這是用戶在 2025-1-8 2:24 為 https://app.immersivetranslate.com/pdf-pro/6ca6bf38-b18a-4a0c-a91c-71625c419be5 保存的雙語快照頁面,由 沉浸式翻譯 提供雙語支持。了解如何保存?

MRI Measures of Aging
Methodological Issues
MRI 測量老化的方法論問題

Hanzhang LuPeiying Liu  劉佩瑩

Magnetic resonance imaging (MRI) is one of the most widely used imaging techniques in studies of cognitive neuroscience, including in brain aging. Compared to other medical imaging modalities, MRI has three important features that have contributed to this broad acceptance. First, MRI does not involve ionizing radiation and, as a matter of fact, most MRI scans do not require any exogenous contrast agents. Therefore, it is particularly suitable for studies on healthy participants in whom injection of exogenous tracer or agent is not desirable. For similar reasons, one can repeat the MRI scan as frequently as needed in a follow-up or longitudinal setting. Second, MRI provides an excellent spatial resolution, allowing the visualization of the brain with exceptional details. It also shows clear image contrast between soft tissues, unlike several other imaging technologies such as X-ray and computertomography (CT), thus can easily distinguish the gray and white matter based on their characteristic MR properties. Finally, MRI is also a versatile imaging modality. Within the same imaging session, one can perform several MRI pulse sequences and therefore obtain multiple domains of structural, functional, and physiological information from the participant. This advantage reduces subject burden and allows the integration of multi-parametric datasets in understanding cerebral aging. This chapter will provide a review of the basic principles of MRI, describe several major MRI techniques that are commonly used in cerebral aging, and introduce new, emerging techniques that are on the horizon.
磁共振成像(MRI)是認知神經科學研究中最廣泛使用的成像技術之一,包括大腦老化的研究。與其他醫學成像方式相比,MRI 有三個重要特徵促成了其廣泛的接受度。首先,MRI 不涉及電離輻射,事實上,大多數 MRI 掃描不需要任何外源性對比劑。因此,它特別適合於對健康參與者的研究,因為不希望注射外源性示蹤劑或藥劑。出於類似的原因,在後續或縱向研究中,可以根據需要頻繁重複 MRI 掃描。第二,MRI 提供了優秀的空間解析度,能夠以卓越的細節可視化大腦。它還顯示出軟組織之間的清晰影像對比,與其他幾種成像技術(如 X 光和電腦斷層掃描(CT))不同,因此可以輕鬆區分灰質和白質,基於其特徵性的 MRI 屬性。最後,MRI 也是一種多功能的成像方式。 在同一次影像檢查中,可以執行多個 MRI 脈衝序列,因此可以從參與者那裡獲得多個結構、功能和生理信息的領域。這一優勢減少了受試者的負擔,並允許在理解大腦老化時整合多參數數據集。本章將回顧 MRI 的基本原理,描述幾種在大腦老化中常用的主要 MRI 技術,並介紹一些即將出現的新技術。

Basic Principles of MRI
MRI 的基本原則

The Origin of the MRI Signal
MRI 信號的起源

The source of MRI signal is from the endogenous nuclei (e.g., 1 H , 23 Na , 31 P , 17 O 1 H , 23 Na , 31 P , 17 O ^(1)H,^(23)Na,^(31)P,^(17)O{ }^{1} \mathrm{H},{ }^{23} \mathrm{Na},{ }^{31} \mathrm{P},{ }^{17} \mathrm{O}, and 19 F 19 F ^(19)F{ }^{19} \mathrm{~F} ) that form the human body. The vast majority of the MRI studies used in cerebral aging are based on the detection of the protons in 1 H 1 H ^(1)H{ }^{1} \mathrm{H} nucleus (more specifically water protons); thus we will focus our discussion on this nuclear species.
MRI 信號的來源是來自於形成人體的內源性核(例如, 1 H , 23 Na , 31 P , 17 O 1 H , 23 Na , 31 P , 17 O ^(1)H,^(23)Na,^(31)P,^(17)O{ }^{1} \mathrm{H},{ }^{23} \mathrm{Na},{ }^{31} \mathrm{P},{ }^{17} \mathrm{O} 19 F 19 F ^(19)F{ }^{19} \mathrm{~F} )。大多數用於腦部老化的 MRI 研究都是基於對 1 H 1 H ^(1)H{ }^{1} \mathrm{H} 核中的質子的檢測(更具體地說是水質子);因此我們將重點討論這種核物種。
Each proton can be viewed as a small magnet. When these small magnets are placed in an environment without any significant external magnetic field (e.g., outside the MRI scanner), they will be oriented randomly (Figure 1.1A) and, as a result, their net strength, referred to as magnetization, is 0 . On the other hand, when these magnets are placed inside a strong external magnetic field (e.g., inside the MRI scanner), their orientation is no longer random. Slightly more than half of them will orient themselves to be parallel to the external field, while slightly less than half will be anti-parallel to the external field (Figure 1.1B). Thus, the net strength of the proton magnets is no longer 0 but is parallel to the external field (see M M MM vector in Figure 1.1B), since slightly more magnets are pointing along that direction.
每個質子可以被視為一個小磁鐵。當這些小磁鐵置於沒有任何顯著外部磁場的環境中(例如,在 MRI 掃描儀外),它們將隨機排列(圖 1.1A),因此它們的淨強度,稱為磁化,為 0。另一方面,當這些磁鐵置於強外部磁場中(例如,在 MRI 掃描儀內),它們的排列不再是隨機的。稍微多於一半的磁鐵將會與外部磁場平行,而稍微少於一半的磁鐵將會與外部磁場反平行(圖 1.1B)。因此,質子磁鐵的淨強度不再是 0,而是與外部磁場平行(見圖 1.1B 中的 M M MM 向量),因為稍微多一些的磁鐵指向該方向。
The magnitude of the net strength, which ultimately determines the intensity of our MRI signal, is given by:
淨強度的大小,最終決定我們 MRI 信號的強度,表達為:
M = 1 4 ρ C T B 0 M = 1 4 ρ C T B 0 M=(1)/(4)rho(C)/((T))B_(0)\mathrm{M}=\frac{1}{4} \rho \frac{\mathrm{C}}{\mathrm{~T}} B_{0}
Figure 1.1 Illustration of the formation of MRI signal. (A) When the water protons are placed in an environment without a significant magnetic field, they are oriented randomly, thus the net signal (referred to as magnetization, M M MM ) is zero. (B) When the water protons are placed in a strong magnetic field, they are aligned along the axis of the external field, B 0 B 0 B_(0)\mathrm{B}_{0}, with a slightly larger fraction parallel to the field (relative to anti-parallel). Thus, the net magnetization is along the B 0 B 0 B_(0)B_{0} direction. This net magnetization is what an MRI system measures when performing a scan.
圖 1.1 MRI 信號形成的示意圖。 (A) 當水中的質子置於沒有顯著磁場的環境中時,它們隨機取向,因此淨信號(稱為磁化, M M MM )為零。 (B) 當水中的質子置於強磁場中時,它們沿著外部磁場的軸對齊, B 0 B 0 B_(0)\mathrm{B}_{0} ,其中有稍微更大的一部分平行於磁場(相對於反平行)。因此,淨磁化沿著 B 0 B 0 B_(0)B_{0} 方向。這個淨磁化是 MRI 系統在進行掃描時所測量的。

