Dedication ..... v 奉献。。。。。v
Foreword ..... vii 前言。。。。。七
List of Contributors ..... ix 贡献者名单 .....九
Preface to the Edition ..... xxiii .....版前言二十三
Section I. ECLS: General Principles 第一节 ECLS:一般原则
The History and Development of Extracorporeal Support ..... 1 体外支持的历史与发展 .....1
The History and Development of Extracorporeal Support ..... 1 体外支持的历史与发展 .....1
Extracorporeal Support: Earliest Beginnings ..... 1 体外支持:最早的开始 ..... 1
Global Spread of ECMO ..... 6 ECMO.....的全球传播6
Perseverance: Experience and Growing Indications in ECMO ..... 9 毅力:ECMO.....的经验和成长适应症9
Technology and Clinical Indications for ECMO: the Future is Bright ..... 13 ECMO的技术和临床适应症:未来是光明的.....13
References ..... 14 引用。。。。。14
Table 2-3. Abbreviations used for describing cannulation configurations in ECLS. Level 1 shows abbreviations for major flow cannula and membrane lung configuration for peripheral and central cannulations. Level 2 shows abbreviations describing the actual vessels cannulated. Level 3 provides for describing the cannula tip position, while Level 4 allows description of the cannula size (length and diameter) 表 2-3.用于描述ECLS中插管配置的缩写。级别 1 显示外周和中央插管的主要流量插管和膜肺配置的缩写。级别 2 显示描述实际插管容器的缩写。第 3 级用于描述套管尖端位置,而第 4 级用于描述套管尺寸(长度和直径)
Jugular vein 颈静脉
j
Via left or right jugular vein 经左颈静脉或右颈静脉
Subclavian vessel 锁骨下血管
s
动脉或静脉,左侧或右侧
左/右锁骨下叶的烟囱移植物
动脉
Artery or vein, left or right side
Chimney graft on left/right subclavian
artery
Level 3 - Cannula Tip Position 3 级 - 套管尖端位置
Position 位置
简单
方法
Simple
approach
扩展
方法
Extended
approach
Comment 评论
髂下血管或下髂下部
腔静脉
Iliacal vessel or low inferior
vena cava
i
il/ir
Artery or ven, left or right side 动脉或静脉,左侧或右侧
Inferior vena cava 下腔静脉
ivc 静脉注射
ivc 静脉注射
静脉套管尖端位置处于
肝静脉
Venous cannula tip position at level of
liver vein
Superior vena cava 上腔静脉
svc SVC公司
svc SVC公司
静脉套管尖端位于上部
腔静脉
Venous cannula tip position in superior
vena cava
Distal perfusion 远端灌注
dt DT的
通过股骨灌注插管腿
动脉在同一侧
Perfusion of cannulated leg via femoral
artery on same side
Distal perfusion 远端灌注
dp DP型
经背足灌注或
同一侧的胫后动脉
Perfusion via the dorsal foot or
posterior tibial artery on same side
Level 4 - Cannula Size 4 级 - 套管尺寸
Diameter in French (Fr) 法语直径 (Fr)
(outer cannula diameter) (套管外径)
Length in centimeters 长度(厘米)
.../18
Do not print length alone 不要单独打印长度
Table 2-3 Continued. 表 2-3 续。
Combination of Central and Peripheral Applications 中央和外围应用的结合
To provide clarity on the use of circuits combining central and peripheral cannulation, the configuration is still formulated in the direction of flow, but the junction between the two parts of the circuit is marker with a slash "/". An example of such a configuration is Vjra-/IAg, which is VA support with peripheral venous drainage from the right atrium via a cannula placed through the right jugular vein (peripheral component), one membrane lung, and return flow into a chimney graft ( g ) on the innominate artery (IA, central component). Such an approach is often used for bridging to lung transplant. 为了明确使用结合中心和外围插管的电路,配置仍沿流动方向制定,但电路两部分之间的连接处用斜杠“/”标记。这种配置的一个例子是 Vjra-/IAg,它是 VA 支持,通过放置于右颈静脉(外周成分)、一个膜肺的套管从右心房引流外周静脉,并回流到无名动脉(IA,中央成分)上的烟囱移植物 ( g)。这种方法通常用于肺移植的桥接。
Independent Circuits 独立电路
