The Effect of Canopy Position on the Fruit Quality Parameters and Contents of Bioactive Compounds and Minerals in ‘Braeburn’ Apples
冠层位置对'布雷本'苹果果实品质参数和生物活性化合物和矿物质含量的影响
农业、渔业和农村发展支付机构,Ulica Grada Vukovara 269d, 10000 萨格勒布,克罗地亚
萨格勒布大学农业学院园艺与景观建筑系果树学系,克罗地亚萨格勒布 Svetošimunska cesta 25, 10000
Podravka d.d., Ante Starčevića 32, 48000 科普里夫尼察, 克罗地亚
生物技术学院食品科学与技术系,Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
Jožef Stefan Institute, Jamova 39, 1000 卢布尔雅那, 斯洛文尼亚
克罗地亚农业和林业咨询服务,Bani 110, Buzin, 10010 萨格勒布, 克罗地亚
沙阿卜杜勒拉蒂夫大学 椰枣棕榈研究所, 巴基斯坦 海尔普尔 66020
中国农业大学食品科学与营养工程学院水果生物学实验室,中国北京100083
电气工程学院, Tržaška c. 25, 1000 Ljubljana, 斯洛文尼亚
通信应收件人的作者。
农学 2023, 13(10), 2523;https://doi.org/10.3390/agronomy13102523
收到意见:2023 年 9 月 12 日 / 修订:2023 年 9 月 26 日 / 接受日期:2023 年 9 月 28 日 / 发布时间:2023 年 9 月 29 日
Abstract 抽象
本研究试图阐明冠层位置对 cv. Braeburn 苹果理化参数的影响。实验是在两个生长季节和两个收获日期对来自树冠内部和外部的果实进行的。光照测量显示,冠层内外光有效辐射 (PAR) 平均值分别为 30.3 μmol/m 2 /s 和 133.7 μmol/m 2 /s。生产年份和冠层位置显著影响地面颜色参数 a*、b*、C* 和 h°,而收获日期影响所有研究的颜色参数。对于额外的(红腮红)着色,生产年份仅显著影响 L* 参数,收获日期影响所有颜色参数,冠层位置影响 L、a* 和 C*。只有第二个收获日期的果实显示出更强烈的附加(红红)着色。生产年份显著影响果实质量、硬度、总可溶性固形物 (SSC) 、可滴定酸度 (TA)、SSC/TA 比值、DPPH 自由基清除测定 (AOP) 、总酚含量 (TPC) 和总类黄酮含量 (TFC)。收获日期显著影响果实质量、SSC、TA、SSC/TA、AOP、TPC 和 TFC。冠层位置显著影响 SSC 、 TA、 AOP 、 TPC 和 TFC。在矿物含量方面,生产年份显著影响了 Fe、Ni、Cu 和 Ca 的含量以及 K/Ca 比值。采收期对 Fe、Cu、Sr、K 和 K/Ca 有显著影响。冠层位置影响 Fe、Ni、Zn、Sr、Ca 和 K/Ca 比率,冠层位置对 Ca 含量(第二个收获日期的第一年和第二年)和 K/Ca 比率(两个收获日期的第一年)的影响呈明显的显著趋势。 PCA 分析确定了苹果之间的区分特征,其差异由 PC 1 上的 AOP、TPC、TFC、Rb、Sr、Ca 和 K/Ca 以及 PC 2 上的 Mn、Fe、Ni、Cu 和 Zn 定义。
关键词:果实品质;物理化学参数;梨果;矿物质浓度;顶篷位置
1. Introduction 1. 引言
除了所有其他环境因素外,任何植物物种(包括苹果)的果实品质都受到光的强烈影响。正如许多研究论文 [ 1, 2, 3, 4, 5, 6, 7, 8] 所报道的那样,暴露在阳光下的水果在质量上可能与阴凉的水果不同。除了光线,温度也会对一些水果的品质特征产生很大影响 [ 9]。
因此,果实在树冠中的位置对果实质量有很大影响,因为它与果实的光照和最终温度有关。这种现象已在各种水果作物中观察到。例如,Fouché等[10]发现,在平均一天中,树冠外部的苹果(cv. 'Granny Smith')暴露在54%的全阳光下,而树冠内侧的果实只接受了2%的全阳光。水果的外观提供了第一的一般印象或吸引力,并在消费者接受或拒绝中起着重要作用 [ 11]。有许多研究报告了果实在树冠中的位置对果实外观和品质属性的影响,如颜色 [ 8, 12] 和果实大小 [ 13, 14]。此外,果实在树冠中的位置也会影响可溶性固形物含量 (SSC) [ 1, 5, 8, 15] 和可滴定酸度 (TA) [ 3],这些决定了水果的味道,这是苹果消费的一个主要因素 [ 16]。几项研究报道了树冠位置对水果中不同生物活性化合物的影响,例如抗氧化活性 [ 4, 7, 8] 和多酚含量 [ 6, 7, 17, 18]。然而,很少有研究讨论果冠位置对水果中矿物质含量的影响。一些研究 [ 8, 19, 20] 报告说,果实在树冠中的位置会影响矿物质含量,但他们对某些元素的结果相反。这方面非常重要,因为水果中某些元素的含量会对水果的品质产生影响。例如,苹果果实中的缺钙通常与收获后无序苦坑有关 [ 21]。
本研究的新颖之处在于它涉及两个生产季节的两个收获日期的苹果的矿物质含量。大多数其他可用的研究主要涉及一个收获日期的水果。此外,没有关于果在树冠中的位置对 'Braeburn' 苹果果实品质参数影响的已发表研究。因此,本研究的目的是调查两个不同收获日期的果实在树冠中的位置对“Braeburn”苹果果实品质特性的影响,重点是矿物质含量。
2. Materials and Methods
2. 材料和方法
2.1. Plant Material and Experiment Set Up
2.1. 植物材料和实验设置
苹果 'Braeburn' 的果实样品于 2011 年和 2012 年从克罗地亚克拉皮纳市附近的一个商业苹果园(北纬 46°09′,东经 15°53′)收集。试验在成年树(8 年生)上进行,种植 3 m(行间)×1 m(行内)距离,并用纺锤形灌木训练系统嫁接到 M9 砧木上。标准栽培方法(施肥、灌溉、修剪等)在所有处理中均统一应用。这两年的果实都是在 10 月初在两个不同的收获日期(相隔 10 天)收获的。通过特定分析对果实成熟度的持续监测来确定收获日期。进行 3 次重复,每次 5 棵树(总共 15 棵树)。选定的苹果树在两年的产量相似。从苹果树冠层的内/内随机采摘 15 个果实,从树冠外/外侧随机采摘 15 个果实。分析工作在萨格勒布大学农业学院园艺与景观建筑系果树学系实验室进行;斯洛文尼亚卢布尔雅那大学生物技术学院食品科学与技术系和斯洛文尼亚卢布尔雅那 Jožef Stefan 研究所。天气数据来自克罗地亚气象局,距离实验果园约 500 m 的气象站。光测量由斯洛文尼亚卢布尔雅那大学电气工程学院照明和光度测量实验室进行。
2.2. Physico-Chemical Measurements
2.2. 物理化学测量
2.2.1. Fruit Mass, Firmness, and Color
2.2.1. 果实质量、硬度和颜色
使用数字分析天平(OHAUS Adventurer AX2202,Ohaus Corporation,Parsippani,NJ,USA)计算每种水果的果实质量平均值,精度为 0.01 g,以 g 表示。在每种水果上,使用比色计 (ColorTec PCM;ColorTec Associates Inc., Clinton, NJ, USA) 根据 CIE L*a*b* 和 CIE L*C*h°(Commission Internationale d'eclairage)系统。在 CIE L*a*b* 色彩空间中,L* 值对应于暗-亮刻度,表示颜色的相对亮度,范围为 0 到 100(0 = 黑色,100 = 白色)[ 22]。a* 和 b* 刻度从 -60 扩展到 60,其中 a* 为绿色为负值,红色为正值,b* 为蓝色为负值,黄色为正值 [ 22]。根据Carreño等[23],色相角(h°)和色度(C*)的计算如下:
其中 a* 和 b* - CIE L*a*b 系统中的变量。
色相角度 (h°) 描述了红光和黄光的相对量,其中 0°/360° 定义为红色/洋红色,90° 表示黄色,180° 表示绿色,270° 表示蓝色 [ 23]。C* 表示颜色强度 [ 24]。
使用 PCE PTR-200(PCE Instruments,Jupiter/Palm Beach,FL,USA)测量硬度,该柱塞装有直径为 11 mm 的柱塞,以 kg·cm −2 表示。在每个果实的四个赤道位置以 90° 进行测量。
2.2.2. Soluble Solids Content (SSC), Titratable Acidity (TA), and SSC/TA Ratio
2.2.2. 可溶性固形物含量 (SSC)、可滴定酸度 (TA) 和 SSC/TA 比率
用手持式数字折光仪(Atago,PAL-1,Tokyo,Japan)测量 SSC,并以 % 表示。用 0.1 N NaOH 滴定测定 TA,表示为 g·L −1 (苹果酸)根据 AOAC 954.07 [ 25]。SSC/TA 比率是根据每种水果的 SSC 和 TA 的相应值计算得出的。
