Wolfgang J. Junk 沃尔夫冈·J·容克Max Planck Institut für Limnologie, August Thienemann Strasse 2, Postlach 165, D-2320 Plön, West Germany 马克斯·普朗克湖沼研究所,奥古斯特·蒂恩曼街 2 号,邮政信箱 165,D-2320 普伦,西德
Peter B. Bayley and Richard E. Sparks 彼得·B·贝利和理查德·E·斯帕克斯Illinois Natural History Survey, 607 E. Peabody Dr., Champaign, IL 61820, USA 伊利诺伊州自然历史调查,607 E. Peabody Dr.,香槟,IL 61820,美国
Abstract 摘要
Junk, W. J., P. B. B^yley, and R. E. Sparks. 1989. The flood pulse concept in river-floodplain systems, p. 110-127. In D. P. Dodge [ed.] Proceedings of the International Large River Symposium. Can. Spec. Publ. Fish. Aquat. Sci. 106. 贾克,W. J.,P. B. 巴利,和 R. E. 斯帕克斯。1989 年。河流-洪泛区系统中的洪水脉冲概念,第 110-127 页。在 D. P. 道奇 [编] 国际大河研讨会论文集。加拿大特别出版物 鱼类水生科学 106。
The principal driving force responsible for the existence, productivity, and interactions of the major biota in river-floodplain systems is the flood pulse. A spectrum of geomorphological and hydrological conditions produces flood pulses, which range from unpredictable to predictable and from short to long duration. Short and generally unpredictable pulses occur in low-order streams or heavily modified systems with floodplains that have been leveed and drained by man. Because low-order stream pulses are brief and unpredictable, organisms have limited adaptations for directly utilizing the aquatic/terrestrial transition zone (ATTZ), although aquatic organisms benefit indirectly from transport of resources into the lotic environment. Conversely, a predictable pulse of long duration engenders organismic adaptations and strategies that efficiently utilize attributes of the ATTZ. This pulse is coupled with a dynamic edge effect, which extends a “moving littoral” throughout the ATTZ. The moving littoral prevents prolonged stagnation and allows rapid recycling of organic matter and nutrients, thercby resulting in high productivity. Primary production associated with the ATTZ is much higher than that of permanent water bodies in unmodified systems. Fish yields and production are strongly related to the extent of accessible floodplain, whereas the main river is used as a migration route by most of the fishes. 主要驱动力是洪水脉冲,它负责河流-洪泛区系统中主要生物群落的存在、生产力和相互作用。各种地貌和水文条件产生洪水脉冲,这些脉冲从不可预测到可预测,从短期到长期不等。短期且通常不可预测的脉冲发生在低级河流或被人类改造的系统中,这些系统的洪泛区已被筑堤和排水。由于低级河流的脉冲短暂且不可预测,生物在直接利用水陆过渡区(ATTZ)方面的适应性有限,尽管水生生物间接受益于资源向流动环境的运输。相反,可预测的长期脉冲促使生物适应和策略的形成,从而有效利用 ATTZ 的特征。这个脉冲与动态边缘效应相结合,在 ATTZ 中延伸出一个“移动的滨岸”。移动的滨岸防止了长时间的停滞,并允许有机物和营养物质的快速循环,从而导致高生产力。 与 ATTZ 相关的初级生产力远高于未改造系统中永久水体的生产力。鱼类产量和生产与可达洪泛区的范围密切相关,而主要河流则被大多数鱼类用作迁徙通道。
In temperate regions, light and/or temperature variations may modify the effects of the pulse, and anthropogenic influences on the flood pulse or floodplain frequently limit production. A local floodplain, however, can develop by sedimentation in a river stretch modified by a low head dam. Borders of slowly flowing rivers turn into floodplain habitats, becoming separated from the main channel by levecs. 在温带地区,光照和/或温度的变化可能会改变脉冲的影响,而人类对洪水脉冲或洪泛区的影响常常限制了生产。然而,局部洪泛区可以通过在低水头大坝改造的河段中沉积而形成。缓慢流动的河流边缘变成洪泛区栖息地,被堤坝与主河道隔开。
The flood pulse is a “batch” process and is distinct from concepts that emplasize the continuous processes in flowing water environments, such as the river continuum concept. Floodplains are distinct because they do not depend on upstream processing inefficiencies of organic matter, although their nutrient pool is influenced by periodic lateral exchange of water and sediments with the main channel. The pulse concept is distinct because the position of a floodplain within the river network is not a primary deterninant of the processes that occur. The pulse concept requires an approach other than the traditional limnological paradigms used in lotic or lentic systems. 洪水脉冲是一种“批量”过程,与强调流动水环境中连续过程的概念(如河流连续体概念)不同。洪泛区是独特的,因为它们不依赖于上游有机物处理的低效性,尽管它们的营养池受到与主河道的周期性侧向水和沉积物交换的影响。脉冲概念是独特的,因为洪泛区在河流网络中的位置并不是发生过程的主要决定因素。脉冲概念需要一种不同于传统湖泊或流动系统的湖沼学范式的方法。
Junk, W. J., P. B. Bayley, and R. E. Sparks. 1989. The flood pulse concept in river-floodplain systems, p. 110-127. In D. P. Dodge [ed.] Proccedings of the International Large River Symposium. Can. Spec. Publ. Fish. Aquat. Sci. 106. 贾ンク,W. J.,P. B. 贝利,和 R. E. 斯帕克斯。1989 年。河流-洪泛区系统中的洪水脉冲概念,第 110-127 页。在 D. P. 道奇 [编] 国际大河研讨会论文集。加拿大特别出版物 鱼类与水生科学 106。
Les inondations occasiomées par la crue des eaux dans les systèmes cours d’eau-plaines inondables constituent le principal facteur qui détermine la nature et la productivité du biote dominant de mêıne que les interactions existant entre les organismes biotiques et entre ceux-ci et leur environnement. Ces crues passagères, dont la durée et la prévisibilité sont variables, sont produites par un ensemble de facteurs gémorphologiques et hydrologiqucs. Les crues de courte durée, généralement imprévisibles, surviennent dans les réseaux hydrographiques peu ramifíes ou dans les réseaux qui ont connu des transformations importantes suite à l’endiguement et au drainage des plaines inondables par l’homme. Conme les crues survenant dans les réseaux hydrographiques d’ordre inférieur sont brèves et imprévisibles, les adaptations des organismes vivants sont limitées en ce qui a trait à l’exploitation des ressources de la zone de transition existant entre le milieu aquatique et le milieu terrestre (ATTZ), bien que les organismes aquatiques profitent indirectement des éléments transportés dans le milieu lotique. Inversement, une crue prévisible de longue durée favorise le développement d’adaptations et de stratégies qui permettent aux organismes d’exploiter efficacement l’ATTZ. Une telle crue s’accompagne d’un cffet de bordure dynamique qui fait en sorte que l’ATTZ, devient un "littoral mobile». Dans ces circonstances, il n’y a pas de stagnation prolongée et le recyclage de la matière organique et des substances nutritives se fait rapidement, ce qui donne lieu à unc productivité élevée. La production primaire dans I’ATTZ est beaucoup plus élevée que celle des masses d’eau permanentes dans les réseaux hydrographiques non modifiés. Le rendement et la production de poissons sont étroitement reliés à l’étendue de la plaine inondable, tandis que le cours normal de la rivière est utilisé comme voic de migration par la plupart des poissons. 洪水由水位上涨引起的河流-洪泛区系统是决定主要生物群落性质和生产力的主要因素,同时也影响生物体之间以及生物体与其环境之间的相互作用。这些短暂的洪水,其持续时间和可预测性各不相同,是由一系列地貌和水文因素造成的。短期洪水通常不可预测,发生在分支较少的水系中,或在因人类修建堤坝和排水而发生重大变化的洪泛区网络中。由于在低级水系中发生的洪水是短暂且不可预测的,生物体在利用水陆过渡区(ATTZ)资源方面的适应能力有限,尽管水生生物间接受益于在流水环境中运输的元素。 相反,长期可预见的洪水有利于适应和策略的发展,使生物能够有效利用湿地过渡区(ATTZ)。这种洪水伴随着动态边缘效应,使得湿地过渡区成为一个“移动海岸线”。在这种情况下,没有长期停滞,有机物和营养物质的循环迅速进行,从而导致高生产力。湿地过渡区的初级生产力远高于未改造水系中的永久水体。鱼类的产量和生产与洪泛平原的范围密切相关,而河流的正常流动则被大多数鱼类用作迁徙通道。
production de poissons sont étroitement reliés à l’étendue de la plaine inondable, tandis que le cours normal de la rivière est utilisé comme voie de migration par la plupart des poissons. 鱼类的生产与洪泛平原的范围密切相关,而河流的正常流动则被大多数鱼类用作迁徙通道。
Dans les régions tempérées, les variations de l’ensoleillement ct/ou de la température peuvent modifier les effets de la crue, et l’action de l’homme sur la crue des eaux et sur les plaines inondables limite souvent la production. Une plaine inondable peut cependant se former localement par sédimentation dans un tronçon de cours d’eau modifié par un barrage de basse chute. Aussi, les rives des cours d’eau à faible débit se transforment en plaines inondables suite à la formation de levées alluviales qui les séparent du canal principal. 在温带地区,阳光照射和/或温度的变化可能会改变洪水的影响,而人类对洪水和洪泛区的影响往往限制了生产。然而,洪泛区可以通过在被低坝改造的河段中沉积而局部形成。此外,低流量河流的河岸由于形成了将其与主河道分开的冲积堤而转变为洪泛区。
Les crues sont des phénomènes qui se manifestent par à-coups. Cette situation est différente de celles prises en compte par les concepts qui mettent l’accent sur les processus continus intervenant dans les caux courantes, tel que le concept du continuum applique aux cours d’eau. Les plaines inondables constituent un cas particulier car elles ne sont pas tributaires de la transformation inefficace de la matière organique en amont, méme si leur réserve d’éléments nutritifs dépend en partie des échanges latéraux périodiques d’eau et de sédiments avec le canal principal. La crue est un phenomène particulier par rapport aux conditions normales parce que la position d’une plaine inondable dans le réseau fluvial n’est pas un facteur qui détermine de façon fondamentale les processus observés dans ce type de milieu. Les questions soulevées par le phénomène des crues ne peuvent pas être résolues à l’aide des concepts traditionnels de la limnologie utilisés pour étudier les systèmes lotiques et lénitiques. 洪水是以间歇性方式表现出来的现象。这种情况与强调在常规水流中发生的连续过程的概念不同,例如应用于水流的连续体概念。洪泛平原是一个特殊的案例,因为它们并不依赖于上游有机物质的低效转化,尽管它们的营养元素储备在一定程度上依赖于与主河道的周期性水和沉积物的横向交换。洪水相对于正常条件是一种特殊现象,因为洪泛平原在河流网络中的位置并不是根本决定这种环境中观察到的过程的因素。洪水现象所提出的问题无法通过用于研究流动和静水系统的传统湖沼学概念来解决。
Hydrologists think of rivers as links in the hydrological cycle, which transport runoff water from the continents to the sea or to the center of endorheic basins (Curry 1972). Since water is a good solvent and flowing water provides kinetic energy, water transport by rivers is linked with the transport of dissolved and solid substances. However, precipitation and river discharge typically vary significantly during the annual cycle. At low discharge rates, rivers flow in well-defined channels, but at high water in natural systems wide floodplains are recurrently inundated. 水文学家将河流视为水文循环中的环节,它们将大陆的径流水输送到海洋或内流盆地的中心(Curry 1972)。由于水是一种良好的溶剂,流动的水提供动能,因此河流的水运输与溶解和固体物质的运输密切相关。然而,降水和河流排放在年度循环中通常会显著变化。在低排放率时,河流在明确的河道中流动,但在自然系统中,当水位高时,宽广的洪泛区会反复被淹没。
River-floodplain systems provide important habitats for biota, and ecologists have tried to link the biota of river systems with local environmental conditions and to adopt existing paradigms from other aquatic systems. These attempts have met with two problems: (1) the division of ecology into terrestrial ecology and limnology; and (2) the classification of water bodies into more or less closed, lentic systems with accumulating characteristics (lakes, ponds) as outlined in traditional limnology texts (Ruttner 1952) and open, lotic systems with discharging characteristics (streams, rivers) (Hynes 1970). The transient nature of aquatic habitats in floodplains resulted in biased treatment or in their omission. When studying rivers, most limnologists restricted themselves to river channels; when studying floodplains, they concentrated on floodplain lakes, often treating them as classical lakes. 河流- floodplain 系统为生物提供了重要的栖息地,生态学家试图将河流系统的生物与当地环境条件联系起来,并采用其他水生系统的现有范式。这些尝试遇到了两个问题:(1)生态学被划分为陆地生态学和湖沼学;(2)水体被分类为更或少封闭的、具有积累特征的静水系统(湖泊、池塘),如传统湖沼学教材中所述(Ruttner 1952),以及具有排放特征的开放流动系统(溪流、河流)(Hynes 1970)。洪泛区水生栖息地的瞬态特性导致了偏见处理或遗漏。在研究河流时,大多数湖沼学家将自己限制在河道内;在研究洪泛区时,他们集中于洪泛区湖泊,通常将其视为经典湖泊。
One recent theoretical construct in river ecology, the river continuum concept (RCC) (Vannote et al. 1980), is based on the hypothesis that a continuous gradient of physical conditions exists from headwater to mouth. Analogous to the energy equilibrium theory of fluvial geomorphologists, the RCC states that structural and functional characteristics of stream communities are adapted to conform to the most probable position or mean state of the physical system. Producer and consumer communities establish themselves in harmony with the dynamic physical conditions of a given river reach, and downstream communities are fashioned to capitalize on the inefficiencies of upstream processing. Both upstream inefficiency (leakage) and downstream adjustment seem predictable. Therefore the RCC purports to provide a framework that permits us to integrate predictable and observable biological features of lotic systems (Vannote et al. 1980). 河流生态学中的一个最近理论构想是河流连续体概念(RCC)(Vannote 等,1980),该概念基于一个假设,即从源头到河口存在一个连续的物理条件梯度。与河流地貌学家的能量平衡理论类似,RCC 指出,溪流群落的结构和功能特征适应于物理系统的最可能位置或平均状态。生产者和消费者群落与特定河段的动态物理条件和谐共存,下游群落则被塑造以利用上游处理的低效性。上游的低效(泄漏)和下游的调整似乎是可预测的。因此,RCC 旨在提供一个框架,使我们能够整合可预测和可观察的流水系统的生物特征(Vannote 等,1980)。
In our view, the RCC suffers from two basic limitations: (1) it was developed on small temperate streams but has 在我们看来,RCC 存在两个基本局限性:(1)它是在小型温带河流上开发的,但它有
been extrapolated to rivers in general; and (2) it was based on a concept that had been elaborated for the river basin in a geomorphological sense but was in fact restricted to habitats that are permanent and lotic. 已被推断为一般河流;并且(2)它基于一个在地貌学意义上为河流流域 elaborated 的概念,但实际上仅限于永久性和流水的栖息地。
Most papers that discuss the RCC recognize these limitations (Winterbourn et al. 1981; Barmuta and Lake 1982; Minshall et al. 1983; Minshall et al. 1985; Statzner and Higler 1985; Sedell et al. 1989) but fail to consider the biological significance of processes within the seasonal, aquatic habitats of floodplains. It may prove acceptable to modify the RCC to account for brief and unpredictable floods in low-order streams, even for catastrophic floods which change the physical environment and “reset” systems (Cummins 1977; Fisher 1983). However, as the size of a floodplain increases, usually along with increasing river discharge, the frequency of floods decreases, and their duration and predictability increase. These changes result in a distinct geomorphological and hydrological system with an increasing ratio of periodically lentic to lotic areas. Thiṣ system results in adaptations of biota that are distinct from those in systems dominated by stable lotic or lentic habitats. 大多数讨论 RCC 的论文承认这些局限性(Winterbourn 等,1981;Barmuta 和 Lake,1982;Minshall 等,1983;Minshall 等,1985;Statzner 和 Higler,1985;Sedell 等,1989),但未能考虑洪泛区季节性水生栖息地内过程的生物学意义。修改 RCC 以考虑低阶河流中短暂且不可预测的洪水,甚至是改变物理环境并“重置”系统的灾难性洪水,可能是可接受的(Cummins,1977;Fisher,1983)。然而,随着洪泛区的增大,通常伴随着河流流量的增加,洪水的频率降低,而洪水的持续时间和可预测性增加。这些变化导致一个独特的地貌和水文系统,周期性静水区与流水区的比例不断增加。这个系统导致生物群落的适应性与以稳定的流水或静水栖息地为主的系统明显不同。
Recently, the importance of river-floodplains to fish populations in temperate, subtropical, and tropical regions has been shown by Lambou (1959), Holčík and Bastl (1976," 1977), Bryan and Sabins (1979), Welcomme (1979, 1985, 1989), Bayley (1980, 1981a, 1983), Junk (1980, 1984), and Littlejohn et al. (1985). These studies have signaled a renewed appreciation of pioneer work by Antipa (1911, 1928) and Richardson (1921). The status of the forest in subtropical river-floodplain systems has been summarized by Gosselink et al. (1981) and Wharton et al. (1981). The biases and inadequacies of limnological paradigms when applied to floodplain systems were recently discussed by Bayley (1980,1983)(1980,1983), Junk (1980,1984)(1980,1984), and Junk and Welcomme (1989) based on their experience in tropical systems. Amoros et al. (1986) and Bravard et al. (1986), who analysed the impact of flood regulation on plant and animal communities of the Rhône R. floodplain, stressed the importance of lateral and vertical dimensions of the riverfloodplain system. Davies and Walker (1985) emphasized that considerable modification of the RCC was required before it could be applied to large river systems. 最近,Lambou(1959)、Holčík 和 Bastl(1976、1977)、Bryan 和 Sabins(1979)、Welcomme(1979、1985、1989)、Bayley(1980、1981a、1983)、Junk(1980、1984)以及 Littlejohn 等(1985)展示了河流洪泛区对温带、亚热带和热带地区鱼类种群的重要性。这些研究重新认识了 Antipa(1911、1928)和 Richardson(1921)的开创性工作。Gosselink 等(1981)和 Wharton 等(1981)总结了亚热带河流洪泛区系统中森林的状态。Bayley (1980,1983)(1980,1983) 、Junk (1980,1984)(1980,1984) 以及 Junk 和 Welcomme(1989)最近讨论了当流域生态学范式应用于洪泛区系统时的偏见和不足,基于他们在热带系统中的经验。Amoros 等(1986)和 Bravard 等(1986)分析了洪水调节对罗纳河洪泛区植物和动物群落的影响,强调了河流洪泛区系统的横向和纵向维度的重要性。Davies 和 Walker(1985)强调,在将 RCC 应用于大河系统之前,需要对其进行相当大的修改。
In this paper we synthesize evidence that suggests a complementary concept, the “flood pulse”, that attempts to explain the relationship between the biota and the environ- 在本文中,我们综合了证据,提出了一个互补的概念“洪水脉冲”,试图解释生物群落与环境之间的关系
ment of an unmodified, large river-floodplain system. This concept is based on our experiences in relatively pristine systems in the neotropics and Southeast Asia and in the Upper Mississippi R. We derive this concept from the known ecology of typical biota that have adapted to the geomorphology and hydrology of large river-floodplain systems. 未修改的大河洪泛区系统的管理。这个概念基于我们在新热带地区和东南亚以及上密西西比河的相对原始系统中的经验。我们从已知的典型生物群落的生态学中得出这个概念,这些生物群落已适应大河洪泛区系统的地貌和水文特征。
The Flood Pulse Concept 洪水脉冲概念
We propose that the pulsing of the river discharge, the flood pulse, is the major force controlling biota in riverfloodplains. Lateral exchange between floodplain and river channel, and nutrient recycling within the floodplain have more direct impact on biota than the nutrient spiralling discussed in the RCC (Vannote et al. 1980). We postulate that in unaltered large river systems with floodplains in the temperate, subtropical, or tropical belt, the overwhelming bulk of the riverine animal biomass derives directly or indirectly from production within the floodplains and not from downstream transport of organic matter produced elsewhere in the basin. 我们提出,河流排放的脉动,即洪水脉冲,是控制河流洪泛区生物群落的主要力量。洪泛区与河道之间的横向交换,以及洪泛区内的养分循环,对生物群落的影响比 RCC 中讨论的养分螺旋更为直接(Vannote 等,1980)。我们推测,在温带、亚热带或热带带的未改变的大河系统中,河流动物生物量的绝大部分直接或间接来源于洪泛区内的生产,而不是来自流域其他地方产生的有机物的下游运输。
The effect of the flood pulse on biota is principally hydrological. We postulate that if no organic material except living animals were exchanged between floodplain and channel, no qualitative and, at most, limited quantitative changes would occur in the floodplain (Bayley 1989). The relative importance of imported versus recycled inorganic nutrients in floodplains is not clear and probably varies between systems. Given similar hydrological conditions, the longitudinal position of a floodplain in the drainage network is of little importance with respect to the biota. 洪水脉冲对生物群落的影响主要是水文方面的。我们假设,如果除了活动物之外,洪泛区和河道之间没有有机物质的交换,那么洪泛区将不会发生定性变化,最多只会发生有限的定量变化(Bayley 1989)。洪泛区中输入的无机营养物质与循环的无机营养物质的相对重要性尚不清楚,可能因系统而异。在相似的水文条件下,洪泛区在排水网络中的纵向位置对生物群落的重要性不大。
The Highway Analogy 高速公路类比
Faunal life histories in unaltered large river-floodplains can be viewed as analogous to vehicles on a highway network. Were non-terrestrials to investigate this network, they would observe numerous bodies traveling in opposite directions and might well surmise that resources for those bodies were derived from the highways. If funds permitted a detailed study, it would reveal that four-wheeled creatures need to leave highways periodically for sustenance, along with their apparently symbiotic occupants. Eventually, major sources of production would be identified in farms, oil fields, and mines, vehicles consuming and distributing resources via the highway network as a response to production cycles and long-term economic changes. 未改变的大河洪泛区的动物生活史可以被视为高速公路网络上的车辆。如果外星生物调查这个网络,他们会观察到许多身体朝相反的方向移动,并可能推测这些身体的资源来自高速公路。如果资金允许进行详细研究,将会揭示四轮生物需要定期离开高速公路以获取食物,以及它们明显共生的居住者。最终,主要的生产来源将会在农场、油田和矿山中被识别,车辆通过高速公路网络消费和分配资源,以响应生产周期和长期经济变化。
The life histories of major plant and animal groups, in particular fish, in large river-floodplains are beginning to be understood sufficiently to contribute to the theory that the river network in a river-floodplain system is in many ways analogous to a highway network with the vehicles corresponding to the fish. Detritivores, herbivores, and/or omnivores support large fisheries in the main channel (Petrere 1978, 1982; Welcomme 1979; Quirós and Baigún 1985), but the highest yields are associated with adjoining floodplains (Richardson 1921; Lowe-McConnell 1964; Petrere 1983) and most of their production is derived from floodplain habitats (Welcomme 1979; Bayley 1983). The main channel is used principally as a route for gaining 主要植物和动物群体的生活史,特别是鱼类,在大河洪泛区中开始得到足够的理解,以便为河流-洪泛区系统中的河流网络理论做出贡献,这在许多方面类似于高速公路网络,车辆对应于鱼类。腐食性动物、草食性动物和/或杂食性动物在主河道中支持着大型渔业(Petrere 1978, 1982;Welcomme 1979;Quirós 和 Baigún 1985),但最高的产量与相邻的洪泛区相关(Richardson 1921;Lowe-McConnell 1964;Petrere 1983),而且它们的大部分生产来自洪泛区栖息地(Welcomme 1979;Bayley 1983)。主河道主要用作获取的通道。
access to adult feeding areas, nurseries, spawning grounds, or as a refuge at low water or during winter in temperate zones. An analogous situation is found in large northtemperate and arctic rivers where most of the ichthyomass is anadromous; here the main feeding grounds are found in the delta area or in the sea (Grainger 1953; Andrews and Lear 1956; Foerster 1968; Roy 1989). 进入成年鱼类觅食区、育婴区、产卵场,或在低水位或温带地区冬季作为避难所。在大型北温带和北极河流中也存在类似情况,这里的鱼类大多数是洄游性的;主要的觅食场所位于三角洲区域或海洋中(Grainger 1953;Andrews 和 Lear 1956;Foerster 1968;Roy 1989)。
We will describe the functions of the floodplain and main channel in large river-floodplain systems with respect to the biota and evaluate the links between them and the nonfloodable watershed in the light of recent data. 我们将描述大河-洪泛区系统中洪泛区和主河道的功能,特别是与生物群落的关系,并根据最新数据评估它们与不可洪水淹没的集水区之间的联系。
Definition of a Floodplain 洪泛区的定义
Terms applied to classical limnological and terrestrial systems can be inappropriate for explaining concepts in riverfloodplains. This is not merely a semantic discussion because the classical terms are understood to define features and functions in their respective systems. 应用于经典湖泊和陆地系统的术语可能不适合解释河流泛滥平原中的概念。这不仅仅是一个语义讨论,因为经典术语被理解为定义各自系统中的特征和功能。
