这是用户在 2024-6-11 14:31 为 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9291240/#SD1 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
Skip to main content
跳转到主要内容
U.S. flag

An official website of the United States government

Access keys 访问键 NCBI Homepage NCBI 主页 MyNCBI Homepage 我的 NCBI 主页 Main Content 主要内容 Main Navigation 主导航
Author manuscript; available in PMC 2022 Aug 1.
J Thorac Oncol. 作者手稿;2022 年 8 月 1 日在 PMC 上可用。
Published in final edited form as:
最终编辑形式发表为:
Published online 2021 May 25. doi: 10.1016/j.jtho.2021.04.020
2021 年 5 月 25 日在线发表。doi: 10.1016/j.jtho.2021.04.020
PMCID: PMC9291240 PMCID:PMC9291240
NIHMSID: NIHMS1795350
PMID: 34144926

Visceral Obesity Promotes Lung Cancer Progression – Towards Resolution of the Obesity Paradox in Lung Cancer
内脏性肥胖促进肺癌进展 - 走向解决肺癌肥胖悖论

Joseph Barbi,1 Santosh K. Patnaik,2 Sarabjot Pabla,3 Robert Zollo,1 Randall J. Smith, Jr.,1 Stephanie N. Sass,1 Aravind Srinivasan,1 Cara Petrucci,2 Robert Seager,3 Jeffrey Conroy,3 Eric Kannisto,2 Xialong Wang,2 Shrunjal Shah,4 Rohit Gosain,4 Kris Attwood,5 Charles Roche,6 and Sai Yendamuri2,*
Joseph Barbi, 1 Santosh K. Patnaik, 2 Sarabjot Pabla, 3 Robert Zollo, 1 Randall J. Smith,Jr., 1 Stephanie N. Sass, 1 Aravind Srinivasan, 1 Cara Petrucci, 2 Robert Seager, 3 Jeffrey Conroy, 3 Eric Kannisto, 2 Xialong Wang, 2 Shrunjal Shah, 4 Rohit Gosain, 4 Kris Attwood, 5 Charles Roche, 6 and Sai Yendamuri 2, *

Associated Data 关联数据

Supplementary Materials 补充材料

Abstract 摘要

Introduction 介绍

While obesity is associated with adverse cancer outcomes in general, most retrospective clinical studies suggest a beneficial effect of obesity in non-small cell lung cancer (NSCLC).
尽管肥胖通常与癌症不良结果相关,但大多数回顾性临床研究表明肥胖对非小细胞肺癌(NSCLC)有益。

Methods 方法

Hypothesizing that this “obesity paradox” arises partly from the limitations of using body mass index (BMI) to measure obesity, we quantified adiposity using pre-operative CT images. This allowed the specific determination of central obesity as abdominal visceral fat area normalized to total fat area (visceral fat index or VFI). In addition, due to the previously reported salutary effect of metformin on high BMI patients with lung cancer, metformin-users were excluded. We then explored associations between visceral obesìty and outcomes after surgical resection of stage I/II non-small cell lung cancer. We also explored potential immunologic underpinnings of such as association using complimentary analyses of tumor gene expression data from NSCLC cancers and the tumor transcriptome and immune microenvironment in an immunocompetent model of lung cancer with diet induced obesity.
假设这种“肥胖悖论”部分源于使用身体质量指数(BMI)来衡量肥胖的局限性,我们利用术前 CT 图像量化了脂肪堆积。这使得可以具体确定中心性肥胖,即腹部内脏脂肪面积与总脂肪面积的比值(内脏脂肪指数或 VFI)。此外,由于二甲双胍对肺癌高 BMI 患者的有益影响已有先前报道,我们排除了使用二甲双胍的患者。然后,我们探讨了 I/II 期非小细胞肺癌患者在手术切除后内脏肥胖与预后之间的关联。我们还通过对 NSCLC 癌症的肿瘤基因表达数据以及在饮食诱导性肥胖的免疫竞争模型中的肿瘤转录组和免疫微环境的互补分析,探讨了这种关联的潜在免疫学基础。

Results 结果

We found that in 513 stage I/II NSCLC patients undergoing lobectomy, a high VFI is associated with decreased recurrence-free and overall survival. VFI was also inversely related to an inflammatory transcriptomic signature in NSCLC tumors, consistent with observations made in immunocompetent murine models where diet-induced obesity promoted cancer progression while exacerbating elements of immune suppression in the tumor niche.
我们发现,在进行肺叶切除手术的 513 例 I/II 期非小细胞肺癌患者中,高 VFI 与复发无关生存和总体生存率降低相关。VFI 还与非小细胞肺癌肿瘤中的炎症转录组特征呈负相关,与在免疫能力鼠模型中观察到的情况一致,即饮食诱导性肥胖促进了癌症进展,同时加重了肿瘤微环境中的免疫抑制因素。

Conclusion 结论

In all, this study uses multiple lines to evidence to demonstrate the adverse effects of visceral obesity in NSCLC patients that align with those seen in animal models. Thus, the obesity paradox may, at least in part, be secondary to the use of BMI as a measure of obesity and the confounding effects of metformin use.
总的来说,这项研究使用多条证据线显示了 NSCLC 患者内脏肥胖的不良影响,这与动物模型中观察到的情况一致。因此,肥胖悖论可能至少部分是由于将 BMI 用作肥胖测量指标以及二甲双胍使用的混杂效应。

Keywords: Lung cancer, immunity, obesity, visceral adiposity
关键词:肺癌,免疫力,肥胖,内脏脂肪堆积

Introduction 介绍

An association between obesity and cancer at numerous sites has been recognized for almost two decades. To date, thirteen human cancers have been associated with excess body weight – a fact made all the more pressing by the ongoing obesity epidemic and the rising prevalence of obesity among the U.S. population, which have increased to 38.3% among women and 34.3% among men. Over the last four decades, the proportion of overweight (typically defined by a Body Mass Index or BMI > 25) individuals in the general population has increased to 66%, with approximately half being classified as obese (BMI > 30). Correspondingly, the incidence of obesity associated cancers have also increased over the past ten years, and obesity is now widely considered to be a carcinogen.
几乎已经有二十年的时间认识到肥胖与多个部位的癌症之间存在关联。迄今为止,已经有十三种人类癌症与过重体重有关,这一事实更加紧迫,因为肥胖流行病持续蔓延,美国人口中肥胖的患病率不断上升,女性为 38.3%,男性为 34.3%。在过去的四十年里,普通人口中超重(通常由身体质量指数或 BMI > 25 定义)的比例增加到 66%,其中约一半被归类为肥胖(BMI > 30)。相应地,与肥胖相关的癌症发病率在过去十年中也有所增加,肥胖现在被广泛认为是一种致癌物。

While the association between measures of obesity and both cancer incidence and outcome are clear in some solid tumor types such as breast, esophageal, and colon cancer, the relationship of obesity and lung cancer is more nuanced. Among cancers not traditionally thought to be obesity-related, the most prominent in terms of frequency and patient mortality is lung cancer. Contrary to many other cancers, obesity has been related to decreased incidence of lung cancer. For example, Smith et al. analyzed the NIH-AARP database and concluded that high BMI is inversely associated with lung cancer risk. Notably, in this study, controlling for smoking increased the association between BMI and lung cancer incidence. This association is so consistent that, using data from the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial, Tammemagi et al. developed a lung cancer risk prediction tool that incorporates BMI as a negative predictor of lung cancer risk. In addition, several studies show that BMI is associated with improved long-term outcomes in patients with lung cancer, and this appears to be true in both early- and late-stage lung cancers. Interestingly, several recent studies have also found that obese patients may respond better to anti-PD-1 immunotherapy than normal BMI patients.
尽管肥胖度量与癌症发病率和结果之间的关联在一些实体肿瘤类型(如乳腺癌、食管癌和结肠癌)中是明确的,但肥胖与肺癌的关系更加微妙。在传统上认为与肥胖无关的癌症中,就发病率和患者死亡率而言,最突出的是肺癌。与许多其他癌症相反,肥胖与肺癌的发病率降低有关。例如,Smith 等人分析了 NIH-AARP 数据库,并得出结论,高 BMI 与肺癌风险呈负相关 。值得注意的是,在这项研究中,控制吸烟增加了 BMI 与肺癌发病率之间的关联。这种关联如此一致,以至于 Tammemagi 等人利用前列腺、肺部、结肠和卵巢癌筛查试验的数据开发了一个包含 BMI 作为肺癌风险负预测因子的肺癌风险预测工具 。此外,几项研究表明 BMI 与肺癌患者长期结果改善有关,而且这似乎在早期和晚期肺癌患者中都是如此 。 有趣的是,一些最近的研究还发现,肥胖患者可能对抗 PD-1 免疫疗法的反应比正常 BMI 患者更好。

These and other clinical findings in lung cancer patients are strikingly at odds with the results of many animal experiments, which overwhelmingly demonstrate a deleterious effect of obesity in cancer. Several mechanisms have been proposed, from alteration of cancer cell metabolism to leptin mediated immune modulation It is widely recognized that obesity induces a state of chronic “meta-inflammation” typified by chronic cytokine production, widespread dysfunction of both innate and adaptive immune cells, and premature “immune aging” that yields an abundance of activated, yet exhausted and dysfunctional T cells, The prolonged inflammatory elements of obesity have also been associated with increased frequencies of inhibitory myeloid derived suppressor cells (MDSCs) in mice and humans Notably, obesity has also been linked to the upregulation of immune checkpoint molecules that are well-characterized as obstacles preventing effective anti-tumor immune responses. In line with this, obese mice support more robust tumor growth while harboring CD8+ T cells with surface markers like PD-1, LAG3, and TIM3, and gene expression profiles that are associated with exhaustion This disconnect between the usual negative health related outcomes associated with obesity with its apparent beneficial effects in lung cancer has been termed the “Obesity Paradox” in lung cancer.
这些以及其他肺癌患者的临床发现与许多动物实验的结果截然相反,这些实验明显表明肥胖在癌症中具有有害作用。已经提出了几种机制,从改变癌细胞代谢到瘦素介导的免疫调节。广泛认识到肥胖引起一种慢性“代谢性炎症”状态,以慢性细胞因子产生、广泛的先天和适应性免疫细胞功能障碍以及过早“免疫老化”为特征,导致大量活化但疲惫和功能失调的 T 细胞。肥胖的长期炎症元素还与小鼠和人类中抑制性髓源性抑制细胞(MDSCs)的频率增加有关。值得注意的是,肥胖还与免疫检查点分子的上调有关,这些分子被充分描述为阻碍有效的抗肿瘤免疫应答。 与此相一致,肥胖小鼠在携带表面标记物如 PD-1、LAG3 和 TIM3 的 CD8+T 细胞以及与疲劳相关的基因表达谱的情况下,支持更强劲的肿瘤生长 肥胖通常与负面健康相关结果相关联,但在肺癌中表现出的明显有益效果被称为肺癌中的“肥胖悖论”。

A closer examination of this apparent paradox reveals several concerns in drawing biological inferences from the clinical data. An important confounder of obesity’s contribution to lung cancer outcomes is the anti-diabetic agent, metformin. Though its molecular mechanism is poorly understood, metformin (N,N-dimethylbiguanide) is widely used to treat type II diabetes, a condition prevalent in the obese. The drug is also known to have anti-cancer activity, for which myriad molecular and cellular mechanisms have been proposed, . In lung cancer, metformin reduces tobacco carcinogen-induced lung carcinogenesis in animal and epidemiologic studies. Additionally, we and others have shown that metformin use is associated with improved survival in patients with lung cancer, . Of particular relevance to this study, we have recently demonstrated that the anti-cancer effect of metformin seems to disproportionately benefit overweight or obese individuals. Additional concerns stem from the potentially different smoking behaviors between obese and non-obese patients. However, the most important concern arises from the use of BMI to define excess body weight. While BMI is easy to measure, its use has been criticized due to its inability to discriminate between fat and lean body mass. BMI also fails to account for body fat distribution. It is becoming increasingly recognized that “visceral” or “central obesity” is the primary driver behind the health outcomes linked to high body fat, .
这种明显的悖论的进一步检查揭示了从临床数据中得出生物学推断时的几个问题。肥胖对肺癌结果的贡献的一个重要混杂因素是抗糖尿病药物二甲双胍。尽管其分子机制尚不清楚,但二甲双胍(N,N-二甲基双胍)被广泛用于治疗 2 型糖尿病,这是肥胖者中普遍存在的疾病。这种药物也被认为具有抗癌活性,为此提出了许多分子和细胞机制。在肺癌中,二甲双胍在动物和流行病学研究中减少了烟草致癌物诱导的肺癌发生。此外,我们和其他人已经表明,二甲双胍的使用与肺癌患者的生存率有关。与本研究特别相关的是,我们最近证明了二甲双胍的抗癌效果似乎对超重或肥胖个体有不成比例的益处。其他问题源于肥胖和非肥胖患者之间潜在的不同吸烟行为。然而,最重要的问题来自使用 BMI 来定义超重。 尽管 BMI 易于测量,但由于其无法区分脂肪和瘦体重而受到批评。BMI 也未能考虑体脂分布。人们越来越认识到,“内脏”或“中心性肥胖”是与高体脂相关的健康结果的主要驱动因素。

Several methods of measuring central obesity exist. Anthropometric measures such as waist circumference and waist hip ratio have been used in large epidemiologic studies, are easy to measure, and are readily validated. The primary limitation of these measures is that they need to be acquired prospectively. As patients may not be available or alive for remeasurement post-treatment, and since these measures may change over time, they do not lend themselves to retrospective studies. Image-based measures, on the other hand, such as those using computerized tomography (CT) and magnetic resonance imaging (MRI) are objective and can be studied retrospectively in human cancer provided the imaging modality is used during the clinical evaluation of the malignancy. The primary limitation of imaging modalities is the lack of validated cut-offs for classification of patients, particularly in cancer studies. CT is particularly feasible for retrospective measurements in lung cancer as virtually every patient undergoing treatment for lung cancer in the United States receives a combined positron emission tomography (PET)-CT scan before treatment initiation, and the CT images obtained as part of this evaluation can be used to measure visceral adiposity either using a single image at a predetermined level or a summation of the various components of adipose tissue as a volumetric analysis.
存在几种测量中心性肥胖的方法。人体测量,如腰围和腰臀比,在大规模流行病学研究中被使用,易于测量,并且容易验证。这些测量的主要局限性在于需要前瞻性获取。由于患者可能无法在治疗后进行再测量,而且这些测量可能随时间变化,因此不适合进行回顾性研究。另一方面,基于图像的测量,如使用计算机断层扫描(CT)和磁共振成像(MRI),是客观的,并且可以在人类癌症中进行回顾性研究,前提是这些成像模式在恶性肿瘤的临床评估中使用。成像模式的主要局限性在于缺乏用于分类患者的验证截断值,特别是在癌症研究中。 CT 对于在美国接受肺癌治疗的几乎每位患者进行回顾性测量特别可行,因为在治疗开始前,每位接受肺癌治疗的患者都会接受联合正电子发射断层扫描(PET)-CT 扫描,而作为评估的一部分获得的 CT 图像可以用于测量内脏脂肪,可以使用预定水平的单个图像或各种脂肪组分的体积分析的总和。

An early study by Jensen et al. demonstrated a close correlation between visceral adiposity as determined by analysis of a single slice of abdominal CT and a volumetric analysis of visceral fat. This finding demonstrates the feasibility of using such image-based measurements in a large cohort of patients. While some studies have suggested that the specific vertebral level of CT imaging (L2/L3 vs. L4/L5) can lead to different adiposity measures, the ability of this approach to identify patients with complications of diabetes or metabolic syndrome seems comparable, . In contrast, at least one study suggests that single slice measurement at L3/L4 vertebral levels most strongly correlates with volumetric determinations of visceral and subcutaneous adipose tissue.
Jensen 等人的早期研究表明,通过分析腹部 CT 的单个切片确定的内脏脂肪与内脏脂肪的体积分析之间存在密切相关性。这一发现表明在大量患者中使用这种基于图像的测量是可行的。虽然一些研究表明 CT 成像的特定椎体水平(L2/L3 与 L4/L5)可能导致不同的脂肪度量,但这种方法识别糖尿病或代谢综合征并发症的能力似乎是可比的。相比之下,至少有一项研究表明,在 L3/L4 椎体水平的单个切片测量与内脏和皮下脂肪组织的体积测定最强相关。

For any absolute measure of visceral fat area to reliably determine central obesity and be applicable across patients of different height, race or gender, normalization to body size is essential. A number of investigators have used height, subcutaneous fat area, or total fat area to achieve this normalization. Thus, additional work is needed to develop and validate a method for determining obesity that is reliable and useful in retrospective applications. In our present study, we deployed a novel approach to measure visceral fat area at the L3 level relative to the total fat area at the same level to create a normalized metric useful in retrospective applications – the visceral fat index (VFI).
对于任何绝对的内脏脂肪面积测量来可靠地确定中心性肥胖并适用于不同身高、种族或性别的患者,必须进行身体尺寸的归一化。许多研究者已经使用身高、皮下脂肪面积或总脂肪面积来实现这种归一化。因此,需要进一步的工作来开发和验证一种可靠且在回顾性应用中有用的肥胖测定方法。在我们目前的研究中,我们采用了一种新方法,通过在 L3 水平测量相对于同一水平的总脂肪面积来创建一种在回顾性应用中有用的归一化指标——内脏脂肪指数(VFI)。

