ElenA Cordero and DAVIde ZuCco ElenA Cordero 和 DAVIde ZuCcoDepartment of Mathematics, University of Torino,v. Carlo Alberto 10, Torino, Italyemail: elena.cordero@unito.it 电子邮件:elena.cordero@unito.itemail: davide.zucco@unito.it 电子邮件:davide.zucco@unito.it
Abstract
The objective of this paper is to report on recent progress on Strichartz estimates for the Schrödinger equation and to present the state-of-the-art. These estimates have been obtained in Lebesgue spaces, Sobolev spaces and, recently, in Wiener amalgam and modulation spaces. We present and compare the different technicalities. Then, we illustrate applications to well-posedness. 本文的目标是报告薛定谔方程的 Strichartz 估计的最新进展,并展示最新技术。这些估计已经在勒贝格空间、索伯列夫空间以及最近的维纳混合和调制空间中得到。我们展示并比较不同的技术细节。然后,我们说明对适定性的应用。
RESUMEN
El objetivo de este trabajo es reportar los progresos recientes sobre estimativas de Strichartz para la ecuación de Schrödinger y presentar el estado de arte. Estas estimativas han sido obtenidas en espacios de Lebesgue, espacios de Sobolev, y recientemente, en espacios de Wiener amalgamados y de modulación. Presentamos y comparamos los diferentes aspectos técnicos envueltos. Ilustramos los resultados con aplicaciones a buena colocación. 这项工作的目标是报告最近在 Schrödinger 方程估计方面取得的进展,并介绍现有技术水平。这些估计是在勒贝格空间、Sobolev 空间以及最近的 Wiener 混合空间和调制空间中获得的。我们展示并比较了涉及的不同技术方面。我们通过应用于良好放置来说明结果。
Key words and phrases: Dispersive estimates, Strichartz estimates, Wiener amalgam spaces, Modulation spaces, Schrödinger equation.
Math. Subj. Class.: 42B35,35B65, 35J10, 35B40.
1 Introduction
In this note, we focus on the Cauchy problem for Schrödinger equations. To begin with, the Cauchy problem for the free Schrödinger equation reads as follows 在这个笔记中,我们关注的是薛定谔方程的柯西问题。首先,自由薛定谔方程的柯西问题如下所示。
with and . In terms of the Fourier transform, we can write the solution as follows 用 和 。就傅立叶变换而言,我们可以将解写成如下形式
where the Fourier multiplier is known as Schrödinger propagator. The corresponding inhomogeneous equation is 傅立叶乘子 被称为薛定谔传播子。相应的非齐次方程是
with and . By Duhamel's principle and (2), the integral version of (3) has the form 通过杜哈默尔原理和(2),(3)的积分版本具有以下形式:
The study of space-time integrability properties of the solution to (2) and (4) has been pursued by many authors in the last thirty years. The matter of fact is given by the Strichartz estimates, that have become a fundamental and amazing tool for the study of PDE's. They have been studied in the framework of different function/distribution spaces, like Lebesgue, Sobolev, Wiener amalgam and modulation spaces and have found applications to well-posedness and scattering theory for nonlinear Schrödinger equations , . 过去三十年来,许多作者一直在研究解(2)和(4)的时空可积性质。事实是由 Strichartz 估计给出的,这已成为研究偏微分方程的基本和令人惊奇的工具。它们已在不同的函数/分布空间框架中进行了研究,如勒贝格、索博列夫、维纳混合和调制空间,并已应用于非线性薛定谔方程的良定性和散射理论。
In this paper we exhibit these problems. First, in Section 3, we introduce the dispersive estimates and show how can be carried out for these different spaces. The classical dispersive estimates read as follows 在本文中,我们展示了这些问题。首先,在第 3 节中,我们介绍了色散估计,并展示了如何可以针对这些不同空间进行计算。经典的 色散估计如下所示。
Section 4 is devoted to the study of Strichartz estimates. The nature of these estimates is highlighted and the results among different kinds of spaces are compared with each others. Historically, the spaces [19, 24, 26, 39, 49] were the first to be looked at. The celebrated homogeneous Strichartz estimates for the solution read 第 4 节致力于研究 Strichartz 估计。这些估计的性质得到了突出,并且不同空间中的结果进行了比较。从历史上看,首先研究的是 空间[19, 24, 26, 39, 49]。对于解的著名齐次 Strichartz 估计如下
for , with , i.e., for Schrödinger admissible (see Definition 4.1). Here, as usual, we set 对于 ,使用 ,即对于 Schrödinger 可接受(见定义 4.1)。在这里,像往常一样,我们设置