The “active floodplain” of a river is defined by North American hydrologists as the area flooded by a 100 -year flood (Bhowmik and Stall 1979). This period is arbitrary, longer than most existing records, and has little ecological meaning. Bayley (1981b) noted that huge areas of shallow, very acidic, largely deoxygenated swamp occur in the Peruvian Amazon. These areas are distant from the main channels and inhospitable to the bulk of aquatic animals. He proposed an active floodplain that excluded these peripheral swamps in order to compare fish production and fishery yields among systems. 河流的“活跃洪泛区”被北美水文学家定义为 100 年洪水淹没的区域(Bhowmik 和 Stall 1979)。这个时期是任意的,超过了大多数现有记录,并且在生态上意义不大。Bayley(1981b)指出,秘鲁亚马逊地区存在大面积的浅水、非常酸性、主要缺氧的沼泽。这些区域远离主要水道,对大多数水生动物不利。他提出了一个排除这些边缘沼泽的活跃洪泛区,以便比较不同系统之间的鱼类生产和渔业产量。
We define floodplains as “areas that are periodically inundated by the lateral overflow of rivers or lakes, and/or by direct precipitation or groundwater; the resulting physicochemical environment causes the biota to respond by morphological, anatomical, physiological, phenological, and/or ethological adaptations, and produce characteristic community structures”. This ecological definition recog. nizes that flooding causes a perceptible impact on biota and that biota display a defined reaction to flooding. Furthermore, it implies that the impact of water level pulsing on biota is independent of the nature of its source and that there are many ecological similarities between floodplains adjacent to, for example, pulsing lakes or reservoirs and pulsing rivers. The definition encompasses a wide hydrological spectrum from short- to long-duration floods and from unpredictable to predictable timing. Our examples from large river systems exhibit predictable flood pulses of long duration. 我们将洪泛区定义为“定期被河流或湖泊的侧向溢流和/或直接降水或地下水淹没的区域;由此产生的物理化学环境导致生物通过形态、解剖、生理、物候和/或行为适应作出反应,并形成特征性的群落结构”。这个生态定义承认洪水对生物造成了明显的影响,并且生物对洪水表现出明确的反应。此外,它还暗示水位脉动对生物的影响与其来源的性质无关,并且相邻的洪泛区之间存在许多生态相似性,例如脉动湖泊或水库与脉动河流之间的相似性。该定义涵盖了从短期到长期洪水以及从不可预测到可预测时机的广泛水文谱。我们来自大型河流系统的例子展示了可预测的长期洪水脉动。
We have termed the floodplain area the “aquatic/terrestrial transition zone” (ATTZ) because it alternates between aquatic and terrestrial environments. We use this term to stress our more specific definition of floodplain, because ‘floodplain’ has often been defined to include permanent lentic and lotic habitats. The inshore edge of the aquatic environment that traverses the floodplain (ATTZ) we have termed the “moving littoral”. The floodplain or ATTZ has unique properties that have been considered to comprise a specific ecosystem (Junk 1980; Odum 1981). 我们将洪泛区称为“水陆过渡区”(ATTZ),因为它在水生和陆生环境之间交替。我们使用这个术语来强调我们对洪泛区更具体的定义,因为“洪泛区”通常被定义为包括永久性静水和流水栖息地。我们将穿越洪泛区(水陆过渡区)的水生环境的近岸边缘称为“移动滨岸”。洪泛区或水陆过渡区具有独特的特性,被认为构成了一个特定的生态系统(Junk 1980;Odum 1981)。
Hydrologists consider the river and its floodplain as one unit since they are inseparable with respect to the water, sediment, and organic budgets. We term this unit the “river-floodplain system”. Therefore, this system com- 水文学家将河流及其洪泛区视为一个整体,因为它们在水、沉积物和有机物预算方面是不可分割的。我们将这个单元称为“河流-洪泛区系统”。因此,这个系统包括
prises permanent lotic habitats (main channels), permanent lentic habitats, and the floodplain (ATTZ). Many limnologists have difficulty defining floodplains viz a viz other aquatic systems, and they have defined artificial, stable borders between land and water. Conversely, floodplains are ecosystems with water boundaries that recurrently traverse large areas. The environmental change from the aquatic to the terrestrial phase at a specific point in a floodplain (ATTZ) may be as severe as the change from a lake to a desert. Classical limnological terms describing morphological features of lakes or rivers (e.g., shoreline, littoral, profundal, size, depth) are unsuitable and must be redefined or qualified, because they have become time-dependent in the floodplain. This time dependency is important because it affects the productive processes and the life cycles of plants and animals. Pieczyńska’s (1972) definition of eulittoral appears to have functional parallels with our definition of a floodplain; however, the eulittoral occupied a very small part ( +-5%\pm 5 \% ) of the nonfloodplain lakes in her study and responded to a pulse amplitude of only about 40 cm . Also, we are cautious about drawing close parallels with the intertidal zone because the time scale of the tidal pulse is so much shorter, and is brief compared with the generation times of the higher biota. 永久性流水栖息地(主河道)、永久性静水栖息地和洪泛区(ATTZ)。许多湖沼学家在定义洪泛区与其他水生系统时遇到困难,他们定义了陆地与水之间的人工稳定边界。相反,洪泛区是具有水界限的生态系统,这些界限反复穿越大面积区域。在洪泛区的特定点,水生阶段到陆生阶段的环境变化可能与湖泊到沙漠的变化一样剧烈。描述湖泊或河流形态特征的经典湖沼学术语(例如,岸线、滨区、深水区、大小、深度)不适用,必须重新定义或修正,因为它们在洪泛区变得依赖于时间。这种时间依赖性很重要,因为它影响植物和动物的生产过程和生命周期。Pieczyńska(1972)对滨区的定义似乎与我们对洪泛区的定义在功能上有相似之处;然而,在她的研究中,滨区仅占非洪泛湖泊的一小部分( +-5%\pm 5 \% ),并且仅对约 40 厘米的脉冲幅度作出反应。 此外,我们在与潮间带进行紧密类比时持谨慎态度,因为潮汐脉冲的时间尺度要短得多,与高等生物的世代时间相比非常短。
Distinctions between aquatic and terrestrial organisms and processes have proved useful in studies of rivers and lakes with well-defined borders. The ecologist’s view of floodplains, however, may vary according to the group of organisms being studied. Many of the organisms colonizing foodplains have developed adaptations that enable them to survive during an adverse period of drought or flood and even to benefit from it; thus neither a purely aquatic nor a wholly terrestrial view is appropriate. 水生和陆生生物及其过程之间的区别在研究边界明确的河流和湖泊时被证明是有用的。然而,生态学家对洪泛区的看法可能会根据所研究的生物群体而有所不同。许多定居于洪泛区的生物已经发展出适应性,使它们能够在干旱或洪水的不利时期生存,甚至从中受益;因此,既不完全水生也不完全陆生的观点都是不合适的。
Fisheries biologists tend to consider main channels and their floodplains as a single unit, because both are essential for the survival of fish stocks (Hoľík and Bastl 1976; Welcomme 1979; Bayley 1980, 1981a, 1983). Conversely, studies of floodplains linked to African rivers or reservoirs show that they are also important for terrestrial game animals in adjacent nonflooded savannas, because the floodplains determine survival rates during the dry period (Sheppe and Osborne 1971; Davies 1985). 渔业生物学家倾向于将主河道及其洪泛区视为一个整体,因为两者对鱼类种群的生存都是至关重要的(Hoľík 和 Bastl 1976;Welcomme 1979;Bayley 1980, 1981a, 1983)。相反,关于与非洲河流或水库相关的洪泛区的研究表明,它们对邻近非洪泛草原的陆生猎物动物也很重要,因为洪泛区决定了干旱期的生存率(Sheppe 和 Osborne 1971;Davies 1985)。
Were we to follow the arguments of hydrologists, all plant and animal material produced in a river-floodplain system would be autochthonous because it derives from riverine sediments and dissolved nutrients. Allochthonous would refer to the material introduced from outside the riverfloodplain system. In limnological literature, however, the term autochthonous is applied to biota produced in the aquatic environment, and all terrestrial material is thereby classified as allochthonous. Oscillation between aquatic and terrestrial phases in floodplains makes the limnological differentiation of organic material according to its origin misleading. Similarly, the riparian zone, as understood in temperate areas, is difficult to define in a river-floodplain system. Consequently, we avoid unqualified references to these terms. 如果我们遵循水文学家的论点,河流-洪泛区系统中产生的所有植物和动物材料都将是自生的,因为它源于河流沉积物和溶解的营养物质。外源性材料则指从河流-洪泛区系统外部引入的材料。然而,在湖泊生态学文献中,自生一词用于指代在水生环境中产生的生物,而所有陆地材料因此被归类为外源性。洪泛区中水生和陆生阶段的交替使得根据有机材料的来源进行湖泊生态学区分变得误导。同样,在温带地区理解的河岸带在河流-洪泛区系统中也很难定义。因此,我们避免对这些术语进行不加限制的引用。
We have defined floodplain (ATTZ), river-floodplain system, and moving littoral, and explained why traditional limnological and hydrological paradigms are not appropriale from an ecologist’s view. We now use examples to describe the effects of the flood pulse on biotic and abiotic components of the river-floodplain system. 我们定义了洪泛区(ATTZ)、河流-洪泛系统和移动的滨岸,并解释了为什么从生态学家的角度来看,传统的湖泊学和水文学范式不合适。我们现在用例子来描述洪水脉冲对河流-洪泛系统的生物和非生物成分的影响。
Hydrology 水文学
The hydrological regime of rivers reflects the climate of its upstream catchment area. Low order streams have an irregular flood pattern with numerous peaks because they are strongly influenced by local precipitation. This influence generally diminishes with increasing size of the watershed and is almost imperceptible in the hydrograph of very large rivers. 河流的水文特征反映了其上游集水区的气候。低级河流的洪水模式不规则,峰值众多,因为它们受到局部降水的强烈影响。这种影响通常随着集水区规模的增大而减弱,在非常大的河流的水文图中几乎不可察觉。
The hydrological buffering capacity of a large catchment area results in a rather smooth and predictable flood curve. In mainly tropical or subtropical systems with large watersheds, the hydrograph reflects seasonality in precipitation, and typically shows only one pronounced flood peak per year. A few tropical rivers, e.g., the Zaire R., show two flood peaks due to two rainy seasons in their catchment areas. In temperate and cold climates, the impact of precipitation on the hydrograph is modified by the temperature regime. For example, minor flooding occurred in autumn in the Upper Mississippi R. prior to dam construction (Grubaugh and Anderson 1989a) because evapotranspiration rates decrease as temperature drops. Also, water accumulates as snow and ice in winter, which then contribute to the spring flood by melting. 大型集水区的水文缓冲能力导致洪水曲线相对平滑且可预测。在主要是热带或亚热带的大流域系统中,水文图反映了降水的季节性,通常每年只显示一个明显的洪峰。一些热带河流,例如扎伊尔河,由于其集水区有两个雨季,显示出两个洪峰。在温带和寒冷气候中,降水对水文图的影响受到温度变化的影响。例如,在上密西西比河的秋季,水坝建造之前发生了轻微的洪水(Grubaugh 和 Anderson 1989a),因为随着温度下降,蒸散发率降低。此外,冬季水分以雪和冰的形式积累,随后在春季融化时会导致春季洪水。
Due to the size of large river basins, the effects of seasonal climatic changes may be felt downstream only after several weeks or even months. This time lag can be of ecological importance in downstream parts of large river systems. In the central Amazon the river is still rising at Manaus after the termination of the major rains; the flood peak follows the rainy season by 4-6 weeks. On the lower Mississippi R., cold water from melting snow in the head waters passes when the temperature in the backwaters of the floodplain is already much higher (Bryan et al. 1976; Holland 'et al. 1983). 由于大河流域的规模,季节性气候变化的影响可能在下游仅在几周甚至几个月后才会显现。这种时间滞后在大河系统的下游部分可能具有生态重要性。在亚马逊中部,主要降雨结束后,马瑙斯的河水仍在上涨;洪水峰值在雨季后延迟 4-6 周。在密西西比河下游,来自上游融雪的冷水在洪泛区的回水温度已经高得多时流过(Bryan 等,1976;Holland 等,1983)。
The shape of the hydrograph depends not only on the discharge characteristics of the river, but also on valley slope, floodplain size, and vegetation. Although the Illinois R. has a mean discharge of only 627m^(3)*s^(-1)627 \mathrm{~m}^{3} \cdot \mathrm{~s}^{-1} (Fitzgerald et al. 1986), it has protacted floods characteristics of a much larger river because it occupies a wide river valley carved by the ancestral Mississippi and Teays rivers. Because the valley has filled with alluvium, its gradient is very flat and the river drops only 1.6cm*km^(-1)1.6 \mathrm{~cm} \cdot \mathrm{~km}^{-1}. 水文图的形状不仅取决于河流的排水特征,还取决于山谷坡度、洪泛区大小和植被。尽管伊利诺伊河的平均流量仅为 627m^(3)*s^(-1)627 \mathrm{~m}^{3} \cdot \mathrm{~s}^{-1} (Fitzgerald 等,1986),但由于它位于由祖先密西西比河和泰斯河雕刻而成的宽阔河谷中,因此具有更大河流的延长洪水特征。由于山谷已被冲积物填满,其坡度非常平坦,河流仅下降 1.6cm*km^(-1)1.6 \mathrm{~cm} \cdot \mathrm{~km}^{-1} 。
At a given rate of discharge increase, the water level rises more slowly as the floodplain begins to fill. In larger floodplains the rate of rise is slower, the period of inundation increases, and more lentic habitats develop. As the water recedes, processes in the floodplain become less dependent on the river channel and more subject to local climatic events. During the terrestrial phase, the amount and distribution of local rains greatly affects the composition and productivity of plant communities as well as the life cycles of many animals. When local precipitation at low water is high, floodplains are forested, e.g., in the middle and upper Amazon, Zaire, and Mississippi rivers. Conversely, when local precipitation is low, savannas with gallery forest develop, e.g., in the floodplains of the lower Nile, Zambezi, and Volta rivers. Some lakes and swamps are isolated from the main channel for many months or even years. Their hydrological regimes are therefore independent of the main channel except during periods of high water. 在给定的排水增加速率下,随着洪泛区开始填满,水位上升的速度变得更慢。在较大的洪泛区,水位上升的速度更慢,淹没期延长,更多的静水栖息地形成。当水位退去时,洪泛区的过程变得不那么依赖于河道,而更多地受当地气候事件的影响。在陆地阶段,当地降雨的数量和分布极大地影响植物群落的组成和生产力,以及许多动物的生命周期。当低水位时当地降水量高时,洪泛区会形成森林,例如在亚马逊中部和上游、扎伊尔河和密西西比河。相反,当当地降水量低时,会形成带有林带的稀树草原,例如在尼罗河下游、赞比西河和伏尔塔河的洪泛区。一些湖泊和沼泽与主河道隔离数月甚至数年。因此,它们的水文规律在高水期之外独立于主河道。
Nutrients 营养素
According to hydrologists, a river’s chemistry reflects its catchment area. This holistic view has been applied successfully to streams with respect to their nutrient budgets (Hynes 1975; Vannote et al. 1980). Nutrients can roughly be divided into inorganic and organic fractions; these in turn can be subdivided into gaseous compounds, dissolved solids, and particulate matter. The floodplain receives all classes of nutrients directly from the main channel, and its basic nutrient status would be expected to correspond to that of the river. Floodplains, however, tend to establish their own cycles since organisms and environmental conditions that influence the biogeochemical cycles differ considerably from those in the main channel. The effects of rain, runoff, groundwater, and input from floodplain tributaries may also be important. 根据水文学家的说法,河流的化学特征反映了其集水区。这种整体观念已成功应用于溪流的营养预算(Hynes 1975;Vannote 等 1980)。营养物质大致可以分为无机和有机部分;这些又可以细分为气体化合物、溶解固体和颗粒物质。洪泛区直接从主河道接收所有类别的营养物质,其基本营养状态预计与河流相对应。然而,洪泛区往往会建立自己的循环,因为影响生物地球化学循环的生物和环境条件与主河道中的情况有很大不同。降雨、径流、地下水和洪泛区支流的输入也可能很重要。
The Inorganic Fraction 无机部分
Gaseous Compounds 气体化合物
Gases such as CO_(2),O_(2),H_(2)S,CH_(4)\mathrm{CO}_{2}, \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{CH}_{4}, and N_(2)\mathrm{N}_{2} are produced and/or consumed in the floodplain independently of processes in the main channel in systems with slow, regular flood pulses. Residence time of floodplain water and temperature modify concentrations. The lack of persistent thermal and chemical stratification in most Atchafalaya floodplain lakes is due to the short period of lentic conditions during warm weather (Bryan et al. 1974). In contrast, the water column becomes chemically stratified over large areas soon after entering the Amazon floodplain; the daily thermocline with a temperature difference of 1-3^(@)C1-3^{\circ} \mathrm{C} is sufficient to inhibit circulation deeper than 2-6m2-6 \mathrm{~m} during periods of several weeks or even months. Large amounts of organic material under decomposition at high temperatures result in high rates of oxygen consumption and CO_(2)\mathrm{CO}_{2} release near the bottom. Hypoxic, or even anoxic conditions accompanied by H_(2)S\mathrm{H}_{2} \mathrm{~S} and CH_(4)\mathrm{CH}_{4} production, are often found at a few metres depth (Schmidt 1973a; Melack and Fisher 1983; Junk et al. 1983). 在具有缓慢、规律洪水脉冲的系统中,气体如 CO_(2),O_(2),H_(2)S,CH_(4)\mathrm{CO}_{2}, \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{CH}_{4} 和 N_(2)\mathrm{N}_{2} 的产生和/或消耗与主河道的过程无关。洪泛区水体的停留时间和温度会影响浓度。大多数阿查法拉亚洪泛区湖泊缺乏持久的热和化学分层,原因是温暖天气期间静水条件持续时间短(Bryan 等,1974)。相比之下,水柱在进入亚马逊洪泛区后不久便在大面积范围内发生化学分层;日常温跃层的温差 1-3^(@)C1-3^{\circ} \mathrm{C} 足以在几周甚至几个月的时间内抑制深于 2-6m2-6 \mathrm{~m} 的循环。在高温下大量有机物分解导致底部氧气消耗速率高和 CO_(2)\mathrm{CO}_{2} 释放。缺氧或甚至缺氧条件伴随 H_(2)S\mathrm{H}_{2} \mathrm{~S} 和 CH_(4)\mathrm{CH}_{4} 的产生,通常在几米深处发现(Schmidt 1973a;Melack 和 Fisher 1983;Junk 等,1983)。
In addition to nitrogen input from the river, high nitrogen fluxes to and from the atmosphere occur. These fluxes are related to oxygen levels and to organisms in water and soils, both of which change drastically between flood and dry periods. Denitrification in wetlands is well documented (Kemp and Day 1984) and has even been used in the treatment of wastewater (Dierberg and Breszonic 1984). Various nitrogen-fixing organisms, e.g., cyanophytes and bacteria, that are often associated with higher plants such as Leguminosae counteract denitrification by fixing atmospheric nitrogen (Heller 1969; Richey et al. 1985). Despite the high potential for denitrification, Brinson et al. (1980) consider tupelo-cypress swamps to be nitrogen sinks due to high nitrogen levels in the litter. 除了来自河流的氮输入外,气氛中也存在高氮通量。这些通量与氧气水平以及水体和土壤中的生物体有关,而这两者在洪水和干旱时期之间变化剧烈。湿地中的反硝化作用已有充分的文献记录(Kemp 和 Day 1984),甚至被用于废水处理(Dierberg 和 Breszonic 1984)。各种固氮生物,例如蓝藻和细菌,通常与豆科等高等植物相关,通过固定大气中的氮来抵消反硝化作用(Heller 1969;Richey 等 1985)。尽管反硝化的潜力很高,Brinson 等(1980)认为塔普洛-柏树沼泽由于落叶中氮含量高而是氮汇。
Dissolved Solids 溶解固体
River water is the major source for dissolved inorganic compounds, including plant nutrients. Abiotic and biotic processes in the floodplain, however, may considerably 河水是溶解无机化合物的主要来源,包括植物营养素。然而,洪泛区的非生物和生物过程可能会显著
alter the total amount and ionic composition of dissolved materials. Increased evaporation may raise salinity in backwaters above the levels found in the river, in particular in arid climatic zones. Biogenic modifications are reported from Amazonian floodplain lakes where ten to twentyfold increases in total salinity have been measured in small pools at low water (Furch et al. 1983). A major change in ionic composition, such as an increase in potassium, has been principally associated with leaching of decomposing aquatic and terrestrial macrophytes (Furch 1984a, 1984b; Furch et al. 1983). 改变溶解物质的总量和离子组成。蒸发增加可能会使回水区的盐度高于河流中的水平,特别是在干旱气候区。亚马逊洪泛平原湖泊报告了生物源性改造,在低水位的小水池中测得总盐度增加了十到二十倍(Furch et al. 1983)。离子组成的主要变化,例如钾的增加,主要与分解的水生和陆生大型植物的淋溶有关(Furch 1984a, 1984b; Furch et al. 1983)。
Further changes in ionic composition result from dilution by local rains or by mixing with lateral inflows of surface and ground water from nonflooded areas. During low river stages in the Amazon, water seeping through floodplain sediments has an electric conductance up to 200 times that of the Amazon R. water, with high levels of iron and manganese (Irion and Junk, unpublished data). 进一步的离子成分变化是由于局部降雨的稀释或与非洪水区的地表和地下水的侧向流入混合所导致的。在亚马逊河的低水位期间,渗透通过洪泛平原沉积物的水的电导率可达到亚马逊河水的 200 倍,铁和锰的含量较高(Irion 和 Junk,未发表数据)。
Levels of dissolved nutrients are seldom limiting factors for primary production in the main channels of large rivers. In the floodplain, however, phosphorous and/or nitrogen often limit productivity, and inflowing river water replenishes the nutrient levels, as shown for phytoplankton production in Amazonian floodplain lakes (Fisher 1979). In lake and swamp habitats receiving minimal influence from the Atchafalaya R., heterotrophic phytoplankters (flagellated euglenophytes and pyrrophytes) predominated during low water levels in association with minimal inorganic nutrients (Bryan et al. 1976; Seger and Bryan 1981). 溶解养分的水平在大河的主河道中很少成为初级生产的限制因素。然而,在洪泛区,磷和/或氮常常限制生产力,流入的河水补充了养分水平,正如亚马逊洪泛湖泊中的浮游植物生产所示(Fisher 1979)。在受到阿查法拉亚河影响最小的湖泊和沼泽栖息地中,异养浮游植物(鞭毛绿藻和甲藻)在水位低时占主导地位,与最小的无机养分相关(Bryan et al. 1976;Seger 和 Bryan 1981)。
Little is known concerning the amount of dissolved inorganic compounds released from the floodplain into the main channel, and findings are contradictory for phosphorous (Yarbro 1983) and nitrogen (Brinson et al. 1983). Release and storage may be related to the flood cycle and to vegetation cover, and in temperate regions, to the growth cycle of the vegetation (Klopatek 1978; Brinson et al. 1980). Because large floodplains represent a mosaic of habitats with different physical and chemical conditions supporting diverse biotic communities, they may act either as a sink, or as a source with respect to each nutrient, depending on the circumstances. 关于洪泛区释放到主河道中的溶解无机化合物的数量知之甚少,且关于磷(Yarbro 1983)和氮(Brinson et al. 1983)的研究结果相互矛盾。释放和储存可能与洪水周期和植被覆盖有关,在温带地区,还与植被的生长周期有关(Klopatek 1978;Brinson et al. 1980)。由于大型洪泛区代表了具有不同物理和化学条件的栖息地马赛克,支持多样的生物群落,因此它们可能在每种营养物质方面根据情况充当汇或源。
Particulate Matter 颗粒物
Particulate inorganic matter in suspension is normally considered an unimportant source of plant nutrients in the river channel. Conversely, such particles hinder growth of phytoplankton and submersed aquatic macrophytes due to shading. In floodplains, however, they become a basic part of the nutrient pool available to primary producers in the dry phase and during part of the wet phase. Fertility of floodplains depends largely upon the quality of deposited sediments. Irion (1983) states that transport and deposition of sandy and kaolinitic material produce an infertile floodplain (e.g., Rio Negro in Brazil), whereas the montmorillonite and illite of the Amazon and Mississippi rivers result in high floodplain fertility. However, an impoverishment of some mobile elements ( Fe,Mn,Zn\mathrm{Fe}, \mathrm{Mn}, \mathrm{Zn} ) was detected in the upper 10 m -layer of Amazon sediments, which are only a few hundred years old (Irion et al., unpublished data). Conversely, weathering of the sediments, which is accelerated in tropical climates, adds dissolved inorganic materials. 悬浮的颗粒无机物通常被认为是河道中植物营养素不重要的来源。相反,这些颗粒由于遮荫而阻碍了浮游植物和水下大型水生植物的生长。然而,在洪泛区,它们成为干旱阶段和部分湿润阶段可供初级生产者利用的营养池的基本组成部分。洪泛区的肥力在很大程度上取决于沉积物的质量。Irion(1983)指出,沙质和高岭土材料的运输和沉积会导致不肥沃的洪泛区(例如,巴西的里约黑河),而亚马逊河和密西西比河的蒙脱石和伊利石则导致高洪泛区肥力。然而,在亚马逊沉积物的上层 10 米中检测到一些可移动元素的贫乏( Fe,Mn,Zn\mathrm{Fe}, \mathrm{Mn}, \mathrm{Zn} ),这些沉积物只有几百年的历史(Irion 等,未发表数据)。相反,在热带气候中加速的沉积物风化过程则增加了溶解的无机材料。
The Organic Fraction 有机部分
