这是用户在 2025-1-7 24:09 为 https://app.immersivetranslate.com/word/ 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

Shanghai Sieyuan ZHW58A-145 Hybrid Gas-Insulated Switchgear LCA Report
上海西元 ZHW58A-145 混合气体绝缘开关设备 LCA 报告

Shanghai Sieyuan High Voltage Switchgear Co.,Ltd
上海市源高压开关柜有限公司
.

Organization Name:
组织名称:

Shanghai Sieyuan High Voltage Switchgear Co.,Ltd
上海市源高压开关柜有限公司
.

Organization Address:
组织地址:

E Zone, Building 2, No. 999 Zhuanxing Road, Minhang District, Shanghai
上海市闵行区颛兴路 999 号 2 号楼 E 区

Production address:
生产地址:

No. 1,Dengyuan Road,Rugao City,Jiangsu,China
江苏省如皋市登元路 1 号

Products:
产品:

ZHW58A-145 Hybrid Gas-Insulated Switchgear
ZHW58A-145 混合气体绝缘开关设备

Declare unit:
申报单位:

a single unit of ZHW58A-145 Hybrid Gas-Insulated Switchgear operating for 20 years
一台 ZHW58A-145 混合气体绝缘开关设备运行 20 年

Product Description:
产品描述:

The design of ZHW58A-145 Hybrid Gas-Insulated Switchgear including circuit breakers, disconnectors, earthing switches,bushings, operating mechanism and all other components as in service.It is of three-phase binning structure and designed for outdoor application, each of which is equipped with a spring operating mechanism that can realize a three-phase mechanical linkage. It applies SF6 gas as insulation and arc extinguishing media and is applied with pointer-type density relay for monitoring its pressure and density.
ZHW58A-145 混合型气体绝缘开关设备的设计,包括断路器、隔离开关、接地开关、套管、操作机构以及所有其他在役组件。它采用三相分箱结构,设计用于户外应用,每个单元都配备弹簧操作机构,可以实现三相机械联动。它采用 SF6 气体作为绝缘和灭弧介质,并采用指针式密度继电器监测其压力和密度。

Product Model:
产品型号:

ZHW58A-1450107-0106/150020/150033/150798

Primary data collection period:
主要数据收集期间:

Age of data:
数据期限:

Reference documents:
参考文件:

January 2023–December 2023
2023 年 1 月-2023 年 12 月

Primary data: 1 year. Secondary data: Maximal 10 years
初始数据:1 年。次要数据:最长 10 年

ISO 14040:2006 Life cycle assessment – Principles and framework
ISO 14040:2006 生命周期评价——原则和框架

ISO 14044:2006 Life cycle assessment – Requirements and guidance
ISO 14044:2006 生命周期评价——要求和指南

EN 50693:2019 – Product category rules for life cycle assessment of electronic and electrical products and systems
EN 50693:2019 — 电子电气产品和系统生命周期评价的产品类别规则

EPDItaly007 – PCR for Electronic and electrical products and systems, Rev. 3, 2023/01/13
EPDItaly007 — 电子电气产品和系统产品环境声明,修订版 3,2023/01/13

EPDItaly012 – Electronic and electrical products and systems – Switchs, Rev. 0, 2020/03/16
EPDItaly012 — 电子电气产品和系统——开关,修订版 0,2020/03/16

LCA Consultant
LCA 咨询顾问

Jean.Yang@sgs.com

Eric.Ma@sgs.com

Larry.Wang@sgs.com

SGS-CSTC Standards Technical Services Co., Ltd.
SGS-CSTC 标准技术服务有限公司

Date of the report
报告日期

2024.08.15

Report version
报告版本

3.0

Content
内容

1. Purpose of the study4
1. 研究目的 4

2. Company and Product Information5
2. 公司和产品信息 5

2.1 Company Introduction5
2.1 公司介绍 5

2.2 Product Description5
2.2 产品描述 5

4. Goal and Scope Definition7
4. 目标和范围定义 7

3.1 Goal of Study7
3.1 研究目标 7

3.2 Scope of Study7
3.2 研究范围 7

3.2.1 Product System, Functional Unit and Reference Flow7
3.2.1 产品系统、功能单元和参考流程 7

3.2.2 System Boundary7
3.2.2 系统边界 7

3.2.3 Allocation Rules9
3.2.3 分配规则 9

3.2.4 Cut-off Criteria9
3.2.4 截止标准 9

3.2.5 Relevant Assumptions10
3.2.5 相关假设 10

3.2.6 Impact Category and Assessment Method11
3.2.6 影响类别和评估方法 11

3.2.7 Software and Database12
3.2.7 软件和数据库 12

3.2.8 Data Quality Requirement12
3.2.8 数据质量要求 12

5. Life Cycle Inventory Analysis13
5. 生命周期清单分析 13

5.1 Upstream module14
5.1 上游模块 14

4.2 Core Module15
4.2 核心模块 15

4.3 Distrubution16
4.3 分销 16

4.4 Installation16
4.4 安装 16

4.5 USE & Maintenance17
4.5 使用和维护 17

4.6 End of life17
4.6 生命周期结束 17

6. Impact Assessment19
6. 影响评估 19

7. Result Interpretation26
7. 结果解读 26

6.1 Identification of Significant Issues26
6.1 重大问题的识别 26

6.2 Completeness, Sensitivity, Uncertainty and Consistency Evaluation27
6.2 完整性、敏感性、不确定性和一致性评估 27

6.2.1Completeness27
6.2.1 完备性 27

6.2.2 Sensitivity Analysis28
6.2.2 敏感性分析 28

6.2.3 Uncertainty Analysis28
6.2.3 不确定性分析 28

6.2.4 Consistency Evaluation28
6.2.4 一致性评价 28

6.3Limit29
6.3 限制 29

8. Conclusion and Recommendation29
8. 结论与建议 29

9. References31
9. 参考文献 31

Purpose of the study
研究目的

In recent years, the degradation of ecological systems has become a pressing global issue, with human industrial activities playing a significant role in exacerbating environmental pollution and degradation. As the world grapples with the consequences of climate change, deforestation, pollution, and loss of biodiversity, there has been a growing realization among businesses of the need to address their environmental footprint.
近年来,生态系统退化已成为一个紧迫的全球性问题,人类工业活动在加剧环境污染和退化方面发挥了重要作用。随着世界努力应对气候变化、森林砍伐、污染和生物多样性丧失的后果,企业越来越意识到需要解决其环境足迹问题。

Enterprises nowadays are increasingly recognizing the importance of assessing the entire lifecycle of their products to identify areas where environmental impacts can be reduced or mitigated. Lifecycle assessment, a methodology that evaluates the environmental impacts of a product from extraction of raw materials to its disposal, has emerged as a valuable tool in this endeavor. Understanding the environmental impact of products across their lifecycle allows companies to make informed decisions regarding product design, sourcing of materials, manufacturing processes, distribution methods, and end-of-life management. By incorporating sustainability principles into their operations, businesses can not only minimize negative environmental impacts but also enhance their reputation, meet regulatory requirements, and appeal to environmentally conscious consumers.
如今,越来越多的企业认识到评估其产品整个生命周期以识别可减少或减轻环境影响领域的重要性。生命周期评估是一种评估产品从原材料提取到处置的全过程环境影响的方法,已成为这项工作中宝贵的工具。了解产品在其整个生命周期中的环境影响,使公司能够就产品设计、材料采购、制造工艺、分销方法和产品生命周期管理做出明智的决策。通过将其业务纳入可持续发展原则,企业不仅可以最大限度地减少负面环境影响,还可以提升其声誉,满足法规要求,并吸引具有环保意识的消费者。

In alignment with the principles of sustainable development and environmental stewardship, Shanghai Sieyuan High Voltage Switchgear Co.,Ltd has embarked on a comprehensive lifecycle assessment of its product. This initiative aims to assess the product's environmental performance, identify areas for improvement, and ultimately contribute to the company's commitment to producing environmentally responsible products as well as complying with requirement of type III Environmental Product Declaration.
上海西元高压开关有限公司秉承可持续发展和环境管理的原则,对其产品开展了全面的生命周期评估。这项工作旨在评估产品的环境绩效,找出改进领域,最终为公司致力于生产环保产品以及符合 III 型环境产品声明要求做出贡献。

In this report, Shanghai Sieyuan High Voltage Switchgear Co.,Ltd. conducted a cradle-to-grave life cycle assessment of its Hybrid Gas-Insulated Switchgear.
本报告中,上海市西元高压开关有限公司对其混合气体绝缘开关设备进行了从摇篮到坟墓的全生命周期评估。

Company and Product Information
公司和产品信息

Company Introduction
公司介绍

Shanghai Siyuan High Voltage Switchgear Co., Ltd. has more than 1200 employees and has two major production bases that are advanced in China and world-class in the world, covering an area of 110kV GIS equipment production base in Shanghai and 252kV to 550kV GIS production base in Rugao City, Nantong, Jiangsu. The total area is 300000 square meters, and the production plant and office area is more than 100000 square meters. It has professional production, logistics, development, design A professional system of testing and services. The company independently develops and produces 72.5kV to 550kV high-voltage and ultra-high-voltage GIS, HGIS, GIL, and tank circuit breaker products. With an annual production capacity of over 4800 intervals for 110kV voltage grade GIS/DTCB products, over 3600 intervals for 252kVGIS/DTCB products, and over 800 intervals for 420kV/550kVGIS/DTCB products, the company can achieve sales of 4 billion yuan. The company has four high-voltage test halls with full shielding of 500kV and 1000kV, and is equipped with 1500kV and 3000kV impulse voltage generators and automatic measurement systems. The main production equipment is imported from abroad, and the production conditions and manufacturing technology have reached the international advanced level. The company's business covers domestic and overseas industries such as electricity, metallurgy, mining, transportation, and public utilities.
上海思源高压开关设备有限公司拥有 1200 多名员工,拥有两大生产基地,均达到国内先进、国际一流水平,占地面积达 30 万平方米,包括上海 110kV GIS 设备生产基地和南通如皋市 252kV 至 550kV GIS 生产基地,厂房及办公面积超过 10 万平方米。拥有专业的生产、物流、研发、设计、试验和服务体系。公司自主研发制造 72.5kV 至 550kV 高压及超高压 GIS、HGIS、GIL 及油浸式断路器产品。年生产能力超过 4800 间隔 110kV 电压等级 GIS/DTCB 产品,超过 3600 间隔 252kV GIS/DTCB 产品,超过 800 间隔 420kV/550kV GIS/DTCB 产品,实现销售收入 40 亿元。公司拥有四个全屏蔽 500kV 和 1000kV 高压试验大厅,配备 1500kV 和 3000kV 冲击电压发生器及自动测试系统。主要生产设备均为国外进口,生产条件和制造技术已达到国际先进水平。公司业务涵盖电力、冶金、矿山、交通、公用事业等国内外行业。

Figure 2.1.1 – Shanghai Sieyuan High Voltage Switchgear Co.,Ltd
图 2.1.1——上海思源高压开关设备有限公司
.

The company has also obtained ISO9001, ISO14001 and ISO45001 management system certifications.
2.2 产品描述

Product Description
产品描述

The design of ZHW58A-145 Hybrid Gas-Insulated Switchgear including circuit breakers, disconnectors, earthing switches,bushings, operating mechanism and all other components as in service.It is of three-phase binning structure and designed for outdoor application, each of which is equipped with a spring operating mechanism that can realize a three-phase mechanical linkage. It applies SF6 gas as insulation and arc extinguishing media and is applied with pointer-type density relay for monitoring its pressure and density.
ZHW58A-145 混合气体绝缘开关设备的设计,包括断路器、隔离开关、接地开关、套管、操作机构以及所有其他在役组件。它采用三相仓结构,设计用于户外应用,每个单元都配备弹簧操作机构,可实现三相机械联动。它采用 SF6 气体作为绝缘和灭弧介质,并采用指针式密度继电器监测其压力和密度。
.

Specifications:
技术参数:

- Nominal Voltage: 145kV
- 标称电压:145kV

- Rated Frequency: 50/60Hz
- 额定频率:50/60Hz

- Nominal Current: 2500A
- 额定电流:2500A

- Number of poles of the switch:3
- 开关极数:3

- Nominal short-circuit breaking current: 40kA
- 标称短路开断电流:40kA

The calculation report contains product configurations that match GSCH002 code 0107-0106, 150020, 150033, 150798, and are applicable to these numbers and products of the same type.
计算报告包含与 GSCH002 代码 0107-0106、150020、150033、150798 匹配的产品配置,并适用于这些编号和相同类型的产品。

Figure 2.2.1 Hybrid Gas-Insulated Switchgear ZHW58A-145, Product code 0107-0106
图 2.2.1 混合气体绝缘开关设备 ZHW58A-145,产品代码 0107-0106

The product manufacturing process is as follows:
产品制造流程如下:

Step 1: Main Assembly
步骤 1:主装配

This process focuses on assembling the arc extinguishing unit, isolation switch, and grounding switch within the product.
此过程侧重于组装产品内的灭弧单元、隔离开关和接地开关。

Step 2: Actuator Mechanism Assembly
步骤 2:执行机构装配

This process involves assembling the circuit breaker mechanism, as well as the mechanisms for the isolation switch and grounding switch.
此过程涉及组装断路器机构,以及隔离开关和接地开关的机构。

Step 3: Integration of Actuator Mechanism with Main Assembly
步骤 3:执行机构与主装配的集成

This process involves assembling the main body with the support frame, connecting the support frame with the mechanism, and connecting the mechanism with the main body's bending arm.
此过程涉及将主体与支撑架组装,将支撑架与机构连接,并将机构与主体的弯臂连接。

Step 4: SF6 Gas Filling
步骤 4:SF6 气体充填

This process involves injecting SF6 gas into the product's interior to reach the specified pressure.
此过程涉及将 SF6 气体注入产品内部,直至达到规定的压力。

Step 5: Testing
步骤 5:测试

This process focuses on testing the product's mechanical characteristics and confirming whether its insulation performance meets design requirements.
此过程侧重于测试产品的机械特性,并确认其绝缘性能是否符合设计要求。

Step 6: Inspection
步骤 6:检验

This process involves conducting a visual inspection of the product before packaging, in accordance with specified requirements.
此过程涉及根据规定的要求,在包装前对产品进行目视检查。

Step 7: Packaging
第 7 步:包装

The finished products are packaged in specified quantities for transportation and sale
成品按规定数量包装,用于运输和销售。
.

