这是用户在 2024-6-14 12:10 为 https://www.nature.com/articles/s41588-024-01762-2 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Variation in TaSPL6-D confers salinity tolerance in bread wheat by activating TaHKT1;5-D while preserving yield-related traits

Abstract

Na+ exclusion from above-ground tissues via the Na+-selective transporter HKT1;5 is a major salt-tolerance mechanism in crops. Using the expression genome-wide association study and yeast-one-hybrid screening, we identified TaSPL6-D, a transcriptional suppressor of TaHKT1;5-D in bread wheat. SPL6 also targeted HKT1;5 in rice and Brachypodium. A 47-bp insertion in the first exon of TaSPL6-D resulted in a truncated peptide, TaSPL6-DIn, disrupting TaHKT1;5-D repression exhibited by TaSPL6-DDel. Overexpressing TaSPL6-DDel, but not TaSPL6-DIn, led to inhibited TaHKT1;5-D expression and increased salt sensitivity. Knockout of TaSPL6-DDel in two wheat genotypes enhanced salinity tolerance, which was attenuated by a further TaHKT1;5-D knockdown. Spike development was preserved in Taspl6-dd mutants but not in Taspl6-aabbdd mutants. TaSPL6-DIn was mainly present in landraces, and molecular-assisted introduction of TaSPL6-DIn from a landrace into a leading wheat cultivar successfully improved yield on saline soils. The SPL6-HKT1;5 module offers a target for the molecular breeding of salt-tolerant crops.
通过 Na + -选择性转运蛋白 HKT1;5 将 Na + 从地上组织排除是作物的主要耐盐机制。通过表达全基因组关联研究和酵母单杂交筛选,我们鉴定了 TaSPL6-D,它是面包小麦中 TaHKT1;5-D 的转录抑制因子。 SPL6 还针对水稻和短柄草属中的 HKT1;5。 TaSPL6-D 第一个外显子中的 47-bp 插入导致截短的肽 TaSPL6-D In ,破坏 TaSPL6-D Del 表现出的 TaHKT1;5-D 抑制。过表达 TaSPL6-D Del 而不是 TaSPL6-D In 会导致 TaHKT1;5-D 表达受到抑制并增加盐敏感性。两种小麦基因型中 TaSPL6-D Del 的敲除增强了耐盐性,而进一步敲除 TaHKT1;5-D 则减弱了耐盐性。在Taspl6-dd突变体中保留了尖峰发育,但在Taspl6-aabbdd突变体中则不然。 TaSPL6-D In 主要存在于地方品种中,通过分子辅助将 TaSPL6-D In 从地方品种引入到主要小麦品种中,成功提高了盐渍土的产量。 SPL6-HKT1;5 模块为耐盐作物的分子育种提供了目标。

This is a preview of subscription content, access via your institution

Access options

Access to this article via Qingdao University is not available.

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The identification of TaSPL6-D as an upstream regulator of TaHKT1;5-D via a combined strategy of Y1H screening and eGWAS.
Fig. 2: TaSPL6-DDel can bind to and negatively regulate TaHKT1;5-D, whereas TaSPL6-DIn cannot.
Fig. 3: TaSPL6-DDel attenuates salinity-stress tolerance of bread wheat.
Fig. 4: Knockdown of TaHKT1;5-D in Taspl6-dd mutant subdues the salinity-tolerant phenotype.
Fig. 5: Four genes encoding activators of TaHKT1;5-D are also downstream targets of TaSPL6-D.
Fig. 6: The homoeologous redundancy of bread wheat ensures normal spike development in Taspl6-dd.
Fig. 7: TaSPL6-DIn represents an elite allele not fully used in modern breeding, and its introgression from landraces into modern cultivars enhances salinity tolerance on saline farmlands.