According to the RCC, aquatic animal communities of low-order streams depend mainly upon material from the nonflooded watershed. Medium-order streams have an increased instream production. Fauna of high-order rivers lacking floodplains depend mainly on organic material from upstream areas because primary production in the main channel is very low (Vannote et al. 1980). 根据 RCC,低级河流的水生动物群落主要依赖于非洪泛流域的物质。中级河流的水中生产力增加。缺乏洪泛区的高级河流的动物群落主要依赖于上游地区的有机物质,因为主河道的初级生产力非常低(Vannote 等,1980 年)。
Practically all litter must be processed by microorganisms if it is to become attractive to higher consumers. A considerable portion continues to be practically indigestible, such as fine particulate organic material in the Amazon main channel (Hedges et al. 1986). Ertel et al. (1986) reported that humic materials comprised 60%60 \% of the dissolved organic carbon of the Amazon main channel; this carbon in turn made up about 50%50 \% of the total organic carbon. The comparatively low BOD of the water from the main channel of the Amazon itself contrasts sharply with values in its floodplain (Junk, unpublished data). 几乎所有的垃圾都必须通过微生物处理,才能对更高层次的消费者具有吸引力。相当一部分仍然几乎无法消化,例如亚马逊主河道中的细颗粒有机物质(Hedges et al. 1986)。Ertel et al.(1986)报告称,腐殖质材料占亚马逊主河道溶解有机碳的 60%60 \% ;而这些碳又占总有机碳的约 50%50 \% 。亚马逊主河道水体的相对低生化需氧量(BOD)与其洪泛区的数值形成鲜明对比(Junk,未发表数据)。
Part of the organic carbon transported in the main channel passes on to the floodplain. This amount, however, is negligible in comparison with in situ production of organic material in the floodplains of rivers (Bayley 1989). Estimates of the productivity of the Amazon floodplain show that annual primary production is of the same order of magnitude as the total amount of carbon transported by the river to the Atlantic Ocean (Richey et al. 1980; Junk 1985a). 主河道中运输的部分有机碳会流入洪泛区。然而,与河流洪泛区的原位有机物质生产相比,这一数量微不足道(Bayley 1989)。亚马逊洪泛区的生产力估计表明,年初级生产量与河流输送到大西洋的碳总量在同一数量级(Richey et al. 1980; Junk 1985a)。
The direct impact of floodplains on the carbon budget of main channels is not well known. Some evidence suggests that floodplains can be a source for particulate and dissolved carbon (Chowdhury et al. 1982; Martins 1982; Junk 1985a; Furch and Junk 1985; Grubaugh and Anderson 1989b). Conversely, retention mechanisms, such as settling of particulates, uptake by organisms, and retention of most macrophytes by stranding or trapping during falling water (Junk 1980) contribute to the recycling of most carbon in the floodplain and strongly reduce leakage to the river channel. Carbon export from floodplains also depends on hydroperiod, flushing rate, and in temperate regions, on the growth cycle of floodplain vegetation. Data from floodplains are limited, but Odum and de la Cruz (1967) estimated that the rate of export of organic material from a Georgia tidal marsh was directly proportional to volumetric flow rates. 洪泛区对主河道碳预算的直接影响尚不清楚。一些证据表明,洪泛区可以是颗粒和溶解碳的来源(Chowdhury et al. 1982; Martins 1982; Junk 1985a; Furch and Junk 1985; Grubaugh and Anderson 1989b)。相反,沉积颗粒、被生物吸收以及在水位下降时大多数水生植物的滞留或捕获等滞留机制(Junk 1980)有助于洪泛区中大多数碳的循环,并大大减少向河道的泄漏。洪泛区的碳输出还取决于水文周期、冲刷速率,以及在温带地区,洪泛区植被的生长周期。洪泛区的数据有限,但 Odum 和 de la Cruz(1967)估计,乔治亚州潮汐沼泽有机物的输出速率与体积流量成正比。
Gosslink et al. (1981) assumed that flooding during winter and spring provides more detritus to main channels than during summer in temperate regions. In the tropics, consistently high temperatures favor high production and rapid processing of organic material throughout the year. Gosslink 等(1981)假设在温带地区,冬春季节的洪水比夏季提供更多的碎屑到主河道。在热带地区,持续的高温有利于全年有机物的高产和快速处理。
Biota in the River Channel 河道中的生物群落
The channel is well defined in large, pristine rivers, and is delineated from the floodplains by natural levées and/or a marked increase in water velocity. In rivers modified by navigation dams, such as the Mississippi, broad, slowflowing main channel borders are found on either side of the narrow main channel, which is defined by the thalweg (Fremling et al. 1989). These borders, which constitute a developing floodplain, are discussed separately below; however, the main channels of modified rivers have much in common with those in more pristine systems. 该通道在大型、原始的河流中定义明确,并通过自然堤岸和/或水流速度的显著增加与洪泛区分开。在受到航运水坝改造的河流中,例如密西西比河,狭窄的主通道两侧有宽阔、缓慢流动的主通道边界,这些边界由河床线定义(Fremling et al. 1989)。这些构成正在发展的洪泛区的边界将在下面单独讨论;然而,改造河流的主通道与更原始系统的主通道有很多共同之处。
Plants 植物
Great water depth, high suspensoid load, considerable turbulence, and strong current make the main channel unfavorable for primary production. Aquatic macrophytes and periphyton normally colonize shores and, in some transparent tropical rivers, rocky substrates (Podostemaceae). In slow-flowing tropical and subtropical rivers floating macrophytes may become important. Phytopotamoplankton density increases with stream order, transparency, and decreasing current velocity, but absolute values are low (e.g., Berner 1951). In most large rivers, physical factors, in particular light, rather than mineral nutrients limit primary production (Fisher 1979). Average primary production per unit area in the main stems of large turbid river systems such as the Amazon, Mekong, Ganges, and Mississippi can be only a small fraction of that in their floodplains. 水深较大、高悬浮物负荷、湍流显著和水流强劲使得主河道不利于初级生产。水生大植物和附生植物通常在岸边定殖,在一些透明的热带河流中,岩石基质(如水龙骨科)也会被定殖。在缓流的热带和亚热带河流中,浮水植物可能变得重要。浮游植物的密度随着河流等级、透明度和水流速度的降低而增加,但绝对值较低(例如,Berner 1951)。在大多数大河中,物理因素,特别是光照,而非矿物营养物质限制了初级生产(Fisher 1979)。像亚马逊河、湄公河、恒河和密西西比河这样的浑浊大河系统的主干道每单位面积的平均初级生产可能仅占其洪泛区的一小部分。
The extent to which floodplain water bodies contribute to populations of potamoplankton and floating macrophytes in large rivers is unknown. The considerable increase of potamoplankton downstream of reservoirs, e.g., in the Nile (Brook and Rzóska 1954; Talling and Rzóska 1967; Hammerton 1976) and the increase of floating macrophytes in the Amazon main channel at rising and high water (Junk 1970) are due to high production of these plants in associated lentic habitats. 洪泛区水体对大河中河流浮游生物和漂浮大型植物种群的贡献程度尚不清楚。在水库下游,河流浮游生物的显著增加,例如在尼罗河(Brook 和 Rzóska 1954;Talling 和 Rzóska 1967;Hammerton 1976)以及在亚马逊主河道水位上升和高水位时漂浮大型植物的增加(Junk 1970),是由于这些植物在相关的静水栖息地中的高生产力所致。
Invertebrates 无脊椎动物
Little information is available about colonization by animals of the bottoms of large rivers. The bed loads of large rivers in alluvial plains, e.g., the Mississippi, are sandy (Schumm 1977). Large river channels mostly consist of a monotonous sequence of slowly moving sand dunes unsuitable for benthic organisms. The Amazon R., for example, transports its bed load of coarse sand as dunes 6-8 m high (Sioli 1984). 关于动物对大河底部的殖民化,几乎没有可用的信息。大河在冲积平原上的床负荷,例如密西西比河,主要是沙质的(Schumm 1977)。大河的河道大多由单调的缓慢移动的沙丘组成,这些沙丘不适合底栖生物。例如,亚马逊河以 6-8 米高的沙丘运输其粗沙床负荷(Sioli 1984)。
High suspensoid loads hinder benthic and epizoic animals (Hynes 1970). Junk (1973) found a decrease in number and biomass of principally filter-feeding perizoon in floating macrophyte vegetation as amounts of inorganic suspensoids increased. 高悬浮物负荷妨碍底栖和附生动物(Hynes 1970)。Junk(1973)发现,随着无机悬浮物增加,浮动水生植物中的主要滤食性生物数量和生物量减少。
Although some invertebrates can live in the dominant sandy substrates of main channels (e.g., the chironomids Gillotia, Cyphonella, Robackia, and Saetheria [Coffman and Ferrington 1984]), densities are low. Berner (1951) and Morris et al. (1968) indicated average fresh invertebrate biomasses in the main channel of only 0.001g*m^(-2)0.001 \mathrm{~g} \cdot \mathrm{~m}^{-2} and 0.007-0.048g*m^(-2)0.007-0.048 \mathrm{~g} \cdot \mathrm{~m}^{-2}, respectively, for the Missouri R., and attributed these low values to shifting substrates, siltation, fluctuating water levels, swift current, and absence of aquatic vegetation. In the Atchafalaya distributary, which receives 80%80 \% of the Mississippi R. discharge, Bryan et al. (1976) reported a mean quantity of 327 benthic individuals per m^(2)\mathrm{m}^{2} in riverine habitats compared with densities up to ten times greater in floodplain habitats. 尽管一些无脊椎动物可以生活在主河道的主要沙质底 substrate(例如,蚊虫属 Gillotia、Cyphonella、Robackia 和 Saetheria [Coffman 和 Ferrington 1984]),但其密度较低。Berner(1951)和 Morris 等(1968)指出,密苏里河主河道中平均的鲜活无脊椎动物生物量仅为 0.001g*m^(-2)0.001 \mathrm{~g} \cdot \mathrm{~m}^{-2} 和 0.007-0.048g*m^(-2)0.007-0.048 \mathrm{~g} \cdot \mathrm{~m}^{-2} ,并将这些低值归因于底 substrate 的变化、淤积、水位波动、急流以及缺乏水生植物。在接收 80%80 \% 密西西比河排水的阿查法拉亚分流中,Bryan 等(1976)报告在河流栖息地中每 m^(2)\mathrm{m}^{2} 的平均底栖个体数量为 327,而在洪泛平原栖息地中的密度则高达十倍。
Logs and rocks provide stable substrates for organisms in a channel environment that is otherwise dominated by shifting alluvium. Over 10^(6)10^{6} logs were pulled from channels in the lower 1600 km of the Mississippi during a 5 -year period (Harmon et al. 1986). The average fresh animal biomass colonizing logs in the Kaskaskia R., Illinois, varied between 0.57 and 1.65g*m^(-2)1.65 \mathrm{~g} \cdot \mathrm{~m}^{-2} (Nilsen and Larimore 1973). Nord 木头和岩石为生物提供了稳定的基质,在一个主要被流动的冲积物主导的河道环境中。在五年期间,超过 10^(6)10^{6} 根木头被从密西西比河下游 1600 公里的河道中拉出(Harmon 等,1986 年)。在伊利诺伊州的卡斯卡斯基亚河中,定殖在木头上的新鲜动物生物量平均在 0.57 到 1.65g*m^(-2)1.65 \mathrm{~g} \cdot \mathrm{~m}^{-2} 之间(Nilsen 和 Larimore,1973 年)。Nord
and Schmulbach (1973) reported a range of 0.2-3.2g*m^(-2)0.2-3.2 \mathrm{~g} \cdot \mathrm{~m}^{-2} dry weight in the Missouri R. Assuming an average surface area per log\log of 5m^(2)5 \mathrm{~m}^{2}, a dry biomass density of 2g*m^(-2)2 \mathrm{~g} \cdot \mathrm{~m}^{-2} of log\log, and an average width of the lower Mississippi channel of 900 m , the overall biomass density of this fauna would be only 0.007g*m^(-2)0.007 \mathrm{~g} \cdot \mathrm{~m}^{-2}. 和 Schmulbach(1973)报告了密苏里河中 0.2-3.2g*m^(-2)0.2-3.2 \mathrm{~g} \cdot \mathrm{~m}^{-2} 的干重范围。假设每 log\log 的平均表面积为 5m^(2)5 \mathrm{~m}^{2} ,干生物量密度为 2g*m^(-2)2 \mathrm{~g} \cdot \mathrm{~m}^{-2} 为 log\log ,以及下密西西比河通道的平均宽度为 900 米,这种动物群的总体生物量密度仅为 0.007g*m^(-2)0.007 \mathrm{~g} \cdot \mathrm{~m}^{-2} 。
Vertebrates 脊椎动物
Vertebrates, particularly fish, are important consumers in the main channel. In subtropical and tropical rivers, freshwater dolphins, capybaras, manatee, hippos, turtles, and crocodiles may contribute considerably to the main channel biomass. White whales and seals occur in arctic rivers; beavers, muskrats, and otters in temperate rivers; and waterfowl and shorebirds in both. However, few higher animals have adapted to utilize main channel habitats exclusively. Those that do tend to be predators whose prey depends largely on production in floodplain habitats, such as large, piscivorous catfishes (Goulding 1981), to some extent river dolphins (Ferreira da Silva 1983), and fish that consume aquatic invertebrates (Lundberg et al. 1987). In the main channels of the Mississippi and Missouri rivers, pallid sturgeon (Scaphirynchus albus), blue sucker (Cycleptus clongatus), blue catfish (Ictalurus furcatus), and several chubs (Hybopsis spp.) feed largely on invertebrates, and, with respect to large pallid sturgeons and blue catfish, on fish (Pflieger and Grace 1987). 脊椎动物,特别是鱼类,是主河道中的重要消费者。在亚热带和热带河流中,淡水海豚、巨河豚、水牛、河马、乌龟和鳄鱼可能对主河道的生物量贡献相当大。白鲸和海豹出现在北极河流中;海狸、麝鼠和水獺出现在温带河流中;水鸟和岸鸟则在两者中都有。然而,很少有高等动物适应专门利用主河道栖息地。那些能够适应的往往是捕食者,其猎物在很大程度上依赖于洪泛区栖息地的生产,例如大型食鱼的鲶鱼(Goulding 1981)、在某种程度上是河豚(Ferreira da Silva 1983)以及食用水生无脊椎动物的鱼类(Lundberg et al. 1987)。在密西西比河和密苏里河的主河道中,苍白鲟(Scaphirynchus albus)、蓝吸鱼(Cycleptus clongatus)、蓝鲶鱼(Ictalurus furcatus)和几种鲤科鱼类(Hybopsis spp.)主要以无脊椎动物为食,并且就大型苍白鲟和蓝鲶鱼而言,也以鱼类为食(Pflieger and Grace 1987)。
Most vertebrates use the main channel temporarily as migration routes, for spawning, as refuge during droughts or freeze-up, or for hibernation. Tropical rivers are famous for large-scale migrations of fish for dispersal and/or spawning in the main channel or floodplain, that result in large biomass densities in the main channel during falling or low-water periods (Godoy 1967; Bonetto et al. 1969a; Bayley 1973; Ribeiro 1983). Large channel catfish (Ictalurus punctatus), flathead catfish (Pylodictis olivaris), and freshwater drum (Aplodinotus grunniens) use drop-offs, scour holes or obstructions in or along the main channel of the Upper Mississippi R. for a winter refuge (Hawkinson and Grunwald 1979). 大多数脊椎动物暂时利用主河道作为迁徙路线、产卵场所、干旱或冰冻期间的避难所,或用于冬眠。热带河流因鱼类的大规模迁徙而闻名,这些迁徙是为了在主河道或洪泛区进行分散和/或产卵,导致在水位下降或低水期主河道内生物量密度大(Godoy 1967;Bonetto 等 1969a;Bayley 1973;Ribeiro 1983)。大型通道鲶鱼(Ictalurus punctatus)、扁头鲶鱼(Pylodictis olivaris)和淡水鼓鱼(Aplodinotus grunniens)在上密西西比河的主河道中利用落差、冲刷孔或障碍物作为冬季避难所(Hawkinson 和 Grunwald 1979)。
Except for limited amounts of potamoplankton, benthos, and predators, the biota of the main channel concentrate close to the river shoreline, to islands, or in the main channel border areas described below, areas where habitat diversity increases and food supply improves (edge effect). Therefore the “bank coefficient” (Sedell et al. 1989) is an index of the productivity potential of a river channel in the absence of a floodplain. Conversely, when a regularly inundated floodplain is present, most of the vertebrates found in the main channel depend to a great extent directly or indirectly on primary production in the laterally linked floodplain habitats. 除了有限数量的水生浮游生物、底栖生物和捕食者外,主河道的生物群落主要集中在河岸附近、岛屿或下面描述的主河道边缘区域,这些区域的栖息地多样性增加,食物供应改善(边缘效应)。因此,“岸系系数”(Sedell et al. 1989)是没有洪泛区时河道生产潜力的一个指标。相反,当存在定期淹没的洪泛区时,主河道中发现的大多数脊椎动物在很大程度上直接或间接依赖于横向连接的洪泛区栖息地中的初级生产。
Biota in the Floodplains 洪泛区的生物群落
Flood Pulsing and Life Cycles 洪水脉动与生命周期
Life cycles of biota utilizing floodplain habitats are related to the flood pulse in terms of its annual timing, duration, and the rate of rise and fall. Timing is important in temperate rivers where seasonal temperature and light cycles also regulate productivity. 利用洪泛区栖息地的生物生命周期与洪水脉冲的年度时机、持续时间以及涨落速度相关。时机在温带河流中尤为重要,因为季节性温度和光照周期也会调节生产力。
Because the ATTZ has pronounced aquatic and terrestrial phases, there are strong selective pressures on aquatic organisms to colonize it at rising or high water because of the feeding opportunities (Bonetto et al. 1969b; Welcomme 1979; Bayley 1983, 1988). Conversely, terrestrial organisms that occupy nonflooded habitats along the floodplain borders are adapted to exploit the ATTZ at low water levels (Sheppe and Osborne 1971; Fredrickson 1979; Davies 1985). 由于 ATTZ 具有明显的水生和陆生阶段,水生生物在水位上升或高水位时面临强烈的选择压力,因为这提供了丰富的觅食机会(Bonetto 等,1969b;Welcomme,1979;Bayley,1983,1988)。相反,栖息在洪泛平原边缘非淹没栖息地的陆生生物则适应于在低水位时利用 ATTZ(Sheppe 和 Osborne,1971;Fredrickson,1979;Davies,1985)。
In low-order streams, the level of adaptation to flooding is rather low. For many organisms, unpredictable floods correspond to catastrophic events that periodically “reset” the physical and biotic environment (Cummins 1977; Fisher 1983). Obligate aquatic organisms concentrate mostly in the main channel because flood periods are too short and irregular to develop profitable strategies for occupying the ATTZ. 在低阶河流中,适应洪水的能力相对较低。对于许多生物来说,不可预测的洪水对应于定期“重置”物理和生物环境的灾难性事件(Cummins 1977;Fisher 1983)。专性水生生物主要集中在主河道,因为洪水期过短且不规律,无法发展出占据附加水域的有效策略。
The predictable and prolonged flood pulse typical of large rivers favors the development of anatomical, morphological, physiological, and / or ethological adaptations of terrestrial and aquatic organisms in order to colonize the ATTZ as shown by Adis (1979) and Irmler (1981) for Amazonian terrestrial invertebrates and by Uetz et al. (1979) and Wharton et al. (1981) for N. American floodplains. 大型河流典型的可预测和持久的洪水脉冲有利于陆生和水生生物在解剖学、形态学、生理学和/或行为学上的适应发展,以便殖民 ATTZ,正如 Adis(1979)和 Irmler(1981)对亚马逊陆生无脊椎动物所示,以及 Uetz 等(1979)和 Wharton 等(1981)对北美洪泛区的研究所示。
In the humid tropics, regular flooding and drying of floodplains provoke a pronounced seasonality in an otherwise unseasonal environment. Many Amazonian floodplain trees show distinct annual growth rings, because inundation causes a “physiological winter” through oxygen stress (Worbes 1985, 1986). Seed production is timed with the flood for dispersal by water or by fish (Gottsberger 1978; Goulding 1980). Terrestrial arthropods from central Amazonian floodplain forests show a defined reproduction period (Adis and Mahnert 1986; Irmler 1986) but are polyvoltine in neighboring dryland forests (Adis and Sturm 1989). The flood cycle has been hypothesized as the driving force behind species selection (“taxon pulse”, Erwin and Adis 1982) and the acquisition of an annual seasonality that enabled tropical insects to colonize temperate zones (Paarmann et al. 1982; Adis et al. 1986). The regular pulsing of large rivers may have been as important for the development of biorhythms in the tropics as was the pulsing of the light/temperature regime in temperate regions or the change between dry and wet periods in the arid and semiarid tropics. 在潮湿的热带地区,洪泛区的定期洪水和干燥引发了一个在其他情况下没有季节性的环境中明显的季节性。许多亚马逊洪泛区的树木显示出明显的年轮,因为淹水导致了通过氧气压力产生的“生理冬季”(Worbes 1985, 1986)。种子的产生与洪水的时间相协调,以便通过水或鱼进行传播(Gottsberger 1978;Goulding 1980)。来自中亚马逊洪泛区森林的陆生节肢动物显示出明确的繁殖期(Adis 和 Mahnert 1986;Irmler 1986),但在邻近的干旱森林中则是多代繁殖(Adis 和 Sturm 1989)。洪水周期被假设为物种选择的驱动力(“分类脉冲”,Erwin 和 Adis 1982)以及获得年度季节性的原因,这使得热带昆虫能够殖民温带地区(Paarmann 等,1982;Adis 等,1986)。大河的定期脉动可能对热带生物节律的发展与温带地区光/温度制度的脉动或干旱和半干旱热带地区干湿期的变化同样重要。
Because many vertebrates living in the main channel depend on the floodplain for food supply, spawning, and shelter, they have developed strategies to utilize periodically available habitats. High mobility is required, as witnessed by the extensive migrations referred to earlier. Such strictly aquatic animals as fish and manatees depend on the flood cycle of the river, which controls access to the floodplain. Others less strictly aquatic, such as hippos, beavers, or capybaras, make feeding trips out of the water. 由于生活在主河道中的许多脊椎动物依赖洪泛区提供食物、产卵和庇护,它们发展了利用周期性可用栖息地的策略。需要高度的流动性,正如前面提到的广泛迁徙所证明的那样。像鱼和海牛这样的严格水生动物依赖于河流的洪水周期,这控制了进入洪泛区的通道。其他一些不那么严格水生的动物,如河马、海狸或水豚,则会在水外进行觅食。
The importance of lateral migration of animals between the floodplain and main channel of large river systems has been underestimated because modern civilization has substantially modified the hydrograph and separated floodplains from main channels. These modifications dominate large temperate river systems. The biologist’s typical view of fish in temperate rivers has been that they complete their life cycles within the river channel. Indeed, fish have no alternative in sections of some highly altered systems such as major stretches of the Mississippi R. Their persistence 动物在大河系统的洪泛区与主河道之间的横向迁移的重要性被低估了,因为现代文明已经大幅度改变了水文图,并将洪泛区与主河道分开。这些改变主导了大型温带河流系统。生物学家对温带河流中鱼类的典型看法是,它们在河道内完成生命周期。实际上,在一些高度改变的系统的某些段落中,例如密西西比河的主要河段,鱼类没有其他选择。它们的持续存在
in these areas attests to their great plasticity in coping with habitat change. 在这些领域证明了它们在应对栖息地变化方面的巨大可塑性。
Fishes that depend on seasonal colonization of floodplain habitats dominate the fisheries, the biomass, and the production in river-floodplain systems (Bonetto et al. 1969a; Welcomme 1979; Bayley 1981a; Goulding 1981; Bayley 1983; Littlejohn et al. 1985). Spawning of many species occurs at the beginning or during some period of the rising flood, resulting in timely colonization of the floodplains for feeding and shelter (Bayley 1983, 1988; Holland et al. 1983; Welcomme 1985). Conversely, when the water recedes, fish find refuge in main channels, in residual floodplain water bodies, or in permanent tributaries (Welcomme 1979). 依赖季节性洪泛区栖息地的鱼类主导了渔业、生物量和河流-洪泛区系统的生产(Bonetto et al. 1969a; Welcomme 1979; Bayley 1981a; Goulding 1981; Bayley 1983; Littlejohn et al. 1985)。许多物种的产卵发生在洪水上涨的开始或某个时期,从而及时地在洪泛区进行觅食和避难(Bayley 1983, 1988; Holland et al. 1983; Welcomme 1985)。相反,当水位退去时,鱼类会在主河道、残留的洪泛区水体或永久性支流中寻找避难所(Welcomme 1979)。
Adults of many species show seasonality in food uptake related to flood cycles, as shown for the Rupununi R. by Lowe-McConnell (1964) and for the large rivers of the Amazon basin by Goulding (1980, 1981) and Ribeiro (1983). Periods of fasting coincide with low or falling water levels and are associated with decreases in seasonal fat content in many adult fish (Junk 1985b). Studies of diets at rising and high water show that many species directly use pollen, fruits, seeds, and the small portion of terrestrial insects that drop into the water from the canopy of the forest (Goulding 1980). 许多物种的成年个体在与洪水周期相关的食物摄取上表现出季节性,Lowe-McConnell(1964)对 Rupununi R.的研究以及 Goulding(1980, 1981)和 Ribeiro(1983)对亚马逊流域大河的研究均表明,禁食期与水位低或下降的时期重合,并且与许多成年鱼类的季节性脂肪含量下降相关(Junk 1985b)。在水位上升和高水位期间的饮食研究表明,许多物种直接利用花粉、水果、种子以及从森林树冠掉入水中的少量陆生昆虫(Goulding 1980)。
Detritus plays a major part in the food webs in floodplains (Welcomme 1985). Fish are major detritivores in the tropics. For example, fine particulate organic matter (FPOM) is consumed directly by the highly specialized Prochilodontidae and Curimatidae in South America, and by Citharinidae and Labeo species in Africa (Bowen 1984; PBB, pers. obs.). Coarse particulate organic matter (CPOM) features in the diet of many omnivores in the Amazon (Almeida 1980; Santos 1981). 碎屑在洪泛区的食物网中扮演着重要角色(Welcomme 1985)。鱼类是热带地区主要的碎屑食者。例如,细颗粒有机物(FPOM)被南美洲高度专业化的 Prochilodontidae 和 Curimatidae 直接摄食,而在非洲则被 Citharinidae 和 Labeo 物种摄食(Bowen 1984;PBB,个人观察)。粗颗粒有机物(CPOM)是亚马逊地区许多杂食动物饮食的一部分(Almeida 1980;Santos 1981)。
FPOM is also an important feature of the gut contents of large catostomids and Dorosoma in large N. American rivers, but its nutritional importance has only recently been indicated (Ahlgren 1988). Most of the commercially important fishes are bottom feeders utilizing macroinvertebrates, which in turn ingest detritus (Fremling et al. 1989). FPOM 也是北美大河中大型鲶鱼和多罗索马肠道内容物的重要特征,但其营养重要性最近才被指出(Ahlgren 1988)。大多数商业重要鱼类是底栖鱼类,利用大型无脊椎动物,而这些无脊椎动物又摄取碎屑(Fremling 等,1989)。