Based on the established knowledge described above, we sought to measure central obesity in a cohort of stage I NSCLC patients undergoing lobectomy at our institution and examine its association with oncologic outcomes. As early-stage patients are typically treated with surgery alone, without other treatments that may complicate analysis, they provide a context where the relationship between central obesity and tumor progression can be studied without additional therapy-associated confounders. For this reason, we focused our study on this subset of the NSCLC patient pool.
根据上述建立的知识,我们试图测量在我们机构接受肺叶切除手术的 I 期非小细胞肺癌患者队列中的中心性肥胖,并研究其与肿瘤学结果的关联。由于早期患者通常仅接受手术治疗,没有其他可能使分析复杂化的治疗,他们提供了一个环境,可以研究中心性肥胖与肿瘤进展之间的关系,而不受额外治疗相关混杂因素的影响。因此,我们将研究重点放在非小细胞肺癌患者群体的这个子集上。

In the present study, we found that high visceral adiposity, as defined by a relatively high VFI, was indeed associated with poor overall and recurrence-free survival in early-stage NSCLC patients. A high VFI was also inversely related to an inflammatory gene expression signature in the tumor microenvironment of advanced NSCLC patients – observations suggestive of robust suppression of anti-tumor immunity in patients with excess visceral adipose tissue. While prior retrospective studies of obesity and lung cancer patient outcomes have generated paradoxical conclusions, our present findings suggest an effect of obesity on lung cancer that is aligned with both studies of other human cancers and comparisons of obese and normal mice in numerous preclinical tumor studies, including those we herein report that were generated using two widely used murine lung cancer models. These findings clarify the truly negative relationship that exists between central obesity and lung cancer outcomes, and they present a viable alternative to the use of BMI in retrospective studies of obesity rooted in biology with clear relevance to cancer outcomes.
在本研究中,我们发现,高内脏脂肪,即相对较高的 VFI 定义,确实与早期 NSCLC 患者的整体生存和无复发生存率不佳相关。高 VFI 还与晚期 NSCLC 患者肿瘤微环境中的炎症基因表达特征呈负相关 - 这些观察提示在存在过多内脏脂肪组织的患者中,抗肿瘤免疫受到强有力的抑制。尽管先前关于肥胖和肺癌患者预后的回顾性研究产生了矛盾的结论,我们目前的发现表明肥胖对肺癌的影响与其他人类癌症研究以及肥胖和正常小鼠在许多临床前肿瘤研究中的比较一致,包括我们在此报告的使用两种广泛使用的小鼠肺癌模型生成的研究。这些发现澄清了中心性肥胖与肺癌预后之间真正负面的关系,并提出了一种可行的替代方案,即在根植于与癌症预后密切相关的生物学的肥胖回顾性研究中使用 BMI。

Taken together, our clinical and preclinical findings suggest a common potential mechanism for the accelerating effect of obesity on the development of tumor burden in the obese – namely, an apparently multifaceted immune dysfunction prevalent in the tumors of obese mice and patients. Thus, our study provides much needed clarity to the relationship between adiposity and NSCLC patient survival, providing firm scientific justification for the targeting of obesity’s pro-tumor effects which include decidedly adverse effects on the anti-tumor immune response. Our findings also reaffirm the utility and relevance of available mouse models to study further the mechanisms of obesity’s lung cancer promoting effects. Importantly, they also validate a refined approached for studying obesity in retrospective cancer patient data sets.
综合而言,我们的临床和临床前研究结果表明,肥胖对肿瘤负担发展的加速作用存在一个共同的潜在机制 - 即,肥胖小鼠和患者肿瘤中普遍存在的一种明显多方面的免疫功能障碍。因此,我们的研究为脂肪堆积与非小细胞肺癌患者生存之间的关系提供了急需的清晰度,为针对肥胖的促肿瘤效应提供了坚实的科学理由,其中包括对抗肿瘤免疫反应的明显不利影响。我们的发现还重申了现有小鼠模型在进一步研究肥胖对肺癌促进作用机制方面的实用性和相关性。重要的是,它们还验证了在回顾性癌症患者数据集中研究肥胖的一种精细方法。

Materials and Methods 材料和方法

Clinical data 临床数据

All data were acquired under Institutional Review Board approved protocols. For survival analyses, all consecutive patients with pathologic stage I and II undergoing pulmonary lobectomy at the Roswell Park Comprehensive Cancer Center from October 2008 to December 2015 were included. Relevant clinical data was extracted from the institutional thoracic surgery database as well as the medical record. Tumor stage, tumor grade, histology, overall survival (OS) and recurrence free survival (RFS) were extracted from the institutional tumor registry data. All confounders except for age were treated as categorical variables. For analysis, variables were categorized further as described in supplementary material (text S1, that has additional methodological details) Overall survival (OS) time started from the day of surgery and concluded at last contact or date of death. Recurrence free survival (RFS) time started from the day of surgery and ended with either the date of first recurrence (if exists) or the date of last contact or date of death (if no recurrence). For correlation with immune gene expression, advanced stage NSCLC patients undergoing molecular testing to guide therapy that had an immune report card generated as previously described were analyzed. Of patients with these data available, those on metformin (both past and present metformin users) were excluded.
所有数据均在获得机构审查委员会批准的协议下获取。对于生存分析,包括 2008 年 10 月至 2015 年 12 月在罗斯韦尔公园综合癌症中心接受肺叶切除术的所有连续病理分期 I 和 II 的患者。相关临床数据从机构胸外科数据库以及病历中提取。肿瘤分期、肿瘤分级、组织学、总生存(OS)和无复发生存(RFS)从机构肿瘤登记数据中提取。除年龄外,所有混杂因素均被视为分类变量。对于分析,变量进一步分类,如补充材料中所述(文本 S1,其中包含额外的方法细节)。总生存(OS)时间从手术当天开始,直至最后一次接触或死亡日期结束。无复发生存(RFS)时间从手术当天开始,直至首次复发日期(如果存在)或最后一次接触或死亡日期(如果没有复发)结束。 对于与免疫基因表达相关的晚期非小细胞肺癌患者进行分子检测以指导治疗,并生成如先前描述的免疫报告卡 。对于具有这些数据的患者,排除了使用二甲双胍(过去和现在使用二甲双胍的患者)。

Image analysis 图像分析

CT scans obtained as part of a pre-operative PET-CT were analyzed. A single image at L3 level was identified and exported as a DICOM image. In the unusual cases where a pre-operative PET-CT scan was unavailable in the clinical record, images at L2 or L1 obtained from chest CT scans were used for analysis. Images at L3, L2 and L1 levels were obtained for a cohort of 46 patients to assess the validity of using images at these levels in lieu of L3. Image acquisition was performed by CR, EK, XW, SS, RG and SY, and measurements were performed using NIH ImageJ (v1.52 Java 1.8.0_112), as described in supplementary data (text S1). The entire cross-section of the patient was selected and total fat area (TFA) was calculated. The visceral fat area (VFA) was then selected and measured. Central adiposity was estimated as the ratio between the visceral fat area (VFA) to the total fat area (TFA) and was labelled the viscera fat index (VFI).
CT 扫描作为术前 PET-CT 的一部分进行分析。在 L3 水平识别并导出一幅图像作为 DICOM 图像。在临床记录中术前 PET-CT 扫描不可用的情况下,使用从胸部 CT 扫描中获得的 L2 或 L1 水平的图像进行分析。为了评估在缺少 L3 图像的情况下使用这些水平的图像的有效性,对 46 名患者进行了 L3、L2 和 L1 水平的图像获取。图像采集由 CR、EK、XW、SS、RG 和 SY 执行,使用 NIH ImageJ(v1.52 Java 1.8.0_112)进行测量,如补充数据(文本 S1)中所述。选择患者的整个横截面,并计算总脂肪面积(TFA)。然后选择并测量内脏脂肪面积(VFA)。将中心性脂肪沉积估计为内脏脂肪面积(VFA)与总脂肪面积(TFA)之间的比率,并标记为内脏脂肪指数(VFI)。

Survival analyses 生存分析

As established categories of VFI as a measure of central obesity do not exist, VFI was first analyzed as a continuous variable. Age, sex, grade, race, histology, diffusion capacity for carbon monoxide (DLCO), American Society of Anesthesiology Score (ASA) and smoking status were used as covariates in model generation. Univariate analyses (Kaplan Meier) were performed to evaluate the association of individual variables with OS and RFS. Only variables associated with OS and RFS on univariate analysis were included in model generation by multivariable analyses (Cox proportional hazards). Given the association of VFI with age and sex, interaction variables were included in model generation. Variables were excluded at a significance > 0.1 at each step of model generation. In a separate analysis, patients were classified into tertiles (‘Top’, ‘Middle’ and ‘Bottom’) based on VFI. Univariate (Kaplan-Meier) and multivariable (Cox proportional hazards) survival analyses were performed to compare the OS and RFS of the ‘Top’ and ‘Bottom’ tertile of patients. Similar analyses were performed with disease-specific survival (DSS) as well. All analyses were performed in SPSS ver. 25.
由于不存在作为中心性肥胖度量的 VFI 的已建立类别,因此首先将 VFI 作为连续变量进行分析。年龄、性别、年级、种族、组织学、一氧化碳弥散能力(DLCO)、美国麻醉学会评分(ASA)和吸烟状况被用作模型生成的协变量。单变量分析(Kaplan Meier)用于评估各个变量与 OS 和 RFS 的关联。只有在单变量分析中与 OS 和 RFS 相关的变量才会通过多变量分析(Cox 比例危险)纳入模型生成。鉴于 VFI 与年龄和性别的关联,交互变量被纳入模型生成。在模型生成的每个步骤中,显著性排除变量> 0.1。在单独的分析中,患者根据 VFI 被分类为三分位数(“顶部”、“中部”和“底部”)。进行了单变量(Kaplan-Meier)和多变量(Cox 比例危险)生存分析,以比较“顶部”和“底部”三分位数患者的 OS 和 RFS。类似的分析也适用于疾病特异性生存(DSS)。所有分析均在 SPSS ver. 25 中进行。

FFPE tumor gene expression
FFPE 肿瘤基因表达

RNA was extracted from each FFPE sample and processed for targeted RNA-seq, as previously described. Gene expression was evaluated by amplicon sequencing of 394 immune transcripts on samples that met validated quality control (QC) thresholds (text S1).
从每个 FFPE 样本中提取 RNA,并按照先前描述的方法进行目标 RNA 测序 。通过对符合经过验证的质量控制(QC)阈值的样本进行 394 个免疫转录本的引物测序来评估基因表达(文本 S1)。

Murine lung cancer models
小鼠肺癌模型

Age-matched cohorts of obese and non-obese male C57BL/6 mice were purchased from the Jackson Laboratory, Bar Harbor, ME (stock numbers 380050 and 380056, respectively). These mice were generated by feeding them a high-fat diet (5.2 kcal/gram, 60% fat calories) beginning at 6 weeks of age and continuing for approximately 14 weeks to induce obesity. Mice fed a conventional chow diet (3.8 kcal/gram, 5–10% fat calories) were used as normal-weight controls. Mice were weighed before and periodically after initiation of experiments to confirm obese/normal status. All mice were housed in a specific pathogen free facility and all procedures were approved by the Institutional Animal Care and Use Committee. The Lewis Lung Carcinoma (LLC) cell line and its EF1 promoter-driven firefly luciferase-expressing variant (LLC-luc) were purchased from ATCC, Manassas, VA (product identifiers CRL-1642 and CRL-1642-LUC2, respectively). Both cell lines were maintained as adherent cultures in DMEM medium (Gibco) supplemented with 10% v/v fetal bovine serum (FBS; Gemini Bioproducts). For tumor challenge experiments, cells were grown to near confluency, detached with trypsin/EDTA, washed and resuspended in sterile PBS. For subcutaneous (s.c.) tumor challenge, 1×105 tumor cells were implanted into the shaved flanks of obese and normal weight mice (n = 5–7/group). Tumor volumes were measured every 2–3 days using a digital caliper. About 21 days post-implantation mice were euthanized. Tumor sections were harvested and either snap frozen for RNA sequencing analysis or mechanical dissociation to generate single-cell suspensions. Tumor-infiltrating leukocytes (TILs) were recovered from the latter after washing and Percoll gradient centrifugation. These as well as the cells of both tumor-draining and tumor-distal lymph nodes and spleen were analyzed by flow cytometry. For studies of pulmonary metastases, 0.25×106 LLC-luc cells were injected intravenously (i.v.) by the tail vein into obese and non-obese mice (n = 5/group), and the development of secondary tumors primarily in the lung was quantified by in vivo bioluminescence imagery (BLI) using Xenogen IVIS Spectrum technology (Perkin-Elmer, Waltham, MA). Just prior to imaging session, mice were injected intraperitoneally (i.p.) with D-luciferin (150 mg/kg body weight; Gold Biotechnology) and anesthetized by isoflurane inhalation. Photonic flux (photon per second) in representative images was quantified with Living Image software (version 4.3.1.0.15880; Perkin-Elmer).
年龄相匹配的肥胖和非肥胖 C57BL/6 雄性小鼠队列分别从缅因州巴港的杰克逊实验室购买(库存编号分别为 380050 和 380056)。这些小鼠通过从 6 周龄开始饲喂高脂饮食(5.2 千卡/克,60%脂肪热量)并持续约 14 周诱导肥胖。饲喂传统饲料(3.8 千卡/克,5-10%脂肪热量)的小鼠被用作正常体重对照。在实验开始前和定期称重以确认肥胖/正常状态。所有小鼠都被安置在特定无病原体设施中,所有程序均获得机构动物护理和使用委员会批准。刘易斯肺癌(LLC)细胞系及其 EF1 启动子驱动的萤火虫荧光素表达变体(LLC-luc)分别从弗吉尼亚州马纳萨斯的 ATCC 购买(产品标识符分别为 CRL-1642 和 CRL-1642-LUC2)。这两个细胞系均在含有 10%体积/体积胎牛血清(FBS;Gemini Bioproducts)的 DMEM 培养基(Gibco)中作为贴壁培养维持。 对于肿瘤挑战实验,细胞被培养至接近充实状态,用胰酶/EDTA 脱离,洗涤并悬浮在无菌 PBS 中。对于皮下(s.c.)肿瘤挑战,将 1×10 5 肿瘤细胞植入肥胖和正常体重小鼠的剃光侧腹部(每组 n = 5-7)。使用数字卡尺每 2-3 天测量肿瘤体积。植入后约 21 天小鼠被安乐死。收集肿瘤切片,要么立即冷冻用于 RNA 测序分析,要么机械分离以生成单细胞悬浮液。从后者中洗涤和 Percoll 梯度离心分离出肿瘤浸润性白细胞(TILs)。这些以及肿瘤引流和肿瘤远端淋巴结和脾脏的细胞通过流式细胞术进行分析。对于肺转移的研究,将 0.25×10 6 LLC-luc 细胞通过尾静脉注射(i.v.)到肥胖和非肥胖小鼠中(每组 n = 5),并使用 Xenogen IVIS Spectrum 技术(Perkin-Elmer,Waltham,MA)进行体内生物发光成像(BLI)来定量主要在肺部的继发肿瘤的发展。 在成像会话之前,小鼠被腹腔注射 D-琥珀酸酯(150 毫克/千克体重;Gold Biotechnology),并通过异氟醚吸入麻醉。代表性图像中的光子通量(每秒光子)由 Living Image 软件(版本 4.3.1.0.15880;Perkin-Elmer)进行定量分析。

Mouse tumor gene expression
鼠肿瘤基因表达

Gene expression of tumors of three each of control and obese mice from each of two independent experiments was obtained by mRNA sequencing (text S1). Raw sequencing data was deposited in the European Nucleotide Archive under accession number PRJEB34297. Tumors of control and obese mice were compared for differential gene expression and gene set enrichment using DESeq2 and gsva Bioconductor software, with false discovery rate (FDR) cut-offs of 0.05 and 0.25 respectively used for significance testing (text S1).
两个独立实验中,每组三只对照组和肥胖小鼠的肿瘤基因表达通过 mRNA 测序获得(文本 S1)。原始测序数据已存储在欧洲核苷酸数据库,存取号为 PRJEB34297。使用 DESeq2 和 gsva Bioconductor 软件对对照组和肥胖小鼠的肿瘤进行差异基因表达和基因集富集比较,显著性检验分别使用了 0.05 和 0.25 的假发现率(FDR)截断值(文本 S1)。