where ρ ρ rho\rho is the proton density (PD) of the issue, B 0 B 0 B_(0)\mathrm{B}_{0} is the strength of the external field, T is the temperature in Kelvin, and C is a parameter related to several physics constants. While mathematically simple, several observations can be made from Equation [1]. First, one can appreciate that the MRI signal is greater at a higher field strength, B 0 B 0 B_(0)\mathrm{B}_{0}. Second, proton density, i.e., the amount of water in the tissue, plays a major role in MRI signal intensity. In the brain, CSF contains the highest water density (about 1 g water / ml / ml //ml/ \mathrm{ml} ) while the gray ( 0.89 g water / ml / ml //ml/ \mathrm{ml} ) and white matter ( 0.73 g water / ml / ml //ml/ \mathrm{ml} ) contain less (Herscovitch and Raichle, 1985). Therefore, in a proton-density MRI, CSF is expected to be brighter than the gray matter, which is in turn brighter than the white matter. Third, the lower the temperature, the greater the MRI signal. Unfortunately, this is not something that one can easily exploit under in vivo conditions.
其中 ρ ρ rho\rho 是組織的質子密度 (PD), B 0 B 0 B_(0)\mathrm{B}_{0} 是外部場的強度,T 是以開爾文為單位的溫度,C 是與幾個物理常數相關的參數。雖然在數學上簡單,但從方程式 [1] 中可以得出幾個觀察結果。首先,可以欣賞到在較高的場強下,MRI 信號更強, B 0 B 0 B_(0)\mathrm{B}_{0} 。其次,質子密度,即組織中水的含量,在 MRI 信號強度中扮演著重要角色。在大腦中,腦脊髓液 (CSF) 含有最高的水密度(約 1 克水 / ml / ml //ml/ \mathrm{ml} ),而灰質(0.89 克水 / ml / ml //ml/ \mathrm{ml} )和白質(0.73 克水 / ml / ml //ml/ \mathrm{ml} )則含有較少的水(Herscovitch 和 Raichle,1985)。因此,在質子密度 MRI 中,腦脊髓液預期會比灰質更亮,而灰質又會比白質更亮。第三,溫度越低,MRI 信號越強。不幸的是,這在體內條件下並不是容易利用的。
While the application of the external B 0 B 0 B_(0)\mathrm{B}_{0} field can induce a net magnetic field in the tissue, this field along the B 0 B 0 B_(0)B_{0} direction cannot be detected. Therefore, a second external field, referred to as radiofrequency (RF) magnetic field (also known as the B 1 B 1 B_(1)B_{1} field) is needed to “excite” the tissue spins. With these steps, one can detect a signal in the receiving coil. However, no spatial information is present yet. The spatial information is encoded by applying a magnetic field gradient such that water protons in different spatial locations experience different magnetic fields and therefore have different oscillation frequency. Once these signals are received and recorded by the coil, an image reconstruction algorithm can then be used to obtain the final MRI images.
雖然外部 B 0 B 0 B_(0)\mathrm{B}_{0} 場的應用可以在組織中誘導出淨磁場,但沿 B 0 B 0 B_(0)B_{0} 方向的磁場無法被檢測到。因此,需要第二個外部場,稱為射頻(RF)磁場(也稱為 B 1 B 1 B_(1)B_{1} 場),來“激發”組織自旋。通過這些步驟,可以在接收線圈中檢測到信號。然而,尚未存在空間信息。空間信息是通過施加磁場梯度來編碼的,使得不同空間位置的水質子經歷不同的磁場,因此具有不同的振盪頻率。一旦這些信號被線圈接收和記錄,就可以使用圖像重建算法來獲得最終的 MRI 圖像。
The signal one obtains from the final MR image is further modulated by MR properties of the tissue, in particular T1 and T2. Specifically, the MR signal received is given by:
從最終的 MR 影像獲得的信號進一步受到組織的 MR 特性的調制,特別是 T1 和 T2。具體而言,接收到的 MR 信號為:
S = M 1 e TR / T 1 1 cos ( FA ) Ce TR / T 1 sin ( FA ) e TE / T 2 , S = M 1 e TR / T 1 1 cos ( FA ) Ce TR / T 1 sin ( FA ) e TE / T 2 , S=M*(1-e^(-TR//T1))/(1-cos(FA)Ce^(-TR//T1)sin*(FA)*e^(-TE//T2),)\mathrm{S}=\mathrm{M} \cdot \frac{1-\mathrm{e}^{-\mathrm{TR} / \mathrm{T1}}}{1-\cos (\mathrm{FA}) \mathrm{Ce}^{-\mathrm{TR} / \mathrm{T1}} \sin \cdot(\mathrm{FA}) \cdot \mathrm{e}^{-\mathrm{TE} / \mathrm{T} 2},}
where FA is flip angle, TR is repetition time, and TE is echo time. In Equation [2], the MR properties T1 and T2 should be differentiated from imaging parameters, e.g., repetition time (TR) and echo time (TE). The difference is that imaging parameters can be chosen by the researcher, whereas T1 and T2 are intrinsic properties of the tissue that the researcher has no control over. However, by properly choosing TR and TE (and other imaging parameters for more advanced sequences), one can make the overall image intensity weighted in a pre-defined fashion, resulting in different contrasts such as T1 weighted or T2 weighted MRI.
其中 FA 是翻轉角度,TR 是重複時間,TE 是回波時間。在方程式 [2] 中,MR 性質 T1 和 T2 應與成像參數區分開來,例如重複時間 (TR) 和回波時間 (TE)。區別在於,成像參數可以由研究者選擇,而 T1 和 T2 是組織的內在特性,研究者無法控制。然而,通過適當選擇 TR 和 TE(以及其他更高級序列的成像參數),可以使整體圖像強度以預定的方式加權,從而產生不同的對比,例如 T1 加權或 T2 加權 MRI。