The importance of remnant floodplain areas in the Mississippi and its tributaries was indicated by Risotto and Turner (1985), who found that 55%55 \% of the variation in average fish catch was explained by bottomland hardwood area (as a proxy to floodplain area), fishing effort, and latitude. Because some bottomland forest is now cut off by manmade levees and not all floodplains are forested, the relationship might be improved with direct measurements of the active floodplain areas. 密西西比河及其支流中残余洪泛区的重要性由 Risotto 和 Turner(1985)指出,他们发现 55%55 \% 的平均鱼获变异性由底地硬木区(作为洪泛区的代理)、捕鱼努力和纬度解释。由于一些底地森林现在被人造堤坝隔开,并且并非所有洪泛区都是森林,因此通过对活跃洪泛区的直接测量,可能会改善这种关系。
Adaptations to survive hypoxic conditions favor the colonization of periodically stagnant waters typical of many floodplains. Air breathing and other adaptations to low oxygen concentrations are frequently found in neotropical fishes (Carter and Beadle 1931; Kramer et al. 1978; Junk et al. 1983), other tropical floodplain rivers (Welcomme 1979), and in fish of the Mississippi drainage (e.g., gars, Lepisosteus spp. and bowfin, Amia calva; see also Marvin and Heath 1968). 适应低氧环境的生存方式有利于定期停滞水域的殖民,这在许多洪泛区中是典型的。空气呼吸和其他对低氧浓度的适应在新热带鱼类中经常被发现(Carter 和 Beadle 1931;Kramer 等 1978;Junk 等 1983),在其他热带洪泛河流中(Welcomme 1979),以及在密西西比流域的鱼类中(例如,长吻鲶,Lepisosteus spp. 和鲶鱼,Amia calva;另见 Marvin 和 Heath 1968)。
In the temperate Upper Mississippi R. floods can reduce the overwinter survival of young-of-the-year freshwater drum (Aplodinotus grunniens) by the influx of channel water at 0^(@)C0^{\circ} \mathrm{C} into backwater thermal refuges where the temperature is 4^(@)C4^{\circ} \mathrm{C} (Bodensteiner and Sheehan, in press). The winter biology of fishes in large North American rivers has been little studied, and the recruitment of other species may be strongly affected by winter temperatures and flood patterns. From spring through summer, the timing and duration of the flood is critical to species which gain access to the ATTZ and permanent backwaters for feeding and spawning. Ideal conditions for spring spawners occur during years in which the flood and temperature rise are coupled; conversely, recruitment is poor if the flood retreats too soon during the warm growing season (Fig. 1). Finger and Stewart (1987) found that the timing and duration of flooding controlled the year-class dominance of springversus summer-spawners in Missouri floodplain forests. 在温带的上密西西比河,洪水会通过在 0^(@)C0^{\circ} \mathrm{C} 时将河道水涌入温暖的后水域,降低当年幼鱼(Aplodinotus grunniens)的越冬生存率,温度为 4^(@)C4^{\circ} \mathrm{C} (Bodensteiner 和 Sheehan,待发表)。北美大河中鱼类的冬季生物学研究较少,其他物种的补充可能会受到冬季温度和洪水模式的强烈影响。从春季到夏季,洪水的时机和持续时间对能够进入 ATTZ 和永久后水域进行觅食和产卵的物种至关重要。理想的春季产卵条件出现在洪水和温度上升相结合的年份;相反,如果洪水在温暖的生长季节过早退去,补充情况就会很差(图 1)。Finger 和 Stewart(1987)发现,洪水的时机和持续时间控制了密苏里洪泛森林中春季与夏季产卵鱼类的年级优势。
In polar, sub-arctic, and taiga rivers the timing of the flood is predictable because of massive snow melt in the spring. However, the flood is accompanied by ice that scours the floodplains and subsequently recedes rapidly, 在极地、亚北极和泰加河流中,洪水的发生时间是可预测的,因为春季大量的雪融化。然而,洪水伴随着冰块,这些冰块会冲刷洪泛区,并随后迅速退去。
Fig. 1. Schematic of combinations of river stage and water temperature in temperate riverfloodplain systems (see text). 图 1. 温带河流泛滥平原系统中河流水位和水温的组合示意图(见正文)。
creating an inhospitable environment for fishes (Roy 1989). The severe springtime conditions may explain why fish in high latitudes avoid the flood by spawning in the fall (R.A. Ryder, personal communication). 为鱼类创造一个不适宜的环境(Roy 1989)。严酷的春季条件可能解释了为什么高纬度的鱼类通过在秋季产卵来避免洪水(R.A. Ryder,个人通讯)。
Tree growth is mainly retarded by floods because the rhizosphere becomes deoxygenated (Huffman 1980; Huffman et al. 1981). Gosselink et al. (1981) postulated that floods during winter or spring have a positive effect on the floodplain forest because they distribute nutrients and water to the soil before plant growth commences. Data on flood tolerance of tree species often appear to be contradictory because the timing of floods relative to growth and resting periods is not stated (Dister 1980). 树木生长主要受到洪水的抑制,因为根际缺氧(Huffman 1980;Huffman et al. 1981)。Gosselink 等(1981)假设冬季或春季的洪水对洪泛区森林有积极影响,因为它们在植物生长开始之前将养分和水分分配到土壤中。关于树种耐洪水能力的数据往往显得矛盾,因为没有说明洪水发生的时间与生长和休眠期的关系(Dister 1980)。
The Mississippi R. is a major migratory flyway for waterfowl, shorebirds, gulls, and eagles. The dabbling ducks (mallard, pintails, greenwing and bluewing teal, black duck) utilize mast in floodplain forests, waste grain in adjacent harvested fields, and invertebrates associated with macrophytes in shallow water bodies, as well as the seeds, tubers, and plant leaves in the floodplain (Bellrose 1941). The diving ducks (canvasback, lesser scaup) utilize submerged macrophytes and macroinvertebrates that grow in deeper water (Thompson 1973). Aquatic and moist-soil vegetation in the Illinois and Upper Mississippi floodplains requires a period of shallow, stable water levels during the summer growing season (Bellrose et al. 1979). The summer’s primary production is made more accessible to migratory 'waterfowl by the autumn rise in water levels. If an autumn flood does not occur, managers of refuges and duck clubs create one by pumping water from the river into the floodplain. They also pump water out of the same impoundments if the flood is too slow to retreat in the summer, so they can sow millet or allow native plants to grow (Bellrose et al. 1979), 密西西比河是水鸟、 shorebirds、海鸥和鹰的主要迁徙飞行路线。戏水鸭(如绿头鸭、斑头鸭、绿翅鸭和蓝翅鸭、黑鸭)利用洪泛森林中的果实、邻近收获田地中的废粮,以及与浅水体中的大型水生植物相关的无脊椎动物,以及洪泛区中的种子、块茎和植物叶子(Bellrose 1941)。潜水鸭(如画眉鸭和小斑潜鸭)利用生长在深水中的水生植物和大型无脊椎动物(Thompson 1973)。伊利诺伊州和上密西西比洪泛区的水生和湿土植物在夏季生长季节需要一段时间的浅而稳定的水位(Bellrose et al. 1979)。夏季的主要生产通过秋季水位的上升变得更容易被迁徙的水鸟获取。如果秋季没有洪水,避难所和鸭子俱乐部的管理者会通过将水从河流抽入洪泛区来制造洪水。如果洪水在夏季退去得太慢,他们也会从同一水库抽水,以便播种小米或让本地植物生长(Bellrose et al. 1979)。
Flood Pulsing and Plant Community Structure 洪水脉动与植物群落结构
Under given climatic conditions, plant communities become established in the ATTZ of large rivers according to the flood regime. Every place in this zone can be considered a point on a gradient reflecting the degree of annual flooding. Every plant has its optimum position on this gradient. The optimum, however, can be modified by such factors as stability, structure, and fertility of the substrate, groundwater level, and biogenic processes (e.g., accumulation of organic material, nitrogen fixation, and interspecific competition) (Lindsey et al. 1961; Bedinger 1979; Burgess et al. 1973; Johnson and Bell 1976; Bell 1980; Dister 1980, 1983; Gosselink et al. 1981; McKnight et al. 1981). Distributions of animals are also affected by this gradient in spite of their mobility (Wharton et al. 1981 ; Larson et al. 1981). 在特定气候条件下,植物群落根据洪水规律在大河的附属湿地(ATTZ)中建立。该区域的每个地方都可以视为反映年度洪水程度的梯度上的一个点。每种植物在这个梯度上都有其最佳位置。然而,最佳位置可以受到基质的稳定性、结构和肥力、地下水位以及生物过程(例如有机物积累、氮固定和种间竞争)等因素的影响(Lindsey et al. 1961; Bedinger 1979; Burgess et al. 1973; Johnson and Bell 1976; Bell 1980; Dister 1980, 1983; Gosselink et al. 1981; McKnight et al. 1981)。尽管动物具有移动性,但它们的分布也受到这个梯度的影响(Wharton et al. 1981; Larson et al. 1981)。
Basic changes in plant community structure occur mainly through a shift of the gradient, such as a rise of the floodplain surface due to additional inorganic or organic sediment deposition (allogenic or autogenic succession), a lowering by erosion, or a change in the hydrograph due to climatic change, tectonic movement, or human influence such as the construction of a dam or lateral dikes. 植物群落结构的基本变化主要通过梯度的变化发生,例如由于额外的无机或有机沉积物沉积(异源或自源演替)导致洪泛平原表面的上升,因侵蚀导致的下降,或由于气候变化、构造运动或人类影响(如修建大坝或侧堤)导致的水文图变化。
Plant communities, however, are characterized by smaller changes. There is strong pressure on communities to proceed to a later successional stage when the period of the flood pulse is reduced. The shape of the pulse often varies within large limits, thereby causing communities to 植物群落的特征是较小的变化。当洪水脉冲的持续时间缩短时,群落面临着向后续阶段发展的强大压力。脉冲的形状通常在较大范围内变化,从而导致群落发生变化。
respond. Annual plants react to annual differences whereas forest communities are affected by extreme annual floods, droughts, or even periods of successive years of extreme flood events that may occur every 10,20 , or 100 years. Establishment of tree seedlings in low-lying areas requires a period of exceptionally low water for several years, as Demaree (1932) found for Taxodium distichum. Aquatic communities tend to fill up periodically isolated water bodies with organic debris, thereby causing autogenic succession to marsh and swamp vegetation when the flood pulse fails. This process has been estimated to require about 200 years in the temperate Rhône R. (Amoros et al. 1986). Extreme floods clean these water bodies and “reset” communities to earlier successional stages. Resets can be especially severe when floods occur during the ice season in temperate rivers because trees and channels can be scoured by wind- or water-driven ice (Sigafoos 1964). Consequently, the observed community structure in floodplains is a result of short-, medium-, and/or long-term effects of the flood pulse. Shelford (1954) estimated that about 600 years were required to develop the late subclimax tulip-deer-oak communities on the lower Mississippi R. Most communities receiving the full amplitude of the flood pulse can be viewed as being in a dynamic equilibrium at an early successional level (pulse-stability, sensu Odum 1959; see also Margalef 1968). 响应。年度植物对年度差异作出反应,而森林群落则受到极端年度洪水、干旱,甚至是每 10 年、20 年或 100 年可能发生的连续数年极端洪水事件的影响。树苗在低洼地区的建立需要几年的异常低水位期,正如 Demaree(1932)对水杉的研究所发现的那样。水生群落倾向于定期填充孤立的水体,带有有机碎屑,从而在洪水脉冲失效时导致沼泽和湿地植被的自生演替。这个过程在温带罗纳河中估计需要大约 200 年(Amoros 等,1986)。极端洪水清理这些水体,并将群落“重置”到早期的演替阶段。当洪水发生在温带河流的冰季时,重置可能尤其严重,因为树木和水道可能会被风或水驱动的冰冲刷(Sigafoos 1964)。因此,洪泛区中观察到的群落结构是洪水脉冲短期、中期和/或长期影响的结果。 谢尔福德(1954)估计,发展密西西比河下游的晚期亚顶级郁金香-鹿-橡树群落大约需要 600 年。大多数受到洪水脉冲完全影响的群落可以被视为处于早期演替水平的动态平衡状态(脉冲-稳定性,参见奥杜姆 1959;另见马尔加雷夫 1968)。
Flood Pulsing and Production 洪水脉冲与生产
Primary and secondary production in the river-floodplain system is the sum of production during terrestrial and aquatic phases. As indicated previously, the basic fertility of the floodplain depends on the nutrient status of the water and on the sediments deriving from the river. This fertility, however, may be modified by tributaries and by runoff from the local catchment area of the floodplain. Length, amplitude, frequency; timing, and predictability of the flood pulse determine occurrences, life cycles, and abundances of pri-mary and secondary producers and decomposers, abundances which affect the level of exploitation andi regeneration of the nutrient pool as well as its supply. 河流-洪泛区系统中的初级和次级生产是陆地和水生阶段生产的总和。如前所述,洪泛区的基本肥力取决于水体的营养状况以及来自河流的沉积物。然而,这种肥力可能会受到支流和洪泛区当地集水区径流的影响。洪水脉冲的长度、幅度、频率、时机和可预测性决定了初级和次级生产者及分解者的出现、生命周期和丰度,这些丰度影响营养库的开发和再生水平以及其供应。
Gosselink and Turner (1978) proposed a classification of wetland systems according to a hydrodynamic energy gradient. They suggested that a positive relationship existed between productivity and water flow. Their theory may be valid within limits in a river-floodplain system; however, short-duration pulsing can flush out considerable organic matter and nutrients into the main channel (or into the estuary from a salt marsh as shown by Teal [1962]) and limit in situ productive processes and access by aquatic animals. In such systems, the aquatic biologist studying production is concerned with how the ATTZ benefits the river or the permanent lentic areas in the floodplain. Conversely, slow inundation of the same floodplain allows sufficient time for in situ processes along the moving littoral (Fig. 2), which traverses the ATTZ with each pulse. Aquatic and terrestrial biologists studying production in river-floodplain systems with slow pulsing should be concerned with how the river benefits the floodplain. Gosselink 和 Turner(1978)根据水动力能量梯度提出了湿地系统的分类。他们建议生产力与水流之间存在正相关关系。他们的理论在河流-洪泛区系统中可能在一定范围内有效;然而,短时间的脉冲可以将大量有机物和营养物质冲刷到主河道(或从盐沼冲刷到河口,如 Teal [1962]所示),并限制原位生产过程和水生动物的进入。在这样的系统中,研究生产的水生生物学家关注的是 ATTZ 如何惠及河流或洪泛区内的永久性静水区。相反,洪泛区的缓慢淹没为沿着移动的滨岸(图 2)进行原位过程提供了足够的时间,每次脉冲都会穿越 ATTZ。研究河流-洪泛区系统中缓慢脉冲的水生和陆生生物学家应关注河流如何惠及洪泛区。
The flooding phase of the moving littoral (Fig. 2) finds its closest parallel to a reservoir in the process of being flooded (Wood 1951), with mineralized products from any preceding aquatic cycle and the current terrestrial one being 移动滨海的洪水阶段(图 2)与正在被淹没的水库最为相似(Wood 1951),其矿化产物来自任何先前的水生循环和当前的陆地循环。
Fig. 2. The moving littoral in the transition zone (ATTZ) of a river-floodplain system in the central Amazon, with estimates of annual production ( P ) and biomass (B). Estimates are as dry weight per hectare. The H_(2)S\mathrm{H}_{2} \mathrm{~S} zone has no dissolved O_(2)\mathrm{O}_{2}. The indicated zones are as follows: (1) Phytoplankton Cl4 (Schmidt 1973b), (2) annual terrestrial plants, (3) perennial grasses, (4) floodplain (varzea) forest, and (5) emergent macrophytes (from Junk 1985c and unpubl. data). Periphyton are not included, but preliminary data of periphyton on macrophytes from T. R. Fisher (pers. comm.) indicate a total productivity in the floodplain of the same order as phytoplankton (Bayley 1989). 图 2. 中亚马逊河-洪泛区系统过渡区(ATTZ)中的移动沿海,估算年产量(P)和生物量(B)。估算以每公顷干重计。 H_(2)S\mathrm{H}_{2} \mathrm{~S} 区没有溶解的 O_(2)\mathrm{O}_{2} 。指示的区域如下:(1)浮游植物 Cl4(Schmidt 1973b),(2)年度陆生植物,(3)多年生草本植物,(4)洪泛区(varzea)森林,以及(5)突出的大型水生植物(来自 Junk 1985c 和未发表的数据)。附生植物未包括在内,但 T. R. Fisher(个人通讯)提供的关于大型水生植物的附生植物的初步数据表明,洪泛区的总生产力与浮游植物相当(Bayley 1989)。
released into the water. The various sources of primary production have high values (Fig. 2) but varying production to biomass ratios. When integrated over areas appropriate for each season in the floodplain, phytoplankton contributed less than 6%6 \% of the total carbon production in the central Amazon várzea floodplain (Junk 1985a; Bayley 1989). 释放到水中。各种初级生产来源具有高值(图 2),但生产与生物量的比率各不相同。当在洪泛平原的每个季节适当的区域进行整合时,浮游植物在亚马逊中部的 várzea 洪泛平原中贡献的总碳生产不到 6%6 \% (Junk 1985a;Bayley 1989)。
Most carbon sources, including considerable detrital biomass, are important to some animals at some time (Welcomme 1979, 1985; Junk 1984), but their quantitative 大多数碳源,包括相当数量的碎屑生物量,对某些动物在某些时候是重要的(Welcomme 1979, 1985; Junk 1984),但它们的定量
importance is unknown. Organic material produced in floodplains varies considerably with respect to consistency, protein content, digestibility, and availability, that result in large differences in decomposition time and in the types of organisms involved in decomposition processes. Phytoplankton and periphyton are easily decomposed in only a few hours or days. In the Amazon, aquatic and terrestrial herbaceous plants lose about 50%50 \% of their weight after 2-3 weeks in water (Howard-Williams and Junk 1976). Tree leaves vary widely according to species; some are as quickly decomposed as herbaceous plants whereas others remain little modified throughout months and even years. Softwood plants are destroyed in a few years, whereas hardwood plants may remain little modified for years and even decades (Junk, unpublished data). 重要性尚不清楚。洪泛区产生的有机物质在一致性、蛋白质含量、可消化性和可获得性方面差异很大,这导致分解时间和参与分解过程的生物种类存在很大差异。浮游植物和附生植物在几小时或几天内就容易分解。在亚马逊,水生和陆生草本植物在水中浸泡 2-3 周后失去约 50%50 \% 的重量(Howard-Williams 和 Junk 1976)。树叶根据物种的不同差异很大;有些与草本植物一样迅速分解,而另一些则在几个月甚至几年内几乎没有变化。软木植物在几年内被破坏,而硬木植物可能在多年甚至几十年内几乎没有变化(Junk,未发表数据)。
Strong evidence suggests that the change between terrestrial and aquatic phases accelerates the decomposition of organic material, as the circumstantial evidence of Wood (1951) indicated. Terrestrial arthropods play an important role in the decomposition of leaf litter and wood as shown for cockroaches by Irmler and Furch (1979) and for termites by C. Martius (pers. comm. to WJJ). Oxygenation of sediments during dry periods promotes processing of organic material; later, when reflooding occurs, plant nutrients are recycled into the water, thereby enhancing productivity. This effect, sometimes in combination with a crop plantation or fallow period for an entire year, has been utilized for many years in European fish culture. Wood (1951) proposed the management of water levels in impoundments by changing them seasonally to increase fish production. Lambou (1959) suggested that the processes described by Wood explain the high productivity of backwater lakes due to natural water fluctuations in the Mississippi floodplain. In the Amazon floodplain during the period of rising water, mean growth increments by weight of 12 common fish species were 60%60 \% higher than during the remainder of the year (Bayley 1988). 强有力的证据表明,陆地和水生阶段之间的变化加速了有机物质的分解,正如伍德(1951 年)所指出的间接证据所示。陆地节肢动物在落叶和木材的分解中发挥着重要作用,伊尔梅尔和福赫(1979 年)对蟑螂的研究以及 C. 马尔修斯(与 WJJ 的个人通讯)对白蚁的研究均表明了这一点。在干旱时期,沉积物的氧化促进了有机物质的处理;随后,当再次淹水时,植物养分被回收进入水中,从而增强了生产力。这种效应,有时与整整一年的作物种植或休耕期相结合,已在欧洲的鱼类养殖中利用多年。伍德(1951 年)提出通过季节性改变水库的水位来管理水位,以增加鱼类产量。兰布(1959 年)建议,伍德所描述的过程解释了由于密西西比洪泛平原的自然水位波动而导致的回水湖泊的高生产力。 在亚马逊洪泛区水位上升期间,12 种常见鱼类的平均重量增长增量比一年中其余时间高出 60%60 \% (Bayley 1988)。
Food supply in fertile floodplains during the flood phase can be so abundant that factors other than food may limit individual growth and population density of fish and other aquatic animals. Limitations during the flood phase include spawning success, lack of habitats with sufficient dissolved oxygen (Junk et al. 1983), and predation (Bayley 1983). Limitations at low water include higher levels of predation, a probable reduction in food supply, or even death by drought. Bayley (1988) found that growth of juveniles of 11 abundant fish species tested did not indicate a densitydependent relationship with potentially competing species guilds during the period of rising water. Only two out of eight species indicated density-dependency at P < .05P<.05 during the shorter falling-water period. 在洪水阶段,肥沃的泛滥平原上的食物供应可能非常丰富,以至于除了食物之外的其他因素可能限制鱼类和其他水生动物的个体生长和种群密度。洪水阶段的限制因素包括产卵成功率、缺乏溶解氧充足的栖息地(Junk et al. 1983)和捕食(Bayley 1983)。在低水位时的限制因素包括更高的捕食水平、食物供应可能减少,甚至因干旱而导致死亡。Bayley(1988)发现,在水位上升期间,11 种丰度较高的鱼类幼体的生长并未显示出与潜在竞争物种群体之间的密度依赖关系。在较短的水位下降期,仅有八种物种中的两种显示出密度依赖性。
The preceding ideas have very little to do with traditional concepts of productive processes in rivers. The RCC predicts that lower reaches of river systems have low ratios of production to respiration ( P//R\mathrm{P} / \mathrm{R} ) due to processing of material from upstream and reduced in situ production. Wissmar et al. (1981) noted that Amazon floodplain lakes have high respiration rates, and Melack and Fisher (1983) noted that carbon loss due to respiration exceeds the carbon contributed by phytoplankton. However, these are limnological perspectives that describe only part of the system. The evidence offered here for the lower reaches of the river-floodplain system indicates high in situ production 前面的观点与传统的河流生产过程概念关系不大。RCC 预测,河流系统的下游生产与呼吸的比率较低( P//R\mathrm{P} / \mathrm{R} ),这是由于上游物质的处理和原位生产的减少。Wissmar 等(1981)指出,亚马逊洪泛平原湖泊的呼吸速率很高,而 Melack 和 Fisher(1983)则指出,由于呼吸造成的碳损失超过了浮游植物贡献的碳。然而,这些是仅描述系统部分的湖泊生态学视角。这里提供的河流-洪泛平原系统下游的证据表明原位生产很高。
and low importation of organic matter from upstream. Therefore, we predict high P//R\mathrm{P} / \mathrm{R} ratios for large riverfloodplain systems. 以及上游有机物质的低输入。因此,我们预测大型河流泛滥平原系统的 P//R\mathrm{P} / \mathrm{R} 比率较高。
Flood Pulsing and Diversity of Habitats and Species 洪水脉动与栖息地和物种的多样性
Sediments, which are deposited in the floodplain in welldefined geomorphological units, form bars, levees, swales, oxbows, backwaters, and side channels. Flowing water grades sediments according to grain size. The floodplain soils are stratified horizontally and vertically in a small scale pattern (Irion et al. 1983; Amoros et al. 1986), but the windinduced transport of sediment may modify the waterinduced sediment pattern. 沉积物在洪泛区以明确的地貌单元沉积,形成沙洲、堤坝、洼地、牛轭湖、滞水区和侧沟。流动的水根据颗粒大小对沉积物进行分级。洪泛区土壤在小尺度上呈水平和垂直分层(Irion et al. 1983; Amoros et al. 1986),但风引起的沉积物运输可能会改变水引起的沉积物模式。
The main river and its connecting channels represent the lotic part of the river-floodplain system; oxbow lakes, abandoned channels, and backwaters represent the lentic one. Both harbour sets of organisms which colonize the much more extensive, periodically flooded ATTZ and increase species numbers occurring in the floodplain. 主要河流及其连接渠道代表了河流-洪泛区系统的流水部分;弯曲湖泊、废弃渠道和滞水区代表了静水部分。两者都栖息着一系列生物,这些生物定殖在更为广泛、周期性洪水淹没的 ATTZ 中,并增加了洪泛区内的物种数量。
Differences in the duration of flooding, in soil structure, and in vegetation result in small-scale habitats in the form of narrow, roughly parallel zones. This arrangement multiplies the edge effect far beyond that represented by the main channel and its islands. In addition to these topological edges, there are many physico-chemical edges in the form of sharp vertical and horizontal boundaries in oxygen, temperature, dissolved or suspended matter; in the main channel these are encountered only at confluences with tributaries or near the substrate. In the Amazon, oxygen levels in surface water may drop from about 5mg*L^(-1)5 \mathrm{mg} \cdot \mathrm{L}^{-1} in the main channel to 0.5mg*L^(-1)0.5 \mathrm{mg} \cdot \mathrm{L}^{-1} in the floodplain 50 m away (Junk et al. 1983). 洪水持续时间、土壤结构和植被的差异导致了狭窄、基本平行的区域形式的小规模栖息地。这种排列使边缘效应远远超过主河道及其岛屿所代表的效果。除了这些拓扑边缘外,还有许多物理化学边缘,以氧气、温度、溶解或悬浮物质的明显垂直和水平边界的形式存在;在主河道中,这些边界仅在与支流交汇处或靠近基底时遇到。在亚马逊,表层水中的氧气水平可能从主河道的约 5mg*L^(-1)5 \mathrm{mg} \cdot \mathrm{L}^{-1} 降至距离洪泛区 50 米处的 0.5mg*L^(-1)0.5 \mathrm{mg} \cdot \mathrm{L}^{-1} (Junk 等,1983 年)。