Flow cytometry analysis 流式细胞分析

TILs and cells from tumor associated lymphoid tissues were recovered from the mice described above. Single cell suspensions were generated and washed with PBS containing 2% v/v FBS before staining with fluorochrome-conjugated antibodies recognizing surface markers defining key immune cell subsets. Intracellular markers (e.g., FOXP3) were stained after fixation and permeabilized using specialized kits. For intracellular cytokine staining, cell suspensions were re-stimulated with phorbol myristate acetate (PMA) and Ionomycin (Millipore-Sigma) in the presence of Brefeldin-A (Thermofisher Scientific) for 4 hours at 37°C followed by washing, surface staining and fixation/permeabilization (eBioscience) prior to incubation with conjugated anti-IFNγ antibodies. Multi-color flow cytometry data was collected using a BD LSR II analyzer and analyzed using FlowJo software (v10.7, BD Biosciences). For specific antibodies used in this study, see Supplementary Table S1.
TILs 和来自肿瘤相关淋巴组织的细胞从上述描述的小鼠中恢复。 生成单细胞悬液并用含 2% v/v FBS 的 PBS 洗涤,然后用荧光染色的抗体染色,这些抗体识别表面标记物,定义关键的免疫细胞亚群。 细胞内标记物(例如,FOXP3)在固定和渗透后使用专门的试剂盒染色。 对于细胞内细胞因子染色,细胞悬液在 37°C 下与酯酸丙酯(PMA)和 Ionomycin(Millipore-Sigma)一起在 Brefeldin-A(Thermofisher Scientific)存在下重新刺激 4 小时,然后洗涤,表面染色和固定/渗透(eBioscience)之前与结合的抗 IFNγ抗体一起孵育。 使用 BD LSR II 分析仪收集了多色流式细胞术数据,并使用 FlowJo 软件(v10.7,BD Biosciences)进行了分析。 有关本研究中使用的特定抗体,请参见附表 S1。

Results 结果

Based on the described inclusion and exclusion criteria, 554 patients with stage I and II NSCLC undergoing lobectomy were selected for analysis. Of these, reliable fat area measurements were obtained in 513 patients – 499 (97.3 %) at L3, 5 (0.9%) at L2 and 9 (1.8%) at L1. Similarly, 159 patients with advanced stage NSCLC with molecular testing had reliable fat area measurements – 146 (91.8%) at L3, 10 at L2 (6.3%) and 3 at L1(1.9%). Inter-observer correlation of VFI measurements were good (n=53; R2=0.95; supplementary figure 1A). Correlation of measurements between L2 and L3 levels (n=29; R2= 0.92; Slope = 1.05) and between L1 and L3 levels (n=28; R2= 0.85; Slope = 1.05) were also good (Supplementary Figure S1). Therefore, in the few cases where measurements at L3 were not available, measurements at L2 or L1 were used. Importantly, CT scans of these patients could be used to clearly identify individuals with distinctly predominant visceral or subcutaneous adipose tissue distributions (Supplementary Figure S2A,B).
根据所描述的纳入和排除标准,选择了 554 名接受肺叶切除术的 I 期和 II 期非小细胞肺癌患者进行分析。其中,513 名患者获得了可靠的脂肪面积测量数据 - 在 L3 处有 499 人(97.3%),在 L2 处有 5 人(0.9%),在 L1 处有 9 人(1.8%)。同样,进行了分子检测的 159 名晚期非小细胞肺癌患者也有可靠的脂肪面积测量数据 - 在 L3 处有 146 人(91.8%),在 L2 处有 10 人(6.3%),在 L1 处有 3 人(1.9%)。VFI 测量的观察者间相关性良好(n=53;R=0.95;附图 1A)。L2 和 L3 水平之间的测量之间的相关性(n=29;R=0.92;斜率=1.05)以及 L1 和 L3 水平之间的测量之间的相关性(n=28;R=0.85;斜率=1.05)也很好(附图 S1)。因此,在 L3 处测量不可用的少数情况下,将使用 L2 或 L1 处的测量。重要的是,这些患者的 CT 扫描可以用于清楚地识别具有明显优势的内脏或皮下脂肪组织分布的个体(附图 S2A,B)。

Visceral obesity is associated with poor overall and recurrence free survival in early NSCLC patients undergoing surgical resection
内脏性肥胖与早期非小细胞肺癌患者在手术切除过程中的整体生存率和无复发生存率不良相关

We initially sought to establish the relationship between visceral obesity, as measured by VFI, and several clinically relevant metrics. We found that VFI was not associated with BMI (Pearson corr coeff = −0.06; P = 0.9; Supplementary Figure S2C). However, VFI is associated with sex as well as age. Specifically, the mean VFI of males is higher than females (0.56 vs. 0.37; P<0.01). VFI also tends to be elevated with increasing age (Pearson corr coeff 0.32; P<0.01).
我们最初试图建立内脏肥胖(由 VFI 测量)与几个临床相关指标之间的关系。我们发现 VFI 与 BMI 无关(Pearson 相关系数= -0.06;P = 0.9;附图 S2C)。然而,VFI 与性别以及年龄有关。具体而言,男性的平均 VFI 高于女性(0.56 vs. 0.37;P<0.01)。VFI 也倾向于随着年龄增长而升高(Pearson 相关系数 0.32;P<0.01)。

Univariate analyses demonstrated a statistically significant association of sex, ASA score, tumor grade, histology, age, DLCO and VFI with OS. Similarly, sex, tumor grade, tumor stage, ASA score and VFI were associated with RFS. Multivariable analysis resulted in a final model of overall survival that retained age, sex, DLCO, ASA score, VFI, tumor grade and the interaction term between VFI and age. Similar analysis resulted in a final model of recurrence free survival that retained only tumor grade, tumor stage and VFI as predictive variables. These results are summarized in Table 1.
单变量分析显示性别、ASA 评分、肿瘤分级、组织学、年龄、DLCO 和 VFI 与 OS 有显著关联。同样,性别、肿瘤分级、肿瘤分期、ASA 评分和 VFI 与 RFS 有关联。多变量分析得出了一个保留年龄、性别、DLCO、ASA 评分、VFI、肿瘤分级和 VFI 与年龄交互项的最终生存模型。类似的分析得出了一个保留只有肿瘤分级、肿瘤分期和 VFI 作为预测变量的最终复发无病生存模型。这些结果总结在表 1 中。

Table 1. 表 1。

Univariate associations and multivariable models of overall and recurrence free survival in patients with stage I and II NSCLC undergoing lobectomy.
接受肺叶切除术的 I 期和 II 期非小细胞肺癌患者的总体和无复发生存的单变量关联和多变量模型。

Variables associated with survival on univariate analysis (P<0.1; in bold) were included in multivariable analyses. Only variables included in the final multivariable models are shown.
与生存相关的变量(P<0.1;以粗体显示)在单变量分析中被纳入多变量分析。仅显示在最终多变量模型中的变量。

Variable 变量Univariate 单变量Multivariable 多变量
Overall survival HR (95% CI)
总生存风险比(95% CI)
Recurrence free survival 复发无生存Overall survival HR (95% CI)
总生存风险比(95% CI)
Recurrence free survival 复发无生存
Age67 ± 10.4 1.05 (1.03 – 1.06)
1.05(1.03 - 1.06)
1.01 (0.99 – 1.03)
1.01(0.99 - 1.03)
1.04(1.02–1.06) 1.04(1.02–1.06)
Sex (Female vs. male) 性别(女性 vs. 男性)305(59.5%) Female 305 名(59.5%)女性 0.57 (0.41 – 0.80)
0.57(0.41 - 0.80)
0.65 (0.43 – 1.00)
0.65(0.43 - 1.00)
0.64(0.44 – 0.92) 0.64(0.44 - 0.92)
Race (White vs. others) 种族(白人 vs. 其他)462 (90.1%) White 462(90.1%)白色0.70 (0.36 – 1.31) 0.70(0.36 - 1.31)0.40 (0.15 – 1.10) 0.40(0.15 - 1.10)
DLCO77.3 ± 21.2 0.99 (0.98 – 1.00)
0.99(0.98 - 1.00)
0.99 (0.98 – 1.00)
0.99(0.98 - 1.00)
0.99(0.98–1.00)
ASA score (High vs. Low)
ASA 评分(高 vs. 低)
248 (48.3%) HIgh 248(48.3%)高 2.07 (1.47 – 2.90)
2.07(1.47 - 2.90)
1.49 (0.97 – 2.28)
1.49 (0.97 - 2.28)
1.55(1.07 – 2.24)
BMI27.2 ± 5.61.01 (0.98 – 1.04) 1.01(0.98 - 1.04)1.01 (0.97 – 1.05) 1.01(0.97 - 1.05)
VFI0.45 ± 0.14 7.30 (3.18 – 24.08)
7.30(3.18 - 24.08)
5.19 (1.14 – 23.69)
5.19(1.14 - 23.69)
4.51(0.93 – 21.76) 4.51(0.93 - 21.76)
Tumor grade (High vs. Low)
肿瘤级别(高 vs. 低)
181 (35.3%) High 181(35.3%)高 1.62 (1.16 – 2.26)
1.62(1.16 - 2.26)
1.95 (1.28 – 2.98)
1.95 (1.28 - 2.98)
1.64(1.16–2.32)1.88(1.22 – 2.88) 1.88(1.22 - 2.88)
Tumor stage (II vs. I)
肿瘤分期(II vs. I)
140 (27.3%) Stage II 140(27.3%)第二阶段1.21 (0.84 – 1.74)
1.21(0.84 - 1.74)
2.19 (1.43 – 3.36)
2.19(1.43 - 3.36)
1.97(1.28 – 3.04) 1.97(1.28 - 3.04)
Histology Adeno vs. other SqCC vs. other
组织学腺癌 vs. 其他鳞状细胞癌 vs. 其他
Adeno 317 (61.8%) SqCC 139 (27.1%) Other 57 (11.1%)
腺癌 317 (61.8%) 鳞癌 139 (27.1%) 其他 57 (11.1%)
0.81 (0.64 – 1.03) 1.33 (1.02 – 1.72)
0.81 (0.64 - 1.03) 1.33 (1.02 - 1.72)
1.04 (0.76 – 1.42) 1.02 (0.71 – 1.47)
1.04 (0.76 - 1.42) 1.02 (0.71 - 1.47)
Smoking status Current vs. Never Former vs. Never
吸烟状况 目前吸烟 vs. 从不吸烟 以前吸烟 vs. 从不吸烟
Never - 52 (10.1%) Former - 175 (34.1%) Current - 286 (55.8%)
从不 - 52(10.1%) 以前 - 175(34.1%) 现在 - 286(55.8%)
0.79 (0.53 – 1.17) 1.03 (0.78 – 1.37)
0.79(0.53 - 1.17)1.03(0.78 - 1.37)
0.94 (0.59 – 1.49) 1.01 (0.72 – 1.42)
0.94 (0.59 - 1.49) 1.01 (0.72 - 1.42)

BMI = Body Mass Index; VFI = Visceral Fat Index; DLCO = Diffusion capacity for carbon monoxide; ASA – American Society of Anesthesiology; Adeno = Adenocarcinoma; SqCC – Squamous cell carcinoma.
BMI = 身体质量指数; VFI = 内脏脂肪指数; DLCO = 一氧化碳弥散能力; ASA - 美国麻醉学会; 腺癌 = 腺癌; 鳞状细胞癌 = 鳞状细胞癌。

In order to observe the potential relationship between VFI and lung cancer survival outcomes, patients were stratified by VFI for Kaplan-Meier and Cox proportional hazards analyses. Comparison of the top and bottom VFI tertiles (VFItert) showed an association between high VFI and worse overall survival (OS) and recurrence free survival (RFS) (Figure 1A, ,B).B). Multivariable modeling confirmed these results with high VFI group associated with RFS (HR = 1.79; 95% CI= 1.04 – 3.08; Figure 1C). The model of overall survival retained VFI tertile as well as the interaction terms between VFI and age as well as VFI and sex (Supplementary table S2). These results suggest that in contrast to high-BMI, visceral obesity as defined by elevated VFI is negatively associated with survival in early-stage lung cancer patients.
为了观察 VFI 与肺癌生存结果之间的潜在关系,患者根据 VFI 进行 Kaplan-Meier 和 Cox 比例危险分析分层。比较顶部和底部 VFI 三分位数(VFItert)显示高 VFI 与较差的总体生存率(OS)和无复发生存率(RFS)之间的关联(图 1A,B)。多变量建模证实了这些结果,高 VFI 组与 RFS 相关(HR = 1.79;95% CI= 1.04 – 3.08;图 1C)。总体生存模型保留了 VFI 三分位数以及 VFI 与年龄以及 VFI 与性别之间的交互项(附表 S2)。这些结果表明,与高 BMI 相反,由 VFI 升高定义的内脏肥胖与早期肺癌患者的生存率呈负相关。

An external file that holds a picture, illustration, etc.
Object name is nihms-1795350-f0001.jpg
Overall and recurrence free survival of patients with High and Low VFI.
患有高和低 VFI 的患者的总体和无复发生存。

A) Overall survival curves generated for 513 patients separated categorized as having High (top tertile; N=171) and Low (bottom tertile; N=171) visceral adiposity as defined by VFI score demonstrate decreased survival with high visceral adiposity (HR=1.84; 95% CI = 1.21 – 2.81). B) Recurrence free survival curves demonstrate decreased survival with high visceral adiposity (HR = 1.82; 95%CI = 1.06 – 3.11). C) Expected recurrence free survival curves using the Cox proportional hazards model for demonstrate decreased survival with high visceral adiposity (HR = 1.79; 95% CI = 1.04 – 3.08).
A) 为 513 名患者生成的总体生存曲线,根据 VFI 评分将其分为高(顶部三分之一;N=171)和低(底部三分之一;N=171)内脏脂肪堆积两类,结果显示高内脏脂肪堆积患者的生存率降低(风险比=1.84;95%置信区间=1.21-2.81)。B) 复发无病生存曲线显示高内脏脂肪堆积患者的生存率降低(风险比=1.82;95%置信区间=1.06-3.11)。C) 利用 Cox 比例风险模型预期的复发无病生存曲线显示高内脏脂肪堆积患者的生存率降低(风险比=1.79;95%置信区间=1.04-3.08)。

Of the 513 patients, cause of death was unknown in 41 patients. Therefore, DSS was analyzed in 472 patients. Similar to OS and RFS, VFI tertile (Top tertile vs. bottom tertile) was associated with DSS on Kaplan Meier analysis (HR = 2.1; P=0.025). VFI as a continuous variable did not reach statistical significance however (P=0.1). On multivariate analysis, VFI tertile (Top tertile vs. bottom tertile) was associated with worse DSS (HR = 2.25; 95% 95% CI= 1.16 – 4.37; P=0.016; Supplementary figure S3) and was the only variable retained in the model. When VFI was analyzed as a continuous variable, age (0.006), VFI (P=0.001), tumor grade (P=0.003) and the interaction variable between VFI and age (P<0.001) were associated with DSS.
在 513 名患者中,41 名患者死因不明。因此,在 472 名患者中分析了 DSS。与 OS 和 RFS 类似,VFI 三分位数(顶部三分位数与底部三分位数)与 Kaplan Meier 分析中的 DSS 相关(HR = 2.1;P=0.025)。然而,VFI 作为连续变量并未达到统计显著性(P=0.1)。在多变量分析中,VFI 三分位数(顶部三分位数与底部三分位数)与更差的 DSS 相关(HR = 2.25;95% CI= 1.16 – 4.37;P=0.016;附图 S3),并且是模型中唯一保留的变量。当 VFI 作为连续变量进行分析时,年龄(0.006)、VFI(P=0.001)、肿瘤分级(P=0.003)以及 VFI 和年龄之间的交互变量(P<0.001)与 DSS 相关。

Visceral obesity is associated with alterations in the tumor immune microenvironment (TME) in late-stage NSCLC patients
腹部肥胖与晚期非小细胞肺癌患者肿瘤免疫微环境(TME)的改变相关

Despite the reported survival advantage seen in high-BMI lung cancer patients a preponderance of data, including that obtained from a number of preclinical mouse tumor models, have demonstrated a profoundly negative effect of obesity on the cells of the anti-tumor immune response, . To examine the potential association of VFI with tumor immune gene expression, we analyzed existing data from patients with advanced stage NSCLC that underwent molecular testing to guide their therapy. In these patients, targeted transcriptome analysis (an “immune report card”) was thus generated, as described in Methods. Thus, the expression of 395 immune genes was assessed for 159 patient lung tumors (see Supplementary Table S3 for a summary of patient characteristics).
尽管高 BMI 肺癌患者中报道了存活优势,但大量数据,包括从多个临床前小鼠肿瘤模型获得的数据,已经证明肥胖对抗肿瘤免疫反应细胞有着深刻的负面影响。为了检查 VFI 与肿瘤免疫基因表达的潜在关联,我们分析了接受分子检测指导治疗的晚期 NSCLC 患者的现有数据。在这些患者中,通过靶向转录组分析(一种“免疫报告卡”)生成了数据,具体方法如下所述。因此,对 159 例患者肺部肿瘤评估了 395 个免疫基因的表达(有关患者特征的摘要,请参见附表 S3)。