Similar content being viewed by others

Data availability

The raw data files from the CUT&Tag-seq have been deposited in the Gene Expression Omnibus database with publicly available accession GSE245464. The initial mutation information of EMS mutants was collected from the Wheat JING411 TILLING Database (http://jing411.molbreeding.com) and WheatOmics v1.0 (http://wheatomics.sdau.edu.cn). Other data supporting the findings of this work are available within the paper and its Supplementary Information files. Source data are provided with this paper.

Code availability

All software used in this study is publicly available on the Internet, as described in the Methods and Reporting Summary.

References

  1. Corwin, D. L. Climate change impacts on soil salinity in agricultural areas. Eur. J. Soil Sci. 72, 842–862 (2021).

    Article  Google Scholar 

  2. Munns, R. & Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Chi, Y., Sun, J., Liu, W., Wang, J. & Zhao, M. Mapping coastal wetland soil salinity in different seasons using an improved comprehensive land surface factor system. Ecol. Indic. 107, 105517 (2019).

    Article  Google Scholar 

  4. Wang, M. & Xia, G. The landscape of molecular mechanisms for salt tolerance in wheat. Crop J. 6, 42–47 (2018).

    Article  Google Scholar 

  5. Schroeder, J. I. et al. Using membrane transporters to improve crops for sustainable food production. Nature 497, 60–66 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dubcovsky, J., María, G. S., Epstein, E., Luo, M. C. & Dvořák, J. Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor. Appl. Genet. 92, 448–454 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Byrt, C. S. et al. The Na+ transporter, TaHKT1;5-D, limits shoot Na+ accumulation in bread wheat. Plant J. 80, 516–526 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Lin, H. X. et al. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor. Appl. Genet. 108, 253–260 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Thomson, M. J. et al. Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice 3, 148–160 (2010).

    Article  Google Scholar 

  10. Ren, Z.-H. et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat. Genet. 37, 1141–1146 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, M. et al. A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize. New Phytol. 217, 1161–1176 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Hazzouri, K. M. et al. Mapping of HKT1;5 gene in barley using GWAS approach and its implication in salt tolerance mechanism. Front. Plant Sci. 9, 156 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shohan, M. U. S., Sinha, S., Nabila, F. H., Dastidar, S. G. & Seraj, Z. I. HKT1;5 transporter gene expression and association of amino acid substitutions with salt tolerance across rice genotypes. Front. Plant Sci. 10, 1420 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Møller, I. S. et al. Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis. Plant Cell 21, 2163–2178 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Plett, D. et al. Improved salinity tolerance of rice through cell type-specific expression of AtHKT1;1. PLoS ONE 5, e12571 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kronzucker, H. J. & Britto, D. T. Sodium transport in plants: a critical review. New Phytol. 189, 54–81 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Mäser, P. et al. Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Lett. 531, 157–161 (2002).

    Article  PubMed  Google Scholar 

  18. Sunarpi et al. Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J. 44, 928–938 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Shkolnik-Inbar, D., Adler, G. & Bar-Zvi, D. ABI4 downregulates expression of the sodium transporter HKT1;1 in Arabidopsis roots and affects salt tolerance. Plant J. 73, 993–1005 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, J. et al. A DNA methylation reader–chaperone regulator–transcription factor complex activates OsHKT1;5 expression during salinity stress. Plant Cell 32, 3535–3558 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, Y. et al. SET DOMAIN GROUP 721 protein functions in saline–alkaline stress tolerance in the model rice variety Kitaake. Plant Biotechnol. J. 19, 2576–2588 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, M., Wang, S. & Xia, G. From genome to gene: a new epoch for wheat research? Trends Plant Sci. 20, 380–387 (2015).

    Article  PubMed  Google Scholar 

  23. Xiao, J. et al. Wheat genomic study for genetic improvement of traits in China. Sci. China Life Sci. 65, 1718–1775 (2022).