If two independent extracorporeal circuits are used simultaneously, their respective configuration abbreviations are separated by a back slash ""'. The nomenclature allows for combined use of both central and peripheral circuits. An example isVfl-Afrdt\Vja-Asg, where the first circuit (Vfl-Afrdtl) drains via the left femoral vein with return flow via one membrane lung into the right femoral artery with a distal perfusion cannula in the right groin. The second circuit ( -Asg) drains via a jugular cannula with the tip in the (right) atrium and return flow via either subclavian artery where the cannula is put into a chimney graft. 如果同时使用两个独立的体外回路,则它们各自的配置缩写由反斜杠“”'分隔。该命名法允许同时使用中心电路和外围电路。 一个例子是 Vfl-Afrdt\Vja-Asg,其中第一回路 (Vfl-Afrdtl) 通过左股静脉引流,回流通过一个膜肺进入右股动脉,右腹股沟有一个远端灌注套管。第二回路 ( -Asg) 通过颈静脉套管引流,尖端位于(右)心房,并通过任一锁骨下动脉回流,套管被放入烟囱移植物中。
Commentary 评论
Although comprehensive, the nomenclature is intended to describe widely adopted approaches, and special applications may not fit within this nomenclature. These special applications should be described accordingly. Once in more widespread use, the nomenclature can be adapted to include these new approaches. 虽然内容全面,但该命名法旨在描述广泛采用的方法,特殊应用可能不适合该命名法。应相应地描述这些特殊应用。一旦得到更广泛的使用,就可以对命名法进行调整,以包括这些新方法。
Currently, cannula length of dual-lumen cannulas is not reported; however, with new devices emerging on the market, for example a dual-lumen cannula for femoral insertion, this may be a descriptor that will be added. The current nomenclature also does not provide information on cannula design, such as single-stage vs. multi-stage. Including such information would add unnecessary complexity without sufficient additional information to justify it. 目前,双腔插管的套管长度尚未见报道;然而,随着市场上出现新的设备,例如用于股骨插入的双腔套管,这可能是一个将被添加的描述符。目前的命名法也没有提供有关套管设计的信息,例如单级与多级。如果没有足够的额外信息来证明其合理性,包括此类信息将增加不必要的复杂性。
The final tip position of drainage and return cannulas has an impact on patient support, in particular with respect to recirculation during VV ECMO, but also in VA ECMO using a femoral return cannula, where differential hypoxia (formerly known as North-South or Harlequin syndrome) can occur. Blood flowing antegrade from native cardiac ejection and blood from the extracorporeal circuit flowing retrograde from the femoral artery cannula flow in opposing directions within the aorta. These competing flows meet at a mixing point (mixing zone, water-shedding zone), usually somewhere along the thoracic aorta. If respiratory failure is present, poorly oxygenated blood ejected from the left ventricle will perfuse the upper body, and well oxygenated blood will perfuse the lower body. The configuration solutions to the problem would be to consider conversion to VV or convert to VVA ECMO with an additional return cannula in the SVC. 引流插管和回流插管的最终尖端位置对患者支持有影响,特别是在 VV ECMO 期间的再循环方面,但在使用股骨回流插管的 VA ECMO 中也是如此,其中可能会出现差异缺氧(以前称为南北综合征或 Harlequin 综合征)。 从天然心脏射血而顺行流出的血液和从股动脉套管逆行流出的体外回路的血液在主动脉内以相反的方向流动。这些相互竞争的血流在混合点(混合区、缺水区)相遇,通常位于胸主动脉的某个地方。如果存在呼吸衰竭,从左心室射出的含氧量低的血液将灌注上半身,而含氧量好的血液将灌注下半身。该问题的配置解决方案是考虑转换为 VV 或转换为 VVA ECMO,并在 SVC 中增加一个回流套管。