Unsupervised clustering analysis led to the discovery of three major inflammation clusters, namely, inflamed, borderline and non-inflamed tumors (Figure 2A). The inflammatory status of the tumors was significantly associated with both VFI as a continuous variable (Figure 2B) and VFI tertile as well (Figure 2C). Specifically, cases in the Top VFI tertile were significantly over-represented in the non-inflamed tumor cluster (p=0.04), whereas those in the bottom VFI tertile were over-represented among the inflamed tumors to a considerably significant degree (p= 0.0085) (Figure 2C). Within non-inflamed tumors (n=38), a significantly higher proportion of moderately proliferative tumor microenvironments were found in bottom tertile patients (p=0.015) compared to top tertile, where a higher proportion of highly proliferative tumor microenvironments were found, indicating that low visceral obesity may confer improved overall survival in NSCLC (Supplementary Figure S4). Further gene-wise differential gene expression analysis confirmed the significant down regulation of inflammation-associated genes in the top VFI tertile. Notably, tumors from High-VFI patients displayed enhanced expression of CDKN3 (a driver of cell proliferation linked to poor prognosis when overexpressed in lung cancer), as well as BCL6, a promoter of tumor growth and survival in NSCLC and CD44, a marker of cancer stemness and poor prognoses in multiple cancers. Among the transcripts significantly under-represented in the tumors of High-VFI patients were those encoding chemokines or their receptors (including those associated with Thelper 1 (Th1)-type anti-tumor immune responses), the Th1 transcription factor Tbet, T cell lineage markers (e.g., CD4 and CD8), components of the T cell receptor and co-stimulatory signaling cascades (e.g., CD3, CD86), and the machinery of antigen presentation (Supplementary Table S4). These results strongly link central obesity (defined by high VFI) to a diminished immune activity in the lung tumor microenvironment (TME) that may stem from impaired T cell recruitment or expansion in this niche - conditions likely permissive to the growth and progression of lung cancers.
无监督聚类分析发现了三个主要的炎症聚类,即发炎、边缘和非发炎肿瘤(图 2A)。肿瘤的炎症状态与 VFI 作为连续变量(图 2B)和 VFI 三分位数(图 2C)显著相关。具体来说,处于顶部 VFI 三分位数的病例在非发炎肿瘤聚类中显着过度表示(p=0.04),而处于底部 VFI 三分位数的病例在发炎肿瘤中显着过度表示(p=0.0085)(图 2C)。在非发炎肿瘤(n=38)中,与顶部三分位数相比,底部三分位数患者中发现了显着更高比例的中度增殖肿瘤微环境(p=0.015),在顶部三分位数中发现了更高比例的高度增殖肿瘤微环境,表明低内脏肥胖可能有助于改善 NSCLC 的总体生存率(附图 S4)。进一步的基因差异基因表达分析证实了顶部 VFI 三分位数中炎症相关基因的显著下调。 值得注意的是,高 VFI 患者的肿瘤表现出增强的 CDKN3 表达(这是与肺癌预后不良相关的细胞增殖驱动因子 ),以及 BCL6,一种 NSCLC 中促进肿瘤生长和存活的物质,以及 CD44,一种多种癌症中的癌干细胞标记和不良预后。在高 VFI 患者肿瘤中显着低表达的转录本中,包括编码趋化因子或其受体(包括与 Thelper 1(Th1)型抗肿瘤免疫反应相关的因子)、Th1 转录因子 Tbet、T 细胞系列标记物(例如 CD4 和 CD8)、T 细胞受体和共刺激信号级联的组分(例如 CD3、CD86)以及抗原呈递机制(附录表 S4)。这些结果强烈地将中心性肥胖(由高 VFI 定义)与肺肿瘤微环境(TME)中的免疫活性减弱联系起来,这可能源自于在这个环境中 T 细胞招募或扩增受阻的条件-这些条件可能有利于肺癌的生长和进展。

An external file that holds a picture, illustration, etc.
Object name is nihms-1795350-f0002.jpg
Changes in the tumor immune microenvironment with visceral obesity in advanced stage NSCLC.
晚期非小细胞肺癌中腹部肥胖与肿瘤免疫微环境的变化。

A) Heatmap of unsupervised clustering of immune response genes expression ranks (GEX Rank: columns) and 159 samples (rows) annotated by visceral fat index (VFI) tertiles, body mass index (BMI) thresholds and cell proliferation groups. B) Boxplot of inflammation cluster groups for VFI as a continuous variable with Wilcoxon test p values shown for all pairwise comparisons. C) Bar chart showing distribution of Inflammation clusters within top and bottom VFI tertiles with chi-square proportion test p values shown.
A) 免疫应答基因表达等级的无监督聚类热图(GEX Rank:列),159 个样本(行)按内脏脂肪指数(VFI)分为三等分,按体重指数(BMI)阈值和细胞增殖组进行注释。B) 炎症聚类组的箱线图,将 VFI 作为连续变量,显示所有成对比较的 Wilcoxon 检验 p 值。C) 柱状图显示炎症聚类在顶部和底部 VFI 三等分中的分布,显示卡方比例检验 p 值。

We further explored the potential association of VFI with co-variates such as BMI, race, gender, primary histology and staging. As expected, BMI category was inversely associated with VFI (p=0.00652), and pathology stage was significantly associated with VFI tertile (p=0.0024). Additionally, male gender was highly associated with high VFI status (p=1.54E-11) (Supplementary Table S5). These findings are in line with the generally accepted notion that males are more prone to visceral adiposity than females. They also merit further investigation into the role of gender in visceral versus subcutaneous fat distribution with the two genders and the potential implications for long-term lung cancer patient outcomes and the anti-tumor immune response.
我们进一步探讨了 VFI 与诸如 BMI、种族、性别、原发性组织学和分期等共变量的潜在关联。如预期,BMI 类别与 VFI 呈负相关(p=0.00652),病理分期与 VFI 三分位显著相关(p=0.0024)。此外,男性性别与高 VFI 状态高度相关(p=1.54E-11)(附表 S5)。这些发现符合普遍接受的观念,即男性比女性更容易患内脏脂肪过多 。它们还值得进一步研究性别在内脏与皮下脂肪分布中的作用,以及两性之间的潜在影响对长期肺癌患者预后和抗肿瘤免疫反应的影响。

Interestingly, examining the correlation between traditional obesity status (as defined by a BMI of 30 or greater) with patient VFI tertile revealed that a significantly higher proportion of obese cases were seen in bottom VFI tertile than in the top tertile (p=0.009) (Supplementary Figure S5B). This surprising result suggests that only 15% of the VFI high cases would be classified as obese using the prevailing method of identifying obese patients in retrospective studies. In addition, no association was found between standard BMI categories and tumor inflammation state (Supplementary Figure S5A). These results link visceral adiposity in lung cancer patients to potential immune dysfunction expected in the obese host, and they further highlight the markedly different relationships that exist between VFI and BMI and lung cancer biology.
有趣的是,研究传统肥胖状态(定义为 BMI 大于或等于 30)与患者 VFI 分位数之间的相关性,发现肥胖病例在底部 VFI 分位数中的比例明显高于顶部分位数(p=0.009)(附图 S5B)。这一令人惊讶的结果表明,仅有 15%的 VFI 高病例会被归类为肥胖,使用目前在回顾性研究中识别肥胖患者的方法。此外,标准 BMI 分类与肿瘤炎症状态之间没有发现关联(附图 S5A)。这些结果将肺癌患者的内脏脂肪与肥胖宿主中预期的免疫功能障碍联系起来,并进一步突出了 VFI 与 BMI 以及肺癌生物学之间存在的明显不同关系。

Obesity exacerbates lung cancer progression in mice while altering TME gene expression
肥胖加剧了小鼠肺癌的进展,同时改变了 TME 基因表达

In parallel, we observed the effects of obesity on tumor progression and anti-tumor immunity in widely used pre-clinical models of lung cancer. For this, the in vivo conditions present in overweight and obese lung cancer patients were recreated using a well-characterized approach for diet-induced obesity (DIO) in mice. Prolonged administration of high fat diet (e.g., one containing 60% calories from fat) to mice of an obesity-susceptible genetic background, such as C57BL/6, results in progressive weight gain and an accumulation of visceral fat compared to normal diet-fed control mice. Cohorts of obese and normal weight mice were injected subcutaneously (s.c.) with Lewis lung carcinoma (LLC) cells, and subsequent tumor development was monitored. As generally seen in implantable mouse tumor models, , obese mice supported more robust tumor growth compared to non-obese controls in this model (Figure 3A). In a complementary model of pulmonary metastatic disease, obese mice challenged intravenously (i.v.) with a modest number of luciferase-expressing LLC (LLC-Luc) cells developed markedly enhanced lung tumor burden compared to normal weight controls within 26 days post-injection (Figure 3B,,C).C). These results demonstrate the decidedly pro-tumor effects associated with obesity in mouse models that align closely with the relationship between lung cancer outcomes and central obesity brought to light by the use of VFI in our clinical studies.
同时,我们观察了肥胖对肺癌肿瘤进展和抗肿瘤免疫的影响,使用广泛应用的肺癌临床前模型。为此,我们利用一种经过良好表征的饮食诱导肥胖(DIO)的方法,在小鼠中再现了超重和肥胖肺癌患者体内条件。将高脂饮食(例如,含有 60%脂肪热量的饮食)长期投与肥胖易感基因背景的小鼠(如 C57BL/6),导致逐渐体重增加和内脏脂肪积累,与正常饮食对照小鼠相比。将肥胖和正常体重的小鼠队列皮下注射 Lewis 肺癌细胞(LLC),并监测随后的肿瘤发展。如一般植入小鼠肿瘤模型中所见,相比于非肥胖对照组,肥胖小鼠在该模型中支持更强劲的肿瘤生长(图 3A)。在肺转移疾病的补充模型中,肥胖小鼠经静脉挑战(i.v.)。) 具有适量的荧光素酶表达的 LLC(LLC-Luc)细胞的小鼠,在注射后 26 天内与正常体重对照组相比,肺肿瘤负担明显增加(图 3B,C)。这些结果表明,肥胖与小鼠模型中明显的促肿瘤效应密切相关,与我们临床研究中使用 VFI 揭示的肺癌结果和中心性肥胖之间的关系密切相关。

An external file that holds a picture, illustration, etc.
Object name is nihms-1795350-f0003.jpg
Obesity-mediated effects on progression of Lewis lung carcinoma tumors in mice.
肥胖对小鼠 Lewis 肺癌肿瘤进展的影响。

A. C57BL/6 mice were fed a high-fat (to induce obesity) or normal diet for ~14–16 weeks before s.c. implantation of 10×105 cells by s.c. injection into the shaved flanks. Mean tumor volumes were calculated using the formula: volume=0.5×lengthxwidth2. (B,C) Obese and normal mice were challenged with intravenous tail vein injection of 0.25×106 LLC-Luc cells. 26 days after injection, tumor burden (pulmonary metastases) were visualized by BLI after i.p. injection of d-luciferin (150mg/kg) using IVIS technology. P < 0.05 (*), < 0.02 (**), <0.001 (***) in standard t test. Error bars depict the SEM. Shown are a representative image (B) and mean tumor burden measurements (A and C) from 3–5 independent experiments.
C57BL/6 小鼠在皮下植入 10×10 5 细胞前,先饲喂高脂(诱导肥胖)或正常饮食约 14-16 周。平均肿瘤体积使用公式计算:体积=0.5×长度×宽度 2 。肥胖和正常小鼠接受尾静脉注射 0.25×10 6 LLC-Luc 细胞挑战。注射后 26 天,通过 i.p.注射 d-琥珀酸酯(150mg/kg)使用 IVIS 技术可视化肿瘤负担(肺转移)的 BLI。标准 t 检验中 P < 0.05(*),< 0.02(**),<0.001(***)。误差线表示 SEM。显示了 3-5 个独立实验的代表图像(B)和平均肿瘤负担测量(A 和 C)。

To gain insight into the potential mechanisms underlying the effects of obesity on tumor progression, we set out to document the transcriptomic changes in the TME associated with obesity. RNA was harvested from s.c. tumor sections (n=6 each) generated in the experiments described in Figure 3A, and RNASeq analysis was carried out. Expression of 187 and 217 genes was respectively up- and down-regulated by > 1.2x in tumors of obese compared to normal with adjusted Wald test p < 0.05 in analysis with DESeq2. Single-sample geneset enrichment analysis (GSEA) using the geneset variation analysis (GSVA) method revealed significant divergences of multiple genesets related to metabolism and cancer biology (Bayes-moderated t test p < 0.05 with false discovery rate [FDR] < 0.20).
为了深入了解肥胖对肿瘤进展影响的潜在机制,我们着手记录与肥胖相关的肿瘤微环境的转录组变化。从实验中生成的皮下肿瘤切片(每组 n=6)中收集了 RNA,进行了 RNA 测序分析。与正常对照相比,肥胖肿瘤中分别有 187 和 217 个基因的表达上调和下调超过 1.2 倍,DESeq2 分析中调整的 Wald 检验 p < 0.05。使用基因集变异分析(GSVA)方法进行单样本基因集富集分析(GSEA)显示,与代谢和癌症生物学相关的多个基因集存在显著差异(Bayes 调节的 t 检验 p < 0.05,假发现率[FDR] < 0.20)。

Of the 18,025 genes identified as expressed in the tumors, expression of only 33 differed by ≥ 1.5-fold between obese and control mice at FDR < 0.05 (Supplementary Table S6). The five genes that were most up-regulated in obese tumors compared to controls were all found to either encode proteins involved in fat metabolism (i.e., pyruvate dehydrogenase kinase 4, lipase K, fatty acid binding protein 4) and lipid oxidation in particular or to have been previously associated with adiposity (i.e., angiotension II receptor 2, bone morphogenetic protein 5). Examination of gene expression at the level of biological processes revealed a 1.2–1.3-fold enrichment of the gene sets involved in adipogenesis and oxidative phosphorylation in the tumors of obese mice. As might be expected given the robust tumor growth in the obese mice, genes involved in angiogenesis, epithelial-mesenchymal transition, hypoxia, and glycolysis were also upregulated in obese tumors. On the other hand, expression of genes associated with the immunologically relevant IL6-JAK-STAT3 signaling pathway were significantly reduced in the tumors of obese compared to control mice. Meanwhile expression of Stat4, a central driver of Th1 immunity and Areg, a gene known to be upregulated by Tregs in peripheral tissues (including lungs) were nominally down- and up-modulated in obese tumors, respectively (Supplementary Figure S5, Supplementary Table S6).
在被识别为在肿瘤中表达的 18,025 个基因中,仅有 33 个基因在肥胖和对照小鼠之间的表达差异≥1.5 倍,在 FDR < 0.05 时(附表 S6)。与对照组相比,在肥胖肿瘤中上调最多的五个基因都被发现要么编码参与脂肪代谢的蛋白质(即丙酮酸脱氢酶激酶 4,脂肪酶 K,脂肪酸结合蛋白 4)和特别是脂质氧化,要么与肥胖有关(即血管紧张素 II 受体 2,骨形态发生蛋白 5)。对生物过程水平的基因表达进行检查显示,在肥胖小鼠的肿瘤中,涉及脂肪生成和氧化磷酸化的基因集的富集程度为 1.2-1.3 倍。鉴于肥胖小鼠肿瘤的强劲生长,与血管生成、上皮间质转化、缺氧和糖酵解有关的基因也在肥胖肿瘤中上调。另一方面,与免疫相关的 IL6-JAK-STAT3 信号通路相关的基因在肥胖小鼠的肿瘤中表达显著降低,与对照小鼠相比。 与此同时,Stat4 的表达,作为 Th1 免疫的中心驱动因子,以及 Areg,一个已知在外周组织(包括肺部)中被 Tregs 上调的基因,在肥胖肿瘤中分别名义上被下调和上调调节(见附图 S5,附表 S6)。

These findings suggest that obesity’s still poorly understood impact on the TME and its potential fueling of tumor progression may be multi-faceted in nature, involving processes capable of aiding tumors directly and by opposing the activity of immune cells in the TME. Indications of reduced IL-6/STAT3 signaling were surprising, however, since elevated serum levels of IL-6 have been reported in the obese and this cascade is generally thought to have multiple-pro-tumor effects in cancer cells themselves including expression of genes that promote cell proliferation, survival, angiogenesis, invasiveness, metastasis, and stemness. Interestingly though, an inverse relationship has been reported between STAT3 and commitment to oxidative metabolism/TCA cycle activity in other cancers (i.e., prostate cancer). Also, given the known involvement of STAT3 signaling in glycolytic metabolism a reduced engagement of this cascade could also reflect a favoring of oxidative metabolism in the TME. Indeed, metabolic pathways that consume the available oxygen and enforce hypoxia in the TME were recently shown to be an obstacle for the mounting of effective immune cell activity, and altered lipid transport and metabolism that can alter the availability of free fatty acids can also modify immune function in the TME. A relative upregulation of genes involved in TGF-beta-signaling suggests that along with these more recently described mechanisms obesity may enhance the notoriously anti-inflammatory cytokine contributing to a staunchly immune-suppressive TME under obese conditions.
这些发现表明,肥胖对肿瘤微环境的影响仍然不为人所了解,以及其对肿瘤进展的潜在推动可能是多方面的,涉及到能够直接帮助肿瘤并通过对抗肿瘤微环境中的免疫细胞活动的过程。然而,降低的 IL-6/STAT3 信号的迹象令人惊讶,因为已经报道了肥胖者血清 IL-6 水平升高,而这种级联通常被认为在癌细胞中具有多种促肿瘤效应,包括促进细胞增殖、存活、血管生成、侵袭、转移和干性基因的表达。然而,有趣的是,在其他癌症(如前列腺癌)中已经报道了 STAT3 与氧化代谢/TCA 循环活动承诺之间的反向关系。此外,鉴于已知 STAT3 信号在糖酵解代谢中的参与,这种级联的减少也可能反映了对肿瘤微环境中氧化代谢的偏爱。 事实上,最近显示,消耗可用氧气并在肿瘤微环境中引发缺氧的代谢途径成为有效免疫细胞活性的障碍 ,而改变脂质运输和代谢也可以改变游离脂肪酸的可用性,从而在肿瘤微环境中修改免疫功能 。参与 TGF-beta 信号通路的基因的相对上调表明,除了这些最近描述的机制外,肥胖可能增强臭名昭著的抗炎细胞因子,从而在肥胖条件下促进免疫抑制的肿瘤微环境。