    Article  PubMed  Google Scholar 

  24. Zhou, Y. et al. Triticum population sequencing provides insights into wheat adaptation. Nat. Genet. 52, 1412–1422 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Jia, J. et al. Homology-mediated inter-chromosomal interactions in hexaploid wheat lead to specific subgenome territories following polyploidization and introgression. Genome Biol. 22, 26 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Verslues, P. E. et al. Burning questions for a warming and changing world: 15 unknowns in plant abiotic stress. Plant Cell 35, 67–108 (2023).

    Article  PubMed  Google Scholar 

  27. Dubcovsky, J. & Dvorak, J. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316, 1862–1866 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ramírez-González, R. H. et al. The transcriptional landscape of polyploid wheat. Science 361, eaar6089 (2018).

    Article  PubMed  Google Scholar 

  29. Wang, M. et al. From genetic stock to genome editing: gene exploitation in wheat. Trends Biotechnol. 36, 160–172 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Voss-Fels, K. P. et al. Linkage drag constrains the roots of modern wheat. Plant Cell Environ. 40, 717–725 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Fradgley, N. et al. A large-scale pedigree resource of wheat reveals evidence for adaptation and selection by breeders. PLoS Biol. 17, e3000071 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Winfield, M. O. et al. High-density genotyping of the A.E. Watkins collection of hexaploid landraces identifies a large molecular diversity compared to elite bread wheat. Plant Biotechnol. J. 16, 165–175 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Yu, S. et al. Haplotype variations in QTL for salt tolerance in Chinese wheat accessions identified by marker-based and pedigree-based kinship analyses. Crop J. 8, 1011–1024 (2020).

    Article  Google Scholar 

  34. Ma, S. et al. WheatOmics: a platform combining multiple omics data to accelerate functional genomics studies in wheat. Mol. Plant 14, 1965–1968 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, M. et al. A HAK family Na+ transporter confers natural variation of salt tolerance in maize. Nat. Plants 5, 1297–1308 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Alam, M. S. et al. Loss-of-function mutations of OsbHLH044 transcription factor lead to salinity sensitivity and a greater chalkiness in rice (Oryza sativa L.). Plant Physiol. Biochem. 193, 110–123 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Liu, X. et al. The trihelix transcription factor OsGTγ-2 is involved adaption to salt stress in rice. Plant Mol. Biol. 103, 545–560 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, Q.-L., Sun, A.-Z., Chen, S.-T., Chen, L.-S. & Guo, F.-Q. SPL6 represses signalling outputs of ER stress in control of panicle cell death in rice. Nat. Plants 4, 280–288 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, L. & Zhang, Q. Boosting rice yield by fine-tuning SPL gene expression. Trends Plant Sci. 22, 643–646 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Jiao, Y. et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 42, 541–544 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Shan, Q., Wang, Y., Li, J. & Gao, C. Genome editing in rice and wheat using the CRISPR/Cas system. Nat. Protoc. 9, 2395–2410 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chao, L.-M. et al. Arabidopsis transcription factors SPL1 and SPL12 confer plant thermotolerance at reproductive stage. Mol. Plant 10, 735–748 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Sato, K. et al. Chromosome-scale genome assembly of the transformation-amenable common wheat cultivar ‘Fielder’. DNA Res. 28, dsab008 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guo, W. et al. Origin and adaptation to high altitude of Tibetan semi-wild wheat. Nat. Commun. 11, 5085 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Walkowiak, S. et al. Multiple wheat genomes reveal global variation in modern breeding. Nature 588, 277–283 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Athiyannan, N. et al. Long-read genome sequencing of bread wheat facilitates disease resistance gene cloning. Nat. Genet. 54, 227–231 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Aury, J.-M. et al. Long-read and chromosome-scale assembly of the hexaploid wheat genome achieves high resolution for research and breeding. GigaScience 11, giac034 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kale, S. M. et al. A catalogue of resistance gene homologs and a chromosome-scale reference sequence support resistance gene mapping in winter wheat. Plant Biotechnol. J. 20, 1730–1742 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shi, X. et al. Comparative genomic and transcriptomic analyses uncover the molecular basis of high nitrogen-use efficiency in the wheat cultivar Kenong 9204. Mol. Plant 15, 1440–1456 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. International Wheat Genome Sequencing Consortium (IWGSC) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361, eaar7191 (2018).