Habitats shift horizontally and vertically according to the waterlevel (Fig. 2). In addition to this instability due to the moving littoral is another instability caused by sediment deposition and erosion by the river. Depending on the position of the river channel and its dynamics, habitats may be ephemeral or rather stable over decades or centuries. This affects such stationary organisms as trees. 栖息地根据水位水平和垂直移动(图 2)。除了由于移动的湖岸带来的不稳定性外,还有由于河流的沉积和侵蚀造成的另一种不稳定性。根据河道的位置及其动态,栖息地可能是短暂的,也可能在几十年或几个世纪内相对稳定。这会影响到一些固定的生物,如树木。
Nonflooded areas inside and adjacent to the floodplain perimeter, as well as cmergent vegetation or the floodplain forest canopy, can be termed terrestrial habitats. All of them harbour an abundance of plants and animals that colonize the ATTZ, increasing considerably the total number of plants and animals occurring in the system. 非淹没区域,包括洪泛区周边及其邻近地区,以及水生植物或洪泛区森林冠层,可以称为陆地栖息地。它们都栖息着大量植物和动物,这些植物和动物在 ATTZ 中定殖,显著增加了系统中植物和动物的总数。
No attempt to explain the total diversity in all habitats has been made; however, studies on specific plant and animal groups show some tendencies and some apparent inconsistencies. Species diversity would be expected to be limited in aquatic and terrestrial taxa that are sedentary and experience the full impact of the physiological stress resulting from the change between the aquatic and terrestrial phase. Worbes (1983) showed that the central Amazon floodplain forest has a much lower plant species diversity than the nonflooded forest. Salo et al. (1986), however, state that high diversity in tree species characterizing the upper Amazon lowland forests occurs in existing and relict floodplains, but they did not present species numbers or diversity indices. They describe a mosaic of small habitats created by large-scale, continuous disturbance by lateral erosion and sedimentation from the river channel, with high diversity between habitats. They reason that the high diver- 没有尝试解释所有栖息地的总多样性;然而,针对特定植物和动物群体的研究显示出一些趋势和明显的不一致性。在水生和陆生分类群中,物种多样性预计会受到限制,尤其是那些静止不动并经历水生与陆生阶段之间生理压力变化的物种。Worbes(1983)显示,中央亚马逊洪泛平原森林的植物物种多样性远低于非洪泛森林。然而,Salo 等人(1986)指出,特征性树种的高多样性出现在现存和遗留的洪泛区,但他们没有提供物种数量或多样性指数。他们描述了由河道的侧向侵蚀和沉积造成的大规模、持续干扰所形成的小栖息地马赛克,栖息地之间的多样性很高。他们推测,高多样性是由于不同栖息地之间的相互作用。
sity in the relatively short-lived habitats of the present floodplains was due to insufficient time to allow competitive exclusion, supporting Connell’s (1978) intermediate disturbance hypothesis. In the former floodplain formations that are about 5000-100005000-10000 years old, habitats are very stable, and the high species diversity between habitats was attributed by them to allopatric speciation. 目前洪泛区相对短暂栖息地中的物种丰富度是由于缺乏足够的时间来允许竞争排斥,支持了 Connell(1978)的中等干扰假说。在大约 5000-100005000-10000 年历史的前洪泛区形成中,栖息地非常稳定,栖息地之间的高物种多样性被归因于异域物种形成。
Diversity would be expected to increase with the ability of organisms to avoid the physiological stress in the ATTZ. High diversity in floodplains occurs in mobile groups, such as fish (Lowe-McConnell 1975; Welcomme 1985) and nonaquatic birds (Remsen and Parker 1983). 多样性预计会随着生物体避免在适宜生境温度区(ATTZ)中生理压力的能力而增加。洪泛区的高多样性出现在移动群体中,例如鱼类(Lowe-McConnell 1975;Welcomme 1985)和非水生鸟类(Remsen 和 Parker 1983)。
The drastic change between terrestrial and aquatic phases results in high seasonal losses for most plant and animal populations, but these losses tend to be recovered by quick growth, early maturity, high reproduction rates for rr strategy organisms (Pianka 1970), and fast dispersal. Many of the most persistent and productive tropical aquatic weeds (e.g., Eichhornia crassipes, Salvinia auriculata, Ceratopteris pteridoides, and Alternanthera philoxeroides) are endemic to neotropical river-floodplains. In floodplains they are periodically decimated during the dry phase, allowing coexistence of many plant species with similar habitat requirements. In hydrologically stable conditions, they become dominant due to their strong competitive ability. Conversely, many persistent weeds in agricultural crops dominate in the early successional stages of floodplain vegetation at low water due to their rr-strategy traits and recurrent disturbance of the ATTZ by the flood pulse (Seidenschwarz 1986; WJJ, unpublished data). 陆地和水生阶段之间的剧烈变化导致大多数植物和动物种群在季节性上遭受重大损失,但这些损失往往通过快速生长、早熟、高繁殖率(对于 rr 策略生物,Pianka 1970)和快速扩散得到恢复。许多最持久和高产的热带水生杂草(例如,浮萍、耳叶水蕨、凤尾蕨和红叶草)是新热带河流泛滥平原的特有种。在泛滥平原中,它们在干旱阶段会定期遭到毁灭,从而允许许多具有相似栖息地要求的植物物种共存。在水文稳定的条件下,由于其强大的竞争能力,它们变得占主导地位。相反,许多在农业作物中持久的杂草由于其 rr -策略特征和洪水脉冲对 ATTZ 的反复干扰,在泛滥平原植被的早期演替阶段占据主导地位(Seidenschwarz 1986;WJJ,未发表数据)。
Many plants and animals show an impressive resilience with respect to short-term catastrophic events; an example is the rapid response of fishes following extreme drought, overfishing, or poisoning. Due to their highly effective reproduction strategies and to their mobility which allows access to dispersed low-water refuges, fish recover quickly when the flood pulse returns (Welcomme 1979). An rr strategy is effective only when sufficient nutrient and food resources are available to fully utilize the growth potential. Floodplains of extremely low nutrient status may therefore favor KK-selection (Pianka 1970), such as Magalhães and Walker (1989) have indicated for Amazonian freshwater shrimps. 许多植物和动物在短期灾难事件中表现出令人印象深刻的恢复力;一个例子是鱼类在极端干旱、过度捕捞或中毒后的快速反应。由于它们高效的繁殖策略和能够进入分散的低水避难所的流动性,鱼类在洪水脉冲返回时迅速恢复(Welcomme 1979)。一种 rr 策略只有在有足够的营养和食物资源可供充分利用生长潜力时才有效。因此,极低营养状态的洪泛区可能更有利于 KK 选择(Pianka 1970),正如 Magalhães 和 Walker(1989)对亚马逊淡水虾所指出的。
If we consider the total number of species in a riverfloodplain system, circumstantial evidence suggests that a physical factor, the flood pulse, produces and maintains a highly diverse and dynamic habitat structure, thereby allowing a high species diversity despite stresses in the ATTZ. This is consistent with the intermediate disturbance hypothesis of Connell (1978) and parallels the observations of Statzner and Higler (1986) and Statzner (1987) who noted that physical factors (stream hydraulics) affected zonation patterns of benthic invertebrates, and that longitudinal zones of transition were associated with higher species richness. 如果我们考虑河流泛滥平原系统中的物种总数,间接证据表明,洪水脉冲这一物理因素产生并维持了高度多样化和动态的栖息地结构,从而使尽管在 ATTZ 中存在压力,物种多样性仍然很高。这与 Connell(1978)的中等干扰假说一致,并与 Statzner 和 Higler(1986)以及 Statzner(1987)的观察相呼应,他们指出物理因素(河流水力学)影响底栖无脊椎动物的分区模式,并且过渡的纵向区域与更高的物种丰富度相关。
Man-Made River-Floodplains 人工河-洪泛区
Dams have altered the hydrology and created artificial sedimentation basins covering thousands of square kilometres in rivers worldwide. Dam construction continues. For example, about 100 large reservoirs totalling 100000km^(2)100000 \mathrm{~km}^{2} are projected to utilize the hydroelectric potential of Amazon R. tributaries (Junk and Melo 1987). 大坝改变了水文状况,并在全球河流中创造了覆盖数千平方公里的人造沉积盆地。大坝建设仍在继续。例如,预计约有 100 个大型水库将利用亚马逊河支流的水电潜力(Junk 和 Melo 1987)。
The hydrological changes often remove the flood pulse from floodplains downstream and sometimes permanently inundate floodplains upstream. 水文变化常常会将洪水脉冲从下游的洪泛区移除,有时还会永久淹没上游的洪泛区。
In the longer term, sedimentation and the modified llood pulse produce man-made river-floodplains. The 26 mainstem navigation dams on the Upper Mississippi R. downstream from Minneapolis, Minnesota, divide the river into reaches where the entire floodplain width immediately upstream of the dam is currently inundated, but where sedimentation is creating shallows that will become levées, side channels, or backwaters, and eventually floodplains (Fig. 3A to H). Of course, former floodplains now behind manmade levées will remain isolated from the river, assuming no long-term changes in flood stages or flood protection policy. The new floodplains upstream from some of these dams will experience the full amplitude of the flood cycle because the dams maintain water depths for navigation only 从长远来看,沉积作用和改造的洪水脉冲产生了人造河流泛滥平原。位于明尼苏达州明尼阿波利斯下游的上密西西比河上的 26 座主干航运大坝将河流分成了不同的段落,在这些段落中,大坝上游的整个泛滥平原宽度目前被淹没,但沉积作用正在形成将成为堤岸、侧河或滞洪区,最终形成泛滥平原(图 3A 至 H)。当然,位于人造堤岸后面的前泛滥平原将与河流隔离,假设洪水阶段或洪水保护政策没有长期变化。这些大坝上游的新泛滥平原将经历洪水周期的全部幅度,因为大坝仅为航运维持水深。
Fig. 3. A section of lower Keokuk Pool on the Upper Mississippi (A-G) with a projection of the stabilized system by the end of the century (H) (unpublished data from R. V. Anderson, R. E. Sparks, J. W. Grubaugh, K. S. Lubinski, and R. W. Gorden). 图 3. 上密西西比河下凯奥库池的一个部分(A-G),以及到本世纪末稳定系统的预测(H)(来自 R. V. Anderson、R. E. Sparks、J. W. Grubaugh、K. S. Lubinski 和 R. W. Gorden 的未发表数据)。
during low flows but have little effect on flood levels. Indeed, the gates are raised completely out of the water and the relatively low earthen weirs that connect the locks and gates to the bluffs are overtopped during floods. The extent to which these developing floodplains contribute to secondary production, fish yield, and waterfowl utilization should be measurable during the next 50 years, assuming that other factors (e.g., pollution) remain constant or are taken into account. Thus the flood pulse concept can be investigated by measuring changes in one system through time since the navigation dam construction. 在低水流期间,但对洪水水位影响不大。实际上,闸门完全抬出水面,而连接船闸和闸门与高地的相对较低的土坝在洪水期间会被淹没。这些正在发展的洪泛平原在未来 50 年内对次级生产、鱼类产量和水鸟利用的贡献程度应该是可以测量的,前提是其他因素(例如污染)保持不变或被考虑在内。因此,可以通过测量自航运大坝建造以来一个系统随时间的变化来研究洪水脉冲概念。
Even now, in an intermediate stage of succession in the Mississippi pools, the channel borders, not the main channel, are centers of production. Concentrations of particulate and dissolved organic carbon, plankton, and microbes are higher closer to the fringing plant beds and diminish toward the channel (Fig. 3C, E, and D). The greatest biomass of benthic macroinvertebrates are the burrowing filterers and collectors (mayflies of the genus Hexagenia and sphaeriid clams, Musculium and Sphaerium), which occur in beds just offshore of the macrophytes (Fig. 3F). These invertebrates apparently did not appear in high densities (up to 100000clams*m^(-2)100000 \mathrm{clams} \cdot \mathrm{m}^{-2} ) in the oldest pooled reach of the Mississippi R., the Keokuk Pool, until the 1960’s (Gale 1969; Sandusky et al. 1979), when sedimentation raised the channel border bottom to the 1-m1-\mathrm{m} euphotic zone, thereby triggering autochthonous production by macrophytes. Diving ducks, which feed on concentrations of these invertebrates, only began using this pool in substantial numbers in the mid 1960’s (Mills et al. 1966; Thompson 1973; F.C. Bellrose, pers. comm.). If phytoplankton or upstream sources had fueled the clams and mayflies, dense populations of these invertebrates should have been present in Keokuk Pool (but evidently were not) when Ellis (1931a, 1931b) made his biological surveys 18 years after the dam was closed, which was sufficient time for the accumulation of substrate suitable for burrowers. Organic matter was not being trapped behind upstream dams before it could enter the pool because these dams were not constructed until the late 1930’s and early 1940’s. The historical evidence from the Upper Mississippi R. thus supports the idea that a high level of secondary production requires a nearby center of primary production, rather than long-distance transport of organic matter from upstream sources via the main channel. 即使在密西西比河水池的继承中间阶段,河道边缘而非主河道仍然是生产的中心。颗粒和溶解有机碳、浮游生物和微生物的浓度在靠近边缘植物床时更高,向河道方向逐渐减少(图 3C、E 和 D)。底栖大型无脊椎动物的生物量最大的是掘洞的过滤者和收集者(属于六翅目(Hexagenia)的蜉蝣和球蚌(Musculium 和 Sphaerium)),它们出现在水生植物的近海床上(图 3F)。这些无脊椎动物显然在密西西比河最古老的水池段——基奥库水池(Keokuk Pool)中,直到 1960 年代才以高密度(高达 100000clams*m^(-2)100000 \mathrm{clams} \cdot \mathrm{m}^{-2} )出现(Gale 1969;Sandusky 等,1979),当时沉积作用将河道边缘底部抬升至 1-m1-\mathrm{m} 光合有效区,从而触发了水生植物的自生生产。以这些无脊椎动物为食的潜水鸭,直到 1960 年代中期才开始大量使用这个水池(Mills 等,1966;Thompson 1973;F.C. Bellrose,个人通讯)。 如果浮游植物或上游来源为蛤蜊和蜉蝣提供了养分,那么在埃利斯(1931a,1931b)在大坝关闭 18 年后进行生物调查时,基奥库克水池中应该存在这些无脊椎动物的密集种群(但显然并不存在),这段时间足以让适合挖掘者的底物积累。在上游大坝建成之前,有机物并没有被阻挡在大坝后面进入水池,因为这些大坝直到 20 世纪 30 年代末和 40 年代初才建成。因此,来自上密西西比河的历史证据支持了这样一种观点:高水平的二次生产需要一个附近的初级生产中心,而不是通过主河道从上游来源长距离运输有机物。
Conclusions 结论
From a hydrological aspect, floodplains are part of the drainage system of rivers and are periodically affected by transport of water and dissolved and particulate material. From an ecological point of view, they represent transition zones (ATTZ) that alternate between aquatic and terrestrial states and link river channels with permanent lentic bodies and permanently dry land. Most large river systems have geomorphological settings that produce floodplains that are large relative to the lotic surface area (Welcomme 1985), and, in unmodified watersheds, produce a pulse of long duration that results in extensive but temporary lentic areas covering the ATTZ. Conversely, flood pulses of short duration, which are typical of low-order streams or of some modified systems, are associated with ATTZ’s that are frequently covered by flowing water for short periods. 从水文的角度来看, floodplains 是河流排水系统的一部分,定期受到水和溶解及颗粒物质运输的影响。从生态的角度来看,它们代表了交替的过渡区(ATTZ),在水生和陆生状态之间交替,并将河道与永久性静水体和永久干燥土地连接起来。大多数大型河流系统具有地貌特征,产生相对于流动表面积较大的 floodplains(Welcomme 1985),在未改造的流域中,产生持续时间较长的脉冲,导致覆盖 ATTZ 的广泛但暂时的静水区域。相反,短时间的洪水脉冲,通常出现在低阶溪流或某些改造系统中,通常与 ATTZ 相关,这些区域经常在短时间内被流动水覆盖。
The flood pulse is the driving force for river-floodplain systems and maintains them in dynamic equilibrium. The system responds to the rate of rise and fall and to the amplitude, duration, frequency, and regularity of the pulses. Unpredictable pulses generally impede the adaptation of organisms and are counterproductive for many of them. Conversely, a regular pulse allows organisms to develop adaptations and strategies for efficient utilization of habitats and resources within the ATTZ, rather than depend solely on permanent water bodics or permanent terrestrial habitats. In temperate regions, the light and/or temperature regime may modify the biological effects of the pulse; timing of the pulse becomes important. In polar, sub-arctic, and taiga rivers where ice scouring occurs, the contribution to productivity from the ATTZ is not realized. In semiarid regions, local precipitation has a strong influence on the floodplain biota during the dry phase. 洪水脉冲是河流-洪泛区系统的驱动力,并使其保持动态平衡。该系统对水位的升降速率以及脉冲的幅度、持续时间、频率和规律性作出反应。不可预测的脉冲通常会妨碍生物的适应,对许多生物来说是适得其反的。相反,规律的脉冲使生物能够发展适应性和策略,以有效利用 ATTZ 内的栖息地和资源,而不是仅仅依赖于永久水体或永久陆地栖息地。在温带地区,光照和/或温度条件可能会改变脉冲的生物学效应;脉冲的时机变得重要。在极地、亚北极和泰加林河流中,冰蚀现象的发生使得 ATTZ 对生产力的贡献未能实现。在半干旱地区,当地降水在干旱阶段对洪泛区生物群落有很强的影响。
A variety of physical structures in combination with the flood pulse results in great habitat diversity. This diversity is coupled with the dynamic effect of the moving littoral, which extends the edge effect of the littoral over the entire ATTZ, thereby rendering channel banks bordering lotic zones insignificant by comparison. Organisms tend to invade the ATTZ from the terrestrial side also. Regular pulsing coupled with habitat diversity favors high diversity of aquatic and terrestrial plants and animals, despite considerable stress that results from the change between terrestrial and aquatic phases. 多种物理结构与洪水脉冲相结合,导致了巨大的栖息地多样性。这种多样性与动态的潮间带效应相结合,扩展了潮间带在整个 ATTZ 的边缘效应,从而使得与流动区相邻的河岸显得微不足道。生物也倾向于从陆地一侧侵入 ATTZ。定期的脉冲与栖息地多样性相结合,尽管在陆地和水生阶段之间的变化带来了相当大的压力,但仍有利于水生和陆生植物及动物的高度多样性。
Aquatic and terrestrial productivity of river-floodplain systems depend mainly on the nutrient status of the water and sediments, on the climate, and on the flood pulse. Cycles specific to the floodplain, however, are decoupled to some extent from the nutrient status of the main channel. The moving littoral prevents permanent stagnation, thereby allowing the rapid recycling of organic matter and nutrients and resulting in a productivity that we predict to be greater than if the ATTZ were either permanently inundated or dry. Primary production associated with the ATTZ is much higher than that of permanent water bodies in unmodified systems and can often exceed that of permanent terrestrial habitats. 河流-洪泛区系统的水生和陆生生产力主要依赖于水体和沉积物的营养状态、气候以及洪水脉冲。然而,洪泛区特有的循环在某种程度上与主河道的营养状态脱钩。流动的湖岸防止了永久性停滞,从而允许有机物和营养物质的快速循环,导致我们预测的生产力高于 ATTZ 永久淹没或干燥的情况。与 ATTZ 相关的初级生产力远高于未改造系统中永久水体的生产力,且通常可以超过永久陆地栖息地的生产力。
Transport of organic carbon from upstream catchment areas into the floodplain (spiralling) is of little importance to the productivity of the system. Conversely, primary and secondary production of the floodplains is essential to fauna in the main channels. A major component of energy transfer between floodplains and main channels is effected by animal migration, in particular of fish that also migrate upstream for considerable distances. Some bird species transfer nutrients from terrestrial areas or flooded mudflats, where they feed, to floodplain lakes, where they rest and defecate; other species do the reverse. The main function of the river channel in relation to plants and animals in the riverfloodplain system is that of a migration route and dispersal system to access resources and refuges. 从上游集水区向洪泛区(螺旋式)运输有机碳对系统的生产力影响不大。相反,洪泛区的初级和次级生产对主河道中的动物至关重要。洪泛区与主河道之间能量转移的一个主要组成部分是动物迁徙,特别是鱼类,它们也会向上游迁徙很长距离。一些鸟类将营养物质从陆地区域或被淹没的泥滩(它们在此觅食)转移到洪泛区湖泊(它们在此休息和排便);而其他物种则相反。河道在河流-洪泛区系统中与植物和动物的主要功能是作为迁徙路线和资源及避难所的传播系统。
In conclusion, for those interested in the principal driving forces responsible for the structure, function, and evolutionary history of the biota in river-floodplain systems, we believe that the concept offered here will prove of heuristic rather than merely descriptive value. There is a fundamental dichotomy in the river-floodplain system: both continuous (e.g., the RCC) and batch processes occur. The latter, represented by the flood pulse concept, is dominant in sys- 总之,对于那些对河流- floodplain 系统中生物群落的结构、功能和进化历史的主要驱动因素感兴趣的人,我们相信这里提出的概念将具有启发性而不仅仅是描述性的价值。河流- floodplain 系统中存在一个基本的二分法:既有连续过程(例如,RCC),也有批量过程。后者由洪水脉冲概念表示,在系统中占主导地位。
tems with floodplains (ATTZs), in particular when the pulse is regular and of long duration. It is distinct because processes in floodplains do not depend on inefficient processing of organic matter upstream, although their inorganic nutrient pool may be replenished with periodic lateral inflows of water and sediments from the main channel. The pulse concept differs in that the position of the floodplain in the system relative to the river network is not a primary determinant of the processes that occur, although hydrological circumstances do not normally favor floodplain development in extreme upper reaches. However, examples do occur in upper reaches, such as the Pantanal of the Paraná system and the extensive Bolivian and Peruvian floodplains in the Amazon. 洪泛区(ATTZs)中的系统,特别是当脉冲规律且持续时间较长时。它的独特之处在于,洪泛区的过程并不依赖于上游有机物质的低效处理,尽管它们的无机营养物质库可能会通过主河道的周期性侧向水流和沉积物补充。脉冲概念的不同之处在于,洪泛区在系统中相对于河流网络的位置并不是发生过程的主要决定因素,尽管水文情况通常不利于极上游的洪泛区发展。然而,上游确实存在一些例子,例如巴拉那系统的潘塔纳尔以及亚马逊河流域广泛的玻利维亚和秘鲁洪泛区。
This concept implies an approach to studying the system different from the traditional limnological paradigms for either lotic or lentic systems. The space and time scales appropriate for understanding the mechanisms differ from those related to longitudinal processes in lotic channels. We hope that the flood pulse concept will help ecologists improve the design of studies and frame hypotheses that will lead more directly to a better understanding of riverfloodplain systems. This is an urgent goal considering the modifications that continue to be proposed and that are sometimes put into practice in many tropical and temperate systems. 这一概念意味着一种研究系统的方法,与传统的流动或静水生态学范式不同。理解机制所需的空间和时间尺度与流动河道中的纵向过程相关的尺度不同。我们希望洪水脉冲概念能帮助生态学家改善研究设计,并构建假设,从而更直接地促进对河流-洪泛区系统的理解。考虑到许多热带和温带系统中持续提出并有时付诸实践的修改,这一目标显得尤为紧迫。
Acknowledgments 致谢
The following gave valuable suggestions: J.R. Adams, J. Adis, R.V. Anderson, C.F. Bryan, W.R. Edwards, R.W. Gorden, J.W. Grubaugh, M: Grubb, R.W. Larimore, L.L. Osborne, K. Robertson, S.K. Robinson, and M.J. Wiley. Amazon work was supported by CNPq, Brasilia and INPA of the Brazilian Government, and the Max-Planck-Institute for Limnology of West Germany. Research on the Upper Mississippi R. was supported by a National Science Foundation grant for long-term ecological research (LTER), No. BSR-8114563 and BSR-8612107, and by the loan of equipment from the Upper Mississippi River Basin Association. 以下人员提供了宝贵的建议:J.R. 亚当斯,J. 阿迪斯,R.V. 安德森,C.F. 布莱恩,W.R. 爱德华兹,R.W. 戈登,J.W. 格鲁巴赫,M. 格拉布,R.W. 拉里莫尔,L.L. 奥斯本,K. 罗伯逊,S.K. 罗宾逊,以及 M.J. 怀利。亚马逊的工作得到了巴西政府的 CNPq、巴西利亚和西德的马克斯·普朗克湖沼研究所的支持。对上密西西比河的研究得到了国家科学基金会长期生态研究(LTER)资助,编号为 BSR-8114563 和 BSR-8612107,以及来自上密西西比河流域协会的设备借用。
References 参考文献
(Addresses of personal communications follow references) (个人通讯地址在参考文献后)
AdIS, J. 1979. Vergleichende ökologische Studien an der terrestrischen Arthropodenfauna zentralamerikanischer überschwemmungswälder. Ph.D. thesis, Ulm Univ., West Germany. 99 p. AdIS, J. 1979. 中美洲洪水森林陆生节肢动物群的比较生态研究。博士论文,乌尔姆大学,西德。99 页。
AdIS, J., and V. Mahnert. 1986. On the natural history and ecology of Pseudoscorpiones (Arachnidae) from an Amazonian blackwater inundation forest. Amazoniana 9: 297-314. AdIS, J. 和 V. Mahnert. 1986. 关于亚马逊黑水淹没森林中伪蝎(蛛形纲)的自然历史和生态学。亚马逊研究 9: 297-314.