2.2.3. DPPH Radical Scavenging Assay (AOP), Determination of Total Polyphenols (TPC), and Determination of Total Flavonoids (TFC)
2.2.3. DPPH 自由基清除试验 (AOP)、总多酚 (TPC) 的测定和总黄酮类化合物 (TFC) 的测定
将 10 克用液氮压碎的联合苹果样品用 10 mL 3% 偏磷酸萃取。将匀浆以 1700 × g 离心 5 分钟(离心机 5415c;Eppendorf,德国)和上清液通过 0.45 μm 过滤器(17 mm 醋酸纤维素注射器过滤器;Sartorius AG, Goettingen, Germany)。这些提取物用于测定总抗氧化潜力 (AOP) 、 TPC 和 TFC。
通过分光光度法测定苹果偏磷酸提取物的 AOP 为 2,2-二苯基-1-三硝基苯肼 (DPPH;德国达姆施塔特的Sigma-Aldrich)自由基清除能力,如Brand-Williams等[26]所述;然后,将 1.5 mL 560 μM DPPH 甲醇溶液与 60 μL 苹果提取物混合并涡旋混合。在室温下孵育 15 分钟后,使用分光光度计(Cecil Aurius 系列 CE 2021 UV/Vis;Cecil Instruments Limited, Cambridge, UK) 反对甲醇作为空白。通过使用 Trolox 五点标准曲线 (1.56 至 10.94 mg/L) 校准来定量 AOP。结果表示为 μmol Trolox 当量(μmol TE·100 g −1 F.W.)。
2.2.4. Determination of Elements
2.2.5. Light Measurements
2.3. Statistical Analysis
PCA Analysis
3. Results
3.1. Effect of Different Canopy Positions on Fruit Skin CIE Color Variables
3.1.1. Background Color
3.1.2. Additional (Red Blush) Color
3.2. Effect of Different Canopy Positions on Physico-Chemical Properties of ‘Braeburn’ Apples
3.3. Effect of Different Canopy Positions on Bioactive Compounds of ‘Braeburn’ Apples
3.4. Effect of Different Canopy Positions on Mineral Concentration of ‘Braeburn’ Apples
3.5. Weather Data
3.6. Light Measurements Outside and Inside of Canopy
Insolation and Total Irradiance Data
3.7. PCA Analysis and Biplot
4. Discussion
4.1. Effect of Different Canopy Positions on Fruit Skin CIE Color Variables
4.2. Effect of Different Canopy Positions on Physico-Chemical Properties of ‘Braeburn’ Apples
4.3. Effect of Different Canopy Positions on Bioactive Compounds of ‘Braeburn’ Apples
4.4. Effect of Different Canopy Positions on Mineral Concentration of ‘Braeburn’ Apples
4.5. PCA Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tustin, D.S.; Hirst, P.M.; Warrington, I.J. Influence of orientation and position of fruiting laterals on canopy light penetration, yield and fruit quality of ‘Granny Smith’ apple. J. Am. Soc. Hortic. Sci. 1988, 113, 693–699. [Google Scholar] [CrossRef]
- Lawes, G.S. The effect of shading on the chlorophyll content of “Hayward” kiwifruit. New Zeal. J. Crop Hortic. Sci. 1989, 17, 245–249. [Google Scholar] [CrossRef]
- Lewallen, K. Effects of Light Availability and Canopy Position on Peach Fruit Quality. Master’s Thesis, Faculty of the Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2000. [Google Scholar]
- Hagen, S.F.; Borge, G.I.A.; Bengtsson, G.B.; Bilger, W.; Berge, A.; Haffner, K.; Solhaug, K.A. Phenolic contents and other health and sensory related properties of apple fruit (Malus domestica Borkh., cv. Aroma): Effect of postharvest UV-B irradiation. Postharvest Biol. Technol. 2007, 45, 1–10. [Google Scholar] [CrossRef]
- Nilsson, T.; Gustavsson, K.E. Postharvest physiology of ‘Aroma’ apples in relation to position on the tree. Postharvest Biol. Technol. 2007, 43, 36–46. [Google Scholar] [CrossRef]
- Jakopic, J.; Stampar, F.; Veberic, R. The influence of exposure to light on the phenolic content of ‘Fuji’ apple. Sci. Hortic. 2009, 123, 234–239. [Google Scholar] [CrossRef]
- Drogoudi, P.D.; Pantelidis, G. Effect of position on canopy and harvest time on fruit physio-chemical and antioxidant properties in different apple cultivars. Sci. Hortic. 2011, 129, 752–760. [Google Scholar] [CrossRef]
- Hamadziripi, E.T. The Effect of Canopy Position on the Fruit Quality and Consumer Preference of Apples. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 2012. [Google Scholar]
- Hopkirk, G.; Snelgar, W.P.; Horne, S.F.; Manson, P.J. Effect of increased preharvest temperature on fruit quality of kiwifruit (Actinidia deliciosa). J. Hortic. Sci. 1989, 64, 227–237. [Google Scholar] [CrossRef]
- Fouché, J.R.; Roberts, S.C.; Midgley, S.J.E.; Steyn, W.J. Peel colour and blemishes in ‘Granny Smith’ apples in relation to canopy light environment. HortScience 2010, 45, 899–905. [Google Scholar] [CrossRef]