In the sequel, the estimates for Sobolev spaces were essentially derived from the Lebesgue ones. Recently, several authors ( ) have turned their attention to fixed time and space-time estimates for the Schrödinger propagator between spaces widely used in time-frequency analysis, known as Wiener amalgam spaces and modulation spaces. The first appearance of amalgam spaces can be traced to Wiener in his development of the theory of generalized harmonic analysis [46, 47, 48] (see [22] for more details). In this setting, Cordero and Nicola have discovered that the pattern to obtain dispersive and Strichartz estimates is similar to that of Lebesgue spaces. The main idea is to show that the fundamental solution (see (20) below) lies in the Wiener amalgam space (see Section 2 for the definition) which generalizes the classical space and, consequently, provides a different information between the local and global behavior of the solutions. Beside the similar arguments, we point out also some differences, mainly in proving the sharpness of dispersive estimates and Strichartz estimates. Indeed, dilation arguments in Wiener amalgam and modulation spaces don't work as in the classical spaces. 在续篇中,Sobolev 空间的估计基本上是从 Lebesgue 空间推导出来的。最近,一些作者( )已经将注意力转向了在时频分析中广泛使用的空间之间的固定时间和时空估计,即维纳混合空间和调制空间的薛定谔传播子。混合空间的首次出现可以追溯到维纳在他发展广义谐波分析理论时[46, 47, 48](更多细节请参见[22])。在这种情况下,Cordero 和 Nicola 发现获得色散和 Strichartz 估计的模式类似于 Lebesgue 空间。主要思想是表明基本解 (见下面的(20))位于维纳混合空间 (有关定义,请参见第 2 节),该空间推广了经典 空间,并因此在解的局部和全局行为之间提供了不同的信息。除了类似的论点,我们还指出了一些差异,主要是在证明色散估计和 Strichartz 估计的尖锐性方面。 事实上,在 Wiener 合并和调制空间中的扩张论证与经典 空间中的情况不同。
Modulation spaces were introduced by Feitchinger in 1980 and then were also redefined by Wang [44] using isometric decompositions. The two different definitions allow to look at the problem in two different manners. As a result, in [45], a beautiful use of interpolation theory on modulation spaces allows to combine the estimates obtained by means of the classical definition in [1, 2] and the isometric definition in [44, 45], to obtain more general fixed time estimates in this framework. In order to control the growth of singularity at , we usually have the restriction ; cf. [5, 26]. By using the isometric decomposition in the frequency space, as in [44, 45], one can remove the singularity at and preserve the decay at in certain modulation spaces. 调制空间是由 Feitchinger 于 1980 年引入的,然后也被 Wang [44]使用等距分解重新定义。这两种不同的定义允许以两种不同的方式看待这个问题。因此,在[45]中,对调制空间的插值理论的精彩运用使得可以结合通过经典定义[1, 2]和等距定义[44, 45]获得的估计,以在这个框架中获得更一般的固定时间估计。为了控制 处奇异性的增长,通常我们有限制 ;参见[5, 26]。通过在频率空间中使用等距分解,如在[44, 45]中,可以消除 处的奇异性并在某些调制空间中保持 处的衰减。
The Strichartz estimates can be applied, e.g., to the well-posedness of non-linear Schrödinger equations or of linear Schrödinger equations with time-dependent potentials. We shall show examples in the last Section 5. Strichartz 估计可以应用于非线性薛定谔方程或具有时间相关势能的线性薛定谔方程的适定性,我们将在最后的第 5 节中展示示例。
Notation. We define , for , where is the inner product on . The space of smooth functions with compact support is denoted by , the Schwartz class by , the space of tempered distributions by . The Fourier transform is normalized to be . Translation and modulation operators (time and frequency shifts) are defined, respectively, by 符号。我们定义 ,对于 ,其中 是 上的内积。具有紧支撑的光滑函数空间表示为 ,Schwartz 类表示为 ,调和分布空间表示为 。傅里叶变换被归一化为 。翻译和调制算子(时间和频率移位)分别定义为
We have the formulas , and . The notation means for a suitable constant , whereas means , for some . The symbol denotes the continuous embedding of the linear space into . 我们有公式 ,和 。符号 表示适当常数 ,而 表示 ,对于一些 。符号 表示线性空间 连续嵌入到 中。
2 Function Spaces and Preliminaries 2 功能空间和初步准备
In this section we present the function/distribution spaces we work with, and the properties used in our study. 在本节中,我们介绍我们所使用的函数/分布空间以及在研究中使用的属性。
2.1 Lorentz spaces
([34,35]). We recall that the Lorentz space on is defined as the space of tempered distributions such that ([34,35]). 我们回顾洛伦兹空间 在 上定义为调和分布空间 ,使得
when , and
when . Here, as usual, denotes the distribution function of and . 当 。在这里,如往常一样, 表示 和 的分布函数。