    Article  Google Scholar 

  52. Zhou, Y. et al. Introgressing the Aegilops tauschii genome into wheat as a basis for cereal improvement. Nat. Plants 7, 774–786 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Luo, M.-C. et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551, 498–502 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li, L.-F. et al. Genome sequences of five Sitopsis species of Aegilops and the origin of polyploid wheat B subgenome. Mol. Plant 15, 488–503 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Avni, R. et al. Genome sequences of three Aegilops species of the section Sitopsis reveal phylogenetic relationships and provide resources for wheat improvement. Plant J. 110, 179–192 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Thabet, S. G., Moursi, Y. S., Sallam, A., Karam, M. A. & Alqudah, A. M. Genetic associations uncover candidate SNP markers and genes associated with salt tolerance during seedling developmental phase in barley. Environ. Exp. Bot. 188, 104499 (2021).

    Article  CAS  Google Scholar 

  57. Vidal, E. A. et al. Nitrate in 2020: thirty years from transport to signaling networks. Plant Cell 32, 2094–2119 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu, H., Ye, H., Yao, R., Zhang, T. & Xiong, L. OsJAZ9 acts as a transcriptional regulator in jasmonate signaling and modulates salt stress tolerance in rice. Plant Sci. 232, 1–12 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Chen, H.-C., Cheng, W.-H., Hong, C.-Y., Chang, Y.-S. & Chang, M.-C. The transcription factor OsbHLH035 mediates seed germination and enables seedling recovery from salt stress through ABA-dependent and ABA-independent pathways, respectively. Rice 11, 50 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Nakashima, K. et al. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J. 51, 617–630 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Li, G.-Z. et al. Melatonin promotes potassium deficiency tolerance by regulating HAK1 transporter and its upstream transcription factor NAC71 in wheat. J. Pineal Res. 70, e12727 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Mao, H. et al. Variation in cis-regulation of a NAC transcription factor contributes to drought tolerance in wheat. Mol. Plant 15, 276–292 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Finkler, A., Ashery-Padan, R. & Fromm, H. CAMTAs: calmodulin-binding transcription activators from plants to human. FEBS Lett. 581, 3893–3898 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Kumar, S. et al. Structural basis of NPR1 in activating plant immunity. Nature 605, 561–566 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang, M. et al. Induced and constitutive DNA methylation in a salinity-tolerant wheat introgression line. Plant Cell Physiol. 55, 1354–1365 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Baek, D. et al. Regulated AtHKT1 gene expression by a distal enhancer element and DNA methylation in the promoter plays an important role in salt tolerance. Plant Cell Physiol. 52, 149–161 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Kumar, S., Beena, A. S., Awana, M. & Singh, A. Salt-induced tissue-specific cytosine methylation downregulates expression of HKT genes in contrasting wheat (Triticum aestivum L.) genotypes. DNA Cell Biol. 36, 283–294 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Munns, R. et al. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat. Biotechnol. 30, 360–364 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Uchiyama, T. et al. The HKT1 Na+ transporter protects plant fertility by decreasing Na+ content in stamen filaments. Sci. Adv. 9, eadg5495 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wei, T., Cheng, Q., Min, Y.-L., Olson, E. N. & Siegwart, D. J. Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat. Commun. 11, 3232 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, M. et al. TaCYP81D5, one member in a wheat cytochrome P450 gene cluster, confers salinity tolerance via reactive oxygen species scavenging. Plant Biotechnol. J. 18, 791–804 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Krasileva, K. V. et al. Uncovering hidden variation in polyploid wheat. Proc. Natl Acad. Sci. USA 114, E913–E921 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang, M. et al. TaANR1-TaBG1 and TaWabi5-TaNRT2s/NARs link ABA metabolism and nitrate acquisition in wheat roots. Plant Physiol. 182, 1440–1453 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li, L. et al. TaSPL13 regulates inflorescence architecture and development in transgenic wheat (Triticum aestivum L.). Plant Sci. 296, 110516 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Gao, Y. et al. Enhancing green fraction estimation in rice and wheat crops: a self-supervised deep learning semantic segmentation approach. Plant Phenomics 5, 0064 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Paolacci, A. R., Tanzarella, O. A., Porceddu, E. & Ciaffi, M. Identification and validation of reference genes for quantitative RT–PCR normalization in wheat. BMC Mol. Biol. 10, 11 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kumar, S., Stecher, G., Peterson, D. & Tamura, K. MEGA-CC: computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis. Bioinformatics 28, 2685–2686 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang, Z. et al. Mixed linear model approach adapted for genome-wide association studies. Nat. Genet. 42, 355–360 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lipka, A. E. et al. GAPIT: genome association and prediction integrated tool. Bioinformatics 28, 2397–2399 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Pfeifer, B., Wittelsbürger, U., Ramos-Onsins, S. E. & Lercher, M. J. PopGenome: an efficient swiss army knife for population genomic analyses in R. Mol. Biol. Evol. 31, 1929–1936 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhu, T. et al. Genome-wide identification, phylogeny and expression analysis of the SPL gene family in wheat. BMC Plant Biol. 20, 420 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Oyama, T., Shimura, Y. & Okada, K. The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Gene Dev. 11, 2983–2995 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang, M. et al. TaSRO1 plays a dual role in suppressing TaSIP1 to fine tune mitochondrial retrograde signalling and enhance salinity stress tolerance. New Phytol. 236, 495–511 (2022).