Obesity attenuates anti-lung cancer immune responses in mice
肥胖减弱小鼠抗肺癌免疫反应

It is well appreciated that metabolic factors play a non-trivial part in regulating the phenotypic differentiation, fitness, and activity of immune cells, . Obesity is also known to have a profound effect on metabolism at an organismal or systemic level that is accompanied by immune dysfunction and smoldering inflammation. Yet, the precise effects of obesity on critical participants in the cellular response to lung cancer in mice and patients with lung cancer are just beginning to be understood. We therefore set out to dissect the impact of the obese state on the immune cell constituents of the TME in the mice described in Figure 3A using a multi-color flow cytometry-based approach. Our findings revealed multiple indications that obesity had a deleterious effect on the potency of the anti-tumor response.
代谢因素在调节免疫细胞的表型分化、适应性和活性中起着重要作用,这一点是被充分认可的。肥胖也被认为对有机体或系统水平的新陈代谢产生深远影响,伴随着免疫功能障碍和潜在炎症。然而,肥胖对小鼠和肺癌患者细胞反应中的关键参与者的确切影响才刚刚开始被理解。因此,我们着手解剖肥胖状态对图 3A 中描述的小鼠 TME 中免疫细胞成分的影响,采用基于多色流式细胞术的方法。我们的研究结果显示,肥胖对抗肿瘤反应的效力产生了不利影响。

Leukocyte infiltration of s.c. LLC tumors was markedly suppressed in obese (DIO) mice relative to normal weight (NORM) control tumors. This reduced intratumoral cellularity reflected a relative dearth of CD4+ and CD8+ T cells in the obese TME (Figure 4A). The potential tumoricidal CD8+ T cell compartment of obese mice were further observed to express considerably elevated levels of the immune checkpoint/exhaustion markers LAG3 and PD-1 on their surface relative to their normal weight counterparts (Figure 4B) in line with previous assessments of T cell phenotypes in obese tumor-bearing mice, . Similarly enhanced checkpoint expression levels were seen on conventional Thelper CD4+ T (Tconv) cells from DIO tumors (data not shown), and the CD8+ T cells recovered from obese mouse tumors stained more prominently with the dead cell-identifying dye LD Aqua (Figure 4C), indicative of an obesity-related defect in the fitness as well as the anti-tumor potential of intra-tumoral cells. Further suggesting an obesity-associated suppression of anti-tumor responses, the numbers of TILs capable of producing the tumoricidal Th1 cytokine IFNγ were much lower in the TILs recovered from DIO mice (Figure 4D).
肥胖(DIO)小鼠的皮下 LLC 肿瘤中白细胞浸润明显受抑制,相对于正常体重(NORM)对照肿瘤。这种降低的肿瘤内细胞密度反映了肥胖 TME 中 CD4+和 CD8+ T 细胞相对匮乏(图 4A)。观察到肥胖小鼠的潜在杀肿瘤 CD8+ T 细胞亚群在表面上表达的免疫检查点/疲劳标志物 LAG3 和 PD-1 的水平明显升高,相对于其正常体重对照(图 4B),与以往对肥胖肿瘤患小鼠 T 细胞表型的评估一致。类似地,DIO 肿瘤中的传统辅助 T 细胞 CD4+ T(Tconv)细胞上也观察到增强的检查点表达水平(未显示数据),并且从肥胖小鼠肿瘤中恢复的 CD8+ T 细胞在死细胞识别染料 LD Aqua 上染色更加明显(图 4C),表明肥胖相关缺陷影响了肿瘤内细胞的健康状态以及抗肿瘤潜力。 进一步表明肥胖相关的抑制抗肿瘤反应,从 DIO 小鼠中恢复的 TILs 中能够产生抗肿瘤 Th1 细胞因子 IFNγ的细胞数量要低得多(图 4D)。

An external file that holds a picture, illustration, etc.
Object name is nihms-1795350-f0004.jpg
Obesity-mediated effects on the anti-tumor immune response to s.c. LLC tumors.
肥胖对皮下 LLC 肿瘤抗肿瘤免疫反应的影响。

C57BL/6 mice were fed a high-fat (to induce obesity) or normal diet for 16 weeks before implantation of 1×105 cells by injection in shaved flanks (n=5–7/group). The density of tumor infiltrating leukocytes (TILs) were found, and flow cytometry analysis of tumor cell suspensions obtained in the experiment presented in Fig. 3 revealed the frequencies of CD4+ and CD8+ T cells amongst the tumor infiltrating leukocytes (TILs; A). The proportions of CD8+ T cells expressing the checkpoint molecules LAG3 and PD-1 and the viable fraction of CD8+ T cells were found and quantified (B, C). The levels of IFNγ producing TILs in obese and non-obese mice were also found (D). The relative proportions of Tregs among the TILs were found (E) as well as the levels of activated Treg markers. (F) and the frequencies of Foxp3+ Tregs expressing the checkpoint molecules LAG3 and PD-1 (F). P < 0.05 (*), < 0.02 (**), (****)<0.001 in standard t test. Error bars depict the SEM. Shown are representative flow plots and the mean quantification of replicates from one of 2–3 independent experiments.
C57BL/6 小鼠在植入 1×10 5 细胞前 16 周被喂高脂肪(诱导肥胖)或正常饮食(每组 n=5-7)注射在剃光的侧腹部。在图 3 中呈现的实验中获得的肿瘤细胞悬液的流式细胞术分析显示肿瘤浸润白细胞(TILs)的 CD4+和 CD8+ T 细胞的频率(A)。发现和量化了表达检查点分子 LAG3 和 PD-1 的 CD8+ T 细胞的比例以及 CD8+ T 细胞的存活分数(B,C)。还发现了肥胖和非肥胖小鼠中 IFNγ产生的 TILs 水平(D)。发现了 TILs 中 Tregs 的相对比例(E)以及激活的 Treg 标记物的水平(F)和表达检查点分子 LAG3 和 PD-1 的 Foxp3+ Tregs 的频率(F)。标准 t 检验中 P < 0.05(*),< 0.02(**),(****)<0.001。误差线表示 SEM。显示了代表性的流式细胞图和来自 2-3 个独立实验中的重复的平均量化。

In addition to effector cell deficits, enhanced suppressive cell phenotypes were also seen in the tumors of obese mice. Foxp3+ regulatory T (Treg) cells were modestly yet consistently enriched in the tumors of obese mice (Figure 4E). Moreover, these obese tumor-infiltrating Tregs displayed considerable up-regulated markers of an activated phenotype (CD44, ICOS) (Figure 4F). Since the activated or effector-like Treg phenotype is associated with both robust suppressive potency and a tendency to accumulate in murine and human tumors, , this observation suggests that obesity may bolster this subpopulation of suppressor cell known to be responsible for pathological immune suppression in the cancer setting. Concordantly, the levels of immune checkpoint molecules LAG3 and PD-1 expected to be expressed on the surface of intra-tumoral Tregs were enhanced in DIO Tregs compared to those recovered from controls (Figure 4G). We also observed a marked elevation in the abundance of tumor CD11b+GR1(Ly6C/G)+ myeloid derived suppressor cells (MDSCs) in obese mice-an observation in agreement with previous studies and these cells displayed higher levels of PD-L1 on their surface in the obese setting compared to normal weight controls (Figure 5A, ,B).B). Obesity also appeared to bolster proportions of potentially suppressive tumor-associated macrophages (CD11b+/F480+) as well as expression of the immune checkpoint molecule PDL-1 on these cells (Figure 5C, ,D).D). In general, these differences in T and myeloid cell phenotypes were muted in other tissues surveyed including tumor-draining and distal lymph nodes and the spleens compared to the tumors of obese and control mice (data not shown) suggesting the immune cells of the TME may be particularly susceptible to obesity-related modulation. Interestingly, our findings suggest that, in contrast to the known ability of obesity to down-regulate Treg abundance in visceral fat and blood, obesity can actually enhance Treg presence and activation in the TME and tumor-associated tissues. This previously unappreciated effect, potentially in concert with the potentiation of several other notoriously suppressive elements of the immune response (i.e., MDSCs, PD-L1:PD-1 signaling, exhausted CD8 T cells) may contribute to the enhanced tumor progression seen in obese mice.
除了效应细胞缺陷外,肥胖小鼠肿瘤中也观察到增强的抑制性细胞表型。Foxp3+ 调节性 T(Treg)细胞在肥胖小鼠肿瘤中略微但一贯地富集(图 4E)。此外,这些肥胖肿瘤浸润的 Treg 细胞显示出相当多的激活表型标记(CD44,ICOS)(图 4F)。由于激活或效应样 Treg 表型与强大的抑制能力和在小鼠和人类肿瘤中积累的倾向相关 , ,这一观察表明肥胖可能增强这种已知负责癌症环境中病理免疫抑制的抑制细胞亚群。一致地,预计在肿瘤内 Treg 细胞表面表达的免疫检查点分子 LAG3 和 PD-1 的水平 在 DIO Treg 细胞中比从对照组中恢复的细胞增强(图 4G)。 我们还观察到在肥胖小鼠中肿瘤 CD11b+GR1(Ly6C/G)+髓源抑制细胞(MDSCs)的丰度显著升高-这一观察结果与先前的研究一致 ,并且与正常体重对照组相比,这些细胞在肥胖环境中表面的 PD-L1 水平更高(图 5A, B)。肥胖还似乎增强了潜在抑制性肿瘤相关巨噬细胞(CD11b+/F480+)的比例,以及这些细胞上 PD-L1 的表达(图 5C, D)。总的来说,在其他受调查的组织中,包括肿瘤引流和远端淋巴结以及脾脏,T 和髓细胞表型的差异相对较小,与肥胖和对照小鼠的肿瘤相比(未显示数据),这表明 TME 的免疫细胞可能特别容易受到与肥胖相关的调节。有趣的是,我们的发现表明,与已知的肥胖降低内脏脂肪 和血液中 Treg 丰度的能力相反,肥胖实际上可以增强 Treg 在 TME 和肿瘤相关组织中的存在和活化。 这种先前未被重视的效应,可能与免疫应答中几种其他臭名昭著的抑制元素的增强作用相结合(即 MDSCs、PD-L1:PD-1 信号通路、疲惫的 CD8 T 细胞),可能有助于肥胖小鼠中观察到的增强肿瘤进展。

An external file that holds a picture, illustration, etc.
Object name is nihms-1795350-f0005.jpg
Obesity-mediated effects on myeloid derived suppressor cells in s.c. LLC tumors.
肥胖对皮下 LLC 肿瘤中髓源性抑制细胞的影响。

C57BL/6 mice were fed a high-fat (to induce obesity) or normal diet before implantation of 1×105 cells by injection in shaved flanks (n=5–7/group). Flow cytometry analysis of tumor cell suspensions obtained from Fig. 3. The frequencies of MDSC (GR1+/CD11b+) among the TILs were found by flow cytometry (A) as were levels of PD-L1 expression on these suppressor cells (B). Similarly, we determined the frequencies of tumor associated macrophages (CD11b+/F480+) and the surface levels of PDL1 on these cells (C,D). P < 0.05 (*), < 0.02 (**), in standard t test. Error bars depict the SEM. Shown are representative flow plots and the mean quantification of replicates from one of 2 independent experiments.
C57BL/6 小鼠在植入 1×105 个细胞之前被喂高脂肪(诱导肥胖)或正常饮食(每组 n=5-7)注射在剃光的侧腹部。从图 3 获得的肿瘤细胞悬液进行流式细胞术分析。通过流式细胞术发现 TILs 中 MDSC(GR1+/CD11b+)的频率(A),以及这些抑制细胞上 PD-L1 表达水平(B)。同样,我们确定了肿瘤相关巨噬细胞(CD11b+/F480+)的频率以及这些细胞上 PDL1 的表面水平(C,D)。在标准 t 检验中 P < 0.05(*),< 0.02(**)。误差线代表 SEM。显示了代表性的流式图和来自 2 个独立实验之一的重复的平均量化。

Perturbance by obesity of immune pathways in mouse tumors can be discerned in tumor transcriptome
肿瘤转录组中可以辨别出肥胖对小鼠肿瘤免疫途径的干扰

To obtain insights into the molecular mechanisms by which obesity may influence tumor biology, we compared mRNA sequencing-based transcriptomes of LLC tumors of obese and normal mice (n=6 each). Expression of 187 and 217 genes was respectively up- and down-regulated by > 1.2x in tumors of obese compared to normal with adjusted Wald test p < 0.05 in analysis with DESeq2. Single-sample geneset enrichment analysis (GSEA) using the geneset variation analysis (GSVA) method revealed significantly increased expression of multiple genesets related to metabolism in tumors of obese mice (Bayes-moderated t test p < 0.05 with false discovery rate [FDR] < 0.20) (Supplementary Figure S6) as well as cancer biology (such as angiogenesis and epithelial mesenchymal transition; data not shown). On the other hand, tumors of obese mice had significantly diminished expression of many immune-related genesets (Supplementary Figure S5). These results suggest that obesity triggers marked alterations in the tumor microenvironment.
为了深入了解肥胖可能如何影响肿瘤生物学的分子机制,我们比较了肥胖和正常小鼠(每组 n=6)的 LLC 肿瘤基于 mRNA 测序的转录组。与正常小鼠相比,肥胖小鼠的肿瘤中分别有 187 和 217 个基因的表达上调和下调超过 1.2 倍,经过 DESeq2 的调整 Wald 检验 p < 0.05 进行分析。使用基因集变异分析(GSVA)方法进行单样本基因集富集分析(GSEA)显示,与正常小鼠相比,肥胖小鼠的肿瘤中与代谢相关的多个基因集的表达显著增加(Bayes 调节 t 检验 p < 0.05,假发现率[FDR] < 0.20)(附图 S6),以及癌症生物学(如血管生成和上皮间质转化;数据未显示)。另一方面,肥胖小鼠的肿瘤中许多与免疫相关的基因集的表达显著减少(附图 S5)。这些结果表明,肥胖会引发肿瘤微环境中的显著变化。

In all, these results illustrate the multi-faceted nature of the immune dysfunction associated with obesity across varied mouse tumor models. These effects, which include enhanced suppressor cells presence and function as well as effector cell deficiencies resonate with our transcriptomic characterization of high-VFI patient tumors as harboring a low degree of immunologic/inflammatory activity. When taken together, these preclinical and clinical findings strongly suggest that the poor outcomes seen in both centrally obese mice and patients are rooted in common biological underpinning, i.e., obesity-mediated effects on the anti-tumor immune response. While further work will be necessary to pin-point the precise mechanisms at play in the subversion of anti-tumor immunity in the obese, and indeed several potential mechanisms have been proposed to date, our results suggest that at least some of the key elements at play (e.g., obesity-altered tumor metabolism and immune-suppression) may be modeled in mouse tumor models for in-depth, mechanistic studies.
总的来说,这些结果展示了与肥胖相关的免疫功能障碍在不同的小鼠肿瘤模型中的多方面特性。这些效应包括增强的抑制细胞存在和功能,以及效应细胞缺陷,与我们对高 VFI 患者肿瘤的转录组特征化相一致,这些肿瘤具有低程度的免疫/炎症活性。综合考虑这些临床前和临床发现,强烈暗示了在中心性肥胖小鼠和患者中观察到的不良结果根植于共同的生物学基础,即肥胖对抗肿瘤免疫反应的影响。虽然进一步的工作将是必要的,以确定在肥胖者中反抗抗肿瘤免疫的确切机制,事实上,迄今已提出了几种潜在机制,但我们的结果表明,至少一些关键因素(例如,肥胖改变的肿瘤代谢和免疫抑制)可能在小鼠肿瘤模型中进行深入的机械研究。