- Kays, S.J. Preharvest factors affecting appearance. Postharvest Biol. Technol. 1998, 15, 233–247. [Google Scholar] [CrossRef]
- Steyn, W.J.; Holcroft, D.M.; Wand, S.J.E. Red colour development and loss in pears. Acta Hortic. 2005, 671, 79–85. [Google Scholar] [CrossRef]
- Tahir, I.I.; Johansson, E.; Olsson, M.E. Improvement of quality and storability of apple cv. Aroma by adjustment of some pre-harvest conditions. Sci. Hortic. 2007, 112, 164–171. [Google Scholar] [CrossRef]
- Zabedah, M.; Yusoff, A.; Ridzwan, A.H.; Aishah, H.; Fauzi, R. Effect of fruit canopy position on microenvironment, physical, chemical development of starfruit (Averrhoa carambola) cv. B10 under protective cultivation. Acta Hortic. 2007, 761, 243–248. [Google Scholar] [CrossRef]
- Léchaudel, M.; Joas, J. An overview of pre-harvest factors influencing mango fruit growth, quality and postharvest behavior. Brazilean J. Plant Physiol. 2007, 19, 287–298. [Google Scholar] [CrossRef]
- Harker, F.R. Consumer response to apples. In Proceedings of the Washington Tree Fruit Postharvest Conference; WSU-Tfrec Postharvest Information Network, Wenatchee, WA, USA, 13–14 March 2001. [Google Scholar]
- McDonald, R.E.; Miller, W.R.; McCollum, T.G. Canopy position and heat treatments influence gamma-irradiation-induced changes in phenylpropanoid metabolism in grapefruit. J. Am. Soc. Hortic. Sci. 2000, 125, 364–369. [Google Scholar] [CrossRef]
- Takos, A.M.; Jaffe, F.W.; Jacobs, S.R.; Bogs, J.; Robinson, S.P.; Walker, A.R. Light induced expression of MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol. 2006, 142, 1216–1232. [Google Scholar] [CrossRef]
- Montanaro, G.; Dichio, B.; Xiloyannis, C.; Celano, G. Light influences transpiration and calcium accumulation in fruit of kiwifruit plants (Actinidia deliciosa var. deliciosa). Plant Sci. 2006, 170, 520–527. [Google Scholar] [CrossRef]
- Cronje, P.J.R.; Barry, G.H.; Huysamer, M. Fruiting position during development of ‘Nules Clementine’ mandarin affects the concentration of K, Mg and Ca in the flavedo. Sci. Hortic. 2011, 130, 829–837. [Google Scholar] [CrossRef]
- Jemrić, T.; Fruk, I.; Fruk, M.; Radman, S.; Sinkovič, L.; Fruk, G. Bitter pit in apples: Pre- and postharvest factors: A review. Spanish J. Agric. Res. 2016, 14, 15. [Google Scholar] [CrossRef]
- Fruk, G.; Fruk, M.; Vuković, M.; Buhin, J.; Jatoi, M.A.; Jemrić, T. Colouration of apple cv. ‘Braeburn’ grown under anti-hail nets in Croatia. Acta Hortic. Regiotect. 2016, 19, 1–4. [Google Scholar] [CrossRef]
- Carreño, J.; Martínez, A.; Almela, L.; Fernández-López, J.A. Proposal of an index for the objective evaluation of the colour of red table grapes. Food Res. Int. 1995, 28, 373–377. [Google Scholar] [CrossRef]
- Skendrović Babojelić, M.; Fruk, G. Priručnik Iz Voćarstva: Građa, Svojstva I Analize Voćnih Plodova; Hrvatska sveučilišna naklada, Sveučilište u Zagrebu Agronomski fakultet: Zagreb, Croatia, 2016; ISBN 978-953-169-318-9. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 16th ed.; 5th Rev.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 1999. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Brest, C. Use of free radical method to evaluate antioxidant activity. LWT–Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Lin, J.; Tang, C. Determination of Total Phenolic and Flavonoid Contents in Selected Fruits and Vegetables, as Well as Their Stimulatory Effects on Mouse Splenocyte Proliferation. Food Chem. 2007, 101, 140–147. [Google Scholar] [CrossRef]
- Nečemer, M.; Kump, P.; Vogel-Mikuš, K. Use of X-ray fluorescence-based analytical techniques in phytoremediation. In Handbook of Phytoremediation; Golubev, I.A., Ed.; Nova Science Publishers Inc.: New York, NY, USA, 2010; pp. 1–28. [Google Scholar]
- Kaiser, H.F. An index of factorial simplicity. Psychometrika 1974, 39, 31–36. [Google Scholar] [CrossRef]
- Croatian Meteorological and Hydrological Service. 2023. Available online: https://meteo.hr/index_en.php (accessed on 11 September 2023).