    Article  CAS  PubMed  Google Scholar 

  86. Zhang, Y. et al. Evolutionary rewiring of the wheat transcriptional regulatory network by lineage-specific transposable elements. Genome Res. 31, 2276–2289 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Sun, Y. et al. Quantitative proteomics and transcriptomics reveals differences in proteins during anthers development in Oryza longistaminata. Front. Plant Sci. 12, 744792 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Zhang, Y. et al. Model-based analysis of ChIP–seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate H. Li (State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University) for helping us obtain the haplotype information of SPL6 in the A. tauschii population. We also appreciate M. Zhang (China Agricultural University) for technical assistance in the isolation of root stele cells; G. Li (Nanjing Agriculture University) and Y. He (Jiangsu Academy of Agricultural Sciences) for technical assistance in the immunoblotting assay; S. Liu (Nanjing Agriculture University) for leaf extraction from images of field trials. This work was supported by the National Natural Science Foundation of China (U1906202 and 32072064), the National Key Research and Development Program of China (2022YFD1900704-7), the Natural Science Foundation of Jiangsu Province, China (BK20200110), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA24020104) and Youth Innovation Promotion Association of Chinese Academy of Sciences (2022314).

Author information

Authors and Affiliations

Authors

Contributions

M.W. conceived and supervised the project, performed most of the experiments, analyzed the data and wrote the manuscript. J.W. managed the bread wheat natural population, performed eGWAS and haplotype analysis and wrote the corresponding sections in the manuscript. J. Cheng performed most of the experiments related to the function of TaSPL6. J. Chen conducted some phenotypic assays related to salt stress. D.L. conducted some phenotypic assays related to spike development. C.W., W.G. and Y.Z. contributed to the field trials. S.M. provided assistance in eGWAS. G.L., D.D. and D.H. discussed the manuscript. H.J.K., G.X. and W.S. discussed and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Meng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Tomoaki Horie, Caifu Jiang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Transcriptional analysis of bread wheat TaHKT1;5-D to determine the optimal sample for Y1H screening and eGWAS.