Discussion 讨论

Obesity is an established risk factor in the development of multiple cancer types and a negative prognostic factor for many as well, , . However, the relationship between obesity and lung cancer outcomes is less clear. While obese mice generally display accelerated tumor development and growth compared to normal weight controls in preclinical models of lung cancer and other malignancies, analysis of clinical data have suggested a survival benefit and better responses to therapies among obese patients (particularly when obesity is defined by BMI) - giving rise to a so-called “obesity paradox”. However, a number of potential confounding factors may account for this surprising association.
肥胖是多种癌症发展的已知风险因素,也是许多癌症的负面预后因素 , , 。然而,肥胖与肺癌预后之间的关系并不明确。虽然在肺癌和其他恶性肿瘤的临床模型中,肥胖小鼠通常显示出比正常体重对照组更快的肿瘤发展和生长,但临床数据分析表明,肥胖患者(特别是以 BMI 定义肥胖时)可能获得生存益处并对治疗有更好的反应,从而产生所谓的“肥胖悖论”。然而,许多潜在混杂因素可能解释这种令人惊讶的关联。

One potential confounder in clinical studies of obesity and lung cancer outcomes is the relationship between smoking and obesity. It is possible that obese patients smoke less, and this may be misinterpreted as a beneficial effect of obesity. For example, Lam et al. showed that obesity is not associated with increased lung cancer in never smokers However, a large study of ~450,000 patients examined this in detail, and after adjusting for smoking, the relationship of obesity (measured by BMI) to lung cancer incidence still held suggesting that the possible confounding issue of smoking is not causatively important, but nevertheless essential to consider in order to avoid erroneous interpretations. Another pitfall in the interpretation of clinical results concerning obesity’s effects on lung cancer survival seems to involve the widespread use of metformin to treat type II diabetes – a common comorbidity in overweight and obese patients. This drug has long been studied for its potential anti-cancer effects in preclinical models and clinical data sets with varying degrees of potency reported in the literature, and it has been demonstrated to have immunomodulatory effects, , . We recently linked metformin use to significantly better survival outcomes specifically in obese early-stage lung cancer patients. It is possible that the context-specific benefit of this drug may account at least partially for the better lung cancer outcomes seen in high-BMI patients.
肥胖和肺癌结果的临床研究中一个潜在的混杂因素是吸烟和肥胖之间的关系。肥胖患者可能吸烟较少,这可能被误解为肥胖的有益影响。例如,Lam 等人表明肥胖与从未吸烟者中的肺癌增加无关。然而,对约 450,000 名患者进行的一项大型研究对此进行了详细检查,调整吸烟后,肥胖(以 BMI 衡量)与肺癌发病率的关系仍然存在,这表明吸烟可能的混杂问题并不是因果重要的,但仍然是必须考虑的,以避免错误解释。在涉及肥胖对肺癌存活影响的临床结果解释中的另一个陷阱似乎涉及广泛使用二甲双胍治疗 II 型糖尿病 - 超重和肥胖患者中常见的合并症。 这种药物长期以来一直被研究其在临床前模型和临床数据集中的潜在抗癌效果,文献中报道了不同程度的效力,并已证明具有免疫调节作用。我们最近将二甲双胍的使用与肥胖早期肺癌患者特别好的生存结果联系起来。这种药物的特定背景效益可能至少部分解释了在高 BMI 患者中看到的更好的肺癌结果。

Our present findings and those of others suggest that a major contributor to the obesity paradox arises from the manner in which obesity is typically measured. Most retrospective studies examining the association between obesity and lung cancer use BMI as an anthropomorphic measure of obesity. There is growing evidence that the use of BMI has serious limitations in the study of obesity and its effects on human health and disease outcome. While different anatomical distribution patterns of adipose tissue accumulation (i.e., different body compositions) have major implications for human health, BMI measurements are not capable of differentiating between these patterns. As such, BMI is a poor measure of visceral obesity, and this is particularly limiting for the effects of obesity in diverse patient demographics. Specifically, central obesity is known to occur in Asian Americans and East Asians, at a lower BMI than Caucasians. Also, germane to the study of the obesity-lung cancer connection, recent studies suggest that an ability to discern between visceral and s.c. obesity is critically important for defining obesity in a meaningful way and for exploring the interaction of obesity and processes determining lung cancer outcomes.
我们目前的发现和其他人的研究表明,肥胖悖论的一个主要原因是肥胖通常的测量方式。大多数回顾性研究检查肥胖与肺癌之间的关联时使用 BMI 作为肥胖的人体测量指标。越来越多的证据表明,在肥胖研究及其对人类健康和疾病结果的影响方面,BMI 的使用存在严重局限性。虽然脂肪组织积累的不同解剖分布模式(即不同的体成分)对人类健康有重大影响,但 BMI 测量无法区分这些模式。因此,BMI 是腹部肥胖的一个较差的测量指标,尤其对于不同患者人群中肥胖的影响具有限制性。具体来说,中心性肥胖已知在亚裔美国人和东亚人中发生的 BMI 较高于白种人。此外,与肥胖与肺癌关联研究相关的是,最近的研究表明,能够区分腹部和皮下脂肪。 肥胖对于以有意义的方式定义肥胖以及探索肥胖与决定肺癌结果的过程之间的相互作用至关重要。

It is important to note that others have used waist circumference (WC), waist-hip ratio (WHR), or imaging to explore the relationship between lung cancer outcomes and central obesity, specifically, with findings in agreement with our own. Leitzmann et al., analyzed the NIH-AARP study dataset with 225,712 individuals and found that patients with a higher WC had a higher lung cancer-specific mortality. This was again demonstrated in a pooled analysis of 1.6 million patients with 23,732 incident lung cancer in which WC was associated with a higher risk of lung cancer. These findings are in agreement with those of Ardesch et al., that implicated a positive association between lung cancer risk and an obese body shape (as determined by Waist circumference (WC), Waist-to-Hip Ratio (WHR), Body Shape Index) . Similarly, measurement of visceral adipose tissue was also associated with poor lung cancer prognosis in patients undergoing chemotherapy. The findings of these studies and those of our own, clearly illustrate the vital need for accurate measures of central obesity in studies of lung cancer.
重要的是要注意,其他人已经使用腰围(WC)、腰臀比(WHR)或成像来探讨肺癌结果与中心性肥胖之间的关系,特别是发现与我们自己的一致。Leitzmann 等人分析了拥有 225,712 名个体的 NIH-AARP 研究数据集,发现腰围较大的患者具有更高的肺癌特异性死亡率。这在对拥有 23,732 例新发肺癌的 1.6 百万患者进行的综合分析中再次得到证实,腰围与肺癌风险增加相关。这些发现与 Ardesch 等人的研究结果一致,后者指出肺癌风险与肥胖体型(由腰围、腰臀比、身体形状指数确定)之间存在正相关。同样,测量内脏脂肪组织也与接受化疗的患者的肺癌预后不良相关。这些研究的发现以及我们自己的研究清楚地说明了在肺癌研究中准确测量中心性肥胖的重要性。

Our clinical findings are not only in line with the effects of obesity and tumor progression seen in many murine lung cancer models, but they also reflect the logical outcome of the roundly pro-tumor alterations that obesity triggers in human and murine gene expression (Figure 2 and Supplementary Tables S4, S6) and its effects on the immune cell composition of the TME reported by us (Figure 3) and others.
我们的临床发现不仅符合许多小鼠肺癌模型中肥胖和肿瘤进展的影响,而且还反映了肥胖在人类和小鼠基因表达中触发的全面促肿瘤改变的逻辑结果(图 2 和附表 S4、S6),以及我们和其他人报道的肥胖对 TME 免疫细胞组成的影响(图 3)。

Deploying a novel CT-based approach for the retrospective quantification of visceral and s.c. adipose tissue, we here show definitely that central or visceral adiposity (i.e., high VFI status) is negatively associated with both OS and RFS in early-stage NSCLC patients. This finding contrasts starkly with previous observations made using BMI that have, in part, given rise to the obesity paradox. Also, unlike the disease outcomes seen in high-BMI patients, high VFI status corresponded, at least in a general sense, with the course of disease seen in obese tumor bearing mice. Indeed, in both mice and human central obesity appears linked to worse outcomes, namely accelerated tumor growth (Figure 3), and shorter survival times (Figure 1), respectively.
利用一种新颖的基于 CT 的方法对内脏和皮下脂肪组织进行回顾性定量分析,我们在这里明确显示中心或内脏脂肪过多(即高 VFI 状态)与早期非小细胞肺癌患者的 OS 和 RFS 均呈负相关。这一发现与以往使用 BMI 得出的观察形成鲜明对比,部分原因是由于肥胖悖论。与高 BMI 患者的疾病结果不同,高 VFI 状态至少在一般意义上与肥胖肿瘤携带小鼠中观察到的疾病过程相对应。事实上,无论是在小鼠还是人类中,中心性肥胖似乎与更糟的结果相关联,即加速肿瘤生长(图 3)和更短的存活时间(图 1)。

Our parallel observations made in human lung TME gene expression and the cellular analysis of murine tumors clearly suggest that obesity undercuts key elements of the T cell- and inflammatory response in the tumor niche while enhancing known-mediators of immune suppression that include environmental stresses, immune-dampening signaling pathways, and pro-tumor phenotypes in notorious cellular antagonists of anti-tumor immunity. In particular, side-by-side assessment of human and murine lung tumors reveal common indications of a suppressed immune presence in the TME of obese hosts, albeit through distinct approaches in some cases. Perhaps most notably, in both human and mouse tumors transcripts encoding elements of Th1 immunity were reduced by central obesity. In our comparison of immune-relevant transcripts among top- and bottom-VFI tertile patient tumors, Th1 chemokines CXCL10, CXCL11, and CXCL9; and Th1 transcription factors STAT1 and Txb21/Tbet were found to be underrepresented in the high-VFI samples as were IFIT1 and IFIT3, which are reported to be induced by IFNgamma signaling (comparison p values <0.05; Supplemental Table S4). Meanwhile, in our analysis of mouse tumor gene expression, STAT4, which plays an important role in the generation of Th1 immunity was among the genes down-regulated by obesity (Supplementary table S6), and both these observations were very much in line with our cellular analysis of the mouse tumors in the s.c. LLC model showing a lower density of IFNgamma-producing TILs in obese tumors (Figure 4D). It is interesting to note that while our flow cytometric characterization of mouse tumors revealed enhancements in Tregs and PD-L1 expression by myeloid cells, while general levels of CD274 (PD-L1) and Foxp3 transcript were found to be underrepresented in high-VFI tumors. This apparent incongruity could reflect, in the case of PD-L1, a low-level of IFNgamma signaling implicated by our other observations to be active in the obese TME or the expression of these factors by a number of tumor residents including tumor cells themselves.
我们在人类肺部 TME 基因表达和小鼠肿瘤细胞分析中进行的平行观察清楚地表明,肥胖削弱了肿瘤微环境中 T 细胞和炎症反应的关键元素,同时增强了已知的免疫抑制介质,包括环境压力、免疫抑制信号通路和抗肿瘤免疫的细胞拮抗者中的促肿瘤表型。特别是,在人类和小鼠肺部肿瘤的并行评估中,显示出肥胖宿主的 TME 中存在免疫抑制迹象,尽管在某些情况下通过不同的途径。也许最值得注意的是,在人类和小鼠肿瘤中,编码 Th1 免疫元素的转录本都受到了中心性肥胖的影响。在我们比较顶部和底部 VFI 三分位患者肿瘤中的免疫相关转录本时,发现高 VFI 样本中 Th1 趋化因子 CXCL10、CXCL11 和 CXCL9;以及 Th1 转录因子 STAT1 和 Txb21/Tbet 的表达量较低,IFIT1 和 IFIT3 也是如此,这些基因据报道受 IFNgamma 信号诱导(比较 p 值<0.05;附表 S4)。 与此同时,在我们对小鼠肿瘤基因表达的分析中,STAT4 在 Th1 免疫生成中发挥重要作用,但在肥胖状态下被下调(附表 S6),这两个观察结果与我们对小鼠肿瘤细胞分析非常一致,显示肥胖肿瘤中 IFNgamma 产生的 TILs 密度较低(图 4D)。有趣的是,尽管我们对小鼠肿瘤的流式细胞学特征分析显示 Tregs 和 PD-L1 在髓样细胞中的表达增强,但高 VFI 肿瘤中 CD274(PD-L1)和 Foxp3 转录本的总体水平被发现是低表达的。这种明显的不一致可能反映出,在 PD-L1 的情况下,由我们的其他观察结果表明在肥胖 TME 中活跃的 IFNgamma 信号的低水平,或者这些因素由一些肿瘤居民(包括肿瘤细胞本身)表达。

Across species we observed indications of a stymied T cell presence in the tumors of high-VFI patients and DIO mice indicated by reduced pan-T cell and lineage defining transcripts (CD2, CD3, CD4, CD8, CD247) and the scarcity of CD4+ and CD8+ TILs in our flow cytometry analysis, respectively (Supplemental Table S4, Fig.Fig.4).4). Also, among the transcripts relatively down-regulated in high-VFI tumors were several involved in the process of antigen presentation (CIITA and several HLA transcripts; Supplemental Table S4), an observation is compatible with a more immunologically quiet TME in the obese and potentially explanative as defective stimulation of effector T cell immunity by antigen presenting cells in the obese TME may in part contribute to the aforementioned defects in the tumor T cell presence due to poor expansion. The compromised viability of CD8 T cells suggested by our mouse model experiments (Figure 4C) presents another possible explanation for both a lack of cells with anti-tumor potential and the enhancement of tumor growth seen in the obese context – namely that the already inhospitable TME is made even less conducive to T cell infiltration by factors stemming from an obesity state. Additionally, the obesity-enhanced suppressor cell phenotypes among the myeloid compartment of the murine TILs (i.e., elevated MDSCs and Tumor-associated macrophages marked by high PD-L1 expression; Figure 5) are also in line with defective immune priming (in favor of immune suppression). However, since a number of chemokine genes are relatively under-expressed in high-VFI patient tumors (Supplemental Table S4), deficient recruitment of effector T cells is another potential mechanism at play. As the previously unappreciated obesity-associated enhancement of the TIL Treg phenotype that we observe in our mouse studies (Figure 4EG) remains to explored in depth, further study is needed to define the relative importance of this and the other potential mechanisms of obeserelated immune dysfunction to overall disease outcome. Nevertheless, our present findings implicate the soundly predicted, likely multi-faceted, but incompletely delineated suppressive effects of obesity on the immune TME of lung tumors as probable contributors to obesity’s pro-tumor effects in lung cancer.
我们观察到高 VFI 患者和 DIO 小鼠肿瘤中 T 细胞存在受阻的迹象,表现为全 T 细胞和谱系定义转录物(CD2、CD3、CD4、CD8、CD247)减少,以及在我们的流式细胞术分析中 CD4+和 CD8+ TILs 的稀缺(附录表 S4,图 4)。此外,在高 VFI 肿瘤中相对下调的转录物中,有几种参与抗原呈递过程的转录物(CIITA 和几种 HLA 转录物;附录表 S4),这一观察与肥胖者中更为免疫安静的 TME 相符,可能解释了肥胖 TME 中抗原呈递细胞对效应 T 细胞免疫的缺陷刺激可能在一定程度上导致了前述肿瘤 T 细胞存在缺陷的问题。 我们的小鼠模型实验所显示的 CD8 T 细胞生存能力受损(图 4C),为缺乏具有抗肿瘤潜力的细胞以及在肥胖环境中观察到的肿瘤生长增强提供了另一个可能的解释 - 即来自肥胖状态的因素使本已不适宜的肿瘤微环境对 T 细胞浸润的条件变得更加不利。此外,小鼠 TILs 的髓样组分中肿瘤抑制细胞表型的肥胖增强(即高 PD-L1 表达的 MDSCs 和肿瘤相关巨噬细胞;图 5)也与免疫启动缺陷(有利于免疫抑制)一致。然而,由于高 VFI 患者肿瘤中一些趋化因子基因的表达相对较低(附表 S4),缺乏效应 T 细胞的招募是另一个可能发挥作用的机制。 由于我们在小鼠研究中观察到的以往未被重视的肥胖相关增强的 TIL Treg 表型(图 4E-G),仍需深入探讨,需要进一步研究以确定这一机制与其他潜在机制对肥胖相关免疫功能障碍对整体疾病结果的相对重要性。尽管如此,我们目前的发现暗示了肥胖对肺部肿瘤免疫 TME 的抑制效应可能是肺癌肥胖促肿瘤效应的潜在贡献因素,这种效应被充分预测,可能是多方面的,但尚未完全揭示。

This study marks an important step in fostering a better understanding of the so-called obesity paradox, and its findings clarify the impact of distinct body-fat distribution patterns on lung cancer outcomes. Its findings may inform continued efforts to better predict lung cancer outcomes, management and apply treatments, and develop novel therapeutic approaches to prevent or control early-stage lung cancers across a patient pool that is increasingly overweight and obese.
这项研究标志着促进对所谓的肥胖悖论有更好理解的重要一步,其发现澄清了不同体脂分布模式对肺癌结果的影响。其发现可能有助于持续努力更好地预测肺癌结果,管理和应用治疗,并开发新的治疗方法,以预防或控制患者群体中越来越多超重和肥胖的早期肺癌。