Adis, J., W. Parmann, and T. L. Erwin. 1986. On the natural history and ecology of small terrestrial ground beetles (Col.: Bembidiini: Tachyina: Polyderis) from an Amazonian blackwater inundation forest, p. 413-427. In P.J. Den Boer, M. L. Luff, D. Mossakowski, and F. Weber [ed.] Carabid beetics: their adaptations, dynamics and evolution, G. Fisher, Stutgart, West Germany. 阿迪斯, J., W. 帕尔曼, 和 T. L. 欧文. 1986. 关于来自亚马逊黑水淹没森林的小型陆生地甲虫(鞘翅目:Bembidiini:Tachyina:Polyderis)的自然历史和生态, 第 413-427 页. 见 P.J. 登博尔, M. L. 拉夫, D. 莫萨科夫斯基, 和 F. 韦伯 [编] 《地甲虫:它们的适应、动态和进化》,G. 菲舍尔,斯图加特,西德.
Adis, J., ANd H. Sturm. 1989. Flood-resistance of eggs and lifecycle adaptation, a survival strategy of Neomachilellus scandens (Meinertellidae, Archacognatha) in Central Amazonian inundation forest. Insect Sci. Appl. (In press) Adis, J.,和 H. Sturm. 1989. 蛋的抗洪能力和生命周期适应,中央亚马逊淹没森林中 Neomachilellus scandens (Meinertellidae, Archacognatha) 的生存策略。昆虫科学与应用.(待发表)
Ahlgren, M. O. 1988. Diet selection and the seasonal contribution of detritus to the diet of the white sucker. Poster session of the 1988 American Fisheries Society Conference, Toronto, Canada. 阿尔格伦,M. O. 1988. 饮食选择及腐殖质对白吸鱼饮食的季节性贡献。1988 年美国渔业学会会议海报会, 加拿大多伦多。
Almeida, R. G. 1980. Aspectos taxonómicos e hábitos alimentares de três espécies de Triportheus (Pisces: Characoidei, Characidae), do lago do Castanho, Amazonas. M.S. thesis, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil. 104 p. 阿尔梅达,R. G. 1980. 亚马逊州卡斯坦霍湖三种三叉鱼(鱼类:鲤形目,鲤科)的分类学特征和饮食习惯。硕士论文,亚马逊国家研究所,巴西马瑙斯。104 页。
Amoros, C., A. L. Roux, J. L. Reygrobellet, J. P. Bravard, and G. Paurou. 1986. A method for applied ecological studies of fluvial hydrosystems. Regulated Rivers 1: 17-36. Amoros, C., A. L. Roux, J. L. Reygrobellet, J. P. Bravard, 和 G. Paurou. 1986. 一种用于河流水系统应用生态研究的方法。受控河流 1: 17-36.
Andrews, C. W., and E. Lear. 1956. The biology of arctic char (Salvelinus alpinus) in northern Labrador. J. Fish. Res. Board Can. 13: 843-860. 安德鲁斯,C. W.,和 E. 利尔。1956 年。北拉布拉多北部北极红点鲑(Salvelinus alpinus)的生物学。加拿大渔业研究委员会杂志 13: 843-860。
Antipa, G. P. 1911. Fischerei und Flussregulierung. Allgem. Fischerei-Zeitung, München 16/17: 1-5. 安提帕,G. P. 1911。渔业与河流调节。《综合渔业杂志》,慕尼黑 16/17:1-5。
1928. Die biologischen Grundlagen und der Mechanismus der Fischproduktion in den Gewässern der unteren Donau Academie Roumaine, Bull. de la Section Scientifique 11: 1-20. 1928 年。下多瑙河水域鱼类生产的生物学基础和机制 罗马尼亚科学院,科学部门公报 11:1-20。
barmuta, L. A., and P. S. Lake. 1982. On the value of the river continuum concept. N. Z. J. Mar. Freshwater Res. 16: 227-231. 巴尔穆塔,L. A.,和 P. S. 莱克。1982 年。关于河流连续体概念的价值。新西兰海洋与淡水研究杂志 16: 227-231。
Bayley, P. B. 1973. Studies on the migratory characin Prochilodus platensis Holmberg 1889 (Pisces, Characoidei) in the Rio Pilcomayo, S. America. J. Fish Biol, 5: 25-40. 贝利,P. B. 1973。关于南美皮尔科马约河迁徙性鲤科鱼类 Prochilodus platensis Holmberg 1889(鱼类,鲤形目)的研究。鱼类生物学杂志,5:25-40。
1980. The limits of limnological theory and approaches as applied to river-floodplain systems and their fish production, p. 739-746. In J.I. Furtado [ed.] Tropical ecology and development. Proceedings of the Vth International Symposium of Tropical Ecology. International Society of Tropical Ecology, Kuala Lumpur. 1980 年。湖泊生态学理论及其在河流- floodplain 系统及其鱼类生产中的应用的局限性,页 739-746。见 J.I. Furtado [编]《热带生态学与发展》。第五届国际热带生态学研讨会论文集。国际热带生态学会,吉隆坡。
1981a. Fish yield from the Amazon in Brazil: comparisons with African river yields and management possibilities. Trans. Am. Fish. Soc. 110:351-359. 1981a. 巴西亚马逊的鱼类产量:与非洲河流产量的比较及管理可能性。美国鱼类学会会刊 110:351-359。
1981b. Características de inundación en los rios y áreas de captación en la Amazonia Peruana: una interpretación basada en imagenes del ‘LANDSAT’ e informes de ‘ONERN’. Inst. Mar. Peru(Callao) Inf. 81: 245-303. 1981b. 秘鲁亚马逊河流及集水区的洪水特征:基于‘LANDSAT’图像和‘ONERN’报告的解读。秘鲁海洋研究所(卡亚俄)报告 81:245-303。
1983. Central Amazon fish populations: bionass, production and some dynamic characteristics. Ph.D. thesis, Dalhousie Univ., Nova Scotia, Canada. 330 p. 1983 年。中亚马逊鱼类种群:生物量、生产力及一些动态特征。博士论文,达尔豪斯大学,加拿大新斯科舍省。330 页。
1988. Factors affecting growth rates of young tropical fishes: seasonality and density-dependence. Env. Biol. Fishes 21:127-142. 1988 年。影响热带幼鱼生长速率的因素:季节性和密度依赖性。《环境生物学与鱼类》21:127-142。
1989. Aquatic environments in the Amazon Basin, with an analysis of carbon sources, fish production, and yield, p. 399-408. In D. P. Dodge [ed.] Proceedings of the International Large River Symposium. Can. Spec. Publ. Fish. Aquat. Sci. 106. 1989 年。亚马逊流域的水生环境,分析碳源、鱼类生产和产量,页码 399-408。见 D. P. Dodge [编]《国际大河研讨会论文集》。加拿大特别出版物 鱼类与水生科学 106。
Bedinger, M. S. 1979. Relation between forest species and flooding, p. 427-435. In P. E. Greeson, P. E. Clark, and J. E. Clark led.) Wetland functions and values: the state of our understanding. American Water Resources Association, Anthony Falls Hydraulic Laboratory, Minneapolis, MN. 贝丁格,M. S. 1979. 森林物种与洪水之间的关系,页 427-435。在 P. E. Greeson、P. E. Clark 和 J. E. Clark 主编的《湿地功能与价值:我们理解的现状》中。美国水资源协会,安东尼瀑布水力实验室,明尼阿波利斯,明尼苏达州。
Bell, D. T. 1980. Gradient trends in the streamside forest of central Illinois. Bull. Torrey Bot. Club 107: 172-180. 贝尔,D. T. 1980. 中伊利诺伊州溪边森林的梯度趋势。托雷植物俱乐部公报 107: 172-180。
Bellrose, F. C. 1941. Duck food plants of the Illinois River valley. Ill. Nat. Hist. Surv. Bull. 21: 237-280. 贝尔罗斯,F. C. 1941. 伊利诺伊河谷的鸭食植物。伊利诺伊州自然历史调查局公报 21: 237-280。
Bellrose, F. C., F. L. Paveglio, Jr., and D. W. Steffeck. 1979. Waterfowl populations and the changing environment of the Illinois River valley. Ill. Nat. Hist. Surv. Bull. 32: 1-54. 贝尔罗斯,F. C.,F. L. 帕维利奥,Jr.,和 D. W. 斯特费克。1979 年。水鸟种群与伊利诺伊河谷的变化环境。伊利诺伊州自然历史调查公报。32:1-54。
BERNER, L. M. 1951. Limnology of the lower Missouri River. Ecology 32: 1-12. BERNER, L. M. 1951. 密苏里河下游的湖沼学。生态学 32: 1-12.
Bhowmik, N. G., and J. B. Stall. 1979. Hydraulic geometry and carrying capacity of floodplains. Univ. of Illinois Water Resources Center. Research Report 145 UI LU-WRC-79-0145, Champaign, IL. 147 p. Bhowmik, N. G. 和 J. B. Stall. 1979. 洪泛区的水力几何和承载能力. 伊利诺伊大学水资源中心. 研究报告 145 UI LU-WRC-79-0145, 香槟, 伊利诺伊州. 147 页.
Bodensteiner, L. R., and R. J. Sheelian. 1989. Implications of backwater habitat management strategies to fish populations. Proceedings of the 44th Annual Mceting of the Upper Mississippi River Conservation Committce. 8-10 March 1988, Peoria, Il. (In press) 博登斯坦纳,L. R.,和 R. J. 谢利安。1989 年。回水栖息地管理策略对鱼类种群的影响。第 44 届上密西西比河保护委员会年会会议记录。1988 年 3 月 8-10 日,皮奥里亚,伊利诺伊州。(待发表)
Bonetto, A. A., W. Dioni, and C. Pignalberi. 1969a. Limnological investigations on biotic communities in the Middle Parana River Valley. Int. Ver. Theor. Angew. Limnol. Verh. 17: 1035-1050. 博内托,A. A.,W. 迪奥尼,和 C. 皮尼亚尔贝里。1969a。中巴拉那河谷生物群落的水文调查。国际理论与应用水文学会会议记录 17:1035-1050。
bonetto, A. A., E. Cordiviola de Yuan, C. Pignalberi, and O. Oliveros. 1969b. Ciclos hidrológicos del Rio Paraná y las poblaciones de peces contenidas en las cuencas temporarias de su valle de inundación. Physis (Buenos Aires) 29: 213-223. 博内托,A. A.,E. Cordiviola de Yuan,C. Pignalberi 和 O. Oliveros。1969b。巴拉那河的水文循环及其洪泛区临时流域中的鱼类种群。Physis(布宜诺斯艾利斯)29:213-223。
Bowen, S. H. 1984. Detritivory in neotropical fish communities, p. 59-6659-66. In T. Zaret [ed.] Evolutionary ecology of neotropical freshwater fishes. Dr W. Junk, The Hague, Netherlands. 博温,S. H. 1984. 新热带鱼类群落中的碎屑食性,第 59-6659-66 页。在 T. Zaret [编] 新热带淡水鱼类的进化生态学。德尔·W. Junk,海牙,荷兰。
Bravard, J. P. , C. Amoros, and G. Pautou. 1986. Impact of civil enginecring works on the succession of communities in a tluvial system. Oikos 47: 92-111. Bravard, J. P. , C. Amoros, 和 G. Pautou. 1986. 土木工程对冲积系统中群落演替的影响. Oikos 47: 92-111.
Brinson, M. M., H. D. Bradshaw, and J. B. Elkins, Jr. 1980. Litterfall, stemflow, and throughfall nutrient fluxes in an alluvial swamp forest. Ecology 61: 827-835. 布林森,M. M.,H. D. 布拉德肖,和 J. B. 埃尔金斯, Jr. 1980。冲积沼泽森林中的落叶、干流和透流养分通量。生态学 61:827-835。
Brinson, M. M., H. D. Bradshaw, and R. N. Homes. 1983. Significance of the floodplain sediments in nutrient exchange between a stream and its floodplain, p. 199-221. In T. D. Fontaine, and S. M. Bartell [ed.] Dynamics of lotic ecosystems. Ann Arbor Science, Ann Arbor, MI. 布林森,M. M.,H. D. 布拉德肖,和 R. N. 霍姆斯。1983 年。洪泛区沉积物在溪流与其洪泛区之间营养交换中的重要性,页 199-221。在 T. D. 方丹和 S. M. 巴特尔 [编] 流动生态系统的动态。安娜堡科学,安娜堡,密歇根州。
Brook, A. J., and J. RzÓsKa. 1954. The influence of the Gebel Aulyia Dam on the development of Nile plankton. J. Anim. Ecol. 23: 101-114. 布鲁克,A. J.,和 J. RzÓsKa。1954 年。盖贝尔·奥利亚大坝对尼罗河浮游生物发展的影响。《动物生态学杂志》23:101-114。
Bryan, C. F., F. M. Truesdale, D. S. Sabins, and C. R. Demas. 1974. Annual report on a limnological survey of the Atchafalaya Basin. Louisiana Cooperative Fishery Research Unit, School of Forestry and Wildlife Management, Louisiana State Univ., 1974. 208 p. 布莱恩,C. F.,F. M. 特鲁斯代尔,D. S. 萨宾斯,和 C. R. 德马斯。1974 年。阿查法拉亚盆地的水文调查年度报告。路易斯安那州立大学林业与野生动物管理学院,路易斯安那州合作渔业研究单位,1974 年。208 页。
Bryan, C. F., D. J. Demont, D. S. Sabins, and J. P. Newman, Jr. 1976. Annual report on a limnological survey of the Atchafalaya Basin. Louisiana Cooperative Fishery Research Unit, School of Forestry and Wildlife Management, Louisiana State Univ., 1976. 285 p. 布莱恩,C. F.,D. J. 德蒙特,D. S. 萨宾斯,和 J. P. 纽曼, Jr. 1976. 阿查法拉亚盆地的水文学调查年度报告。路易斯安那州合作渔业研究单位,林业与野生动物管理学院,路易斯安那州立大学,1976 年。285 页。
Bryan, C. F., and D. S. Sabins. 1979. Management implications in water quality and fish standing stock information in the Atchafalaya River Basin, Louisiana, p. 293-316. In J. W. Day Jr., D. D. Culley Jr., R. E. Turner, and A. J. Mumphrey Jr. [ed.] Proceedings from the Third Coastal Marsh and Estuary Symposium, Louisiana State Univ., Division of Continuing Education, Baton Rouge, Louisiana. 布莱恩,C. F.,和 D. S. 萨宾斯。1979 年。阿查法拉亚河流域(路易斯安那州)水质和鱼类存量信息的管理意义,第 293-316 页。在 J. W. 日,D. D. 卡利,R. E. 特纳和 A. J. 曼弗雷(编辑)《第三届沿海沼泽和河口研讨会论文集》,路易斯安那州立大学,继续教育部,巴吞鲁日,路易斯安那州。
Burgess, R. L., W. C. Johnson, and W. R. Keammerer. 1973. Vegetation of the Missouri River floodplain in North Dakota. North Dakota Water Resource Research Institute Report WI-221-018-07: 162 p . 伯吉斯,R. L.,W. C. 约翰逊,和 W. R. 基默尔。1973 年。北达科他州密苏里河洪泛区的植被。北达科他州水资源研究所报告 WI-221-018-07:162 页。
Carter, G. S., and L. C. Beadle. 193I. The fauna of the swamps of the Paraguayan Chaco in relation to its environment. II. Respiratory adaptations in the fishes. J. Linn. Soc. Lond. (Zool.) 37: 327-368. 卡特,G. S.,和 L. C. 比德尔。193I。巴拉圭查科沼泽的动物群与其环境的关系。II. 鱼类的呼吸适应。伦敦林奈学会杂志(动物学)37:327-368。
Chowdhury, M. J., S. Safiullah, S. M. Iqbal All, M. Mofizuddin, and S. E. Kabir. 1982. Carbon transport in the Ganges and the Brahmapura: preliminary results. Mitt. Geol. Paläont. Inst. Univ. Hamburg, SCOPE/UNEP Sonderbd. 52: 457-468. Chowdhury, M. J., S. Safiullah, S. M. Iqbal All, M. Mofizuddin, 和 S. E. Kabir. 1982. 恒河和布拉马普特拉的碳运输:初步结果。汉堡大学地质古生物研究所通讯,SCOPE/UNEP 特刊 52: 457-468.
Coffman, W. P., and L. C. Ferrington, Jr. 1984. Chironomidae, p. 551-652. In R. W. Merrit, and K. W. Cummings [ed.] An introduction to the aquatic insects of North America. 2nd. Edition, Kendall/Hunt Publishing Co., Dubuque, IA. 科夫曼,W. P.,和 L. C. 费林顿, Jr. 1984 年。蚊科,页 551-652。在 R. W. 梅里特和 K. W. 卡明斯 [编] 《北美水生昆虫导论》。第二版,肯德尔/亨特出版公司,杜布克,爱荷华州。
Connell, J. H. 1978. Diversity in tropical rain forests and coral reefs. Science 199: 1302-1310. 康奈尔,J. H. 1978。热带雨林和珊瑚礁的多样性。科学 199: 1302-1310。
Cummins, K. W. 1977. From headwater streams to rivers. Aim. Biol. Teach. 39: 305-312. 康明斯,K. W. 1977. 从源头溪流到河流。目标。生物教学。39:305-312。
CURry, R. R. 1972. Rivers - a geomorphic and chemical over- CURry, R. R. 1972. 河流 - 一种地貌和化学的概述
view, p. 9-31. In R. T. Oglesby, C. A. Carlson, and J. A. McCan [ed.] River ecology and man. Academic Press, New York, NY. 视图,第 9-31 页。在 R. T. Oglesby、C. A. Carlson 和 J. A. McCan [编]《河流生态学与人类》。学术出版社,纽约,纽约。
Davies, B. R. 1985. The Zambezi river system, p. 225-267. In B. R. Davies, and K. F. Walker [ed.] The ecology of river systems. Dr W. Junk, The Haguc, Netherlands. 戴维斯,B. R. 1985.赞比西河流域,页 225-267。在 B. R.戴维斯和 K. F.沃克[编]《河流系统的生态学》。德尔·W·贾克,荷兰海牙。
Davies, B. R., and K. F. Walker. 1985. River systems as ecological units. An introduction to the ecology of river systems, p. 1-23. In B. R. Davies, and K. F. Walker [ed.] The ecology of river systems. Dr W. Junk, The Hague, Netherlands. 戴维斯,B. R.,和 K. F. 沃克。1985 年。河流系统作为生态单元。河流系统生态学导论,第 1-23 页。在 B. R. 戴维斯和 K. F. 沃克[编]《河流系统的生态学》。荷兰海牙,W. Junk 博士。
Demaree, D. 1932. Submerging experiment with Taxodium. Ecology 13: 258-262. 德马里,D. 1932。关于水淹实验的落羽松。生态学 13: 258-262。
Dierberg, F. E., and P. L. Breszonic. 1984. The cffect of wastewater on the surface water and ground water quality of cypress domes, p. 83-101. In K. C. Ewel, and H. T. Odum [ed.] Cypress swamps. Univ. of Florida Press, Gainesville, FL. Dierberg, F. E. 和 P. L. Breszonic. 1984. 废水对柏树圆顶表面水和地下水质量的影响, 第 83-101 页. 收录于 K. C. Ewel 和 H. T. Odum [编]《柏树沼泽》. 佛罗里达大学出版社, 盖恩斯维尔, 佛罗里达.
DISTER, E. 1980. Geobotanische Untersuchungen in der hessischen Rheinaue als Grundlage für die Naturschutzarbeit. Ph.D. thesis, Göttingen Univ., West Germany. 170 p. DISTER, E. 1980. 在黑森州莱茵河滩的植物地理研究作为自然保护工作的基础。博士论文,哥廷根大学,西德。170 页。
1983. Zur Hochwassertoleranz von Auwaldbäumen an lehmigen Standorten. Verhandlungen der Gesellschaft für ökologie 11: 325-336. 1983 年。关于粘土地点湿地树木的抗洪水能力。生态学会会议记录 11: 325-336。
ELLIS, M. M. 1931a. Some factors affecting the replacement of the commercial fresh-water mussels. Burcau of Fisheries Circular, U.S. Dep, of Commerce 7:1-10. 埃利斯,M. M. 1931a. 影响商业淡水贻贝替代的一些因素。美国商务部渔业局通报,7:1-10。
1931b. A survey of conditions affecting fisherics in the Upper Mississippi River. Bureau of Fisheries Circular, U.S. Dep. of Commerce 5; 1-18. 1931b. 一项关于影响上密西西比河渔业状况的调查。美国商务部渔业局通报,第 5 号;1-18。
Ertel, J. R., J. I. Hedges, A. H. Devol, J. E. Richey, and M. N. G. Ribeiro. 1986. Dissolved humic substances of the Amazon River system. Limnol. Oceanogr. 31: 739-754. Ertel, J. R., J. I. Hedges, A. H. Devol, J. E. Richey, 和 M. N. G. Ribeiro. 1986. 亚马逊河系统的溶解腐殖质. 湖泊与海洋学. 31: 739-754.
Erwin, T. L., and J. AdIs. 1982. Amazonian inundation forests, richness and taxon pulses, p. 358-371. In G. T. Prance [ed.] Biological diversification in the tropics. Proc. Fifth Int. Symp. Assoc. Trop. Biol Columbia Univ. Press, New York, NY. 埃尔温,T. L.,和 J. AdIs. 1982. 亚马逊洪水森林,丰富性和分类群脉冲,页 358-371。在 G. T. Prance [编] 热带生物多样性。第五届国际热带生物协会研讨会论文集。哥伦比亚大学出版社,纽约,NY。
Ferreira da Silva, V. M. 1983. Ecología alimentar dos dolfinhos da Amazônia. M.S. thesis, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil. 110 p. 费雷拉·达·席尔瓦,V. M. 1983. 亚马逊海豚的食物生态学。硕士论文,亚马逊国家研究所,巴西马瑙斯。110 页。
Finger, T. R., and E. M. Stewart. 1987. Response of fishcs to flooding regime in lowland hardwood wetlands, p. 86-92. In W. J. Mathews and D. C. Heins [Ed.] Community and evolutionary ecology of North American strcam fishes. University of Oklahoma Press, Norman, OK. Finger, T. R. 和 E. M. Stewart. 1987. 低地硬木湿地中鱼类对洪水模式的反应, 第 86-92 页. 见 W. J. Mathews 和 D. C. Heins [编] 北美溪流鱼类的群落与进化生态学. 俄克拉荷马大学出版社, 诺曼, OK.
FisHER, S. G. 1983. Succession in streams, p. 7-27. In J. R. Barnes, and G. W. Minshall [ed.] Strcam ecology: application and testing of general ecological theory. Plenum Press, N.Y. FisHER, S. G. 1983. 溪流中的演替, 第 7-27 页. 见 J. R. Barnes 和 G. W. Minshall [编] 《溪流生态学:一般生态理论的应用与测试》。普伦姆出版社, 纽约.