(a) Schematic of the isolation of root-stelar samples. Scale bar, 1 cm (left panel); 25 μm (the rest three panels). (b) The relative expression level of TaHAK4-7A (TraesCS7A02G071000) and (c) TaHKT1;5-D (TraesCS4D02G361300) in the stele or outer part of roots. TaHAK4-7A was used as a positive control for the stele-specific expression. TaEF1-α (M90077) was used as the endogenous control. The transcript abundance in the outer part of the roots was normalized to 1 in each panel. Each bar represents the mean ± SD (n = 3 independent experiments). Significance analysis was performed by two-tailed Student’s t test. (d) Global analysis of the transcriptional response of TaHKT1;5-D in root-stelar cells of 22 representative bread wheat accessions to salt stress. (e) Subgroup analysis of the transcriptional response of TaHKT1;5-D in root-stelar cells to salt stress. Twenty-two representative bread wheat accessions were divided into two subgroups, TaSPL6-DIn accessions (n = 8) and TaSPL6-DDel accessions (n = 14), by the core 47-bp InDel variation. In the box plots, centerline represents median and bounds of box indicate the interquartile range. Each bar represents the mean ± SE. h, hour; D, day.

Source data

Extended Data Fig. 2 Genetic structure of the 304 included wheat accessions and eGWAS results for the expression level of TaHKT1;5-D.

(a) The distribution of filtered SNPs/InDels across the wheat genome. (b) Neighbor-joining tree analysis, (c) structure analysis and (d) principle component analysis to reveal the population structure. Vertical lines in c indicate genetic similarity thresholds used to classify accessions into two main groups. (e) Results of eGWAS for the expression level of TaHKT1;5-D. Significance was calculated by two-tailed Fisher’s exact test. The black horizontal dashed line indicates the genome-wide suggestive significance threshold (P = 1.18 × 10−6). The red horizontal dashed line indicates the significance threshold (P = 1.00 × 10−7) to strictly define significant loci associated with the expression level of TaHKT1;5-D. (f) Quantile–quantile plot for the GWAS under the mixed linear model (MLM). The gray layer indicates the error band (±5%). (g) Nucleotide diversity across the gene TaSPL6-D. A 1-bp sliding window with a 1-bp step size was used to calculate nucleotide diversity (π). The core InDel variation (iad5D_540783796) is highlighted by arrows.

Source data

Extended Data Fig. 3 The transcription profiles of TaSPL6 homoeologs.

(a) Spatial expression patterns of TaSPL6 homoeologs. (b) Transcription of TaSPL6 homoeologs in the root stele under control (CT) and salt-stress conditions. TaEF1-α (M90077) was used as the endogenous control. Each bar represents the mean ± SD (n = 3 independent experiments). Significance analysis was performed by one-way LSD test.

Source data

Extended Data Fig. 4 Dual-luciferase transient expression assay using the TaHKT1;5-D promoter harboring the wild-type or mutated GTAC motifs.

(a) Schematic representation of various constructs used in the dual-luciferase (LUC) transient expression assay. (b,c) Dual-luciferase transient expression assay shows that all three GTAC motifs contributed to the suppression of the promoter activity of TaHKT1;5-D by TaSPL6-DDel. Scale bar in b, 1 cm. Each bar in c represents the mean ± SD (n = 8 biologically independent samples). Significance analysis was performed by two-tailed Student’s t test. EV, empty vector. (d) Immunoblot assay using anti-GFP antibody showing TaSPL6-DDel abundances in b and c. Tubulin served as the loading control. Molecular masses in kD are indicated on the left side. For cropped blots, the samples derived from the same experiment and blots were processed in parallel. Experiments were independently performed at least three times with similar results.

Source data

Extended Data Fig. 5 SPL6 in rice and Brachypodium distachyon can target and suppress HKT1;5.