Another rarely discussed issue related to the dual circulation with femoral VA ECMO is differential carbon dioxide tension (which can be found on the ELSO website www.elso.org for the Red Book). Upper body is determined by lung ventilation and lower body by circuit sweep gas flow. This phenomenon may easily pass undetected depending on where blood gases are sampled, and which regional blood stream supplies the respiratory center in the brainstem. Hypo or hypercarbia may develop in one or the other region depending on the interaction of the 另一个很少讨论的与股动脉 VA ECMO 双循环相关的问题是二氧化碳分压(可以在 ELSO 网站上找到,www.elso.org 红皮书)。上半身 由肺通气确定,下半身 由回路扫描气体流量确定。这种现象可能很容易在未被发现的情况下通过,这取决于血气采样的位置,以及哪个区域血流供应脑干中的呼吸中枢。低碳酸血症或高碳酸血症可能在一个或另一个区域发展,具体取决于
patient's own ventilation regulated by the respiratory center, degree of sedation and neuromuscular blockade, ventilator settings, cardiac output, and ECMO blood flow. 患者自身通气由呼吸中枢调节、镇静程度和神经肌肉阻滞、呼吸机设置、心输出量和 ECMO 血流量。
Conclusion 结论
The ELSO Maastricht Treaty for nomenclature ECLS provides a uniform, informative, and flexible system to describe ECLS practice and cannulation configurations. free online tool for the peripheral cannulation segment is available (https://ecls.eurosets.com). ELSO 马斯特里赫特条约关于命名 ECLS 提供了一个统一、信息丰富且灵活的系统来描述 ECLS 实践和插管配置。 提供用于外周插管段的免费在线工具 (https://ecls.eurosets.com)。
References 引用
Ranieri VM, Brodie D, Vincent JL: Extracorporeal organ support: From technological tool to clinical strategy supporting severe organ failure. JAMA 318 (12): 1105-1106, 2017 Ranieri VM、Brodie D、Vincent JL:体外器官支持:从技术工具到支持严重器官衰竭的临床策略。美国医学会杂志 318 (12): 1105-1106, 2017
Conrad SA, Broman LM, Taccone FS, et al: The Extracorporeal Life Support Organization Maastricht Treaty for nomenclature in extracorporeal life support. A position paper of the Extracorporeal Life Support Organization. Am J Respir Crit Care Med 198 (4): 447-451, 2018. Conrad SA、Broman LM、Taccone FS 等:体外生命支持组织马斯特里赫特条约,用于体外生命支持的命名。体外生命支持组织的立场文件。美国呼吸压力护理医学杂志 198 (4): 447-451, 2018.
Broman LM, Taccone FS, Lorusso R, et al: The ELSO Maastricht Treaty for ECLS Nomenclature: abbreviations for cannulation configuration in extracorporeal life support - a position paper of the Extracorporeal Life Support Organization. Crit Care 23 (1): 36, 2019. Broman LM、Taccone FS、Lorusso R 等人:ECLS 命名法的 ELSO 马斯特里赫特条约:体外生命支持中插管配置的缩写 - 体外生命支持组织的立场文件。批判性护理23(1):36,2019。
Aggarwal V, Einhorn BN, Cohen HA: Current status of percutaneous right ventricular assist devices: Firstin-man use of a novel dual lumen cannula. Catheter Cardiovasc Interv 88 (3): 390-6, 2016. Aggarwal V、Einhorn BN、Cohen HA:经皮右心室辅助装置的现状:首次使用新型双腔套管。心血管导管Interv 88(3):390-6,2016。
Biscotti M, Lee A, Basner RC, et al: Hybrid configurations via percutaneous access for extracorporeal membrane oxygenation: a singlecenter experience. ASAIO J 60 (6): 635-42, 2014. Biscotti M、Lee A、Basner RC 等:通过经皮通路进行体外膜肺氧合的混合配置:单中心体验。朝一杂志 60 (6): 635-42, 2014.
Taccone FS, Malfertheiner MV, Ferrari F, et al: Extracorporeal CO2 removal in critically ill patients: a systematic review. Minerva Anestesiol 83 (7): 762772, 2017. Taccone FS、Malfertheiner MV、Ferrari F 等:危重患者体外 CO2 去除:系统评价。密涅瓦麻醉剂83(7):762772,2017。
Madershahian N, Nagib R, Wippermann J, Strauch J, Wahlers T: A simple technique of distal limb perfusion during prolonged femoro-femoral cannulation. J Card Surg 21 (2): 168-9, 2006. Madershahian N、Nagib R、Wippermann J、Strauch J、Wahlers T:一种在长时间股股插管期间进行远端肢体灌注的简单技术。卡片外科杂志 21 (2): 168-9, 2006.