One has if , and . Moreover, for and , is a normed space and its norm is equivalent to the above quasi-norm . 如果 ,并且 ,则 。此外,对于 和 , 是一个赋范空间,其范数 等价于上述准范数 。
The function lives in but observe that this function doesn't live in any . We now recall the following classical Hardy-Littlewood-Sobolev fractional integration theorem (see e.g. [33, Theorem 1, pag 119] and [34]), which will be used in the sequel 函数 存在于 ,但请注意,该函数不存在于任何 。我们现在回顾以下经典的 Hardy-Littlewood-Sobolev 分数积分定理(见例如[33,定理 1,第 119 页]和[34]),这将在接下来的部分中使用。
Proposition 2.1. Let and such that
Then the following estimate
holds for all . 对于所有 。
Potential and Sobolev spaces. For , we define the Fourier multipliers , and . Then, for , the potential space [4] is defined by 潜在和 Sobolev 空间。对于 ,我们定义傅立叶乘子 和 。然后,对于 ,势空间[4]由以下定义:
with norm . The homogeneous potential space [4] is defined by 使用规范 。同质势空间[4]由以下定义:
with norm . 使用规范 。
For the previous spaces are called Sobolev spaces and homogeneous Sobolev spaces , respectively. 对于 ,先前的空间分别称为 Sobolev 空间 和齐次 Sobolev 空间 。
2.2 Wiener amalgam spaces
( . Let be a test function that satisfies . We will refer to as a window function. For , recall the spaces, defined by ( . 令 是一个满足 的测试函数。我们将 称为窗口函数。对于 ,回想一下 空间,定义为
they are Banach spaces equipped with the norm 它们是配备有范数的巴拿赫空间
In the same way, for , the Banach spaces are defined by 以同样的方式,对于 ,Banach 空间 是由定义的
equipped with the norm 配备标准
Let one of the following Banach spaces: , valued in a Banach space, or also spaces obtained from these by real or complex interpolation. Let be the space, , scalar-valued. For any given function which is locally in (i.e. ), we set . 让 是以下巴拿赫空间之一: ,取值于巴拿赫空间,或者通过实数或复数插值得到的空间。让 是 空间, ,标量值。对于任何给定的局部在 (即 )的函数 ,我们设定 。
The Wiener amalgam space with local component and global component is defined as the space of all functions locally in such that . Endowed with the norm is a Banach space. Moreover, different choices of generate the same space and yield equivalent norms. 韦纳混合空间 ,具有局部分量 和全局分量 ,被定义为所有在 局部的函数 的空间,使得 。赋予范数 ,是一个 Banach 空间。此外,不同选择的 会生成相同的空间并产生等价的范数。
If (the Fourier algebra), the space of admissible windows for the Wiener amalgam spaces can be enlarged to the so-called Feichtinger algebra . Recall that the Schwartz class is dense in . 如果 (傅立叶代数),则威纳混合空间 的可接受窗口空间可以扩展到所谓的费希廷格代数 。回想一下,施瓦茨类 在 中是稠密的。
We use the following definition of mixed Wiener amalgam norms. Given a measurable function of the two variables we set 我们使用混合维纳拼接范数的以下定义。给定两个变量 的可测函数 ,我们设置
Observe that [6]
The following properties of Wiener amalgam spaces will be frequently used in the sequel. 威纳拼接空间的以下性质将在接下来的部分中经常使用。
Lemma 2.1. Let , be Banach spaces such that are well defined. Then, 引理 2.1. 设 ,是 Banach 空间,使得 被很好地定义。那么,
(i) Convolution. If and , we have (i) 卷积。如果 和 ,我们有
In particular, for every , we have 特别是,对于每一个 ,我们有
(ii) Inclusions. If and , (ii) 包含物。如果 和 ,
Moreover, the inclusion of into need only hold "locally" and the inclusion of into "globally". In particular, for , we have 此外,将 包含到 中只需要在“局部”保持,将 包含到 中需要在“全局”保持。特别是对于 ,我们有
(iii) Complex interpolation. For , we have (iii) 复杂插值。对于 ,我们有
if or has absolutely continuous norm. 如果 或 具有绝对连续范数。
(iv) Duality. If are the topological dual spaces of the Banach spaces respectively, and the space of test functions is dense in both and , then (iv) 对偶性。如果 分别是 Banach 空间 的拓扑对偶空间,并且测试函数空间 在 和 中都是稠密的,则
The proof of all these results can be found in ([12, 14, 15, 22]). 所有这些结果的证明可以在([12, 14, 15, 22])中找到。
Finally, let us recall the following lemma [8, Lemma 6.1], that will be used in the last Section 5 . 最后,让我们回顾以下引理[8,引理 6.1],它将在最后的第 5 节中使用。
Lemma 2.2. Let . If
then
with norm inequality . 带有规范不等式 。
2.3 Modulation spaces
([13, 21]). Let be a non-zero window function and consider the so-called short-time Fourier transform (STFT) of a function/tempered distribution with respect to the the window : ([13, 21]). 让 是一个非零窗口函数,并考虑所谓的短时傅立叶变换(STFT) 与窗口 相关的函数/调和分布 :
i.e., the Fourier transform applied to .