(a) Position and conservation of the GTAC motifs present in the promoters of TaHKT1;5-D, OsHKT1;5, HvHKT1;5 and BdHKT1;5. (b) Y1H assay results. SD/−Leu, SD medium without Leu; SD/−Leu/AbAX, SD medium without Leu supplemented with AbA at the concentration of 100 or 200 ng mL−1. Transformed yeast cells were dotted at 10−1 dilutions on the selective medium. Experiments were independently performed at least three times with similar results. (c,d) Schematic representation of various constructs used in the dual-luciferase (LUC) transient expression assay. (e,f) Dual-luciferase transient expression assay showing that OsSPL6 or BdSPL6 is able to suppress the promoter activity of OsHKT1;5 or BdHKT1;5, which was related to GTAC motif. EV, empty vector. Scale bar in e, 1 cm. Each bar in f represents the mean ± SD (n = 8 biologically independent samples). Significance analysis was performed by two-tailed Student’s t test. (g) Immunoblot assay using anti-GFP antibody showing OsSPL6 and BdSPL6 abundances. Tubulin served as the loading control. Molecular masses in kDa are indicated on the left side. For cropped blots, the samples derived from the same experiment and blots were processed in parallel. Experiments were independently performed at least three times with similar results.

Source data

Extended Data Fig. 6 EMS-based mutants of TaSPL6-DDel in the background of bread wheat cv. JING411 also enhances salinity tolerance.

(a) Mutagenesis of TaSPL6-DDel in cv. JING411. Green boxes and black line represent exons and introns, respectively. (b) Phenotypic performance, (d) shoot Na+ content and (e) whole-seedling biomass of wild-type (WT), TaSPL6-D-m1 and TaSPL6-D-m2 lines under control (CT) or salinity-stress (150 mM NaCl for at least 10 days) conditions. Scale bar in b, 4 cm. Each bar in represents the mean ± SD (n = 6 biologically independent samples) in d and (n = 7 biologically independent samples) in e. (c) The relative expression level of TaHKT1;5-D in root-stelar cells of WT, TaSPL6-D-m1 and TaSPL6-D-m2 lines under CT or salinity-stress (150 mM NaCl for 24 h) conditions. Transcript abundance in WT was calculated by giving the value 1. TaEF1-α (M90077) was used as the endogenous control. Each bar represents the mean ± SD (n = 3 independent experiments). In c, d and e, significance analysis was performed by one-way LSD test.

Source data

Extended Data Fig. 7 EMS-based mutants of TtSPL6-A in the background of tetraploid wheat cv. Kronos shows similar salinity tolerance to wild-type plants.

(a) Mutagenesis of TtSPL6-A and TtSPL6-B in tetraploid wheat cv. Kronos. (b) Phenotypic performance, (c) shoot Na+ content and (d) whole-seedling biomass of wild-type (WT), Ttspl6-aa-1 and Ttspl6-aa-2 lines under control (CT) or salinity-stress (100 mM NaCl for at least 10 days) conditions. Scale bar in b, 4 cm. Each bar in represents the mean ± SD (n = 6 biologically independent samples) in c and (n = 7 biologically independent samples) in d. In c and d, significance analysis was performed by one-way LSD test.

Source data

Extended Data Fig. 8 Four transcription factors encoded by TaSPL6-D targets can target and activate TaHKT1;5-D.

(a) Y1H assay showing that the four selected TFs are able to bind to the TaHKT1;5-D promoter. SD/−Leu, SD medium without Leu; SD/−Leu/AbA100, SD medium without Leu supplemented with AbA at the concentration of indicated 100 ng mL−1. Transformed yeast cells were dotted at 10−1 dilutions on the selective medium. Similar results were seen in three independent experiments. (b) Schematic diagram of motifs in the TaHKT1;5-D promoter region and DNA fragments (P1 and P2) for ChIP–qPCR. The black arrow indicates the transcription start site. (c) ChIP–qPCR showing in vivo binding of the TaHKT1;5-D promoter by TaNAC6 (using P2), TabHLH148 (using P1), TaGT2 (using P2) and TaMYB30 (using P2), respectively, in wheat root protoplasts. Each bar represents the mean ± SD (n = 3 independent experiments). (d,e) Dual-luciferase transient expression assay showing that TaNAC6, TabHLH148, TaGT2 and TaMYB30 can activate the promoter activity of TaHKT1;5-D. Scale bar in d, 1 cm. Each bar in e represents the mean ± SD (n = 8 biologically independent samples). EV, empty vector. In c and e, significance analysis was performed by two-tailed Student’s t test.