- SOLCAST a DNV Company World Solar Radiation API. Available online: https://toolkit.solcast.com.au/ (accessed on 11 September 2023).
- González-Talice, J.; Yuri, J.A.; del Pozo, A. Relations among pigments, color and phenolic concentrations in the peel of two Gala apple strains according to canopy position and light environment. Sci. Hortic. 2013, 151, 83–89. [Google Scholar] [CrossRef]
- Wagenmakers, P.S.; Callesen, O. Light distribution in apple orchard systems in relation to production and fruit quality. J. Hortic. Sci. 1995, 70, 935–948. [Google Scholar] [CrossRef]
- Corelli-Grappadelli, L.; Marini, R.P. Orchard Planting Systems. In The Peach: Botany, Production and Uses; Layne, D.R., Bassi, D., Eds.; CABI: London, UK, 2008; pp. 264–288. [Google Scholar]
- Porpiglia, P.J.; Barden, J.A. Seasonal Trends in Net Photosynthetic Potential, Dark Respiration, and Specific Leaf Weight of Apple Leaves as Affected by Canopy Position. J. Am. Soc. Hortic. Sci. 1980, 105, 920–923. [Google Scholar] [CrossRef]
- Marini, R.P.; Barden, J.A. Growth and Flowering of Vigorous Apple Trees as Affected by Summer or Dormant Pruning. J. Am. Soc. Hortic. Sci. 1982, 107, 34–39. [Google Scholar] [CrossRef]
- Kviklys, D.; Viškelis, J.; Liaudanskas, M.; Janulis, V.; Laužikė, K.; Samuolienė, G.; Uselis, N.; Lanauskas, J. Apple Fruit Growth and Quality Depend on the Position in Tree Canopy. Plants 2022, 11, 196. [Google Scholar] [CrossRef]
- Lin, L.; Niu, Z.; Jiang, C.; Yu, L.; Wang, H.; Qiao, M. Influences of Open-Central Canopy on Photosynthetic Parameters and Fruit Quality of Apples (Malus × Domestica) in the Loess Plateau of China. Hortic. Plant J. 2022, 8, 133–142. [Google Scholar] [CrossRef]
- Kokalj, D.E.; Zlatić, B.; Cigić, B.; Kobav, M.B.; Vidrih, R. Postharvest Flavonol and Anthocyanin Accumulation in Three Apple Cultivars in Response to Blue-Light-Emitting Diode Light. Sci. Hortic. 2019, 257, 108711. [Google Scholar] [CrossRef]
- Weber, S.; Damerow, L.; Kunz, A.; Blanke, M. Anthocyanin Synthesis and Light Utilisation Can Be Enhanced by Reflective Mulch—Visualisation of Light Penetration into a Tree Canopy. J. Plant Physiol. 2019, 233, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Jackson, J.E. World-Wide Development of High Density Planting in Research and Practice. Acta Hortic. 1989, 243, 17–27. [Google Scholar] [CrossRef]
- Biasi, R.; Costa, G.; Manson, P.J. Light Influence on Kiwifruit (Actinidia deliciosa) Quality. Acta Hortic. 1997, 379, 245–252. [Google Scholar] [CrossRef]
- Blanpied, G.D.; Bramlage, W.J.; Dewey, D.H.; LaBelle, R.L.; Massey, L.M.; Mattus, G.E.; Stiles, W.C.; Watada, A.E. A Standardized Method for Collecting Apple Pressure Test Data. N. Y. Food Life Sci. Bull. 1978, 74, 1–6. [Google Scholar]
- Ramos, E.; Weinbaum, A.; Shackel, K.A.; Schwankl, L.J.; Mitcham, E.J.; Mitchell, F.G.; Snyder, R.G.; Mayer, G.; McGourty, G. Influence of Tree Water Status and Canopy Position on Fruit Size and Quality of ‘Bartlett’ Pears. Acta Hortic. 1994, 367, 192–200. [Google Scholar] [CrossRef]
- Laubscher, N.J. Pre- and Post Harvest Factors Influencing the Eating Quality of Selected Nectarine (Prunus persica ( L.) Batsch) Cultivars. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 2006. [Google Scholar]
- Cronje, A. Effect of Canopy Position on Fruit Quality and Consumer Preference for the Appearance and Taste of Pears. Master’s Thesis, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa, 2014. [Google Scholar]
- Lambers, H.; Chapin, F.S.; Pons, T.L. Plant Physiological Ecology; Springer: New York, NY, USA, 1998; ISBN 978-1-4757-2857-6. [Google Scholar]
- Solomakhin, A.; Blanke, M.M. Can Coloured Hailnets Improve Taste (Sugar, Sugar: Acid Ratio), Consumer Appeal (Colouration) and Nutritional Value (Anthocyanin, Vitamin C) of Apple Fruit? LWT—Food Sci. Technol. 2010, 43, 1277–1284. [Google Scholar] [CrossRef]