Supplementary Material 补充材料

1

Click here to view.(14K, docx)
点击这里查看。 (14K, docx)

2

Click here to view.(1.0M, docx)
点击这里查看。 (1.0M, docx)

Acknowledgements 致谢

We thank the Genomics Shared Resource facility of RPCCC for performing the RNA sequencing experiments.
我们感谢 RPCCC 的基因组共享资源中心进行 RNA 测序实验。

Funding source 资金来源

This work was supported by intramural research support from Roswell Park Comprehensive Cancer Center (RPCCC) to SY and JB, American Lung Association Lung Cancer Discovery Award to JB, and National Cancer Institute, USA grant P30-CA016056 to RPCCC.
这项工作得到了罗斯韦尔公园综合癌症中心(RPCCC)内部研究支持,支持 SY 和 JB,美国肺协会肺癌发现奖励给 JB,以及美国国家癌症研究所授予 RPCCC 的 P30-CA016056 资助。

Abbreviations 缩写

LLCLewis lung carcinoma Lewis 肺癌
NSCLCnon-small cell lung cancer
非小细胞肺癌
OSoverall survival 总生存率
RFSrecurrencefree survival 无复发存活
VFAvisceral fat area 内脏脂肪面积
VFIvisceral fat index 内脏脂肪指数

Footnotes 脚注

Conflicts of interest 利益冲突

Drs. Pabla, and Seagar are employees of OmniSeq Inc. of Buffalo, NY, and Dr. Pabla holds restricted stock in the molecular diagnostics company. Roswell Park Comprehensive Cancer Center is a shareholder of OmniSeq. These and other authors declare no other conflict of interest.
Pabla 博士和 Seagar 博士是纽约州布法罗市 OmniSeq Inc.的雇员,Pabla 博士持有该分子诊断公司的受限股票。罗斯韦尔公园综合癌症中心是 OmniSeq 的股东。这些作者和其他作者声明没有其他利益冲突。

CRediT statement not available.
CRediT 声明不可用。

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
出版商免责声明:这是一份已被接受发表的未编辑手稿的 PDF 文件。为了向我们的客户提供服务,我们提供了这份手稿的早期版本。在最终形式发表之前,手稿将经过复制编辑、排版和审阅以获得最终证明。请注意,在生产过程中可能会发现错误,这可能会影响内容,并且适用于期刊的所有法律免责声明。