Chart 2.2.1 - Manufacturing flow chart
图 2.2.1 - 制造流程图

The product can be divided into the following main parts, weights are as follows.
产品可分为以下主要部件,重量如下。

Table 2.2.1 – Total weight of the ZHW58A-145 Hybrid Gas-Insulated Switchgear
表 2.2.1 – ZHW58A-145 混合气体绝缘开关设备总重量

Module Weightkg/Model
模块重量(kg/型号

ZHW58A-145

Single-bay
单车位

CB+DS+DES+VD+CT+2*BSG

0107-0106

ZHW58A-145

Single-bay
单车位

CB+DS+DES+CT+2*BSG

150020

ZHW58A-145

Single-bay
单车位

CB+DES+VD+CT+2*BSG

150033

ZHW58A-145

Single-bay
单车位

CB+DS+DES+VD+CT+2*BSG

150798

CB

926

926

926

926

DS

262

262

0

262

DES

266

266

266

266

VD

4

0

4

4

CT

346

378

403

622

BSG

386

386

694

386

Steel bracket
钢制支架

407

407

407

407

Secondary components
二次组件

351

351

351

351

LCP cabinets
LCP 机柜

176

176

176

176

Accessories
附件

65

65

65

65

Packaging
包装

1155

1155

1155

1155

Total
总计

4344

4373

4446

4620

Goal and Scope Definition
目标和范围定义

3.1 Goal of Study
3.1 研究目标

The reason for this LCA study is to conduct life cycle assessment in accordance with EPDItaly007 – PCR for Electronic and electrical products and systems, and EPDItaly012 – Electronic and electrical products and systems - Switches.
本次 LCA 研究的目的是根据 EPDItaly007(电子电气产品和系统 PCR)和 EPDItaly012(电子电气产品和系统-开关)进行生命周期评估。

The intended audience is the head of Shanghai Sieyuan High Voltage Switchgear Co.,Ltd. and the business partners, the communication is focused on the above-mentioned audience.
目标受众是上海思源高压开关柜有限公司的负责人和业务合作伙伴,沟通重点是上述受众。

According to the PCR the declared unit related to the functional unit is a single switch which establishes or interrupts the electrical continuity of the circuit to which it is applied, during a service life of 20 years. The type of EPD is “from cradle to grave”.
根据 PCR,与功能单元相关的声明单元是一个单一开关,在 20 年的使用寿命内,建立或中断其所应用电路的电气连续性。EPD 类型为“从摇篮到坟墓”。

The system boundaries include the following processes classified in life cycle phases according to EN 50693:2019 (Manufacturing, Distribution, Installation, Use and maintenance, End of life) and the Regulations of the EPD Italy (Upstream, Core, Downstream).
系统边界包括根据 EN 50693:2019(制造、分销、安装、使用和维护、报废)和 EPD 意大利法规(上游、核心、下游)将生命周期阶段分类的以下过程。

3.2 Scope of Study
3.2 研究范围

The life cycle assessment in this study is conducted according to international standards and PCRs as follows:
本研究中的生命周期评估是根据以下国际标准和 PCR 进行的:

ISO 14040:2006 Environmental management — Life cycle assessment — Requirements and guidelines
ISO 14040:2006 环境管理——生命周期评价——要求和指南

ISO 14044:2006 Environmental management — Life cycle assessment — Principles and framework
ISO 14044:2006 环境管理——生命周期评价——原则和框架

EPDItaly007 – PCR for Electronic and electrical products and systems, Rev. 3, 2023/01/13
EPDItaly007 – 电子和电气产品及系统 PCR,修订版 3,2023/01/13

EPDItaly012 – Electronic and electrical products and systems – Switchs, Rev. 0, 2020/03/16
EPDItaly012 – 电子和电气产品及系统 – 开关,修订版 0,2020/03/16

EN 50693:2019 Product category rules for life cycle assessments of electronic and electrical products and systems
EN 50693:2019 电子和电气产品及系统的生命周期评价产品类别规则

3.2.1 Product System, Declared Unit and Reference Flow
3.2.1 产品系统、声明单元和参考流程

According to PCR EPDItaly012, a single switch is adopted as the declared unit which establishes or interrupts the electrical continuity of the circuit to which it is applied, during a service life of 20 years.
根据 PCR EPDItaly012,采用单个开关作为声明单元,在 20 年的使用寿命内建立或中断其所应用电路的电气连续性。

The declared unit is therefore defined as a single unit of ZHW58A-145 Hybrid Gas-Insulated Switchgear operating for 20 years. Reference flow is one single unit of ZHW58A-145 Hybrid Gas-Insulated Switchgear.
因此,所声明的单元定义为单个 ZHW58A-145 混合气体绝缘开关设备运行 20 年的单元。参考流量为单个 ZHW58A-145 混合气体绝缘开关设备。

Specifications:
技术参数:

- Nominal Voltage: 145kV
- 标称电压:145kV

- Rated Frequency: 50/60Hz
- 额定频率:50/60Hz

- Nominal Current: 2500A
- 额定电流:2500A

- Number of poles of the switch:3
- 开关极数:3

- Nominal short-circuit breaking current: 40kA
- 标称短路开断电流:40kA

3.2.2 System Boundary
3.2.2 系统边界

The system boundary covers the entire life cycle stage from cradle to grave in accordance with PCR EPDItaly012:
系统边界涵盖从摇篮到坟墓的整个生命周期阶段,符合 PCR EPDItaly012:

Table 3.2.1 - Life cycle modules
表 3.2.1 - 生命周期模块

The system boundary of the Product life cycle is shown in Figure blow
产品生命周期的系统边界如下图所示
:

Figure 3.2.1: Lifecycle Flow chart
图 3.2.1:生命周期流程图

3.2.3 Allocation Rules
3.2.3 分配规则

The energy and resources usage per functional unit in the production stage of the product is calculated by dividing the annual energy or resource consumption by the total output of the company’s product, In detail, the allocation of energy resources for plant processing use is calculated using the units of Hybrid Gas-Insulated Switchgear produced to the total energy and resources consumption in the Shanghai Sieyuan plant during the reference period. That is, the physical allocation method is used for allocation.
产品生产阶段每个功能单元的能源和资源消耗量是通过将年度能源或资源消耗量除以公司产品的总产量来计算的。具体而言,工厂加工使用的能源资源分配是使用生产的混合气体绝缘开关设备的单位数与参考期间上海西元工厂的能源和资源总消耗量进行计算。也就是说,采用实物分配法进行分配。

The principle of "modularity" is also followed in the study. In addition, the default distribution rule for the environmental impacts and benefits of reuse, recovery and/or recycling is based on the polluter pays principle (PPP), which means that the recovery or reuse beneficiary bears the environmental impacts and benefits associated with the recovery or reuse treatment, and the original product manufacturer does not have to bear this part of the impact burden. It also does not participate in the sharing of benefits (environmental impact of the production of the same product avoided by recycling and reuse).
本研究也遵循“模块化”原则。此外,报废利用和/或回收的环境影响和效益的默认分配规则基于污染者付费原则(PPP),这意味着回收或再利用受益者承担与回收或再利用处理相关的环境影响和效益,而原始产品制造商无需承担这部分影响负担。也不参与收益分享(回收和再利用避免了相同产品生产的环境影响)。

3.2.4 Cut-off Criteria
根据意大利 EPD 法规和 PCR EPDItaly007,以下流程和操作被终止:

According to EPD Italy Regulations and PCR EPDItaly007, the following flows and operations are cut-offed:
 零部件包装和半成品中间体的包装的生产、使用和处置。

Production, use and disposal of the packaging of components and the packaging of semi-finished intermediates.
零部件包装和半成品包装的生产、使用和处置。

Material and energy flows related to dismantling phase which is performed by adopting manual tools (e.g. screwdrivers, hammers, etc.).
与采用手动工具(例如螺丝刀、锤子等)进行的拆卸阶段相关的材料和能源流动。

Manufacture of equipment used in production, buildings or any other capital goods;
用于生产的设备、建筑物或任何其他资本货物的制造;

The transportation of personnel to the plant;
人员往返工厂的运输;

Transportation of personnel within the plant;
工厂内部人员的运输;

Research and development activities;
研究与开发活动;

Long-term emissions.
长期排放。

During the production process, auxiliary materials such as alcohol (used for cleaning agents), machine oil, and cutting oil are utilized. However, due to their minimal consumption and the resulting waste generation being less than 1% of the weight of the raw materials per unit of product produced, they have negligible impact on the overall results of the life cycle assessment (LCA) and are therefore cut-offed in accordance with cut-off principle from the calculation.
在生产过程中,使用了酒精(用于清洁剂)、机器油和切削油等辅助材料。但是,由于其消耗量极少,产生的废物少于每单位产品原材料重量的 1%,因此根据截止原则,将其从计算中剔除,对生命周期评估(LCA)的整体结果影响可以忽略不计。

3.2.5 Relevant Assumptions
3.2.5 相关假设

The following assumptions are used in this assessment:
本评估采用以下假设:

Table 3.2.2 - Assumptions for each stage of the life cycle
表 3.2.2 - 生命周期各阶段的假设

Life cycle module
生命周期模块

Life cycle stage
生命周期阶段

Assumption
假设

MANUFACTURING STAGE
制造阶段

Upstream Module
上游模块

• Raw material information is provided by Shanghai Sieyuan according to product’s bill of material.
• 原材料信息由上海西元根据产品的物料清单提供。

• The density of wood package is assumed to be 768kg/m3 as plywood is used.
• 假设木质包装的密度为 768kg/m3,因为使用了胶合板。

Core Module
核心模块

In the context of China, a market-based approach is not applicable due to the absence of a Guarantee of Origin system. Therefore, a location-based approach is employed to assess the environmental impact of electricity in this EPD. Regional production mix from medium voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3). China consumption electricity mix from East Centre China Grid was used in the core module. For 1kWh electricity used, upstream CO2 emission is 0.881kgCO2e
• 在中国背景下,由于缺乏原产地保证体系,市场化方法不可行。因此,本 EPD 采用基于位置的方法来评估电力的环境影响。用于制造过程(A3)的电力中压(输电线路生产,以及电网的直接排放和损耗)的区域生产构成。使用了华东中心电网的中国电力消费构成。每使用 1 千瓦时的电力,上游 CO 2 排放量为 0.881 千克二氧化碳当量。

• Assume same amount of energy and resource consumption were used to produce each unit of rated power of ZHW58A-145 Hybrid Gas-Insulated Switchgear0107-0106 in the manufacturing phase.
• 假设在制造阶段,生产每单位额定功率的 ZHW58A-145 混合气体绝缘开关设备(0107-0106)所使用的能量和资源消耗量相同。

• Assume same amount of waste were produced to produce each unit of ZHW58A-145 Hybrid Gas-Insulated Switchgear in the manufacturing phase.
• 假设生产每台 ZHW58A-145 混合气体绝缘开关设备在制造阶段产生相同数量的废物。

The distance from the Shanghai Sieyuan plant to the downstream waste disposal site is assumed to be 200 km(in line with published EPD-EPDITALY0202)
• 假设上海西元工厂到下游废物处理场的距离为 200 公里(符合已发布的 EPD-EPDITALY0202)。
.

DISTRIBUTION STAGE
分销阶段

Downstream Module
下游模块

The product is to be used in Argentina (0107-0106), Romania (150020), Colombia(150033), Brazil(150798). Downstream distribution distances are estimated from the GAODE map and SEARATE website for shipment distances using worse case scenario(Argentina), inland transport is by truck freight and sea transport is by ship.
• 产品将在阿根廷(0107-0106)、罗马尼亚(150020)、哥伦比亚(150033)和巴西(150798)使用。下游分销距离根据高德地图和 SEARATE 网站的运输距离估算,采用最坏情况(阿根廷)进行估算,内陆运输采用卡车运输,海运采用船舶运输。

The distance from port to the client is a ssumed to be 1000km.
• 假设港口到客户的距离为 1000 公里。

INSTALLATION STAGE
安装阶段

• Energy and resources needed during installation are provided by Shanghai Sieyuan, it is assumed the same amount were used to install each unit of ZHW58A-145 Hybrid Gas-Insulated Switchgear.
• 安装过程中所需的能源和资源由上海西元提供,假设每台 ZHW58A-145 混合气体绝缘开关设备的安装用量相同。

• The distance from the user installation site to the downstream waste disposal site is also assumed to be 200 km(in line with published EPD-EPDITALY0202)
• 用户安装地点到下游废物处理场地的距离也假设为 200 公里(符合已发布的 EPD-EPDITALY0202)。

• In this stage, package of the ZHW58A-145 Hybrid Gas-Insulated Switchgear were disposed, of which 80% of steel and 0% of wood is assumed to be recycled in accordance with EN 50693 annex G table G.4, 20% of steel is assumed to be landfilled and 100% of waste wood package is assumed to be incinerated.
• 在此阶段,处置了 ZHW58A-145 混合气体绝缘开关设备的包装,假设根据 EN 50693 附录 G 表 G.4,80%的钢材和 0%的木材被回收利用,20%的钢材被填埋,100%的废木包装被焚烧。

USE & Maintenance STAGE
使用和维护阶段

• Energy used during the product service life is provided by Shanghai Sieyuan in accordance with PCR EPDItaly012, it is assumed the same amount of energy were used to install each unit of ZHW58A-145 Hybrid Gas-Insulated Switchgear.
• 产品使用寿命期间的能源消耗由上海西元电气提供,根据 PCR EPDItaly012,假设安装每台 ZHW58A-145 混合气体绝缘开关设备所用的能源相同。

• According to expert judgement and from various users provided by Shanghai Sieyuan, inspection and maintenance do not require replacement parts during the service life, and ZHW58A-145 Hybrid Gas-Insulated SwitchgearSF6 changes are not necessary or foreseen, therefore are not considered in the study.
• 根据上海西元电气提供的专家意见和来自多个用户的反馈,在使用寿命期间不需要更换部件进行检查和维护,并且 ZHW58A-145 混合气体绝缘开关设备 SF6 更换并非必要或可预见,因此在研究中未予考虑。

END-OF-LIFE STAGE
生命周期末期阶段

De-installation
拆卸

• During the end-of-life disposal stage, the product is transported for 200km to treatment facility (in line with published EPD-EPDITALY0202) and then dismantled into components and then sorted for further processing. Some metals or plastics are recycled according to EN50693 standards, while the remaining materials are either landfilled or incinerated.
• 产品在报废处理阶段,会运输 200 公里到处理设施(符合已发布的 EPD-EPDITALY0202 标准),然后拆解成部件,再进行分类处理。一些金属或塑料会按照 EN50693 标准进行回收,其余材料则被填埋或焚烧。

3.2.6 Impact Category and Assessment Method
3.2.6 影响类别和评估方法

Based on the definition of the goal of study, the LCIA methodology for indicators/impact category used in this study is choose in accordance with EN 15804:2012+A2:2019/AC:2021. Detailed impact categories are shown below.
根据研究目标的定义,本研究中使用的指标/影响类别的 LCIA 方法是根据 EN 15804:2012+A2:2019/AC:2021 选择的。详细的影响类别如下所示。

Table 3.2.3 - Category of environmental impacts and assessment models
表 3.2.3 - 环境影响类别和评估模型

Indicator name and abbrevation (EN)
指标名称和缩写(英文)

Unit (EN)
单位 (EN)

