目的
使用不同近似精度的反应路径进行综合搜索
通过对 C4H6的应用示例,我们将学习 SC-AFIR 选项,以根据目标和计算资源高效地执行综合搜索。
选项和功能
表。SC-AFIR 选项和反应路径待优化a
aAFIR 路径是 IRC 路径的粗略反应路径,LUP 路径是更好的近似路径,因为它优化了 AFIR 路径。
bAFIR 路径已计算,但结果未在主输出文件中描述。
计算时间的顺序变为“仅 EQ & 保持 SC 路径” < “仅 EQ & 保持 LUP 路径” < “默认”。
默认输入
# SC-AFIR2/RHF/6-31G 指定 SC-AFIR2
0 1
C -1.838404287973 0.119533694878 0.000000000001
C -0.615405923118 -0.396826557079 -0.000000000000
C 0.615405107688 0.396823317776 -0.000000000001
C 1.838404890511 -0.119531342069 0.000000000001
H -2.005621685770 1.181210920926 0.000000000000
H -2.713544917822 -0.500533906903 -0.000000000001
H -0.490768775742 -1.466281153046 -0.000000000001
H 0.490765045187 1.466277913926 0.000000000000
H 2.005632939247 -1.181205538618 -0.000000000001
H 2.713539929768 0.500542319041 0.000000000000
Options
Add interaction
Gamma=1000 指定伽马=1000 kJ mol-1作为示例
END
Gauproc=1
GauMem=800
输出 1:日志文件
c4h6_default.log
c4h6_default_EQ_list.log
c4h6_default_TS_list.log
c4h6_default_PT_list.log
如何读取日志文件:c4h6_default_EQ_list.log
# Geometry of EQ 0, SYMMETRY = C2h
C -1.838404287973 0.119533694878 0.000000000001
…snip…
H 2.713539929768 0.500542319041 0.000000000000
Energy = -154.864576395653 (-154.864576395653 : 0.000000000000)
Spin(**2) = 0.000000000000
ZPVE = 0.092165672706
Normal mode eigenvalues : nmode = 24
0.001065322 0.004058282 0.012196272 0.013257292 0.028264197
…snip…
# Geometry of EQ 1, SYMMETRY = Cs
C -1.909612052040 0.139044446470 0.001805406420
C -0.728397038359 -0.466342686233 -0.000501104977
…snip…
平衡结构被列举。
通常,EQ0 对应于初始结构,而 EQ1 及以下是搜索过程中获得的优化结构。
如何读取日志文件:c4h6_default_TS_list.log
# Geometry of TS 0, SYMMETRY = C2
C -1.694319087901 0.141191397200 0.368424736715
…snip…
H 2.660142999010 0.467778288804 -0.021229531391
Energy = -154.854740301486 (-154.854740301486 : 0.000000000000)
Spin(**2) = 0.000000000000
ZPVE = 0.091496701099
Normal mode eigenvalues : nmode = 24
-0.001175441 0.005366340 0.006100352 0.020122685 0.023635562
…snip…
CONNECTION : 9 - 0
过渡态结构被列举。
“连接:9 – 0”对应于与 TS0 相关的 EQ_list 中的平衡结构。
EQOnly & KeepSCPath 输入
# SC-AFIR2/RHF/6-31G 指定 SC-AFIR2
0 1
C -1.838404287973 0.119533694878 0.000000000001
C -0.615405923118 -0.396826557079 -0.000000000000
C 0.615405107688 0.396823317776 -0.000000000001
C 1.838404890511 -0.119531342069 0.000000000001
H -2.005621685770 1.181210920926 0.000000000000
H -2.713544917822 -0.500533906903 -0.000000000001
H -0.490768775742 -1.466281153046 -0.000000000001
H 0.490765045187 1.466277913926 0.000000000000
H 2.005632939247 -1.181205538618 -0.000000000001
H 2.713539929768 0.500542319041 0.000000000000
Options
Add interaction
Gamma=1000 指定伽马=1000 kJ mol-1作为一个例子
END
Gauproc=1
GauMem=800
EQOnly 仅对平衡结构进行几何优化
KeepSCpath 计算 AFIR 路径并保存文件
输出 2:日志文件
c4h6_keepSCPath.log
c4h6_ keepSCPath_EQ_list.log
c4h6_ keepSCPath_TS_list.log
c4h6_ keepSCPath_PT_list.log
c4h6_keepSCPath_PTQQQ.log
如何读取日志文件:c4h6_keepSCPath_EQ_list.log
# Geometry of EQ 0, SYMMETRY = C2h
C -1.838404287973 0.119533694878 0.000000000001
…snip…
H 2.713539929768 0.500542319041 0.000000000000
Energy = -154.864576395653 (-154.864576395653 : 0.000000000000)
Spin(**2) = 0.000000000000
ZPVE = 0.092165672706
Normal mode eigenvalues : nmode = 24
0.001065322 0.004058282 0.012196272 0.013257292 0.028264197
…snip…
# Geometry of EQ 1, SYMMETRY = Cs
C -1.909612052040 0.139044446470 0.001805406420
C -0.728397038359 -0.466342686233 -0.000501104977
…snip…
平衡结构被列举。
通常,EQ0 对应于初始结构,而 EQ1 及以下是搜索过程中获得的优化结构。
如何读取日志文件:c4h6_keepSCPath_PT_list.log
# Geometry of TS 1, SYMMETRY = C1
C -1.579727651738 0.122636265985 0.134064446290
…snip…
H 0.447695602798 0.057746266941 0.691930263608
Energy = -154.598944498044 (-154.598944498044 : 0.000000000000)
Spin(**2) = 0.000000000000
ZPVE = 0.000000000000
Normal mode eigenvalues : nmode = 24
0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
…snip…
0.000000000 0.000000000 0.000000000 0.000000000
CONNECTION : 0 - ??