- Murray, X.J.; Holcroft, D.M.; Cook, N.C.; Wand, S.J.E. Postharvest Quality of ‘Laetitia’ and ‘Songold’ (Prunus Salicina Lindell) Plums as Affected by Preharvest Shading Treatments. Postharvest Biol. Technol. 2005, 37, 81–92. [Google Scholar] [CrossRef]
- Marini, R.P.; Sowers, D.; Marini, M.C. Peach Fruit Quality Is Affected by Shade during Final Swell of Fruit Growth. J. Am. Soc. Hortic. Sci. 1991, 116, 383–389. [Google Scholar] [CrossRef]
- Lewallen, K.S.; Marini, R.P. Relationship between Flesh Firmness and Ground Colour in Peaches as Influenced by Light and Canopy Position. J. Am. Soc. Hortic. Sci. 2003, 128, 163–170. [Google Scholar] [CrossRef]
- Gullo, G.; Motisi, A.; Zappia, R.; Dattola, A.; Diamanti, J.; Mezzetti, B. Rootstock and Fruit Canopy Position Affect Peach [Prunus persica (L.) Batsch] (Cv. Rich May) Plant Productivity and Fruit Sensorial and Nutritional Quality. Food Chem. 2014, 153, 234–242. [Google Scholar] [CrossRef]
- Smith, G.S.; Gravett, I.M.; Edwards, C.M.; Curtis, J.; Buwalda, J.G. Spatial Analysis of the Canopy of Kiwifruit Vines as It Relates to the Physical, Chemical and Postharvest Attributes of the Fruit. Ann. Bot. 1994, 73, 99–111. [Google Scholar] [CrossRef]
- Pyke, N.; Hopkirk, O.; Alspach, P.A.; Cooper, K.M. Variation in Harvest and Storage Quality of Fruit from Different Positions on Kiwifruits Vines. New Zeal. J. Crop Hortic. Sci. 1996, 24, 39–46. [Google Scholar] [CrossRef]
- Izumi, H.; Ito, T.; Yoshida, Y. Changes in the Fruit Quality of ‘Satsuma’ Mandarin during Storage after Harvest Form Exterior and Interior Canopy of Trees. J. Japanese Soc. Hortic. Sci. 1990, 15, 51–58. [Google Scholar]
- Agabbio, M.; D’hallewin, G.; Mura, M.; Schirra, M.; Lovicu, G.; Pala, M. Fruit Canopy Position Effects on Quality and Storage Response of ‘Tarocco’ Oranges. Acta Hortic. 1999, 485, 19–23. [Google Scholar] [CrossRef]
- Syvertsen, J.P.; Albrigo, L.G. Some Effects of Grapefruit Tree Canopy Position on Microclimate, Water Relationship, Fruit Yield and Juice Quality. J. Am. Soc. Hortic. Sci. 1980, 105, 454–459. [Google Scholar] [CrossRef]
- Fallahi, E.; Moon, J.W., Jr. Fruit Quality and Mineral Nutrient from Exposed Verses Internal Canopy Positions of Four Citrus Varieties. J. Plant Nutr. 1989, 12, 523–534. [Google Scholar] [CrossRef]
- Kader, A.A. Fruit Maturity, Ripening, and Quality Relationships. Acta Hortic. 1999, 485, 203–208. [Google Scholar] [CrossRef]
- Krishnaprakash, M.S.; Aravindaprasad, B.; Krishnaprasad, C.A.; Narasimham, P.; Ananthakrishna, S.M.; Dhanaraj, S.; Govindarajan, V.S. Effect of Apple Position on Tree Maturity and Quality. J. Hortic. Sci. 1983, 58, 31–36. [Google Scholar] [CrossRef]
- Basile, B.; Giaccone, M.; Cirillo, C.; Ritieni, A.; Graziani, G.; Shahak, Y.; Forlani, M. Photo-Selective Hail Nets Affect Fruit Size and Quality in Hayward Kiwifruit. Sci. Hortic. 2012, 141, 91–97. [Google Scholar] [CrossRef]
- Vuković, M.; Jurić, S.; Vinceković, M.; Levaj, B.; Fruk, G.; Jemrić, T. Effect of Yellow and Stop Drosophila Normal Anti-Insect Photoselective Nets on Vegetative, Generative and Bioactive Traits of Peach (Cv. Suncrest). J. Agric. Sci.—Tarım Bilim. Derg. 2023, 29, 111–121. [Google Scholar] [CrossRef]
- Awad, M.A.; Wagenmakers, P.S.; Jager, A.D. Effects of Light on Flavonoid and Chlorogenic Acid Levels in the Skin of ‘Jonagold’ Apples. Sci. Hortic. 2001, 88, 289–298. [Google Scholar] [CrossRef]
- Awad, M.A.; de Jager, A.; van Westing, L.M. Flavonoid and Chlorogenic Acid Levels in Apple Fruit: Characterisation of Variation. Sci. Hortic. 2000, 83, 249–263. [Google Scholar] [CrossRef]
- Jemrić, T.; Brkljača, M.; Vinceković, M.; Antolković, A.M.; Mikec, D.; Vuković, M. Generative and Vegetative Traits of the ‘Granny Smith’ Apple Grown under an Anti-Insect Photoselective Red Net. Poljoprivreda 2021, 27, 34–42. [Google Scholar] [CrossRef]
