Abstract 抽象的
Ferroptosis, a cell death modality characterized by iron-dependent lipid peroxidation, is involved in the development of multiple pathological conditions, including ischemic tissue damage, infection, neurodegeneration, and cancer. The cellular machinery responsible for the execution of ferroptosis integrates multiple pro-survival or pro-death signals from subcellular organelles and then ‘decides’ whether to engage the lethal process or not. Here, we outline the evidence implicating different organelles (including mitochondria, lysosomes, endoplasmic reticulum, lipid droplets, peroxisomes, Golgi apparatus, and nucleus) in the ignition or avoidance of ferroptosis, while emphasizing their potential relevance for human disease and their targetability for pharmacological interventions.
铁死亡是一种以铁依赖性脂质过氧化为特征的细胞死亡方式,与多种病理状况的发展有关,包括缺血性组织损伤、感染、神经变性和癌症。负责执行铁死亡的细胞机制整合来自亚细胞细胞器的多个促生存或促死亡信号,然后“决定”是否参与致死过程。在这里,我们概述了不同细胞器(包括线粒体、溶酶体、内质网、脂滴、过氧化物酶体、高尔基体和细胞核)在引发或避免铁死亡中的证据,同时强调它们与人类疾病的潜在相关性及其药理学的靶向性干预措施。
Subject terms: Cancer, Cell biology
主题术语:癌症、细胞生物学
Facts 事实
Ferroptosis is a type of regulated cell death caused by the imbalance between the levels of oxidants and antioxidants.
铁死亡是一种由氧化剂和抗氧化剂水平不平衡引起的调节性细胞死亡。Lipid peroxidation is the central biochemical and metabolic event leading to plasma membrane damage during ferroptosis.
脂质过氧化是导致铁死亡过程中质膜损伤的核心生化和代谢事件。The regulation of ferroptosis involves a network involving multiple subcellular organelles to generate signals for iron accumulation, lipid synthesis, and lipid peroxidation.
铁死亡的调节涉及一个涉及多个亚细胞细胞器的网络,以产生铁积累、脂质合成和脂质过氧化的信号。The direct effector of ferroptosis remains unclear.
铁死亡的直接效应物仍不清楚。
Open questions 开放式问题
Are the ferroptosis-relevant damage or repair mechanisms affecting the plasma membrane and internal, organelle-specific membranes different?
影响质膜和内部细胞器特异性膜的铁死亡相关损伤或修复机制是否不同?What are the key molecules that maintain or disrupt the communication between subcellular organelles in ferroptosis?
在铁死亡中维持或破坏亚细胞细胞器之间通讯的关键分子是什么?How can we develop molecular probes to dynamically monitor ferroptosis-associated changes in organellar morphology and function?
我们如何开发分子探针来动态监测铁死亡相关的细胞器形态和功能的变化?Do the biogenesis and turnover of specific organelles affect the susceptibility of cells to ferroptosis?
特定细胞器的生物发生和更新是否影响细胞对铁死亡的易感性?
Introduction 介绍
Ferroptosis was originally described as a cell death pathway occurring in cancer cells expressing mutant RAS [1]. Today, this type of iron-dependent regulated cell death (RCD) is known to occur in a variety of transformed or non-transformed cell lines and in tissues [2]. Ferroptosis is morphologically and biochemically different from apoptosis, the most studied form of RCD [3]. For instance, ferroptosis is accompanied by cell swelling and plasma membrane rupture, while apoptotic cells usually exhibit cell shrinkage and plasma membrane blebbing [4]. Ferroptosis is driven by unrestricted lipid peroxidation, which does not require the activation of caspase (key executors of apoptosis) [5]. The autophagic degradation pathway usually protects cells from apoptosis, but selective autophagy (e.g., ferritinophagy [6, 7] and lipophagy [8]) can favor ferroptosis. Altogether, ferroptosis has unique cellular and molecular mechanism that shift the balance between oxidants and antioxidants in favor of the oxidative damage of plasma membrane and subcellular organelles [9]. Of note, ferroptosis may cause inflammation due to the release of endogenous damage-associated molecular pattern molecules (DAMPs), resulting in the recruitment and activation of immune cells [10–13].
铁死亡最初被描述为发生在表达突变 RAS 的癌细胞中的一种细胞死亡途径[ 1 ]。如今,已知这种类型的铁依赖性调节细胞死亡(RCD)发生在多种转化或非转化细胞系和组织中[ 2 ]。铁死亡在形态学和生物化学上与细胞凋亡(RCD 的研究最多的形式)不同[ 3 ]。例如,铁死亡伴随着细胞肿胀和质膜破裂,而凋亡细胞通常表现出细胞收缩和质膜起泡[ 4 ]。铁死亡是由不受限制的脂质过氧化驱动的,不需要激活 caspase(细胞凋亡的关键执行者)[ 5 ]。自噬降解途径通常保护细胞免于凋亡,但选择性自噬(例如铁蛋白自噬 [ 6 , 7 ] 和脂肪自噬 [ 8 ])可能有利于铁死亡。总而言之,铁死亡具有独特的细胞和分子机制,可以改变氧化剂和抗氧化剂之间的平衡,有利于质膜和亚细胞细胞器的氧化损伤[ 9 ]。值得注意的是,铁死亡可能由于内源性损伤相关分子模式分子(DAMP)的释放而引起炎症,从而导致免疫细胞的募集和激活[ 10-13 ]。
Ferroptosis plays a dual role in health and disease [14–18]. On the one hand, physiological ferroptosis might contribute to eliminating harmful cells to maintain tissue homeostasis and development. On the other hand, pathological ferroptosis is increasingly recognized as a significant factor that contributes to the pathogenesis of diseases, including, but not limited to, cancer, neurodegenerative disorders, ischemia-reperfusion injury, and infectious states. Although the implementation of ferroptosis in translational medicine faces many obstacles, certain investigational small molecule compounds (e.g., erastin, ferrostatin-1, liproxstatin-1, and RSL3) [5, 19] or Food and Drug Administration (FDA)/European Medicines Agency (EMA)-approved drugs (e.g., sulfasalazine, sorafenib, zalcitabine, and doxorubicin) [20–22] have been used in preclinical models to induce or inhibit ferroptosis. However, a recent study suggests that sorafenib may not be a strong activator of ferroptotic cancer cell death and erastin only triggers ferroptosis in certain cancer cells [23].
铁死亡在健康和疾病中发挥双重作用[14-18 ] 。一方面,生理性铁死亡可能有助于消除有害细胞以维持组织稳态和发育。另一方面,病理性铁死亡越来越被认为是导致疾病发病机制的重要因素,包括但不限于癌症、神经退行性疾病、缺血再灌注损伤和感染状态。尽管铁死亡在转化医学中的实施面临许多障碍,但某些研究中的小分子化合物(例如erastin、ferrostatin-1、liproxstatin-1和RSL3)[ 5 , 19 ]或美国食品和药物管理局(FDA)/欧洲药品管理局(EMA) 批准的药物(例如柳氮磺吡啶、索拉非尼、扎西他滨和阿霉素)[ 20 – 22 ] 已用于临床前模型中诱导或抑制铁死亡。然而,最近的一项研究表明,索拉非尼可能不是铁死亡癌细胞死亡的强激活剂,而erastin仅引发某些癌细胞的铁死亡[ 23 ]。
All cellular organelles may sense, attenuate or amplify stress signals [24] and thus contribute to the regulation or execution of different types of RCD, including apoptosis and necroptosis [25]. Likely, this concept can be extended to ferroptosis as well. In this review, we summarize the key processes of ferroptosis and discuss how signals from different organelles modulate the ignition and execution of ferroptotic cell death.
所有细胞器都可以感知、减弱或放大应激信号[ 24 ],从而有助于调节或执行不同类型的RCD,包括细胞凋亡和坏死性凋亡[ 25 ]。很可能,这个概念也可以扩展到铁死亡。在这篇综述中,我们总结了铁死亡的关键过程,并讨论了来自不同细胞器的信号如何调节铁死亡细胞死亡的启动和执行。
Central events of ferroptosis
铁死亡的中心事件
The generation of reactive oxygen species (ROS) and subsequent hydroxyl radical (·OH)-mediated lipid peroxidation culminating with plasma membrane damage are the core events leading to ferroptosis. These processes are inhibited by integrated antioxidant or membrane repair systems.
活性氧(ROS)的产生和随后的羟基自由基(·OH)介导的脂质过氧化最终导致质膜损伤,是导致铁死亡的核心事件。这些过程受到整合的抗氧化剂或膜修复系统的抑制。
Oxidative damage 氧化损伤
ROS for ferroptosis can be generated from multiple sources, such as the iron-mediated Fenton reaction, mitochondrial electron transport chain (ETC), nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX), and myeloperoxidase (MPO) [12, 26–29]. The accumulation of iron in cells is one of the hallmarks of ferroptosis [30]. Many proteins mediate iron uptake (e.g., transferrin [TF] [31], transferrin receptor [TFRC] [32], and lactotransferrin [LTF] [33]), storage (e.g., ferritin [6, 7]), utilization (e.g., iron-sulfur proteins [34]), distribution (e.g., CDGSH iron–sulfur domain 1 [CISD1] [35]), and export (e.g., solute carrier family 40 member 1 [SLC40A1] [36, 37], prominin 2 [PROM2] [38], and lipocalin 2 [LCN2] [39]), meaning that they affect the sensitivity of cells to ferroptosis (Fig. 1a). However, the dynamic relationship of iron metabolism and different ROS resources in promoting ferroptosis remains poorly investigated [40].
铁死亡的 ROS 可以从多种来源产生,例如铁介导的芬顿反应、线粒体电子传递链 (ETC)、烟酰胺腺嘌呤二核苷酸磷酸 (NADPH) 氧化酶 (NOX) 和髓过氧化物酶 (MPO) [ 12 , 26 – 29 ]。细胞内铁的积累是铁死亡的标志之一[ 30 ]。许多蛋白质介导铁的摄取(例如,转铁蛋白 [TF] [ 31 ]、转铁蛋白受体 [TFRC] [ 32 ] 和乳转铁蛋白 [LTF] [ 33 ])、储存(例如,铁蛋白 [ 6 , 7 ])和利用(例如、铁硫蛋白 [ 34 ])、分布(例如,CDGSH 铁硫结构域 1 [CISD1] [ 35 ])和输出(例如,溶质载体家族 40 成员 1 [SLC40A1] [ 36 , 37 ]、突出蛋白 2 [PROM2][ 38 ]和脂质运载蛋白2[LCN2][ 39 ]),这意味着它们影响细胞对铁死亡的敏感性(图1a ) 。然而,铁代谢和不同ROS资源在促进铁死亡中的动态关系仍然缺乏研究[ 40 ]。
Fig. 1. Core mechanisms of ferroptosis.
图 1. 铁死亡的核心机制。
a Oxidative damage. Ferroptosis is caused by lipid peroxidation with the involvement of various enzymes (ACSL, LPCAT4, ALOX, and POR). This is further regulated by fatty acid metabolism, including CD36-mediated PUFA uptake, ACAC-dependent PUFA synthesis, or lipophagy-induced PUFA production. In addition, ferroptosis is activated by the iron-mediated Fenton reaction. Therefore, ferroptosis sensitivity is highly related to iron metabolism, including iron uptake (e.g., TF, TFRC, and LTF), storage (e.g., ferritin), utilization (e.g., NFS1), distribution (e.g., CISD1), and export (e.g., SLC40A1, PROM2, and LCN2). b Antioxidant defense. The SLC7A11-GSH-GPX4 pathway and GSH-independent pathway (CoQ10, BH4, dopamine, and PLA2G6) are the main antioxidant systems for ferroptotic cell death by inhibiting lipid peroxidation. c ESCRT-III–mediated membrane repair or cell adhesion also inhibits ferroptosis through blocking membrane damage induced by lipid peroxidation. Abbreviations: ACAC acetyl-CoA carboxylase, ACSL1 acyl-CoA synthetase long-chain family member 1, ACSL3 acyl-CoA synthetase long-chain family member 3, ACSL4 acyl-CoA synthetase long-chain family member 4, AIFM2/FSP1 apoptosis-inducing factor mitochondria-associated 2, ALOX lipoxygenase, CISD1 CDGSH iron sulfur domain 1, DHODH dihydroorotate dehydrogenase (quinone), ESCRT-III endosomal sorting complex required for transport-III, GCH1 GTP cyclohydrolase 1, GPX4 glutathione peroxidase 4, GSH glutathione, HSP90 heat shock protein 90, HSPA5/GRP78/BIP heat shock protein family A (Hsp70) member 5, LCN2 lipocalin 2, LTF lactotransferrin, MPO myeloperoxidase, MUFA monounsaturated fatty acid, NFE2L2/NRF2 nuclear factor erythroid 2-like 2, NOX NADPH oxidase, PLA2G6/iPLA2β phospholipase A2 group VI, PLOOH phospholipid hydroperoxides, POR cytochrome P450 oxidoreductase, PROM2 prominin 2, PUFA polyunsaturated fatty acid, PUFA-ePL polyunsaturated ether phospholipid, PUFA-PL polyunsaturated phospholipid, SLC3A2 solute carrier family 3 member 2, SLC7A11 solute carrier family 7 member 11, SLC40A1 solute carrier family 40 member 1, TF transferrin, TFRC transferrin receptor, TP53 tumor protein p53.
a氧化损伤。铁死亡是由多种酶(ACSL、LPCAT4、ALOX 和 POR)参与的脂质过氧化引起的。这进一步受到脂肪酸代谢的调节,包括 CD36 介导的 PUFA 摄取、ACAC 依赖性 PUFA 合成或脂肪吞噬诱导的 PUFA 产生。此外,铁死亡是由铁介导的芬顿反应激活的。因此,铁死亡敏感性与铁代谢高度相关,包括铁的摄取(例如TF、TFRC和LTF)、储存(例如铁蛋白)、利用(例如NFS1)、分布(例如CISD1)和输出(例如、SLC40A1、PROM2 和 LCN2)。 b抗氧化防御。 SLC7A11-GSH-GPX4 途径和 GSH 独立途径(CoQ10、BH4、多巴胺和 PLA2G6)是通过抑制脂质过氧化导致铁死亡细胞死亡的主要抗氧化系统。 c ESCRT-III 介导的膜修复或细胞粘附还通过阻止脂质过氧化诱导的膜损伤来抑制铁死亡。 缩写:ACAC乙酰辅酶A羧化酶、ACSL1酰基辅酶A合成酶长链家族成员1、ACSL3酰基辅酶A合成酶长链家族成员3、ACSL4酰基辅酶A合成酶长链家族成员4、AIFM2/FSP1凋亡诱导因子线粒体相关 2、ALOX 脂氧合酶、CISD1 CDGSH 铁硫结构域 1、DHODH二氢乳清酸脱氢酶(醌)、转运 III 所需的 ESCRT-III 内体分选复合物、GCH1 GTP 环化水解酶 1、GPX4 谷胱甘肽过氧化物酶 4、GSH 谷胱甘肽、HSP90 热休克蛋白 90、HSPA5/GRP78/BIP 热休克蛋白家族 A (Hsp70)成员 5,LCN2 脂质运载蛋白 2,LTF乳转铁蛋白、MPO 髓过氧化物酶、MUFA 单不饱和脂肪酸、NFE2L2/NRF2 核因子类红细胞 2 2、NOX NADPH 氧化酶、PLA2G6/iPLA2β 磷脂酶 A2 VI 组、PLOOH 磷脂氢过氧化物、POR 细胞色素 P450 氧化还原酶、PROM2 prominin 2、PUFA 多不饱和脂肪酸, PUFA-ePL 多不饱和醚磷脂、PUFA-PL 多不饱和磷脂、SLC3A2 溶质载体家族 3 成员 2、SLC7A11 溶质载体家族 7 成员 11、SLC40A1 溶质载体家族 40 成员 1、TF 转铁蛋白、TFRC 转铁蛋白受体、TP53 肿瘤蛋白 p53。
Although oxidative DNA damage is also conducive to ferroptosis, lipid peroxidation of polyunsaturated fatty acids (PUFAs) plays a major role in driving lytic cell death. Accordingly, CD36-mediated PUFA uptake [41, 42], acetyl-CoA carboxylase (ACAC)-dependent PUFA synthesis [43], or lipophagy-induced PUFA production [8] might facilitate ferroptosis. The production of oxidative metabolites of PUFA requires additional enzymes. Long-chain acyl-CoA synthetases (ACSLs) activate fatty acids by the addition of a coenzyme A (CoA) group and provide substrates for specific metabolic pathways. ACSL4 [44–46] and ACSL1 [47] are essential for arachidonic acid/adrenic acid-mediated and linolenic acid-mediated ferroptosis, respectively. ACSL3 is responsible for the activation of monounsaturated fatty acids (MUFAs), which competitively inhibit PUFA-induced ferroptosis [48]. Later, lysophosphatidylcholine acyltransferase 3 (LPCAT3) is involved in phospholipid remodeling for ferroptosis [45]. Finally, different members of the lipoxygenase (ALOX) family mediate ferroptosis through the oxygenation of PUFAs in a cell type-dependent manner [21, 49–51]. Alternatively, cytochrome P450 oxidoreductase (POR) transfers electrons to oxygen and then mediates lipid peroxidation during ferroptosis in an ALOX-independent manner [52, 53]. In addition to PUFAs, the production of plasmalogens in peroxisomes can provide substrates for lipid peroxidation during ferroptosis [54]. This complex complementary pathway of lipid metabolism affects the susceptibility to ferroptosis [55]. It is possible, yet remains to be demonstrated, that sophisticated biochemical methods allowing for the identification of distinct lipid peroxidation products will facilitate a sort of “molecular diagnosis” of the etiology of ferroptotic cell death.
尽管氧化性 DNA 损伤也有利于铁死亡,但多不饱和脂肪酸 (PUFA) 的脂质过氧化在驱动裂解细胞死亡中起着主要作用。因此,CD36 介导的 PUFA 摄取 [ 41 , 42 ]、乙酰辅酶 A 羧化酶 (ACAC) 依赖性 PUFA 合成 [ 43 ] 或自噬诱导的 PUFA 产生 [ 8 ] 可能会促进铁死亡。 PUFA 氧化代谢产物的产生需要额外的酶。长链酰基辅酶 A 合成酶 (ACSL) 通过添加辅酶 A (CoA) 基团来激活脂肪酸,并为特定代谢途径提供底物。 ACSL4 [ 44 – 46 ] 和 ACSL1 [ 47 ] 分别对于花生四烯酸/肾上腺酸介导和亚麻酸介导的铁死亡至关重要。 ACSL3 负责激活单不饱和脂肪酸 (MUFA),从而竞争性抑制 PUFA 诱导的铁死亡 [ 48 ]。后来,溶血磷脂酰胆碱酰基转移酶 3 (LPCAT3) 参与铁死亡的磷脂重塑 [ 45 ]。最后,脂氧合酶 (ALOX) 家族的不同成员通过 PUFA 的氧化以细胞类型依赖性方式介导铁死亡 [ 21 , 49 – 51 ]。或者,细胞色素 P450 氧化还原酶 (POR) 将电子转移给氧,然后在铁死亡过程中以不依赖 ALOX 的方式介导脂质过氧化反应 [ 52 , 53 ]。除了PUFA之外,过氧化物酶体中缩醛磷脂的产生可以为铁死亡过程中的脂质过氧化提供底物[ 54 ]。这种复杂的脂质代谢补充途径影响铁死亡的易感性[ 55 ]。 有可能,但仍有待证明,允许鉴定不同脂质过氧化产物的复杂生化方法将有助于铁死亡细胞死亡病因学的某种“分子诊断”。
Antioxidant defense 抗氧化防御
Tremendous progress has been made in deconvoluting enzymatic and non-enzymatic antioxidant defense systems in ferroptosis [56]. The most characteristic system is the system xc−-glutathione (GSH)–glutathione peroxidase 4 (GPX4) axis (Fig. 1b). Many classical ferroptosis inducers (e.g., erastin and RSL3) are inhibitors of this axis. System xc−, a glutamate/cystine transporter, consists of solute carrier family 7 member 11 (SLC7A11) and solute carrier family 3 member 2 (SLC3A2). System xc− can maintain intracellular GSH content by mediating the uptake of cystine into cells. GSH acts as a cofactor of many antioxidant enzymes, including GPX4. GPX4 requires GSH to reduce phospholipid hydroperoxides (PLOOHs) to nontoxic phospholipid alcohols (PLOHs) [57]. During ferroptosis, the activity or expression of SLC7A11 and GPX4 are regulated on multiple levels. For example, SLC7A11-mediated cystine uptake also promotes GPX4 protein synthesis through the mechanistic target of rapamycin kinase (MTOR) pathway [58]. GPX4 protein can be stabilized by heat shock protein family A (Hsp70) member 5 (HSPA5) [59], but destabilized by heat shock protein 90 (HSP90) in a context-dependent manner [60]. The transcription of SLC7A11 is upregulated or downregulated by nuclear factor erythroid 2-like 2 (NFE2L2, best known as NRF2) [61] or tumor protein p53 (TP53) [62], respectively. The identification of a large number of GPX4 or SLC7A11 binding proteins further exacerbates the complexity of the regulation of this pathway in ferroptosis [63–66].