Global Warming Potential - fossil fuels (GWP-fossil)
化石燃料全球变暖潜能值 (GWP-fossil)

kg CO2 eq.
kg CO2 当量

Global Warming Potential - biogenic (GWP-biogenic)
生物源全球变暖潜能值 (GWP-biogenic)

kg CO2 eq.
kg CO2 当量

Global Warming Potential - land use and land use change (GWP-luluc)
土地利用和土地利用变化的全球变暖潜能值 (GWP-luluc)

kg CO2 eq.
kg CO2 当量

Global Warming Potential - total (GWP-total)
全球变暖潜能值 - 总计 (GWP-total)

kg CO2 eq.
kg CO2 当量

Depletion potential of the stratospheric ozone layer (ODP)
平流层臭氧层破坏潜能值 (ODP)

kg CFC-11 eq.
千克 CFC-11 当量

Acidifcation potential, Accumulated Exceedance (AP)
酸化潜能值,累积超标 (AP)

mol H+ eq.
摩尔 H+ 当量

Eutrophication potential - freshwater (EP-freshwater)
淡水富营养化潜能值 (EP-freshwater)

kg P eq.
kg 磷当量

Eutrophication potential - marine (EP-marine)
海洋富营养化潜能值 (EP-marine)

kg N eq.
kg N 当量

Eutrophication potential - terrestrial (EP-terrestrial)
陆地富营养化潜能值 (EP-terrestrial)

mol N eq.
mol 氮当量

Photochemical Ozone Creation Potential (POCP)
光化学臭氧生成潜能 (POCP)

kg NMVOC eq.
kg 非甲烷挥发性有机物当量

Abiotic depletion potential - non-fossil resources (ADPE)
非化石资源非生物消耗潜能 (ADPE)

kg Sb eq.
kg 锑当量

Abiotic depletion potential - fossil resources (ADPF)
化石资源非生物消耗潜能 (ADPF)

MJ, net calorific value
MJ,净发热量

Water Use
水资源利用

m3 eq.
m3 当量。

Note: eq is short for equivalent, meaning equivalent. For example, the indicator of climate change is CO2 as reference material, other greenhouse gases have their own CO2 equivalent factors according to the strength of the greenhouse effect, so the product life cycle of all kinds of greenhouse gas emissions can be multiplied by the equivalent factor, cumulative climate change index total, unit is kg CO2 eq. For details, see Appendix a.
注意:eq 是 equivalent 的缩写,意为当量。例如,气候变化指标以 CO 2 为参考物质,其他温室气体根据温室效应强度具有其自身的 CO 2 当量因子,因此各种温室气体排放的全生命周期可以乘以当量因子,累积气候变化指数总和,单位为 kg CO2 eq。详情见附录 a。

3.2.7 Software and Database
3.2.7 软件和数据库

In the study, SimaPro 9.5 software was used to establish the model for the life cycle of products and calculate LCA results. SimaPro is a specialized LCA program developed by the Dutch company PRé Consultants. It supports analysis on LCA stages with built-in databases including Swiss Ecoinvent Dataset, European Reference Life Cycle Reference Database (ELCD), Agri-footprint, USLCI and etc. In this study, datasets from the Ecoinvent v3.9 were used.
在本研究中,使用 SimaPro 9.5 软件建立产品生命周期模型并计算 LCA 结果。SimaPro 是由荷兰公司 PRé Consultants 开发的专业 LCA 程序。它支持对 LCA 阶段进行分析,并内置数据库,包括瑞士 Ecoinvent 数据集、欧洲参考生命周期数据库(ELCD)、Agri-footprint、USLCI 等。在本研究中,使用了 Ecoinvent v3.9 的数据集。

In terms of the choice of background data, the system model chosen in this study is cut-off by classification, as required by EPD.
关于背景数据的选择,本研究选择的系统模型按照 EPD 的要求进行了分类截止。

3.2.8 Data Quality Requirement
3.2.8 数据质量要求

As far as possible, the entire calculation is based primarily on primary data, and secondary data is obtained based on life-cycle databases or literature, among them, energy consumption is mainly geographical, that is, refer to local data.
计算尽可能主要基于原始数据,次要数据基于生命周期数据库或文献获得,其中能源消耗主要按地域,即参考当地数据。

Data quality represents the difference between LCA study target representation and the actual data representation, and four dimensions of data was used to evaluate the data quality in this report. The consumption and emission inventory data in the model were evaluated from four aspects: inventory data source and algorithm, representative of time, geography and technical. The consumption of the associated background database was also evaluated to assess the uncertainty by matching with the upstream background process.
数据质量代表着 LCA 研究目标表示与实际数据表示之间的差异,本报告使用数据的四个维度来评估数据质量。模型中的消耗和排放清单数据从四个方面进行评估:清单数据来源和算法、时间代表性、地理位置和技术代表性。还评估了相关背景数据库的消耗情况,通过与上游背景过程匹配来评估不确定性。

Shows data quality requirements in the following table:
下表显示数据质量要求:

Table 3.2.4 - Data quality requirements of LCA
表 3.2.4 - LCA 数据质量要求

Parameter
参数

Describe
描述

Requirements
要求

Time Representation
时间表示

Priority is given to the year of the data and the minimum time span for data collection, as well as time data for specific evaluated carton
优先考虑数据年份和最短数据收集时间跨度,以及特定评估纸箱的时间数据

Primary data were collected from Shanghai Sieyuan as average production data from January to December 2023. While the secondary data were mainly acquired from database and cover a relatively broad period, generally within 10 years.
主要数据来自上海思源,为 2023 年 1 月至 12 月的平均生产数据。次要数据主要来自数据库,涵盖时间范围相对较广,一般在 10 年以内。

Geographical Representation
地理表示

Priority is given to the geographical area where the data is located (e.g., city, province, country, region), as well as specific data for geographically specific products
优先考虑数据所在地理区域(例如,城市、省份、国家、地区),以及特定地理产品的具体数据

The primary data are the manufacturing data provided by Shanghai Sieyuan
主要数据是上海思源提供的制造数据
.

Electricity data from the China region of the Ecoinvent database was used for the upstream electricity data. For other secondary data, priority is given to data from the China region of the database, followed by data from the global region, and in the absence of data from both China and the global region, data from the remaining regions are then used.
上游电力数据使用的是 Ecoinvent 数据库中国区域的电力数据。其他次要数据,优先使用数据库中国区域的数据,其次是全球区域的数据,如果中国和全球区域均无数据,则使用其余区域的数据。

Technical Representation
技术表示

Priority should be given to whether the data is targeted at a specific technology or a set of mixed technologies, as well as product specific technical data
应优先考虑数据是否针对特定技术或混合技术集,以及产品特定的技术数据

The primary data are all the manufacturing data provided by Shanghai Sieyuan
主要数据均为上海思源提供的全部制造数据
.

Secondary data are mainly used based on global average technology levels.
辅助数据主要基于全球平均技术水平使用。

Data algorithms (calculation accuracy, precision, completeness, consistency and reproducibility)
数据算法(计算精度、准确性、完整性、一致性和可重复性)

Priority should be given to representative data. A range of variability (e.g., variance) for each type of data as well as more accurate data (e.g., with the lowest statistical variance) should be given priority; Prioritize the percentage of the measured data and the representativeness of the data (e.g., allows independent practitioners to repeat report results in sampling range, the periodicity of the measurements, etc.); Data selection should be considered in a uniform manner in each part of the analysis; Information about methodology and data should allow independent practitioners to replicate reported results to the greatest extent possible.
应优先考虑具有代表性的数据。应优先考虑每种类型数据的变异范围(例如,方差)以及更准确的数据(例如,具有最低统计方差的数据);优先考虑测量数据的百分比和数据的代表性(例如,允许独立从业者在采样范围内重复报告结果,测量的周期性等);在分析的每个部分中,应以统一的方式考虑数据选择;有关方法和数据的信息应允许独立从业者尽可能地复制报告的结果。

Allow independent practitioners to reproduce report results.
允许独立从业者复制报告结果。

To fulfil above requirements and ensure the reliability of the calculated results, priority was given to the site-specific data provided by the manufacturers and suppliers during the data collection process. Secondary data was used from the Ecoinvent database, which has been strictly reviewed and widely applied in LCA studies internationally.
为了满足上述要求并确保计算结果的可靠性,在数据收集过程中优先采用制造商和供应商提供的特定场地数据。次要数据来自 Ecoinvent 数据库,该数据库经过严格审查,并在国际 LCA 研究中得到广泛应用。

Life Cycle Inventory Analysis
生命周期清单分析

The life cycle data for this study includes both primary data and secondary data.
本研究的生命周期数据包括一手数据和二手数据。

Primary data - collected and provided by Shanghai Sieyuan from January to December 2023.
一手数据——由上海思源公司于 2023 年 1 月至 12 月收集并提供。

Secondary data - Ecoinvent v3.9 database.
二手数据——Ecoinvent v3.9 数据库。

Upstream module
上游模块

Raw material consumption and transportation data are shown in the table 4.1.1 and table 4.1.2 below.
原材料消耗和运输数据分别显示在下表 4.1.1 和表 4.1.2 中。

Table 4.1.1 – Raw material inventory(0107-0106)
表 4.1.1 – 原材料清单(0107-0106)

Module
材料

Material
材料

Weightkg
重量(kg)

CB

steel

96.62

copper

9.27

ABS

0.21

plastics
塑料

1.60

adsorbent
吸附剂

3.00

rubber
橡胶

0.82

epoxy resin
环氧树脂

50.46

stainless steel
不锈钢

354.89

silastic
硅橡胶

0.68

Unalloyed steels
未合金钢

103.44

Polytetrafluoroethylene
聚四氟乙烯

3.87

Aluminum alloy
铝合金

278.60

Zinc alloy
锌合金

3.75

Electromagnets
电磁铁

0.46

Cold-rolled steel
冷轧钢

8.47

Copper alloys
铜合金

1.59

Nitrile rubber
丁腈橡胶

0.00

toughened glass
钢化玻璃

0.48

aluminium

0.08

Polyvinylidene Fluoride
聚偏二氟乙烯

0.15

Chemicals
化学品

0.57

Motor
电动机

7.43

DS

steel

35.68

stainless steel
不锈钢

22.09

epoxy resin
环氧树脂

5.49

Unalloyed steels
未合金钢

22.38

Polytetrafluoroethylene
聚四氟乙烯

0.04

Motor
电动机

3.38

resistance
电阻

0.36

PET

0.00

Aluminum alloy
铝合金

169.02

copper

1.27

rubber
橡胶

0.35

ABS

0.24

plastics
塑料

1.31

PC

0.12

nylon
尼龙

0.18

DES

steel

35.68

stainless steel
不锈钢

22.09

epoxy resin
环氧树脂

5.49

Unalloyed steels
未合金钢

21.96

Polytetrafluoroethylene
聚四氟乙烯

0.04

Motor
电动机

3.38

resistance
电阻

0.36

PET

0.00

Aluminum alloy
铝合金

173.64

rubber
橡胶

0.35

ABS

0.24

plastics
塑料

1.31

copper

0.73

PC

0.12

nylon
尼龙

0.18

VD

plastics
塑料

3.60

CT

steel

231.19

rubber
橡胶

0.75

Aluminum alloy
铝合金

65.79

Polytetrafluoroethylene
聚四氟乙烯

1.80

stainless steel
不锈钢

0.27

plastics
塑料

0.06

Aluminum alloy
铝合金

45.87

BSG

Aluminum alloy
铝合金

116.40

FRP:16.5kg
FRP:16.5 公斤

HTV
14.2kg
HTV:14.2 公斤

Aluminum alloy: 12.8kg
铝合金:12.8 公斤

261.00

rubber
橡胶

0.55

steel

8.53

Steel support
钢制支架

Unalloyed steels
未合金钢

390.59

steel

11.51

stainless steel
不锈钢

0.78

copper

3.82

Secondary circuit
二次回路

button
按钮

0.03

Relays
继电器

2.53

Contactors
接触器

0.18

plastics
塑料

0.50

Terminal
终端

7.82

lamp
台灯

0.52

copper

13.34

switch
开关

1.89

heater
加热器

1.25

receptacle
插座

0.19

steel

71.08

aluminium

0.25

connector
连接器

14.67

cable
电缆

236.82

LCP

steel

1.44

stainless steel
不锈钢

157.30

copper

1.12

Unalloyed steels
未合金钢

16.32

Accessories
附件

Unalloyed steels
未合金钢

1.34

steel

1.47

stainless steel
不锈钢

8.40

adsorbent
吸附剂

3.00

Aluminum alloy
铝合金

1.14

rubber
橡胶

0.05

SF6

50.00

Packing
包装

wood
木材

850.60

steel

35.60

rubber
橡胶

0.77

Unalloyed steels
未合金钢

267.80

Polytetrafluoroethylene
聚四氟乙烯

0.12

Table 4.1.2 – Raw material inventory (150020)
表 4.1.2 – 原材料清单 (150020)

Module
材料

Material
材料

Weightkg
重量(kg)

CB

steel

96.62

copper

9.27

ABS

0.21

plastics
塑料

1.60

adsorbent
吸附剂

3.00

rubber
橡胶

0.82

epoxy resin
环氧树脂

50.46

stainless steel
不锈钢

354.89

silastic
硅橡胶

0.68

Unalloyed steels
未合金钢

103.44

Polytetrafluoroethylene
聚四氟乙烯

3.87

Aluminum alloy
铝合金

278.60

Zinc alloy
锌合金

3.75

Electromagnets
电磁铁

0.46

Cold-rolled steel
冷轧钢

8.47

Copper alloys
铜合金

1.59

Nitrile rubber
丁腈橡胶

0.00

toughened glass
钢化玻璃

0.48

aluminium

0.08

Polyvinylidene Fluoride
聚偏二氟乙烯

0.15

Chemicals
化学品

0.57

Motor
电动机

7.43

DS

steel

35.68

stainless steel
不锈钢

22.09

epoxy resin
环氧树脂

5.49

Unalloyed steels
未合金钢

22.38

Polytetrafluoroethylene
聚四氟乙烯

0.04

Motor
电动机

3.38

resistance
电阻

0.36

PET

0.00

Aluminum alloy
铝合金

169.02

copper

1.27

rubber
橡胶

0.35

ABS

0.24

plastics
塑料

1.31

PC

0.12

nylon
尼龙

0.18

DES

steel

35.68

stainless steel
不锈钢

22.09

epoxy resin
环氧树脂

5.49

Unalloyed steels
未合金钢

21.96

Polytetrafluoroethylene
聚四氟乙烯

0.04

Motor
电动机

3.38

resistance
电阻

0.36

PET

0.00

Aluminum alloy
铝合金

173.64

rubber
橡胶

0.35

ABS

0.24

plastics
塑料

1.31

copper

0.73

PC

0.12

nylon
尼龙

0.18

VD

plastics
塑料

0.00

CT

steel

25.72

rubber
橡胶

0.75

Aluminum alloy
铝合金

89.40

Polytetrafluoroethylene
聚四氟乙烯

1.80

steel

225.00

plastics
塑料

11.46

Aluminum alloy
铝合金

0.00

BSG

Aluminum alloy
铝合金

116.40

FRP:16.5kg
FRP:16.5 公斤


HTV
14.2kg
HTV:14.2 公斤


Aluminum alloy: 12.8kg
铝合金:12.8 公斤

261.00

rubber
橡胶

0.55

steel

8.53

Steel bracket
钢制支架

Unalloyed steels
未合金化钢

390.59

steel

11.51

stainless steel
不锈钢

0.78

copper

3.82

Secondary components
次要组件

button
按钮

0.03

Relays
继电器

2.53

Contactors
接触器

0.18

plastics
塑料

0.50

Terminal
端子

7.82

lamp

0.52

copper

13.34

switch
开关

1.89

heater
加热器

1.25

receptacle
插座

0.19

steel

71.08

aluminium

0.25

connector
连接器

14.67

cable
电缆

236.82

LCP cabinets
LCP 机柜

steel

1.44

stainless steel
不锈钢

157.30

copper

1.12

Unalloyed steels
未合金钢

16.32

Accessories
附件

Unalloyed steels
未合金钢

1.34

steel

1.47

stainless steel
不锈钢

8.40

adsorbent
吸附剂

3.00

Aluminum alloy
铝合金

1.14

rubber
橡胶

0.05

SF6

50.00

Packaging
包装

wood
木材

850.60

steel

35.60

rubber
橡胶

0.77

Unalloyed steels
未合金钢

267.80

Polytetrafluoroethylene
聚四氟乙烯

0.12

Table 4.1.3 – Raw material inventory (150033)
表 4.1.3 – 原材料清单 (150033)