Avalli L, Maggioni E, Sangalli F, Favini G, Formica F, Fumagalli R: Percutaneous left-heart decompression during extracorporeal membrane oxygenation: an alternative to surgical and transeptal venting in adult patients. ASAIO J 57 (1): 38-40, 2011. Avalli L、Maggioni E、Sangalli F、Favini G、Formica F、Fumagalli R:体外膜肺氧合期间经皮左心减压:成年患者手术和经鼻中隔通气的替代方法。朝一杂志 57 (1): 38-40, 2011.
Kim HE, Jung JW, Shin YR, Park HK, Park YH, Shin HJ: Left Atrial Decompression by Percutaneous Left Atrial Venting Cannula Insertion during Venoarterial Extracorporeal Membrane Oxygenation Support. Korean J Thorac Cardiovasc Surg 49 (3): 203-6, 2016. Kim HE、Jung JW、Shin YR、Park HK、Park YH、Shin HJ:静脉动脉体外膜肺氧合支持期间经皮左心房通气插管插入左心房减压。韩国胸心血管外科杂志 49 (3): 203-6, 2016.
Skarsgard ED, Salt DR, Lee SK, Extracorporeal Life Support Organization R: Venovenous extracorporeal membrane oxygenation in neonatal respiratory failure: does routine, cephalad jugular drainage improve outcome? J Pediatr Surg 39 (5): 672-6, 2004. Skarsgard ED、Salt DR、Lee SK、体外生命支持组织 R:新生儿呼吸衰竭中的静脉体外膜肺氧合:常规头颈静脉引流是否能改善结果?儿科外科杂志 39 (5): 672-6, 2004.
Le Guyader A, Lacroix P, Ferrat P, Laskar M: Venous leg congestion treated with distal venous drainage during peripheral extracorporeal membrane oxygenation. Artif Organs 30 (8): 633-5, 2006. Le Guyader A、Lacroix P、Ferrat P、Laskar M:外周体外膜肺氧合期间用远端静脉引流治疗的静脉下腿淤血。Artif Organs 30 (8): 633-5, 2006.
Javidfar J, Brodie D, Wang D, et al: Use of bicaval dual-lumen catheter for adult venovenous extracorporeal membrane oxygenation. Ann Thorac Surg 91 (6): 1763-8; discussion 1769, 2011. Javidfar J、Brodie D、Wang D 等:使用双腔双腔导管进行成人静脉体外膜肺氧合。安胸外科91(6):1763-8;讨论 1769, 2011.
Chicotka S, Rosenzweig EB, Brodie D, Bacchetta M: The "Central Sport Model": Extracorporeal Membrane Oxygenation Using the Innominate Artery for Smaller Patients as Bridge to Lung Transplantation. ASAIO J 63 (4): e39-e44, 2017. Chicotka S、Rosenzweig EB、Brodie D、Bacchetta M:“中央运动模型”:使用无名动脉为较小的患者提供体外膜肺氧合作为肺移植的桥梁。朝尾杂志63(4):e39-e44,2017。
Porizka M, Rulisek J, Flaksa M, et al: Dual venoarterial extra-corporeal membrane oxygenation support in a patient with refractory hyperdynamic septic shock: a case report. Perfusion 37 (3): 306-310, 2022. Porizka M、Rulisek J、Flaksa M 等:难治性高动态脓毒性休克患者的双重静脉动脉体外膜肺氧合支持:病例报告。灌注 37 (3): 306-310, 2022.
Brodie D, Slutsky AS, Combes A: Extracorporeal life support for adults with respiratory failure and related indications: A review. JAMA 322 (6): 557-568, 2019. Brodie D、Slutsky AS、Combes A:患有呼吸衰竭和相关适应症的成人的体外生命支持:综述。美国医学会杂志 322 (6): 557-568, 2019.