Source data

Extended Data Fig. 9 Knockout of TtSPL6-A or TtSPL6-B in tetraploid wheat shows an adverse effect on yield-related traits.

(a) The structure and grain yield of spikes observed in the wild-type (WT), Ttspl6-aa and Ttspl6-bb lines. Scale bars, 1 cm. (b) Spikelets per spike, (c) kernels per spike and (d) grain yield per spike of WT, Ttspl6-aa and Ttspl6-bb lines. Each bar represents the mean ± SD (n = 8 biologically independent samples). In bd, Significance analysis was performed by one-way Tukey multiple comparisons test.

Source data

Extended Data Fig. 10 Field performance of introgression lines harboring TaSPL6-DIn or TaSPL6-DDel on saline farmlands in Qingdao, China, and TaSPL6-DDel knockout lines in Dongying and Qingdao, China.

(a) The transcript abundance of TaHKT1;5-D in root-stelar cells and (b) whole-seedling biomass of sibling lines harboring TaSPL6-DIn or TaSPL6-DDel in hydroponic experiments. Each bar represents the mean ± SD (a, n = 3 independent experiments; b, n = 7 biologically independent samples). (cf) Field performance of introgression lines harboring TaSPL6-DIn or TaSPL6-DDel on saline farmlands in Qingdao, China. (c) The flag leaf Na+ content, (d) kernels per spike, (e) thousand kernels weight and (f) grain yield per block of TaSPL6-DIn and TaSPL6-DDel lines. Each bar represents the mean ± SD (c, n = 9 biologically independent samples; d, n = 20 biologically independent samples; e, n = 8 biologically independent samples; f, n = 3 independent experiments). (gj) Field performance of wild-type (WT) and two TaSPL6-DDel knockout lines on saline farmlands in Dongying, China. (g) The flag leaf Na+ content, (h) kernels per spike, (i) thousand kernels weight and (j) grain yield per block of WT and two TaSPL6-DDel knockout lines. Each bar represents the mean ± SD (g, n = 9 biologically independent samples; h, n = 20 biologically independent samples; i, n = 8 biologically independent samples; j, n = 3 independent experiments). (kn) Field performance of wild-type (WT) and two TaSPL6-DDel knockout lines on saline farmlands in Qingdao, China. (k) The flag leaf Na+ content, (l) kernels per spike, (m) thousand kernels weight and (n) grain yield per block of WT and two TaSPL6-DDel knockout lines. Each bar represents the mean ± SD (k, n = 9 biologically independent samples; l, n = 20 biologically independent samples; m, n = 8 biologically independent samples; n, n = 3 independent experiments). In the box plots (d, h and l), centerline represents median and bounds of box indicate the interquartile range. In an, significance analysis was performed by two-tailed Student’s t test.

Source data

Supplementary information

Supplementary Information

Supplementary Note, Supplementary Figs. 1–6 and supporting data for Supplementary Figs. 3 and 6.

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Tables 1–10.

Supplementary Data

Statistical supporting data of Supplementary Figs. 4–6.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 8

Statistical source data.

Source Data Extended Data Fig. 9

Statistical source data.

Source Data Extended Data Fig. 10

Statistical source data.

Source Data Figs. 2 and 7 and Extended Data Figs. 4 and 5

Unprocessed western blots and gels.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Cheng, J., Wu, J. et al. Variation in TaSPL6-D confers salinity tolerance in bread wheat by activating TaHKT1;5-D while preserving yield-related traits. Nat Genet (2024). https://doi.org/10.1038/s41588-024-01762-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41588-024-01762-2

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing