674-6252.2018.01.070。
Liu, L.S.; Huang, G.X.; Wang, F.; Chu, Z.S.; Li, H.S. Problems, Situation and Countermeasures of Water Eco-Environment Security in the Yangtze River Basin. Res. Environ. Sci. 2020, 33, 1081–1090
刘, L.S.; 黄, G.X.; 王, F.; 褚, Z.S.; 李, H.S. 长江流域水生态环境安全的问题、现状及对策. 环境科学研究. 2020331081–1090.
Chen, F.; Li, X.H.; Wang, W.J.; Peng, L.; Qian, B. and spatial variation characteristics of total phosphorus in Yangtze River Basin from 2018 to 2022. Express Water Resour. Hydropower Inf. 2023, 44, 91–97
陈飞;李晓华;王伟杰;彭丽;钱斌. 2018 年至 2022 年长江流域总磷的空间变异特征. 《水资源与水电信息快报》2023, 44: 91–97.
Yin, W.; Wang, C.; Zhang, H. Consideration on total phosphorus problem in Yangtze River Basin. Yangtze River 2022, 53, 44–52. https://doi.org/10.16232/j.cnki.1001-4179.2022.04.008.
尹伟;王超;张华。关于长江流域总磷问题的思考。《长江》2022 5344–52 https://doi.org/10.16232/j.cnki.1001-4179.2022.04.008。
Li, Q.; Yang, Z.H.; Yin, W.; Yu, M.H.; Bai, F.P.; Yue, Y.; Ren, Y.F. Tracing the sources and transport of the total phosphorus in the upper Yangtze River. Ecol. Inf. 2023, 77, 102230. https://doi.org/10.1016/j.ecoinf.2023.102230.
李, Q.; 杨, Z.H.; 尹, W.; 余, M.H.; 白, F.P.; 岳, Y.; 任, Y.F. 追踪长江上游总磷的来源和运输. 生态信息. 2023 77102230 https://doi.org/10.1016/j.ecoinf.2023.102230.
Yi, F.; Chen, M.; He, X.F.; Yu, C.H.; An, R.D. Effect of spatial scale on water quality in watershed land use analysis. China Environ. Sci. 2023, 43, 4280–4291. https://doi.org/10.3969/j.issn.1000-6923.2023.08.045.
易, F.; 陈, M.; 何, X.F.; 于, C.H.; 安, R.D. 空间尺度对流域土地利用分析中水质的影响. 中国环境科学. 2023 434280–4291 https://doi.org/10.3969/j.issn.1000-6923.2023.08.045.
Wang, P.; Qi, S.H.; Chen, B. Influence of land use on river water quality in the Ganjiang basin. Acta Ecol. Sin. 2015, 35, 4326–4337. https://doi.org/10.5846/stxb201409221870.
王鹏;齐世华;陈波。土地利用对赣江流域河流水质的影响。《生态学报》2015 354326–4337 https://doi.org/10.5846/stxb201409221870。
Chen, Y.P.; Yue, A.R.; Wei, Y.L.; Yang, C.J. Source Apportionment of Ammonia Nitrogen and Total Phosphorus of Minjiang Bridge Control Unit. Sichuan Environ. 2018, 37, 44–50. https://doi.org/10.3969/j.issn.1001-3644.2018.01.009.
陈, Y.P.; 岳, A.R.; 魏, Y.L.; 杨, C.J. 闽江大桥控制单元氨氮和总磷的源解析. 四川环境. 2018 3744–50 https://doi.org/10.3969/j.issn.1001-3644.2018.01.009.
Fang, N.; Liu, L.L.; You, Q.H.; Tian, N.; Wu, Y.P.; Yang, W.J. Effects of Land Use Types at Different Spatial Scales on Water Quality in Poyang Lake Wetland. Environ. Sci. 2019, 40, 5348–5357. https://doi.org/10.13227/j.hjkx.201903267.
方, N.; 刘, L.L.; 游, Q.H.; 田, N.; 吴, Y.P.; 杨, W.J. 不同空间尺度土地利用类型对鄱阳湖湿地水质的影响. 环境科学. 2019, 40, 5348–5357. https://doi.org/10.13227/j.hjkx.201903267.
Wang, J.; Liu, A.A.; Zhang, J.W.; Chen, Q.S.; Yang, H.W. Effect of Integrated Landscape Characteristics Around Chaohu Lake on River Water Quality Based on Watershed Units. Environ. Sci. 2024, 45, 3214–3224. https://doi.org/10.13227/j.hjkx.202306084.
王, J.; 刘, A.A.; 张, J.W.; 陈, Q.S.; 杨, H.W. 基于流域单元的巢湖周边综合景观特征对河流水质的影响. 环境科学. 2024 453214–3224 https://doi.org/10.13227/j.hjkx.202306084.
Zhang, H.S.; Jiao, Y.M.; Xu, Q.E.; Zhang, Z.N.; Tao, Y. Research review on land use change in Dianchi Lake Basin and its impact on water quality. Yangtze River 2023, 54, 65–73. https://doi.org/10.16232/j.cnki.1001-4179.2023.12.009.
张华生;焦艳梅;徐庆恩;张志宁;陶颖。滇池流域土地利用变化及其对水质影响的研究综述。《长江》2023 5465–73 https://doi.org/10.16232/j.cnki.1001-4179.2023.12.009。
Ding, J.; Jiang, Y.; Liu, Q.; Hou, Z.J.; Liao, J.Y.; Fu, L.; Peng, Q.Z. Influences of the land use pattern on water quality in low-order streams of the Dongjiang River basin, China: A multi-scale analysis. Sci. Total Env. 2016, 551–552, 205–216. https://doi.org/10.1016/j.scitotenv.2016.01.162.
丁, J.; 江, Y.; 刘, Q.; 侯, Z.J.; 廖, J.Y.; 傅, L.; 彭, Q.Z. 土地利用模式对中国东江流域低级河流水质的影响:多尺度分析. 科学总量环境. 2016, 551–552: 205–216. https://doi.org/10.1016/j.scitotenv.2016.01.162.
Wang, Y.B.; Junaid, M.; Deng, J.Y.; Tang, Q.P.; Luo, L.; Xie, Z.Y.; Pei, D.S. Effects of land-use patterns on seasonal water quality at multiple spatial scales in the Jialing River, Chongqing, China. Catena Giess. 2024, 234, 107646. https://doi.org/10.1016/j.catena.2023.107646.
王, Y.B.; 朱奈德, M.; 邓, J.Y.; 唐, Q.P.; 罗, L.; 谢, Z.Y.; 裴, D.S. 土地利用模式对中国重庆嘉陵江多个空间尺度季节性水质的影响. Catena Giess. 2024 234107646 https://doi.org/10.1016/j.catena.2023.107646.
Guan, W.H.; Luo, G.H.; Wang, P.F.; Lou, B.F.; Qiu, G.S. Variation of TP flux in Jialing River and spatial source apportionment. China Environ. Sci. 2024, 44, 1448–1456. https://doi.org/10.3969/j.issn.1000-6923.2024.03.027.
关伟华;罗国华;王鹏飞;娄博芬;邱国胜。嘉陵江 TP 通量变化及空间源解析。《中国环境科学》2024 441448–1456 https://doi.org/10.3969/j.issn.1000-6923.2024.03.027。
Guan, B.H.; Li, J.; Zeng, A.B.; Deng, J.S.; Zhang, J. Impacts of Urban Land Use on Water Quality in Hangzhou. Resour. Sci. 2008, 30, 857–863. https://doi.org/10.3321/j.issn:1007-7588.2008.06.009.
关, B.H.; 李, J.; 曾, A.B.; 邓, J.S.; 张, J. 城市土地利用对杭州水质的影响. 资源科学. 2008 30: 857–863 https://doi.org/10.3321/j.issn:1007-7588.2008.06.009.
Cao, X.F.; Sun, J.H.; Huang, Y. The impact of landscape pattern on water quality in Lake Dianchi watershed. Ecol. Environ. Sci. 2012, 21, 364–369. https://doi.org/10.3969/j.issn.1674-5906.2012.02.028.
曹晓峰;孙建华;黄勇。景观格局对滇池流域水质的影响。《生态与环境科学》2012,21:364–369。https://doi.org/10.3969/j.issn.1674-5906.2012.02.028。
Yang, W.; Li, R.Q. Characteristics and Causes of the Total Phosphorus Pollution in the Yangtze River and Han River. China Rural. Water Hydropower 2021, 01, 42–47. https://doi.org/10.3969/j.issn.1007-2284.2021.01.009.
杨伟,李瑞强。长江和汉江总磷污染的特征及成因。《中国农村水利水电》202101,42–47 https://doi.org/10.3969/j.issn.1007-2284.2021.01.009。
Chen, S.R.; He, L.; Zhang, F.Y.; Ma, G.W.; Lin, L.Y. Characteristics of Surface Water Quality of the Yangtze River Basin during 2016–2019. Res. Environ. Sci. 2020, 33, 1100–1108
陈, S.R.; 何, L.; 张, F.Y.; 马, G.W.; 林, L.Y. 2016–2019 年长江流域地表水质量特征. 环境科学研究. 2020331100–1108.
Deng, F.L.; Lin, T.; Zhao, Y.; Yuan, Y. Zoning and Analysis of Control Units for Water Pollution Control in the Yangtze River Basin, China. Sustainability 2017, 9, 1374. https://doi.org/10.3390/su9081374.
邓福林;林涛;赵勇;袁勇。中国长江流域水污染控制控制单元的分区与分析。《可持续性》2017 91374 https://doi.org/10.3390/su9081374。
Wang, J.Y.; Xie, D.T.; Wang, S.; Yan, J.Z. Research on spatial distribution of rural tourism in mountainous and hilly areas base Don POI extraction—A case study of Chongqing city. Chin. J. Agric. Resour. Reg. Plan. 2020, 41, 257–267
王, J.Y.; 谢, D.T.; 王, S.; 闫, J.Z. 基于 POI 提取的山区和丘陵地区乡村旅游空间分布研究——以重庆市为例. 中国农业资源与区划 2020 41257–267.
Wang, J.; Xu, C. Geographical Detector: Principles and Prospects. Acta Geogr. Sin. 2017, 72, 116–134.
王, J.; 许, C. 地理探测器:原理与前景. 地理学报. 2017, 72, 116–134.
Ji, X.Y.; Peng, D. Characteristics of Total Phosphorus Concentration in the Yangtze River Basin in the Thirteenth Five-Year Plan Period. J. Chang. River Sci. Res. Inst. 2022, 39, 1–9
季, X.Y.; 彭, D. 长江流域十三五期间总磷浓度特征. 长江科学院学报. 2022 391–9.
Chen, S.R.; He, L.H.; Lin, L.Y.; Fang, D.K.; Zhang, F.Y. Change Trends of Surface Water Quality in the Mainstream of the Yangtze River during the Past Four Decades. Res. Environ. Sci. 2020, 33, 1119–1128. https://doi.org/10.13198∕j.issn.1001-6929.2020.03.07.
陈世荣,何丽华,林丽燕,方德凯,张凤艳。过去四十年长江主流水质变化趋势。环境科学研究,2020,331119–1128。https://doi.org/10.13198/j.issn.1001-6929.2020.03.07。
Li, Z.M. Introduction to China’s Chemical Mineral Geology. Ind. Miner. Process. 2002, 05, 33–34
李志明. 中国化学矿物地质学导论. 工业矿产与加工. 2002, 53–34..
Shi, Y.; Qin, Y.W.; Ma, Y.Q.; Zhao, Y.M.; Wen, Q.; Cao, W.; Qiao, F. Pollution Status and Control Strategy of ’Three Phosphorus’ Pollution in the Upper Reaches of Yangtze River Basin,China. Res. Environ. Sci. 2020, 33, 2283–2289
施勇;秦艳伟;马玉清;赵艳梅;温强;曹伟;乔峰。长江上游流域“三磷”污染现状及控制策略。环境科学研究,2020,332283–2289。.
Yan, W.J.; Li, Q.Q.; Wang, F.; Wang, J.N.; Yu, Q.B.; Song, Y.H.; Wang, D.S. Basin-scale phosphorus and“three-P”loads into the river network and their contributions to the riverine P fluxes at key stations of the Changjiang River: Model and scenario analysis. Acta Sci. Circumstantiae 2022, 42, 149–159. https://doi.org/10.13671/j.hjkxxb.2022.0234.
闫伟杰;李青青;王芳;王金宁;余青波;宋玉华;王东升。流域尺度磷和“三磷”负荷进入河流网络及其对长江关键站点河流磷通量的贡献:模型与情景分析。《环境科学学报》2022 42149–159 https://doi.org/10.13671/j.hjkxxb.2022.0234。
Zou, L.L.; Liu, Y.S.; Wang, Y.S.; Hu, X.D. Assessment and analysis of agricultural non-point source pollution loads in China: 1978–2017. J. Env. Manag. 2020, 263, 110400. https://doi.org/10.1016/j.jenvman.2020.110400.
邹, L.L.; 刘, Y.S.; 王, Y.S.; 胡, X.D. 中国农业非点源污染负荷的评估与分析:1978–2017. 环境管理杂志. 2020 263110400https://doi.org/10.1016/j.jenvman.2020.110400.
Jiang, W.; Li, J.; Chen, Y.H. Current Situation and Analysis of Water Quality of the Jinsha River(Yunnan Section) Basin. Environ. Sci. Surv. 2023, 06, 78–82. https://doi.org/10.13623/j.cnki.hkdk.2023.06.001.
姜伟;李杰;陈玉华。金沙江(云南段)流域水质现状及分析。环境科学调查,2023,0678–82。https://doi.org/10.13623/j.cnki.hkdk.2023.06.001。
Wu, L.; Long, T.Y.; Wang, Y.X.; Lu, Q.Q. Prediction of non-point source nitrogen and phosphorus pollution load in Jialing River watershed based on distributed hydrological model. Trans. Csae 2011, 27, 55–60. https://doi.org/10.3969/j.issn.1002-6819.2011.03.010.
吴立;龙天宇;王玉霞;卢青青。基于分布式水文模型的嘉陵江流域非点源氮磷污染负荷预测。《中国农业工程学报》2011 2755–60 https://doi.org/10.3969/j.issn.1002-6819.2011.03.010。
Zhao, L. Analysis of water quality changes in Yichang section of the Changjiang River Basin under the background of Great Protection of the Changjiang River. Environ. Prot. Technol. 2023, 29, 41–46, 64. https://doi.org/10.3969/j.issn.1674-0254.2023.05.007.
赵, L. 在长江大保护背景下宜昌段水质变化分析. 环境保护技术. 2023 29 41–4664 https://doi.org/10.3969/j.issn.1674-0254.2023.05.007.
Cheng, M.; Tang, M.; Liang, G.L. Research on the transformation of one kilometer industrial space along the Yangtze River in Yichang under the background of Yangtze River protection. Contemp. Econ. 2019, 04, 24–28. https://doi.org/10.3969/j.issn.1007-9378.2019.04.007.
程明;唐敏;梁国良. 在长江保护背景下宜昌一公里工业空间转型研究. 当代经济. 2019 年 04 期, 24–28. https://doi.org/10.3969/j.issn.1007-9378.2019.04.007.
Sun, J.; Wang, Z.F. Water quality and main pollutants in the Sinan section of the Wujiang river in Guizhou Province. Inn. Mong. Environ. Sci. 2020, 32, 24–25. https://doi.org/10.16647/j.cnki.cn15-1369/X.2020.02.013.
孙杰,王志峰。贵州省乌江河思南段水质及主要污染物。内蒙古环境科学,2020,32:224–25。https://doi.org/10.16647/j.cnki.cn15-1369/X.2020.02.013。
Sun, J.W.; Wang, J.; Yang, Y.L.; Chen, J.; Zhou, Q.; Zhong, W.J. Temporal and spatial characteristics and abnormal changes of nitrogen and phosphorus in Poyang lake and the impact pathways. Jiangxi Hydraul. Sci. Technol. 2024, 50, 199–205. https://doi.org/10.3969/j.issn.1004-4701.2024.03-08.
孙建伟;王杰;杨玉林;陈杰;周强;钟文杰。鄱阳湖氮磷的时空特征及异常变化与影响途径。江西水利科技,2024,50199–205。https://doi.org/10.3969/j.issn.1004-4701.2024.03-08。
Wang, Y.D.; Jia, J.J.; Lu, Y.; Tian, L.L.; Gao, Y. Nitrogen and phosphorus budget and eutrophication impacts in Poyang Lake from 2010 to 2019. Acta Sci. Circumstantiae 2024, 44, 151–160
王, Y.D.; 贾, J.J.; 陆, Y.; 田, L.L.; 高, Y. 2010 年至 2019 年鄱阳湖氮磷预算及富营养化影响. 环境科学学报 202444151–160.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
免责声明/出版商声明:所有出版物中包含的陈述、观点和数据仅代表个别作者和贡献者的意见,而不代表 MDPI 和/或编辑的观点。MDPI 和/或编辑对因内容中提及的任何思想、方法、指示或产品而导致的对人或财产的任何伤害不承担责任。