Module
材料

Material
材料

Weightkg
重量(kg)

CB

steel

96.62

copper

9.27

ABS

0.21

plastics
塑料

1.60

adsorbent
吸附剂

3.00

rubber
橡胶

0.82

epoxy resin
环氧树脂

50.46

stainless steel
不锈钢

354.89

silastic
硅橡胶

0.68

Unalloyed steels
未合金钢

103.44

Polytetrafluoroethylene
聚四氟乙烯

3.87

Aluminum alloy
铝合金

278.60

Zinc alloy
锌合金

3.75

Electromagnets
电磁铁

0.46

Cold-rolled steel
冷轧钢

8.47

Copper alloys
铜合金

1.59

Nitrile rubber
丁腈橡胶

0.00

toughened glass
钢化玻璃

0.48

aluminium

0.08

Polyvinylidene Fluoride
聚偏氟乙烯

0.15

Chemicals
化学品

0.57

Motor
电动机

7.43

DS

steel

0.00

stainless steel
不锈钢

0.00

epoxy resin
环氧树脂

0.00

Unalloyed steels
未合金钢

0.00

Polytetrafluoroethylene
聚四氟乙烯

0.00

Motor
电动机

0.00

resistance
电阻

0.00

PET

0.00

Aluminum alloy
铝合金

0.00

copper

0.00

rubber
橡胶

0.00

ABS

0.00

plastics
塑料

0.00

PC

0.00

nylon
尼龙

0.00

DES

steel

35.68

stainless steel
不锈钢

22.09

epoxy resin
环氧树脂

5.49

Unalloyed steels
未合金钢

21.96

Polytetrafluoroethylene
聚四氟乙烯

0.04

Motor
电动机

3.38

resistance
电阻

0.36

PET

0.00

Aluminum alloy
铝合金

173.64

rubber
橡胶

0.35

ABS

0.24

plastics
塑料

1.31

copper

0.73

PC

0.12

nylon
尼龙

0.18

VD

plastics
塑料

3.60

CT

steel

310.72

rubber
橡胶

0.75

Aluminum alloy
铝合金

89.40

Polytetrafluoroethylene
聚四氟乙烯

1.80

steel

0.00

plastics
塑料

0.06

Aluminum alloy
铝合金

0.00

BSG

Aluminum alloy
铝合金

145.73

FRP:16.5kg
FRP:16.5 公斤

HTV14.2kg
HTV:14.2 公斤

Aluminum alloy: 12.8kg
铝合金:12.8 公斤

261.00

rubber
橡胶

0.19

steel

267.96

stainless steel
不锈钢

18.95

Steel bracket
钢制支架

Unalloyed steels
未合金钢

390.59

steel

11.51

stainless steel
不锈钢

0.78

copper

3.82

Secondary components
二次部件

button
按钮

0.03

Relays
继电器

2.53

Contactors
接触器

0.18

plastics
塑料

0.50

Terminal
终端

7.82

lamp

0.52

copper

13.34

switch
开关

1.89

heater
加热器

1.25

receptacle
插座

0.19

steel

71.08

aluminium

0.25

connector
连接器

14.67

cable
电缆

236.82

LCP cabinets
LCP 机柜

steel

1.44

stainless steel
不锈钢

157.30

copper

1.12

Unalloyed steels
未合金钢

16.32

Accessories
附件

Unalloyed steels
未合金钢

1.34

steel

1.47

stainless steel
不锈钢

8.40

adsorbent
吸附剂

3.00

Aluminum alloy
铝合金

1.14

rubber
橡胶

0.05

SF6

50.00

Packaging
包装

wood
木材

850.60

steel

35.60

rubber
橡胶

0.77

Unalloyed steels
未合金钢

267.80

Polytetrafluoroethylene
聚四氟乙烯

0.12

Table 4.1.4 – Raw material inventory (150798)
表 4.1.4 – 原材料清单 (150798)

Module
材料

Material
材料

Weightkg
重量(kg)

CB

steel

96.62

copper

9.27

ABS

0.21

plastics
塑料

1.60

adsorbent
吸附剂

3.00

rubber
橡胶

0.82

epoxy resin
环氧树脂

50.46

stainless steel
不锈钢

354.89

silastic
硅橡胶

0.68

Unalloyed steels
未合金钢

103.44

Polytetrafluoroethylene
聚四氟乙烯

3.87

Aluminum alloy
铝合金

278.60

Zinc alloy
锌合金

3.75

Electromagnets
电磁铁

0.46

Cold-rolled steel
冷轧钢

8.47

Copper alloys
铜合金

1.59

Nitrile rubber
丁腈橡胶

0.00

toughened glass
钢化玻璃

0.48

aluminium

0.08

Polyvinylidene Fluoride
聚偏二氟乙烯

0.15

Chemicals
化学品

0.57

Motor
电动机

7.43

DS

steel

35.68

stainless steel
不锈钢

22.09

epoxy resin
环氧树脂

5.49

Unalloyed steels
未合金钢

22.38

Polytetrafluoroethylene
聚四氟乙烯

0.04

Motor
电动机

3.38

resistance
电阻

0.36

PET

0.00

Aluminum alloy
铝合金

169.02

copper

1.27

rubber
橡胶

0.35

ABS

0.24

plastics
塑料

1.31

PC

0.12

nylon
尼龙

0.18

DES

steel

35.68

stainless steel
不锈钢

22.09

epoxy resin
环氧树脂

5.49

Unalloyed steels
未合金钢

21.96

Polytetrafluoroethylene
聚四氟乙烯

0.04

Motor
电动机

3.38

resistance
电阻

0.36

PET

0.00

Aluminum alloy
铝合金

173.64

rubber
橡胶

0.35

ABS

0.24

plastics
塑料

1.31

copper

0.73

PC

0.12

nylon
尼龙

0.18

VD

plastics
塑料

3.60

CT

steel

529.72

rubber
橡胶

0.75

Aluminum alloy
铝合金

89.40

Polytetrafluoroethylene
聚四氟乙烯

1.80

steel

0.00

plastics
塑料

0.06

Aluminum alloy
铝合金

0.00

BSG

Aluminum alloy
铝合金

116.40

FRP:16.5kg
FRP:16.5 公斤

HTV
14.2kg
HTV:14.2 公斤

Aluminum alloy: 12.8kg
铝合金:12.8 公斤

261.00

rubber
橡胶

0.55

steel

8.53

Steel bracket
钢制支架

Unalloyed steels
未合金钢

390.59

steel

11.51

stainless steel
不锈钢

0.78

copper

3.82

Secondary components
次要组件

button
按钮

0.03

Relays
继电器

2.53

Contactors
接触器

0.18

plastics
塑料

0.50

Terminal
终端

7.82

lamp

0.52

copper

13.34

switch
开关

1.89

heater
加热器

1.25

receptacle
插座

0.19

steel

71.08

aluminium

0.25

connector
连接器

14.67

cable
电缆

236.82

LCP cabinets
LCP 机柜

steel

1.44

stainless steel
不锈钢

157.30

copper

1.12

Unalloyed steels
未合金钢

16.32

Accessories
附件

Unalloyed steels
未合金钢

1.34

steel

1.47

stainless steel
不锈钢

8.40

adsorbent
吸附剂

3.00

Aluminum alloy
铝合金

1.14

rubber
橡胶

0.05

SF6

50.00

Packaging
包装

wood
木材

850.60

steel

35.60

rubber
橡胶

0.77

Unalloyed steels
未合金钢

267.80

Polytetrafluoroethylene
聚四氟乙烯

0.12

Table 4.1.5 – Upstream transport distance of major components
表 4.1.5——主要部件的上游运输距离

Module
材料

Ton·km transport
吨公里运输

CB

108.57

DS

25.56

DES

26.42

VD

0.29

CT

51.87

BSG

28.72

Steel bracket
钢制支架

69.05

Secondary components
二次组件

54.65

LCP cabinets
LCP 机柜

2.12

Accessories
附件

101.13

Packaging
包装

23.55

Total
总计

491.93

4.2 Core Module
4.2 核心模块

In this stage, inputs are the energy used during production in Shanghai Sieyuan while outputs are the waste generated.
在此阶段,输入为上海协远生产过程中使用的能源,输出为产生的废物。

The product consumes electricity and water during the manufacturing phase, of which all were being supplied externally. All of Shanghai Sieyuan's electricity consumption comes from grid electricity and no additional green power or green certificates are purchased. According to the China Energy Yearbook, grid electricity is supplied from all major power plants in China, with a mix of fossil, natural gas, wind, solar, and nuclear energy sources.
产品在制造阶段消耗电力和水,所有这些都由外部供应。上海思源电力消耗全部来自电网电力,未额外购买绿电或绿证。根据《中国能源年鉴》,电网电力来自中国所有主要发电厂,能源构成包括化石能源、天然气、风能、太阳能和核能。

The energy and resources usage per functional unit in the production stage of the product is calculated by dividing the annual energy or resource consumption by the total output of the company’s product, In detail, 265633kWh electricity were used, 58kg of solid waste is produced during 2023 and 633 units of products in total, thus the electricity and water used per unit of product is:
产品生产阶段每功能单元的能源和资源消耗量,是通过将年度能源或资源消耗量除以公司产品的总产量来计算的。具体来说,2023 年使用了 265633 千瓦时的电力,产生了 58 公斤固体废物,共生产了 633 个产品单元,因此每个产品单元的电力和用水量为:

Table 4.2.1 – Core Module inventory
表 4.2.1 – 核心模块库存

Lifecycle stage
生命周期阶段

Activity
活动

Usage per functional unit
每功能单元用量

Unit
单位

Energy and resource consumption during manufacturing
制造过程中的能源和资源消耗

Grid Power
电网电力

419.64

kWh
千瓦时

Waste produced during manufacturing
制造过程中产生的废物

Waste(waste wrench)
废物(废扳手)

0.09

kg
千克

During the production process, auxiliary materials such as alcohol (used for cleaning agents), machine oil are utilized. However, due to their minimal consumption and the resulting waste generation being less than 1% of the weight of the raw materials per unit of product produced, they have negligible impact on the overall results of the life cycle assessment (LCA) and are therefore cut-offed in accordance with cut-off principle from the calculation.
生产过程中使用了酒精(用作清洁剂)、机器油等辅助材料。但由于其消耗量极少,产生的废物少于单位产品原材料重量的 1%,因此对生命周期评估(LCA)的整体结果影响可忽略不计,故根据界限原则将其从计算中剔除。

4.3 Distribution
该产品在中国制造,并在阿根廷使用(最坏情况)。下游分销距离

The product is manufactured in China and to be used in Argentina(worse case scenario). Downstream distribution distances are estimated from the GAODE map and SEARATE website for shipment distances, inland transport is by truck freight and sea transport is by ship. The weight of single piece of ZHW58A-145 Hybrid Gas-Insulated Switchgear (including package and oil tank) is approximately 4.4t.
该产品在中国制造,用于阿根廷(最坏情况)。下游配送距离根据高德地图和 SEARATE 网站的运输距离估算,内陆运输采用卡车运输,海运采用船运。ZHW58A-145 混合气体绝缘开关设备(包括包装和油箱)单件重量约 4.4 吨。

Table 4.3.1 – Downstream transportation inventory
表 4.3.1 – 下游运输清单

Lifecycle stage
生命周期阶段

Activity
活动

Distance
距离

Usage per functional unit(ton•km)
每功能单位用量(吨·公里)

Downstream transportation
下游运输

Freight by trucklorry 16-32 metric ton, EURO5
卡车运输(16-32 吨,欧五标准卡车)

Shanghai Sieyuan to port:190 km
上海思源至港口:190 公里

Port to Client1000 km
港口至客户:1000 公里

5236

Freight by shipcontainer ship
船舶运输(集装箱船)

Shanghai port to Argentina port: 20640 km
上海港至阿根廷港:20640 公里

90816

4.4 Installation
4.4 安装

Hybrid Gas-Insulated Switchgear0107-0106is hoisted with a 5T crane with an engine power of 85kW, and the service time is 4.8h. According to the calculation, the lower value of diesel is 43MJ/kg, and 34 kg diesel is needed during installation.
混合气体绝缘开关设备(0107-0106)用一台发动机功率为 85kW 的 5T 起重机吊装,作业时间为 4.8 小时。经计算,柴油低位发热值为 43MJ/kg,安装过程中需消耗柴油 34kg。

At this stage, as the installation was completed, the product packaging (850.60 kg wood) and steel (303.40kg steel) was discarded, of which 80% of steel and 0% of wood is assumed to be recycled in accordance with en 50693 annex G table G.4, 20% of steel is assumed to be landfilled as inert material and 100% of waste wood package is assumed to be incinerated to achieve a biogenic carbon balance. Other packaging material such as waste rubber and plastic are treated in mix treatment method.
此阶段,由于安装完成,产品包装(850.60 公斤木材)和钢材(303.40 公斤钢材)被丢弃,根据 EN 50693 附录 G 表 G.4,假设其中 80%的钢材和 0%的木材被回收利用,20%的钢材被作为惰性材料填埋,100%的废木包装被焚烧以实现生物碳平衡。其他包装材料如废橡胶和塑料采用混合处理方法。

Table 4.4.1 – Installation inventory
表 4.4.1 – 安装清单

Lifecycle stage
生命周期阶段

Activity
活动

Usage per functional unit
每功能单元用量

Unit
单位

Installation
安装

Diesel consumed by crane
起重机消耗的柴油

34

kg
千克

SF6

50

kg
千克

Waste Packaging
废弃包装

Wood packaging to be incinerated
木质包装(用于焚烧)

850.60

kg
千克

Steel to be landfilledrecycle content not included
待填埋的钢铁(不含回收内容)

60.68

kg
千克

Waste Plastics(mix treatment)
废塑料(混合处理)

0.89

kg
千克

Transportation of waste to waste management
废物运输至废物管理场所

Waste Packaging
废弃包装

231

ton*km
吨·公里

4.5 USE & Maintenance
4.5 使用和维护

Energy used during the product service life is1208 kWh.
产品使用寿命期间使用的能量为 1208 千瓦时。

where: ( is the power consumed by the switch at a given value of current; RSL is the service life of the product, assumed to be 20 years; 8760 is the number of hours in a year; α is a coefficient describing the amount of time in which the switch is requested to operate its function, according to PCR, 30% is selected for high voltage equipment; 1000 is the conversion factor that allows the energy consumed in kWh over the products service life to be expressed. ( can be calculated by the following formula. The referenced current specified in PCR is 50% of the nominal current, while according to Shanghai Sieyuan, the real testing current normally is only 10% of the nominal current. Thus, in this study the reference current Ir is calculated as 10% of the nominal current In. The of hybrid gas-insulated switchgear is calculated and listed in table 4.5.1.
式中:(为开关在给定电流值下的功耗;RSL 为产品的使用寿命,假设为 20 年;8760 为一年中的小时数;α为描述开关在其功能运行所需时间的系数,根据 PCR,高压设备选择 30%;1000 是将产品使用寿命内消耗的能量(千瓦时)进行表达的转换系数。(可以用以下公式计算。PCR 中指定的参考电流为额定电流的 50%,而根据上海西元公司的数据,实际测试电流通常仅为额定电流的 10%。因此,在本研究中,参考电流 Ir 计算为额定电流 In 的 10%。混合气体绝缘开关设备的计算结果列于表 4.5.1 中。

Table 4.5.1 Power consumption of hybrid gas-insulated switchgear
表 4.5.1 – 混合气体绝缘开关设备的功耗

Hybrid gas-insulated switchgear
混合气体绝缘开关设备

Nominal current
额定电流,

Single phase resistance
单相电阻,

ZHW58A-145

2500

122.61

27.79

For the maintenance of the electric products, the Shanghai Sieyuan high-voltage electric equipments are designed to be free of maintenance during its service life. Meanwhile, the hybrid gas-insulated switchgear has reliable sealing performance, thus requires no additional recharge of SF6 during its service life. Therefore, no inputs and outputs are taken place in maintenance stage in this study
对于电力产品的维护,上海西元高压电气设备的设计使其在使用寿命内无需维护。同时,混合气体绝缘开关设备具有可靠的密封性能,因此在其使用寿命内无需额外补充 SF6。因此,在本研究中,维护阶段没有投入和产出。
.