在铁死亡中去卷积酶促和非酶促抗氧化防御系统方面已经取得了巨大进展[ 56 ]。最有特征的系统是xc -谷胱甘肽(GSH)-谷胱甘肽过氧化物酶4(GPX4)轴系统(图1b )。许多经典的铁死亡诱导剂(例如erastin 和RSL3)是该轴的抑制剂。系统 xc -是一种谷氨酸/胱氨酸转运蛋白,由溶质载体家族 7 成员 11 (SLC7A11) 和溶质载体家族 3 成员 2 (SLC3A2) 组成。系统 xc -可以通过介导细胞摄取胱氨酸来维持细胞内 GSH 含量。 GSH 是许多抗氧化酶的辅助因子,包括 GPX4。 GPX4 需要 GSH 将磷脂氢过氧化物 (PLOOH) 还原为无毒的磷脂醇 (PLOH) [ 57 ]。在铁死亡期间,SLC7A11 和 GPX4 的活性或表达在多个水平上受到调节。例如,SLC7A11介导的胱氨酸摄取还通过雷帕霉素激酶(MTOR)途径的机制靶标促进GPX4蛋白合成[ 58 ]。 GPX4 蛋白可以被热休克蛋白家族 A (Hsp70) 成员 5 (HSPA5) 稳定化 [ 59 ],但会被热休克蛋白 90 (HSP90) 以上下文依赖性方式不稳定 [ 60 ]。 SLC7A11 的转录分别受到核因子红细胞 2 样 2(NFE2L2,最著名的 NRF2)[ 61 ] 或肿瘤蛋白 p53(TP53)[ 62 ] 的上调或下调。大量GPX4或SLC7A11结合蛋白的鉴定进一步加剧了铁死亡中该途径调节的复杂性[63-66 ] 。
In addition to GSH, several intracellular antioxidants, such as coenzyme Q10 (CoQ10), tetrahydrobiopterin (BH4), and dopamine, prevent lipid peroxidation during ferroptosis. Mechanically, apoptosis-inducing factor mitochondria-associated 2 (AIFM2/FSP1) [67, 68] and dihydroorotate dehydrogenase (DHODH) [69] inhibit ferroptosis through reducing cytosolic and mitochondrial ubiquinone (CoQ10) to generate ubiquinol, respectively. GTP cyclohydrolase 1 (GCH1) is the rate-limiting enzyme for the synthesis of BH4, which acts as a radical trapping antioxidant in inhibiting ferroptosis [70, 71]. Dopamine enhances GPX4 protein stability, which in turn limits lipid peroxidation in ferroptosis [72]. Distinct from GPX4, phospholipase A2 group VI (PLA2G6, also known as iPLA2β) averts ferroptosis by hydrolyzing oxidized phosphatidylethanolamine [73, 74]. These findings underscore the notion that an integrated antioxidant system limits ferroptosis caused by excessive oxidative stress.
除 GSH 外,多种细胞内抗氧化剂,如辅酶 Q10 (CoQ10)、四氢生物蝶呤 (BH4) 和多巴胺,可防止铁死亡过程中的脂质过氧化。从机械角度来说,凋亡诱导因子线粒体相关 2 (AIFM2/FSP1) [ 67 , 68 ] 和二氢乳清酸脱氢酶 (DHODH) [ 69 ] 分别通过减少胞质和线粒体泛醌 (CoQ10) 生成泛醇来抑制铁死亡。 GTP 环水解酶 1 (GCH1) 是 BH4 合成的限速酶,BH4 在抑制铁死亡中充当自由基捕获抗氧化剂 [ 70 , 71 ]。多巴胺增强 GPX4 蛋白稳定性,进而限制铁死亡中的脂质过氧化[ 72 ]。与 GPX4 不同,VI 族磷脂酶 A2(PLA2G6,也称为 iPLA2β)通过水解氧化磷脂酰乙醇胺来避免铁死亡 [ 73 , 74 ]。这些发现强调了一个概念,即整合的抗氧化系统可以限制过度氧化应激引起的铁死亡。
Membrane repair or adhesion
膜修复或粘附
Cell membrane disruption induces not only a rapid and massive influx of Ca2+ into the cytosol but also an efflux or release of various endogenous proteins, such as high-mobility group box 1 (HMGB1), which is considered as a major pro-inflammatory DAMP [75]. Although the key effectors responsible for the formation of plasma membrane pores have not yet been determined, the activation of Ca2+-dependent endosomal sorting complex required for transport-III (ESCRT-III) machinery can promote plasma membrane repair, thereby limiting the occurrence of ferroptosis and the release of pro-inflammatory DAMPs (Fig. 1c) [76–78]. In addition to ferroptosis, ESCRT-III has a conserved function to repair plasma membrane damage in pyroptosis and necroptosis [79, 80]. Additional work is needed to identify whether the membrane repair mechanisms of specific organelles (e.g., mitochondria or lysosomes) are involved in the defense against ferroptosis [81]. Mounting evidence shows that cell-cell contacts confer cell resistance to ferroptosis [28, 82, 83]. In adjacent cells, ferroptosis may propagate in a rapid wave-like propagation [84]. It can be speculated that specific cytoskeleton-related dynamic changes transmit or limit the oxidative damage of plasma membranes at the contact sites between interacting cells. The elucidation of such hypothetical mechanisms will require the development and standardization of spatially resolved assays for the detection of ferroptosis-associated membrane damage.
细胞膜破坏不仅会导致 Ca 2+快速大量流入细胞质,还会导致各种内源蛋白的流出或释放,例如高迁移率族蛋白 1 (HMGB1),它被认为是主要的促炎因子潮湿[ 75 ]。尽管负责质膜孔形成的关键效应器尚未确定,但运输-III(ESCRT-III)机制所需的Ca 2+依赖性内体分选复合物的激活可以促进质膜修复,从而限制发生铁死亡和促炎性 DAMP 的释放(图1c )[ 76 – 78 ]。除了铁死亡之外,ESCRT-III 还具有修复细胞焦亡和坏死性凋亡中质膜损伤的保守功能 [ 79 , 80 ]。需要进行额外的工作来确定特定细胞器(例如线粒体或溶酶体)的膜修复机制是否参与了铁死亡的防御[ 81 ]。越来越多的证据表明,细胞与细胞的接触赋予细胞对铁死亡的抵抗力[28,82,83 ] 。在相邻细胞中,铁死亡可能以快速波状传播的方式传播[ 84 ]。可以推测,特定的细胞骨架相关的动态变化传递或限制相互作用细胞之间接触部位的质膜的氧化损伤。阐明这种假设机制将需要开发和标准化空间分辨测定法,以检测铁死亡相关的膜损伤。
Role of different organelles in ferroptosis
不同细胞器在铁死亡中的作用
Ferroptosis is a strictly regulated process that requires multiple modulators involved in a series of complex signals in different organelles, including mitochondria, lysosomes, endoplasmic reticulum (ER), lipid droplets (LDs), peroxisomes, Golgi apparatus, and nucleus (Table 1).
铁死亡是一个严格调控的过程,需要多种调节剂参与不同细胞器中的一系列复杂信号,包括线粒体、溶酶体、内质网(ER)、脂滴(LD)、过氧化物酶体、高尔基体和细胞核(表1 )。
Table 1. 表 1.
Role of subcellular organelles in ferroptosis.
亚细胞器在铁死亡中的作用。
Organelle 细胞器 | Stimulus 刺激 | Morphological and functional changes 形态和功能变化 |
Organelle-specific regulators 细胞器特异性调节因子 |
---|---|---|---|
Mitochondria 线粒体 |
Erastin 埃拉斯汀 Glutamate 谷氨酸 Doxorubicin 阿霉素 Zalcitabine 扎西他滨 |
Swollen mitochondria 线粒体肿胀 Decrease in cristae 嵴减少 Mitochondrial membrane potential ↓ Mitochondrial membrane permeability ↑ Mitochondrial ROS ↑ 线粒体 ROS ↑ Mitochondrial lipid peroxidation ↑ Mitochondrial iron ↑ 线粒体铁↑ Mitochondrial DNA stress ↑ |
AIFM1, CISD1, CISD2, DHODH, ETC complex, FH, FXN, GLS2, GPX4, IDH2, ISCU, LONP1 MFN1, MFN2, MGST1, MPC1, NFS1, PDK4, POLG, SOD2, TFAM, VDAC |
Lysosome 溶酶体 |
Erastin 埃拉斯汀 Glutamate 谷氨酸 |
Lysosomal cathepsins ↑ 溶酶体组织蛋白酶↑ Lysosomal lipid peroxidation ↑ Lysosomal iron ↑ 溶酶体铁↑ Lysosomal nitric oxide ↑ 溶酶体一氧化氮↑ |
ATG, CTSB, PSAP, SMPD1 ATG、CTSB、PSAP、SMPD1 |
ER |
Erastin 埃拉斯汀 RSL3 |
Viscosity of ER ↑ ER 粘度 ↑ Lipid peroxidation ↑ 脂质过氧化↑ ER stress ↑ 内质网应激↑ MUFA synthesis ↓ MUFA合成↓ Zinc transport from ER to cytosol |
AGPAT3, EIF2AK3, SCD, SLC39A7/ZIP7, STING1 AGPAT3、EIF2AK3、SCD、SLC39A7/ZIP7、STING1 |
LD |
RSL3 Orlistat 奥利司他 |
Formation of LDs ↑ LD 的形成 ↑ Lipophagy ↑ 脂肪吞噬↑ |
RAB7A, TPD52, FAF2 RAB7A、TPD52、FAF2 |
Peroxisome 过氧化物酶体 |
Erastin 埃拉斯汀 RSL3 ML210 |
Plasmalogen synthesis ↑ 缩醛磷脂合成↑ | AGPS, FAR1, PEDS1, PEX AGPS、FAR1、PEDS1、PEX |
Golgi complex 高尔基复合体 |
Brefeldin A 布雷菲德菌素A AMF-26 Golgicide A 杀高菌剂A |
Golgi dispersal 高尔基体扩散 | Unknown 未知 |
Nucleus 核 |
Erastin 埃拉斯汀 RSL3 |
DNA oxidative damage ↑ DNA氧化损伤↑ DNA damage and repair ↑ |
AIFM1, CTSB, FANCD2, HMGB1, PIR, TP53 AIFM1、CTSB、FANCD2、HMGB1、PIR、TP53 |
AGPAT3 1-acylglycerol-3-phosphate O-acyltransferase 3, AGPS Alkylglycerone phosphate synthase, AIFM1/AIF Apoptosis-inducing factor mitochondria-associated 1, ATG Autophagy-related gene, CISD1 CDGSH iron sulfur domain 1, CISD2 CDGSH iron sulfur domain 2, CTSB cathepsin B, DHODH Dihydroorotate dehydrogenase (quinone), EIF2AK3/PERK Eukaryotic translation initiation factor 2 alpha kinase 3, ER Endoplasmic reticulum, ETC Electron transport chain, FANCD2 FA complementation group D2, FAR1 Fatty acyl-CoA reductase 1, FH Fumarate hydratase, FXN Frataxin, GLS2 Glutaminase 2, GPX4 Glutathione peroxidase 4, HMGB1 High-mobility group box 1, IDH2 Isocitrate dehydrogenase (NADP[+]) 2, ISCU Iron-sulfur cluster assembly enzyme, LDs Lipid droplets, LONP1 Lon peptidase 1, mitochondrial, MFN1 Mitofusin 1, MFN2 Mitofusin 2, MGST1 Microsomal glutathione S-transferase 1, MPC1 Mitochondrial pyruvate carrier 1, PDK4 Pyruvate dehydrogenase kinase 4, PEDS1/TMEM189 Plasmanylethanolamine desaturase 1, PEX Peroxisomal biogenesis factor, PIR Pirin, POLG DNA polymerase gamma, catalytic subunit, PSAP Prosaposin, RAB7A Member RAS oncogene family, SCD/SCD1 Stearoyl-CoA desaturase, SLC39A7/ZIP7 Solute carrier family 39 member 7, SMPD1/ASM Sphingomyelin phosphodiesterase 1, SOD2 Superoxide dismutase 2, STING1/TMEM173 Stimulator of interferon response cGAMP interactor 1, TFAM Transcription factor A, mitochondrial, TP53 Tumor protein p53, TPD52 Tumor protein D52, VDAC Voltage-dependent anion channel.
AGPAT3 1-酰基甘油-3-磷酸O-酰基转移酶3、 AGPS烷基甘油磷酸合酶、 AIFM1/AIF凋亡诱导因子线粒体相关1、 ATG自噬相关基因、 CISD1 CDGSH 铁硫结构域1、 CISD2 CDGSH 铁硫结构域2、 CTSB组织蛋白酶 B、 DHODH二氢乳清酸脱氢酶(醌)、 EIF2AK3/PERK真核翻译起始因子 2 α 激酶 3、 ER内质网、 ETC电子转运链、 FANCD2 FA 互补组 D2、 FAR1脂肪酰基辅酶 A 还原酶 1、 FH富马酸水合酶、 FXN Frataxin、 GLS2谷氨酰胺酶 2、 GPX4谷胱甘肽过氧化物酶 4、 HMGB1高迁移率组盒 1、 IDH2异柠檬酸脱氢酶 (NADP[+]) 2、 ISCU铁硫簇组装酶、 LDs脂滴、 LONP1 Lon 肽酶 1、线粒体、 MFN1线粒体融合蛋白 1、 MFN2线粒体融合蛋白 2、 MGST1微粒体谷胱甘肽 S-转移酶 1、 MPC1线粒体丙酮酸载体 1、 PDK4丙酮酸脱氢酶激酶 4、 PEDS1/TMEM189质膜乙醇胺去饱和酶 1、 PEX过氧化物酶体生物发生因子、 PIR Pirin、 POLG DNA 聚合酶 γ、催化亚基, PSAP Prosaposin, RAB7A RAS 癌基因家族成员, SCD/SCD1硬脂酰辅酶 A 去饱和酶, SLC39A7/ZIP7溶质载体家族 39 成员 7, SMPD1/ASM鞘磷脂磷酸二酯酶 1, SOD2 超氧化物歧化酶 2、 STING1/TMEM173干扰素反应刺激剂 cGAMP 相互作用子 1、 TFAM转录因子 A、线粒体、 TP53肿瘤蛋白 p53、 TPD52肿瘤蛋白 D52、 VDAC电压依赖性阴离子通道。
Mitochondria 线粒体
Ferroptotic cells usually exhibit swollen mitochondria, accompanied by a decrease in cristae, dissipation of the mitochondrial membrane potential, as well as an increase in mitochondrial membrane permeability [5], indicating that mitochondrial dysfunction has occurred. However, the role of mitochondria in ferroptosis is controversial. Early study suggests that mitochondria are not required for ferroptosis because when human osteosarcoma 143B cells are depleted of mitochondrial DNA (mtDNA), which are known as ρ° cells, it has no effect on the pro-ferroptotic effects of SLC7A11 inhibitor erastin [5]. It is important to note that cells lacking mtDNA do have mitochondria. Thus, these results are reminiscent of the initially fallacious interpretation of results involving ρ° cells that were fully susceptible to apoptosis induction (“no need for mitochondria in apoptosis”) [85] that were later reinterpreted to mean that the close-to-obligatory contribution of mitochondrial membrane permeabilization to apoptosis does not require mtDNA [86, 87]. Cells that eliminate mitochondria through parkin RBR E3 ubiquitin protein ligase (PRKN)-mediated mitophagy are less sensitive to ferroptosis triggered by cystine starvation or erastin, but are more sensitive to ferroptosis induced by GPX4 inhibitors [26, 88, 89]. Increasing evidence indicates that mitochondria play a significant role in promoting ferroptosis through context-dependent metabolic effects. Altogether, it appears plausible that mitochondrial biogenesis, dynamics, and turnover affect the number and quality of mitochondria, thereby fine-tuning the activity of ferroptosis inducers.
铁死亡细胞通常表现出线粒体肿胀,并伴有嵴减少、线粒体膜电位耗散以及线粒体膜通透性增加[ 5 ],表明线粒体功能障碍已经发生。然而,线粒体在铁死亡中的作用存在争议。早期研究表明,铁死亡不需要线粒体,因为当人骨肉瘤 143B 细胞耗尽线粒体 DNA (mtDNA)(即 ρ° 细胞)时,它对 SLC7A11 抑制剂erastin 的促铁死亡作用没有影响 [ 5 ] 。值得注意的是,缺乏线粒体 DNA 的细胞确实有线粒体。因此,这些结果让人想起最初对涉及完全易受凋亡诱导影响的ρ°细胞的结果的错误解释(“凋亡中不需要线粒体”)[ 85 ],后来被重新解释为意味着接近强制性的线粒体膜透化对细胞凋亡的贡献不需要 mtDNA [ 86 , 87 ]。通过parkin RBR E3泛素蛋白连接酶(PRKN)介导的线粒体自噬消除线粒体的细胞对胱氨酸饥饿或erastin引发的铁死亡不太敏感,但对GPX4抑制剂诱导的铁死亡更敏感[ 26,88,89 ]。越来越多的证据表明,线粒体通过背景依赖性代谢效应在促进铁死亡中发挥着重要作用。总而言之,线粒体的生物发生、动力学和周转会影响线粒体的数量和质量,从而微调铁死亡诱导物的活性,这似乎是合理的。
Mitochondrial ROS 线粒体活性氧
In the process of oxidative phosphorylation, mitochondria are an important source of ROS in most mammalian cells. Local ROS generation does not only lead to mitochondrial damage, but also affects the redox status of the rest of the cell. Because mitochondrial ROS mainly induce apoptosis, they were initially thought not to be involved in ferroptosis [5, 19]. However, later studies suggest that increased mitochondrial ROS promote ferroptosis, a process that can be inhibited by mitochondrial-targeted antioxidants or enzymes, as shown in several complementary studies (Fig. 2a). First, C11-BODIPY 581/591 (a fluorescent radio probe for detecting lipid peroxidation) staining and quantitative analysis of malondialdehyde (MDA, an end product of lipid peroxidation) show that lipid ROS are increased in mitochondria during erastin- or doxorubicin-induced ferroptosis in human fibrosarcoma HT1080 cells, mouse embryonic fibroblasts (MEFs), or cardiomyocytes [26, 90]. The accumulation of mitochondrial lipid ROS may be partly explained by depletion of mitochondrial GSH during ferroptosis [91]. Thus, mitochondria-targeted ROS scavengers, such as MitoTEMPO and mitoquinone, can inhibit ferroptosis in various cell types, including cancer cells, cardiomyocytes, hippocampal neuronal cells, and MEFs [22, 92]. Second, several mitochondrial antioxidant enzymes play a significant role in inhibiting ferroptosis. GPX4 can be localized in the cytosol and mitochondrial intermembrane space [93–95], and its mitochondrial form plays a role in mitigating mitochondria oxidative damage during cell death, including ferroptosis [90]. Superoxide dismutase 2 (SOD2/MnSOD), a member of the iron/manganese superoxide dismutase family located in the mitochondrial matrix of eukaryotes as well as in various prokaryotes, also has the ability to prevent mitochondrial ROS-induced ferroptosis in non-small cell lung cancer cells [96]. In addition, microsomal glutathione S-transferase 1 (MGST1), an antioxidant enzyme located predominantly in mitochondria and ER, limits lipid peroxidation and ferroptosis by binding to ALOX5 [97]. Third, similar to its role in extramitochondrial membranes, the mitochondrial CoQ10 effectively prevents ferroptosis [69]. Mitochondrial DHODH mediates the oxidation of dihydroorotate to orotate, a process coupled to the reduction of CoQ10 to ubiquinol, and limits mitochondrial lipid peroxidation and ferroptosis caused by GPX4 downregulation [69]. Fourth, mitochondrial oxidative damage induces the release of certain mitochondrial apoptosis regulators, such as apoptosis-inducing factor mitochondria-associated 1 (AIFM1, a factor initially involved in caspase-independent apoptosis [98]), which promotes ferroptosis through its translocation to the nucleus in mouse hippocampal HT22 cells or MEFs [99, 100], highlighting a molecular link between apoptosis and ferroptosis. However, CRISPR-mediated knockout of AIFM1 cannot rescue ferroptosis induced by GPX4 deletion in MEFs [67]. Unlike mitochondrial fission that promotes apoptosis [101], mitochondrial fusion favors mitochondrial oxidative damage and subsequent ferroptosis through the stimulator of interferon response cGAMP interactor 1 (STING1)-mitofusin 1/2 (MFN1/2) pathway [102]. Since mitochondrial ROS induce apoptosis by releasing mitochondrial proteins (such as AIFM1 and the caspase activators cytochrome c [CYCS] and SMAC/DIABLO), it may be expected that mitochondrial ROS-mediated ferroptosis is coupled to the release of cytotoxic mitochondrial proteins as well. Nevertheless, deficient oxidative phosphorylation or consumption of adenosine triphosphate (ATP) by uncoupled mitochondria might contribute to ferroptosis as well. Hence, further studies of mitochondrial derangements accompanying ferroptosis are warranted.
在氧化磷酸化过程中,线粒体是大多数哺乳动物细胞中ROS的重要来源。局部ROS的产生不仅会导致线粒体损伤,还会影响细胞其余部分的氧化还原状态。由于线粒体ROS主要诱导细胞凋亡,因此最初认为它们不参与铁死亡[ 5 , 19 ]。然而,后来的研究表明,线粒体ROS的增加会促进铁死亡,这一过程可以被线粒体靶向的抗氧化剂或酶抑制,如几项补充研究所示(图2a )。首先,C11-BODIPY 581/591(一种用于检测脂质过氧化的荧光放射性探针)染色和丙二醛(MDA,脂质过氧化的最终产物)的定量分析表明,在erastin或阿霉素诱导的铁死亡过程中,线粒体中的脂质ROS增加在人纤维肉瘤 HT1080 细胞、小鼠胚胎成纤维细胞 (MEF) 或心肌细胞中 [ 26 , 90 ]。线粒体脂质 ROS 的积累可能部分是由于铁死亡期间线粒体 GSH 的消耗所致 [ 91 ]。因此,线粒体靶向的 ROS 清除剂,如 MitoTEMPO 和 mitoquinone,可以抑制多种细胞类型的铁死亡,包括癌细胞、心肌细胞、海马神经元细胞和 MEF [ 22 , 92 ]。其次,几种线粒体抗氧化酶在抑制铁死亡方面发挥着重要作用。 GPX4 可以定位于细胞质和线粒体膜间隙中[ 93-95 ],其线粒体形式在细胞死亡期间减轻线粒体氧化损伤(包括铁死亡)中发挥作用[ 90 ]。 超氧化物歧化酶 2 (SOD2/MnSOD) 是铁/锰超氧化物歧化酶家族的成员,位于真核生物和各种原核生物的线粒体基质中,也具有预防非小细胞肺中线粒体 ROS 诱导的铁死亡的能力癌细胞[ 96 ]。此外,微粒体谷胱甘肽 S-转移酶 1 (MGST1) 是一种主要位于线粒体和 ER 中的抗氧化酶,通过与 ALOX5 结合来限制脂质过氧化和铁死亡 [ 97 ]。第三,类似于其在线粒体外膜中的作用,线粒体 CoQ10 可以有效防止铁死亡[ 69 ]。线粒体 DHODH 介导二氢乳清酸氧化为乳清酸,这一过程与 CoQ10 还原为泛醇相关,并限制 GPX4 下调引起的线粒体脂质过氧化和铁死亡[ 69 ]。第四,线粒体氧化损伤诱导某些线粒体凋亡调节因子的释放,例如凋亡诱导因子线粒体相关1(AIFM1,一种最初参与不依赖半胱天冬酶的细胞凋亡的因子[ 98 ]),它通过易位到细胞核促进铁死亡在小鼠海马 HT22 细胞或 MEF 中进行的研究 [ 99 , 100 ],强调了细胞凋亡和铁死亡之间的分子联系。然而,CRISPR介导的AIFM1敲除不能挽救MEF中GPX4缺失诱导的铁死亡[ 67 ]。与促进细胞凋亡的线粒体裂变不同[ 101 ],线粒体融合通过干扰素反应cGAMP相互作用子1(STING1)-线粒体融合蛋白1/2(MFN1/2)途径的刺激剂促进线粒体氧化损伤和随后的铁死亡[ 102 ]。 由于线粒体 ROS 通过释放线粒体蛋白(例如 AIFM1 和 caspase 激活剂细胞色素c [CYCS] 和 SMAC/DIABLO)来诱导细胞凋亡,因此可以预期线粒体 ROS 介导的铁死亡也与细胞毒性线粒体蛋白的释放有关。然而,氧化磷酸化不足或未偶联线粒体消耗三磷酸腺苷(ATP)也可能导致铁死亡。因此,有必要进一步研究伴随铁死亡的线粒体紊乱。
Fig. 2. Role of mitochondria in ferroptosis.
图 2. 线粒体在铁死亡中的作用。
a Mitochondrial ROS. GPX4, SOD2, and MGST1 are mitochondria-associated antioxidant proteins, which play a major role in protecting mitochondria from oxidative damage during ferroptosis. In addition, mitochondrial DHODH limits ferroptosis through the reduction of CoQ10 to ubiquinol. Mitochondrial oxidative damage induces the release of AIFM1, which promotes ferroptosis through its translocation to the nucleus. The STING1-MFN1/2 pathway triggers ferroptosis by inducing mitochondrial fusion and subsequent ROS production. b Mitochondrial iron. Iron can be transported to the mitochondria via SLC25A37 and SLC25A28 and used to synthesize heme/Fe-S, or it can be stored in ferritin in mitochondria. Heme is catalyzed by HMOX1 and decomposes into Fe2+, and acts as a key cofactor of ETC by which heme promotes ferroptosis. The inhibition of iron-sulfur cluster assembly proteins, including NFS1, FXN, and ISCU, can enhance ferroptosis by the activation of an IREB2-mediated iron-starvation response. Fe-S proteins CISD1 and CISD2 inhibit ferroptosis by decreasing intracellular iron levels. c Mitochondrial DNA (mtDNA). POLG (DNA polymerase) and DGUOK (deoxynucleoside synthesis enzyme) are required for mtDNA replication. The inhibition of POLG by zalcitabine and TFAM degradation induce mtDNA stress, which activates GAS-STING1 pathway-dependent autophagy to mediate ferroptosis. d The TCA cycle transfers electrons to the ETC, which releases ROS to induce ferroptosis. The TCA cycle also enhances ferroptosis by promoting ACAC-mediated fatty acid synthesis. This effect is inhibited by PDK4-mediated glucose metabolism or enhanced by GLS2-mediated glutaminolysis. In addition, the suppression of MPC1 also enhances ferroptosis partly through increasing glutaminolysis. Abbreviations: ACAC acetyl-CoA carboxylase, AIFM1/AIF apoptosis-inducing factor mitochondria-associated 1, ALOX lipoxygenase, CGAS cyclic GMP-AMP synthase, CISD1 CDGSH iron sulfur domain 1, CISD2 CDGSH iron sulfur domain 2, DGUOK deoxyguanosine kinase, DHODH dihydroorotate dehydrogenase (quinone), ETC electron transport chain, FH fumarate hydratase, FXN frataxin, GLS2 glutaminase 2, GPX4 glutathione peroxidase 4, HMOX1/HO1 heme oxygenase 1, IDH2 isocitrate dehydrogenase (NADP[+]) 2, IREB2/IRP2 iron-responsive element binding protein 2, ISCU iron–sulfur cluster assembly enzyme, LONP1 Lon peptidase 1, mitochondrial, MFN1 mitofusin 1, MFN2 mitofusin 2, MGST1 microsomal glutathione S-transferase 1, MPC1 mitochondrial pyruvate carrier 1, NADH dihydronicotinamide adenine dinucleotide, PDH pyruvate dehydrogenase, PDK4 pyruvate dehydrogenase kinase 4, PLOOH phospholipid hydroperoxide, POLG DNA polymerase gamma, catalytic subunit, PUFA polyunsaturated fatty acid, ROS reactive oxygen species, SLC25A28/mitoferrin-2 solute carrier family 25 member 28, SLC25A37/mitoferrin-1 solute carrier family 25 member 37, SOD2 superoxide dismutase 2, STING1/TMEM173 stimulator of interferon response cGAMP interactor 1, TFAM transcription factor A, mitochondrial.
线粒体ROS 。 GPX4、SOD2 和 MGST1 是线粒体相关的抗氧化蛋白,在铁死亡过程中保护线粒体免受氧化损伤方面发挥着重要作用。此外,线粒体 DHODH 通过将 CoQ10 还原为泛醇来限制铁死亡。线粒体氧化损伤会诱导 AIFM1 的释放,AIFM1 通过易位至细胞核而促进铁死亡。 STING1-MFN1/2 途径通过诱导线粒体融合和随后的 ROS 产生来触发铁死亡。 b线粒体铁。铁可以通过SLC25A37和SLC25A28转运到线粒体并用于合成血红素/Fe-S,也可以储存在线粒体中的铁蛋白中。血红素被HMOX1催化分解成Fe 2+ ,并作为ETC的关键辅助因子,血红素通过其促进铁死亡。抑制铁硫簇组装蛋白(包括 NFS1、FXN 和 ISCU)可以通过激活 IREB2 介导的铁饥饿反应来增强铁死亡。 Fe-S 蛋白 CISD1 和 CISD2 通过降低细胞内铁水平来抑制铁死亡。 c线粒体DNA (mtDNA)。 mtDNA 复制需要 POLG(DNA 聚合酶)和 DGUOK(脱氧核苷合成酶)。扎西他滨对 POLG 的抑制和 TFAM 降解会诱导 mtDNA 应激,从而激活 GAS-STING1 通路依赖性自噬来介导铁死亡。 d TCA循环将电子转移到ETC,ETC释放ROS以诱导铁死亡。 TCA 循环还通过促进 ACAC 介导的脂肪酸合成来增强铁死亡。这种作用被 PDK4 介导的葡萄糖代谢抑制,或被 GLS2 介导的谷氨酰胺分解增强。 此外,抑制 MPC1 还部分通过增加谷氨酰胺分解来增强铁死亡。缩写:ACAC 乙酰辅酶 A 羧化酶、AIFM1/AIF 凋亡诱导因子线粒体相关 1、ALOX 脂氧合酶、CGAS 环 GMP-AMP 合酶、CISD1 CDGSH 铁硫结构域 1、CISD2 CDGSH 铁硫结构域 2、DGUOK 脱氧鸟苷激酶、DHODH 二氢乳清酸脱氢酶(醌)、ETC 电子传递链、FH 富马酸水合酶、FXN frataxin、GLS2 谷氨酰胺酶 2、GPX4 谷胱甘肽过氧化物酶 4、HMOX1/HO1 血红素加氧酶 1、IDH2 异柠檬酸脱氢酶 (NADP[+]) 2、IREB2/IRP2 铁响应元素结合蛋白 2、ISCU 铁硫簇组装酶、LONP1 Lon 肽酶 1、线粒体、MFN1 线粒体融合蛋白 1、MFN2 线粒体融合蛋白 2、MGST1 微粒体谷胱甘肽 S-转移酶 1、MPC1 线粒体丙酮酸载体 1、NADH 二氢烟酰胺腺嘌呤二核苷酸、PDH 丙酮酸脱氢酶、PDK4 丙酮酸脱氢酶激酶 4、PLOOH 磷脂氢过氧化物、POLG DNA 聚合酶 γ、催化亚基、PUFA 多不饱和脂肪酸、ROS 活性氧、SLC25A28/mitoferrin-2 溶质载体家族 25 成员 28、SLC25A37/mitoferrin-1 溶质载体家族 25成员 37、SOD2 超氧化物歧化酶 2、STING1/TMEM173 干扰素反应刺激剂 cGAMP 相互作用子 1、TFAM 转录因子 A、线粒体。
Mitochondrial iron 线粒体铁
Extracellular iron is taken up by cells and can be imported into mitochondria via the mitochondrial iron importer solute carrier family 25 member 37 (SLC25A37, also known as mitoferrin-1) and solute carrier family 25 member 28 (SLC25A28, also known as mitoferrin-2). Mitochondrial Fe2 + can be used to synthesize heme and Fe-S clusters, or stored in mitochondrial ferritin. In contrast, excessive mitochondrial iron can mediate the production of ROS or cause abnormal enzyme activity. Impaired mitochondrial iron metabolism leads to ferroptosis (Fig. 2b). First, heme directly induces ferroptosis in primary neurons or in human monocytic cells [103, 104], and this process can be further dually regulated by cytosolic or mitochondrial heme oxygenase 1 (HMOX1), likely in a cell type-dependent manner [105, 106]. Second, the component of iron-sulfur cluster assembly machinery, such as NFS1 cysteine desulfurase, frataxin (FXN), and iron-sulfur cluster assembly enzyme (ISCU), generally play an anti-ferroptotic role in various conditions. For example, the suppression of NFS1 activates the iron-responsive element binding protein 2 (IREB2, also known as IRP2)-mediated iron-starvation response and sensitizes lung cancer cells to ferroptosis [34, 107]. The suppression of FXN also induces the accumulation of free iron, thereby enhancing erastin- or alcohol-induced ferroptosis in cancer or live cells [108, 109]. FXN deficiency is related to Friedreich’s ataxia and can be relieved by ferroptosis inhibitors [110]. In addition, the overexpression of ISCU attenuates dihydroartemisinin-induced ferroptosis by regulating iron metabolism and mitochondrial function [111]. Third, mitochondrial iron exporters, such as CISD1 and CDGSH iron sulfur domain 2 (CISD2), inhibit ferroptosis by protecting mitochondria against lipid peroxidation in cancer cells [35, 112, 113]. Fourth, similar to cytoplasmic ferritin, mitochondrial ferritin increases iron storage and protects against ferroptosis in human neuroblastoma SH-SY5Y cells or primary human macrophages caused by erastin or hypoxia [114, 115]. Together, these findings help identify new proteins to clarify the pathways involved in mitochondrial iron homeostasis during ferroptosis.
细胞外铁被细胞摄取,可以通过线粒体铁输入溶质载体家族25成员37(SLC25A37,也称为线粒体铁蛋白-1)和溶质载体家族25成员28(SLC25A28,也称为线粒体铁蛋白-2)输入线粒体。 )。线粒体Fe 2+可用于合成血红素和Fe-S簇,或储存在线粒体铁蛋白中。相反,过量的线粒体铁会介导ROS的产生或导致酶活性异常。线粒体铁代谢受损会导致铁死亡(图2b )。首先,血红素直接诱导原代神经元或人类单核细胞中的铁死亡[ 103 , 104 ],并且该过程可以进一步受到细胞质或线粒体血红素加氧酶 1 (HMOX1) 的双重调节,可能以细胞类型依赖性方式[ 105 , 106 ]。其次,铁硫簇组装机制的组成部分,如NFS1半胱氨酸脱硫酶、frataxin (FXN)和铁硫簇组装酶(ISCU),通常在各种条件下发挥抗铁死亡作用。例如,抑制 NFS1 会激活铁反应元件结合蛋白 2(IREB2,也称为 IRP2)介导的铁饥饿反应,并使肺癌细胞对铁死亡敏感 [ 34 , 107 ]。 FXN 的抑制还会诱导游离铁的积累,从而增强癌症或活细胞中erastin 或酒精诱导的铁死亡[ 108 , 109 ]。 FXN 缺乏与 Friedreich 共济失调有关,可以通过铁死亡抑制剂缓解[ 110 ]。 此外,ISCU 的过度表达通过调节铁代谢和线粒体功能来减弱双氢青蒿素诱导的铁死亡[ 111 ]。第三,线粒体铁输出蛋白,例如 CISD1 和CDGSH铁硫结构域 2 ( CISD2),通过保护线粒体免受癌细胞中的脂质过氧化作用来抑制铁死亡 [35,112,113 ] 。第四,与细胞质铁蛋白类似,线粒体铁蛋白增加铁储存并防止人神经母细胞瘤 SH-SY5Y 细胞或原代人巨噬细胞因erastin或缺氧引起的铁死亡[ 114 , 115 ]。总之,这些发现有助于识别新的蛋白质,以阐明铁死亡过程中参与线粒体铁稳态的途径。
mtDNA 线粒体DNA
mtDNA is a circular double-stranded DNA condensed into nucleoids due to the interaction with mitochondrial transcription factor A (TFAM). In mammals, the DNA polymerase gamma, catalytic subunit (POLG) is required for mtDNA replication. Various mitochondrial stresses, including bioenergetic and environmental factors, can lead to mtDNA release into the cytoplasm. The released mtDNA activates a plethora of innate immune responses, especially the cyclic GMP-AMP synthase (CGAS)-STING1–dependent DNA sensing pathway, which can initiate a type I interferon response, autophagy, or cell death [116, 117]. It is widely accepted that mtDNA damage is an initial signal of cell death. Zalcitabine, an antiviral drug that targets POLG to induce Lon peptidase 1, mitochondrial (LONP1)-dependent TFAM degradation, has been shown to induce ferroptosis in human pancreatic cancer cells through the induction of mtDNA release and subsequent STING1-related autophagic cell death (Fig. 2c) [21]. Deoxyguanosine kinase (DGUOK) is a rate-limiting enzyme for mitochondrial deoxynucleoside salvage pathway enzymes involved in precursor synthesis for mtDNA replication. A loss-of-function mutation of DGUOK can cause hepatic mtDNA depletion syndrome with enhanced ferroptosis sensitivity (Fig. 2c) [118]. However, mtDNA-depleted human osteosarcoma 143B cells (ρ° cells) display sensitivity to erastin-induced ferroptosis that is equivalent to that of parental cells [5], contrasting with the observation that they contain higher levels of ALOX for lipid peroxidation to induce apoptosis [119]. Thus, unknown defense mechanisms might limit ALOX activity in ρ° cells in response to ferroptosis activators, but not other cell death inducers.
mtDNA 是由于与线粒体转录因子 A (TFAM) 的相互作用而缩合成核的环状双链 DNA。在哺乳动物中,线粒体 DNA 复制需要 DNA 聚合酶 γ 催化亚基 (POLG)。各种线粒体应激,包括生物能和环境因素,都可能导致 mtDNA 释放到细胞质中。释放的 mtDNA 激活大量先天免疫反应,特别是依赖于环 GMP-AMP 合酶 (CGAS)-STING1 的 DNA 传感途径,它可以启动 I 型干扰素反应、自噬或细胞死亡 [ 116 , 117 ]。人们普遍认为线粒体DNA损伤是细胞死亡的最初信号。扎西他滨是一种抗病毒药物,以 POLG 为靶点,诱导 Lon 肽酶 1、线粒体 (LONP1) 依赖性 TFAM 降解,已被证明可通过诱导 mtDNA 释放和随后的 STING1 相关自噬性细胞死亡,诱导人胰腺癌细胞铁死亡(图 1)。 2c ) [ 21 ]。脱氧鸟苷激酶 (DGUOK) 是线粒体脱氧核苷挽救途径酶的限速酶,参与 mtDNA 复制的前体合成。 DGUOK 的功能丧失突变可导致肝 mtDNA 耗竭综合征,并伴有铁死亡敏感性增强(图2c )[ 118 ]。然而,mtDNA 耗尽的人骨肉瘤 143B 细胞(ρ° 细胞)对erastin诱导的铁死亡的敏感性与亲代细胞相当[ 5 ],与观察到的结果相反,它们含有较高水平的 ALOX,可通过脂质过氧化诱导细胞凋亡[ 119 ]。 因此,未知的防御机制可能会限制 ρ° 细胞中 ALOX 的活性,以响应铁死亡激活剂,但不会限制其他细胞死亡诱导剂。
The tricarboxylic acid cycle
三羧酸循环
The tricarboxylic acid (TCA) cycle is a mitochondrial matrix-located enzymatic pathway that interfaces with various metabolic pathways in the cytosol. It uses acetyl-CoA produced from glucose as a starting material, and transfers electrons to the ETC through a series of redox reactions, thus allowing ATP production by oxidative phosphorylation. The energy sensor AMP-activated protein kinase (AMPK) regulated by the cellular ADP:ATP ratio plays a dual role in ferroptosis according to its phosphorylated substrate [43, 120]. The TCA cycle enzyme fumarate hydratase (FH) catalyzes the reversible hydration of fumarate to malate. FH-mutant renal cancer cells are less sensitive to cystine starvation-induced ferroptosis [26]. However, FH knockout sensitizes renal cancer cells to erastin-induced cell death [121]. Inhibitors of the mitochondrial ETC complexes I/II/III/IV selectively inhibit ferroptosis caused by cysteine starvation or erastin, rather than the GPX4 inhibitor RSL3 [26, 122]. These findings raise questions about the subcellular localization of erastin and RSL3, and erastin has indeed been shown to target voltage-dependent anion channels (VDACs) in mitochondria [123]. Nevertheless, ROS from mitochondrial ETC affords considerable flexibility in the regulation of ferroptotic cell death (Fig. 2d).
三羧酸(TCA)循环是一种位于线粒体基质的酶途径,与细胞质中的各种代谢途径相互作用。它以葡萄糖产生的乙酰辅酶A为起始原料,通过一系列氧化还原反应将电子转移到ETC,从而通过氧化磷酸化产生ATP。受细胞 ADP:ATP 比例调节的能量传感器 AMP 激活蛋白激酶 (AMPK) 根据其磷酸化底物在铁死亡中发挥双重作用 [ 43 , 120 ]。 TCA 循环酶富马酸水合酶 (FH) 催化富马酸可逆水合为苹果酸。 FH 突变肾癌细胞对胱氨酸饥饿诱导的铁死亡不太敏感[ 26 ]。然而,FH 敲除使肾癌细胞对erastin 诱导的细胞死亡敏感[ 121 ]。线粒体 ETC 复合物 I/II/III/IV 的抑制剂选择性抑制由半胱氨酸饥饿或erastin 引起的铁死亡,而不是 GPX4 抑制剂 RSL3 [ 26 , 122 ]。这些发现提出了有关erastin和RSL3的亚细胞定位的问题,并且erastin确实已被证明可以靶向线粒体中的电压依赖性阴离子通道(VDAC)[ 123 ]。然而,来自线粒体ETC的ROS在调节铁死亡细胞死亡方面提供了相当大的灵活性(图2d )。
Glutaminolysis can fuel the TCA cycle by producing glutamate from glutamine via glutaminase (GLS). Mitochondrial GLS2, but not cytosolic GLS1, is responsible for glutaminolysis-associated ferroptosis [31, 124]. The suppression of mitochondrial pyruvate carrier 1 (MPC1) also increases vulnerability to ferroptosis partly by increasing glutaminolysis in erlotinib-resistant cancer cells [125]. Whether GLS2 and MPC1 have direct antagonistic effects on the induction of ferroptosis remains to be investigated.
谷氨酰胺分解可以通过谷氨酰胺酶 (GLS) 从谷氨酰胺产生谷氨酸,为 TCA 循环提供动力。线粒体 GLS2(而非胞质 GLS1)负责谷氨酰胺分解相关的铁死亡 [ 31 , 124 ]。抑制线粒体丙酮酸载体 1 (MPC1) 也会增加铁死亡的脆弱性,部分原因是增加厄洛替尼耐药癌细胞中的谷氨酰胺分解 [ 125 ]。 GLS2和MPC1是否对铁死亡的诱导具有直接拮抗作用还有待研究。
Mitochondrial isocitrate dehydrogenase (NADP[ +]) 2 (IDH2) catalyzes the conversion of isocitrate to α-ketoglutarate (αKG), which is the first oxidative decarboxylation of the TCA cycle. The downregulation of IDH2 sensitizes cancer cells to erastin-induced ferroptosis through decreasing the mitochondrial NADPH pool [126]. Acetyl-CoA produced from the TCA cycle or glucose-mediated pyruvate oxidation in mitochondria can be used for fatty acid synthesis and elongation in the cytosol [127]. In contrast, pyruvate dehydrogenase kinase 4 (PDK4) inhibits glucose-mediated susceptibility to ferroptosis by limiting pyruvate oxidation and subsequent fatty acid synthesis in pancreatic cancer cells [128]. The anaplerotic conversion of glutamate to αKG provides an additional way for fatty acids to be synthesized for amplifying ferroptosis in cancer and non-malignant cells [26]. Thus, the TCA cycle provides an interconnected redox hub for the integration of metabolic signals from glycolysis and amino acid catabolism to generate ferroptosis-favoring PUFAs (Fig. 2d). Future metabolic flux analyses might unveil new mechanisms and feedback loops that participate to the mitochondrial regulation of ferroptosis.
线粒体异柠檬酸脱氢酶(NADP[+])2(IDH2)催化异柠檬酸转化为α-酮戊二酸(αKG),这是TCA循环的第一次氧化脱羧。 IDH2 的下调通过减少线粒体 NADPH 库使癌细胞对erastin 诱导的铁死亡敏感[ 126 ]。 TCA循环或线粒体中葡萄糖介导的丙酮酸氧化产生的乙酰辅酶A可用于胞质溶胶中的脂肪酸合成和延伸[ 127 ]。相比之下,丙酮酸脱氢酶激酶 4 (PDK4) 通过限制胰腺癌细胞中的丙酮酸氧化和随后的脂肪酸合成来抑制葡萄糖介导的铁死亡敏感性 [ 128 ]。谷氨酸向 αKG 的回补转化为合成脂肪酸以放大癌症和非恶性细胞中的铁死亡提供了另一种途径[ 26 ]。因此,TCA循环提供了一个互连的氧化还原中心,用于整合来自糖酵解和氨基酸分解代谢的代谢信号,以产生有利于铁死亡的PUFA(图2d )。未来的代谢流分析可能会揭示参与铁死亡线粒体调节的新机制和反馈回路。
Lysosomes 溶酶体
Lysosomes are acidic membrane-bound organelles that contribute to ferroptosis through three mechanisms: (i) the activation of autophagy, (ii) the release of lysosomal cathepsins, and (iii) the accumulation of lysosomal iron or nitric oxide.
溶酶体是酸性膜结合细胞器,通过三种机制导致铁死亡:(i)自噬的激活,(ii)溶酶体组织蛋白酶的释放,以及(iii)溶酶体铁或一氧化氮的积累。
Macroautophagy (to which we refer as ‘autophagy’) is a lysosome-dependent degradation pathway characterized by the formation of double-membrane bound vesicles called autophagosomes, which are hierarchically executed by the sequential contribution of autophagy-related (ATG) proteins [129]. The knockdown of ATG genes, such as ATG3, ATG5, ATG7, ATG13, BECN1 (also known as ATG6), and microtubule-associated protein 1 light chain 3 B (MAP1LC3B, also known as ATG8), inhibits ferroptosis in many cancer cells [6, 7, 130]. However, the knockdown of ATG2A promotes ferroptosis in human cervical cancer Hela cells by increasing Fe2+ uptake [131]. Several selective autophagy pathways promote ferroptosis by removing different cargoes (Fig. 3a). First, nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy [6, 7] and the sequestosome 1 (SQSTM1/p62)-mediated autophagic degradation of SLC40A1 [37] promote ferroptosis by increasing intracellular Fe2+ levels. Second, the lipophagy-dependent degradation of LDs increases free fatty acid supplies for subsequent lipid peroxidation during ferroptosis [8]. Third, the SQSTM1-mediated autophagic degradation of aryl hydrocarbon receptor nuclear translocator-like (ARNTL/BMAL1), a process known as clockophagy, facilitates ferroptosis induction through increasing intracellular levels of PUFA [132]. Fourth, chaperone-mediated autophagy (CMA) facilitates GPX4 degradation, resulting in an increase in lipid peroxidation that favors ferroptosis [60]. This process is further enhanced by the activation of sphingomyelin phosphodiesterase 1 (SMPD1, also known as ASM), a lysosomal enzyme that plays a major role in sphingolipid metabolism [133]. Although these data support the notion that ferroptosis is an autophagy-dependent form of cell death, the specific pathways used only for this process remain to be characterized [134, 135]. In particular, the question arises whether there would be some kind of specificity in the mechanism of selective autophagy and lipid metabolism that favor ferroptosis [136, 137].
巨自噬(我们称之为“自噬”)是一种溶酶体依赖性降解途径,其特征是形成称为自噬体的双膜结合囊泡,这些囊泡通过自噬相关(ATG)蛋白的顺序贡献分层执行[ 129 ] 。 ATG 基因(例如 ATG3、ATG5、ATG7、ATG13、BECN1(也称为 ATG6)和微管相关蛋白 1 轻链 3 B(MAP1LC3B,也称为 ATG8))的敲除可抑制许多癌细胞中的铁死亡。 6、7、130 ] 。然而,ATG2A 的敲低通过增加 Fe 2+ 的摄取而促进人宫颈癌 Hela 细胞的铁死亡[ 131 ]。几种选择性自噬途径通过去除不同的货物来促进铁死亡(图3a )。首先,核受体共激活剂 4 (NCOA4) 介导的铁蛋白自噬 [ 6 , 7 ] 和多螯体 1 (SQSTM1/p62) 介导的 SLC40A1 自噬降解 [ 37 ] 通过增加细胞内 Fe 2+水平来促进铁死亡。其次,LDs 的自噬依赖性降解增加了铁死亡过程中随后脂质过氧化的游离脂肪酸供应[ 8 ]。第三,SQSTM1介导的芳基碳氢化合物受体核转运蛋白样(ARNTL/BMAL1)的自噬降解,这一过程被称为时钟自噬,通过增加细胞内PUFA的水平促进铁死亡诱导[ 132 ]。第四,分子伴侣介导的自噬(CMA)促进 GPX4 降解,导致脂质过氧化增加,有利于铁死亡 [ 60 ]。 鞘磷脂磷酸二酯酶 1(SMPD1,也称为 ASM)的激活进一步增强了这一过程,鞘磷脂磷酸二酯酶 1 是一种在鞘脂代谢中起主要作用的溶酶体酶 [ 133 ]。尽管这些数据支持铁死亡是一种自噬依赖性细胞死亡形式的观点,但仅用于该过程的具体途径仍有待表征[ 134 , 135 ]。特别是,出现的问题是选择性自噬和脂质代谢机制是否存在某种有利于铁死亡的特异性[ 136 , 137 ]。
Fig. 3. Role of lysosomes in ferroptosis.
图 3. 溶酶体在铁死亡中的作用。
a Several selective autophagy pathways (ferritinophagy, chaperone-mediated autophagy [CMA], clockophagy, and lipophagy) promote ferroptosis by removing different cargoes, including ferritin, SLC40A1, GPX4, ARNTL, and lipid droplets (LDs). b Lysosomal CTSB is considered as an executioner of ferroptosis. CTSB is upregulated by the activation of transcription factor STAT3. CTSB translocates from lysosomes to the nucleus, where it cleaves DNA or histone H3. CTSB-mediated DNA damage activates STING1-dependent autophagy, while H3 cleavage might change ferroptosis-related gene expression. c The accumulation of lysosomal iron or nitric oxide (NO) can promote lysosome-dependent ferroptosis through induction of lipid peroxidation. The inhibition of PSAP triggers an accumulation of lipofuscin, which traps iron to induce ferroptosis. TFEB-mediated SOD2 expression attenuates ferroptosis by inhibiting ROS production. Abbreviations: ARNTL/BMAL1 aryl hydrocarbon receptor nuclear translocator-like, CGAS cyclic GMP-AMP synthase, CTSB cathepsin B, GPX4 glutathione peroxidase 4, H3 histone H3, MFN1 mitofusin 1, MFN2 mitofusin 2, PLOOH phospholipid hydroperoxides, PSAP prosaposin, PUFA polyunsaturated fatty acid, SLC40A1 solute carrier family 40 member 1, SOD1 superoxide dismutase 1, STAT3 signal transducer and activator of transcription 3, STING1/TMEM173 stimulator of interferon response cGAMP interactor 1, TFEB transcription factor EB.
a几种选择性自噬途径(铁蛋白自噬、伴侣介导的自噬 [CMA]、时钟自噬和脂肪自噬)通过去除不同的货物(包括铁蛋白、SLC40A1、GPX4、ARNTL 和脂滴 (LD))来促进铁死亡。 b溶酶体 CTSB 被认为是铁死亡的执行者。 CTSB 通过转录因子 STAT3 的激活而上调。 CTSB 从溶酶体转移到细胞核,在细胞核中切割 DNA 或组蛋白 H3。 CTSB 介导的 DNA 损伤会激活 STING1 依赖性自噬,而 H3 裂解可能会改变铁死亡相关基因的表达。 c溶酶体铁或一氧化氮(NO)的积累可以通过诱导脂质过氧化促进溶酶体依赖性铁死亡。 PSAP 的抑制会引发脂褐质的积累,脂褐质会捕获铁以诱导铁死亡。 TFEB 介导的 SOD2 表达通过抑制 ROS 产生来减轻铁死亡。缩写:ARNTL/BMAL1 芳烃受体核转运蛋白样、CGAS 环 GMP-AMP 合酶、CTSB 组织蛋白酶 B、GPX4 谷胱甘肽过氧化物酶 4、H3 组蛋白 H3、MFN1 线粒体融合蛋白 1、MFN2 线粒体融合蛋白 2、PLOOH 磷脂氢过氧化物、PSAP 前塞塞蛋白、PUFA 多不饱和脂肪酸, SLC40A1 溶质载体家族 40 成员 1、SOD1 超氧化物歧化酶 1、STAT3 信号转导子和转录激活子 3、STING1/TMEM173 干扰素反应刺激子 cGAMP 相互作用子 1、TFEB 转录因子 EB。
An increased lysosomal membrane potential is the initial signal of lysosome-dependent cell death driven by various cell death stimulations. Recently, the release of lysosomal cathepsins, especially cathepsin B (CTSB), has been considered to be contributing to ferroptosis (Fig. 3b). The activation of signal transducer and activator of transcription 3 (STAT3) is required for the upregulation and subsequent lysosomal release of CTSB [138]. CTSB mediates ferroptosis through at least two potential mechanisms. First, CTSB translocates from lysosomes to the nucleus, causing DNA damage and subsequent STING1-dependent ferroptosis [139]. CTSB can also act as a specific histone H3 protease and cleave H3 for ferroptosis [140]. In addition to inhibitors of lysosomal function (e.g., bafilomycin A1, ammonium chloride, pepstatin A, and CA-074Me), genetic blockade of cathepsin limits erastin-induced ferroptosis in cancer cells and MEFs [139, 140].
溶酶体膜电位增加是由各种细胞死亡刺激驱动的溶酶体依赖性细胞死亡的初始信号。最近,溶酶体组织蛋白酶的释放,特别是组织蛋白酶B (CTSB),被认为是导致铁死亡的原因(图3b )。 CTSB 的上调和随后的溶酶体释放需要信号转导子和转录激活子 3 (STAT3) 的激活 [ 138 ]。 CTSB 通过至少两种潜在机制介导铁死亡。首先,CTSB 从溶酶体转移到细胞核,导致 DNA 损伤和随后的 STING1 依赖性铁死亡 [ 139 ]。 CTSB 还可以充当特定的组蛋白 H3 蛋白酶并裂解 H3 导致铁死亡 [ 140 ]。除了溶酶体功能抑制剂(例如巴弗洛霉素 A1、氯化铵、胃酶抑素 A 和 CA-074Me)之外,组织蛋白酶的基因阻断还可限制癌细胞和 MEF 中erastin 诱导的铁死亡[ 139 , 140 ]。
Other mechanisms of lysosomal-dependent ferroptosis involve the accumulation of lysosomal iron or nitric oxide (Fig. 3c) [141, 142]. This process is responsible for the dichloroacetate-induced inhibition of stemness in colorectal cancer cells [143], the loss of lysosomal protein prosaposin (PSAP)-mediated neuronal death [144], or nonthermal plasma-activated Ringer’s lactate-triggered ferroptosis in malignant mesothelioma cells [145]. As a defense mechanism, the activation of nuclear transcription factor EB (TFEB) can inhibit lysosomal-dependent ferroptosis by inducing antioxidant superoxide dismutase 1 (SOD1) gene expression [146]. CD44-mediated iron uptake in endocytic vesicles replenishes lysosomal iron, leading to increased sensitivity to ferroptosis [147]. Together, the crosstalk between the lysosome and the nucleus can establish a feedback mechanism for the modulation of ferroptosis. It is not clear whether lysosomal exocytosis results in membrane remodeling and repair during ferroptosis.
溶酶体依赖性铁死亡的其他机制涉及溶酶体铁或一氧化氮的积累(图3c )[ 141 , 142 ]。该过程负责二氯乙酸诱导的结直肠癌细胞干性抑制[ 143 ]、溶酶体蛋白前塞塞蛋白(PSAP)介导的神经元死亡的丧失[ 144 ]或恶性间皮瘤中非热等离子体激活的林格氏乳酸触发的铁死亡。细胞[ 145 ]。作为一种防御机制,核转录因子EB(TFEB)的激活可以通过诱导抗氧化剂超氧化物歧化酶1(SOD1)基因表达来抑制溶酶体依赖性铁死亡[ 146 ]。内吞囊泡中 CD44 介导的铁摄取补充溶酶体铁,导致铁死亡的敏感性增加[ 147 ]。溶酶体和细胞核之间的串扰共同可以建立调节铁死亡的反馈机制。目前尚不清楚溶酶体胞吐作用是否会导致铁死亡过程中的膜重塑和修复。
Endoplasmic reticulum 内质网
Under normal conditions, the endoplasmic reticulum (ER) is the central organelle for the synthesis and processing of proteins as well as lipid secretion [148]. ER stress triggers an unfolded protein response to restore protein homeostasis, but can also trigger cell death when cells fail to restore homeostasis [149]. ER stress plays a dual role in ferroptosis (Fig. 4a). For example, erastin can induce a significant ER stress response by activating the eukaryotic translation initiation factor 2A (EIF2A)/activating transcription factor 4 (ATF4) pathway, which determines cell fate [20]. On one hand, ATF4-mediated HSPA5 expression prevents the degradation of GPX4, thereby increasing the resistance of pancreatic cancer cells or glioma cells to ferroptosis caused by gemcitabine or dihydroartemisinin [59, 150]. ATF4-mediated SLC7A11 upregulation is also implicated in ferroptosis resistance in human glioma cells [151]. On the other hand, the ATF4-mediated transcriptional expression of GSH-degrading enzyme ChaC glutathione-specific gamma-glutamylcyclotransferase 1 (CHAC1) enhances artesunate- or cystine starvation-induced ferroptosis in breast cancer cells [152, 153]. Thus, the diversity of ATF4 target genes confer ATF4 multiple biological functions in ferroptosis. The ER stress response also contributes to artesunate- or erastin-induced ferroptosis via the activation of autophagic degradation [154]. In stark contrast, ER stress-associated Ca2+ influx triggers ESCRT-III accumulation in plasma membranes to prevent membrane damage during ferroptosis [76, 77]. Notably, ferrostatin-1 might exert its anti-ferroptotic effect through its accumulation in the ER, rather than in lysosomes and mitochondria [88]. Quantitative measurements by two-photon phosphorescent lifetime imaging revealed that the viscosity of the ER increases during erastin-induced ferroptosis [155]. These two studies further support the involvement of the ER in regulating ferroptosis.
正常情况下,内质网(ER)是蛋白质合成和加工以及脂质分泌的中心细胞器[ 148 ]。内质网应激会触发未折叠的蛋白质反应以恢复蛋白质稳态,但当细胞无法恢复稳态时也可能引发细胞死亡[ 149 ]。 ER应激在铁死亡中发挥双重作用(图4a )。例如,erastin可以通过激活真核翻译起始因子2A(EIF2A)/激活转录因子4(ATF4)途径来诱导显着的内质网应激反应,从而决定细胞命运[ 20 ]。一方面,ATF4介导的HSPA5表达阻止GPX4的降解,从而增加胰腺癌细胞或神经胶质瘤细胞对吉西他滨或双氢青蒿素引起的铁死亡的抵抗力[ 59 , 150 ]。 ATF4 介导的 SLC7A11 上调也与人类神经胶质瘤细胞的铁死亡抵抗有关 [ 151 ]。另一方面,ATF4 介导的 GSH 降解酶 ChaC 谷胱甘肽特异性 γ-谷氨酰环转移酶 1 (CHAC1) 的转录表达可增强乳腺癌细胞中青蒿琥酯或胱氨酸饥饿诱导的铁死亡 [ 152 , 153 ]。因此,ATF4靶基因的多样性赋予ATF4在铁死亡中的多种生物学功能。内质网应激反应还通过激活自噬降解导致青蒿琥酯或erastin诱导的铁死亡[ 154 ]。形成鲜明对比的是,内质网应激相关的 Ca 2+流入触发 ESCRT-III 在质膜中积累,以防止铁死亡期间的膜损伤 [ 76 , 77 ]。 值得注意的是,ferrostatin-1 可能通过在内质网中积累来发挥其抗铁死亡作用,而不是在溶酶体和线粒体中[ 88 ]。双光子磷光寿命成像的定量测量表明,ER 的粘度在erastin 诱导的铁死亡过程中增加[ 155 ]。这两项研究进一步支持 ER 参与调节铁死亡。
Fig. 4. Role of endoplasmic reticulum in ferroptosis.
如图。 4.内质网在铁死亡中的作用。
a Endoplasmic reticulum (ER) stress, in particular from the EIF2AK3-EIF2A-ATF3 pathway, plays a dual role in ferroptosis. ATF4 inhibits ferroptosis by promoting HSPA5-mediated GPX4 protein stabilization or SLC7A11 expression, whereas it induces ferroptosis by upregulation of CHAC1 to degrade GSH. In addition, ER stress induces Ca2+ influx to trigger ESCRT-III–mediated membrane repair, which prevents membrane damage during ferroptosis. b STING1, a transmembrane protein on the ER, is activated by oxidized 8-OHG or CTSB-mediated DNA damage. STING1 then promotes ferroptosis by autophagy or an MFN1/MFN2 mediated-mitochondrial fusion pathway. c The ER enzyme SCD, a target gene of SREBP1, is essential for the biosynthesis of MUFA. ACSL3 is responsible for the activation of MUFA, which competitively inhibits PUFA-induced ferroptosis. SREBP1-SCD can be activated by the PI3K-AKT-MTOR pathway, a double mutation of STK11 and KEAP1, or the FBW7-NR4A1 pathway. d Zinc ions (Zn2+) can induce ferroptosis. The inhibition of zinc transporter SLC39A7 on the ER can trigger the expression of the ER stress-associated gene HERPUD1, which drives ferroptosis resistance. Abbreviations: ACSL3 acyl-CoA synthetase long-chain family member 3, ACSL4 acyl-CoA synthetase long-chain family member 4, ALOX lipoxygenase, ATF4 activating transcription factor 4, CGAS cyclic GMP-AMP synthase, CHAC1 ChaC glutathione-specific gamma-glutamylcyclotransferase 1, CTSB cathepsin B, EIF2A eukaryotic translation initiation factor 2A, EIF2AK3/PERK eukaryotic translation initiation factor 2 alpha kinase 3, ESCRT-III endosomal sorting complex required for transport-III, GPX4 glutathione peroxidase 4, GSH glutathione, HERPUD1 homocysteine inducible ER protein with ubiquitin-like domain 1, HSPA5/GRP78/BIP heat shock protein family A (Hsp70) member 5, LPCAT3 lysophosphatidylcholine acyltransferase 3, MFN1 mitofusin 1, MFN2 mitofusin 2, MTOR mechanistic target of rapamycin kinase, MUFA monounsaturated fatty acid, PI3K phosphatidylinositol-4,5-bisphosphate 3-kinase, PLOOH phospholipid hydroperoxide, PUFA polyunsaturated fatty acid, SCD/SCD1 stearoyl-CoA desaturase, SLC39A7/ZIP7 solute carrier family 39 member 7, SLC3A2 solute carrier family 3 member 2, SLC7A11 solute carrier family 7 member 11, SREBF1/SREBP1 sterol regulatory element-binding transcription factor 1, STING1/TMEM173 stimulator of interferon response cGAMP interactor 1.
a内质网 (ER) 应激,特别是来自 EIF2AK3-EIF2A-ATF3 途径的应激,在铁死亡中发挥双重作用。 ATF4 通过促进 HSPA5 介导的 GPX4 蛋白稳定或 SLC7A11 表达来抑制铁死亡,而通过上调 CHAC1 降解 GSH 来诱导铁死亡。此外,内质网应激诱导 Ca 2+流入,触发 ESCRT-III 介导的膜修复,从而防止铁死亡期间的膜损伤。 b STING1 是 ER 上的一种跨膜蛋白,被氧化的 8-OHG 或 CTSB 介导的 DNA 损伤激活。然后,STING1 通过自噬或 MFN1/MFN2 介导的线粒体融合途径促进铁死亡。 c ER 酶 SCD 是 SREBP1 的靶基因,对于 MUFA 的生物合成至关重要。 ACSL3 负责激活 MUFA,从而竞争性抑制 PUFA 诱导的铁死亡。 SREBP1-SCD 可以通过 PI3K-AKT-MTOR 途径(STK11 和 KEAP1 的双突变)或 FBW7-NR4A1 途径激活。 d锌离子(Zn 2+ )可诱发铁死亡。内质网上锌转运蛋白 SLC39A7 的抑制可触发内质网应激相关基因 HEERPUD1 的表达,从而驱动铁死亡抵抗。 缩写:ACSL3 酰基辅酶A 合成酶长链家族成员 3、ACSL4 酰基辅酶A 合成酶长链家族成员 4、ALOX 脂氧合酶、ATF4 激活转录因子 4、CGAS 环 GMP-AMP 合酶、CHAC1 ChaC 谷胱甘肽特异性 γ-谷氨酰环转移酶1、CTSB组织蛋白酶B、EIF2A真核翻译起始因子2A、EIF2AK3/PERK 真核翻译起始因子 2 α 激酶 3、转运 III 所需的 ESCRT-III 内体分选复合物、GPX4 谷胱甘肽过氧化物酶 4、GSH 谷胱甘肽、HERPUD1 同型半胱氨酸诱导型 ER 蛋白(具有泛素样结构域 1)、HSPA5/GRP78/ BIP 热休克蛋白家族 A (Hsp70) 成员 5, LPCAT3 溶血磷脂酰胆碱酰基转移酶 3、MFN1 线粒体融合蛋白 1、MFN2 线粒体融合蛋白 2、雷帕霉素激酶的 MTOR 机制靶标、MUFA 单不饱和脂肪酸、PI3K 磷脂酰肌醇 4,5-二磷酸 3-激酶、PLOOH 磷脂氢过氧化物、PUFA 多不饱和脂肪酸、SCD/SCD1硬脂酰辅酶A去饱和酶、SLC39A7/ZIP7溶质载体家族39成员7、SLC3A2溶质载体家族3成员2、SLC7A11溶质载体家族7成员11、SREBF1/SREBP1甾醇调节元件结合转录因子1、STING1/TMEM173干扰素反应刺激剂cGAMP 相互作用子 1。
Several ER proteins play a broad role in regulating ferroptosis sensitivity. For example, STING1, a transmembrane protein on the ER, is reported to translate the oxidative response of nuclear or mitochondrial structures into a ferroptotic response (Fig. 4b). STING1 depletion attenuates acute pancreatitis and KRAS-driven pancreatic tumor formation in mice that are prone to ferroptosis due to a high-iron diet or genetic GPX4 deletion in pancreatic acinar cells [156]. The oxidized nucleobase 8-hydroxyguanine (8-OHG) released by ferroptotic cells has been identified as a ligand for active STING1-dependent innate immunity in macrophages [156]. Mitochondrial damage caused by zalcitabine or erastin can trigger STING1-dependent ferroptosis in pancreatic cancer cells through convoluted pathways involving autophagy or mitochondrial fusion [21, 102]. As a negative feedback mechanism, unrestricted lipid peroxidation might reduce the transport of STING1 from the ER to the Golgi complex and the subsequent immune response by its carbonylation [157]. These findings underscore the multifunctional role of STING1 in mediating ferroptosis.
几种 ER 蛋白在调节铁死亡敏感性中发挥着广泛的作用。例如,据报道,ER上的跨膜蛋白STING1可将核或线粒体结构的氧化反应转化为铁死亡反应(图4b )。 STING1 缺失可减轻小鼠的急性胰腺炎和 KRAS 驱动的胰腺肿瘤形成,这些小鼠由于高铁饮食或胰腺腺泡细胞中的遗传性 GPX4 缺失而容易发生铁死亡[ 156 ]。铁死亡细胞释放的氧化核碱基 8-羟基鸟嘌呤 (8-OHG) 已被确定为巨噬细胞中主动 STING1 依赖性先天免疫的配体 [ 156 ]。扎西他滨或erastin引起的线粒体损伤可以通过涉及自噬或线粒体融合的复杂途径触发胰腺癌细胞中STING1依赖性铁死亡[ 21 , 102 ]。作为一种负反馈机制,不受限制的脂质过氧化可能会减少 STING1 从 ER 到高尔基复合体的转运以及随后的羰基化免疫反应 [ 157 ]。这些发现强调了 STING1 在介导铁死亡中的多功能作用。
ER proteins can block ferroptosis, as exemplified by stearoyl-CoA desaturase (SCD). The biosynthesis of MUFA requires SCD, which competitively inhibits PUFA-mediated ferroptosis [48]. The expression of SCD is regulated by multiple factors, including transcription factors, kinases, hypoxia, and nutrition signals (Fig. 4c) [158]. For example, sterol regulatory element-binding transcription factor 1 (SREBF1, also known as SREBP1), a nuclear transcription factor regulating lipid metabolism, acts as a ferroptosis repressor by the induction of SCD expression [159, 160]. Ferroptosis inhibition by the SREBP1-SCD pathway can also result from the activation of pro-survival phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)-AKT-MTOR signaling in MDA-MB-453 and BT474 human breast cancer cells [159]. Lactate formed during anaerobic glycolysis inhibits the phosphorylation of AMPK, thereby activating the SREBP1-SCD pathway to inhibit ferroptosis in liver cancer cells [160]. The co-mutation of serine/threonine kinase 11 (STK11) and Kelch-like ECH-associated protein 1 (KEAP1) results in ferroptosis resistance in lung cancer cells partly through the upregulation of SCD [161]. Additionally, the nuclear protein F-box and WD repeat domain containing 7 (FBW7) can inhibit SCD expression in pancreatic cancer cells through blockade of nuclear receptor subfamily 4 group A member 1 (NR4A1) [162]. Thus, the combination of SCD inhibitors and ferroptosis inducers might be a potential strategy for anticancer treatment that warrants to be explored.
ER 蛋白可以阻止铁死亡,例如硬脂酰辅酶 A 去饱和酶 (SCD)。 MUFA的生物合成需要SCD,SCD竞争性地抑制PUFA介导的铁死亡[ 48 ]。 SCD的表达受到多种因素的调节,包括转录因子、激酶、缺氧和营养信号(图4c )[ 158 ]。例如,甾醇调节元件结合转录因子 1(SREBF1,也称为 SREBP1)是一种调节脂质代谢的核转录因子,通过诱导 SCD 表达充当铁死亡阻遏物 [ 159 , 160 ]。 SREBP1-SCD 途径对铁死亡的抑制也可能是由于 MDA-MB-453 和 BT474 人乳腺癌细胞中促存活磷脂酰肌醇-4,5-二磷酸 3-激酶 (PI3K)-AKT-MTOR 信号传导的激活所致 [ 159] ]。无氧糖酵解过程中形成的乳酸抑制AMPK的磷酸化,从而激活SREBP1-SCD途径,抑制肝癌细胞的铁死亡[ 160 ]。丝氨酸/苏氨酸激酶 11 (STK11) 和 Kelch 样 ECH 相关蛋白 1 (KEAP1) 的共突变部分通过 SCD 的上调导致肺癌细胞铁死亡抵抗 [ 161 ]。此外,核蛋白 F-box 和 WD 重复结构域包含 7 (FBW7) 可以通过阻断核受体亚家族 4 A 组成员 1 (NR4A1) 抑制胰腺癌细胞中的 SCD 表达 [ 162 ]。因此,SCD抑制剂和铁死亡诱导剂的组合可能是值得探索的抗癌治疗的潜在策略。
In addition to iron, zinc ions have the ability to induce ferroptosis [163]. Solute carrier family 39 member 7 (SLC39A7, also known as ZIP7), a resident ER protein that mediates zinc transport from the ER to cytosol, is a promoter of ferroptosis (Fig. 4d) [163]. The inhibition of SLC39A7 triggers the expression of ER stress-associated genes, such as homocysteine-inducible ER protein with ubiquitin-like domain 1 (HERPUD1), which drives ferroptosis resistance [163]. These findings not only uncover an unexpected role for ER stress in mediating zinc-induced ferroptosis, but also challenge the current notion that ferroptosis is exclusively dominated by iron-dependent redox reactions. Since mitochondria can form contacts with the ER to regulate vital cellular homoeostatic functions [164], researchers should investigate these connections in ferroptosis.
除了铁之外,锌离子也具有诱导铁死亡的能力[ 163 ]。溶质载体家族 39 成员 7(SLC39A7,也称为 ZIP7)是一种驻留 ER 蛋白,介导锌从 ER 转运至细胞质,是铁死亡的启动子(图4d )[ 163 ]。 SLC39A7 的抑制会触发 ER 应激相关基因的表达,例如具有泛素样结构域 1 的同型半胱氨酸诱导的 ER 蛋白 (HERPUD1),该蛋白可驱动铁死亡抵抗 [ 163 ]。这些发现不仅揭示了内质网应激在介导锌诱导的铁死亡中的意想不到的作用,而且还挑战了目前铁死亡完全由铁依赖性氧化还原反应主导的观点。由于线粒体可以与内质网形成联系以调节重要的细胞稳态功能[ 164 ],因此研究人员应该研究铁死亡中的这些联系。
Lipid droplets 脂滴
Lipid droplets (LDs) serve as storage organelles for neutral lipids, such as triacylglycerol and sterol esters. LDs are also in dynamic contact with other organelles (such as mitochondria, the ER, peroxisomes, and lysosomes) to facilitate the exchange of lipids, metabolites, and ions [165]. It is widely accepted that increasing the formation of LDs protects cells from PUFA-induced lipotoxicity and ER stress [166, 167]. The number of LDs increases in the early stages, but decreases in the final stages, of ferroptosis. The balance between the degradation and storage of LDs affects the sensitivity to ferroptosis. For example, RAB7A-mediated lipophagy increases intracellular PUFA production, thereby enhancing RSL3-induced ferroptosis in liver cancer cells. In contrast, tumor protein D52 (TPD52)-mediated lipid storage might limit ferroptosis by sequestering toxic oxidized lipids [8]. Exogenous PUFAs induces LD formation and accumulates in LDs, resulting in enhanced lipid ROS and ferroptosis in cervical (SiHa), colorectal (HCT-116), and hypopharyngeal (FaDu) cancer cells [168]. Moreover, Fas-associated factor family member 2 (FAF2), a molecule regulating LD formation and homeostasis, is downregulated in orlistat-induced ferroptosis in A549 and H1299 lung cancer cells, supporting the anti-ferroptotic role of LDs [169]. These observations highlight an urgent need to uncover the mechanisms of the LD dynamics in ferroptosis. In addition, lipolysis (the hydrolysis of triacylglycerol) occurs on the surface of LDs, releasing fatty acids for bioenergetic or anabolic reactions. Several enzymes, such as patatin-like phospholipase domain containing 2 (PNPLA2, also known as ATGL) and lipase E, hormone-sensitive type (LIPE, also known as HSL), play crucial roles in lipolysis [170], but their precise roles in ferroptosis remain to be uncovered.
脂滴(LD)充当中性脂质(例如三酰甘油和甾醇酯)的储存细胞器。 LD 还与其他细胞器(例如线粒体、ER、过氧化物酶体和溶酶体)动态接触,以促进脂质、代谢物和离子的交换[ 165 ]。人们普遍认为,增加 LD 的形成可以保护细胞免受 PUFA 诱导的脂毒性和 ER 应激的影响 [ 166 , 167 ]。 LD 的数量在铁死亡的早期阶段增加,但在最终阶段减少。 LD 的降解和储存之间的平衡会影响对铁死亡的敏感性。例如,RAB7A 介导的脂肪吞噬增加了细胞内 PUFA 的产生,从而增强了 RSL3 诱导的肝癌细胞中的铁死亡。相反,肿瘤蛋白 D52 (TPD52) 介导的脂质储存可能通过隔离有毒的氧化脂质来限制铁死亡 [ 8 ]。外源性 PUFA 诱导 LD 形成并在 LD 中积累,导致宫颈 (SiHa)、结直肠 (HCT-116) 和下咽 (FaDu) 癌细胞中脂质 ROS 增强和铁死亡[ 168 ]。此外,Fas相关因子家族成员2(FAF2)是一种调节LD形成和稳态的分子,在A549和H1299肺癌细胞中奥利司他诱导的铁死亡中下调,支持LD的抗铁死亡作用[ 169 ]。这些观察结果强调迫切需要揭示铁死亡中 LD 动力学的机制。此外,脂解作用(三酰甘油的水解)发生在 LD 表面,释放脂肪酸用于生物能或合成代谢反应。 几种酶,例如patatin样磷脂酶结构域2(PNPLA2,也称为ATGL)和脂肪酶E,激素敏感型(LIPE,也称为HSL),在脂肪分解中发挥着至关重要的作用[ 170 ],但它们的确切作用铁死亡仍有待发现。
Peroxisomes 过氧化物酶体
Peroxisomes are organelles that generate ROS and reactive nitrogen species (RNS) through pro-oxidant enzymes, such as xanthine dehydrogenase (XDH) and nitric oxide synthase 2 (NOS2) [171]. Conversely, peroxisomes also contain antioxidant enzymes, such as catalase (CAT), SOD1, peroxiredoxin 5 (PRDX5), and glutathione S-transferase kappa 1 (GSTK1) [172]. Nonetheless, a recent study showed that peroxisome-mediated lipid synthesis rather than ROS or RNS generation promotes ferroptosis [54]. In particular, ether lipids are synthesized through a well-characterized process that begins in peroxisomes and finishes in the ER [54]. Within peroxisomes, the enzymes fatty acyl-CoA reductase 1 (FAR1) and alkylglycerone phosphate synthase (AGPS) catalyze the biosynthesis of the ether lipid precursor 1-O-alkyl-glycerol-3-phosphate (AGP). The is then delivered to the ER where it is acylated and dehydrogenated to form plasmalogens. The knockdown of peroxisome resident enzymes FAR1 and AGPS, or ER resident enzyme 1-acylglycerol-3-phosphate O-acyltransferase 3 (AGPAT3), diminishes the sensitivity of the cells to ferroptosis induced by GPX4 inhibition [54]. Consistently, the knockdown of peroxisomal biogenesis factors (PEXs), including PEX3, PEX10, PEX16, and PEX19, limits the production of polyunsaturated ether phospholipids (PUFA-ePLs), especially plasmalogens [54, 173]. Moreover, plasmanylethanolamine desaturase 1 (PEDS1, also known as TMEM189), which introduces the characteristic vinyl ether double bond into plasmalogens [174], limits ferroptosis through downregulating FAR1 protein levels [173]. These findings support the key role of peroxisome-driven PUFA-ePLs in modulating susceptibility to ferroptosis [175]. However, neurons from plasmalogen-deficient (PEX7 knockout) mice are more susceptible to ROS-mediated damage [176], indicating that ether phospholipids might act as endogenous antioxidants as well. In addition to lipid synthesis and redox balance, peroxisomes are also involved in the biosynthesis and signaling of steroid and peptide hormones [177], which in turn might indirectly impinge on the regulation of ferroptosis.
过氧化物酶体是通过促氧化酶(例如黄嘌呤脱氢酶(XDH)和一氧化氮合酶 2(NOS2))产生 ROS 和活性氮(RNS)的细胞器[ 171 ]。相反,过氧化物酶体还含有抗氧化酶,例如过氧化氢酶(CAT)、SOD1、过氧化还原蛋白5(PRDX5)和谷胱甘肽S-转移酶kappa 1(GSTK1)[ 172 ]。尽管如此,最近的一项研究表明,过氧化物酶体介导的脂质合成而不是ROS或RNS的生成促进了铁死亡[ 54 ]。特别是,醚脂是通过一个充分表征的过程合成的,该过程从过氧化物酶体开始并在内质网中结束[ 54 ]。在过氧化物酶体中,脂肪酰辅酶 A 还原酶 1 (FAR1) 和烷基甘油磷酸合酶 (AGPS) 催化醚脂质前体 1-O-烷基-甘油-3-磷酸 (AGP) 的生物合成。然后被输送到内质网,在那里被酰化和脱氢形成缩醛磷脂。过氧化物酶体驻留酶 FAR1 和 AGPS 或 ER 驻留酶 1-酰基甘油-3-磷酸 O-酰基转移酶 3 (AGPAT3) 的敲低可降低细胞对 GPX4 抑制诱导的铁死亡的敏感性 [ 54 ]。一致地,过氧化物酶体生物发生因子 (PEX),包括 PEX3、PEX10、PEX16 和 PEX19 的敲低,限制了多不饱和醚磷脂 (PUFA-ePL),尤其是缩醛磷脂的产生 [ 54 , 173 ]。此外,血浆酰乙醇胺去饱和酶1(PEDS1,也称为TMEM189)将特征性乙烯基醚双键引入缩醛磷脂[ 174 ],通过下调FAR1蛋白水平来限制铁死亡[ 173 ]。 这些发现支持过氧化物酶体驱动的 PUFA-ePL 在调节铁死亡易感性中的关键作用[ 175 ]。然而,缩醛磷脂缺陷(PEX7 敲除)小鼠的神经元更容易受到 ROS 介导的损伤[ 176 ],这表明醚磷脂也可能充当内源性抗氧化剂。除了脂质合成和氧化还原平衡之外,过氧化物酶体还参与类固醇和肽激素的生物合成和信号传导[ 177 ],这反过来可能间接影响铁死亡的调节。
Golgi apparatus 高尔基体
The Golgi apparatus, a membranous organelle, has important functions in processing and sorting lipids and proteins for secretion or cellular use. Pharmacological Golgi stress inducers (e.g., AMF-26/M-COPA, brefeldin A, and golgicide A) trigger ferroptosis in HeLa cells, and this can be avoided by overexpression of SLC7A11 or GPX4, as well as the depletion of ACSL4 [178], indicating that Golgi-dependent ferroptosis requires classical ferroptotic regulators. The induction of ferroptosis by brefeldin A is also influenced by the availability of extracellular cystine [178]. The transsulfuration pathway (a source of cysteine for GSH in cells) can protect cells against brefeldin A-induced ferroptosis [178]. Although the exact mechanism of Golgi stress-induced ferroptosis is still poorly understood, it is suspected that Golgi dispersal might induce the loss of antioxidant molecules (e.g., CoQ10) [179]. Regardless, the sorting and transportation of cellular cargos in the entire cell by the Golgi apparatus might be impaired during ferroptosis, hence exemplifying yet another pathway in which disrupted protein homeostasis contributes to cell death.
高尔基体是一种膜细胞器,在处理和分类脂质和蛋白质以供分泌或细胞使用方面具有重要功能。药理学高尔基体应激诱导剂(例如,AMF-26/M-COPA、布雷菲德菌素 A 和高尔基剂 A)会引发 HeLa 细胞中的铁死亡,这可以通过 SLC7A11 或 GPX4 的过度表达以及 ACSL4 的耗尽来避免[ 178 ] ,表明高尔基体依赖性铁死亡需要经典的铁死亡调节剂。布雷菲德菌素 A 诱导的铁死亡也受到细胞外胱氨酸可用性的影响 [ 178 ]。转硫途径(细胞中 GSH 的半胱氨酸来源)可以保护细胞免受布雷菲德菌素 A 诱导的铁死亡 [ 178 ]。尽管高尔基体应激诱导铁死亡的确切机制仍知之甚少,但人们怀疑高尔基体分散可能会导致抗氧化分子(例如辅酶Q10)的损失[ 179 ]。无论如何,高尔基体在整个细胞中对细胞货物的分类和运输可能在铁死亡过程中受到损害,因此例证了蛋白质稳态被破坏导致细胞死亡的另一种途径。
Nucleus 核
In a previous review, we discussed the contribution of various transcription factors to the regulation of ferroptosis [180]. Here, we will focus on the discussion of non-transcriptional aspects of the nuclear implication in ferroptosis. Although early studies did not detect any obvious morphological changes in the nucleus, oxidative damage of nuclear DNA is a biochemical correlate of ferroptosis, which is associated with nuclear DAMP (e.g., HMGB1) release [10]. Several DNA damage response pathways, such as TP53, ataxia telangiectasia mutated (ATM), and FA complementation group D2 (FANCD2), play a context-dependent role in inhibiting or promoting ferroptosis. For example, TP53 activation can promote ferroptosis by the downregulation of SLC7A11 in breast cancer cells [62], whereas TP53 loss can trigger ferroptosis by activating the dipeptidyl peptidase 4 (DPP4)-dependent NOX pathway in colon cancer cells [27]. Radiotherapy-activated ATM transcriptionally represses SLC7A11 expression to promote ferroptosis in HT1080 cells [181]. FANCD2-mediated DNA repair inhibits erastin-induced ferroptosis in bone marrow cells [182]. The iron-binding protein pirin (PIR) is a nuclear redox-sensor, which limits autophagy-dependent ferroptosis by retaining HMGB1 in the nucleus [183]. In contrast, the translocation of lysosomal CTSB [139, 140] or mitochondrial AIFM1 [99, 100] to the nucleus can cause local damage and induce ferroptotic cell death. Thus, the translocation of different proteins between nuclear and extranuclear compartments profoundly affects the susceptibility of cells to ferroptosis. Future proteomic studies should provide a systematic and refined analysis of such ferroptosis-relevant translocation events.
在之前的综述中,我们讨论了各种转录因子对铁死亡调节的贡献[ 180 ]。在这里,我们将重点讨论铁死亡中核影响的非转录方面。尽管早期研究没有检测到细胞核有任何明显的形态变化,但核DNA的氧化损伤是铁死亡的生化相关因素,铁死亡与核DAMP(例如HMGB1)的释放有关[ 10 ]。多种 DNA 损伤反应途径,例如 TP53、共济失调毛细血管扩张突变 (ATM) 和 FA 补充组 D2 (FANCD2),在抑制或促进铁死亡方面发挥着背景依赖性作用。例如,TP53的激活可以通过下调乳腺癌细胞中的SLC7A11来促进铁死亡[ 62 ],而TP53的缺失可以通过激活结肠癌细胞中的二肽基肽酶4(DPP4)依赖性NOX途径来引发铁死亡[ 27 ]。放射治疗激活的 ATM 转录抑制 SLC7A11 表达,促进 HT1080 细胞铁死亡[ 181 ]。 FANCD2 介导的 DNA 修复抑制erastin 诱导的骨髓细胞铁死亡[ 182 ]。铁结合蛋白 Pirin (PIR) 是一种核氧化还原传感器,通过将 HMGB1 保留在细胞核中来限制自噬依赖性铁死亡 [ 183 ]。相反,溶酶体 CTSB [ 139 , 140 ] 或线粒体 AIFM1 [ 99 , 100 ] 易位至细胞核可引起局部损伤并诱导铁死亡。因此,不同蛋白质在核和核外区室之间的易位深刻地影响细胞对铁死亡的易感性。 未来的蛋白质组学研究应该对这种与铁死亡相关的易位事件提供系统和精细的分析。
Conclusions and perspectives
结论和观点
Selected metabolic changes, such as iron accumulation and lipid peroxidation, are considered as the biochemical hallmarks of ferroptosis [30]. Different organelles are involved in this metabolic cascade, which eventually leads to the rupture of the plasma membrane. Unlike other types of RCD, the specific effector of ferroptosis is still unknown. One hypothesis is that toxic lipids might directly mediate ferroptosis without the involvement of pore-forming proteins [2]. The production of toxic lipids involves a dynamic pathway, which connects lipid synthesis, degradation, storage, transformation, utilization, and peroxidation [55]. This process is further regulated by organelle-specific signals and pathways. Thus, multiple antioxidant systems and membrane repair pathways can synergistically antagonize organelle damage and ferroptosis induced by oxidative stress [19, 67–70, 103, 184, 185]. However, the contribution of exogenous (e.g., ferrostatin-1 and liproxstatin-1) or endogenous antioxidants (e.g., GSH, CoQ10, BH4, and dopamine) to specific organelles has largely not been verified. Apparently, all major organelles of the cell may modulate the ‘decision’ phase during which the threshold for lethal membrane peroxidation is reached or avoided. Moreover, several major organelles, in particular mitochondria and lysosomes, may contribute to the lethal process as a result of their membrane permeabilization, hence liberating hydrolytic enzymes and increasing the entropy of the cellular system.
特定的代谢变化,例如铁积累和脂质过氧化,被认为是铁死亡的生化标志[ 30 ]。不同的细胞器参与这种代谢级联,最终导致质膜破裂。与其他类型的 RCD 不同,铁死亡的具体效应器仍不清楚。一种假设是有毒脂质可能直接介导铁死亡而无需成孔蛋白的参与[ 2 ]。有毒脂质的产生涉及一个动态途径,该途径连接脂质合成、降解、储存、转化、利用和过氧化[ 55 ]。该过程进一步受到细胞器特异性信号和途径的调节。因此,多种抗氧化系统和膜修复途径可以协同拮抗氧化应激引起的细胞器损伤和铁死亡[19,67-70,103,184,185 ] 。然而,外源性(例如,ferrostatin-1 和 liproxstatin-1)或内源性抗氧化剂(例如,GSH、CoQ10、BH4 和多巴胺)对特定细胞器的贡献在很大程度上尚未得到证实。显然,细胞的所有主要细胞器都可以调节“决策”阶段,在此阶段达到或避免致死膜过氧化的阈值。此外,几种主要细胞器,特别是线粒体和溶酶体,由于其膜透化作用可能有助于致死过程,从而释放水解酶并增加细胞系统的熵。
Although significant advances have been made in our understanding of the machinery of ferroptosis [186], several basic questions must be answered before the development of specific ferroptosis-related therapies may be envisaged. Are the ferroptosis-relevant damage or repair mechanisms affecting the plasma membrane and internal, organelle-specific membranes different? What are the key molecules that maintain or disrupt the communication between subcellular organelles in ferroptosis? How can we develop molecular probes to dynamically monitor ferroptosis-associated changes in organellar morphology and function? Do the biogenesis and turnover of specific organelles affect the susceptibility of cells to ferroptosis? And finally, which strategies may guide the identification of subtle modulators of ferroptosis that act on peculiar, ideally cell type or organ-specific, receptors and hence can be used for the therapeutic avoidance of excessive ferroptosis or, on the contrary, for its selective induction in cancer cells? Elucidating the role of organelle-specific membranes in ferroptosis would be an attractive research area in the future.
尽管我们对铁死亡机制的理解已经取得了重大进展[ 186 ],但在开发特定的铁死亡相关疗法之前,必须回答几个基本问题。影响质膜和内部细胞器特异性膜的铁死亡相关损伤或修复机制是否不同?在铁死亡中维持或破坏亚细胞细胞器之间通讯的关键分子是什么?我们如何开发分子探针来动态监测铁死亡相关的细胞器形态和功能的变化?特定细胞器的生物发生和更新是否影响细胞对铁死亡的易感性?最后,哪些策略可以指导识别铁死亡的微妙调节剂,这些调节剂作用于特殊的、理想的细胞类型或器官特异性受体,因此可用于治疗性避免过度铁死亡,或者相反,用于其选择性诱导在癌细胞中?阐明细胞器特异性膜在铁死亡中的作用将是未来一个有吸引力的研究领域。
Acknowledgements 致谢
We thank Dave Primm (Department of Surgery, University of Texas Southwestern Medical Center) for his critical reading of the manuscript. We thank the numerous colleagues in the field of ferroptosis. We also apologize to the researchers who were not referenced due to space limitations.
我们感谢戴夫·普里姆(德克萨斯大学西南医学中心外科)对本文的批判性阅读。我们感谢铁死亡领域的众多同事。我们也向由于篇幅限制而没有引用的研究人员表示歉意。
Author contributions 作者贡献
X.C. and D.T. wrote the manuscript. G.K. and R.K. edited the manuscript. All authors approved the submitted version.
XC 和 DT 撰写了手稿。 GK 和 RK 编辑了手稿。所有作者都批准了提交的版本。
Funding 资金
Not applicable 不适用
Competing interests 利益竞争
The authors declare no competing interests.
作者声明没有竞争利益。
Ethics approval 道德批准
Not applicable. 不适用。
Consent for publication 同意发表
All authors agree to publish.
所有作者均同意发表。
Footnotes 脚注
Edited by M. Piacentini 编辑:M.皮亚琴蒂尼
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
出版商说明施普林格·自然对于已出版地图和机构隶属关系中的管辖权主张保持中立。
Contributor Information 贡献者信息
Rui Kang, Email: rui.kang@utsouthwstern.edu.
康瑞,电子邮件:rui.kang@utsouthwstern.edu。
Guido Kroemer, Email: kroemer@orange.fr.
Daolin Tang, Email: daolin.tang@utsouthwestern.edu.
References
- 1.Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171:273–85. doi: 10.1016/j.cell.2017.09.021IF: 45.5 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
-
2.Tang D, Kroemer G. Ferroptosis. Curr Biol. 2020;30:R1–R6. doi: 10.1016/j.cub.2019.12.061IF: 8.1 Q1 . [DOI] [PubMed] [Google Scholar]
2. Tang D,Kroemer G。铁死亡。当前生物。 2020;30:R1–R6。 doi:10.1016/j.cub.2019.12.061如果:8.1 Q1 。 [ DOI ] [ PubMed ] [谷歌学术] -
3.Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25:486–541. doi: 10.1038/s41418-017-0012-4IF: 13.7 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
3. Galluzzi L、Vitale I、Aaronson SA、Abrams JM、Adam D、Agostinis P 等人。细胞死亡的分子机制:2018 年细胞死亡命名委员会的建议。细胞死亡有所不同。 2018;25:486–541。 DOI:10.1038/s41418-017-0012-4如果:13.7 Q1 。 [ DOI ] [ PMC 免费文章] [ PubMed ] [ Google Scholar ] -
4.Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G. The molecular machinery of regulated cell death. Cell Res. 2019;29:347–64. doi: 10.1038/s41422-019-0164-5IF: 28.1 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
4. Tang D、Kang R、Berghe TV、Vandenabeele P、Kroemer G。调节细胞死亡的分子机制。细胞研究。 2019;29:347–64。 DOI:10.1038/s41422-019-0164-5如果:28.1 Q1 。 [ DOI ] [ PMC 免费文章] [ PubMed ] [ Google Scholar ] -
5.Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72. doi: 10.1016/j.cell.2012.03.042IF: 45.5 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
5. Dixon SJ、Lemberg KM、Lamprecht MR、Skouta R、Zaitsev EM、Gleason CE 等。铁死亡:一种铁依赖性非凋亡细胞死亡形式。细胞。 2012;149:1060–72。 doi:10.1016/j.cell.2012.03.042如果:45.5 Q1 。 [ DOI ] [ PMC 免费文章] [ PubMed ] [ Google Scholar ] - 6.Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ, 3rd, et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 2016;12:1425–8. doi: 10.1080/15548627.2016.1187366IF: 14.6 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Gao M, Monian P, Pan Q, Zhang W, Xiang J, Jiang X. Ferroptosis is an autophagic cell death process. Cell Res. 2016;26:1021–32. doi: 10.1038/cr.2016.95IF: 28.1 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Bai Y, Meng L, Han L, Jia Y, Zhao Y, Gao H, et al. Lipid storage and lipophagy regulates ferroptosis. Biochem Biophys Res Commun. 2019;508:997–1003. doi: 10.1016/j.bbrc.2018.12.039IF: 2.5 Q3 . [DOI] [PubMed] [Google Scholar]
- 9.Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, et al. Ferroptosis: process and function. Cell Death Differ. 2016;23:369–79. doi: 10.1038/cdd.2015.158IF: 13.7 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Wen Q, Liu J, Kang R, Zhou B, Tang D. The release and activity of HMGB1 in ferroptosis. Biochem Biophys Res Commun. 2019;510:278–83. doi: 10.1016/j.bbrc.2019.01.090IF: 2.5 Q3 . [DOI] [PubMed] [Google Scholar]
- 11.Dai E, Han L, Liu J, Xie Y, Kroemer G, Klionsky DJ, et al. Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy. 2020;16:2069–83. doi: 10.1080/15548627.2020.1714209IF: 14.6 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Yee PP, Wei Y, Kim SY, Lu T, Chih SY, Lawson C, et al. Neutrophil-induced ferroptosis promotes tumor necrosis in glioblastoma progression. Nat Commun. 2020;11:5424. doi: 10.1038/s41467-020-19193-yIF: 14.7 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Efimova I, Catanzaro E, Van der Meeren L, Turubanova VD, Hammad H, Mishchenko TA, et al. Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity. J Immunother Cancer. 2020;8:e001369. doi: 10.1136/jitc-2020-001369IF: 10.3 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021;31:107–25. doi: 10.1038/s41422-020-00441-1IF: 28.1 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
-
15.Stockwell BR, Jiang X, Gu W. Emerging mechanisms and disease relevance of ferroptosis. Trends Cell Biol. 2020;30:478–90. doi: 10.1016/j.tcb.2020.02.009IF: 13.0 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
15. Stockwell BR,Jiang X,Gu W。铁死亡的新兴机制和疾病相关性。趋势细胞生物学。 2020;30:478–90。 DOI:10.1016/j.tcb.2020.02.009如果:13.0 Q1 。 [ DOI ] [ PMC 免费文章] [ PubMed ] [ Google Scholar ] -
16.Chen X, Kang R, Kroemer G, Tang D. Ferroptosis in infection, inflammation, and immunity. J Exp Med. 2021;218:e20210518. doi: 10.1084/jem.20210518IF: 12.6 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
16. Chen X,Kang R,Kroemer G,Tang D。感染、炎症和免疫中的铁死亡。 J Exp Med。 2021;218:e20210518。 doi:10.1084/jem.20210518如果:12.6 Q1 。 [ DOI ] [ PMC 免费文章] [ PubMed ] [ Google Scholar ] -
17.Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol. 2021;18:280–96. doi: 10.1038/s41571-020-00462-0. [DOI] [PubMed] [Google Scholar]
17. Chen X,Kang R,Kroemer G,Tang D。拓宽视野:铁死亡在癌症中的作用。 Nat Rev Clin Oncol。 2021;18:280–96。号码:10.1038/s41571-020-00462-0 。 [ DOI ] [ PubMed ] [谷歌学术] - 18.Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology, and role in disease. Nat Rev Mol Cell Biol. 2021;22:266–82. doi: 10.1038/s41580-020-00324-8IF: 81.3 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
-
19.Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16:1180–91. doi: 10.1038/ncb3064. [DOI] [PMC free article] [PubMed] [Google Scholar]
19. Friedmann Angeli JP、Schneider M、Proneth B、Tyurina YY、Tyurin VA、Hammond VJ 等人。铁死亡调节因子 Gpx4 失活会引发小鼠急性肾衰竭。自然细胞生物学。 2014;16:1180–91。 DOI:10.1038/ncb3064 。 [ DOI ] [ PMC 免费文章] [ PubMed ] [ Google Scholar ] - 20.Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M, et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife. 2014;3:e02523. doi: 10.7554/eLife.02523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Li C, Zhang Y, Liu J, Kang R, Klionsky DJ, Tang D, et al. Mitochondrial DNA stress triggers autophagy-dependent ferroptotic death. Autophagy. 2020;17:948–60. doi: 10.1080/15548627.2020.1739447IF: 14.6 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Fang X, Wang H, Han D, Xie E, Yang X, Wei J, et al. Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci USA. 2019;116:2672–80. doi: 10.1073/pnas.1821022116IF: 9.4 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Zheng J, Sato M, Mishima E, Sato H, Proneth B, Conrad M. Sorafenib fails to trigger ferroptosis across a wide range of cancer cell lines. Cell Death Dis. 2021;12:698. doi: 10.1038/s41419-021-03998-wIF: 8.1 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Lopez-Otin C, Kroemer G. Hallmarks of Health. Cell. 2021;184:33–63. doi: 10.1016/j.cell.2020.11.034. [DOI] [PubMed] [Google Scholar]
- 25.Galluzzi L, Bravo-San Pedro JM, Kroemer G. Organelle-specific initiation of cell death. Nat Cell Biol. 2014;16:728–36. doi: 10.1038/ncb3005IF: 17.3 Q1 . [DOI] [PubMed] [Google Scholar]
- 26.Gao M, Yi J, Zhu J, Minikes AM, Monian P, Thompson CB, et al. Role of mitochondria in ferroptosis. Mol Cell. 2019;73:354–63 e353. doi: 10.1016/j.molcel.2018.10.042IF: 14.5 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Xie Y, Zhu S, Song X, Sun X, Fan Y, Liu J, et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep. 2017;20:1692–704. doi: 10.1016/j.celrep.2017.07.055IF: 7.5 Q1 . [DOI] [PubMed] [Google Scholar]
- 28.Yang WH, Ding CC, Sun T, Rupprecht G, Lin CC, Hsu D, et al. The Hippo pathway effector TAZ regulates ferroptosis in renal cell carcinoma. Cell Rep. 2019;28:2501–8 e2504. doi: 10.1016/j.celrep.2019.07.107IF: 7.5 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Yang WH, Huang Z, Wu J, Ding CC, Murphy SK, Chi JT. A TAZ-ANGPTL4-NOX2 axis regulates ferroptotic cell death and chemoresistance in epithelial ovarian cancer. Mol Cancer Res. 2020;18:79–90. doi: 10.1158/1541-7786.MCR-19-0691IF: 4.1 Q2 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Chen X, Comish PB, Tang D, Kang R. Characteristics and biomarkers of ferroptosis. Front Cell Dev Biol. 2021;9:637162. doi: 10.3389/fcell.2021.637162IF: 4.6 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Gao M, Monian P, Quadri N, Ramasamy R, Jiang X. Glutaminolysis and transferrin regulate ferroptosis. Mol Cell. 2015;59:298–308. doi: 10.1016/j.molcel.2015.06.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Feng H, Schorpp K, Jin J, Yozwiak CE, Hoffstrom BG, Decker AM, et al. Transferrin receptor is a specific ferroptosis marker. Cell Rep. 2020;30:3411–23 e3417. doi: 10.1016/j.celrep.2020.02.049IF: 7.5 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Wang Y, Liu Y, Liu J, Kang R, Tang D. NEDD4L-mediated LTF protein degradation limits ferroptosis. Biochem Biophys Res Commun. 2020;531:581–7. doi: 10.1016/j.bbrc.2020.07.032IF: 2.5 Q3 . [DOI] [PubMed] [Google Scholar]
- 34.Alvarez SW, Sviderskiy VO, Terzi EM, Papagiannakopoulos T, Moreira AL, Adams S, et al. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature. 2017;551:639–43. doi: 10.1038/nature24637IF: 50.5 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Yuan H, Li X, Zhang X, Kang R, Tang D. CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. Biochem Biophys Res Commun. 2016;478:838–44. doi: 10.1016/j.bbrc.2016.08.034IF: 2.5 Q3 . [DOI] [PubMed] [Google Scholar]
- 36.Geng N, Shi BJ, Li SL, Zhong ZY, Li YC, Xua WL, et al. Knockdown of ferroportin accelerates erastin-induced ferroptosis in neuroblastoma cells. Eur Rev Med Pharm Sci. 2018;22:3826–36. doi: 10.26355/eurrev_201806_15267. [DOI] [PubMed] [Google Scholar]
- 37.Li J, Liu J, Xu Y, Wu R, Chen X, Song X, et al. Tumor heterogeneity in autophagy-dependent ferroptosis. Autophagy. 2021 doi: 10.1080/15548627.2021.1872241IF: 14.6 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Brown CW, Amante JJ, Chhoy P, Elaimy AL, Liu H, Zhu LJ, et al. Prominin2 drives ferroptosis resistance by stimulating iron export. Dev Cell. 2019;51:575–86 e574. doi: 10.1016/j.devcel.2019.10.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Liu J, Song X, Kuang F, Zhang Q, Xie Y, Kang R, et al. NUPR1 is a critical repressor of ferroptosis. Nat Commun. 2021;12:647. doi: 10.1038/s41467-021-20904-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Chen X, Yu C, Kang R, Tang D. Iron Metabolism in Ferroptosis. Front Cell Dev Biol. 2020;8:590226. doi: 10.3389/fcell.2020.590226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Ma X, Xiao L, Liu L, Ye L, Su P, Bi E, et al. CD36-mediated ferroptosis dampens intratumoral CD8(+) T cell effector function and impairs their antitumor ability. Cell Metab. 2021;33:1001–12 e1005. doi: 10.1016/j.cmet.2021.02.015IF: 27.7 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Xu S, Chaudhary O, Rodriguez-Morales P, Sun X, Chen D, Zappasodi R, et al. Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8(+) T cells in tumors. Immunity. 2021;54:1561–77. doi: 10.1016/j.immuni.2021.05.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Lee H, Zandkarimi F, Zhang Y, Meena JK, Kim J, Zhuang L, et al. Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat Cell Biol. 2020;22:225–34. doi: 10.1038/s41556-020-0461-8IF: 17.3 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 2017;13:91–98. doi: 10.1038/nchembio.2239IF: 12.9 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol. 2017;13:81–90. doi: 10.1038/nchembio.2238IF: 12.9 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Yuan H, Li X, Zhang X, Kang R, Tang D. Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun. 2016;478:1338–43. doi: 10.1016/j.bbrc.2016.08.124IF: 2.5 Q3 . [DOI] [PubMed] [Google Scholar]
- 47.Beatty A, Singh T, Tyurina YY, Tyurin VA, Samovich S, Nicolas E, et al. Ferroptotic cell death triggered by conjugated linolenic acids is mediated by ACSL1. Nat Commun. 2021;12:2244. doi: 10.1038/s41467-021-22471-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Magtanong L, Ko PJ, To M, Cao JY, Forcina GC, Tarangelo A, et al. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state. Cell Chem Biol. 2019;26:420–32 e429. doi: 10.1016/j.chembiol.2018.11.016IF: 6.6 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA. 2016;113:E4966–4975. doi: 10.1073/pnas.1603244113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Wenzel SE, Tyurina YY, Zhao J, St Croix CM, Dar HH, Mao G, et al. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell. 2017;171:628–41 e626. doi: 10.1016/j.cell.2017.09.044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Chu B, Kon N, Chen D, Li T, Liu T, Jiang L, et al. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat Cell Biol. 2019;21:579–91. doi: 10.1038/s41556-019-0305-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Zou Y, Li H, Graham ET, Deik AA, Eaton JK, Wang W, et al. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat Chem Biol. 2020;16:302–9. doi: 10.1038/s41589-020-0472-6IF: 12.9 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Yan B, Ai Y, Sun Q, Ma Y, Cao Y, Wang J, et al. Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1. Mol Cell. 2020;81:355–69. doi: 10.1016/j.molcel.2020.11.024IF: 14.5 Q1 . [DOI] [PubMed] [Google Scholar]
- 54.Zou Y, Henry WS, Ricq EL, Graham ET, Phadnis VV, Maretich P, et al. Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature. 2020;585:603–8. doi: 10.1038/s41586-020-2732-8IF: 50.5 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Lin Z, Liu J, Kang R, Yang M, Tang D. Lipid metabolism in ferroptosis. Adv Biol (Weinh) 2021;10:e2100396. doi: 10.1002/adbi.202100396. [DOI] [PubMed] [Google Scholar]
- 56.Kuang F, Liu J, Tang D, Kang R. Oxidative damage and antioxidant defense in ferroptosis. Front Cell Dev Biol. 2020;8:586578. doi: 10.3389/fcell.2020.586578. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Maiorino M, Thomas JP, Girotti AW, Ursini F. Reactivity of phospholipid hydroperoxide glutathione peroxidase with membrane and lipoprotein lipid hydroperoxides. Free Radic Res Commun. 1991;12-13(Pt 1):131–5. doi: 10.3109/10715769109145777. [DOI] [PubMed] [Google Scholar]
- 58.Zhang Y, Swanda RV, Nie L, Liu X, Wang C, Lee H, et al. mTORC1 couples cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation. Nat Commun. 2021;12:1589. doi: 10.1038/s41467-021-21841-wIF: 14.7 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Zhu S, Zhang Q, Sun X, Zeh HJ, 3rd, Lotze MT, Kang R, et al. HSPA5 regulates ferroptotic cell death in cancer cells. Cancer Res. 2017;77:2064–77. doi: 10.1158/0008-5472.CAN-16-1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Wu Z, Geng Y, Lu X, Shi Y, Wu G, Zhang M, et al. Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc Natl Acad Sci USA. 2019;116:2996–3005. doi: 10.1073/pnas.1819728116IF: 9.4 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Sasaki H, Sato H, Kuriyama-Matsumura K, Sato K, Maebara K, Wang H, et al. Electrophile response element-mediated induction of the cystine/glutamate exchange transporter gene expression. J Biol Chem. 2002;277:44765–71. doi: 10.1074/jbc.M208704200. [DOI] [PubMed] [Google Scholar]
- 62.Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015;520:57–62. doi: 10.1038/nature14344IF: 50.5 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.Song X, Zhu S, Chen P, Hou W, Wen Q, Liu J, et al. AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system X(c)(-) activity. Curr Biol. 2018;28:2388–99.e2385. doi: 10.1016/j.cub.2018.05.094. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Vuckovic AM, Bosello Travain V, Bordin L, Cozza G, Miotto G, Rossetto M, et al. Inactivation of the glutathione peroxidase GPx4 by the ferroptosis-inducing molecule RSL3 requires the adaptor protein 14-3-3epsilon. FEBS Lett. 2020;594:611–24. doi: 10.1002/1873-3468.13631IF: 3.0 Q2 . [DOI] [PubMed] [Google Scholar]
- 65.Han L, Bai L, Fang X, Liu J, Kang R, Zhou D, et al. SMG9 drives ferroptosis by directly inhibiting GPX4 degradation. Biochem Biophys Res Commun. 2021;567:92–98. doi: 10.1016/j.bbrc.2021.06.038IF: 2.5 Q3 . [DOI] [PubMed] [Google Scholar]
- 66.Liu Y, Wang Y, Liu J, Kang R, Tang D. Interplay between MTOR and GPX4 signaling modulates autophagy-dependent ferroptotic cancer cell death. Cancer Gene Ther. 2021;28:55–63. doi: 10.1038/s41417-020-0182-y. [DOI] [PubMed] [Google Scholar]
- 67.Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575:693–8. doi: 10.1038/s41586-019-1707-0IF: 50.5 Q1 . [DOI] [PubMed] [Google Scholar]
- 68.Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 2019;575:688–92. doi: 10.1038/s41586-019-1705-2IF: 50.5 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 2021;593:586–90. doi: 10.1038/s41586-021-03539-7IF: 50.5 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Muller C, Zandkarimi F, et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent Sci. 2020;6:41–53. doi: 10.1021/acscentsci.9b01063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Soula M, Weber RA, Zilka O, Alwaseem H, La K, Yen F, et al. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat Chem Biol. 2020;16:1351–60. doi: 10.1038/s41589-020-0613-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Wang D, Peng Y, Xie Y, Zhou B, Sun X, Kang R, et al. Antiferroptotic activity of non-oxidative dopamine. Biochem Biophys Res Commun. 2016;480:602–7. doi: 10.1016/j.bbrc.2016.10.099. [DOI] [PubMed] [Google Scholar]
- 73.Sun WY, Tyurin VA, Mikulska-Ruminska K, Shrivastava IH, Anthonymuthu TS, Zhai YJ, et al. Phospholipase iPLA2beta averts ferroptosis by eliminating a redox lipid death signal. Nat Chem Biol. 2021;17:465–76. doi: 10.1038/s41589-020-00734-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Chen D, Chu B, Yang X, Liu Z, Jin Y, Kon N, et al. iPLA2beta-mediated lipid detoxification controls p53-driven ferroptosis independent of GPX4. Nat Commun. 2021;12:3644. doi: 10.1038/s41467-021-23902-6IF: 14.7 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, et al. HMGB1 in health and disease. Mol Asp Med. 2014;40:1–116. doi: 10.1016/j.mam.2014.05.001IF: 8.7 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Pedrera L, Espiritu RA, Ros U, Weber J, Schmitt A, Stroh J, et al. Ferroptotic pores induce Ca(2+) fluxes and ESCRT-III activation to modulate cell death kinetics. Cell Death Differ. 2020;28:1644–57. doi: 10.1038/s41418-020-00691-xIF: 13.7 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.Dai E, Meng L, Kang R, Wang X, Tang D. ESCRT-III-dependent membrane repair blocks ferroptosis. Biochem Biophys Res Commun. 2020;522:415–21. doi: 10.1016/j.bbrc.2019.11.110IF: 2.5 Q3 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78.Dai E, Zhang W, Cong D, Kang R, Wang J, Tang D. AIFM2 Blocks Ferroptosis Independent of Ubiquinol Metabolism. Biochem Biophys Res Commun. 2020;523:966–71. doi: 10.1016/j.bbrc.2020.01.066IF: 2.5 Q3 . [DOI] [PubMed] [Google Scholar]
- 79.Gong YN, Guy C, Olauson H, Becker JU, Yang M, Fitzgerald P, et al. ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences. Cell. 2017;169:286–300 e216. doi: 10.1016/j.cell.2017.03.020IF: 45.5 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Ruhl S, Shkarina K, Demarco B, Heilig R, Santos JC, Broz P. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science. 2018;362:956–60. doi: 10.1126/science.aar7607IF: 44.7 Q1 . [DOI] [PubMed] [Google Scholar]
- 81.Liu J, Kang R, Tang D. ESCRT-III-mediated membrane repair in cell death and tumor resistance. Cancer Gene Ther. 2021;28:1–4. doi: 10.1038/s41417-020-0200-0IF: 4.8 Q1 . [DOI] [PubMed] [Google Scholar]
- 82.Wu J, Minikes AM, Gao M, Bian H, Li Y, Stockwell BR, et al. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling. Nature. 2019;572:402–6. doi: 10.1038/s41586-019-1426-6IF: 50.5 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.Wenz C, Faust D, Linz B, Turmann C, Nikolova T, Dietrich C. Cell-cell contacts protect against t-BuOOH-induced cellular damage and ferroptosis in vitro. Arch Toxicol. 2019;93:1265–79. doi: 10.1007/s00204-019-02413-wIF: 4.8 Q1 . [DOI] [PubMed] [Google Scholar]
- 84.Riegman M, Sagie L, Galed C, Levin T, Steinberg N, Dixon SJ, et al. Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture. Nat Cell Biol. 2020;22:1042–8. doi: 10.1038/s41556-020-0565-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Jacobson MD, Burne JF, King MP, Miyashita T, Reed JC, Raff MC. Bcl-2 blocks apoptosis in cells lacking mitochondrial DNA. Nature. 1993;361:365–9. doi: 10.1038/361365a0IF: 50.5 Q1 . [DOI] [PubMed] [Google Scholar]
- 86.Marchetti P, Susin SA, Decaudin D, Gamen S, Castedo M, Hirsch T, et al. Apoptosis-associated derangement of mitochondrial function in cells lacking mitochondrial DNA. Cancer Res. 1996;56:2033–8. [PubMed] [Google Scholar]
- 87.Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007;87:99–163. doi: 10.1152/physrev.00013.2006. [DOI] [PubMed] [Google Scholar]
- 88.Gaschler MM, Hu F, Feng H, Linkermann A, Min W, Stockwell BR. Determination of the subcellular localization and mechanism of action of ferrostatins in suppressing ferroptosis. ACS Chem Biol. 2018;13:1013–20. doi: 10.1021/acschembio.8b00199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.Basit F, van Oppen LM, Schockel L, Bossenbroek HM, van Emst-de Vries SE, Hermeling JC, et al. Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell Death Dis. 2017;8:e2716. doi: 10.1038/cddis.2017.133IF: 8.1 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90.Tadokoro T, Ikeda M, Ide T, Deguchi H, Ikeda S, Okabe K, et al. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight. 2020;5:e132747. doi: 10.1172/jci.insight.132747IF: 6.3 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91.Jang S, Chapa-Dubocq XR, Tyurina YY, St Croix CM, Kapralov AA, Tyurin VA, et al. Elucidating the contribution of mitochondrial glutathione to ferroptosis in cardiomyocytes. Redox Biol. 2021;45:102021. doi: 10.1016/j.redox.2021.102021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92.Jelinek A, Heyder L, Daude M, Plessner M, Krippner S, Grosse R, et al. Mitochondrial rescue prevents glutathione peroxidase-dependent ferroptosis. Free Radic Biol Med. 2018;117:45–57. doi: 10.1016/j.freeradbiomed.2018.01.019IF: 7.1 Q1 . [DOI] [PubMed] [Google Scholar]
- 93.Liang H, Yoo SE, Na R, Walter CA, Richardson A, Ran Q. Short form glutathione peroxidase 4 is the essential isoform required for survival and somatic mitochondrial functions. J Biol Chem. 2009;284:30836–44. doi: 10.1074/jbc.M109.032839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Liang H, Van Remmen H, Frohlich V, Lechleiter J, Richardson A, Ran Q. Gpx4 protects mitochondrial ATP generation against oxidative damage. Biochem Biophys Res Commun. 2007;356:893–8. doi: 10.1016/j.bbrc.2007.03.045IF: 2.5 Q3 . [DOI] [PubMed] [Google Scholar]
- 95.Schneider M, Forster H, Boersma A, Seiler A, Wehnes H, Sinowatz F, et al. Mitochondrial glutathione peroxidase 4 disruption causes male infertility. FASEB J. 2009;23:3233–42. doi: 10.1096/fj.09-132795. [DOI] [PubMed] [Google Scholar]
- 96.Ma CS, Lv QM, Zhang KR, Tang YB, Zhang YF, Shen Y, et al. NRF2-GPX4/SOD2 axis imparts resistance to EGFR-tyrosine kinase inhibitors in non-small-cell lung cancer cells. Acta Pharm Sin. 2021;42:613–23. doi: 10.1038/s41401-020-0443-1IF: 6.9 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97.Kuang F, Liu J, Xie Y, Tang D, Kang R. MGST1 is a redox-sensitive repressor of ferroptosis in pancreatic cancer cells. Cell Chem Biol. 2021;28:765–75. doi: 10.1016/j.chembiol.2021.01.006IF: 6.6 Q1 . [DOI] [PubMed] [Google Scholar]
- 98.Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature. 1999;397:441–6. doi: 10.1038/17135IF: 50.5 Q1 . [DOI] [PubMed] [Google Scholar]
- 99.Neitemeier S, Jelinek A, Laino V, Hoffmann L, Eisenbach I, Eying R, et al. BID links ferroptosis to mitochondrial cell death pathways. Redox Biol. 2017;12:558–70. doi: 10.1016/j.redox.2017.03.007IF: 10.7 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100.Seiler A, Schneider M, Forster H, Roth S, Wirth EK, Culmsee C, et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab. 2008;8:237–48. doi: 10.1016/j.cmet.2008.07.005IF: 27.7 Q1 . [DOI] [PubMed] [Google Scholar]
- 101.Perfettini JL, Roumier T, Kroemer G. Mitochondrial fusion and fission in the control of apoptosis. Trends Cell Biol. 2005;15:179–83. doi: 10.1016/j.tcb.2005.02.005. [DOI] [PubMed] [Google Scholar]
- 102.Li C, Liu J, Hou W, Kang R, Tang D. STING1 promotes ferroptosis through MFN1/2-dependent mitochondrial fusion. Front in Cell and Dev Biol. 2021;9:1564. doi: 10.3389/fcell.2021.698679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 103.Alim I, Caulfield JT, Chen Y, Swarup V, Geschwind DH, Ivanova E, et al. Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell. 2019;177:1262–79 e1225. doi: 10.1016/j.cell.2019.03.032IF: 45.5 Q1 . [DOI] [PubMed] [Google Scholar]
- 104.Imoto S, Kono M, Suzuki T, Shibuya Y, Sawamura T, Mizokoshi Y, et al. Haemin-induced cell death in human monocytic cells is consistent with ferroptosis. Transfus Apher Sci. 2018;57:524–31. doi: 10.1016/j.transci.2018.05.028IF: 1.4 Q4 . [DOI] [PubMed] [Google Scholar]
- 105.Kwon MY, Park E, Lee SJ, Chung SW. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget. 2015;6:24393–403. doi: 10.18632/oncotarget.5162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106.Adedoyin O, Boddu R, Traylor A, Lever JM, Bolisetty S, George JF, et al. Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells. Am J Physiol Ren Physiol. 2018;314:F702–F714. doi: 10.1152/ajprenal.00044.2017IF: 3.7 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.Terzi EM, Sviderskiy VO, Alvarez SW, Whiten GC, Possemato R. Iron-sulfur cluster deficiency can be sensed by IRP2 and regulates iron homeostasis and sensitivity to ferroptosis independent of IRP1 and FBXL5. Sci Adv. 2021;7:eabg4302. doi: 10.1126/sciadv.abg4302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 108.Du J, Zhou Y, Li Y, Xia J, Chen Y, Chen S, et al. Identification of Frataxin as a regulator of ferroptosis. Redox Biol. 2020;32:101483. doi: 10.1016/j.redox.2020.101483IF: 10.7 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 109.Liu J, He H, Wang J, Guo X, Lin H, Chen H, et al. Oxidative stress-dependent frataxin inhibition mediated alcoholic hepatocytotoxicity through ferroptosis. Toxicology. 2020;445:152584. doi: 10.1016/j.tox.2020.152584IF: 4.8 Q1 . [DOI] [PubMed] [Google Scholar]
- 110.Cotticelli MG, Xia S, Lin D, Lee T, Terrab L, Wipf P, et al. Ferroptosis as a novel therapeutic target for Friedreich’s Ataxia. J Pharm Exp Ther. 2019;369:47–54. doi: 10.1124/jpet.118.252759IF: 3.1 Q2 . [DOI] [PubMed] [Google Scholar]
- 111.Du J, Wang T, Li Y, Zhou Y, Wang X, Yu X, et al. DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin. Free Radic Biol Med. 2019;131:356–69. doi: 10.1016/j.freeradbiomed.2018.12.011IF: 7.1 Q1 . [DOI] [PubMed] [Google Scholar]
- 112.Kim EH, Shin D, Lee J, Jung AR, Roh JL. CISD2 inhibition overcomes resistance to sulfasalazine-induced ferroptotic cell death in head and neck cancer. Cancer Lett. 2018;432:180–90. doi: 10.1016/j.canlet.2018.06.018. [DOI] [PubMed] [Google Scholar]
- 113.Homma T, Kobayashi S, Fujii J. Cysteine preservation confers resistance to glutathione-depleted cells against ferroptosis via CDGSH iron sulphur domain-containing proteins (CISDs) Free Radic Res. 2020;54:397–407. doi: 10.1080/10715762.2020.1780229IF: 3.6 Q2 . [DOI] [PubMed] [Google Scholar]
- 114.Wang YQ, Chang SY, Wu Q, Gou YJ, Jia L, Cui YM, et al. The protective role of mitochondrial ferritin on erastin-induced ferroptosis. Front Aging Neurosci. 2016;8:308. doi: 10.3389/fnagi.2016.00308IF: 4.1 Q2 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 115.Fuhrmann DC, Mondorf A, Beifuss J, Jung M, Brune B. Hypoxia inhibits ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis. Redox Biol. 2020;36:101670. doi: 10.1016/j.redox.2020.101670IF: 10.7 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 116.Zhang R, Kang R, Tang D. The STING1 network regulates autophagy and cell death. Signal Transduct Target Ther. 2021;6:208. doi: 10.1038/s41392-021-00613-4IF: 40.8 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 117.Murthy AMV, Robinson N, Kumar S. Crosstalk between cGAS-STING signaling and cell death. Cell Death Differ. 2020;27:2989–3003. doi: 10.1038/s41418-020-00624-8IF: 13.7 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 118.Guo J, Duan L, He X, Li S, Wu Y, Xiang G, et al. A combined model of human iPSC-derived liver organoids and hepatocytes reveals ferroptosis in DGUOK mutant mtDNA depletion syndrome. Advanced. Science. 2021;8:2004680. doi: 10.1002/advs.202004680. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 119.Tomita K, Takashi Y, Ouchi Y, Kuwahara Y, Igarashi K, Nagasawa T, et al. Lipid peroxidation increases hydrogen peroxide permeability leading to cell death in cancer cell lines that lack mtDNA. Cancer Sci. 2019;110:2856–66. doi: 10.1111/cas.14132IF: 4.5 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 120.Song X, Zhu S, Chen P, Hou W, Wen Q, Liu J, et al. AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc(-) activity. Curr Biol. 2018;28:2388–99 e2385. doi: 10.1016/j.cub.2018.05.094. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 121.Kerins MJ, Milligan J, Wohlschlegel JA, Ooi A. Fumarate hydratase inactivation in hereditary leiomyomatosis and renal cell cancer is synthetic lethal with ferroptosis induction. Cancer Sci. 2018;109:2757–66. doi: 10.1111/cas.13701IF: 4.5 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 122.Homma T, Kobayashi S, Sato H, Fujii J. Superoxide produced by mitochondrial complex III plays a pivotal role in the execution of ferroptosis induced by cysteine starvation. Arch Biochem Biophys. 2021;700:108775. doi: 10.1016/j.abb.2021.108775IF: 3.8 Q1 . [DOI] [PubMed] [Google Scholar]
- 123.Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature. 2007;447:864–8. doi: 10.1038/nature05859IF: 50.5 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 124.Niu Y, Zhang J, Tong Y, Li J, Liu B. Physcion 8-O-beta-glucopyranoside induced ferroptosis via regulating miR-103a-3p/GLS2 axis in gastric cancer. Life Sci. 2019;237:116893. doi: 10.1016/j.lfs.2019.116893. [DOI] [PubMed] [Google Scholar]
- 125.You JH, Lee J, Roh JL. Mitochondrial pyruvate carrier 1 regulates ferroptosis in drug-tolerant persister head and neck cancer cells via epithelial-mesenchymal transition. Cancer Lett. 2021;507:40–54. doi: 10.1016/j.canlet.2021.03.013. [DOI] [PubMed] [Google Scholar]
- 126.Kim H, Lee JH, Park JW. Down-regulation of IDH2 sensitizes cancer cells to erastin-induced ferroptosis. Biochem Biophys Res Commun. 2020;525:366–71. doi: 10.1016/j.bbrc.2020.02.093. [DOI] [PubMed] [Google Scholar]
- 127.Pietrocola F, Galluzzi L, Bravo-San Pedro JM, Madeo F, Kroemer G. Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab. 2015;21:805–21. doi: 10.1016/j.cmet.2015.05.014. [DOI] [PubMed] [Google Scholar]
- 128.Song X, Liu J, Kuang F, Chen X, Zeh HJ, 3rd, Kang R, et al. PDK4 dictates metabolic resistance to ferroptosis by suppressing pyruvate oxidation and fatty acid synthesis. Cell Rep. 2021;34:108767. doi: 10.1016/j.celrep.2021.108767IF: 7.5 Q1 . [DOI] [PubMed] [Google Scholar]
- 129.Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) Autophagy. 2021;17:1–382. doi: 10.1080/15548627.2020.1797280IF: 14.6 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 130.Park E, Chung SW. ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation. Cell Death Dis. 2019;10:822. doi: 10.1038/s41419-019-2064-5IF: 8.1 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 131.Xiong Q, Li X, Li W, Chen G, Xiao H, Li P, et al. WDR45 mutation impairs the autophagic degradation of transferrin receptor and promotes ferroptosis. Front Mol Biosci. 2021;8:645831. doi: 10.3389/fmolb.2021.645831IF: 3.9 Q2 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 132.Yang M, Chen P, Liu J, Zhu S, Kroemer G, Klionsky DJ, et al. Clockophagy is a novel selective autophagy process favoring ferroptosis. Sci Adv. 2019;5:eaaw2238. doi: 10.1126/sciadv.aaw2238IF: 11.7 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 133.Thayyullathil F, Cheratta AR, Alakkal A, Subburayan K, Pallichankandy S, Hannun YA, et al. Acid sphingomyelinase-dependent autophagic degradation of GPX4 is critical for the execution of ferroptosis. Cell Death Dis. 2021;12:26. doi: 10.1038/s41419-020-03297-wIF: 8.1 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 134.Liu J, Kuang F, Kroemer G, Klionsky DJ, Kang R, Tang D. Autophagy-dependent ferroptosis: machinery and regulation. Cell Chem Biol. 2020;27:420–35. doi: 10.1016/j.chembiol.2020.02.005IF: 6.6 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 135.Zhou B, Liu J, Kang R, Klionsky DJ, Kroemer G, Tang D. Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol. 2020;66:89–100. doi: 10.1016/j.semcancer.2019.03.002. [DOI] [PubMed] [Google Scholar]
- 136.Xie Y, Li J, Kang R, Tang D. Interplay between lipid metabolism and autophagy. Front Cell Dev Biol. 2020;8:431. doi: 10.3389/fcell.2020.00431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 137.Chen X, Yu C, Kang R, Kroemer G, Tang D. Cellular degradation systems in ferroptosis. Cell Death Differ. 2021;28:1135–48. doi: 10.1038/s41418-020-00728-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 138.Gao H, Bai Y, Jia Y, Zhao Y, Kang R, Tang D, et al. Ferroptosis is a lysosomal cell death process. Biochem Biophys Res Commun. 2018;503:1550–6. doi: 10.1016/j.bbrc.2018.07.078. [DOI] [PubMed] [Google Scholar]
- 139.Kuang F, Liu J, Li C, Kang R, Tang D. Cathepsin B is a mediator of organelle-specific initiation of ferroptosis. Biochem Biophys Res Commun. 2020;533:1464–9. doi: 10.1016/j.bbrc.2020.10.035IF: 2.5 Q3 . [DOI] [PubMed] [Google Scholar]
- 140.Nagakannan P, Islam MI, Conrad M, Eftekharpour E. Cathepsin B is an executioner of ferroptosis. Biochim Biophys Acta Mol Cell Res. 2021;1868:118928. doi: 10.1016/j.bbamcr.2020.118928. [DOI] [PubMed] [Google Scholar]
- 141.Hirayama T, Miki A, Nagasawa H. Organelle-specific analysis of labile Fe(ii) during ferroptosis by using a cocktail of various colour organelle-targeted fluorescent probes. Metallomics. 2019;11:111–7. doi: 10.1039/C8MT00212F. [DOI] [PubMed] [Google Scholar]
- 142.Mai TT, Hamai A, Hienzsch A, Caneque T, Muller S, Wicinski J, et al. Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat Chem. 2017;9:1025–33. doi: 10.1038/nchem.2778IF: 19.2 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 143.Sun J, Cheng X, Pan S, Wang L, Dou W, Liu J, et al. Dichloroacetate attenuates the stemness of colorectal cancer cells via trigerring ferroptosis through sequestering iron in lysosomes. Environ Toxicol. 2021;36:520–9. doi: 10.1002/tox.23057IF: 4.4 Q1 . [DOI] [PubMed] [Google Scholar]
- 144.Tian R, Abarientos A, Hong J, Hashemi SH, Yan R, Drager N, et al. Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis. Nat Neurosci. 2021;24:1020–34. doi: 10.1038/s41593-021-00862-0IF: 21.2 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 145.Jiang L, Zheng H, Lyu Q, Hayashi S, Sato K, Sekido Y, et al. Lysosomal nitric oxide determines transition from autophagy to ferroptosis after exposure to plasma-activated Ringer’s lactate. Redox Biol. 2021;43:101989. doi: 10.1016/j.redox.2021.101989IF: 10.7 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 146.Li L, Sun S, Tan L, Wang Y, Wang L, Zhang Z, et al. Polystyrene nanoparticles reduced ROS and inhibited ferroptosis by triggering lysosome stress and TFEB nucleus translocation in a size-dependent manner. Nano Lett. 2019;19:7781–92. doi: 10.1021/acs.nanolett.9b02795IF: 9.6 Q1 . [DOI] [PubMed] [Google Scholar]
- 147.Muller S, Sindikubwabo F, Caneque T, Lafon A, Versini A, Lombard B, et al. CD44 regulates epigenetic plasticity by mediating iron endocytosis. Nat Chem. 2020;12:929–38. doi: 10.1038/s41557-020-0513-5IF: 19.2 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 148.Braakman I, Bulleid NJ. Protein folding and modification in the mammalian endoplasmic reticulum. Annu Rev Biochem. 2011;80:71–99. doi: 10.1146/annurev-biochem-062209-093836. [DOI] [PubMed] [Google Scholar]
- 149.Sano R, Reed JC. ER stress-induced cell death mechanisms. Biochim Biophys Acta. 2013;1833:3460–70. doi: 10.1016/j.bbamcr.2013.06.028. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 150.Chen Y, Mi Y, Zhang X, Ma Q, Song Y, Zhang L, et al. Dihydroartemisinin-induced unfolded protein response feedback attenuates ferroptosis via PERK/ATF4/HSPA5 pathway in glioma cells. J Exp Clin Cancer Res. 2019;38:402. doi: 10.1186/s13046-019-1413-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 151.Chen D, Fan Z, Rauh M, Buchfelder M, Eyupoglu IY, Savaskan N. ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner. Oncogene. 2017;36:5593–608. doi: 10.1038/onc.2017.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 152.Wang N, Zeng GZ, Yin JL, Bian ZX. Artesunate activates the ATF4-CHOP-CHAC1 pathway and affects ferroptosis in Burkitt’s Lymphoma. Biochem Biophys Res Commun. 2019;519:533–9. doi: 10.1016/j.bbrc.2019.09.023. [DOI] [PubMed] [Google Scholar]
- 153.Chen MS, Wang SF, Hsu CY, Yin PH, Yeh TS, Lee HC, et al. CHAC1 degradation of glutathione enhances cystine-starvation-induced necroptosis and ferroptosis in human triple negative breast cancer cells via the GCN2-eIF2alpha-ATF4 pathway. Oncotarget. 2017;8:114588–602. doi: 10.18632/oncotarget.23055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 154.Lee YS, Kalimuthu K, Seok Park Y, Makala H, Watkins SC, Choudry MHA, et al. Ferroptotic agent-induced endoplasmic reticulum stress response plays a pivotal role in the autophagic process outcome. J Cell Physiol. 2020;235:6767–78. doi: 10.1002/jcp.29571IF: 4.5 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 155.Hao L, Zhong YM, Tan CP, Mao ZW. Quantitative tracking of endoplasmic reticulum viscosity during ferroptosis by an iridium complex via TPPLM. Chem Commun (Camb) 2021;57:5040–2. doi: 10.1039/D1CC01062JIF: 4.3 Q2 . [DOI] [PubMed] [Google Scholar]
- 156.Dai E, Han L, Liu J, Xie Y, Zeh HJ, Kang R, et al. Ferroptotic damage promotes pancreatic tumorigenesis through a TMEM173/STING-dependent DNA sensor pathway. Nat Commun. 2020;11:6339. doi: 10.1038/s41467-020-20154-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 157.Jia M, Qin D, Zhao C, Chai L, Yu Z, Wang W, et al. Redox homeostasis maintained by GPX4 facilitates STING activation. Nat Immunol. 2020;21:727–35. doi: 10.1038/s41590-020-0699-0. [DOI] [PubMed] [Google Scholar]
- 158.Tesfay L, Paul BT, Konstorum A, Deng Z, Cox AO, Lee J, et al. Stearoyl-CoA desaturase 1 protects ovarian cancer cells from ferroptotic cell death. Cancer Res. 2019;79:5355–66. doi: 10.1158/0008-5472.CAN-19-0369IF: 12.5 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 159.Yi J, Zhu J, Wu J, Thompson CB, Jiang X. Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc Natl Acad Sci USA. 2020;117:31189–97. doi: 10.1073/pnas.2017152117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 160.Zhao Y, Li M, Yao X, Fei Y, Lin Z, Li Z, et al. HCAR1/MCT1 regulates tumor ferroptosis through the lactate-mediated AMPK-SCD1 activity and its therapeutic implications. Cell Rep. 2020;33:108487. doi: 10.1016/j.celrep.2020.108487IF: 7.5 Q1 . [DOI] [PubMed] [Google Scholar]
- 161.Wohlhieter CA, Richards AL, Uddin F, Hulton CH, Quintanal-Villalonga A, Martin A, et al. Concurrent mutations in STK11 and KEAP1 promote ferroptosis protection and SCD1 dependence in lung cancer. Cell Rep. 2020;33:108444. doi: 10.1016/j.celrep.2020.108444IF: 7.5 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 162.Ye Z, Zhuo Q, Hu Q, Xu X, Mengqi L, Zhang Z, et al. FBW7-NRA41-SCD1 axis synchronously regulates apoptosis and ferroptosis in pancreatic cancer cells. Redox Biol. 2021;38:101807. doi: 10.1016/j.redox.2020.101807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 163.Chen PH, Wu J, Xu Y, Ding CC, Mestre AA, Lin CC, et al. Zinc transporter ZIP7 is a novel determinant of ferroptosis. Cell Death Dis. 2021;12:198. doi: 10.1038/s41419-021-03482-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 164.Lee S, Min KT. The interface between ER and mitochondria: molecular compositions and functions. Mol Cells. 2018;41:1000–7. doi: 10.14348/molcells.2018.0438. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 165.Olzmann JA, Carvalho P. Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol. 2019;20:137–55. doi: 10.1038/s41580-018-0085-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 166.Jarc E, Kump A, Malavasic P, Eichmann TO, Zimmermann R, Petan T. Lipid droplets induced by secreted phospholipase A2 and unsaturated fatty acids protect breast cancer cells from nutrient and lipotoxic stress. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863:247–65. doi: 10.1016/j.bbalip.2017.12.006IF: 3.9 Q1 . [DOI] [PubMed] [Google Scholar]
- 167.Petan T, Jarc E, Jusovic M. Lipid droplets in cancer: guardians of fat in a stressful world. Molecules. 2018;23:1941. doi: 10.3390/molecules23081941IF: 4.2 Q2 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 168.Dierge E, Debock E, Guilbaud C, Corbet C, Mignolet E, Mignard L, et al. Peroxidation of n-3 and n-6 polyunsaturated fatty acids in the acidic tumor environment leads to ferroptosis-mediated anticancer effects. Cell Metab. 2021;33:1701–15. doi: 10.1016/j.cmet.2021.05.016. [DOI] [PubMed] [Google Scholar]
- 169.Zhou W, Zhang J, Yan M, Wu J, Lian S, Sun K, et al. Orlistat induces ferroptosis-like cell death of lung cancer cells. Front of Med. 2021. 10.1007/s11684-020-0804-7. [DOI] [PubMed]
- 170.Miyoshi H, Perfield JW, 2nd, Obin MS, Greenberg AS. Adipose triglyceride lipase regulates basal lipolysis and lipid droplet size in adipocytes. J Cell Biochem. 2008;105:1430–6. doi: 10.1002/jcb.21964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 171.Smith JJ, Aitchison JD. Peroxisomes take shape. Nat Rev Mol Cell Biol. 2013;14:803–17. doi: 10.1038/nrm3700. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 172.Fransen M, Nordgren M, Wang B, Apanasets O. Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. Biochim Biophys Acta. 2012;1822:1363–73. doi: 10.1016/j.bbadis.2011.12.001IF: 4.2 Q1 . [DOI] [PubMed] [Google Scholar]
- 173.Cui W, Liu D, Gu W, Chu B. Peroxisome-driven ether-linked phospholipids biosynthesis is essential for ferroptosis. Cell Death Differ. 2021;28:2536–51. doi: 10.1038/s41418-021-00769-0IF: 13.7 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 174.Werner ER, Keller MA, Sailer S, Lackner K, Koch J, Hermann M, et al. The TMEM189 gene encodes plasmanylethanolamine desaturase which introduces the characteristic vinyl ether double bond into plasmalogens. Proc Natl Acad Sci USA. 2020;117:7792–8. doi: 10.1073/pnas.1917461117IF: 9.4 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 175.Tang D, Kroemer G. Peroxisome: the new player in ferroptosis. Signal Transduct Target Ther. 2020;5:273. doi: 10.1038/s41392-020-00404-3IF: 40.8 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 176.Luoma AM, Kuo F, Cakici O, Crowther MN, Denninger AR, Avila RL, et al. Plasmalogen phospholipids protect internodal myelin from oxidative damage. Free Radic Biol Med. 2015;84:296–310. doi: 10.1016/j.freeradbiomed.2015.03.012IF: 7.1 Q1 . [DOI] [PubMed] [Google Scholar]
- 177.Weinhofer I, Kunze M, Forss-Petter S, Berger J. Involvement of human peroxisomes in biosynthesis and signaling of steroid and peptide hormones. Subcell Biochem. 2013;69:101–10. doi: 10.1007/978-94-007-6889-5_6. [DOI] [PubMed] [Google Scholar]
- 178.Alborzinia H, Ignashkova TI, Dejure FR, Gendarme M, Theobald J, Wolfl S, et al. Golgi stress mediates redox imbalance and ferroptosis in human cells. Commun Biol. 2018;1:210. doi: 10.1038/s42003-018-0212-6IF: 5.2 Q1 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 179.Jiang Z, Hu Z, Zeng L, Lu W, Zhang H, Li T, et al. The role of the Golgi apparatus in oxidative stress: is this organelle less significant than mitochondria? Free Radic Biol Med. 2011;50:907–17. doi: 10.1016/j.freeradbiomed.2011.01.011IF: 7.1 Q1 . [DOI] [PubMed] [Google Scholar]
- 180.Dai C, Chen X, Li J, Comish P, Kang R, Tang D. Transcription factors in ferroptotic cell death. Cancer Gene Ther. 2020;27:645–56. doi: 10.1038/s41417-020-0170-2IF: 4.8 Q1 . [DOI] [PubMed] [Google Scholar]
- 181.Lang X, Green MD, Wang W, Yu J, Choi JE, Jiang L, et al. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Disco. 2019;9:1673–85. doi: 10.1158/2159-8290.CD-19-0338. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 182.Song X, Xie Y, Kang R, Hou W, Sun X, Epperly MW, et al. FANCD2 protects against bone marrow injury from ferroptosis. Biochem Biophys Res Commun. 2016;480:443–9. doi: 10.1016/j.bbrc.2016.10.068IF: 2.5 Q3 . [DOI] [PMC free article] [PubMed] [Google Scholar]
- 183.Hu N, Bai L, Dai E, Han L, Kang R, Li H, et al. Pirin is a nuclear redox-sensitive modulator of autophagy-dependent ferroptosis. Biochem Biophys Res Commun. 2021;536:100–6. doi: 10.1016/j.bbrc.2020.12.066. [DOI] [PubMed] [Google Scholar]
- 184.Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 2016;63:173–84. doi: 10.1002/hep.28251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 185.Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell. 2018;172:409–22 e421. doi: 10.1016/j.cell.2017.11.048IF: 45.5 Q1 . [DOI] [PubMed] [Google Scholar]
- 186.Chen X, Li J, Kang R, Klionsky DJ, Tang D. Ferroptosis: machinery and regulation. Autophagy. 2020. 10.1080/15548627.2020.1810918. [DOI] [PMC free article] [PubMed]