For , we consider the weight function . If , the modulation space is defined as the closure of the Schwartz class with respect to the norm 对于 ,我们考虑权函数 。如果 ,则调制空间 被定义为相对于范数的 Schwartz 类的闭包
(with obvious modifications when or ). (在 或 时明显修改)。
Among the properties of modulation spaces, we record that they are Banach spaces whose definition is independent of the choice of the window , whenever . 调制空间的性质之一是它们是 Banach 空间,其定义与窗口的选择无关,无论何时。
Another definition of these spaces uses the unite-cube decomposition of the frequency space, we address interested readers to [44]. 这些空间的另一个定义使用频率空间的联合立方体分解,我们建议感兴趣的读者参考[44]。
Finally we recall the behaviour of modulation spaces with respect to complex interpolation (see , Corollary 2.3]). 最后,我们回顾了调制空间相对于复插值的行为(见 ,推论 2.3])。
Proposition 2.2. Let , with . If is a linear operator such that, for , 命题 2.2. 设 ,具有 。如果 是一个线性算子,使得对于 ,
then
where and is independent of . 其中 和 与 无关。
We observe that definition and properties of modulation spaces refer to the case . For the quasi-Banach case see, e.g., . 我们观察到调制空间的定义和性质是指情况 。对于拟 Banach 情况 ,请参见,例如, 。
method
[19, 20] The method is an abstract tool of Harmonic Analysis, discovered by Tomas in 1975. This method allows to know the continuity of a linear operator (and thus of its adjoint ), simply by the boundedness of the composition operator . [19, 20] 方法是 Harmonic Analysis 的一个抽象工具,由 Tomas 于 1975 年发现。这种方法允许通过组合算子 的有界性来了解线性算子 (以及其伴随算子 )的连续性。
For any vector space , we denote by its algebraic dual, by the space of linear maps from to some other vector space , and by the pairing between and , taken to be linear in and antilinear in . 对于任何向量空间 ,我们用 表示其代数对偶,用 表示从 到其他某个向量空间 的线性映射空间,并用 表示 和 之间的配对,其中在 中是线性的,在 中是反线性的。
Lemma 2.3. Let be a Hilbert space, a Banach space, the dual of , and a vector space densely contained in . Let and be its adjoint, defined by 引理 2.3. 设 是 Hilbert 空间, 是 Banach 空间, 是 的对偶空间, 是密集包含在 中的向量空间。设 和 是其伴随算子,定义为
where , (antilinear in the first argument). Then the following three conditions are equivalent. 在 , (第一个参数是反线性)。然后以下三个条件是等价的。
(1) There exists such that for all 存在 ,使得对于所有
(2) Let . Then can be extended to a continuous linear functional on , and there exists , such that for all (2) 设 。那么 可以延拓为 上的连续线性泛函,并且存在 ,使得对于所有 。
(3) Let . Then can be extended to a continuous linear functional on , and there exists , such that for all , (3) 设 。那么 可以延拓为 上的连续线性泛函,并且存在 ,使得对所有 ,
The constant a is the same in all the three cases. If one of (all) those conditions is (are) satisfied, the operators and extend by continuity to bounded operators from to and from to , respectively. 常数 a 在所有三种情况下都是相同的。 如果其中一个(全部)条件得到满足,运算符 和 将通过连续性扩展为从 到 和从 到 的有界运算符。
Proof. From the fact that is densely contained in , it follows that is a subspace of . (1) (2). Let . Then, for all 证明。由于 被密集地包含在 中,可以得出 是 的子空间。(1) (2)。设 。那么,对于所有
(2) (1). Let . Then, for all (2) (1). 让 . 那么,对于所有
Clearly (1) and (2) imply (3), and therefore (1) or (2) implies (3). (3) . Let . Then 显然(1)和(2)暗示(3),因此(1)或(2)暗示(3)。(3) 。让 。然后
Since is a dense subspace of , we see that can be extended to a bounded linear functional from to . 由于 是 的稠密子空间,我们可以看到 可以被扩展为从 到 的有界线性泛函。
The following corollary is extremely useful. 以下推论非常有用。
Corollary 2.3. Let and two triplets , satisfy the conditions of Lemma 2.3. Then for all choices of and for all , 推论 2.3. 设 和两个三元组 ,满足引理 2.3 的条件。那么对于所有 的选择和所有 ,
In particular, extends by continuity to a bounded operator from to , and (17) holds for all . 特别是, 连续地延伸到从 到 的有界算子,并且(17)对所有 成立。
Ginibre and Velo [19] applied Lemma 2.3 and Corollary 2.3 to the bounded operator , defined by Ginibre 和 Velo [19]将引理 2.3 和推论 2.3 应用于由有界算子 定义的。
where is an interval of (possibly itself) and a unitary strongly continuous one parameter group in . Then its adjoint is the operator 其中 是 的一个区间(可能是 本身), 是 中的一个单位强连续一参数群。那么它的伴随 是算子
from to , where the duality is defined by the scalar products in and in , such that is the bounded operator from to given by 从 到 ,其中二元性由 和 中的标量积定义,使得 是由 到 的有界算子
Clearly the conditions of Lemma 2.3 are satisfied with , the operator defined in (18), the constant , and any dense subspace of . 显然引理 2.3 的条件满足 ,在(18)中定义的算子 ,常数 ,以及 的任意稠密子空间 。
Let us introduce the retarded operator , defined by 让我们介绍由 定义的延迟算子
where .