- Bakhshi, D.; Arakawa, O. Induction of Phenolic Compounds Biosynthesis with Light Irradiation in the Flesh of Red and Yellow Apples. J. Appl. Hortic. 2006, 8, 101–104. [Google Scholar] [CrossRef]
- Zoratti, L.; Karppinen, K.; Escobar, A.L.; Häggman, H.; Jaakola, L. Light-Controlled Flavonoid Biosynthesis in Fruits. Front. Plant Sci. 2014, 5, 534. [Google Scholar] [CrossRef]
- Anić, M.; Osrečak, M.; Andabaka, Ž.; Tomaz, I.; Večenaj, Ž.; Jelić, D.; Kozina, B.; Kontić, J.K.; Karoglan, M. The Effect of Leaf Removal on Canopy Microclimate, Vine Performance and Grape Phenolic Composition of Merlot (Vitis vinifera L.) Grapes in the Continental Part of Croatia. Sci. Hortic. 2021, 285, 110161. [Google Scholar] [CrossRef]
- Arakawa, O.; Hori, Y.; Ogata, R. Relative Effectiveness and Interaction of Ultraviolet-B, Red and Blue Light in Anthocyanin Synthesis of Apple Fruit. Physiol. Plant. 1985, 64, 323–327. [Google Scholar] [CrossRef]
- Hofman, P.J.; Smith, L.G. Preharvest Effects on Postharvest Quality of Subtropical and Tropical Fruit. In Proceedings of the Postharvest Handling of Tropical Fruits: Proceedings of an International Conference, Chiang Mai, Thailand, 19–23 July 1993; Champ, B.R., Highley, E., Johnson, G.I., Eds.; ACIAR Proceedings: Chiang Mai, Thailand, 1994; pp. 261–268. [Google Scholar]
- Khalid, S.; Malik, A.U.; Saleem, B.A.; Khan, A.S.; Khalid, M.S.; Amin, M. Tree Age and Canopy Position Affect Rind Quality, Fruit Quality and Rind Nutrient Content of “Kinnow” Mandarin (Citrus Nobilis Lour × Citrus Deliciosa Tenora). Sci. Hortic. 2012, 135, 137–144. [Google Scholar] [CrossRef]
Year | Harvest Date | Canopy Position | CIE Color Variables | ||||
---|---|---|---|---|---|---|---|
L* | a* | b* | C* | h° | |||
1 | 1 | Inside | 68.16 ± 2.33 n.s. | −8.91 ± 2.12 *** | 38.90 ± 2.93 | 39.94 ± 3.30 | 102.79 ± 2.05 |
Outside | 67.36 ± 2.76 | −13.02 ± 1.79 | 44.24 ± 2.01 *** | 46.14 ± 2.17 *** | 106.38 ± 2.05 *** | ||
2 | Inside | 66.21 ± 2.63 n.s. | −7.92 ± 2.79 | 39.32 ± 3.47 * | 40.18 ± 3.75 * | 101.28 ± 3.36 * | |
Outside | 66.02 ± 2.85 | −6.44 ± 1.87 ** | 37.58 ± 3.44 | 38.17 ± 3.53 | 99.66 ± 2.68 | ||
2 | 1 | Inside | 66.84 ± 2.61 | −6.69 ± 2.16 *** | 38.68 ± 3.16 | 39.31 ± 3.28 | 99.74 ± 2.93 |
Outside | 67.21 ± 3.40 n.s. | −10.69 ± 4.28 | 41.60 ± 5.45 ** | 43.10 ± 5.89 *** | 104.00 ± 5.35 *** | ||
2 | Inside | 66.30 ± 3.45 | −7.63 ± 1.33 | 37.93 ± 2.81 | 38.72 ± 2.74 | 101.44 ± 2.25 ** | |
Outside | 67.47 ± 3.89 n.s. | −6.59 ± 2.06 ** | 38.78 ± 2.67 n.s. | 39.38 ± 2.81 n.s. | 99.57 ± 2.78 | ||
ANOVA | |||||||
Year (Y) | 0.00 n.s. | 18.25 *** | 4.08 * | 5.97 * | 14.91 *** | ||
Harvest date (H) | 6.90 ** | 95.97 *** | 42.11 *** | 56.33 *** | 62.52 *** | ||
Canopy position (C) | 0.16 n.s. | 26.06 *** | 23.75 *** | 29.02 *** | 9.92 ** | ||
Y × H | 4.89 * | 16.25 *** | 3.12 n.s. | 4.56 * | 15.67 *** | ||
Y × C | 3.47 n.s. | 0.10 n.s. | 0.01 n.s. | 0.03 n.s. | 0.09 n.s. | ||
H × C | 1.09 n.s. | 94.20 *** | 36.54 *** | 50.00 *** | 66.88 *** | ||
Y × H × C | 0.02 n.s. | 0.25 n.s. | 10.98 *** | 10.03 ** | 0.43 n.s. |
Year | Harvest Date | Canopy Position | CIE Color Variables | ||||
---|---|---|---|---|---|---|---|
L* | a* | b* | C* | h° | |||
1 | 1 | Inside | 52.55 ± 5.92 *** | 10.43 ± 5.66 *** | 24.36 ± 4.26 | 27.28 ± 2.64 | 66.14 ± 13.81 |
Outside | 47.20 ± 3.44 | 5.68 ± 1.88 | 32.48 ± 4.60 *** | 33.05 ± 4.39 *** | 79.73 ± 4.06 *** | ||
2 | Inside | 49.62 ± 5.55 *** | 12.68 ± 5.31 | 22.88 ± 5.83 *** | 27.03 ± 3.85 *** | 59.55 ± 14.17 *** | |
Outside | 42.21 ± 3.29 | 17.20 ± 1.95 *** | 15.47 ± 4.45 | 23.48 ± 2.64 | 41.27 ± 10.18 | ||
2 | 1 | Inside | 45.71 ± 6.38 n.s. | 14.55 ± 4.02 *** | 22.97 ± 4.59 | 27.70 ± 2.91 | 57.04 ± 11.40 |
Outside | 43.63 ± 4.58 | 5.55 ± 6.39 | 27.33 ± 8.49 ** | 29.20 ± 6.03 n.s. | 75.67 ± 20.16 *** | ||
2 | Inside | 47.78 ± 5.30 *** | 13.17 ± 4.34 | 21.85 ± 4.66 n.s. | 26.11 ± 3.09 | 58.00 ± 11.80 * | |
Outside | 43.42 ± 5.59 | 15.29 ± 4.79 * | 20.76 ± 5.85 | 26.59 ± 3.76 n.s. | 52.31 ± 13.56 | ||