4.6 End of life
4.6 使用寿命结束

According to EN50693, the inputs and outputs associated with all relevant steps from deinstallation to the disposal or the point of substitution, shall be included in the end-of-life stage. In this study, it is assumed that same as installation, a 5T crane with an engine power of 85kW, and the service time is 4.8h. According to the calculation, the lower value of diesel is 43MJ/kg, and 34 kg diesel is needed during deinstallation.
根据 EN50693 标准,从卸载到处置或替换点的所有相关步骤相关的输入和输出都应包含在报废阶段。在本研究中,假设与安装相同,使用一台 5T 起重机,发动机功率为 85kW,服务时间为 4.8 小时。根据计算,柴油低热值为 43MJ/kg,拆卸过程中需要 34kg 柴油。

After disassembling, it is assumed that the disposal components will be transported to corresponding waste management factory, the distance is assumed to be 200km by truck. The weight of the waste ZHW58A-145 Hybrid Gas-Insulated Switchgear0107-0106is approximately 3.2ton.
拆卸后,假设处置组件将被运输到相应的废物管理工厂,假设卡车运输距离为 200 公里。ZHW58A-145 混合气体绝缘开关设备(0107-0106)的废物重量约为 3.2 吨。

Table 4.6.1 – Eol transportation inventory
表 4.6.1 – 报废运输清单

Lifecycle stage
生命周期阶段

Activity
活动

Usage per functional unit
每功能单元用量

Unit
单位

Disassemble
拆卸

Diesel used by crane
起重机柴油消耗

34

kg
千克

Eol transportation
报废运输

Transportation by truck
卡车运输

640

ton•km
吨·公里

During the end-of-life disposal stage, the product is dismantled into components and then sorted for further processing. Some metals or plastics are recycled according to EN50693 standards, while the remaining materials are either landfilled or incinerated. The details of the disposal methods and their respective weights are as follows:
在报废处置阶段,产品被拆解成组件,然后分类进行进一步处理。根据 EN50693 标准,一些金属或塑料会被回收利用,其余材料则被填埋或焚烧。处置方法及其各自重量的详细信息如下:

Table 4.6.2 – Eol treatment inventory0107-0106
表 4.6.2 – 产品生命周期末期处理清单(0107-0106)

Material
材料

Weight of material to be disposalkg
待处置材料重量(kg)

Material recovery rate
材料回收率

Weight of material being recycledkg
材料回收重量(kg)

Weight of material being treatedkg
材料处理重量(kg)

Treatment method
处理方法

Metals
金属

Steel
钢材

1623.54

80%

1298.83

324.71

Landfilled
填埋

Other ferrous metals
其他黑色金属

0.46

80%

0.37

0.09

Landfilled
填埋

Aluminum

850.79

70%

595.55

255.24

Incineration
焚烧

Copper

31.14

60%

18.68

12.46

Incineration
焚烧

Other non-ferrous metals
其他有色金属

3.75

60%

2.25

1.50

Incineration
焚烧

Plastics
塑料

ABS

0.68

20%

0.14

0.54

Treatment mix
处理混合物

Rubber
橡胶

64.98

0%

0.00

64.98

Treatment mix
处理混合物

Other Plastics
其他塑料

14.90

0%

0.00

14.90

Treatment mix
处理混合物

Minerals
矿物

Glass
玻璃

0.48

60%

0.29

0.19

Incineration
焚烧

Others
其他

Cables
电缆

236.82

0%

0.00

236.82

Open burnings
露天焚烧

Electronics
电子产品

304.97

0%

0.00

304.97

Incineration
焚烧

SF6

50.00

0%

0.00

50.00

Treatment mix
处理混合物

Table 4.6.3 – Eol treatment inventory150020
表 4.6.3 – 废弃物处理清单(150020)

Material
材料

Weight of material to be disposalkg
待处置物料重量(kg)

Material recovery rate
材料回收率

Weight of material being recycledkg
被回收物料重量(kg)

Weight of material being treatedkg
被处理物料重量(kg)

Treatment method
处理方法

Metals
金属

Steel
钢材

1642.80

80%

1314.24

328.56

Landfilled
填埋

Other ferrous metals
其他黑色金属

0.46

80%

0.37

0.09

Landfilled
填埋

Aluminum

828.53

70%

579.97

248.56

Incineration
焚烧

Copper

31.14

60%

18.68

12.46

Incineration
焚烧

Other non-ferrous metals
其他有色金属

3.75

60%

2.25

1.50

Incineration
焚烧

Plastics
塑料

ABS

0.68

20%

0.14

0.54

Treatment mix
混合处理

Rubber
橡胶

64.98

0%

0.00

64.98

Treatment mix
混合处理

Other Plastics
其他塑料

22.70

0%

0.00

22.70

Treatment mix
混合处理

Minerals
矿物

Glass
玻璃

0.48

60%

0.29

0.19

Incineration
焚烧

Others
其他

Cables
电缆

236.82

0%

0.00

236.82

Open burnings
露天焚烧

Electronics
电子产品

304.97

0%

0.00

304.97

Incineration
焚烧

SF6

50.00

100%

0.00

50.00

Treatment mix
治疗方案

Table 4.6.4 – Eol treatment inventory150033
表 4.6.4 – 废弃物处理清单(150033)

Material
材料

Weight of material to be disposalkg
待处置物料重量(kg)

Material recovery rate
材料回收率

Weight of material being recycledkg
回收物料重量(kg)

Weight of material being treatedkg
处理物料重量(kg)

Treatment method
处理方法

Metals
金属

Steel
钢材

1901.03

80%

1520.82

380.21

Landfilled
填埋

Other ferrous metals
其他黑色金属

0.46

80%

0.37

0.09

Landfilled
填埋

Aluminum

688.85

70%

482.19

206.65

Incineration
焚烧

Copper

29.87

60%

17.92

11.95

Incineration
焚烧

Other non-ferrous metals
其他有色金属

3.75

60%

2.25

1.50

Incineration
焚烧

Plastics
塑料

ABS

0.44

20%

0.09

0.35

Treatment mix
处理混合物

Rubber
橡胶

58.78

0%

0.00

58.78

Treatment mix
处理混合物

Other Plastics
其他塑料

13.24

0%

0.00

13.24

Treatment mix
处理混合物

Minerals
矿物

Glass
玻璃

0.48

60%

0.29

0.19

Incineration
焚烧

Others
其他

Cables
电缆

236.82

0%

0.00

236.82

Open burnings
露天焚烧

Electronics
电子产品

301.24

0%

0.00

301.24

Incineration
焚烧

SF6

50.00

100%

0.00

50.00

Treatment mix
混合处理

Table 4.6.5 – Eol treatment inventory150798
表 4.6.5 – 废弃物处理清单(150798)

Material
材料

Weight of material to be disposalkg
待处置物料重量(kg)

Material recovery rate
材料回收率

Weight of material being recycledkg
回收材料重量(kg)

Weight of material being treatedkg
待处理物料重量(kg)

Treatment method
处理方法

Metals
金属

Steel
钢材

1921.80

80%

1537.44

384.36

Landfilled
填埋

Other ferrous metals
其他黑色金属

0.46

80%

0.37

0.09

Landfilled
填埋

Aluminum

828.53

70%

579.97

248.56

Incineration
焚烧

Copper

31.14

60%

18.68

12.46

Incineration
焚烧

Other non-ferrous metals
其他有色金属

3.75

60%

2.25

1.50

Incineration
焚烧

Plastics
塑料

ABS

0.68

20%

0.14

0.54

Treatment mix
混合处理

Rubber
橡胶

64.98

0%

0.00

64.98

Treatment mix
混合处理

Other Plastics
其他塑料

22.70

0%

0.00

22.70

Treatment mix
混合处理

Minerals
矿物

Glass
玻璃

0.48

60%

0.29

0.19

Incineration
焚烧

Others
其他

Cables
电缆

236.82

0%

0.00

236.82

Open burnings
露天焚烧

Electronics
电子产品

304.97

0%

0.00

304.97

Incineration
焚烧

SF6

50.00

100%

0.00

50.00

Treatment mix
混合处理

As for end-of-life treatment of circuit breakers, the major concern is the treatment of SF6, since SF6 is a highly potent and long-lasting greenhouse gas with a global warming potential (GWP) of 22800 CO2 equivalences. To the best of our knowledge, SF6 can be reused after purification for the reproduction of new SF6 after its decomposition to its raw components. However, there is a lack of industrial data about treatment of SF6. In this study, the end-of-life treatment of SF6 is modelled by referring to the literature (Shiojiri et al. 2006). First, the SF6 is recovered from the devices through a vacuum pump. From the study, a 1.5kW vacuum pump is operated for 480 mins to recover 1300 kg of SF6. During the recovery process, a 3% leakage is assumed in the literature.
关于断路器的报废处理,主要关注的是 SF6 的处理,因为 SF6 是一种高效且持久存在的温室气体,其全球变暖潜能值(GWP)为 22800 个二氧化碳当量。据我们所知,SF6 在分解成其原始成分后,经过净化后可以重复使用以生产新的 SF6。然而,关于 SF6 处理的工业数据缺乏。在本研究中,SF6 的报废处理是参考文献(Shiojiri 等人,2006 年)进行建模的。首先,通过真空泵从设备中回收 SF6。根据研究,一台 1.5 千瓦的真空泵运行 480 分钟可以回收 1300 公斤的 SF6。在回收过程中,文献中假设有 3%的泄漏。

After SF6 is recovered, a purification process through a membrane separation is conducted. The energy required processes for membrane separation operation are the heating and the pressuring, with an energy requirement of 2.77 and 10.75 kJ/mol-SF6, respectively. The off-gas SF6 emission from membrane separation process is 0.25%. At last, a low-temperature plasma decomposition process is used to decompose SF6. The evacuation power required for operating at 0.5 Torr is 13.3 kJ/mol-SF6. The emission of SF6 during decomposition process is 1.3%. All the electricity consumption is calculated via the mole density of SF6 (=8901mol/1300kg). The LCI of treatment of 1kg SF6 is listed in table below.
回收 SF6 后,通过膜分离进行纯化过程。膜分离操作所需的能量是加热和加压,能量需求分别为 2.77 kJ/mol-SF6 和 10.75 kJ/mol-SF6。膜分离过程的 SF6 废气排放量为 0.25%。最后,采用低温等离子体分解工艺分解 SF6。在 0.5 Torr 下运行所需的抽真空功率为 13.3 kJ/mol-SF6。分解过程中的 SF6 排放量为 1.3%。所有电力消耗均通过 SF6 的摩尔密度(=8901mol/1300kg)计算。1kg SF6 处理的 LCI 列在下表中。

Table 4.6.6 –Waste treatment of SF6 (per kg)
4.7 收集的附加数据

4.7 Additional data collected
下表列出了产品生命周期中用作原材料和辅助燃料的主要能源。

Table below listed the primary energy resources used as raw material and secondary fuels during product lifecycle.
表 4.7.1 –用作原材料的主要能源(0107-0106)

Table 4.7.1 –Primary energy resources used as raw material 0107-0106
上游

Upstream Module
上游模块

Core
核心

Downstream
下游

Material
材料

Manufacturing
制造

Distribution
分销

Installation
安装

Use
使用

End of Life
生命周期末期阶段

Unit
单位

LHV

Plastic
塑料

88.35

0

0

0

0

0

kg
千克

43MJ/kg

Wood
木材

850.60

0

0

0

0

0

kg
千克

18MJ/kg

Table 4.7.2 –Primary energy resources used as raw material 150020
表 4.7.2 –用作原材料的一次能源(150020)

Upstream Module
上游模块

Core
核心

Downstream
下游

Material
材料

Manufacturing
制造

Distribution
分销

Installation
安装

Use
使用

End of Life
生命周期末期阶段

Unit
单位

LHV

Plastic
塑料

81.44

0

0

0

0

0

kg
千克

43MJ/kg
43 兆焦/公斤

Wood
木材

850.60

0

0

0

0

0

kg
千克

18MJ/kg
18 兆焦/公斤

Table 4.7.3 –Primary energy resources used as raw material 150033
表 4.7.3 –用作原材料的一次能源(150033)

Upstream Module
上游模块

Core
核心

Downstream
下游

Material
材料

Manufacturing
制造

Distribution
分销

Installation
安装

Use
使用

End of Life
生命周期末期阶段

Unit
单位

LHV

Plastic
塑料

72.46

0

0

0

0

0

kg
千克

43MJ/kg
43 兆焦/公斤

Wood
木材

850.60

0

0

0

0

0

kg
千克

18MJ/kg

Table 4.7.4 –Primary energy resources used as raw material 150798
表 4.7.4 –用作原材料的一次能源(150798)

Upstream Module
上游模块

Core
核心

Downstream
下游

Material
材料

Manufacturing
制造

Distribution
分销

Installation
安装

Use
使用

End of Life
生命周期末期阶段

Unit
单位

LHV

Plastic
塑料

81.44

0

0

0

0

0

kg
千克

43MJ/kg

Wood
木材

850.60

0

0

0

0

0

kg
千克

18MJ/kg

Impact Assessment
影响评估

5.1 0107-0106

Potential Environmental impact of each lifecycle stage are shown below.
下面显示了每个生命周期阶段的潜在环境影响。

Table 5.1.1 – Environmental impact descriptive parameters
表 5.1.1 – 环境影响描述参数

Impact Category
影响类别

Unit
单位

Total
总计

Manufacturing Stage
制造阶段

Distribution Stage
分销阶段

Installation Stage
安装阶段

Use & Maintenance Stage
使用和维护阶段

End of Life Stage
生命周期终止阶段

Upstream
模块

Core
核心

Downstream
下游

Climate change
气候变化

kg CO2 eq
千克二氧化碳当量

3.58E+04
35800

1.88E+04
18800

3.70E+02
370

1.93E+03
1930

8.59E+03
8590

8.45E+02
845

5.24E+03
5240

Climate change - Fossil
气候变化 - 化石

kg CO2 eq
千克二氧化碳当量

3.57E+04
35700

2.03E+04
20300

3.71E+02
371

1.93E+03
1930

7.02E+03
7020

8.39E+02
839

5.23E+03
5230

Climate change - Biogenic
气候变化 - 生物成因

kg CO2 eq
千克二氧化碳当量 2

5.36E+00
5.36

-1.56E+03
-1560

-1.99E+00
-1.99

1.48E-01

1.56E+03
1560

4.25E+00
4.25

2.95E+00
2.95

Climate change - Land use and LU change
气候变化 - 土地利用和土地利用变化

kg CO2 eq
千克二氧化碳当量 2

3.70E+01
37

3.26E+01
32.6

2.16E-01

1.23E+00
1.23

1.06E+00
1.06

1.75E+00
1.75

1.48E-01

Ozone depletion
臭氧消耗

kg CFC11 eq
千克 CFC 11 当量

1.19E-01

1.19E-01

8.41E-07

2.90E-05

8.19E-06

5.01E-06

4.51E-06

Acidification
酸化

mol H+ eq
摩尔 H+当量

2.82E+02
282

2.36E+02
236

1.98E+00
1.98

3.10E+01
31

6.25E+00
6.25

4.08E+00
4.08

2.62E+00
2.62

Eutrophication, freshwater
富营养化,淡水

kg P eq
kg P 当量

1.83E+01
18.3

1.74E+01
17.4

7.18E-02

1.12E-01

2.54E-01

3.79E-01

3.67E-02

Eutrophication, marine
海洋富营养化

kg N eq
kg N 当量

3.98E+01
39.8

2.79E+01
27.9

4.10E-01

8.04E+00
8.04

1.51E+00
1.51

8.21E-01

1.15E+00
1.15

Eutrophication, terrestrial
富营养化,陆地

mol N eq
mol N 当量

4.34E+02
434

3.05E+02
305

4.36E+00
4.36

8.83E+01
88.3

1.60E+01
16

8.22E+00
8.22

1.20E+01
12

Photochemical ozone formation
光化学臭氧形成

kg NMVOC eq
kg NMVOC 当量

1.39E+02
139

1.02E+02
102

1.17E+00
1.17

2.53E+01
25.3

4.66E+00
4.66

2.43E+00
2.43

4.36E+00
4.36

Resource use, minerals and metals
资源利用,矿物和金属

kg Sb eq
千克 Sb 当量

2.31E+00
2.31

2.29E+00
2.29

1.64E-03

4.11E-03

9.54E-03

2.89E-04

6.55E-04

Resource use, fossils
资源利用,化石燃料

MJ

2.82E+05
282000

2.28E+05
228000

4.07E+03
4070

2.55E+04
25500

8.94E+03
8940

1.09E+04
10900

3.91E+03
3910

Water use
用水

m3 depriv
m 3 匮乏
.

6.59E+03
6590

6.14E+03
6140

4.94E+01
49.4

8.81E+01
88.1

1.39E+02
139

1.41E+02
141

3.17E+01
31.7

Parameters describing resource use are shown below.
下面显示的是描述资源使用的参数。

Table 5.1.2 – Parameters describing resource use
表 5.1.2 – 描述资源使用的参数

Parameters
参数

Unit
单位

Total
总计

Manufacturing Stage
制造阶段

Distribution Stage
分销阶段

Installation Stage
安装阶段

Use & Maintenance Stage
使用和维护阶段

End of Life Stage
生命周期终止阶段

End of Life Stage
生命周期终止阶段

Upstream
模块

Core
核心

Downstream
下游

Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw material (PENRE)
非可再生一次能源的使用(不包括用作原材料的非可再生一次能源资源 (PENRE))

MJ, net calorific value
MJ,净发热量

2.78E+05
278000

2.25E+05
225000

4.07E+03
4070

2.55E+04
25500

8.94E+03
8940

1.09E+04
10900

3.91E+03
3910

Use of renewable primary energy excluding renewable primary energy resources used as raw material (PERE)
可再生一次能源的使用(不包括用作原材料的可再生一次能源)

MJ, net calorific value
MJ,净发热量

4.58E+04
45800

4.31E+04
43100

2.55E+02
255

2.60E+02
260

7.59E+02
759

1.33E+03
1330

8.49E+01
84.9

Use of non-renewable primary energy resources used as raw material (PENRM)
用作原材料的不可再生一次能源的使用(PENRM)

MJ, net calorific value
MJ,净发热量

3.50E+03
3500

3.50E+03
3500

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Use of renewable primary energy resources used as raw material (PERM)
可再生一次能源资源用作原材料 (PERM)

MJ, net calorific value
MJ,净发热量

1.53E+04
15300

1.53E+04
15300

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials) (PENRT)
不可再生一次能源资源总使用量(一次能源和用作原材料的一次能源资源)(PENRT)

MJ, net calorific value
MJ,净发热量

2.82E+05
282000

2.28E+05
228000

4.07E+03
4070

2.55E+04
25500

8.94E+03
8940

1.09E+04
10900

3.91E+03
3910

Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials) (PERT)
可再生一次能源资源总使用量(一次能源和用作原材料的一次能源资源)(PERT)

MJ, net calorific value
MJ,净发热量

6.11E+04
61100

5.84E+04
58400

2.55E+02
255

2.60E+02
260

7.59E+02
759

1.33E+03
1330

8.49E+01
84.9

Net use of fresh water (FW)
淡水净使用量 (FW)


立方米

2.07E+02
207

1.91E+02
191

1.19E+00
1.19

2.88E+00
2.88

4.34E+00
4.34

5.82E+00
5.82

1.09E+00
1.09

Use of secondary raw materials (MS)
再生原料(MS)的使用

kg
千克

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Use of renewable secondary fuels (RSF)
可再生二次燃料(RSF)的使用

MJ

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Use of non-renewable secondary fuels (NRSF)
非再生二次燃料 (NRSF) 的使用

MJ

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Waste production descriptive parameters are shown below.
下面显示的是废物产生描述参数。

Table 5.1.3 – Waste production descriptive parameters
表 5.1.3 – 废物产生描述参数

Parameters
参数

Unit
单位

Total
总计

Manufacturing Stage
制造阶段

Distribution Stage
分销阶段

Installation Stage
安装阶段

Use & Maintenance Stage
使用和维护阶段

End of Life Stage
生命周期终止阶段

End of Life Stage
生命周期终止阶段

Upstream
模块

Core
核心

Downstream
下游

Hazardous waste disposed (HWD)
处置的危险废物 (HWD)

kg
千克

1.04E+01
10.4

1.02E+01
10.2

3.51E-03

1.47E-01

3.49E-02

1.66E-02

2.38E-02

Non-hazardous waste disposed (NHWD)
处置的非危险废物 (NHWD)

kg
千克

9.63E+03
9630

7.46E+03
7460

3.06E+01
30.6

7.15E+02
715

1.53E+02
153

4.92E+01
49.2

1.22E+03
1220

Radioactive waste disposed (RWD)
放射性废物处置 (RWD)

kg
千克

3.52E-01

2.95E-01

9.34E-03

4.11E-03

1.24E-02

2.95E-02

1.54E-03

Materials for energy recovery (MER)
用于能量回收的材料 (MER)

kg
千克

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Material for recycling (MFR)
可回收材料 (MFR)

kg
千克

2.21E+03
2210

0.00E+00

0.00E+00

0.00E+00

2.43E+02
243

0.00E+00

1.97E+03
1970

Components for reuse (CRU)
可重复利用组件 (CRU)

kg
千克

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Exported thermal energy (ETE)
出口热能 (ETE)

MJ

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Exported electricity energy (EEE)
出口电能 (EEE)

MJ

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

5.2 150020

Potential Environmental impact of each lifecycle stage are shown below.
下面显示了每个生命周期阶段的潜在环境影响。

Table 5.2.1 – Environmental impact descriptive parameters
表 5.2.1 – 环境影响描述参数

Impact Category
影响类别

Unit
单位

Total
总计

Manufacturing Stage
制造阶段

Distribution Stage
分销阶段

Installation Stage
安装阶段

Use & Maintenance Stage
使用和维护阶段

End of Life Stage
生命周期结束阶段

Upstream
模块

Core
核心

Downstream
下游

Climate change
气候变化

kg CO2 eq
千克二氧化碳当量

3.55E+04
35500

1.85E+04
18500

3.70E+02
370

1.93E+03
1930

8.59E+03
8590

8.45E+02
845

5.26E+03
5260

Climate change - Fossil
气候变化 - 化石

kg CO2 eq
千克二氧化碳当量

3.55E+04
35500

2.01E+04
20100

3.71E+02
371

1.93E+03
1930

7.02E+03
7020

8.39E+02
839

5.26E+03
5260

Climate change - Biogenic
气候变化 - 生物成因

kg CO2 eq
千克二氧化碳当量

5.29E+00
5.29

-1.56E+03
-1560

-1.99E+00
-1.99

1.48E-01

1.56E+03
1560

4.25E+00
4.25

2.88E+00
2.88

Climate change - Land use and LU change
气候变化 - 土地利用和土地利用变化

kg CO2 eq
千克二氧化碳当量 2

3.75E+01
37.5

3.30E+01
33

2.16E-01

1.23E+00
1.23

1.06E+00
1.06

1.75E+00
1.75

1.48E-01

Ozone depletion
臭氧层破坏

kg CFC11 eq
千克 CFC 11 当量

1.19E-01

1.19E-01

8.41E-07

2.90E-05

8.19E-06

5.01E-06

4.52E-06

Acidification
酸化

mol H+ eq
摩尔 H+当量

2.82E+02
282

2.36E+02
236

1.98E+00
1.98

3.10E+01
31

6.25E+00
6.25

4.08E+00
4.08

2.63E+00
2.63

Eutrophication, freshwater
富营养化,淡水

kg P eq
kg P 当量

1.83E+01
18.3

1.75E+01
17.5

7.18E-02

1.12E-01

2.54E-01

3.79E-01

3.70E-02

Eutrophication, marine
海洋富营养化

kg N eq
kg N 当量

3.96E+01
39.6

2.76E+01
27.6

4.10E-01

8.04E+00
8.04

1.51E+00
1.51

8.21E-01

1.16E+00
1.16

Eutrophication, terrestrial
陆地富营养化

mol N eq
摩尔 N 当量

4.31E+02
431

3.02E+02
302

4.36E+00
4.36

8.83E+01
88.3

1.60E+01
16

8.22E+00
8.22

1.20E+01
12

Photochemical ozone formation
光化学臭氧形成

kg NMVOC eq
kg NMVOC 当量

1.39E+02
139

1.01E+02
101

1.17E+00
1.17

2.53E+01
25.3

4.66E+00
4.66

2.43E+00
2.43

4.37E+00
4.37

Resource use, minerals and metals
资源利用,矿物和金属

kg Sb eq
千克 Sb 当量

2.31E+00
2.31

2.29E+00
2.29

1.64E-03

4.11E-03

9.54E-03

2.89E-04

6.56E-04

Resource use, fossils
资源利用,化石燃料

MJ

2.78E+05
278000

2.25E+05
225000

4.07E+03
4070

2.55E+04
25500

8.94E+03
8940

1.09E+04
10900

3.91E+03
3910

Water use
用水

m3 depriv
m 3 匮乏
.

6.49E+03
6490

6.05E+03
6050

4.94E+01
49.4

8.81E+01
88.1

1.39E+02
139

1.41E+02
141

3.22E+01
32.2

Parameters describing resource use are shown below.
下面显示的是描述资源使用的参数。

Table 5.2.2 – Parameters describing resource use
表 5.2.2 – 描述资源使用的参数

Parameters
参数

Unit
单位

Total
总计

Manufacturing Stage
制造阶段

Distribution Stage
分销阶段

Installation Stage
安装阶段

Use & Maintenance Stage
使用和维护阶段

End of Life Stage
生命周期终止阶段

End of Life Stage
生命周期终止阶段

Upstream
模块

Core
核心

Downstream
下游

Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw material (PENRE)
非可再生一次能源的使用(不包括用作原材料的非可再生一次能源资源 (PENRE))

MJ, net calorific value
MJ,净发热量

2.75E+05
275000

2.21E+05
221000

4.07E+03
4070

2.55E+04
25500

8.94E+03
8940

1.09E+04
10900

3.91E+03
3910

Use of renewable primary energy excluding renewable primary energy resources used as raw material (PERE)
可再生一次能源的使用(不包括用作原材料的可再生一次能源)

MJ, net calorific value
MJ,净发热量

4.60E+04
46000

4.33E+04
43300

2.55E+02
255

2.60E+02
260

7.59E+02
759

1.33E+03
1330

8.50E+01
85

Use of non-renewable primary energy resources used as raw material (PENRM)
用作原材料的不可再生一次能源的使用(PENRM)

MJ, net calorific value
MJ,净发热量

3.80E+03
3800

3.80E+03
3800

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Use of renewable primary energy resources used as raw material (PERM)
可再生一次能源资源用作原材料 (PERM)

MJ, net calorific value
MJ,净发热量

1.53E+04
15300

1.53E+04
15300

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials) (PENRT)
不可再生一次能源资源总使用量(一次能源和用作原材料的一次能源资源)(PENRT)

MJ, net calorific value
MJ,净发热量

2.78E+05
278000

2.25E+05
225000

4.07E+03
4070

2.55E+04
25500

8.94E+03
8940

1.09E+04
10900

3.91E+03
3910

Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials) (PERT)
可再生一次能源资源总使用量(一次能源和用作原材料的一次能源资源)(PERT)

MJ, net calorific value
MJ,净发热量

6.13E+04
61300

5.86E+04
58600

2.55E+02
255

2.60E+02
260

7.59E+02
759

1.33E+03
1330

8.50E+01
85

Net use of fresh water (FW)
淡水净用量 (FW)


立方米

2.05E+02
205

1.90E+02
190

1.19E+00
1.19

2.88E+00
2.88

4.34E+00
4.34

5.82E+00
5.82

1.11E+00
1.11

Use of secondary raw materials (MS)
再生原料使用量 (MS)

kg
千克

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Use of renewable secondary fuels (RSF)
可再生二次燃料 (RSF) 的使用

MJ

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Use of non-renewable secondary fuels (NRSF)
非再生二次燃料 (NRSF) 的使用

MJ

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Waste production descriptive parameters are shown below.
下面显示的是废物产生描述参数。

Table 5.2.3 – Waste production descriptive parameters
表 5.2.3 – 废物产生描述参数

Parameters
参数

Unit
单位

Total
总计

Manufacturing Stage
制造阶段

Distribution Stage
分销阶段

Installation Stage
安装阶段

Use & Maintenance Stage
使用和维护阶段

End of Life Stage
生命周期结束阶段

End of Life Stage
生命周期结束阶段

Upstream
模块

Core
核心

Downstream
下游

Hazardous waste disposed (HWD)
处置的危险废物 (HWD)

kg
千克

1.06E+01
10.6

1.04E+01
10.4

3.51E-03

1.47E-01

3.49E-02

1.66E-02

2.38E-02

Non-hazardous waste disposed (NHWD)
处置的非危险废物 (NHWD)

kg
千克

9.69E+03
9690

7.44E+03
7440

3.06E+01
30.6

7.15E+02
715

1.53E+02
153

4.92E+01
49.2

1.30E+03
1300

Radioactive waste disposed (RWD)
放射性废物处置 (RWD)

kg
千克

3.55E-01

2.98E-01

9.34E-03

4.11E-03

1.24E-02

2.95E-02

1.54E-03

Materials for energy recovery (MER)
用于能量回收的材料 (MER)

kg
千克

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Material for recycling (MFR)
可回收利用材料 (MFR)

kg
千克

2.16E+03
2160

0.00E+00

0.00E+00

0.00E+00

2.43E+02
243

0.00E+00

1.92E+03
1920

Components for reuse (CRU)
可重复利用组件 (CRU)

kg
千克

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Exported thermal energy (ETE)
出口热能 (ETE)

MJ

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Exported electricity energy (EEE)
出口电能 (EEE)

MJ

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

5.3 150033

Potential Environmental impact of each lifecycle stage are shown below.
下面显示了每个生命周期阶段的潜在环境影响。

Table 5.3.1 – Environmental impact descriptive parameters
表 5.3.1 – 环境影响描述参数

Impact Category
影响类别

Unit
单位

Total
总计

Manufacturing Stage
制造阶段

Distribution Stage
分销阶段

Installation Stage
安装阶段

Use & Maintenance Stage
使用和维护阶段

End of Life Stage
生命周期结束阶段

Upstream
模块

Core
核心

Downstream
下游

Climate change
气候变化

kg CO2 eq
千克二氧化碳当量 2

3.47E+04
34700

1.78E+04
17800

3.70E+02
370

1.93E+03
1930

8.59E+03
8590

8.45E+02
845

5.20E+03
5200

Climate change - Fossil
气候变化 - 化石

kg CO2 eq
千克二氧化碳当量 2

3.47E+04
34700

1.93E+04
19300

3.71E+02
371

1.93E+03
1930

7.02E+03
7020

8.39E+02
839

5.20E+03
5200

Climate change - Biogenic
气候变化 - 生物成因

kg CO2 eq
千克二氧化碳当量 2

4.86E+00
4.86

-1.56E+03
-1560

-1.99E+00
-1.99

1.48E-01

1.56E+03
1560

4.25E+00
4.25

2.46E+00
2.46

Climate change - Land use and LU change
气候变化 - 土地利用和土地利用变化

kg CO2 eq
千克二氧化碳当量 2

3.48E+01
34.8

3.04E+01
30.4

2.16E-01

1.23E+00
1.23

1.06E+00
1.06

1.75E+00
1.75

1.47E-01

Ozone depletion
臭氧消耗

kg CFC11 eq
千克 CFC 11 当量

1.19E-01

1.19E-01

8.41E-07

2.90E-05

8.19E-06

5.01E-06

4.49E-06

Acidification
酸化

mol H+ eq
摩尔 H+当量

2.69E+02
269

2.23E+02
223

1.98E+00
1.98

3.10E+01
31

6.25E+00
6.25

4.08E+00
4.08

2.61E+00
2.61

Eutrophication, freshwater
富营养化,淡水

kg P eq
kg P 当量

1.77E+01
17.7

1.68E+01
16.8

7.18E-02

1.12E-01

2.54E-01

3.79E-01

3.62E-02

Eutrophication, marine
海洋富营养化

kg N eq
kg N 当量

3.83E+01
38.3

2.64E+01
26.4

4.10E-01

8.04E+00
8.04

1.51E+00
1.51

8.21E-01

1.15E+00
1.15

Eutrophication, terrestrial
富营养化,陆地

mol N eq
mol N 当量

4.19E+02
419

2.90E+02
290

4.36E+00
4.36

8.83E+01
88.3

1.60E+01
16

8.22E+00
8.22

1.20E+01
12

Photochemical ozone formation
光化学臭氧形成

kg NMVOC eq
kg NMVOC 当量

1.35E+02
135

9.75E+01
97.5

1.17E+00
1.17

2.53E+01
25.3

4.66E+00
4.66

2.43E+00
2.43

4.35E+00
4.35

Resource use, minerals and metals
资源利用、矿物和金属

kg Sb eq
千克 Sb 当量

2.22E+00
2.22

2.20E+00
2.2

1.64E-03

4.11E-03

9.54E-03

2.89E-04

6.52E-04

Resource use, fossils
资源利用,化石燃料

MJ

2.69E+05
269000

2.16E+05
216000

4.07E+03
4070

2.55E+04
25500

8.94E+03
8940

1.09E+04
10900

3.90E+03
3900

Water use
用水

m3 depriv
m 3 匮乏
.

6.18E+03
6180

5.74E+03
5740

4.94E+01
49.4

8.81E+01
88.1

1.39E+02
139

1.41E+02
141

3.19E+01
31.9

Parameters describing resource use are shown below.
下面显示的是描述资源使用的参数。

Table 5.3.2 – Parameters describing resource use
表 5.3.2 资源使用参数

Parameters
参数

Unit
单位

Total
总计

Manufacturing Stage
制造阶段

Distribution Stage
分销阶段

Installation Stage
安装阶段

Use & Maintenance Stage
使用和维护阶段

End of Life Stage
生命周期终止阶段

End of Life Stage
生命周期终止阶段

Upstream
模块

Core
核心

Downstream
下游

Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw material (PENRE)
非可再生一次能源的使用(不包括用作原材料的非可再生一次能源资源 (PENRE))

MJ, net calorific value
MJ,净发热量

2.66E+05
266000

2.13E+05
213000

4.07E+03
4070

2.55E+04
25500

8.94E+03
8940

1.09E+04
10900

3.90E+03
3900

Use of renewable primary energy excluding renewable primary energy resources used as raw material (PERE)
可再生一次能源的使用(不包括用作原材料的可再生一次能源)

MJ, net calorific value
MJ,净发热量

4.49E+04
44900

4.22E+04
42200

2.55E+02
255

2.60E+02
260

7.59E+02
759

1.33E+03
1330

8.46E+01
84.6

Use of non-renewable primary energy resources used as raw material (PENRM)
用作原材料的不可再生一次能源的使用(PENRM)

MJ, net calorific value
MJ,净发热量

3.12E+03
3120

3.12E+03
3120

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Use of renewable primary energy resources used as raw material (PERM)
可再生一次能源资源用作原材料 (PERM)

MJ, net calorific value
MJ,净发热量

1.53E+04
1.53 万

1.53E+04
1.53 万

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials) (PENRT)
不可再生一次能源资源总使用量(一次能源和用作原材料的一次能源资源)(PENRT)

MJ, net calorific value
MJ,净发热量

2.69E+05
26.9 万

2.16E+05
21.6 万

4.07E+03
4070

2.55E+04
25500

8.94E+03
8940

1.09E+04
10900

3.90E+03
3900

Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials) (PERT)
可再生一次能源资源总使用量(一次能源和用作原材料的一次能源资源)(PERT)

MJ, net calorific value
MJ,净发热量

6.02E+04
6.02 万

5.75E+04
5.75 万

2.55E+02
255

2.60E+02
260

7.59E+02
759

1.33E+03
1330

8.46E+01
84.6

Net use of fresh water (FW)
淡水净用量 (FW)


立方米

1.96E+02
196

1.81E+02
181

1.19E+00
1.19

2.88E+00
2.88

4.34E+00
4.34

5.82E+00
5.82

1.09E+00
1.09

Use of secondary raw materials (MS)
再生原料使用量 (MS)

kg
千克

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Use of renewable secondary fuels (RSF)
可再生二次燃料 (RSF) 的使用

MJ

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Use of non-renewable secondary fuels (NRSF)
非再生二次燃料 (NRSF) 的使用

MJ

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Waste production descriptive parameters are shown below.
下面显示的是废物产生描述参数。

Table 5.3.3 – Waste production descriptive parameters
表 5.3.3 – 废物产生描述参数

Parameters
参数

Unit
单位

Total
总计

Manufacturing Stage
制造阶段

Distribution Stage
分销阶段

Installation Stage
安装阶段

Use & Maintenance Stage
使用和维护阶段

End of Life Stage
生命周期终止阶段

End of Life Stage
生命周期终止阶段

Upstream
模块

Core
核心

Downstream
下游

Hazardous waste disposed (HWD)
处置的危险废物 (HWD)

kg
千克

9.47E+00
9.47

9.24E+00
9.24

3.51E-03

1.47E-01

3.49E-02

1.66E-02

2.37E-02

Non-hazardous waste disposed (NHWD)
处置的非危险废物 (NHWD)

kg
千克

9.67E+03
9670

7.45E+03
7450

3.06E+01
30.6

7.15E+02
715

1.53E+02
153

4.92E+01
49.2

1.27E+03
1270

Radioactive waste disposed (RWD)
放射性废物处置 (RWD)

kg
千克

3.40E-01

2.83E-01

9.34E-03

4.11E-03

1.24E-02

2.95E-02

1.53E-03

Materials for energy recovery (MER)
用于能量回收的材料 (MER)

kg
千克

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Material for recycling (MFR)
可回收利用材料 (MFR)

kg
千克

2.26E+03
2260

0.00E+00

0.00E+00

0.00E+00

2.43E+02
243

0.00E+00

2.02E+03
2020

Components for reuse (CRU)
可重复利用组件 (CRU)

kg
千克

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Exported thermal energy (ETE)
出口热能 (ETE)

MJ

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Exported electricity energy (EEE)
出口电能 (EEE)

MJ

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

5.4 150798

Potential Environmental impact of each lifecycle stage are shown below.
下面显示了每个生命周期阶段的潜在环境影响。

Table 5.4.1 – Environmental impact descriptive parameters
表 5.4.1 环境影响描述参数

Impact Category
影响类别

Unit
单位

Total
总计

Manufacturing Stage
制造阶段

Distribution Stage
分销阶段

Installation Stage
安装阶段

Use & Maintenance Stage
使用和维护阶段

End of Life Stage
生命周期终止阶段

Upstream
模块

Core
核心

Downstream
下游

Climate change
气候变化

kg CO2 eq
千克二氧化碳当量 2

3.61E+04
36100

1.91E+04
19100

3.70E+02
370

1.93E+03
1930

8.59E+03
8590

8.45E+02
845

5.26E+03
5260

Climate change - Fossil
气候变化 - 化石

kg CO2 eq
千克二氧化碳当量 2

3.61E+04
36100

2.07E+04
20700

3.71E+02
371

1.93E+03
1930

7.02E+03
7020

8.39E+02
839

5.26E+03
5260

Climate change - Biogenic
气候变化 - 生物成因

kg CO2 eq
千克二氧化碳当量 2

5.29E+00
5.29

-1.56E+03
-1560

-1.99E+00
-1.99

1.48E-01

1.56E+03
1560

4.25E+00
4.25

2.88E+00
2.88

Climate change - Land use and LU change
气候变化 - 土地利用和土地利用变化

kg CO2 eq
千克二氧化碳当量 2

3.79E+01
37.9

3.35E+01
33.5

2.16E-01

1.23E+00
1.23

1.06E+00
1.06

1.75E+00
1.75

1.48E-01

Ozone depletion
臭氧层破坏

kg CFC11 eq
千克 CFC 11 当量

1.19E-01

1.19E-01

8.41E-07

2.90E-05

8.19E-06

5.01E-06

4.53E-06

Acidification
酸化

mol H+ eq
摩尔 H+当量

2.84E+02
284

2.38E+02
238

1.98E+00
1.98

3.10E+01
31

6.25E+00
6.25

4.08E+00
4.08

2.63E+00
2.63

Eutrophication, freshwater
富营养化,淡水

kg P eq
kg P 当量

1.86E+01
18.6

1.78E+01
17.8

7.18E-02

1.12E-01

2.54E-01

3.79E-01

3.70E-02

Eutrophication, marine
海洋富营养化

kg N eq
kg N 当量

4.02E+01
40.2

2.82E+01
28.2

4.10E-01

8.04E+00
8.04

1.51E+00
1.51

8.21E-01

1.16E+00
1.16

Eutrophication, terrestrial
陆地富营养化

mol N eq
摩尔 N 当量

4.38E+02
438

3.09E+02
309

4.36E+00
4.36

8.83E+01
88.3

1.60E+01
16

8.22E+00
8.22

1.20E+01
12

Photochemical ozone formation
光化学臭氧形成

kg NMVOC eq
kg NMVOC 当量

1.42E+02
142

1.04E+02
104

1.17E+00
1.17

2.53E+01
25.3

4.66E+00
4.66

2.43E+00
2.43

4.37E+00
4.37

Resource use, minerals and metals
资源利用,矿物和金属

kg Sb eq
千克 Sb 当量

2.31E+00
2.31

2.29E+00
2.29

1.64E-03

4.11E-03

9.54E-03

2.89E-04

6.56E-04

Resource use, fossils
资源利用,化石燃料

MJ

2.85E+05
285000

2.31E+05
231000

4.07E+03
4070

2.55E+04
25500

8.94E+03
8940

1.09E+04
10900

3.92E+03
3920

Water use
用水

m3 depriv
m 3 匮乏
.