Falk L, Sallisalmi M, Lindholm JA, et al: Differential hypoxemia during venoarterial extracorporeal membrane oxygenation. Perfusion 34 (1_suppl): 22-29, 2019. Falk L、Sallisalmi M、Lindholm JA 等:静脉动脉体外膜肺氧合期间的差异性低氧血症。灌注 34 (1_suppl): 22-29, 2019.
Hou , Yang , et al: Superior vena cava drainage improves upper body oxygenation during veno-arterial extracorporeal membrane oxygenation in sheep. Crit Care 19: 68, 2015. Hou , Yang , et al: 上腔静脉引流可改善绵羊静脉-动脉体外膜肺氧合过程中的上半身氧合。暴击护理19:68,2015。
3
The Circuit 电路
Leen Vercaemst, Timothy M. Maul, Jutta Arens, John M. Toomasian Leen Vercaemst、Timothy M. Maul、Jutta Arens、John M. Toomasian
Introduction 介绍
The ECLS circuit is designed to support the function of a failing respiratory (sometimes referred to as extracorporeal lung assist, or ECLA) and/or cardiac system. The circuit is comprised of one or more cannula(s), a blood pump, an artificial lung, connectors, tubing, circuit monitoring and temperature control devices. In rare instances, the circuit can be directly connected from an artery to a vein without the need for a blood pump (pumpless extracorporeal lung assist, or PECLA). Throughout this chapter, all combinations or modalities will be referred to as ECLS for simplicity. ECLS 回路旨在支持衰竭的呼吸系统(有时称为体外肺辅助或 ECLA)和/或心脏系统的功能。 该回路由一个或多个插管、一个血泵、一个人工肺、连接器、管道、电路监测和温度控制设备组成。在极少数情况下,该回路可以直接从动脉连接到静脉,而无需血泵(无泵体外肺辅助,或 PECLA)。为简单起见,在本章中,所有组合或模式都将称为 ECLS。
Variations in circuitry depend on the individual component design and composition, and clinical needs of the patient. These issues require detailed attention and management. There is also a variety of hardware controlling these circuits with different monitoring and safety features. The same circuitry can be adapted for intra- and interhospital transport. Depending on the position of the drainage and return cannulas in the vascular system, ECLS can provide either respiratory and/or hemodynamic support. High blood flow rates may be required, depending on the degree of organ failure or metabolic needs of an individual patient. To ensure sufficient support, all components need to be correctly selected, sized, and carefully managed. 电路的变化取决于各个组件的设计和组成,以及患者的临床需求。这些问题需要详细的关注和管理。此外,还有各种硬件控制这些电路,具有不同的监控和安全功能。相同的电路可以适用于医院内和医院间的运输。根据引流套管和回流套管在血管系统中的位置,ECLS 可以提供呼吸和/或血流动力学支持。可能需要高血流率,具体取决于器官衰竭的程度或个体患者的代谢需求。为确保足够的支持,需要正确选择所有组件、调整尺寸并仔细管理。
Historically, ECLS circuit components were adapted from cardiopulmonary bypass equipment used for cardiac surgery. Many of these devices are labelled for short-term use, typically less than six hours. These devices have been used for ECLS safely off-label for days, weeks, or months at a time. Recently, some newer devices and cannulas have received regulatory clearance for extended use for periods up to 30 days. Existing devices may be reclassified as long-term use devices based on the interests of manufacturers, regulatory agencies, and country of use. 从历史上看,ECLS 电路组件是由用于心脏手术的体外循环设备改编而来的。其中许多设备都贴上了短期使用的标签,通常不到 6 小时。这些设备已用于 ECLS,一次可以安全地脱离标签数天、数周或数月。 最近,一些较新的设备和插管已获得监管许可,可以延长使用时间长达 30 天。根据制造商、监管机构和使用国家/地区的利益,现有设备可能会被重新分类为长期使用设备。