ANOVA | |||||||
Year (Y) | 23.22 *** | 1.59 n.s. | 0.85 n.s. | 0.54 n.s. | 0.39 n.s. | ||
Harvest date (H) | 7.00 ** | 117.93 *** | 113.06 *** | 67.58 *** | 132.66 *** | ||
Canopy position (C) | 70.34 *** | 12.2 *** | 2.61 n.s. | 6.04 * | 1.99 n.s. | ||
Y × H | 18.29 *** | 7.03 ** | 19.25 *** | 10.82 ** | 14.95 *** | ||
Y × C | 7.66 ** | 10.63 ** | 1.08 n.s. | 0.02 n.s. | 9.07 ** | ||
H × C | 3.59 n.s. | 99.88 *** | 72.65 *** | 36.67 *** | 92.09 *** | ||
Y × H × C | 0.01 n.s. | 0.82 n.s. | 16.75 *** | 23.64 *** | 1.67 n.s. |
Year | Harvest Date | Canopy Position | Physico-Chemical Properties | ||||
---|---|---|---|---|---|---|---|
Fruit Mass (g) | Firmness (kg cm−2) | SSC (%Brix) | TA (g L−1) (as Malic Acid) | SSC/TA | |||
1 | 1 | Inside | 217.69 ± 28.95 * | 8.62 ± 0.40 | 12.03 ± 0.86 | 0.48 ± 0.09 | 25.53 ± 3.79 * |
Outside | 204.30 ± 25.95 | 8.75 ± 0.49 n.s. | 12.49 ± 0.76 n.s. | 0.57 ± 0.10 * | 22.32 ± 3.65 | ||
2 | Inside | 195.33 ± 34.67 n.s. | 8.64 ± 0.54 n.s. | 11.17 ± 0.82 | 0.42 ± 0.06 | 26.96 ± 4.11 | |
Outside | 188.71 ± 38.09 | 8.62 ± 0.49 | 13.05 ± 0.93 *** | 0.42 ± 0.06 n.s. | 31.71 ± 5.26 * | ||
2 | 1 | Inside | 171.95 ± 28.53 | 8.08 ± 0.48 | 12.71 ± 1.05 | 0.53 ± 0.06 | 24.34 ± 3.68 |
Outside | 187.19 ± 31.49 * | 8.81 ± 0.67 ** | 12.83 ± 0.52 n.s. | 0.57 ± 0.08 n.s. | 22.92 ± 2.85 n.s. | ||
2 | Inside | 168.23 ± 24.82 | 8.50 ± 0.72 | 12.19 ± 0.36 | 0.50 ± 0.06 | 24.97 ± 2.98 | |
Outside | 178.23 ± 30.19 n.s. | 8.15 ± 0.85 n.s. | 12.40 ± 0.49 n.s. | 0.52 ± 0.08 n.s. | 24.54 ± 3.70 n.s. | ||
ANOVA | |||||||
Year (Y) | 53.81 *** | 6.33 * | 6.23 * | 14.72 *** | 12.23 *** | ||
Harvest date (H) | 13.67 *** | 0.64 n.s. | 5.20 * | 30.18 *** | 22.04 *** | ||
Canopy position (C) | 0.15 n.s. | 1.22 n.s. | 23.15*** | 7.39 ** | 0.01 n.s. | ||
Y × H | 3.40 n.s. | 0.07 n.s. | 1.37 n.s. | 5.33 * | 79.48 ** | ||
Y × C | 10.93 ** | 0.39 n.s. | 13.18 *** | 0.32 n.s. | 1.47 n.s. | ||
H × C | 0.01 n.s. | 8.14 ** | 7.49 ** | 4.03 * | 10.33 ** | ||
Y × H × C | 0.77 n.s. | 4.52 * | 5.64 * | 1.83 n.s. | 6.23 * |
Year | Harvest Date | Canopy Position | Bioactive Compounds | ||
---|---|---|---|---|---|
AOP (µmol TE·100 g−1 of Fw) | TPC (mg GAE·100 g−1 of Fw) | TFC (mg QE·100 g−1 of Fw) | |||
1 | 1 | Inside | 188.75 ± 8.05 | 287.60 ± 80.02 | 44.53 ± 6.24 |
Outside | 224.03 ± 4.28 ** | 348.11 ± 49.66 n.s. | 74.92 ± 9.63 *** | ||
2 | Inside | 201.60 ± 21.85 | 439.66 ± 35.61 | 51.36 ± 5.79 | |
Outside | 240.35 ± 20.08 ** | 497.93 ± 26.42 ** | 104.84 ± 7.23 *** | ||
2 | 1 | Inside | 207.17 ± 31.63 | 365.01 ± 41.48 | 70.29 ± 10.10 |
Outside | 272.82 ± 21.46 *** | 489.57 ± 21.04 *** | 97.92 ± 18.85 *** | ||
2 | Inside | 268.24 ± 17.90 | 456.84 ± 31.10 | 73.72 ± 13.75 | |
Outside | 338.82 ± 44.17 *** | 549.54 ± 66.32 *** | 120.75 ± 23.63 *** | ||
ANOVA | |||||
Year (Y) | 46.74 *** | 35.23 *** | 40.47 *** | ||
Harvest date (H) | 21.14 *** | 87.62 *** | 21.22 *** | ||
Canopy position (C) | 38.28 *** | 48.07 *** | 134.29 *** | ||
Y × H | 8.30 ** | 9.59 ** | 0.59 n.s. | ||
Y × C | 3.35 n.s. | 4.13 * | 0.45 n.s. | ||
H × C | 0.06 n.s. | 0.50 n.s. | 9.64 ** | ||
Y × H × C | 0.00 n.s. | 0.37 n.s. | 0.07 n.s. |
Canopy Position | Mn | Fe | Ni | Cu | Zn | Rb | Sr | K | Ca | K/Ca |
---|---|---|---|---|---|---|---|---|---|---|
Year (Y) | 1.12 n.s. | 97.36 *** | 26.49 *** | 45.79 *** | 0.23 n.s. | 3.81 n.s. | 0.30 n.s. | 2.66 n.s. | 4.49 * | 9.76 ** |
Harvest date (H) | 1.87 n.s. | 22.19 *** | 3.70 n.s. | 24.20 *** | 2.23 n.s. | 0.85 n.s. | 37.37 *** | 29.44 *** | 0.46 n.s. | 20.62 *** |
Canopy position (C) | 0.17 n.s. | 9.44 ** | 8.46 ** | 2.09 n.s. | 16.96 *** | 2.10 n.s. | 10.63 ** | 0.32 n.s. | 13.72 ** | 25.32 *** |
Y × H | 1.74 n.s. | 20.09 *** | 24.05 *** | 18.31 *** | 1.58 n.s. | 2.69 n.s. | 11.39 ** | 2.91 n.s. | 0.37 n.s. | 6.87 * |
Y × C | 9.09 ** | 37.14 *** | 11.82 ** | 2.44 n.s. | 3.42 n.s. | 5.79 * | 7.57 * | 1.97 n.s. | 1.65 n.s. | 9.24 ** |