References 参考资料

1. Calle EE, Rodriguez C, Walker-Thurmond K, et al. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 2003;348:1625–1638. [PubMed] []
1. Calle EE, Rodriguez C, Walker-Thurmond K, 等. 在美国成年人的前瞻性研究队列中,超重、肥胖和癌症死亡率。N Engl J Med 2003;348:1625–1638.【PubMed】【Google Scholar】
2. Lauby-Secretan B, Scoccianti C, Loomis D, et al. Body Fatness and Cancer--Viewpoint of the IARC Working Group. N Engl J Med 2016;375:794–798. [PMC free article] [PubMed] []
2. Lauby-Secretan B, Scoccianti C, Loomis D, 等。 身体肥胖和癌症 - IARC 工作组的观点。 N Engl J Med 2016;375:794–798。【PMC 免费文章】【PubMed】【Google 学者】
3. Ogden CL, Fakhouri TH, Carroll MD, et al. Prevalence of Obesity Among Adults, by Household Income and Education - United States, 2011–2014. MMWR Morb Mortal Wkly Rep 2017;66:1369–1373. [PMC free article] [PubMed] []
3. Ogden CL, Fakhouri TH, Carroll MD 等。2011 年至 2014 年美国成年人中肥胖的普遍程度,按家庭收入和教育水平划分。MMWR Morb Mortal Wkly Rep 2017;66:1369–1373。[PMC 免费文章][PubMed][Google 学者]
4. Steele CB, Thomas CC, Henley SJ, et al. Vital Signs: Trends in Incidence of Cancers Associated with Overweight and Obesity - United States, 2005–2014. MMWR Morb Mortal Wkly Rep 2017;66:1052–1058. [PMC free article] [PubMed] []
4. Steele CB, Thomas CC, Henley SJ 等。生命体征:与超重和肥胖相关的癌症发病率趋势 - 美国,2005-2014 年。MMWR Morb Mortal Wkly Rep 2017;66:1052-1058。[PMC 免费文章][PubMed][Google 学者]
5. Smith L, Brinton LA, Spitz MR, et al. Body mass index and risk of lung cancer among never, former, and current smokers. J Natl Cancer Inst 2012;104:778–789. [PMC free article] [PubMed] []
5. Smith L, Brinton LA, Spitz MR 等。体重指数与非吸烟者、戒烟者和吸烟者肺癌风险之间的关系。J Natl Cancer Inst 2012;104:778–789。【PMC 免费文章】【PubMed】【Google 学者】
6. Ten Haaf K, Jeon J, Tammemagi MC, et al. Risk prediction models for selection of lung cancer screening candidates: A retrospective validation study. PLoS Med 2017;14:e1002277. [PMC free article] [PubMed] []
6. Ten Haaf K, Jeon J, Tammemagi MC 等。用于选择肺癌筛查候选人的风险预测模型:一项回顾性验证研究。PLoS Med 2017;14:e1002277。【PMC 免费文章】【PubMed】【Google 学者】
7. Dahlberg SE, Schiller JH, Bonomi PB, et al. Body mass index and its association with clinical outcomes for advanced non-small-cell lung cancer patients enrolled on Eastern Cooperative Oncology Group clinical trials. J Thorac Oncol 2013;8:1121–1127. [PMC free article] [PubMed] []
7. Dahlberg SE, Schiller JH, Bonomi PB 等。体重指数及其与东部合作肿瘤学组临床试验中登记的晚期非小细胞肺癌患者临床结果的关联。J Thorac Oncol 2013;8:1121–1127。【PMC 免费文章】【PubMed】【Google 学者】
8. Leung CC, Lam TH, Yew WW, et al. Lower lung cancer mortality in obesity. Int J Epidemiol 2011;40:174–182. [PubMed] []
8. 梁 CC,林 TH,Yew WW 等。肥胖者肺癌死亡率较低。流行病学国际期刊 2011 年;40:174-182。【PubMed】【Google 学者】
9. Lam VK, Bentzen SM, Mohindra P, et al. Obesity is associated with long-term improved survival in definitively treated locally advanced non-small cell lung cancer (NSCLC). Lung Cancer 2017;104:52–57. [PubMed] []
9. Lam VK, Bentzen SM, Mohindra P, 等。肥胖与明确治疗的局部晚期非小细胞肺癌(NSCLC)患者的长期生存改善相关。肺癌 2017 年;104:52-57。【PubMed】【Google 学者】
10. Park J, Morley TS, Kim M, et al. Obesity and cancer--mechanisms underlying tumour progression and recurrence. Nat Rev Endocrinol 2014;10:455–465. [PMC free article] [PubMed] []
10. Park J, Morley TS, Kim M, 等。肥胖和癌症——肿瘤进展和复发的机制。Nat Rev Endocrinol 2014;10:455–465。【PMC 免费文章】【PubMed】【Google 学者】
11. Canter RJ, Le CT, Beerthuijzen JMT, et al. Obesity as an immune-modifying factor in cancer immunotherapy. J Leukoc Biol 2018;104:487–497. [PMC free article] [PubMed] []
11. Canter RJ, Le CT, Beerthuijzen JMT 等。肥胖作为癌症免疫治疗中的免疫调节因子。J Leukoc Biol 2018;104:487–497。【PMC 免费文章】【PubMed】【Google 学者】
12. Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006;444:860–867. [PubMed] []
12. Hotamisligil GS. 炎症和代谢紊乱。自然 2006 年; 444:860-867。【PubMed】【Google 学者】
13. Ostrand-Rosenberg S. Myeloid derived-suppressor cells: their role in cancer and obesity. Curr Opin Immunol 2018;51:68–75. [PMC free article] [PubMed] []
13. Ostrand-Rosenberg S. 骨髓源性抑制细胞:它们在癌症和肥胖中的作用。Curr Opin Immunol 2018;51:68–75.【PMC 免费文章】【PubMed】【Google 学者】
14. Wang Z, Aguilar EG, Luna JI, et al. Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nat Med 2019;25:141–151. [PMC free article] [PubMed] []
14. 王 Z,阿吉拉尔 EG,卢纳 JI 等。肿瘤进展和 PD-1 检查点阻断期间肥胖对 T 细胞功能的悖论影响。自然医学 2019 年;25:141-151。【PMC 免费文章】【PubMed】【Google 学者】
15. Pernicova I, Korbonits M. Metformin--mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol 2014;10:143–156. [PubMed] []
16. Vancura A, Bu P, Bhagwat M, et al. Metformin as an Anticancer Agent. Trends Pharmacol Sci 2018;39:867–878. [PMC free article] [PubMed] []
16. Vancura A, Bu P, Bhagwat M, 等。Metformin 作为抗癌药物。趋势药理学科学 2018 年;39:867–878。【PMC 免费文章】【PubMed】【Google 学者】
17. Kurelac I, Umesh Ganesh N, Iorio M, et al. The multifaceted effects of metformin on tumor microenvironment. Semin Cell Dev Biol 2019. [PubMed] []
17. Kurelac I, Umesh Ganesh N, Iorio M, 等。二甲双胍对肿瘤微环境的多方面影响。2019 年细胞发育生物学研讨会。【PubMed】【Google Scholar】
18. Memmott RM, Mercado JR, Maier CR, et al. Metformin prevents tobacco carcinogen-induced lung tumorigenesis. Cancer Prev Res (Phila) 2010;3:1066–1076. [PMC free article] [PubMed] []
18. Memmott RM, Mercado JR, Maier CR 等。二甲双胍预防烟草致癌物诱导的肺癌发生。癌症预防研究(费城)2010 年;3:1066–1076。【PMC 免费文章】【PubMed】【Google 学者】
19. Currie CJ, Poole CD, Gale EA. The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia 2009;52:1766–1777. [PubMed] []
19. Currie CJ, Poole CD, Gale EA. 葡萄糖降低疗法对 2 型糖尿病患者癌症风险的影响。Diabetologia 2009;52:1766–1777。【PubMed】【Google Scholar】
20. Thakkar B, Aronis KN, Vamvini MT, et al. Metformin and sulfonylureas in relation to cancer risk in type II diabetes patients: a meta-analysis using primary data of published studies. Metabolism 2013;62:922–934. [PubMed] []
20. Thakkar B, Aronis KN, Vamvini MT 等。关于 II 型糖尿病患者癌症风险的二甲双胍和磺脲类药物:使用已发表研究的原始数据进行的荟萃分析。代谢 2013 年;62:922–934。【PubMed】【Google 学者】
21. Dhillon SS, Groman A, Meagher A, et al. Metformin and Not Diabetes Influences the Survival of Resected Early Stage NSCLC Patients. J Cancer Sci Ther 2014;6:217–222. [PMC free article] [PubMed] []
21. Dhillon SS, Groman A, Meagher A, 等。二甲双胍而不是糖尿病影响了手术切除早期非小细胞肺癌患者的生存。J Cancer Sci Ther 2014;6:217–222.【PMC 免费文章】【PubMed】【Google 学者】
22. Currie CJ, Poole CD, Jenkins-Jones S, et al. Mortality after incident cancer in people with and without type 2 diabetes: impact of metformin on survival. Diabetes Care 2012;35:299–304. [PMC free article] [PubMed] []
22. Currie CJ, Poole CD, Jenkins-Jones S, 等。发生癌症后糖尿病患者和非糖尿病患者的死亡率:二甲双胍对生存的影响。《糖尿病护理》2012 年;35:299-304。【PMC 免费文章】【PubMed】【Google 学者】
23. Zhang C, Rexrode KM, van Dam RM, et al. Abdominal obesity and the risk of all-cause, cardiovascular, and cancer mortality: sixteen years of follow-up in US women. Circulation 2008;117:1658–1667. [PubMed] []
23. 张 C,雷克斯罗德 KM,范达姆 RM 等。腹部肥胖与全因、心血管和癌症死亡风险的关系:美国妇女 16 年的随访。《循环》2008 年;117:1658-1667。【PubMed】【Google Scholar】
24. Yusuf S, Hawken S, Ounpuu S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004;364:937–952. [PubMed] []
24. Yusuf S, Hawken S, Ounpuu S, 等。潜在可改变的与心肌梗死相关的危险因素对 52 个国家的影响(INTERHEART 研究):病例对照研究。《柳叶刀》2004 年;364:937-952。【PubMed】【Google 学者】
25. Litwin SE. Which measures of obesity best predict cardiovascular risk? J Am Coll Cardiol 2008;52:616–619. [PubMed] []
25. Litwin SE. 哪些肥胖指标最能预测心血管风险?J Am Coll Cardiol 2008;52:616–619.【PubMed】【Google Scholar】
26. Jensen MD, Kanaley JA, Reed JE, et al. Measurement of abdominal and visceral fat with computed tomography and dual-energy x-ray absorptiometry. Am J Clin Nutr 1995;61:274–278. [PubMed] []
26. Jensen MD, Kanaley JA, Reed JE 等。使用计算机断层扫描和双能 X 射线吸收法测量腹部和内脏脂肪。Am J Clin Nutr 1995;61:274–278。【PubMed】【Google Scholar】
27. Balentine CJ, Marshall C, Robinson C, et al. Validating quantitative obesity measurements in colorectal cancer patients. J Surg Res 2010;164:18–22. [PubMed] []
27. Balentine CJ, Marshall C, Robinson C, 等。验证结直肠癌患者的定量肥胖测量。J Surg Res 2010;164:18–22。【PubMed】【Google Scholar】
28. Kuk JL, Church TS, Blair SN, et al. Does measurement site for visceral and abdominal subcutaneous adipose tissue alter associations with the metabolic syndrome? Diabetes Care 2006;29:679–684. [PubMed] []
28. Kuk JL, Church TS, Blair SN, 等。内脏和腹部皮下脂肪组织的测量部位是否改变了与代谢综合征的关联?《糖尿病护理》2006 年;29:679–684。【PubMed】【Google 学者】
29. Irlbeck T, Massaro JM, Bamberg F, et al. Association between single-slice measurements of visceral and abdominal subcutaneous adipose tissue with volumetric measurements: the Framingham Heart Study. Int J Obes (Lond) 2010;34:781–787. [PMC free article] [PubMed] []
29. Irlbeck T, Massaro JM, Bamberg F, 等。单层面腹部内脏脂肪和腹部皮下脂肪与体积测量之间的关联:弗雷明汉心脏研究。Int J Obes (Lond) 2010;34:781–787。【PMC 免费文章】【PubMed】【Google 学者】
30. Clark W, Siegel EM, Chen YA, et al. Quantitative measures of visceral adiposity and body mass index in predicting rectal cancer outcomes after neoadjuvant chemoradiation. J Am Coll Surg 2013;216:1070–1081. [PMC free article] [PubMed] []
30. Clark W, Siegel EM, Chen YA 等。定量测量内脏脂肪和体重指数在新辅助化疗放疗后预测直肠癌结果方面的作用。J Am Coll Surg 2013;216:1070–1081。【PMC 免费文章】【PubMed】【Google 学者】
31. Tsukiyama H, Nagai Y, Matsubara F, et al. Proposed cut-off values of the waist circumference for metabolic syndrome based on visceral fat volume in a Japanese population. J Diabetes Investig 2016;7:587–593. [PMC free article] [PubMed] []
31. 月山 H,永井 Y,松原 F 等。基于日本人群内脏脂肪体积的代谢综合征腰围切点值建议。糖尿病研究 2016 年;7:587–593。【PMC 免费文章】【PubMed】【Google 学者】
32. Choi MH, Choi JI, Park MY, et al. Validation of intimate correlation between visceral fat and hepatic steatosis: Quantitative measurement techniques using CT for area of fat and MR for hepatic steatosis. Clin Nutr 2018;37:214–222. [PubMed] []
32. 崔明慧,崔智伊,朴美瑛等。验证内脏脂肪与肝脂肪变性之间的密切关联:使用 CT 测量脂肪面积和 MR 测量肝脂肪变性的定量测量技术。临床营养学 2018 年;37:214-222。【PubMed】【Google Scholar】
33. Paluch BE, Glenn ST, Conroy JM, et al. Robust detection of immune transcripts in FFPE samples using targeted RNA sequencing. Oncotarget 2017;8:3197–3205. [PMC free article] [PubMed] []
33. Paluch BE, Glenn ST, Conroy JM 等。使用定向 RNA 测序在 FFPE 样本中强大地检测免疫转录本。Oncotarget 2017;8:3197–3205。【PMC 免费文章】【PubMed】【Google 学者】
34. Conroy JM, Pabla S, Glenn ST, et al. Analytical Validation of a Next-Generation Sequencing Assay to Monitor Immune Responses in Solid Tumors. J Mol Diagn 2018;20:95–109. [PubMed] []
34. Conroy JM, Pabla S, Glenn ST 等。验证下一代测序检测法以监测固体肿瘤中的免疫反应。J Mol Diagn 2018;20:95–109。【PubMed】【Google Scholar】
35. Algire C, Amrein L, Bazile M, et al. Diet and tumor LKB1 expression interact to determine sensitivity to anti-neoplastic effects of metformin in vivo. Oncogene 2011;30:1174–1182. [PubMed] []
35. Algire C, Amrein L, Bazile M, 等。饮食和肿瘤 LKB1 表达相互作用,决定体内二甲双胍抗肿瘤效应的敏感性。癌基因 2011;30:1174–1182。【PubMed】【Google Scholar】
36. Nimri L, Saadi J, Peri I, et al. Mechanisms linking obesity to altered metabolism in mice colon carcinogenesis. Oncotarget 2015;6:38195–38209. [PMC free article] [PubMed] []
36. Nimri L, Saadi J, Peri I, 等。将肥胖与小鼠结肠癌发生的代谢变化联系起来的机制。Oncotarget 2015;6:38195–38209。【PMC 免费文章】【PubMed】【Google 学者】
37. Ringel AE, Drijvers JM, Baker GJ, et al. Obesity Shapes Metabolism in the Tumor Microenvironment to Suppress Anti-Tumor Immunity. Cell 2020;183:1848–1866 e1826. [PMC free article] [PubMed] []
37. Ringel AE, Drijvers JM, Baker GJ, 等。肥胖塑造肿瘤微环境中的代谢,抑制抗肿瘤免疫。Cell 2020;183:1848–1866 e1826。【PMC 免费文章】【PubMed】【Google 学者】
38. Pabla S, Conroy JM, Nesline MK, et al. Proliferative potential and resistance to immune checkpoint blockade in lung cancer patients. J Immunother Cancer 2019;7:27. [PMC free article] [PubMed] []
38. Pabla S, Conroy JM, Nesline MK 等。肺癌患者的增殖潜力和对免疫检查点阻断的抵抗力。J Immunother Cancer 2019;7:27。【PMC 免费文章】【PubMed】【Google 学者】
39. Fan C, Chen L, Huang Q, et al. Overexpression of major CDKN3 transcripts is associated with poor survival in lung adenocarcinoma. Br J Cancer 2015;113:1735–1743. [PMC free article] [PubMed] []
39. Fan C, Chen L, Huang Q, 等。CDKN3 主要转录物的过表达与肺腺癌患者生存率较低相关。Br J Cancer 2015;113:1735–1743。【PMC 免费文章】【PubMed】【Google 学者】
40. Deb D, Rajaram S, Larsen JE, et al. Combination Therapy Targeting BCL6 and Phospho-STAT3 Defeats Intratumor Heterogeneity in a Subset of Non-Small Cell Lung Cancers. Cancer Res 2017;77:3070–3081. [PMC free article] [PubMed] []
40. Deb D, Rajaram S, Larsen JE 等。结合治疗靶向 BCL6 和磷酸化 STAT3 在一部分非小细胞肺癌中击败肿瘤内异质性。癌症研究 2017 年;77:3070–3081。【PMC 免费文章】【PubMed】【Google 学者】
41. Nauli AM, Matin S. Why Do Men Accumulate Abdominal Visceral Fat? Front Physiol 2019;10:1486. [PMC free article] [PubMed] []
41. Nauli AM, Matin S. 为什么男性会积累腹部内脏脂肪?Front Physiol 2019;10:1486. [PMC 免费文章] [PubMed] [Google 学者]
42. Magnuson AM, Regan DP, Fouts JK, et al. Diet-induced obesity causes visceral, but not subcutaneous, lymph node hyperplasia via increases in specific immune cell populations. Cell Prolif 2017;50. [PMC free article] [PubMed] []
42. Magnuson AM, Regan DP, Fouts JK 等。饮食诱导性肥胖通过增加特定免疫细胞群引起内脏淋巴结增生,但不引起皮下淋巴结增生。细胞增殖 2017;50。【PMC 免费文章】【PubMed】【Google 学者】
43. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550. [PMC free article] [PubMed] []
43. Love MI, Huber W, Anders S. 使用 DESeq2 对 RNA-seq 数据进行折叠变化和离散度的调整估计。Genome Biol 2014;15:550.【PMC 免费文章】【PubMed】【Google 学者】
44. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 2013;14:7. [PMC free article] [PubMed] []
44. Hanzelmann S, Castelo R, Guinney J. GSVA: 基因集变异分析用于微阵列和 RNA-seq 数据. BMC 生物信息学 2013;14:7. [PMC 免费文章] [PubMed] [Google 学者]
45. Pettersen IKN, Tusubira D, Ashrafi H, et al. Upregulated PDK4 expression is a sensitive marker of increased fatty acid oxidation. Mitochondrion 2019;49:97–110. [PubMed] []
45. Pettersen IKN,Tusubira D,Ashrafi H 等。上调的 PDK4 表达是增加脂肪酸氧化的敏感标志。Mitochondrion 2019;49:97–110。【PubMed】【Google Scholar】
46. Xue Q, Chen P, Li X, et al. Maternal High-Fat Diet Causes a Sex-Dependent Increase in AGTR2 Expression and Cardiac Dysfunction in Adult Male Rat Offspring. Biol Reprod 2015;93:49. [PubMed] []
46. 薛 Q,陈 P,李 X 等。母高脂饮食导致成年雄性大鼠后代 AGTR2 表达和心脏功能障碍的性别依赖性增加。生物繁殖 2015 年;93:49。【PubMed】【Google 学者】
47. Shao GC, Luo LF, Jiang SW, et al. A C/T mutation in microRNA target sites in BMP5 gene is potentially associated with fatness in pigs. Meat Sci 2011;87:299–303. [PubMed] []
47. 邵国才,罗丽芳,姜世伟等。BMP5 基因 microRNA 靶位点的 C/T 突变可能与猪的肥胖有关。肉类科学 2011 年; 87:299-303。【PubMed】【Google 学者】
48. Weisberg SP, McCann D, Desai M, et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003;112:1796–1808. [PMC free article] [PubMed] []
48. Weisberg SP, McCann D, Desai M, 等。肥胖与脂肪组织中的巨噬细胞积聚相关。J Clin Invest 2003;112:1796–1808。【PMC 免费文章】【PubMed】【Google Scholar】
49. Taniguchi K, Karin M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Semin Immunol 2014;26:54–74. [PubMed] []
49. 谷口 K,Karin M. IL-6 及相关细胞因子作为炎症和癌症之间关键纽带。免疫学半月刊 2014 年;26:54-74。【PubMed】【Google 学者】
50. Oberhuber M, Pecoraro M, Rusz M, et al. STAT3-dependent analysis reveals PDK4 as independent predictor of recurrence in prostate cancer. Mol Syst Biol 2020;16:e9247. [PMC free article] [PubMed] []
50. Oberhuber M, Pecoraro M, Rusz M, 等。STAT3 依赖性分析揭示 PDK4 作为前列腺癌复发的独立预测因子。 Mol Syst Biol 2020;16:e9247。【PMC 免费文章】【PubMed】【Google 学者】
51. Valle-Mendiola A, Soto-Cruz I. Energy Metabolism in Cancer: The Roles of STAT3 and STAT5 in the Regulation of Metabolism-Related Genes. Cancers (Basel) 2020;12. [PMC free article] [PubMed] []
51. Valle-Mendiola A, Soto-Cruz I. 癌症中的能量代谢:STAT3 和 STAT5 在代谢相关基因调控中的作用。Cancers (Basel) 2020;12. [PMC 免费文章] [PubMed] [Google 学者]
52. Scharping NE, Menk AV, Whetstone RD, et al. Efficacy of PD-1 Blockade Is Potentiated by Metformin-Induced Reduction of Tumor Hypoxia. Cancer Immunol Res 2017;5:9–16. [PMC free article] [PubMed] []
52. Scharping NE, Menk AV, Whetstone RD, 等。PD-1 阻断的疗效受到二甲双胍诱导的肿瘤缺氧减少的增强。癌症免疫学研究 2017 年;5:9-16。【PMC 免费文章】【PubMed】【Google 学者】
53. Beckermann KE, Dudzinski SO, Rathmell JC. Dysfunctional T cell metabolism in the tumor microenvironment. Cytokine Growth Factor Rev 2017;35:7–14. [PMC free article] [PubMed] []
53. Beckermann KE, Dudzinski SO, Rathmell JC. 肿瘤微环境中的 T 细胞代谢功能障碍。细胞因子生长因子评论 2017;35:7–14。【PMC 免费文章】【PubMed】【Google 学者】
54. Zhang L, Romero P. Metabolic Control of CD8(+) T Cell Fate Decisions and Antitumor Immunity. Trends Mol Med 2018;24:30–48. [PubMed] []
54. 张 L,罗梅罗 P。CD8(+)T 细胞命运决策和抗肿瘤免疫的代谢控制。趋势分子医学 2018 年;24:30-48。【PubMed】【Google 学者】
55. Deng T, Lyon CJ, Bergin S, et al. Obesity, Inflammation, and Cancer. Annu Rev Pathol 2016;11:421–449. [PubMed] []
55. 邓 T,Lyon CJ,Bergin S 等。肥胖,炎症和癌症。年度病理学评论 2016 年; 11:421-449。【PubMed】【Google 学者】
56. Kado T, Nawaz A, Takikawa A, et al. Linkage of CD8(+) T cell exhaustion with high-fat diet-induced tumourigenesis. Sci Rep 2019;9:12284. [PMC free article] [PubMed] []
56. Kado T, Nawaz A, Takikawa A, 等。CD8(+) T 细胞衰竭与高脂饮食诱导的肿瘤发生的联系。Sci Rep 2019;9:12284。【PMC 免费文章】【PubMed】【Google 学者】
57. Chao JL, Savage PA. Unlocking the Complexities of Tumor-Associated Regulatory T Cells. J Immunol 2018;200:415–421. [PMC free article] [PubMed] []
57. Chao JL, Savage PA. 解开肿瘤相关调节性 T 细胞的复杂性。J Immunol 2018;200:415–421. [PMC 免费文章] [PubMed] [Google 学者]
58. Plitas G, Konopacki C, Wu K, et al. Regulatory T Cells Exhibit Distinct Features in Human Breast Cancer. Immunity 2016;45:1122–1134. [PMC free article] [PubMed] []
58. Plitas G, Konopacki C, Wu K, 等。调节性 T 细胞在人类乳腺癌中表现出不同特征。免疫 2016;45:1122–1134。【PMC 免费文章】【PubMed】【Google 学者】
59. Feuerer M, Herrero L, Cipolletta D, et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 2009;15:930–939. [PMC free article] [PubMed] []
59. Feuerer M, Herrero L, Cipolletta D, 等。瘦,但不是肥胖,脂肪富含一种影响代谢参数的独特调节性 T 细胞群体。Nat Med 2009;15:930–939。【PMC 免费文章】【PubMed】【Google 学者】
60. Sung H, Siegel RL, Torre LA, et al. Global patterns in excess body weight and the associated cancer burden. CA Cancer J Clin 2019;69:88–112. [PubMed] []
60. Sung H, Siegel RL, Torre LA 等。超重全球模式及相关癌症负担。CA Cancer J Clin 2019;69:88–112。【PubMed】【Google Scholar】
61. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019;69:7–34. [PubMed] []
61. Siegel RL, Miller KD, Jemal A. 癌症统计,2019 年。CA 癌症杂志 2019;69:7–34。【PubMed】【Google 学者】
62. Lam TK, Moore SC, Brinton LA, et al. Anthropometric measures and physical activity and the risk of lung cancer in never-smokers: a prospective cohort study. PLoS One 2013;8:e70672. [PMC free article] [PubMed] []
62. Lam TK, Moore SC, Brinton LA, 等。体格测量和体育活动与非吸烟者肺癌风险的关系:一项前瞻性队列研究。PLoS One 2013;8:e70672。【PMC 免费文章】【PubMed】【Google 学者】
63. Eikawa S, Nishida M, Mizukami S, et al. Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc Natl Acad Sci U S A 2015;112:1809–1814. [PMC free article] [PubMed] []
63. Eikawa S, Nishida M, Mizukami S, 等。2 型糖尿病药物二甲双胍的免疫介导的抗肿瘤作用。美国国家科学院院刊,2015 年,112:1809–1814。【PMC 免费文章】【PubMed】【Google 学者】
64. Zhang Z, Li F, Tian Y, et al. Metformin Enhances the Antitumor Activity of CD8(+) T Lymphocytes via the AMPK-miR-107-Eomes-PD-1 Pathway. J Immunol 2020;204:2575–2588. [PubMed] []
64. 张 Z,李 F,田 Y 等。 二甲双胍通过 AMPK-miR-107-Eomes-PD-1 途径增强 CD8(+)T 淋巴细胞的抗肿瘤活性。 J Immunol 2020;204:2575–2588。【PubMed】【Google Scholar】
65. Yendamuri S, Barbi J, Pabla S, et al. Body Mass Index Influences the Salutary Effects of Metformin on Survival After Lobectomy for Stage I NSCLC. J Thorac Oncol 2019. [PMC free article] [PubMed] []
65. Yendamuri S, Barbi J, Pabla S, 等。身体质量指数影响二甲双胍对 I 期非小细胞肺癌肺叶切除术后生存的益处。J Thorac Oncol 2019.【PMC 免费文章】【PubMed】【Google 学者】
66. Cespedes Feliciano EM, Kroenke CH, Caan BJ. The Obesity Paradox in Cancer: How Important Is Muscle? Annu Rev Nutr 2018;38:357–379. [PubMed] []
66. Cespedes Feliciano EM, Kroenke CH, Caan BJ. 癌症中的肥胖悖论:肌肉有多重要?营养年度评论 2018;38:357–379。【PubMed】【Google Scholar】
67. Consultation WHOE. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004;363:157–163. [PubMed] []
67. 请教世界卫生组织。 亚洲人群适宜的身体质量指数及其对政策和干预策略的影响。 《柳叶刀》2004 年; 363:157-163。【PubMed】【Google 学者】
68. Leitzmann MF, Moore SC, Koster A, et al. Waist circumference as compared with body-mass index in predicting mortality from specific causes. PLoS One 2011;6:e18582. [PMC free article] [PubMed] []
68. Leitzmann MF,Moore SC,Koster A 等。腰围与身体质量指数在预测特定原因死亡率方面的比较。PLoS One 2011;6:e18582。【PMC 免费文章】【PubMed】【Google 学者】
69. Yu D, Zheng W, Johansson M, et al. Overall and Central Obesity and Risk of Lung Cancer: A Pooled Analysis. J Natl Cancer Inst 2018;110:831–842. [PMC free article] [PubMed] []
69. 余 D,郑 W,约翰逊 M 等。整体和中心性肥胖与肺癌风险:一项汇总分析。J Natl Cancer Inst 2018;110:831–842。【PMC 免费文章】【PubMed】【Google 学者】
70. Ardesch FH, Ruiter R, Mulder M, et al. The Obesity Paradox in Lung Cancer: Associations With Body Size Versus Body Shape. Front Oncol 2020;10:591110. [PMC free article] [PubMed] []
70. Ardesch FH, Ruiter R, Mulder M, 等。肺癌中的肥胖悖论:与体型和体形的关联。前沿肿瘤学 2020 年;10:591110。【PMC 免费文章】【PubMed】【Google 学者】
71. Nattenmuller J, Wochner R, Muley T, et al. Prognostic Impact of CT-Quantified Muscle and Fat Distribution before and after First-Line-Chemotherapy in Lung Cancer Patients. PLoS One 2017;12:e0169136. [PMC free article] [PubMed] []
71. Nattenmuller J, Wochner R, Muley T, 等。肺癌患者首线化疗前后 CT 定量肌肉和脂肪分布的预后影响。PLoS One 2017;12:e0169136。【PMC 免费文章】【PubMed】【Google 学者】
72. Zeng W, Miyazato A, Chen G, et al. Interferon-gamma-induced gene expression in CD34 cells: identification of pathologic cytokine-specific signature profiles. Blood 2006;107:167–175. [PMC free article] [PubMed] []
72. 曾 W,宫里人 A,陈 G 等。 干扰素-γ诱导的 CD34 细胞基因表达:病理性细胞因子特异性签名配置文件的识别。 血液 2006;107:167-175。【PMC 免费文章】【PubMed】【Google 学者】
73. Cerezo M, Guemiri R, Druillennec S, et al. Translational control of tumor immune escape via the eIF4F-STAT1-PD-L1 axis in melanoma. Nat Med 2018;24:1877–1886. [PubMed] []
73. Cerezo M, Guemiri R, Druillennec S, 等。通过 eIF4F-STAT1-PD-L1 轴在黑色素瘤中的肿瘤免疫逃逸的转化控制。Nat Med 2018;24:1877–1886。【PubMed】【Google Scholar】
74. Dimitrakopoulos FI, Papadaki H, Antonacopoulou AG, et al. Association of FOXP3 expression with non-small cell lung cancer. Anticancer Res 2011;31:1677–1683. [PubMed] []
74. Dimitrakopoulos FI,Papadaki H,Antonacopoulou AG 等。FOXP3 表达与非小细胞肺癌的关联。抗癌研究 2011 年;31:1677–1683。【PubMed】【Google Scholar】