在 SC-AFIR 计算过程中获得的 AFIR 路径上的近似过渡态结构被列举出来。
“连接”描述了在 AFIR 路径上获得的结构之间的联系。
准确的过渡态结构可以通过对所描述结构的鞍点计算获得。
如何读取日志文件:c4h6_keepSCPath_10571.log
AFIR 路径的能量在日志文件末尾的“AFIR 路径概况”中描述。
在 AFIR 路径上,近似的过渡态结构和平衡结构被列举出来。
准确的过渡态和 IRC 路径可以通过鞍点计算或重路径或重构计算获得,这些计算针对 AFIR 路径上的过渡态结构候选者。
---Profile of AFIR path
Itr. Length (ang) Energy (real) Energy (fit)
0 0.000000000000 -154.189471987828 -154.189412734629 -0.78
1 0.064942795410 -154.185530648728 -154.185758323410 -0.80
2 0.127386360596 -154.180850705819 -154.180669139313 -0.81
…snip…
---Approximate TS geometry (between 18 and 19)ITR on AFIR path, indicating there are transition
C -2.601112286807 -0.246259060101 -0.548607140235state structure candidates between 18 and 19.
…snip…
H 1.456081420364 0.507653193974 0.648385058763
ENERGY = -154.046963051192 (-154.046963051192 : 0.000000000000)
EQOnly & KeepLUPPath Input
# SC-AFIR2/RHF/6-31GSpecify SC-AFIR2
0 1
C -1.838404287973 0.119533694878 0.000000000001
C -0.615405923118 -0.396826557079 -0.000000000000
C 0.615405107688 0.396823317776 -0.000000000001
C 1.838404890511 -0.119531342069 0.000000000001
H -2.005621685770 1.181210920926 0.000000000000
H -2.713544917822 -0.500533906903 -0.000000000001
H -0.490768775742 -1.466281153046 -0.000000000001
H 0.490765045187 1.466277913926 0.000000000000
H 2.005632939247 -1.181205538618 -0.000000000001
H 2.713539929768 0.500542319041 0.000000000000
Options
Add interaction
Gamma=1000Specify Gamma=1000 kJ mol-1 as an example
END
Gauproc=1
GauMem=800
EQOnlyPerform geometry optimization on equilibrium structures only
KeepLUPpathOptimize LUP path and keep the file
Output3: Log-files
c4h6_keepLUPPath.log
c4h6_ keepLUPPath_EQ_list.log
c4h6_ keepLUPPath_TS_list.log
c4h6_ keepLUPPath_PT_list.log
c4h6_keepLUPPath_PTQQQ.log
How to read the log file: c4h6_keepLUPPath_EQ_list.log
# Geometry of EQ 0, SYMMETRY = C2h
C -1.838404287973 0.119533694878 0.000000000001
…snip…
H 2.713539929768 0.500542319041 0.000000000000
Energy = -154.864576395653 (-154.864576395653 : 0.000000000000)
Spin(**2) = 0.000000000000
ZPVE = 0.092165672706
Normal mode eigenvalues : nmode = 24
0.001065322 0.004058282 0.012196272 0.013257292 0.028264197
…snip…
# Geometry of EQ 1, SYMMETRY = Cs
C -1.909612052040 0.139044446470 0.001805406420
C -0.728397038359 -0.466342686233 -0.000501104977
…snip…
- Equilibrium structures are enumerated.
- Normally EQ0 corresponds to the initial structure and EQ1 and below are optimized structures obtained during the search.
How to read the log file: c4h6_keepLUPPath_PT_list.log
# Geometry of TS 0, SYMMETRY = C1
C -1.760372035348 0.182009395364 0.333038946577
…snip…
H 2.699847402416 0.522235606356 -0.256604623120
Energy = -154.821102955644 (-154.821102955644 : 0.000000000000)
Spin(**2) = 0.000000000000
ZPVE = 0.091575464972
Normal mode eigenvalues : nmode = 24
-0.004340298 0.003312917 0.005257720 0.017740421 0.021577244
…snip…
0.425724393 0.435883869 0.443434980 0.464815676
CONNECTION : 0 - 9
- Approximate transition state structures on LUP path obtained during SC-AFIR calculation are enumerated.
- “CONNECTION” describes the connections between structures obtained on LUP path.
- The accurate transition state structure can be obtained by the Saddle calculation for the described structure.
How to read the log file: c4h6_keepSCPath_10571.log
- The structure and energy after LUP path optimization are described.
# NODE 0
C -0.310296209821 1.606084214583 -0.104967332975
…snip…
H 2.053903493510 1.126503518216 0.706909432861
Item Value Threshold
ENERGY -154.619286214507
…snip…
NORMAL MODE EIGENVALUE : N_MODE = 24
-0.002985623 0.005875821 0.010769888 0.014870272 0.023773466
…snip…
# NODE 1
C -0.053615163401 1.551120101148 -0.382902048339
…snip…
H 2.073142003557 1.054133995670 0.894672472301
- The accurate transition state and IRC path can be obtained by Saddle calculation or Restruct calculation of transition state structure candidates on LUP path.