H × C | 1.48 n.s. | 6.53 * | 0.02 n.s. | 0.17 n.s. | 0.52 n.s. | 0.36 n.s. | 3.33 n.s. | 5.91 * | 2.86 n.s. | 0.13 n.s. |
Y × H × C | 0.15 n.s. | 16.45 *** | 2.15 n.s. | 0.32 n.s. | 4.00 n.s. | 1.69 n.s. | 1.78 n.s. | 0.32 n.s. | 4.40 * | 3.9 n.s. |
Year | Harvest Date | Canopy Position | Mineral Concentration (µg/g) Dry Matter | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mn | Fe | Ni | Cu | Zn | Rb | Sr | K | Ca | K/Ca | |||
1 | 1 | Inside | 6.60 ± 1.76 | 55.40 ± 6.70 | 2.63 ± 0.13 | 7.58 ± 1.88 | 3.57 ± 0.62 | 43.25 ± 0.95 ** | 1.33 ± 0.39 | 7415.00 ± 405.00 * | 174.00 ± 9.00 | 42.61 ± 0.12 * |
Outside | 7.40 ± 1.43 n.s. | 60.30 ± 1.10 n.s. | 3.83 ± 0.75 n.s. | 7.16 ± 0.86 n.s. | 4.47 ± 0.69 n.s. | 30.50 ± 4.20 | 2.37 ± 0.33 * | 6420.00 ± 160.00 | 293.50 ± 99.50 n.s. | 24.51 ± 7.76 | ||
2 | Inside | 7.46 ± 2.32 | 60.35 ± 6.25 | 3.95 ± 0.99 | 11.57 ± 2.04 | 3.57 ± 1.11 | 25.67 ± 4.92 | 1.55 ± 0.27 | 5076.67 ± 818.19 | 211.50 ± 1.50 | 27.76 ± 3.33 ** | |
Outside | 10.8 ± 2.02 n.s. | 90.60 ± 1.56 ** | 5.97 ± 1.05 n.s. | 12.10 ± 1.21 n.s. | 4.87 ± 0.97 n.s. | 21.70 ± 5.94 n.s. | 2.22 ± 0.47 n.s. | 5050.00 ± 226.27 n.s. | 313.00 ± 9.00 *** | 16.13 ± 0.26 | ||
2 | 1 | Inside | 8.90 ± 1.29 n.s. | 48.98 ± 6.99 | 3.29 ± 0.83 n.s. | 6.85 ± 1.03 | 3.79 ± 0.54 | 33.64 ± 2.20 n.s. | 1.85 ± 0.07 | 7004.00 ± 366.10 | 309.33 ± 58.18 | 23.90 ± 4.77 |
Outside | 5.51 ± 3.29 | 46.07 ± 5.78 n.s. | 3.26 ± 0.57 | 5.46 ± 1.67 n.s. | 4.06 ± 0.65 n.s. | 32.25 ± 2.73 | 1.71 ± 0.44 n.s. | 6617.50 ± 919.40 n.s. | 246.25 ± 76.56 n.s. | 23.24 ± 1.63 n.s. | ||
2 | Inside | 8.27 ± 2.04 n.s. | 52.30 ± 2.26 ** | 2.64 ± 0.33 n.s. | 7.73 ± 1.33 | 3.60 ± 0.61 | 29.15 ± 4.83 n.s. | 1.77 ± 0.60 | 5432.50 ± 242.26 | 227.00 ± 73.26 | 25.22 ± 7.64 n.s. | |
Outside | 6.21 ± 1.50 | 43.63 ± 4.47 | 2.17 ± 0.55 | 5.70 ± 0.12 * | 2.79 ± 0.94 n.s. | 29.13 ± 2.36 | 2.49 ± 0.23 n.s. | 6430.00 ± 1153.43 n.s. | 364.50 ± 64.32 * | 17.10 ± 3.26 |
PC1 | PC2 | PC3 | |
---|---|---|---|
AOP | 0.33 | −0.28 | −0.04 |
TPC | 0.36 | −0.15 | −0.33 |
TFC | 0.35 | −0.17 | 0.06 |
Mn | 0.05 | 0.30 | −0.06 |
Fe | 0.15 | 0.46 | 0.11 |
Ni | 0.16 | 0.44 | 0.03 |
Cu | 0.09 | 0.45 | −0.13 |
Zn | 0.07 | 0.30 | 0.50 |
Rb | 0.34 | −0.15 | 0.18 |
Sr | 0.32 | −0.05 | 0.45 |
K | 0.26 | −0.17 | 0.52 |
Ca | 0.33 | −0.17 | 0.31 |
K/Ca | 0.42 | 0.07 | −0.05 |
Eigenvalue | 4.94 | 3.58 | 1.41 |
Variability (%) | 37.99 | 27.51 | 10.81 |
Cumulative % | 37.99 | 65.50 | 76.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaučić, M.; Vuković, M.; Gašpar, L.; Fruk, G.; Vidrih, R.; Nečemer, M.; Fruk, M.; Jatoi, M.A.; Fu, D.; Kobav, M.B.; et al. The Effect of Canopy Position on the Fruit Quality Parameters and Contents of Bioactive Compounds and Minerals in ‘Braeburn’ Apples. Agronomy 2023, 13, 2523. https://doi.org/10.3390/agronomy13102523
Kaučić M, Vuković M, Gašpar L, Fruk G, Vidrih R, Nečemer M, Fruk M, Jatoi MA, Fu D, Kobav MB, et al. The Effect of Canopy Position on the Fruit Quality Parameters and Contents of Bioactive Compounds and Minerals in ‘Braeburn’ Apples. Agronomy. 2023; 13(10):2523. https://doi.org/10.3390/agronomy13102523
Chicago/Turabian StyleKaučić, Mislav, Marko Vuković, Luka Gašpar, Goran Fruk, Rajko Vidrih, Marijan Nečemer, Mladen Fruk, Mushtaque A. Jatoi, Daqi Fu, Matej Bernard Kobav, and et al. 2023. "The Effect of Canopy Position on the Fruit Quality Parameters and Contents of Bioactive Compounds and Minerals in ‘Braeburn’ Apples" Agronomy 13, no. 10: 2523. https://doi.org/10.3390/agronomy13102523
APA StyleKaučić, M., Vuković, M., Gašpar, L., Fruk, G., Vidrih, R., Nečemer, M., Fruk, M., Jatoi, M. A., Fu, D., Kobav, M. B., & Jemrić, T. (2023). The Effect of Canopy Position on the Fruit Quality Parameters and Contents of Bioactive Compounds and Minerals in ‘Braeburn’ Apples. Agronomy, 13(10), 2523. https://doi.org/10.3390/agronomy13102523