FISHER, T. R. 1979. Plankton and primary production in aquatic systems of the central Amazon Basin. Comp. Biochem. Physiol. 62A: 31-38. FISHER, T. R. 1979. 中亚马逊盆地水体系统中的浮游生物和初级生产力。比较生物化学与生理学。62A: 31-38。
Fitzgerald, K. K., P. D. hayes, T. E. Richards, and R. L. Stahl. 1986. Water resources data, Illinois, Water Year 1985. Vol. 2. Illinois River Basin. U.S. Geological Survey Water Data Report IL-85-2, USGS, Urbana, IL. 397 p. 菲茨杰拉德,K. K.,P. D. 海耶斯,T. E. 理查兹,和 R. L. 斯塔尔。1986 年。《水资源数据,伊利诺伊州,水年 1985》。第 2 卷。伊利诺伊河流域。美国地质调查局水数据报告 IL-85-2,美国地质调查局,厄本纳,伊利诺伊州。397 页。
Foerster, R. E. 1968. The sockeye salmon, Oncorhynchus nerka. Fish. Res. Board Canada Bull. 162: 422 p. 福斯特,R. E. 1968. 红鲑,Oncorhynchus nerka。加拿大渔业研究委员会公报。162:422 页。
Frederickson, L. H. 1979. Lowland hardwood wetlands: current status and habitat values for wildlife, p. 296-311. In P. E. Greeson, P. E. Clark, and J. E. Clark [ed.] Wetland functions and values: the state of our understanding. American Water Resources Association, Anthony Falls Hydraulic Laboratory, Minneapolis, MN. 弗雷德里克森,L. H. 1979. 低地硬木湿地:当前状态及其对野生动物的栖息地价值,页 296-311。在 P. E. Greeson、P. E. Clark 和 J. E. Clark [编] 湿地功能与价值:我们理解的现状。美国水资源协会,安东尼瀑布水力实验室,明尼阿波利斯,明尼苏达州。
Fremling, C. R., J. L. Rasmussen, R. E. Sparks, S. P. Comb, C. F. Bryan, and T. O. Claflin. 1989. Mississippi River fisheries: a case history, 309-351. In D. P. Dodge (ed.] Procecdings of the International Large River Symposium. Can. Spec. Publ. Fish. Aquat. Sci. 106. 弗雷姆林,C. R.,J. L. 拉斯穆森,R. E. 斯帕克斯,S. P. 康布,C. F. 布莱恩,和 T. O. 克拉夫林。1989 年。密西西比河渔业:案例历史,309-351。在 D. P. 道奇(编)《国际大河研讨会会议录》。加拿大特刊出版物 鱼类水生科学 106。
Furch, K. 1984a. Interanuelle Variation hydrochemischer Para- Furch, K. 1984a. 年际水化学参数的变化
meter auf der Ilha de Marchantaria. Biogeographica 19: 85-100. 在马尔尚塔里亚岛的米特。生物地理学 19: 85-100。
19846. Seasonal variations of the major cation content of the várzea-lake Lago Camaleão, middle Amazon, Brazil, in 1981 and 1982. Int. Ver. Theor. Angew. Limnol. Verh. 22: 1288-1293. 19846. 1981 年和 1982 年巴西亚马逊中部的 Várzea 湖 Lago Camaleão 主要阳离子含量的季节变化。国际理论与应用湖沼学会会刊。22: 1288-1293。
FURCH, K., AND W, J. JUNK. 1985. Dissolved carbon in a floodplain lake of the Amazon and in the river channel. Mitt. Geol. Paläont. Inst. Univ. Hamburg, SCOPE/UNEP Sonderbd. 58: 285-298. FURCH, K. 和 W, J. JUNK. 1985. 亚马逊洪泛区湖泊和河道中的溶解碳. 汉堡大学地质古生物研究所通讯, SCOPE/UNEP 特刊 58: 285-298.
Furch, K., W. J. Junk, J. Dieterich, and N. Kochert. 1983. Seasonal variation in the major cation ( Na,K,Mg\mathrm{Na}, \mathrm{K}, \mathrm{Mg} and Ca ) content of the water of Lago Camaleão, an Amazonian floodpiain lake near Manaus, Brazil. Amazonia 8: 75-89. Furch, K., W. J. Junk, J. Dieterich, 和 N. Kochert. 1983. 巴西亚马逊曼奥斯附近的卡马莱昂湖(Lago Camaleão)水中主要阳离子( Na,K,Mg\mathrm{Na}, \mathrm{K}, \mathrm{Mg} 和 Ca)含量的季节变化. 亚马逊 8: 75-89.
Gale, W. F. 1969. Bottom fauna of Pool 19, Mississippi River, with emphasis on the life history of the fingernail clam Sphaerium transversum. Ph.D. thesis, Iowa State Univ., Ames, 234 p. 盖尔,W. F. 1969 年。《密西西比河 19 号水池底栖动物,重点研究指甲蛤蜊 Sphaerium transversum 的生活史》。博士论文,爱荷华州立大学,艾姆斯,234 页。
Godor, M. P. de. 1967. Dez, anos de obscrvaçōes sôbre periodicidade migratoria de peixes do Rio Mogj Guassu. Rev. Brasíl. Biol. 27: 1-12. Godor, M. P. de. 1967. 关于莫吉瓜苏河鱼类迁徙周期的十年观察。巴西生物学杂志 27: 1-12。
Gosselink, J. G., and R. E. Turner. 1978. The role of hydrology in freshwater wethand ecosystems, p. 63-78. In R. E. Good, D. F. Whigham, and R. L. Simpson [ed.] Freshwater wetlands: ecological processes and management potential. Academic Press, New York, NY. Gosselink, J. G. 和 R. E. Turner. 1978. 水文在淡水湿地生态系统中的作用, 第 63-78 页. 见 R. E. Good, D. F. Whigham 和 R. L. Simpson [编] 《淡水湿地:生态过程与管理潜力》. 学术出版社, 纽约, NY.
Gosselink, J. G., S. E. Bayley, W. H. Conner, and R. E. TURNER. 1981. Ecological factors in the determination of riparian wetland boundaries, p. 197-219. In J. R. Clark and J. Benforado [ed.] Wetlands of bottomiand hardwood forests. - Developments in agricultural and managed forest ecology 11, Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York, NY. Gosselink, J. G., S. E. Bayley, W. H. Conner, 和 R. E. TURNER. 1981. 确定河岸湿地边界的生态因素, 第 197-219 页. 见 J. R. Clark 和 J. Benforado [编] 底湿硬木森林的湿地. - 农业和管理森林生态学发展 11, 爱思唯尔科学出版社, 阿姆斯特丹, 牛津, 纽约, NY.
GortsberGer, G. 1978. Secd dispersal by fish in the inundated regions of Humaita, Amazonia. Biotropica 10: 170-183. 戈茨贝尔,G. 1978. 鱼类在亚马逊洪水淹没地区的种子传播。生物热带学 10: 170-183。
Goulding, M. 1980. The fishes and the forest: explorations in Amazonia natural history. California Univ. Press, Berkeley. 280 p. 古尔丁,M. 1980. 鱼类与森林:亚马逊自然历史的探索。加利福尼亚大学出版社,伯克利。280 页。
1981. Man and fisheries on an Amazon frontier. Dr. W. Junk, The Hague, Netherlands. 137 p. 1981 年。亚马逊边疆的人与渔业。W. Junk 博士,荷兰海牙。137 页。
Grainger, E. H. 1953. On the age, growth, migration, reproductive potential and feeding habits of the Arctic char (Salvelinus alpinus) of Frobisher Bay, Baffin Island. J. Fish. Res. Board Can. 10: 326-370. 格兰杰,E. H. 1953 年。关于巴芬岛弗罗比舍湾北极红点鲑(Salvelinus alpinus)的年龄、成长、迁徙、繁殖潜力和觅食习性。加拿大渔业研究委员会杂志 10: 326-370。
Grubaugh, J. W., and R. V. Anderson. 1989a. Long-term effects of navigation dams on a segment of the Upper Mississippi River. Regulated Rivers. (In press) Grubaugh, J. W. 和 R. V. Anderson. 1989a. 导航水坝对上密西西比河一段的长期影响。受控河流。(待发表)
1989b. Seasonal fluxes and the influences of floodplain forest on organic matter dynamics in the Upper Mississippi River. Hydrobiologia. (In press) 1989b. 季节性通量及洪泛区森林对上密西西比河有机物动态的影响。水生生物学。(待发表)
Hammerton, D. 1976. The Blue Nile in the plains, p. 243-256. In J. Rzóska [ed.] The Nile, biology of an ancient river. Dr. W. Junk, The Hague, Netherlands. 哈默顿,D. 1976 年。《蓝尼罗河在平原》,第 243-256 页。在 J. Rzóska [编]《尼罗河,古老河流的生物学》。W. Junk 博士,海牙,荷兰。
Harmon, M. E., J. R. Franklin, F. J. Swanson, J. D. Lattin, S. V. Gregory, N. H. Anderson, S. P. Cline, N, G. Aumen, J. R. Sedell, G. W. Lienkaemper, K. Cromack Jr., AND K. W. Cummins. 1986. Ecology of course woody debris in temperate ecosystems. Adv. Ecol. Res. 15: 133-302. 哈蒙,M. E.,J. R. 富兰克林,F. J. 斯旺森,J. D. 拉廷,S. V. 格雷戈里,N. H. 安德森,S. P. 克莱因,N. G. 奥门,J. R. 塞德尔,G. W. 林肯凯珀,K. 克罗马克 Jr.,和 K. W. 卡明斯。1986 年。温带生态系统中粗木材残骸的生态学。生态研究进展 15: 133-302。
Hawkinson, B., and G. Grunwald. 1979. Observations of a wintertime concentration of catfish in the Mississippi River, Fisheries Investigation Report No. 365, Minnesota Dep. of Natural Resources. 9 p. 霍金森,B.,和 G. 格伦瓦尔德。1979 年。关于密西西比河冬季鲶鱼集中现象的观察,渔业调查报告第 365 号,明尼苏达州自然资源部。9 页。
heiges, J. I., W. A. Clark, P. D. Quay, J. E. Richey, A. h. Devol, and U. M. Santos. 1986. Compositions and fluxes of particulate organic material in the Amazon river. Limnol. Oсеалоgг. 31: 717-738. 海格斯, J. I., W. A. 克拉克, P. D. 奎, J. E. 里奇, A. h. 德沃尔, 和 U. M. 桑托斯. 1986. 亚马逊河中颗粒有机物的组成和通量. 湖泊与海洋学. 31: 717-738.
Heller, H. 1969. Lebensbedingungen und Abfolge der Flussauevegetation in der Schweiz. Schweiz. Anst. Forstl. Versuchswes. Mitt. 45: 1-124. 赫勒,H. 1969。瑞士河流植被的生存条件和演替。瑞士森林试验站通讯,45:1-124。
HolČik, J., AND I. BASTL. 1976. Ecological effects of water level fluctuation upon the fish populations in the Danube River floodplain in Czechoslovakia. Acta Sci. Natur, Acad. Scient. Bojemoslov. Brno 10: 1-46. 霍尔奇克,J.,和 I. 巴斯特尔。1976 年。水位波动对捷克斯洛伐克多瑙河洪泛区鱼类种群的生态影响。《自然科学学报》,捷克斯洛伐克科学院,布尔诺 10:1-46。
1977. Predicting fish yield in the Czechoslovakian section of the Danube River based on the hydrological regime. Int. Rev. Gesamten Hydrobiol. 62: 523-532. 1977 年。根据水文规律预测捷克斯洛伐克段多瑙河的鱼产量。《国际综合水生生物学评论》62: 523-532。
Holland, L. E., C. F. Bryan, and J. P. Newman, J. 1983. Water quality and the rotifer population in the Atchafalaya River Basin. Hydrobiologia 98: 55-69. 霍兰, L. E., C. F. 布莱恩, 和 J. P. 纽曼, J. 1983. 阿查法拉亚河流域的水质与轮虫种群. 水生生物学 98: 55-69.
Howard-Williams, C., and W. J. Junk. 1976. The decomposition of aquatic macrophytes in the floating meadows of a Central Amazonian várzea lake. Biogeographica 7: 115-123. 霍华德-威廉姆斯,C.,和 W. J. 贾克。1976 年。中亚马逊瓦尔泽湖浮动草甸中水生大植物的分解。生物地理学 7: 115-123。
Huffman, R. T. 1980. The relation of flood timing and duration 10 variation in bottomland hardwood community structure in the Quachita River Basin of Southeastern Arkansas. U. S. Army Engineer Waterways Experiment Station Miscellaneous Paper E-80-4, Vicksburg, Mississippi: 22 p. 哈夫曼,R. T. 1980. 洪水时机和持续时间与阿肯色州东南部夸奇塔河流域底湿林硬木社区结构变化的关系。美国陆军工程师水道实验站杂项论文 E-80-4,密西西比州维克斯堡:22 页。
Huffman, R. T., and S. W. Forsythe. 1981. Bottomland hardwood forests and their relation to anacrobic soil conditions, p. 187-196. In J. R. Clark and J. Benforado [cd.] Wetlands of bottomland hardwood forests. - Developments in agricultural and managed forest ecology 11, Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York, NY. Hrnes, H. B. N. 1970. The ecology of running waters. Liverpool Univ. Press, England. 555 p. 哈夫曼,R. T.,和 S. W. 福赛思。1981 年。底湿硬木森林及其与厌氧土壤条件的关系,第 187-196 页。在 J. R. 克拉克和 J. 本福拉多[编]《底湿硬木森林的湿地》。- 农业和管理森林生态学发展 11,爱思唯尔科学出版社,阿姆斯特丹,牛津,纽约,NY。赫尔内斯,H. B. N. 1970 年。流动水体的生态学。利物浦大学出版社,英格兰。555 页。
1975. The stream and its valley. Int. Ver. Theor. Angew. Limnol. Verh. 19: 1-15. 1975 年。溪流及其谷地。国际水文学会年会论文集。第 19 卷:1-15。
IRoN, G. 1983. Tonmineralien in der Schwebfracht von Flüssen des Amazonasgebietes und von Papua Neuguinea. Zentralblatl für Geologie und Paläontologie, Stutgart I: 502-515. IRoN, G. 1983. 亚马逊地区和巴布亚新几内亚河流悬浮物中的矿物。地质与古生物学中央杂志,斯图加特 I: 502-515。
Lion, G., J. AdIS, W. J. Junk, and F. Wundèrlich. 1983. Sedimentological studies of the “llha da Marchantaria” in the Solimões/Amazon River near Manaus. Amazoniana 8: 1-18. Lion, G., J. AdIS, W. J. Junk, 和 F. Wundèrlich. 1983. 在马瑙斯附近的索利蒙斯/亚马逊河“马尔尚塔里亚岛”的沉积学研究。亚马逊研究 8: 1-18.
LeMler, U. 1981. Überlebensstrategien von Tieren im saisonal überschwemmtem amazonischen überschwemmungswald. Zool. Anz. 206: 26-38. LeMler, U. 1981. 季节性洪水淹没的亚马逊洪泛森林中动物的生存策略。动物学通报 206: 26-38.
1986. Temperature dependent generation cycle for the cicindelid beetle Pentacomia egregia Chaud. (Colcoptera, Carabidae, Cicindelidae) of the Amazon valley. Amazoniana 9: 431-439. 1986 年。亚马逊河谷的五彩虫 Pentacomia egregia Chaud.(鞘翅目,步甲科,蜻蜓科)的温度依赖生成周期。亚马逊研究 9: 431-439。
Irmler, U., and K. Furch. 1979. Production, energy and nutrient turnover of the cockroach Epilampra irmleri Rocha c Silva and Aguiar in a Central Amazonian inundation forest. Amazoniana 6: 497-520. Irmler, U. 和 K. Furch. 1979. 中央亚马逊淹没森林中蟑螂 Epilampra irmleri Rocha c Silva 和 Aguiar 的生产、能量和营养周转。亚马逊研究 6: 497-520.
Johnson, F. L., and D. T. Bell. 1976. Plant biomass and net primary production along a flood-frequency gradient in the streamside forest. Castanea 41: 156-165. 约翰逊,F. L.,和 D. T. 贝尔。1976 年。溪边森林中沿洪水频率梯度的植物生物量和净初级生产力。《栗树》41:156-165。
Junx, W. J. 1970. Investigations on the ecology and production biology of the floating meadows (Paspalo-Echinochloetum) on the Middle Amazon, Part 1: the floating vegetation and its ecology. Amazoniana 2: 449-495. Junx, W. J. 1970. 关于亚马逊中部浮动草甸(Paspalo-Echinochloetum)的生态和生产生物学的研究,第一部分:浮动植被及其生态。亚马逊研究 2: 449-495。
1973. Investigations on the ecology and production biology of the floating meadows (Paspalo-Echinochloetum) on the Middle Amazon, Part 2: the aquatic fauna in the root zone of floating vegetation. Amazoniana 4: 9-102. 1973 年。关于中亚马逊浮动草甸(Paspalo-Echinochloetum)的生态和生产生物学的研究,第二部分:浮动植被根区的水生动物。亚马逊研究 4: 9-102。
1980. Areas inundáveis - Um desafío para Limnología. Acla Amazonica 10: 775-795. 1980 年。淹没区 - 对湖沼学的挑战。亚马逊学报 10: 775-795。
1984. Ecology of the varzea, floodplain of Amazonian whitewater rivers, p. 215-244. InHI n \mathrm{H}. Sioli [ed.] The Amazon (Monographiae biologicae, Vol 56). Dr. W. Junk, The Hague, Netherlands. 1984 年。亚马逊白水河 floodplain 的 varzea 生态,页 215-244。 InHI n \mathrm{H} 。Sioli [编]《亚马逊》(生物学专著,第 56 卷)。荷兰海牙,W. Junk 博士。
1985a. The Amazon floodplain - a sink or source for organic carbon?. Mitt. Geol. Paläont. Inst. Univ. Hamburg, SCOPE/UNEP Sonderbd. 58: 267-283. 1985a. 亚马逊洪泛区 - 有机碳的汇还是源?汉堡大学地质古生物研究所通讯,SCOPE/UNEP 特刊 58: 267-283.
1985b. Temporary fat storage, an adaptation of some fish species to the waterlevel fluctuations and related environmental changes of the Amazon system. Amazoniana 9: 315-351. 1985b。临时脂肪储存,某些鱼类对亚马逊系统水位波动及相关环境变化的适应。亚马逊学报 9: 315-351。
1985c. Aquatic plants of the Amazon system, p. 319-337. In B. R. Davies and K. F. Walker [ed.] The ecology of river 1985c. 亚马逊系统的水生植物,第 319-337 页。在 B. R. Davies 和 K. F. Walker [编] 河流生态学
systems. Dr W. Junk, The Hague, Netherlands. 系统。W. Junk 博士,荷兰海牙。
Junk, W. J., and J. A. S. N. de Mello. 1987. Impactos ecologicos das represas hidroelétricas na bacía amazonica brasileira. p. 367-385. In G. Kohlhepp and A. Schrader [ed.] Homem e natureza na Amazônia. Tübinger Geographische Studien Vol. 95. 贾克,W. J.,和 J. A. S. N. 德梅洛。1987 年。巴西亚马逊流域水电站的生态影响。第 367-385 页。在 G. 科尔赫普和 A. 施拉德 [编] 亚马逊的人与自然。图宾根地理研究第 95 卷。
Junk, W, J., G. M. Soares, and F. M. Carvalho. 1983. Distribution of fish species in a lake of the Amazon river floodplain near Manaus (Lago Camaleão), with special reference to extreme oxygen conditions. Amazoniana 7: 397-431. 贾ンク, W, J., G. M. 索阿雷斯, 和 F. M. 卡瓦略. 1983. 亚马逊河洪泛区靠近马瑙斯的一个湖泊(卡马雷昂湖)中鱼类物种的分布,特别提到极端氧气条件. 亚马逊研究 7: 397-431.
Junk, W. J., and R. L. Welcomme. 1989, Management of floodplains. In B. C. Patten [ed.] Wetlands and shallow continental water bodies, Vol. 1. SPB Academic Publishing, The Hague, Netherlands. (In press) 贾ンク,W. J.,和 R. L. 韦尔科姆。1989 年,洪泛区的管理。在 B. C. 帕滕 [编] 湿地和浅层大陆水体,第 1 卷。SPB 学术出版,海牙,荷兰。(待出版)
Kemp, G. P., and J. W. Day. 1984. Nutrient dynamics in a Louisiana swamp receiving agricultural runoff, p. 286-293. In K. C. Ewel and H. T. Odum [ed.] Cypress swamps. Univ. of Florida Press, Gainesville, FL. Kemp, G. P. 和 J. W. Day. 1984. 接收农业径流的路易斯安那沼泽中的营养动态, 第 286-293 页. 见 K. C. Ewel 和 H. T. Odum [编.] 柏树沼泽. 佛罗里达大学出版社, 盖恩斯维尔, 佛罗里达.
Klopatek, J. M. 1978. Nutrient dynamics of freshwater riverine marshes and the role of emergent macrophytes, p. 195-216. In R. E. Good, D. F. Whigham, and R. L. Simpson [ed.] Freshwater wetlands. Ecological processes and management potential. Academic Press, New York, NY. Klopatek, J. M. 1978. 淡水河流湿地的营养动态及其浮水植物的作用,页 195-216。在 R. E. Good, D. F. Whigham 和 R. L. Simpson [编]《淡水湿地:生态过程与管理潜力》。学术出版社,纽约,NY。
Kramer, D. L., C. C. Lindsey, G. E. E. Moodre, and E. D. Stevens. 1978. The fishes and the aquatic environment of the Central Amazon Basin, with particular reference to respiratory patterns. Can. J. Zool. 56: 717-729. 克雷默,D. L.,C. C. 林赛,G. E. E. 穆德雷,和 E. D. 史蒂文斯。1978 年。中亚马逊盆地的鱼类及其水生环境,特别参考呼吸模式。加拿大动物学杂志 56: 717-729。
Lambou, V. W. 1959. Fish populations of backwater lakes in Louisiana. Trans. Am. Fish. Soc. 88: 7-15. 兰博,V. W. 1959. 路易斯安那州滞水湖泊的鱼类种群。美国鱼类学会会刊 88: 7-15.
larson, J. S., M. S. bedinger, C. F. Bryan, S. Brown, R. T. huffman, E. L. Miller, D. G. Rhodes, and B. A. TUCHET. 1981. Transition from wetlands to uplands in southeastern bottomland hardwood forests, p. 225-273. In J. R. Clark and J. Benforado [ed.] Wetlands of bottomland hardwood forests. - Developments in agricultural and managed forest ecology 11, Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York. 拉尔森,J. S.,M. S. 贝丁格,C. F. 布莱恩,S. 布朗,R. T. 哈夫曼,E. L. 米勒,D. G. 罗德斯,和 B. A. 图切特。1981 年。东南部低地硬木森林中湿地向高地的过渡,页码 225-273。在 J. R. 克拉克和 J. 本福拉多 [编] 低地硬木森林的湿地。- 农业和管理森林生态学发展 11,爱思唯尔科学出版社,阿姆斯特丹,牛津,纽约。
Lindsey, A. A., R. D. Petty, D. K. Sterling, and W., van AsDall. 1961. Vegetation and environment along the Wabash and Tippecanoe Rivers. Ecol. Monogr. 31: 105-156. 林赛,A. A.,R. D. 佩蒂,D. K. 斯特林,和 W. van AsDall. 1961. 瓦巴什河和提佩卡努河沿岸的植被与环境. 生态学专论. 31: 105-156.
littlejohn, S., L. E. Holland, R. Jacobson, M. Huston, and T. Hornung. 1985. Habits and habitats of fish in the upper Mississippi River. U.S. Fish and Wildlife Resource Publication. June 1985, LaCrosse, WI. 20 p. littlejohn, S., L. E. Holland, R. Jacobson, M. Huston, 和 T. Hornung. 1985. 密西西比河上游鱼类的习性和栖息地. 美国鱼类和野生动物资源出版物. 1985 年 6 月, 拉克罗斯, 威斯康星州. 20 页.
Lowe-McConnell, R. H. 1964. The fishes of the Rupununi savanna district of British Guiana, South America. Part 1. Ecological groupings of fish species and effects of the seasonal cycle on the fish. J. Linn. Soc. Zool, 45(304): 1-103. 洛威-麦康奈尔,R. H. 1964. 南美洲英国圭亚那鲁普努尼草原地区的鱼类。第一部分。鱼类物种的生态分组及季节循环对鱼类的影响。林奈学会杂志,动物学,45(304):1-103。
1975. Fish communities in tropical freshwaters. Their distribution, ecology, and evolution. Longman, London. 337 p. 1975 年。热带淡水鱼类群落。它们的分布、生态和演化。伦敦:朗文出版社。337 页。
Lundberg, J. G., W. M. Lewis, Jr., J. F. Saunders III, and F. MaGO-LECCIA. 1987. A major food web component in the Orinoco River Channel : evidence from planktivorous fishes. Science 237: 81-83. Lundberg, J. G., W. M. Lewis, Jr., J. F. Saunders III, 和 F. MaGO-LECCIA. 1987. 奥里诺科河通道中的一个主要食物网组成部分:来自食浮游生物鱼类的证据。科学 237: 81-83.
Magalhäes, C., and I. Walker. 1989. Larval development and ecological distribution of Central Amazon palacmonid shrimps. Crustaccana. (In press) Magalhäes, C. 和 I. Walker. 1989. 中央亚马逊帕拉克蒙虾的幼虫发育和生态分布。甲壳类动物学。(待发表)
Margalef, R. 1968. Perspectives in ecological theory. The Univ. of Chicago Press, Chicago, IL. 111 p. 马尔加雷夫, R. 1968. 生态理论的视角. 芝加哥大学出版社, 芝加哥, IL. 111 页.
Martins, O. 1982. Geochemistry of the Niger River. Mitt. Geol. Paliont. Inst. Univ. Hamburge SCOPE/UNEP Sonderbd. 52: 357-364. 马丁斯,O. 1982. 尼日尔河的地球化学。汉堡大学地质古生物研究所通讯 SCOPE/UNEP 特刊 52: 357-364。
Marvin, D. E., and A. G. Heath. 1968. Cardiac and respiratory response to gradual hypoxia in three ecologically distinct species of freshwater fish. Comp. Biochem. Physiol. 27: 349-355. 马尔文,D. E.,和 A. G. 希斯。1968 年。三种生态上不同的淡水鱼对逐渐缺氧的心脏和呼吸反应。比较生物化学与生理学。27:349-355。
McKnight, J. S., D. D. Hook, O. G. Langdon, and R. L. 麦克奈特,J. S.,D. D. 霍克,O. G. 兰登,和 R. L.
JOHNSON. 1981, Flood tolerance and related charactcristics of trees of the bottomland forest of the Southern United States. p. 29-69. In J. R. Clark and J. Benforado [ed.] Wetlands of bottomland hardwood forests. - Developments in agricultural and managed forest ecology 11, Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York, NY. 约翰逊。1981 年,南美底地森林树木的抗洪能力及相关特征。第 29-69 页。见 J. R. Clark 和 J. Benforado [编] 底地硬木森林的湿地。- 农业和管理森林生态学发展 11,爱思唯尔科学出版社,阿姆斯特丹,牛津,纽约,NY。
Melack, J. M., and T, R. Fisher. 1983. Diel oxygen variations and their ecological implications in Amazon floodplain lakes. Arch. Hydrobiol. 98: 422-442. 梅拉克,J. M.,和 T. R. 菲舍尔。1983 年。亚马逊洪泛平原湖泊的昼夜氧气变化及其生态意义。《水文学档案》98:422-442。
Mills, H. B., W. C. Starrett, and F. C. Bellrose. 1966. Man’s effect on the fish and wildife of the Illinois River. III. Nat. Hist. Surv. Biol. Notes 57: 1-24. 米尔斯,H. B.,W. C. 斯塔雷特,和 F. C. 贝尔罗斯。1966 年。人类对伊利诺伊河鱼类和野生动物的影响。III. 自然历史调查生物笔记 57:1-24。
Minshall, G. W., K. W. Cummins, R. C. Petersen, C. E. Cushing, D. A. Bruns, J. R. Sedell, and R. L. Vannote. 1985. Developments in stream ccosystem theory. Can. J. Fish. Aquat. Sci. 42: 1045-1055. Minshall, G. W., K. W. Cummins, R. C. Petersen, C. E. Cushing, D. A. Bruns, J. R. Sedell, 和 R. L. Vannote. 1985. 溪流生态系统理论的发展. 加拿大鱼类与水生科学杂志 42: 1045-1055.
Minshall, G. W., R. C. Petersen, K. W. Cummins, T. L. Bott, J. R. Sedell, C. E. Cushing, and R. L. Vannote. 1983. Interbiome comparison of stream ecosystem dynamics. Ecol. Monogr. 53: 1-25. Minshall, G. W., R. C. Petersen, K. W. Cummins, T. L. Bott, J. R. Sedell, C. E. Cushing, 和 R. L. Vannote. 1983. 溪流生态系统动态的生物群落间比较. 生态学专论. 53: 1-25.
Morris, l. A., R. N. langmeier, T. R. Russell, and A. WITT, Jr. 1968. Effects of main stem impoundments and channelization upon the limnology of the Missouri River, Nebraska. Trans. Am. Fish. Soc. 97: 380-388. 莫里斯,L. A.,R. N. 兰格梅耶,T. R. 拉塞尔,和 A. WITT, Jr. 1968。主干道蓄水和河道化对内布拉斯加州密苏里河湖沼学的影响。美国鱼类学会会刊 97: 380-388。
Nilsen, H. C., and R. W. Larimore. 1973. Establishment of invertebrate communities on log substrates in the Kaskaskia River, Illinois. Ecology 54: 366-374. 尼尔森,H. C.,和 R. W. 拉里莫尔。1973 年。伊利诺伊州卡斯卡斯基亚河上木材基质上无脊椎动物群落的建立。《生态学》54:366-374。
Nord, A. E., and J. C. Schmulbach. 1973, A comparison of the macroinvertebrate aufwuchs in the unstabilized and stabilized Missouri River. Proc. S. D. Acad. Sci. 52: 127-139. 诺德,A. E.,和 J. C. 施穆尔巴赫。1973 年,未稳定和稳定密苏里河的宏观无脊椎动物附生物的比较。南达科他州科学院学报 52: 127-139。
Odum, E. P. 1959. Fundamentals of ecology. W. B. Saunders Co., London. 574 p. 奥杜姆,E. P. 1959。《生态学基础》。W. B. 桑德斯公司,伦敦。574 页。
1981. Foreward. In J. R. Clark and J. Benforado [ed.] Wetlands of bottomland hardwood forests. - Development in agricultural and managed forest ecology 11, Elscvier Scientific Publishing Company, Amsterdam, Oxford, New York, NY. 1981 年。前言。在 J. R. Clark 和 J. Benforado [编]《底湿硬木森林的湿地》。- 农业和管理森林生态学发展 11,爱思唯尔科学出版社,阿姆斯特丹,牛津,纽约,NY。
Odum, E. P., and A. A. de la Cruz. 1967. Particulate organic detritus in a Georgia sale marsh-estuarine system, p. 383-388. In G. H. Lauff [ed.] Estuaries. Publ. 83 of the American Association for the Advancement of Science, Washington D.C. Odum, E. P. 和 A. A. de la Cruz. 1967. 乔治亚州盐沼-河口系统中的颗粒有机碎屑, 第 383-388 页. 收录于 G. H. Lauff [编] 《河口》. 美国科学促进会出版物第 83 号, 华盛顿特区.
Paarmann, W., U. Irmler, and J. Adis. 1982. Pentacomia egregia Chaud. (Carabidae, Cicindclidae), an univoltine species in the Amazonian inundation forest. Coleopterists Bull. 36: 183-188. Paarmann, W., U. Irmler, 和 J. Adis. 1982. Pentacomia egregia Chaud. (蜣螂科, Cicindelidae), 亚马逊洪水森林中的单代种. 甲虫学家公报. 36: 183-188.
Petrere, M., Jr. 1978. Pesca e esforço da pesca no Estado do Amazonas. II Locais, aparelhos de captura e estatísticas de desembarque. Acta Amazonica 8: 1-54. 佩特雷尔,M., Jr. 1978。亚马逊州的渔业和渔业努力。 II 地点、捕捞设备和卸货统计。亚马逊学报 8:1-54。
1982. Ecology of the fisheries in the River Amazon and its tributaries in the Amazonas State (Brazil). Ph.D. thesis, Univ. of East Anglia, UK. 96 p. 1982 年。亚马逊河及其支流在亚马逊州(巴西)的渔业生态。博士论文,东安格利亚大学,英国。96 页。
1983. Relationships among catches, fishing effort and river morphology for cight rivers in Amazonas State (Brazil), during 1976-1978. Amazoniana 8: 281-296. 1983 年。1976-1978 年间,亚马逊州(巴西)八条河流的捕捞量、渔业努力和河流形态之间的关系。《亚马逊研究》8: 281-296。
Pflieger, W. L., and T. B. Grace. 1987. Changes in the fish fauna of the Lower Missouri River, 1940-1983, p. 166-177. In W. J. Mathews and D. C. Heins [ed.] Community and evofutionary ecology of North American stream fishes. University of Oklahoma Press, Norman, OK. Pflieger, W. L. 和 T. B. Grace. 1987. 1940-1983 年下密苏里河鱼类群落的变化, 第 166-177 页. 收录于 W. J. Mathews 和 D. C. Heins [编] 北美溪流鱼类的群落与进化生态学. 俄克拉荷马大学出版社, 诺曼, OK.
Pianka, E. R. 1970. On rr - and KK-selection. Am. Nat. 104: 592-597. 皮安卡,E. R. 1970. 关于 rr -和 KK -选择。美国自然杂志 104: 592-597。
PieczyŃsKa, E. 1972. Production and decomposition in the culittoral zone of lakes, p. 271-285. In Z. Kajak and A. HillbrichtIlkowska [ed.] Proceedings of the IBP-UNESCO Symposium on Productivity Problems of Freshwaters. Kazimierz Dolny, Poland. PieczyŃsKa, E. 1972. 湖泊的潮间带的生产与分解,第 271-285 页。在 Z. Kajak 和 A. HillbrichtIlkowska [编]《国际生物生产力-联合国教科文组织关于淡水生产力问题的研讨会论文集》。波兰,卡济米日·多尔尼。
Quirós, R., and C. Baigún. 1985. Fish abundance related to organic matter in the Plata River Basin, South America. Quirós, R. 和 C. Baigún. 1985. 南美洲拉普拉塔河流域鱼类丰度与有机物的关系。
Trans. Am. Fish. Soc. 114: 377-387. 美国鱼类学会会刊 114: 377-387.
Remsen, J. V., Jr., and T. A. Parker. 1983. Contribution of river-created habitats to bird species richness in Amazonia. Biotropica 15: 223-231. Remsen, J. V., Jr. 和 T. A. Parker. 1983. 河流创造的栖息地对亚马逊地区鸟类物种丰富度的贡献。生物热带学 15: 223-231.
Ribeiro, M. C. L. B. 1983. As migraçōes dos jaraquis (Pisces, Prochilodontidae) no Rio Negro, Amazonas, Brasil. M.S. thesis, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil. 192 p. 里贝罗,M. C. L. B. 1983. 亚马逊河黑河中贾拉基鱼(鱼类,贾拉基科)的迁徙。硕士论文,亚马逊国家研究所,巴西马瑙斯。192 页。
RichardSON, R. E. 1921. The small bottom and shore fauna of the middle and lower Illinois River and its connecting lakes, Chillicothe to Grafton; its valuation; its sources of food supply; and its relation to the fishery. Ill. Nat. Hist. Surv. Bull. 13: 363-522. 理查德森,R. E. 1921。伊利诺伊河中下游及其连接湖泊(从奇利科斯到格拉夫顿)的小型底栖和岸边动物群;其价值;其食物来源;以及其与渔业的关系。伊利诺伊州自然历史调查局公报 13:363-522。
Richey, J. E., J. T. Brock, R. J. Naiman, R. C. Wissmar, and R. F. Stallard. 1980. Organic carbon: oxidation and transport in the Amazon River. Science 207: 1348-1351. Richey, J. E., J. T. Brock, R. J. Naiman, R. C. Wissmar, 和 R. F. Stallard. 1980. 有机碳:亚马逊河中的氧化和运输. 科学 207: 1348-1351.
Richey, J. E., E. Salati, and U. Santos. 1985. Biochemistry of the Amazon River: an update. Mitt. Geol. Paläont. Inst. Univ, Hamburg SCOPE/UNEP Sonderbd. 58: 245-257. Richey, J. E., E. Salati, 和 U. Santos. 1985. 亚马逊河的生物化学:更新. 汉堡大学地质古生物研究所通讯,SCOPE/UNEP 特刊 58: 245-257.
Risotto, S. P., and R. E. Turner. 1985. Annual fluctuation in abundance of the commercial fisheries of the Mississippi River and tributaries. N. Am. J. Fish Manage. 5: 557-574. Risotto, S. P. 和 R. E. Turner. 1985. 密西西比河及其支流商业渔业丰度的年度波动. 北美鱼类管理杂志. 5: 557-574.
Roy, D. 1989. Physical and biological factors controlling the distribution and abundance of fish in Hudson/James Bay rivers, p. 159-171. In D. P. Dodge [ed.] Proccedings of the International Large River Symposium. Can. Spec. Publ. Fish. Aquat. Sci. 106. 罗伊,D. 1989。控制哈德逊/詹姆斯湾河流中鱼类分布和丰度的物理和生物因素,页 159-171。在 D. P. 道奇 [编] 国际大河研讨会会议录。加拿大特别出版物 鱼类与水生科学 106。
RutTNER, F. 1952. Fundamentals of limnology. Univ. Toronto Press, Toronto, Ont. 242 p. 鲁特纳,F. 1952 年。《湖沼学基础》。多伦多大学出版社,多伦多,安大略省。242 页。
Salo, J., R. Kalliola, I. Häkkinen, Y. Mäkinen, P. Nie. melä, M. Puhakka, and P. D. Coley. 1986. River dynamics and the diversity of Amazon lowland forest. Nature 322: 254-258. 萨洛,J.,R. 卡利奥拉,I. 哈基宁,Y. 马基宁,P. 尼,梅拉,M. 普哈卡,和 P. D. 科利。1986 年。河流动态与亚马逊低地森林的多样性。自然 322: 254-258。
Sandusky, M. J., R. E. Sparks, and A. A. Paparo. 1979. Investigations of declines in fingernail clam (Musculium transversum) populations in the Illinois River and Pool 19 of the Mississippi River. Bulletin of the American Malacological Union 1979: 11-15. 桑达斯基,M. J.,R. E. 斯帕克斯,和 A. A. 帕帕罗。1979 年。伊利诺伊河和密西西比河 19 号水池指甲蛤(Musculium transversum)种群下降的调查。美国软体动物学会公报 1979:11-15。
Santos, G. M. 1981. Estudos de alimentaçâo e hábitos alimentares de Schizodon fascialus Agassiz, 1829, Rhytiodus microle. pis Kner, 1859 e Rhytiodus argenteofuscus Kner, 1859, do lago Janauàcá -AM. (Osteichthyes, Characoidei, Anostomidae). Acta Amazonica 11: 267-283. 桑托斯,G. M. 1981. 关于 Janauàcá湖(AM)中 Schizodon fascialus Agassiz, 1829,Rhytiodus microlepis Kner, 1859 和 Rhytiodus argenteofuscus Kner, 1859 的饮食和饮食习惯研究。(硬骨鱼纲,鲤形目,Anostomidae)。亚马逊学报 11: 267-283。
SchmidT, G. W. 1973a. Primary production of phytoplankton in the three types of Amazonian waters. II. The limnology of a tropical flood-plain lake in Central Amazônia, Lago do Castanho. Amazonas, Brazil. Amazoniana 4: 139-203: SchmidT, G. W. 1973a. 亚马逊三种水体中浮游植物的初级生产力。II. 中亚马逊地区一个热带洪泛平原湖泊的湖泊学,卡斯坦霍湖。巴西亚马逊州。亚马逊研究 4: 139-203:
1973b. Primary production of phytoplankton in the three types of Amazonian waters. III. Primary productivity of phytoplankton in a tropical flood-plain lake of Central Amazonia, Lago do Castanho. Amazonas, Brazil. Amazoniana 4: 379-404. 1973b. 亚马逊三种水体中浮游植物的初级生产。III. 中亚马逊地区卡斯坦霍湖热带洪泛平原湖泊中浮游植物的初级生产力。巴西亚马逊州。亚马逊研究 4: 379-404。
Schumm, S. A. 1977. The fluvial system, John Wiley and Sons, New York, NY. 338 p. 舒姆,S. A. 1977。《河流系统》,约翰·威利父子公司,纽约,纽约。338 页。
Sedell, J. R., J. E. Richey, and F. J. Swanson. 1989. The river continuum concept: a basis for the expected ecosystem behavior of very large rivers? p. 49-55. In D. P. Dodge [ed.] Procecdings of the International Large River Sysmposium. Can. Spec. Publ. Fish. Aquat. Sci, 106. Sedell, J. R., J. E. Richey, 和 F. J. Swanson. 1989. 河流连续体概念:非常大河流预期生态系统行为的基础?第 49-55 页。在 D. P. Dodge [编] 国际大河流研讨会论文集。加拿大特别出版物 鱼类与水生科学, 106.
Seger, D. R., and C. F. Bryan. 1981. Temporal and spatial distribution of phytoplankton in the Lower Atchafalaya River Basin, Louisiana, p. 91-101. In L. A. Krumholz [ed.] Proccedings of Warmwater Streams Symposium. Allen Press, Lawrence, KS. Seger, D. R. 和 C. F. Bryan. 1981. 路易斯安那州阿查法拉亚河下游流域浮游植物的时间和空间分布, 第 91-101 页. 见 L. A. Krumholz [编] 《温水溪流研讨会论文集》. Allen Press, Lawrence, KS.
SeidensChwarz, F. 1986. Pionervegetation im Amazonasgebeit Pcrus. Ein pflanzensoziologischer Vergleich von vorandinem Flussufer und Kulturland. Monographs on Agriculture and Ecology of Warmer Climates, Vol. 3, Margraf, Tropical Scientific Books, Gaimerscheim, West Germany. 226 p. SeidensChwarz, F. 1986. 亚马逊地区的先锋植被。原始河岸与耕地的植物社会学比较。温暖气候农业与生态学专著,第 3 卷,Margraf,热带科学书籍,Gaimerscheim,西德。226 页。
Shelford, V. E. 1954. Some lower Mississippi Valley floodplain biotic communities: their age and elevation. Ecology 15: 126-142. 谢尔福德, V. E. 1954. 一些下密西西比河谷洪泛区生物群落:它们的年龄和海拔。生态学 15: 126-142.
Sheppe, W., and T. Osborne. 1971. Patterns of use of a floodplain by Zambian mammals. Ecol. Monogr. 41: 179-205. Sheppe, W. 和 T. Osborne. 1971. 赞比亚哺乳动物对洪泛区的使用模式. 生态学专论. 41: 179-205.
Sigafoos, R. S. 1964. Botanical evidence of floods and floodplain deposition. U.S. Geological Survey Profesionnal Paper 485-A: 1-35. Sigafoos, R. S. 1964. 洪水和洪泛区沉积的植物证据。美国地质调查局专业论文 485-A: 1-35。
Sloli, H. 1984. The Amazon and its main affluents: hydrography, morphology of the river courses, and river types, p. 127-166. In H. Sioli [ed.] The Amazon (Monographiae biologicae, Vol 56). Dr. W. Junk, The Hague, Netherlands. 斯洛利,H. 1984 年。《亚马逊及其主要支流:水文、河流形态和河流类型》,第 127-166 页。在 H. Sioli [编]《亚马逊》(生物学专论,第 56 卷)。荷兰海牙,W. Junk 博士。
Statzner, B. 1987. Characteristics of lotic ecosystems and consequences for future research directions, p. 365-390. In E. D. Schulze and H. Zwolfer [ed.] Potentials and limitations of ecosystem analysis. Ecological Studies 61 . Springer-Verlag, Berlin. Statzner, B. 1987. 流动生态系统的特征及其对未来研究方向的影响,页 365-390。在 E. D. Schulze 和 H. Zwolfer [编] 生态系统分析的潜力与局限性。生态研究 61。施普林格-弗拉格,柏林。
Statzner, B., and B. Higler. 1985. Questions and comments on the River Continuum Concept. Can. J. Fish. Aquat. Sci. 42: 1038-1044. Statzner, B. 和 B. Higler. 1985. 关于河流连续体概念的问题和评论. 加拿大鱼类与水生科学杂志 42: 1038-1044.
1986. Stream hydraulics as a major determinant of benthic invertebrate zonation patterns. Freshwater Biol. 16: 127-139. 1986 年。水流水力学作为底栖无脊椎动物分区模式的主要决定因素。《淡水生物学》16: 127-139。
Talling, J. F., AND J. RzÓsKa. 1967. The development of plankton in relation to hydrological regime in the Blue Nile. J. Ecol. 55: 637-662. 塔林,J. F.,和 J. RzÓsKa。1967 年。蓝尼罗河水文规律与浮游生物发展的关系。生态学杂志 55:637-662。
Teal, J. M. 1962. Energy flow in the salt marsh system of Georgia. Ecology 43: 614-624. 蒂尔,J. M. 1962. 乔治亚盐沼系统中的能量流动。生态学 43: 614-624.
ThompSon, J. D. 1973. Feeding ecology of diving ducks on Keokuk Pool, Mississippi River. J. WildI. Mahage 37: 367-381. 汤普森,J. D. 1973. 密西西比河基奥库克水池潜水鸭的觅食生态。野生动物管理杂志 37: 367-381。
Uetz, G. W., K. L. Van der Laan, G. F. Summers, P. A. GibSON, AND L. L. GETz. 1979. The effects of flooding on floodplains in arthropod distribution, abundance, and community structure. Am. Midl. Nat, 101: 286-299. 乌茨,G. W.,K. L. 范德兰,G. F. 萨默斯,P. A. 吉布森,和 L. L. 格茨。1979 年。洪水对洪泛区节肢动物分布、丰度和群落结构的影响。《美国中部自然》,101:286-299。
Vannote, R. L., G. M. Minshall, K. W. Cummins, J. R. I Sedell, and C. E. Cushing. 1980. The river continuum concept. Can. J. Fish. Aquat. Sci. 37: 130-137. Vannote, R. L., G. M. Minshall, K. W. Cummins, J. R. I Sedell, 和 C. E. Cushing. 1980. 河流连续体概念. 加拿大鱼类与水生科学杂志 37: 130-137.
Welcomme, R. L. 1979. Fisheries ecology of floodplain rivers. Longman, London. 317 p. 韦尔科姆,R. L. 1979. 洪泛平原河流的渔业生态学。伦敦:朗文出版社。317 页。
1985. River fisheries. FAO Fish. Tech. Pap. 262: 330. 1985 年。河流渔业。联合国粮食及农业组织渔业技术文件 262:330。
1989. Review of the present state of knowledge of fish stocks and fisheries of African rivers, p. 515-532. In D. P. Dodge [ed.] Proceedings of the International Large River Symposium. Can. Spec. Publ. Fish. Aquat. Sci. 106. 1989 年。非洲河流鱼类资源和渔业现状的回顾,页码 515-532。见 D. P. Dodge [编]《国际大河研讨会论文集》。加拿大特别出版物 鱼类与水生科学 106。
Wharton, C. H., V. W. Lambou, J. Newsom, P. V. Winger, L. L. Gaddy, and R. Mancke. 1981. The fauna of bottom- 沃顿,C. H.,V. W. 兰博,J. 纽瑟姆,P. V. 温格,L. L. 加迪,和 R. 曼克。1981 年。底栖动物。
land hardwoods in Southeastern United States. p. 87-160. In J. R. Clark and J. Benforado [ed.] Wetlands of bottomland hardwood forests. - Developments in agricultural and managed forest ecology 11, Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York, NY. 东南美国的落叶硬木。第 87-160 页。在 J. R. Clark 和 J. Benforado [编] 底地硬木森林的湿地。- 农业和管理森林生态学发展 11,爱思唯尔科学出版社,阿姆斯特丹,牛津,纽约,NY。
Winterbourn, M. J., J. S. Rounick, and B. Cowie. 1981. Are New Zealand stream ecosystems really different?. N. Z. J. Mar. Freshwater Res. 15: 321-328. 温特伯恩, M. J., J. S. 鲁尼克, 和 B. 科威. 1981. 新西兰溪流生态系统真的不同吗?新西兰海洋与淡水研究杂志 15: 321-328.
Wissmar, R. C., J. E. Richey, R. F. Stallard, and J. M. EDMOND. 1981. Plankton metabolism and carbon processes in the Amazon river, its tributaries, and floodplain waters, Peru-Brazil, May-June 1977. Ecology 62: 1622-1633. Wissmar, R. C., J. E. Richey, R. F. Stallard, 和 J. M. EDMOND. 1981. 亚马逊河及其支流和洪泛区水体中的浮游生物代谢和碳过程,秘鲁-巴西,1977 年 5 月至 6 月. 生态学 62: 1622-1633.
Wood, R. 1951. The significance of managed water levels in developing the fisheries of large impoundments. J. Tenn. Acad. Sci. 26: 214-235. 伍德,R. 1951。管理水位在大型水库渔业发展中的重要性。《田纳西科学院学报》26:214-235。
WORbEs, M. 1983. Vegetationskundkiche Untersuchungen zweier überschwemmungswälder in Zentralamazonien. Amazoniana 8: 47-65. WORbEs, M. 1983. 中央亚马逊地区两种洪水森林的植被学研究。亚马逊学报 8: 47-65。
1985. Structural and other adaptations to longterm flooding by trees in central Amazonia. Amazoniana 9: 459-484. 1985 年。中亚马逊地区树木对长期洪水的结构和其他适应。亚马逊学报 9: 459-484。
1986. Lebensbedingungen und Holzwachstum in zentralamazonischen überschwemmungswäldern. Scripta Geobotanica 17: 112. 1986 年。中亚马逊洪泛森林的生存条件和木材生长。植物地理学文集 17: 112。
Yarbro, L. A. 1983. The influence of hydrological variations on phosphorus cycling and retention in a swamp stream ecosystem, p. 199-221. In T. D. Fontaine and S. M. Bartell [ed.] Dynanics of ecosystems. Ann Arbor Science, Ann Arbor, M1. Yarbro, L. A. 1983. 水文变化对沼泽溪流生态系统中磷循环和保留的影响,页 199-221。在 T. D. Fontaine 和 S. M. Bartell [编] 生态系统的动态。安娜堡科学,安娜堡,M1。
Addresses of persons referred to as “pers. comm.” or “tunpublished data” 被称为“个人通讯”或“未发表数据”的人员地址
ANderson, R. V. Department of Biological Sciences, Western Illinois University, Macomb, IL 61455, USA. 安德森,R. V. 生物科学系,西伊利诺伊大学,马科姆,IL 61455,美国。
Bellrose, F. C., River Research Laboratory, Box 599, Havana, IL 62644, USA. 贝尔罗斯,F. C.,河流研究实验室,邮政信箱 599,哈瓦那,IL 62644,美国。
Fisher, T. R., Center for Environmental and Estuarine Studies, Horn Point, University of Maryland, Box 775, Cambridge, MD 21613, USA. 费舍尔,T. R.,马里兰大学霍恩角环境与河口研究中心,邮政信箱 775,剑桥,马里兰州 21613,美国。
IRION, G., Forschungsinstitut Senckenberg, Abteilung für Meersgcologie und Meeresbiologie, Schleusenstr. 39a, D-2940 Wilhemshaven, W. Germany. IRION, G., 仙肯堡研究所,海洋生态学与海洋生物学部,施莱森街 39a,D-2940 威廉港,西德。
Martius, C., Max-Planck-Inst. für Limnologie, AG Tropenökologie, D-2320 Plön, August Thienemannstr. 2, W. Germany, 马尔修斯,C.,马克斯·普朗克水生生态研究所,热带生态学研究组,D-2320 普伦,奥古斯特·蒂恩曼街 2,西德,
Ryder, R. A., Ontario Ministry of Natural Resources, Box 2089, Thunder Bay, Ont. P7B 5E7, Canada. 瑞德,R. A.,安大略省自然资源部,邮政信箱 2089,桑德贝,安大略省 P7B 5E7,加拿大。