We recall that a space of distributions in space-time is said to be time cut-off stable if the multiplication by the characteristic function , of an interval in time, is a bounded operator in with norm uniformly bounded with respect to . The spaces under our consideration are of the type , where is a space of distribution in the space variable and for which that property obviously holds. 我们回顾一下,如果空间 中的分布在时空中被称为时间截断稳定,那么乘以特征函数 ,在时间间隔 内是一个有界算子,其范数相对于 是一致有界的。我们考虑的空间类型是 ,其中 是空间变量中的分布空间,显然具有该性质。
Lemma 2.4. Let an Hilbert space, let be an interval of , let be a Banach space, let be time cut-off stable, and let the conditions of Lemma 2.3 hold for the operator defined in (18). Then the operator is (strictly speaking extends to) a bounded operator from to and from to . 引理 2.4. 设 是 Hilbert 空间, 是 的一个区间, 是 Banach 空间, 是时间截断稳定的,且引理 2.3 中对于(18)中定义的算子 的条件成立。那么算子 从 到 和从 到 是有界算子(严格地说是扩展)。
Proof. We recall the proof for sake of clarity. It is enough to demonstrate the second property, from which the first one follows by duality. Let . Then, for each 证明。为了清晰起见,我们回顾一下证明。足以证明第二个性质,第一个性质由对偶性质得出。让 。然后,对于每一个
by the unitary of , the estimate (14) of Lemma 2.3, and the time cut-off stability of . 通过 的单元化,引理 2.3 的估计(14),以及 的时间截止稳定性。
3 Fixed Time Estimates
In this section we study estimates for the solution to the Cauchy problem (1), for fixed . Since multiplication on the Fourier transform side intertwines with convolution on the space side, formula (2) can be rewritten as 在这一部分,我们研究了对于固定 的柯西问题(1)的解 的估计。由于傅里叶变换侧的乘法与空间侧的卷积相互作用,公式(2)可以重写为
where is the inverse Fourier transform of the multiplier , given by 其中 是由乘法器 的傅立叶逆变换给出
First, we establish the estimates for Lebesgue spaces. Since is a unitary operator, we obtain the conservation law 首先,我们建立勒贝格空间的估计。由于 是一个幺正算子,我们得到 守恒定律。
Furthermore, since with , applying Young inequality to the fundamental solution (19) we obtain the dispersive estimate 此外,由于 与 ,将年轻不等式应用于基本解(19),我们得到 色散估计
This shows that if the initial data has a suitable integrability in space, then the evolution will have a power-type decay in time. Using the Riesz-Thorin theorem (see, e.g., [35]), we can interpolate (21) and (22) to obtain the important fixed time estimates 这表明,如果初始数据 在空间上具有适当的可积性,那么演化将在时间上呈现幂次衰减。利用 Riesz-Thorin 定理(见,例如,[35]),我们可以插值(21)和(22)以获得重要的 固定时间估计。
for all , with . These estimates represent the complete range of to fixed time estimates available. In this setting, the necessary conditions are usually obtained by scaling conditions (see, for example, [39, Exercise 2.35], and [29] for the interpretation in terms of Gaussian curvature of the characteristic manifold). The following proposition ([50, page 45]) is an example of this technique in the case . 对于所有 ,使用 。这些估计代表了可用的 到 固定时间估计的完整范围。在这种情况下,通常通过缩放条件获得必要条件(例如,参见[39,练习 2.35],以及[29]关于特征流形的高斯曲率解释)。以下命题([50,第 45 页])是这种技术在 情况下的一个例子。
Proposition 3.1. Let and such that
for all and some independent of and . Then (and thus ). 对于所有 和一些 独立于 和 。那么 (因此 )。
Proof. We can rescale the initial data by a factor and use (24) for 证明。我们可以通过因子 重新调整初始数据 ,并使用(24)进行
The corresponding solution with as initial data is , where . Therefore, by (24) and the scaling property 以 为初始数据的相应解是 ,其中 。因此,通过(24)和缩放性质
one has
for all and . Choosing , we obtain 对于所有 和 。选择 ,我们得到
for all and . Since and are two positive constants, we have 对于所有 和 。由于 和 是两个正常数,我们有
and then we obtain the necessary condition for . Moreover, since is invariant under translation, by [23, Theorem 1.1] we obtain , i.e., . By standard density argument we attain the desired result. 然后我们得到 的必要条件。此外,由于 在平移下不变,根据[23,定理 1.1],我们得到 ,即 。通过标准密度论证,我们得到了所需的结果。
For , consider the Fourier multiplier , defined by . Then, from (23) and the commutativity property of Fourier multipliers, one immediately obtains the fixed time estimates 对于 ,考虑由 定义的傅里叶乘子 。然后,根据(23)和傅里叶乘子的可交换性质,可以立即得到 固定时间估计。
for all . Finally, we note that the conservation law (21) can be rephrased in this setting as the conservation law 对于所有 。最后,我们注意到守恒定律(21)可以在这种情况下重新表述为 守恒定律
The Schrödinger propagator does not preserve any norm other than the norm. 薛定谔传播子除了 范数之外不保持任何 范数。
Now, we focus on Wiener amalgam spaces. in (20) lives in , see [1, 6, 44]. This is the finest Wiener amalgam space-norm for which, consequently, gives the worst behavior in the time variable. It is also possible to improve the latter, at the expense of a rougher -norm, see [8]. Indeed, since with norm (see [8, Corollary 3.1]) 现在,我们关注维纳混合空间。 在(20)中存在于 ,参见[1, 6, 44]。这是 的最佳维纳混合空间范数,因此在时间变量中表现最差。也可以通过牺牲更粗糙的 -范数来改善后者,参见[8]。实际上,由于 的范数(见[8,推论 3.1])
from the fundamental solution (19) and the convolution relations for Wiener amalgam spaces in Lemma 2.1(i), it turns out, for , the dispersive estimates 从基本解(19)和引理 2.1(i)中维纳合成空间的卷积关系来看,对于 , 色散估计。
As well as for Lebesgue spaces, we can use complex interpolation between the dispersive estimates (28) and the conservation law ( ) to obtain the following fixed time estimates, that combine [6, Theorem 3.5] and [8, Theorem 3.3]. 除了勒贝格空间外,我们还可以在色散估计(28)和 守恒定律( )之间使用复插值来获得以下 固定时间估计,结合了[6,定理 3.5]和[8,定理 3.3]。
Theorem 3.2. For such that 定理 3.2. 对于 ,使得
we have
In particular, for , 特别是对于 ,
and, for , 对于 ,
Proof. Let us sketch the proof for the sake of readers. Estimate (29) follow by complex interpolation between estimate (28), which corresponds to , and (21), which corresponds to . 证明。让我们为了读者的利益勾勒出证明。估计(29)通过估计(28)之间的复合插值得出,该估计对应于 ,以及对应于 的(21)。
Indeed, . Using Lemma 2.1(iii), with (observe that ), and , so that relation (29) holds, we obtain 的确, 。利用引理 2.1(iii),带有 (注意到 ),和 ,使得关系(29)成立,我们得到
and
This yields the desired estimate (29). 这产生了所需的估计(29)。
Let us compare the previous results with the classical estimates. For , , and the inclusion relations for Wiener amalgam spaces (Lemma 2.1 (ii)) yield and . Thereby the estimate (31) is an improvement of (23) for every fixed time , and also uniformly for . Moreover, in [8] Cordero and Nicola proved that the range in (31) is sharp, and the same for the decay at infinity and the bound , when . 让我们将先前的结果与经典 估计进行比较。对于 , ,以及 Wiener 拼接空间的包含关系(引理 2.1(ii))得到 和 。因此,估计(31)对于每个固定时间 都是(23)的改进,也是对于 均匀的。此外,在[8]中,Cordero 和 Nicola 证明了(31)中的范围 是尖锐的,以及无穷远处的衰减 和边界 ,当 时。
Modulation spaces are new settings inherited by time-frequency analysis where the fixed time estimates recently have been studied, see [1, 2, 44, 45]. Here, instead of using the representation of the solution in (19), the solution is written in the form of Fourier multiplier as in (2), see [1, 2]. Indeed, a sufficient condition for the boundedness of a Fourier multiplier on modulation spaces is that its symbol is in ([1, Lemma 8]). Moreover, the Schrödinger symbol lives in and its norm is 调制空间是由时间频率分析继承的新设置,最近已经研究了固定时间估计,参见[1, 2, 44, 45]。在这里,与其在(19)中使用解 的表示,解以傅里叶乘子 的形式写成,参见(2),参见[1, 2]。事实上,傅里叶乘子在调制空间上有界的一个充分条件是其符号在 中([1, 引理 8])。此外,薛定谔符号 存在于 中,其范数为
where . Then, by [2, Lemma 2] (also for [1, Corollary 18]) one has that extends to a bounded operator on , i.e., the fixed time estimates 在 。然后,根据[2,引理 2](也适用于 [1,推论 18]),有 扩展为 上的有界算子,即 固定时间估计
for all and . In particular, modulation space properties are preserved by the time evolution of the Schrödinger equation, in strong contrast with the case of Lebesgue spaces. Observe that (32), in the case , was also obtained using isometric decompositions in [44]. Later, Wang, Zaho, Guo in [45] obtain the following fixed time estimates 对于所有 和 。特别是,调制空间属性通过薛定谔方程的时间演化得以保留,与勒贝格空间的情况形成鲜明对比。请注意,在 的情况下,(32)也是在[44]中使用等距分解获得的。后来,Wang,Zaho,Guo 在[45]中获得了以下固定时间估计。
for all and . Comparing (23) with (32) and (33), we see that the singularity at contained in (23) has been removed in (32) and (33) and the decay rate in (33) when is the same one as in (23). The estimate (33) also indicates that is 对于所有 和 。将(23)与(32)和(33)进行比较,我们看到(23)中包含的奇点在(32)和(33)中已被移除,当 时(33)中的衰减速率与(23)中的相同。估计(33)还表明 是
uniformly bounded on . The complex interpolation between the case in (33), and in (32) yields 在 上一致有界。在(33)中的情况 和(32)中的情况 之间的复合插值产生
for all . However, it is still not clear whether the growth order on time in the right-hand side of (34) is optimal. 对于所有 。然而,目前尚不清楚(34)式右侧的时间增长顺序是否是最优的。
4 Strichartz Estimates
In many applications, especially in the study of well-posedness of PDE's, it is useful to have estimates for the solution both in time and space variables. In this direction, the main result is represented by the Strichartz estimates. First, let us introduce the following definitions. 在许多应用中,特别是在研究 PDE 的良定性时,有时需要对解在时间和空间变量中进行估计。在这方面,主要结果由 Strichartz 估计表示。首先,让我们介绍以下定义。
Definition 4.1. Following [26], we say that the exponent pair ( ) is Schrödinger-admissible if and 定义 4.1. 根据 [26],我们说指数对 ( ) 是薛定谔可接受的,如果 。
Definition 4.2. Following [18], we say that the exponent pair ( ) is Schrödinger-acceptable if 定义 4.2. 根据[18],我们说指数对( )是薛定谔可接受的。
The original version of Strichartz estimates in spaces, closely related to restriction problem of Fourier transform to surfaces, was elaborated by Robert Strichartz [36] in 1977(who, in turn, had precursors in [31, 41]). In 1995 a brilliant idea of Ginibre and Velo [20] was the use of the Method (Lemma 2.3) to detach the couple ( ) from ( ) (see also [49]). The study of the endpoint case is treated in [26], where Keel and Tao prove the estimate also for the endpoint when (for , the endpoint is and the estimate is false). We shall give a standard proof of the Stichartz estimates in the nonendpoint cases [10, 50] (see also [39] where the following theorem is proved using an abstract lemma, the Christ-Kiselev Lemma, which is very useful in establishing retarded Strichartz estimates). Strichartz 估计的原始版本在 空间中,与傅立叶变换到曲面的限制问题密切相关,由 Robert Strichartz [36]在 1977 年详细阐述(其前身为[31, 41])。1995 年,Ginibre 和 Velo [20]的一个杰出想法是使用 方法(引理 2.3)将( )与( )分离开(另见[49])。端点情况 的研究在[26]中进行,Keel 和 Tao 证明了当 时的端点估计(对于 ,端点是 ,估计是错误的)。我们将给出非端点情况下 Stichartz 估计的标准证明[10, 50](另见[39],其中使用一个抽象引理,即 Christ-Kiselev 引理,证明了以下定理,该定理在建立迟滞 Strichartz 估计中非常有用)。
Theorem 4.3. For any Schrödinger-admissible couples and ( one has the homogeneous Strichartz estimates 定理 4.3. 对于任意 Schrödinger 可允许的偶 和 ,都有齐次 Strichartz 估计。
the dual homogeneous Strichartz estimates
and the inhomogenous (retarded) Strichartz estimates
Proof. We shall only prove this theorem in the non-endpoint case, when , addressing the interested reader to [26] for the whole study. We use the method as follows. Let be Schrödinger admissible and consider the linear operator , defined as 证明。我们将仅在非端点情况下证明这个定理,当 ,将感兴趣的读者引向[26]进行全面研究。我们使用 方法如下。设 是 Schrödinger 可接受的,并考虑线性算子 ,定义为
Its adjoint is the Schrödinger propagator (2)
Applying Minkowski's inequality, the fixed time estimate (23) and (6), we obtain the diagonal untruncated estimates 应用明可夫斯基不等式,固定时间估计(23)和(6),我们得到对角线未截断的估计
whenever are such that , and for any Schwartz function ). Then, using Lemma 2.3, one obtains the homogeneous Strichartz estimates (35) and the corresponding dual homogeneous Strichartz estimates (36). Corollary 2.3 applied to the previous two estimates yields the non-diagonal untruncate estimates:
By untruncated diagonal estimates one obtains the diagonal ones for the truncated operator, noting that 通过未截断的对角估计,可以得到截断算子的对角元,注意到
Moreover, using Lemma 2.4, with and the truncated operator , one obtains 此外,使用引理 2.4,与 和截断算子 ,可以得到
for all admissible pairs ( ). Then, by complex interpolation between this estimate and the diagonal truncated ones above one gets the non-diagonal truncate estimates (37), for any couple Schrödinger admissible. 对于所有可接受的配对( )。然后,通过在这个估计值和对角线截断值之间进行复杂插值,可以得到非对角线截断估计值(37),对于任何一对 薛定谔可接受。
The estimates are known to fail at the endpoint , see [28], where Smith constructed a counterexample using the Brownian motion, although the homogeneous estimates can be saved assuming spherical symmetry [27, 32, 38]. The exponents in the homogeneous estimates are optimal ([39, Exercise 2.42]); some additional estimates are instead available in the inhomogeneous case (see, for example, [30]). Indeed, Kato [25] proved that inhomogeneous estimates (37) hold true when the pairs ( ) and ( ) are Schrödinger acceptable and satisfy the scaling condition in the range . Afterwards, for , Foschi [18] improved this result by looking for the optimal range of Lebesgue exponents for which inhomogeneous Strichartz estimates hold (results almost equivalent have recently obtained by Vilela [43]). Actually, this range is larger than the one given by admissible exponents for homogeneous estimates, as was shown by the following result [18, Proposition 24]. 估计在端点 处已知会失败,参见[28],Smith 利用布朗运动构造了一个反例,尽管假定具有球对称性可以拯救均匀估计[27, 32, 38]。均匀估计中的指数是最优的([39, 练习 2.42]);在不均匀情况下可能有一些额外的估计可用(例如,参见[30])。事实上,Kato [25]证明了当对( )和( )是薛定谔可接受的,并且满足范围 中的缩放条件 时,不均匀估计(37)成立。随后,对于 ,Foschi [18]通过寻找不均匀 Strichartz 估计成立的勒贝格指数的最佳范围改进了这一结果(最近 Vilela [43]也获得了几乎等效的结果)。实际上,这个范围比用于均匀估计的可接受指数更大,正如以下结果所示[18, 命题 24]。
Proposition 4.4. If is the solution to (3), with zero initial data and inhomogeneous term supported on , then we have the estimate 命题 4.4. 如果 是方程 (3) 的解,具有零初始数据和在 上支持的非齐次项 ,那么我们有估计。
whenever are Schrödinger acceptable pairs which satisfy the scaling condition 无论何时 都是满足缩放条件的薛定谔可接受对
and either the conditions 和任何条件
or the conditions
For a discussion about the sharpness of this proposition we refer to [18], where explicit counterexamples are constructed to show the necessary conditions for inhomogeneous Strichartz estimates. 关于这个命题的尖锐性讨论,我们参考[18],在那里构造了明确的反例,以显示不均匀 Strichartz 估计的必要条件。
Since the Schrödinger operator commutes with Fourier multipliers like or , it is easy to obtain Strichartz estimates for potential and Sobolev spaces. In particular, if is an interval containing the origin and is the solution to the inhomogeneous Schrödinger equation with initial data , given by the Duhamel formula (4), then, applying to both sides of the equation and using the estimate of Theorem 4.3 , one obtains 由于 Schrödinger 算子 与 Fourier 乘子如 或 对易,因此很容易获得势和 Sobolev 空间的 Strichartz 估计。特别是,如果 是包含原点的区间, 是初始数据为 的非齐次 Schrödinger 方程的解,由 Duhamel 公式(4)给出,那么,将 应用于方程的两侧,并利用定理 4.3 的估计,就可以得到
for all Schrödinger admissible couples ( ) and ( ). In particular, if one considers the homogeneous case (i.e. ), the Sobolev embedding and , yields the Stichartz estimates 对于所有 Schrödinger 可接受的对偶( )和( )。特别是,如果考虑齐次情况(即 ),Sobolev 嵌入 和 ,得到 Stichartz 估计。
Since one has
hence, for any fixed value of , the new Schrödinger admissible couple ( lies on a parallel line below the corresponding case . 因此,对于任意固定值 ,新的薛定谔可允许的偶对 ( 位于对应情况 下方的平行线上。
Strichartz estimates in Wiener amalgam spaces enable us to control the local regularity and decay at infinity of the solution separately. For comparison, the classical estimates (35) can be rephrased in terms of Wiener amalgam spaces as follows: Wiener 拼接空间中的 Strichartz 估计使我们能够分别控制解的局部正则性和无穷远处的衰减。为了比较,经典估计(35)可以重新表述为 Wiener 拼接空间的形式如下:
In this framework, Cordero and Nicola perform these estimates mainly in two directions. First, in [6], for they modify the classical estimate (40) by (conveniently) moving local regularity from the time variable to the space variable. Indeed, if , but the bound in (31) is worse than the one in (23), as ; consequently one has 在这个框架中,Cordero 和 Nicola 主要沿着两个方向进行这些估计。首先,在[6]中,对于 ,他们通过(方便地)将局部正则性从时间变量移动到空间变量来修改经典估计(40)。实际上, 如果 ,但(31)中的界限比(23)中的界限更糟,因此有
for , with Schrödinger admissible. When the same estimate holds with the Lorentz space in place of . Dual homogeneous and retarded estimates hold as well. Thereby, the solution averages locally in time by the norm, which is rougher than the norm in (35) or, equivalently, in (40), but it displays an behavior locally in space, which is better than . In [8] it is shown the sharpness of these Strichartz estimates, except for the threshold , which seems quite hard to obtain. Secondly, in [8], a converse approach is performed, by showing that it is possible to move local regularity in (35) from the space variable to the time variable. As a result, new estimates involving the Wiener amalgam spaces , that generalize (35), are obtained, i.e., the following [8, Theorem 1.1]. 对于 ,具有 的 Schrödinger 可接受。当 相同的估计在洛伦兹空间 取代 时仍然成立。对偶齐次和延迟估计也成立。因此,解通过 范数在时间上局部平均,这比(35)中的 范数粗糙,或者等效地,在(40)中,但它在空间上局部显示出 行为,这比 更好。在[8]中显示了这些 Strichartz 估计的尖锐性,除了阈值 ,这似乎很难获得。其次,在[8]中,通过显示可以将(35)中的局部正则性从空间变量移动到时间变量来执行一个逆向方法。因此,获得了涉及广义(35)的 Wiener 混合空间 的新估计,即以下[8,定理 1.1]。
Theorem 4.5. Let such that ,
and, if . Assume the same for . Then, we have the homogeneous Strichartz estimates
the dual homogeneous Strichartz estimates
and the retarded Strichartz estimates
This outcome is achieved by first establishing the estimates for the particular case , and then by complex interpolation with the classical ones (35). 这一结果是通过首先建立特定情况 的估计值,然后与经典方法(35)进行复杂插值来实现的。
Figure 1 illustrates the range of exponents for the homogeneous estimates when 3. Notice that, if , these estimates follow immediately from (40) and the inclusion relations of Wiener amalgam spaces. So, the issue consists in the cases . Since there are no relations between the pairs and other than , these estimates tell us, in a sense, that the analysis of the local regularity of the Schrödinger propagator is quite independent of its decay at infinity. 图 1 显示了当 3 时均匀估计的指数范围。请注意,如果 ,这些估计立即来自(40)和维纳混合空间的包含关系。因此,问题在于情况 。由于除 之外,这些估计告诉我们,在某种意义上,薛定谔传播子的局部正则性分析与其在无穷远处的衰减是相互独立的 和 之间没有关系。
Figure 1: When , (44) holds for all pairs , with . 图 1:当 时,对于所有的 对,式(44)成立,其中 。
In [8] it is proved that, for , all the constraints on the range of exponents in Theorem 4.5 are necessary, except for , which is still left open. However, the following weaker result holds [8, Proposition 5.3]: 在[8]中证明,对于 ,定理 4.5 中对指数范围的所有约束都是必要的,除了 ,仍然是开放的。然而,以下更弱的结果成立[8,命题 5.3]:
Assume and . Then the propagator does not map continuously into . 假设 和 。那么传播子 不会将 连续地映射到 。
shows that the estimates (44) for exponents , if true, cannot be obtained from fixedtime estimates and orthogonality arguments. The arguments employed for the necessary conditions differ from the classical setting of Lebesgue spaces, because the general scaling consideration does not work directly. Indeed, the known bounds for the norm of the dilation operator