6.55E+03
6550

6.10E+03
6100

4.94E+01
49.4

8.81E+01
88.1

1.39E+02
139

1.41E+02
141

3.26E+01
32.6

Parameters describing resource use are shown below.
下面显示的是描述资源使用的参数。

Table 5.4.2 – Parameters describing resource use
表 5.4.2 资源使用参数

Parameters
参数

Unit
单位

Total
总计

Manufacturing Stage
制造阶段

Distribution Stage
分销阶段

Installation Stage
安装阶段

Use & Maintenance Stage
使用和维护阶段

End of Life Stage
生命周期终止阶段

End of Life Stage
生命周期终止阶段

Upstream
模块

Core
核心

Downstream
下游

Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw material (PENRE)
非可再生一次能源的使用(不包括用作原材料的非可再生一次能源资源 (PENRE))

MJ, net calorific value
MJ,净发热量

2.81E+05
281000

2.27E+05
227000

4.07E+03
4070

2.55E+04
25500

8.94E+03
8940

1.09E+04
10900

3.92E+03
3920

Use of renewable primary energy excluding renewable primary energy resources used as raw material (PERE)
可再生一次能源的使用(不包括用作原材料的可再生一次能源)

MJ, net calorific value
MJ,净发热量

4.66E+04
46600

4.39E+04
43900

2.55E+02
255

2.60E+02
260

7.59E+02
759

1.33E+03
1330

8.51E+01
85.1

Use of non-renewable primary energy resources used as raw material (PENRM)
用作原材料的不可再生一次能源的使用(PENRM)

MJ, net calorific value
MJ,净发热量

3.80E+03
3800

3.80E+03
3800

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Use of renewable primary energy resources used as raw material (PERM)
可再生一次能源资源用作原材料 (PERM)

MJ, net calorific value
MJ,净发热量

1.53E+04
15300

1.53E+04
15300

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials) (PENRT)
不可再生一次能源资源总使用量(一次能源和用作原材料的一次能源资源)(PENRT)

MJ, net calorific value
MJ,净发热量

2.85E+05
285000

2.31E+05
231000

4.07E+03
4070

2.55E+04
25500

8.94E+03
8940

1.09E+04
10900

3.92E+03
3920

Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials) (PERT)
可再生一次能源资源总使用量(一次能源和用作原材料的一次能源资源)(PERT)

MJ, net calorific value
MJ,净发热量

6.19E+04
61900

5.92E+04
59200

2.55E+02
255

2.60E+02
260

7.59E+02
759

1.33E+03
1330

8.51E+01
85.1

Net use of fresh water (FW)
淡水净用量 (FW)


立方米

2.08E+02
208

1.93E+02
193

1.19E+00
1.19

2.88E+00
2.88

4.34E+00
4.34

5.82E+00
5.82

1.12E+00
1.12

Use of secondary raw materials (MS)
再生原料使用量 (MS)

kg
千克

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Use of renewable secondary fuels (RSF)
可再生二次燃料 (RSF) 的使用

MJ

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Use of non-renewable secondary fuels (NRSF)
非再生二次燃料 (NRSF) 的使用

MJ

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Waste production descriptive parameters are shown below.
下面显示的是废物产生描述参数。

Table 5.4.3 – Waste production descriptive parameters
表 5.4.3 – 废物产生描述参数

Parameters
参数

Unit
单位

Total
总计

Manufacturing Stage
制造阶段

Distribution Stage
分销阶段

Installation Stage
安装阶段

Use & Maintenance Stage
使用和维护阶段

End of Life Stage
生命周期终止阶段

End of Life Stage
生命周期终止阶段

Upstream
模块

Core
核心

Downstream
下游

Hazardous waste disposed (HWD)
处置的危险废物 (HWD)

kg
千克

1.07E+01
10.7

1.04E+01
10.4

3.51E-03

1.47E-01

3.49E-02

1.66E-02

2.39E-02

Non-hazardous waste disposed (NHWD)
处置的非危险废物 (NHWD)

kg
千克

9.98E+03
9980

7.71E+03
7710

3.06E+01
30.6

7.15E+02
715

1.53E+02
153

4.92E+01
49.2

1.32E+03
1320

Radioactive waste disposed (RWD)
放射性废物处置 (RWD)

kg
千克

3.60E-01

3.03E-01

9.34E-03

4.11E-03

1.24E-02

2.95E-02

1.54E-03

Materials for energy recovery (MER)
用于能量回收的材料 (MER)

kg
千克

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Material for recycling (MFR)
可回收利用材料 (MFR)

kg
千克

2.38E+03
2380

0.00E+00

0.00E+00

0.00E+00

2.43E+02
243

0.00E+00

2.14E+03
2140

Components for reuse (CRU)
可重复利用组件 (CRU)

kg
千克

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Exported thermal energy (ETE)
出口热能 (ETE)

MJ

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Exported electricity energy (EEE)
出口电能 (EEE)

MJ

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Result Interpretation
结果解读

6.1 Identification of Significant Issues
6.1 重大问题的识别

The percentage of potential environmental impacts at each life cycle stage is shown in the figure below. As can be seen from the diagram, the raw material acquisition stage accounts for most of the potential environmental impact in each impact category due to consumption of material such as steel, aluminum, plastic and electronic components.
下图显示了每个生命周期阶段潜在环境影响的百分比。从图中可以看出,由于消耗钢铁、铝、塑料和电子元件等材料,原材料获取阶段在每个影响类别中占据了大部分潜在环境影响。

Furthermore, depending on the category of impact, the installation and distribution transportation stages also bring a certain proportion of influence.
此外,根据影响类别不同,安装和分销运输阶段也会带来一定比例的影响。

Figure 6.1.1 – Potentiel environnemental impact per life stage
此外,图 6.1.2 显示了具有重大影响的原材料。

Moreover, raw material with significant impact were identified in figure 6.1.2 below.
此外,图 6.1.2 以下列出了具有重大影响的原材料。

As seen from the graph, for climate change, the sub component CB and BSG contribute to the main carbon emissions of the ZHW58A-145 Hybrid Gas-Insulated Switchgear0107-0106, however, for the impact categories such as acidification, eutrophication and abiotic depletion, the potential environmental impact of secondary component is much higher in percentage due to consumption of cable (copper).
从图中可以看出,对于气候变化,子组件 CB 和 BSG 贡献了 ZHW58A-145 混合绝缘开关设备(0107-0106)的主要碳排放;然而,对于酸化、富营养化和非生物耗竭等影响类别,由于消耗电缆(铜),次要组件的潜在环境影响百分比要高得多。

Figure 6.1 .2– Potential environmental impact of major component
图 6.1.2 主要组成部分的潜在环境影响

6.2 Completeness, Sensitivity, Uncertainty and Consistency Evaluation
6.2 完整性、敏感性、不确定性和一致性评估

Completeness
完整性

According to the requirements in ISO 14040, completeness was evaluated within the life cycle, including,
根据 ISO 14040 中的要求,在生命周期内对完整性进行了评估,包括:

The completeness of processes in the life cycle of the product.
产品生命周期中过程的完整性。

The system boundary of this study was set from "cradle-to-grave". The system boundary includes the raw material acquisition stage, the production stage, the distribution stage, the use stage and the end-of-life stage in accordance with PCR. The primary data of the study includes material consumption and transportation. Secondary data was defined from "cradle-to-gate". The life cycle model and assessment methodology are appropriate for the system boundary as defined in the goal and scope of the study.
本研究的系统边界设定为“从摇篮到坟墓”。根据 PCR,系统边界包括原材料获取阶段、生产阶段、分销阶段、使用阶段和生命周期结束阶段。研究的主要数据包括材料消耗和运输。次要数据定义为“从摇篮到工厂大门”。生命周期模型和评估方法适用于研究目标和范围中定义的系统边界。

The inclusion of raw material and energy input for the product.
包括产品的原材料和能源投入。

Primary data was collected for the raw materials required for the production, energy information and material transportation. Primary data collection has been completed.
主要数据收集了生产所需的原材料、能源信息和材料运输信息。主要数据收集已完成。

The evaluation of completeness reflects that the life cycle impact assessment of this study is consistent with the goal of this study. Primary and secondary data collection has been completed.
完成度评估反映出本研究的生命周期影响评估与本研究的目标一致。主要和次要数据收集已完成。

6.2.2 Sensitivity Analysis
6.2.2 灵敏度分析

The aim of the sensitivity analysis was to assess the reliability of ISO 14044:2006 by determining the impact of uncertainty in the calculation of data, allocation methods, and parameters on the final results and conclusions. As the study was performed in strict compliance with the PCR requirements, no additional checks for sensitivity were performed.
灵敏度分析的目的是通过确定数据计算、分配方法和参数的不确定性对最终结果和结论的影响,来评估 ISO 14044:2006 的可靠性。由于本研究严格遵守 PCR 要求,因此未进行额外的灵敏度检查。

6.2.3 Uncertainty Analysis
6.2.3 不确定性分析

This LCA study is designed to assess the potential environmental impact of Shanghai Sieyuan High Voltage Switchgear Co.,Ltd. ZHW58A-145 Hybrid Gas-Insulated Switchgear0107-0106during its life cycle, and the calculation result is subject to the data collected. The use of secondary emission factors is justified within the cradle-to-grave boundary.
本生命周期评价 (LCA) 研究旨在评估上海市西元高压开关设备有限公司 ZHW58A-145 混合气体绝缘开关设备(0107-0106)在其生命周期内的潜在环境影响,计算结果以收集的数据为准。在从摇篮到坟墓的边界内使用二次排放因子是合理的。

Data gaps, data representativeness, and temporal variables can lead to uncertainties. Therefore, based on a balance through level of detail and reasonable evaluation costs, the data applied in this report is the most suitable at the time of the research, while sources of primary and secondary data are subject to uncertainty.
数据缺口、数据代表性和时间变量都可能导致不确定性。因此,在兼顾细节水平和合理评估成本的基础上,本报告采用当时最合适的数据,而原始数据和次要数据的来源存在不确定性。

To minimize uncertainty, the following approach were used in the modeling and calculation:
为了最大程度地减少不确定性,模型和计算中使用了以下方法:

Completing correct data collection (close mass and energy balances).
完成正确的数据收集(封闭的质量和能量平衡)。

Choosing representative LCA data for the upstream and background data, which represent the actual technology.
选择代表上游和背景数据的具有代表性的 LCA 数据,这些数据代表实际技术。

Understanding the technical processes and defining parameters that are uncertain.
理解技术过程并定义不确定的参数。

Completeness of the system (no unjustified cut-offs).
系统的完整性(没有无根据的截止)。

The consistency in the data collected and background data reduces uncertainty. In addition, the analysis of the different scenarios, some sensitivity calculations performed and the technical understanding of the LCA modeler (as well as the reviewer) ensure minimum uncertainty.
收集的数据和背景数据的一致性降低了不确定性。此外,对不同情景的分析、进行的一些敏感性计算以及 LCA 建模者(以及审查者)的技术理解确保了最低限度的误差。

A common rule estimates that the best achievable uncertainty in LCA to be around 10%. For this EPD LCA study, the use of the most appropriate datasets available and the most representative technology route reduces the level of uncertainty.
一个普遍的规则估计,LCA 中最佳可实现的不确定性约为 10%。对于本 EPD LCA 研究,使用最合适的数据集和最具代表性的技术路线降低了不确定性水平。

6.2.4 Consistency Evaluation
6.2.4 一致性评估

Consistency evaluation is to ensure that assumptions, methods, and data are applied in the same way throughout the LCA study in accordance with the goal and scope definition.
一致性评估是为了确保在整个 LCA 研究中,根据目标和范围定义,以相同的方式应用假设、方法和数据。

All assumptions, methods and data are consistent with each other and with the study’s goal and scope. Differences in background data quality were minimized by exclusively using LCI data from the Ecoinvent 3.9 databases. System boundaries, allocation rules, and impact assessment methods have been applied consistently throughout the study. Moreover, the elements of impact assessment have been consistently applied. The impact evaluation models applied in this study is in accordance with EN 15804 +A2 Method.
所有假设、方法和数据彼此一致,并与研究的目标和范围一致。通过专门使用 Ecoinvent 3.9 数据库中的 LCI 数据,将背景数据质量的差异降至最低。系统边界、分配规则和影响评估方法在整个研究中始终如一地应用。此外,影响评估的要素也始终如一地应用。本研究中应用的影响评估模型符合 EN 15804 +A2 方法。

Limit
限制

The results are only valid for the situation defined by the assumptions described in the present report, and they are subject to change if these conditions change. The relevance and reliability of the report and its conclusions for use by third parties, or for purposes other than those specifically mentioned in this report cannot be guaranteed. Secondary data used for the study mainly come from Ecoinvent 3.9, which is a Swiss database. Even if this one is the most widely used in the world, data precision for Chinese situation might be improved by using local data.
结果仅对本报告中描述的假设所定义的情况有效,如果这些条件发生变化,结果可能会发生变化。本报告及其结论的关联性和可靠性,对于第三方使用或本报告中未明确提及的目的,不能保证。本研究使用的二手数据主要来自 Ecoinvent 3.9 数据库,这是一个瑞士数据库。即使它是世界上使用最广泛的数据库,但通过使用本地数据,可以提高其在中国情境下的数据精度。

LCIA only covers environmental issues which identified within the evaluation purpose and scope. Product LCA is still a field for further development. At LCA current level in the global, there is no universally accepted approach to establish a consistent and accurate link between inventory data and specific potential environmental impacts. Models for various impact category are at different development stages currently.
生命周期影响评价 (LCIA) 只涵盖在评估目的和范围内确定的环境问题。产品生命周期评估 (LCA) 仍然是一个有待进一步发展的领域。在全球范围内,LCA 的当前水平尚无法普遍接受一种方法来建立清单数据与特定潜在环境影响之间一致且准确的联系。各种影响类别的模型目前正处于不同的发展阶段。

Conclusion and Recommendation
结论与建议

The LCA result per functional unit of this product has been calculated and shown in the report. The calculation is based on the data collected from cradle to grave from January 2023 to December 2023. Results shown that the use stage is the stage with the greatest potential environmental impact throughout the life cycle of the product due to large electricity consumption.
本报告已计算并显示了该产品每个功能单元的生命周期评估 (LCA) 结果。该计算基于 2023 年 1 月至 2023 年 12 月从摇篮到坟墓收集的数据。结果表明,由于大量的电力消耗,使用阶段是该产品整个生命周期中潜在环境影响最大的阶段。

In response to the LCA results, the following recommendation are made as future improvement directions:
针对 LCA 结果,提出以下建议作为未来改进方向:

1. In addition to the use phase, the impact from raw material acquisition of the product has the largest potential environmental impact. To reduce the potential impact of raw materials, in addition to reducing the loss of raw materials in the production process, the manufacturer can encourage suppliers to take the lead in assessing the lifecycle impact of their products and carry out research on sustainable product design.
1. 除了使用阶段外,原材料获取对产品的影响也具有最大的潜在环境影响。为减少原材料的潜在影响,除了减少生产过程中的原材料损耗外,制造商还可以鼓励供应商率先评估其产品的生命周期影响,并开展可持续产品设计研究。

2. Environmental impact from the core manufacture stage are mainly from the use of electricity. In future, it is recommended to concentrate on reviewing the use of electricity, breaking down electricity consumption by process, keeping track of energy consumption, considering energy saving methods such as energy audits and energy efficiency assessments, identifying areas for improvement, identifying systems that can be optimized or equipment that can be upgraded. Improving energy efficiency and reducing energy consumption will inevitably lead to cost savings in the short and long term.
2. 核心制造阶段的环境影响主要来自用电。未来建议重点审查用电情况,按工艺分解用电量,跟踪能耗,考虑节能方法,如能源审计和能效评估,找出改进之处,确定可优化的系统或可升级的设备。提高能源效率和降低能耗势必会在短期和长期内带来成本节约。

3. Strengthen awareness training for internal staff and promote the need to save energy and reduce loss of raw materials.
3. 加强对内部员工的节能意识培训,并倡导节约能源和减少原材料损失。

4. Strengthen awareness of data recording and enhance the reliability of recorded data. In conjunction with the results of this product carbon footprint assessment, data should be recorded and tracked for the sources of emissions that contribute substantially to the reduction, so that when the product carbon footprint is calculated again, more accurate and complete data will be available, and more effort can be spent on effectively reducing product environmental impact.
4. 加强数据记录意识,提高记录数据的可靠性。结合本次产品碳足迹评估结果,应记录和跟踪对减排贡献较大的排放源数据,以便下次计算产品碳足迹时,能获得更准确、完整的数据,并将更多精力投入到有效减少产品环境影响方面。

References
参考文献

ISO 14040:2006 Environmental management — Life cycle assessment — Requirements and guidelines
ISO 14040:2006 环境管理——生命周期评价——要求和指南

ISO 14044:2006 Environmental management — Life cycle assessment — Principles and framework
ISO 14044:2006 环境管理——生命周期评价——原则和框架

EPDItaly007 – PCR for Electronic and electrical products and systems,Rev. 3, 2023/01/13
EPDItaly007 – 电子电气产品和系统产品类别规则,修订版 3,2023/01/13

EPDItaly012 – Electronic and electrical products and systems – Switchs, Rev. 0, 2020/03/16
EPDItaly012 – 电子和电气产品及系统 – 开关,修订版 0,2020/03/16

EN 50693:2019 Product category rules for life cycle assessments of electronic and electrical products and systems
EN 50693:2019 电子和电气产品及系统的生命周期评价产品类别规则