In this chapter, ECLS circuit components will be described, and their proper assembly and operation will be outlined. This includes descriptions of disposable components, hardware, information provided by the device manufacturer, and some supporting tools to monitor circuit function. This chapter in previous editions of the Red Book provided specific commercial examples used in the ECLS circuit. However, descriptions of industry products will not be provided here. For information on specific devices, the reader is referred to 'Instructions for Use' (IFU) provided by the manufacturer that describe the materials, indications for use, and operational parameters for clinical application. 在本章中,将介绍ECLS电路组件,并概述其正确的组装和操作。 这包括一次性组件、硬件、设备制造商提供的信息以及一些用于监控电路功能的支持工具的描述。在《红皮书》的前几版中,这一章提供了ECLS电路中使用的具体商业示例。 但是,此处不会提供行业产品的描述。有关特定设备的信息,请参阅阅读器由制造商提供的“使用说明”(IFU),其中描述了临床应用的材料、使用适应症和操作参数。
Circuit Components and Composition 电路元件和组成
The main components of the circuit are drainage cannula(s), pump, artificial lung with integrated heat exchanger, and return cannula(s). These are interconnected with PVC tubing with an inner diameter of " (inch) in adults, or " or " in children (Figure 3-1). 回路的主要部件是引流插管、泵、带集成热交换器的人工肺和回流插管。它们与内径为 “(英寸)的 PVC 管相互连接,成人为”(英寸)“,儿童 为”或 “(图 3-1)。
The extracorporeal volume and bloodto-polymer exposure impact patient blood composition, inflammatory processes, and coagulation (see Chapter 6). The volume to fill (prime) the circuit typically ranges from in neonates to in adults. The priming fluid composition depends on the relative blood dilution (circuit versus patient volume) and aims to maintain a physiological intravascular composition (especially the hemoglobin level needed for oxygen transport) despite the expansion of the patient's circulating volume. 体外体积和血液聚合物暴露会影响患者的血液成分、炎症过程和凝血(见第 6 章)。填充(灌注)回路的体积通常在 新生儿到 成人中不等。启动液成分取决于相对血液稀释度(回路与患者体积),旨在维持生理血管内成分(尤其是氧转运所需的血红蛋白水平),尽管患者的循环体积扩大。
The knowledge of basic physiology of flow and physics of laminar flow through tubing as described by the Hagen-Poiseuille Law equation (Equation 1), illustrating the relationship between flow and resistance in a tube. 通过管道的流动的基本生理学知识和层流物理学的知识,如Hagen-Poiseuille定律方程(方程式1)所描述,说明了管道中流动和阻力之间的关系。
Equation 1 等式 1
The Hagen-Poiseuille Law states that volumetric flow is proportional to the power of the tubing pathway's radius ( ), pressure drop ( across the pathway, and inversely proportional to the pathway length (L) and dynamic fluid viscosity ( ). Resistance to flow within the ECLS circuit should be minimized. This provides important Hagen-Poiseuille定律指出,体积流量 与管道路径的半径( )、 压降( 穿过路径的 功率成正比,与路径长度(L)和动态流体粘度( )成反比 。应将 ECLS 回路内的流动 阻力降至最低。这提供了重要的
Figure 3-1. The ECLS circuit. (Illustration by Stephanie Philippaerts-copyright protected-Produced for UZ Leuven.) 图 3-1。ECLS 电路。(插图由 Stephanie Philippaerts 绘制-受版权保护-为 UZ Leuven 制作。
guidance in the selection, composition, and management of the circuit. However, low resistance comes at the price of larger priming volume (Table 3-1). Therefore, both should be carefully balanced accounting for the individual patient needs. 指导电路的选择、组成和管理。然而,低阻力的代价是更大的启动体积(表3-1)。因此,两者都应仔细平衡,考虑到个体患者的需求。
Cannulas 插管
Cannulas (Figure 3-2) are integral parts of the circuit and provide the intravascular connections between the patient and circuit. They have a tremendous bearing on the ability of the circuit to provide sufficient flow and support and are often a limiting factor. Cannulas come in a variety of sizes, lengths, and designs. These features are important with respect to the desired flow. Cannulas are selected based on cannulation site, insertion method (percutaneous or surgical), intended purpose (blood drainage or return), desired flow rate (relative to patient size), and vessel condition. 套管(图 3-2)是回路的组成部分,提供患者和回路之间的血管内连接。它们对回路提供足够流量和支持的能力有很大影响,并且通常是限制因素。套管有各种尺寸、长度和设计。这些特性对于所需的流量非常重要。插管的选择基于插管部位、插入方法(经皮或手术)、预期目的(血液引流或回流)、所需流速(相对于患者体型)和血管状况。
The most important variable for flow is the diameter (radius x 2), which is expressed in millimeters (mm) or French (Fr) ( ) and refers to the outer diameter of the cannula. The inner diameter can vary between different manufacturers, depending on the wall thickness of the canula. However, it is the inner diameter that defines the resistance of the canula (Equation 1). Since 2021, the international standard on cannulas for extracorporeal circulation (ISO 18193:2021) requires manufacturers to provide the inner diameter of the cannula on packaging in addition to the 流量最重要的变量是直径(半径 x 2),以毫米 (mm) 或法语 (Fr) ( ) 表示,指的是套管的外径。不同制造商的内径可能会有所不同,具体取决于套管的壁厚。然而,内径定义了套管的阻力(方程式 1)。自 2021 年起,关于体外循环套管的国际标准 (ISO 18193:2021) 要求制造商在包装上提供套管的内径以及
配管
标称(内部)
直径
TUBING
NOMINAL (inner)
DIAMETER
装雷管
每体积
长度
PRIMING
VOLUME PER
LENGTH
电阻 PER
长度为 1 L/MIN
血流**
RESISTANCE PER
LENGTH AT 1 L/min
BLOOD FLOW**
表面
每 个面积
长度
SURFACE
AREA PER
LENGTH
3/1"
17.8 mL/m 17.8 毫升/米
(LBlood ) (LBlood )
" “
) )
3/8"
L ) L )
Table 3-1. Typical tubing diameters and their resulting priming volume and resistance as a function of length. outer diameter. The cannula length is a function of the size of the patient and the desired site for placement of blood drainage and return. Practitioners should keep in mind that cannula length linearly increases resistance to flow. Each specific cannula has its own flow/pressure curve, which can be found in the IFU to facilitate proper cannula selection. Generally, practitioners target working pressure drops for drainage cannulas and for return cannulas. 表 3-1.典型的卡套管直径及其产生的灌注量和阻力与长度的关系。外径。套管长度是患者大小的函数,也是放置血液引流和回流所需部位的函数。从业者应该记住,套管长度呈线性增加流动阻力。每个特定的套管都有自己的流量/压力曲线,可以在 IFU 中找到该曲线,以便于正确选择套管。通常,从业人员针对引流套管和 回流套管的工作压降 。
Information given by the manufacturers in the IFU typically includes the pressure drop (a surrogate for resistance) from cannula inlet to outlet that occurs at various flow rates. Historically, this information was based upon water as the test fluid (with a much lower viscosity compared to blood), and thus underestimated the true resistance of the cannula. The new standard ISO 18193, published in 2021, requires manufacturers to determine the resistance by using a blood analogue fluid with a viscosity matching that of blood. In approximately the next 5 years, there will be descriptive information on cannulas concerning the pressure drop based on both water and blood analogues. 制造商在 IFU 中提供的信息通常包括在不同流速下从套管入口到出口的压降(阻力的替代物)。从历史上看,这些信息是基于水作为测试流体(与血液相比,粘度要低得多),因此低估了套管的真实阻力。2021 年发布的新标准 ISO 18193 要求制造商使用粘度与血液粘度相匹配的血液类似液来确定耐药性。大约在接下来的 5 年内,将有关于基于水和血液类似物的压降的插管的描述性信息。
Cannulas are typically manufactured using PVC or polyurethane polymers and can be surface coated to improve hemocompatibility. Wire reinforcement is typically integrated within the wall to avoid kinking and collapsing and for radiographic visualization. Some cannulas contain additional radiographic 套管通常使用 PVC 或聚氨酯聚合物制造,并且可以进行表面涂层以改善血液相容性。钢丝加固通常集成在墙内,以避免扭结和坍塌,并用于射线照相可视化。一些插管含有额外的射线照相
Figure 3-2. Cannulas. (Illustrations by Stephanie Philippaerts-copyright protected-Produced for UZ Leuven.) 图 3-2。插管。(插图由 Stephanie Philippaerts 提供-受版权保护-为 UZ Leuven 制作。