Considerations of MRI Image Quality
MRI 影像質量的考量

When evaluating the quality of a set of MRI data, three criteria can be considered. One is to identify whether the image contains any artifact, which is represented by the appearance of signals in unexpected areas. Figure 1.2 illustrates a brain image in which the fat signal was insufficiently suppressed and appeared inside the brain due to chemical shift between fat and water protons. Many reasons can cause image artifacts, and it is preferable to have the images reviewed by an experienced imaging scientist, especially at the beginning of a project, before proceeding with a large sample
在評估一組 MRI 數據的質量時,可以考慮三個標準。一個是識別圖像是否包含任何伪影,這由意外區域出現信號來表示。圖 1.2 顯示了一個腦部圖像,其中脂肪信號未被充分抑制,並因脂肪和水質子之間的化學位移而出現在腦內。許多原因可以導致圖像伪影,最好由經驗豐富的影像科學家對圖像進行審查,特別是在項目開始時,在進行大樣本之前。

Figure 1.2 An example of brain images with and without artifacts induced by undesired fat signal (arrows).
圖 1.2 一個有和沒有由不必要的脂肪信號(箭頭)引起的伪影的腦部影像示例。

scanning. Another criterion is the spatial signal-to-noise ratio (SNR) of the image, which is a useful index in evaluating the quality of structural MR images. The signal in the spatial SNR calculation can be obtained by drawing a region-of-interest (ROI) in a representative brain region and calculating the mean of all voxels, while the noise can be estimated by defining an ROI outside the brain and calculating the mean or standard deviation of the voxels. For MRI data that have multiple time points, such as functional MRI (fMRI) or arterial-spin-labeling (ASL) MRI, a third criterion, temporal SNR, is often used to assess data quality. In the calculation of temporal SNR, the signal term is defined similar to that for spatial SNR. For the noise term, however, it is defined as the standard deviation across the time points. Temporal SNR can be defined on a voxel-by-voxel basis or on an ROI. The estimation of temporal SNR is preferred in fMRI data assessment because it considers contributions from both thermal and physiological noise, whereas spatial SNR only considers thermal noise. Since physiological noise is known to be a major, if not the predominant, component of the noise source in fMRI, the examination of temporal SNR is more appropriate for determining the reliability of a functional dataset.
掃描。另一個標準是影像的空間信號噪聲比(SNR),這是一個評估結構性磁共振影像質量的有用指標。在空間 SNR 計算中,信號可以通過在代表性腦區劃定感興趣區域(ROI)並計算所有體素的平均值來獲得,而噪聲則可以通過在腦外定義 ROI 並計算體素的平均值或標準差來估算。對於具有多個時間點的 MRI 數據,例如功能性磁共振成像(fMRI)或動脈自旋標記(ASL)MRI,通常使用第三個標準,即時間 SNR,來評估數據質量。在時間 SNR 的計算中,信號項的定義類似於空間 SNR。然而,噪聲項的定義是跨時間點的標準差。時間 SNR 可以在每個體素的基礎上或在 ROI 上定義。在 fMRI 數據評估中,時間 SNR 的估算更受青睞,因為它考慮了來自熱噪聲和生理噪聲的貢獻,而空間 SNR 僅考慮熱噪聲。 由於生理噪聲被認為是功能性磁共振成像中噪聲來源的主要成分(如果不是最主要的話),因此檢查時間信噪比更適合用來確定功能數據集的可靠性。

Magnetic Field Strength Considerations
磁場強度考量

As mentioned above in Equation [1], higher magnetic field strength usually corresponds to a greater sensitivity. 3 T is therefore preferred over 1.5 T for cognitive aging studies. This advantage has been experimentally demonstrated for virtually all brain MRI pulse sequences (although for cardiac and body MRI, 1.5T is sometimes preferred). As far as the magnitude of the enhancement effect is concerned, it depends on specific pulse sequence and spatial resolution. Going from 1.5T to 3T, a typical SNR increase of 50 % 100 % 50 % 100 % 50%-100%50 \%-100 \% is often reported (Willinek and Kuhl, 2006; Bradley, 2008). High-resolution scans tend to manifest a greater gain because in those scans thermal noise is usually the dominant source of noise relative to physiological noise, which scales with signal. Some sequences such as BOLD fMRI and ASL perfusion benefit from additional factors related to
如上所述,在方程[1]中,較高的磁場強度通常對應於更大的敏感度。因此,在認知老化研究中,3 T 比 1.5 T 更受青睞。這一優勢在幾乎所有的腦部 MRI 脈衝序列中都得到了實驗證明(儘管在心臟和全身 MRI 中,有時會偏好 1.5T)。至於增強效應的大小,則取決於特定的脈衝序列和空間解析度。從 1.5T 到 3T,通常報告的典型信噪比增益為 50 % 100 % 50 % 100 % 50%-100%50 \%-100 \% (Willinek 和 Kuhl,2006;Bradley,2008)。高解析度掃描往往表現出更大的增益,因為在這些掃描中,熱噪聲通常是相對於生理噪聲的主要噪聲來源,而生理噪聲則隨信號而變化。一些序列,如 BOLD fMRI 和 ASL 灌注,受益於與之相關的額外因素。

enhanced magnetic susceptibility effects and longer T1 at 3T. Other sequences such as FLAIR benefit less because slower signal recovery at higher field offsets some of the advantages.
增強的磁敏感性效應和在 3T 下更長的 T1。其他序列如 FLAIR 的好處較少,因為在較高的場強下信號恢復較慢,抵消了一些優勢。
7T MRI is also becoming increasingly available in some research institutions. There are about 50 to 60 human 7T systems around the world. However, the use of 7T in cognitive aging studies is still in an early stage. Despite the promise of an increased sensitivity, 7T MRI still suffers from several technical limitations at present. These limitations are due to magnetic field inhomogeneity (thereby resulting in image inhomogeneity), higher power deposition (thus tissue heating becomes an issue, which is usually not a problem when going from 1.5 T to 3 T ), and physiological side effects (i.e., participant may feel dizzy when entering the scanner), aside from its high costs. However, these limitations may be resolved with technical efforts and advances, as shown by highly promising results from the Human Connectome Project.
7T 磁共振成像在一些研究機構中也變得越來越普及。全球大約有 50 到 60 台人類 7T 系統。然而,7T 在認知老化研究中的使用仍處於早期階段。儘管提高靈敏度的前景令人期待,但目前 7T 磁共振成像仍然面臨幾個技術限制。這些限制是由於磁場不均勻性(因此導致影像不均勻性)、更高的功率沉積(因此組織加熱成為一個問題,這在從 1.5 T 到 3 T 的過程中通常不是問題)以及生理副作用(即參與者在進入掃描儀時可能會感到頭暈),此外還有其高昂的成本。然而,這些限制可能會通過技術努力和進步得到解決,正如人類連接組計劃所顯示的非常有前景的結果。

Practical Considerations When Designing a Cerebral Aging MRI Study
設計腦部老化 MRI 研究時的實際考量

It is recommended that each scan session be less than 60 minutes, as excessive motion is often observed when the subject has been inside the scanner for a long period of time. When that happens, the data collected are of low quality and usually need to be excluded. This is especially likely for elderly participants. For studies that require more than 60 minutes, one should consider allowing the subject to come out of the scanner to take a break before entering again for the remainder of the scans.
建議每次掃描會話少於 60 分鐘,因為當受試者在掃描儀內待的時間過長時,通常會觀察到過度運動。當這種情況發生時,收集到的數據質量較低,通常需要排除。這對於老年參與者尤其可能發生。對於需要超過 60 分鐘的研究,應考慮允許受試者在再次進入掃描儀進行剩餘掃描之前先出來休息。
It is also useful to prioritize the scans such that the pulse sequences that are most important for the study hypothesis are performed first. It is not uncommon that a subject would decide to abort the scan session or show excessive motion after staying in the scanner for a while. Thus, arranging the scan order based on priority can ensure the successful data collection of the most relevant sequences. Some investigators also found it helpful to place the functional and physiological scans at the beginning of the session when the subject is most alert and attentive. The structural scans can usually be performed even when the subject is asleep.
優先安排掃描是有用的,這樣對於研究假設最重要的脈衝序列可以優先進行。受試者在掃描儀中待了一段時間後,決定中止掃描會話或出現過度運動的情況並不罕見。因此,根據優先順序安排掃描順序可以確保成功收集最相關序列的數據。一些研究者還發現,將功能性和生理性掃描放在會話開始時進行是有幫助的,因為此時受試者最為清醒和專注。結構性掃描通常即使在受試者睡著的情況下也可以進行。
When calculating the total scan session duration, it should be remembered that the scan duration displayed on the scanner console often underestimates the real-life scan time, as the preparation time necessary at the beginning of every scan is usually not included in the displayed time. The preparation time is inherent to every MRI pulse sequence and usually includes B 0 B 0 B_(0)B_{0} shimming, RF center frequency determination, RF power optimization, and dummy scans to allow the magnetization to approach a steady state. Collectively, the actual data collection time for a 60-minute session may be around 45 minutes. It is useful to keep this in mind during planning. A small number of pilot scans should be performed before finalizing the protocol and obtaining a more accurate estimation of the session duration.
在計算總掃描會話持續時間時,應該記住掃描儀控制台上顯示的掃描持續時間通常低估了實際的掃描時間,因為每次掃描開始時所需的準備時間通常不包括在顯示的時間內。準備時間是每個 MRI 脈衝序列固有的,通常包括 B 0 B 0 B_(0)B_{0} 的調整、射頻中心頻率確定、射頻功率優化和虛擬掃描,以使磁化接近穩定狀態。總體而言,60 分鐘會話的實際數據收集時間可能約為 45 分鐘。在計劃過程中記住這一點是有用的。在最終確定協議並獲得更準確的會話持續時間估算之前,應進行少量的試點掃描。

Common MRI Techniques Used in Cerebral Aging
常見的腦部老化 MRI 技術

Table 1.1 provides a list of MRI techniques commonly used in cerebral aging studies. They measure various aspects of the brain structure and function. Later chapters will
表 1.1 提供了在腦部老化研究中常用的 MRI 技術列表。它們測量大腦結構和功能的各個方面。後面的章節將
Table 1.1 List of MRI techniques and associated imaging parameters at 3T.
表 1.1 3T MRI 技術及相關影像參數列表。
MRI technique  MRI 技術 Usage  使用方式 Scan duration  掃描持續時間 Typical imaging parameters
典型影像參數
T1-MPRAGE Provide brain volumetric information
提供腦部體積資訊
4-7 min  4-7 分鐘

3D 獲取,平行成像加速因子 = 2 = 2 =2=2 ,體素大小 = 1 × 1 × 1 mm 3 = 1 × 1 × 1 mm 3 =1xx1xx1mm^(3)=1 \times 1 \times 1 \mathrm{~mm}^{3} ,視野 ( F O V ) = 256 × 204 mm 2 ( F O V ) = 256 × 204 mm 2 (FOV)=256 xx204mm^(2)(F O V)=256 \times 204 \mathrm{~mm}^{2} TR = 8.2 TR = 8.2 TR=8.2\mathrm{TR}=8.2 (沿 y 相位編碼方向)和 2100 毫秒(沿 z 相位編碼方向), TI = 1100 ms TI = 1100 ms TI=1100ms\mathrm{TI}=1100 \mathrm{~ms} TE / TE / TE//\mathrm{TE} / 翻轉角度 = 3.7 ms / 12 = 3.7 ms / 12 =3.7ms//12^(@)=3.7 \mathrm{~ms} / 12^{\circ} ,160 個矢狀切片,覆蓋整個大腦
3D Acquisition,
parallel imaging acceleration factor = 2 = 2 =2=2,
Voxel size = 1 × 1 × 1 mm 3 = 1 × 1 × 1 mm 3 =1xx1xx1mm^(3)=1 \times 1 \times 1 \mathrm{~mm}^{3},
field-of-view ( F O V ) = 256 × 204 mm 2 ( F O V ) = 256 × 204 mm 2 (FOV)=256 xx204mm^(2)(F O V)=256 \times 204 \mathrm{~mm}^{2},
TR = 8.2 TR = 8.2 TR=8.2\mathrm{TR}=8.2 (along y -phase-encoding direction) and 2100 ms (along z-phaseencoding direction),
TI = 1100 ms TI = 1100 ms TI=1100ms\mathrm{TI}=1100 \mathrm{~ms},
TE / TE / TE//\mathrm{TE} / flip angle = 3.7 ms / 12 = 3.7 ms / 12 =3.7ms//12^(@)=3.7 \mathrm{~ms} / 12^{\circ},
160 sagittal slices with whole brain coverage
3D Acquisition, parallel imaging acceleration factor =2, Voxel size =1xx1xx1mm^(3), field-of-view (FOV)=256 xx204mm^(2), TR=8.2 (along y -phase-encoding direction) and 2100 ms (along z-phaseencoding direction), TI=1100ms, TE// flip angle =3.7ms//12^(@), 160 sagittal slices with whole brain coverage| 3D Acquisition, | | :--- | | parallel imaging acceleration factor $=2$, | | Voxel size $=1 \times 1 \times 1 \mathrm{~mm}^{3}$, | | field-of-view $(F O V)=256 \times 204 \mathrm{~mm}^{2}$, | | $\mathrm{TR}=8.2$ (along y -phase-encoding direction) and 2100 ms (along z-phaseencoding direction), | | $\mathrm{TI}=1100 \mathrm{~ms}$, | | $\mathrm{TE} /$ flip angle $=3.7 \mathrm{~ms} / 12^{\circ}$, | | 160 sagittal slices with whole brain coverage |
Functional MRI  功能性磁共振成像 Measurement of neural activity through hemodynamic responses
通過血流動力學反應測量神經活動
5-10 min  5-10 分鐘 Multislice acquisition, voxel size = 3.4 × 3.4 × 3.5 mm 3 = 3.4 × 3.4 × 3.5 mm 3 =3.4 xx3.4 xx3.5mm^(3)=3.4 \times 3.4 \times 3.5 \mathrm{~mm}^{3}, FOV = 220 × 220 mm 2 = 220 × 220 mm 2 =220 xx220mm^(2)=220 \times 220 \mathrm{~mm}^{2}, TR / TE / flip TR / TE / flip TR//TE//flip\mathrm{TR} / \mathrm{TE} / \mathrm{flip} angle = 2000 / 30 ms / 80 = 2000 / 30 ms / 80 =2000//30ms//80^(@)=2000 / 30 \mathrm{~ms} / 80^{\circ}, 39 axial slices with whole brain coverage
多層切片獲取,體素大小 = 3.4 × 3.4 × 3.5 mm 3 = 3.4 × 3.4 × 3.5 mm 3 =3.4 xx3.4 xx3.5mm^(3)=3.4 \times 3.4 \times 3.5 \mathrm{~mm}^{3} ,視野 = 220 × 220 mm 2 = 220 × 220 mm 2 =220 xx220mm^(2)=220 \times 220 \mathrm{~mm}^{2} TR / TE / flip TR / TE / flip TR//TE//flip\mathrm{TR} / \mathrm{TE} / \mathrm{flip} 角度 = 2000 / 30 ms / 80 = 2000 / 30 ms / 80 =2000//30ms//80^(@)=2000 / 30 \mathrm{~ms} / 80^{\circ} ,39 個軸向切片覆蓋整個大腦
DTI Probe microstructural tissue integrity and white matter connectivity
探測微觀組織完整性和白質連接性
4-5 min  4-5 分鐘

多層切片獲取,體素大小 = 2 × 2 × 2.2 mm 3 = 2 × 2 × 2.2 mm 3 =2xx2xx2.2mm^(3)=2 \times 2 \times 2.2 \mathrm{~mm}^{3} ,TR/TE/翻轉角度 = 5600 / 51 ms / 90 = 5600 / 51 ms / 90 =5600//51ms//90^(@)=5600 / 51 \mathrm{~ms} / 90^{\circ} ,65 個軸向切片覆蓋整個大腦 b b bb = 1000 s / mm 2 = 1000 s / mm 2 =1000s//mm^(2)=1000 \mathrm{~s} / \mathrm{mm}^{2} ,30 個方向
Multislice acquisition, voxel size = 2 × 2 × 2.2 mm 3 = 2 × 2 × 2.2 mm 3 =2xx2xx2.2mm^(3)=2 \times 2 \times 2.2 \mathrm{~mm}^{3}, FOV = 220 × 220 mm 2 FOV = 220 × 220 mm 2 FOV=220 xx220mm^(2)\mathrm{FOV}=220 \times 220 \mathrm{~mm}^{2}
TR/TE/flip angle = 5600 / 51 ms / 90 = 5600 / 51 ms / 90 =5600//51ms//90^(@)=5600 / 51 \mathrm{~ms} / 90^{\circ},
65 axial slices with whole brain coverage
b b bb value = 1000 s / mm 2 = 1000 s / mm 2 =1000s//mm^(2)=1000 \mathrm{~s} / \mathrm{mm}^{2},
30 directions
Multislice acquisition, voxel size =2xx2xx2.2mm^(3), FOV=220 xx220mm^(2) TR/TE/flip angle =5600//51ms//90^(@), 65 axial slices with whole brain coverage b value =1000s//mm^(2), 30 directions| Multislice acquisition, voxel size $=2 \times 2 \times 2.2 \mathrm{~mm}^{3}$, $\mathrm{FOV}=220 \times 220 \mathrm{~mm}^{2}$ | | :--- | | TR/TE/flip angle $=5600 / 51 \mathrm{~ms} / 90^{\circ}$, | | 65 axial slices with whole brain coverage | | $b$ value $=1000 \mathrm{~s} / \mathrm{mm}^{2}$, | | 30 directions |
Proton density MRI  質子密度磁共振成像 Help detect tissue lesions in white matter
幫助檢測白質中的組織病變
3 5 min 3 5 min 3-5min3-5 \mathrm{~min} Multislice acquisition, Turbo-spin-echo for fast imaging, voxel size = 1 × 1 × 3 mm 3 = 1 × 1 × 3 mm 3 =1xx1xx3mm^(3)=1 \times 1 \times 3 \mathrm{~mm}^{3}, FOV = 240 × 210 mm 2 = 240 × 210 mm 2 =240 xx210mm^(2)=240 \times 210 \mathrm{~mm}^{2}, TR/TE/flip angle = 3000 / 10 ms / 90 = 3000 / 10 ms / 90 =3000//10ms//90^(@)=3000 / 10 \mathrm{~ms} / 90^{\circ}, 50 axial slices with whole brain coverage
多層切片獲取,快速成像的 Turbo 自旋回波,體素大小 = 1 × 1 × 3 mm 3 = 1 × 1 × 3 mm 3 =1xx1xx3mm^(3)=1 \times 1 \times 3 \mathrm{~mm}^{3} ,視野 = 240 × 210 mm 2 = 240 × 210 mm 2 =240 xx210mm^(2)=240 \times 210 \mathrm{~mm}^{2} ,TR/TE/翻轉角度 = 3000 / 10 ms / 90 = 3000 / 10 ms / 90 =3000//10ms//90^(@)=3000 / 10 \mathrm{~ms} / 90^{\circ} ,50 個軸向切片覆蓋整個大腦
T2-weighted MRI  T2 加權磁共振成像 Detect tissue lesions in white matter
檢測白質中的組織病變
2-4 min  2-4 分鐘

多層切片獲取,快速成像的 Turbo 自旋回波,體素大小 = 1 × 1 × 3 mm 3 = 1 × 1 × 3 mm 3 =1xx1xx3mm^(3)=1 \times 1 \times 3 \mathrm{~mm}^{3} ,視野 = 240 × 210 mm 2 = 240 × 210 mm 2 =240 xx210mm^(2)=240 \times 210 \mathrm{~mm}^{2} TR / TE / TR / TE / TR//TE//\mathrm{TR} / \mathrm{TE} / 翻轉角度 = 3000 / 96 ms / 90 = 3000 / 96 ms / 90 =3000//96ms//90^(@)=3000 / 96 \mathrm{~ms} / 90^{\circ} ,50 個軸向切片覆蓋整個大腦
Multislice acquisition,
Turbo-spin-echo for fast imaging,
voxel size = 1 × 1 × 3 mm 3 = 1 × 1 × 3 mm 3 =1xx1xx3mm^(3)=1 \times 1 \times 3 \mathrm{~mm}^{3},
FOV = 240 × 210 mm 2 = 240 × 210 mm 2 =240 xx210mm^(2)=240 \times 210 \mathrm{~mm}^{2},
TR / TE / TR / TE / TR//TE//\mathrm{TR} / \mathrm{TE} / flip angle = 3000 / 96 ms / 90 = 3000 / 96 ms / 90 =3000//96ms//90^(@)=3000 / 96 \mathrm{~ms} / 90^{\circ},
50 axial slices with whole brain coverage
Multislice acquisition, Turbo-spin-echo for fast imaging, voxel size =1xx1xx3mm^(3), FOV =240 xx210mm^(2), TR//TE// flip angle =3000//96ms//90^(@), 50 axial slices with whole brain coverage| Multislice acquisition, | | :--- | | Turbo-spin-echo for fast imaging, | | voxel size $=1 \times 1 \times 3 \mathrm{~mm}^{3}$, | | FOV $=240 \times 210 \mathrm{~mm}^{2}$, | | $\mathrm{TR} / \mathrm{TE} /$ flip angle $=3000 / 96 \mathrm{~ms} / 90^{\circ}$, | | 50 axial slices with whole brain coverage |
T2-FLAIR Detect tissue lesions in white matter
檢測白質中的組織病變
3 5 min 3 5 min 3-5min3-5 \mathrm{~min}

2D 版本:體素大小 = 1 × 1 × 2 mm 3 = 1 × 1 × 2 mm 3 =1xx1xx2mm^(3)=1 \times 1 \times 2 \mathrm{~mm}^{3} ,視野 = 256 × 256 mm 2 = 256 × 256 mm 2 =256 xx256mm^(2)=256 \times 256 \mathrm{~mm}^{2} TR / TE / TI = 11 , 000 / 100 ms / 2800 ms TR / TE / TI = 11 , 000 / 100 ms / 2800 ms TR//TE//TI=11,000//100ms//2800ms\mathrm{TR} / \mathrm{TE} / \mathrm{TI}=11,000 / 100 \mathrm{~ms} / 2800 \mathrm{~ms} ,138 個軸向切片,覆蓋整個大腦 3D 版本:體素大小 = 1.1 × 1.1 × 1.1 mm 3 = 1.1 × 1.1 × 1.1 mm 3 =1.1 xx1.1 xx1.1mm^(3)=1.1 \times 1.1 \times 1.1 \mathrm{~mm}^{3} ,視野 = 240 × 240 mm 2 = 240 × 240 mm 2 =240 xx240mm^(2)=240 \times 240 \mathrm{~mm}^{2} TR / TE / TI = 4800 / 278 ms / 1650 ms TR / TE / TI = 4800 / 278 ms / 1650 ms TR//TE//TI=4800//278ms//1650ms\mathrm{TR} / \mathrm{TE} / \mathrm{TI}=4800 / 278 \mathrm{~ms} / 1650 \mathrm{~ms} ,150 個矢狀切片,覆蓋整個大腦
2D version:
voxel size = 1 × 1 × 2 mm 3 = 1 × 1 × 2 mm 3 =1xx1xx2mm^(3)=1 \times 1 \times 2 \mathrm{~mm}^{3},
FOV = 256 × 256 mm 2 = 256 × 256 mm 2 =256 xx256mm^(2)=256 \times 256 \mathrm{~mm}^{2},
TR / TE / TI = 11 , 000 / 100 ms / 2800 ms TR / TE / TI = 11 , 000 / 100 ms / 2800 ms TR//TE//TI=11,000//100ms//2800ms\mathrm{TR} / \mathrm{TE} / \mathrm{TI}=11,000 / 100 \mathrm{~ms} / 2800 \mathrm{~ms},
138 axial slices with whole brain coverage
3D version:
voxel size = 1.1 × 1.1 × 1.1 mm 3 = 1.1 × 1.1 × 1.1 mm 3 =1.1 xx1.1 xx1.1mm^(3)=1.1 \times 1.1 \times 1.1 \mathrm{~mm}^{3},
FOV = 240 × 240 mm 2 = 240 × 240 mm 2 =240 xx240mm^(2)=240 \times 240 \mathrm{~mm}^{2},
TR / TE / TI = 4800 / 278 ms / 1650 ms TR / TE / TI = 4800 / 278 ms / 1650 ms TR//TE//TI=4800//278ms//1650ms\mathrm{TR} / \mathrm{TE} / \mathrm{TI}=4800 / 278 \mathrm{~ms} / 1650 \mathrm{~ms},
150 sagittal slices with whole brain coverage
2D version: voxel size =1xx1xx2mm^(3), FOV =256 xx256mm^(2), TR//TE//TI=11,000//100ms//2800ms, 138 axial slices with whole brain coverage 3D version: voxel size =1.1 xx1.1 xx1.1mm^(3), FOV =240 xx240mm^(2), TR//TE//TI=4800//278ms//1650ms, 150 sagittal slices with whole brain coverage| 2D version: | | :--- | | voxel size $=1 \times 1 \times 2 \mathrm{~mm}^{3}$, | | FOV $=256 \times 256 \mathrm{~mm}^{2}$, | | $\mathrm{TR} / \mathrm{TE} / \mathrm{TI}=11,000 / 100 \mathrm{~ms} / 2800 \mathrm{~ms}$, | | 138 axial slices with whole brain coverage | | 3D version: | | voxel size $=1.1 \times 1.1 \times 1.1 \mathrm{~mm}^{3}$, | | FOV $=240 \times 240 \mathrm{~mm}^{2}$, | | $\mathrm{TR} / \mathrm{TE} / \mathrm{TI}=4800 / 278 \mathrm{~ms} / 1650 \mathrm{~ms}$, | | 150 sagittal slices with whole brain coverage |
MRI technique Usage Scan duration Typical imaging parameters T1-MPRAGE Provide brain volumetric information 4-7 min "3D Acquisition, parallel imaging acceleration factor =2, Voxel size =1xx1xx1mm^(3), field-of-view (FOV)=256 xx204mm^(2), TR=8.2 (along y -phase-encoding direction) and 2100 ms (along z-phaseencoding direction), TI=1100ms, TE// flip angle =3.7ms//12^(@), 160 sagittal slices with whole brain coverage" Functional MRI Measurement of neural activity through hemodynamic responses 5-10 min Multislice acquisition, voxel size =3.4 xx3.4 xx3.5mm^(3), FOV =220 xx220mm^(2), TR//TE//flip angle =2000//30ms//80^(@), 39 axial slices with whole brain coverage DTI Probe microstructural tissue integrity and white matter connectivity 4-5 min "Multislice acquisition, voxel size =2xx2xx2.2mm^(3), FOV=220 xx220mm^(2) TR/TE/flip angle =5600//51ms//90^(@), 65 axial slices with whole brain coverage b value =1000s//mm^(2), 30 directions" Proton density MRI Help detect tissue lesions in white matter 3-5min Multislice acquisition, Turbo-spin-echo for fast imaging, voxel size =1xx1xx3mm^(3), FOV =240 xx210mm^(2), TR/TE/flip angle =3000//10ms//90^(@), 50 axial slices with whole brain coverage T2-weighted MRI Detect tissue lesions in white matter 2-4 min "Multislice acquisition, Turbo-spin-echo for fast imaging, voxel size =1xx1xx3mm^(3), FOV =240 xx210mm^(2), TR//TE// flip angle =3000//96ms//90^(@), 50 axial slices with whole brain coverage" T2-FLAIR Detect tissue lesions in white matter 3-5min "2D version: voxel size =1xx1xx2mm^(3), FOV =256 xx256mm^(2), TR//TE//TI=11,000//100ms//2800ms, 138 axial slices with whole brain coverage 3D version: voxel size =1.1 xx1.1 xx1.1mm^(3), FOV =240 xx240mm^(2), TR//TE//TI=4800//278ms//1650ms, 150 sagittal slices with whole brain coverage"| MRI technique | Usage | Scan duration | Typical imaging parameters | | :---: | :---: | :---: | :---: | | T1-MPRAGE | Provide brain volumetric information | 4-7 min | 3D Acquisition, <br> parallel imaging acceleration factor $=2$, <br> Voxel size $=1 \times 1 \times 1 \mathrm{~mm}^{3}$, <br> field-of-view $(F O V)=256 \times 204 \mathrm{~mm}^{2}$, <br> $\mathrm{TR}=8.2$ (along y -phase-encoding direction) and 2100 ms (along z-phaseencoding direction), <br> $\mathrm{TI}=1100 \mathrm{~ms}$, <br> $\mathrm{TE} /$ flip angle $=3.7 \mathrm{~ms} / 12^{\circ}$, <br> 160 sagittal slices with whole brain coverage | | Functional MRI | Measurement of neural activity through hemodynamic responses | 5-10 min | Multislice acquisition, voxel size $=3.4 \times 3.4 \times 3.5 \mathrm{~mm}^{3}$, FOV $=220 \times 220 \mathrm{~mm}^{2}$, $\mathrm{TR} / \mathrm{TE} / \mathrm{flip}$ angle $=2000 / 30 \mathrm{~ms} / 80^{\circ}$, 39 axial slices with whole brain coverage | | DTI | Probe microstructural tissue integrity and white matter connectivity | 4-5 min | Multislice acquisition, voxel size $=2 \times 2 \times 2.2 \mathrm{~mm}^{3}$, $\mathrm{FOV}=220 \times 220 \mathrm{~mm}^{2}$ <br> TR/TE/flip angle $=5600 / 51 \mathrm{~ms} / 90^{\circ}$, <br> 65 axial slices with whole brain coverage <br> $b$ value $=1000 \mathrm{~s} / \mathrm{mm}^{2}$, <br> 30 directions | | Proton density MRI | Help detect tissue lesions in white matter | $3-5 \mathrm{~min}$ | Multislice acquisition, Turbo-spin-echo for fast imaging, voxel size $=1 \times 1 \times 3 \mathrm{~mm}^{3}$, FOV $=240 \times 210 \mathrm{~mm}^{2}$, TR/TE/flip angle $=3000 / 10 \mathrm{~ms} / 90^{\circ}$, 50 axial slices with whole brain coverage | | T2-weighted MRI | Detect tissue lesions in white matter | 2-4 min | Multislice acquisition, <br> Turbo-spin-echo for fast imaging, <br> voxel size $=1 \times 1 \times 3 \mathrm{~mm}^{3}$, <br> FOV $=240 \times 210 \mathrm{~mm}^{2}$, <br> $\mathrm{TR} / \mathrm{TE} /$ flip angle $=3000 / 96 \mathrm{~ms} / 90^{\circ}$, <br> 50 axial slices with whole brain coverage | | T2-FLAIR | Detect tissue lesions in white matter | $3-5 \mathrm{~min}$ | 2D version: <br> voxel size $=1 \times 1 \times 2 \mathrm{~mm}^{3}$, <br> FOV $=256 \times 256 \mathrm{~mm}^{2}$, <br> $\mathrm{TR} / \mathrm{TE} / \mathrm{TI}=11,000 / 100 \mathrm{~ms} / 2800 \mathrm{~ms}$, <br> 138 axial slices with whole brain coverage <br> 3D version: <br> voxel size $=1.1 \times 1.1 \times 1.1 \mathrm{~mm}^{3}$, <br> FOV $=240 \times 240 \mathrm{~mm}^{2}$, <br> $\mathrm{TR} / \mathrm{TE} / \mathrm{TI}=4800 / 278 \mathrm{~ms} / 1650 \mathrm{~ms}$, <br> 150 sagittal slices with whole brain coverage |
cover the analyses and interpretation of some of these techniques. The present chapter will primarily focus on the image acquisition strategies.
涵蓋這些技術的一些分析和解釋。本章將主要集中於影像獲取策略。

Brain Volumetrics  腦體積測量

Cerebral aging is associated with pronounced brain volumetric changes (Pfefferbaum et al., 1994; Good et al., 2001; Ge et al., 2002; Sowell et al., 2003; Raz et al., 2005). Thus, the ability to assess brain volume and cortical thickness is important in cerebral aging studies. Brain volumetric parameters are usually assessed with a high-resolution anatomical MRI scan that provides sufficient contrast between gray matter, white matter, and CSF. In principle, this can be achieved with any one of the three main image contrasts in MRI, i.e., T1-weighted, T 2 -weighted, and proton-density weighted. In practice, however, the vast majority of such studies have used the T1-weighted pulse sequence (Pfefferbaum et al., 1994; Good et al., 2001; Ge et al., 2002; Sowell et al., 2003; Raz et al., 2005). This is due to scan time considerations. A proton-density weighted pulse sequence usually utilizes a long TR, thus is less time-efficient. A T2weighted pulse sequence usually uses a long TR, again lengthening the scan duration. Therefore, a T1-weighted pulse sequence, which uses a short TR and a short TE, is considered an optimal approach for rapid, strong-contrast, and high-resolution acquisition of brain structure information.
腦部老化與顯著的腦部體積變化有關(Pfefferbaum et al., 1994; Good et al., 2001; Ge et al., 2002; Sowell et al., 2003; Raz et al., 2005)。因此,評估腦部體積和皮質厚度的能力在腦部老化研究中是重要的。腦部體積參數通常通過高解析度的解剖 MRI 掃描來評估,該掃描提供了灰質、白質和腦脊液之間的足夠對比。原則上,這可以通過 MRI 中的三種主要影像對比之一來實現,即 T1 加權、T2 加權和質子密度加權。然而,在實踐中,絕大多數此類研究使用了 T1 加權脈衝序列(Pfefferbaum et al., 1994; Good et al., 2001; Ge et al., 2002; Sowell et al., 2003; Raz et al., 2005)。這是由於掃描時間的考量。質子密度加權脈衝序列通常使用較長的 TR,因此效率較低。T2 加權脈衝序列通常也使用較長的 TR,進一步延長掃描時間。 因此,T1 加權脈衝序列使用短的 TR 和短的 TE,被認為是快速、強對比和高解析度獲取腦結構信息的最佳方法。
T 1 of CSF is greater than gray matter T 1 , which is in turn greater than white matter T1. At 3 Tesla, these values are 4 , 163 ms 4 , 163 ms 4,163ms4,163 \mathrm{~ms} (Lin et al., 2001), 1 , 135 ms 1 , 135 ms 1,135ms1,135 \mathrm{~ms} (Lu et al., 2005), and 732 ms (Lu et al., 2005), respectively. Thus, in a T1-weighted image, white matter is expected to have a higher signal intensity than gray matter, and CSF will have the least signal intensity. Figure 1.3A shows an example of T1-weighted image at a resolution of 1 × 1 × 1 mm 3 1 × 1 × 1 mm 3 1xx1xx1mm^(3)1 \times 1 \times 1 \mathrm{~mm}^{3}. Using image segmentation functions that are readily available in standard software packages, probability maps of gray matter
CSF 的 T1 大於灰質的 T1,而灰質的 T1 又大於白質的 T1。在 3 特斯拉下,這些值分別為 4 , 163 ms 4 , 163 ms 4,163ms4,163 \mathrm{~ms} (Lin et al., 2001)、 1 , 135 ms 1 , 135 ms 1,135ms1,135 \mathrm{~ms} (Lu et al., 2005)和 732 毫秒(Lu et al., 2005)。因此,在 T1 加權影像中,白質的信號強度預期會高於灰質,而 CSF 的信號強度則最低。圖 1.3A 顯示了一個解析度為 1 × 1 × 1 mm 3 1 × 1 × 1 mm 3 1xx1xx1mm^(3)1 \times 1 \times 1 \mathrm{~mm}^{3} 的 T1 加權影像範例。使用標準軟體包中 readily available 的影像分割功能,可以得到灰質的概率圖。

Figure 1.3 Example of T1-weighted image and the corresponding probability maps of gray matter, white matter and CSF. (A) T1-MPRAGE image obtained from a MRI scan. (B) Gray matter probability map. © White matter probability map. (D) CSF probability map. (b-d) are obtained by segmenting T1-MPRAGE image shown in (a).
圖 1.3 T1 加權影像及其對應的灰質、白質和腦脊髓液的概率圖示例。(A) 從 MRI 掃描獲得的 T1-MPRAGE 影像。(B) 灰質概率圖。(C) 白質概率圖。(D) 腦脊髓液概率圖。(b-d) 是通過對(a)中顯示的 T1-MPRAGE 影像進行分割獲得的。

(Figure 1.3B), white matter (Figure 1.3C), and CSF (Figure 1.3D) can be obtained from the T 1 -weighted image.
(圖 1.3B)、白質(圖 1.3C)和腦脊髓液(圖 1.3D)可以從 T 1 加權影像中獲得。
In the early years, T1-weighted high-resolution images were acquired using a plain short-TR, short-TE gradient-echo sequence. Different vendors have different names for this sequence. On MRI scanners made by General Electric, it is called Spoiled Gradient Echo (SPGR). On Siemens systems, it is called Fast Low Angle Shot (FLASH). On Philips scanner, it is called Fast Field Echo (FFE). More recently, an improved version of the T1-weighted pulse sequence has gained popularity. This sequence is called Magnetization Prepared Rapid Acquisition of Gradient Echo (MPRAGE) (Mugler and Brookeman, 1991), which uses a preparation pulse to enhance the tissue contrast between gray matter, white matter, and CSF, thereby allowing better tissue segmentation and image registration. The MRPAGE sequence is the most widely used technique for brain volumetric studies at present.
在早期,T1 加權高解析度影像是使用簡單的短 TR、短 TE 梯度回波序列獲得的。不同的廠商對這個序列有不同的名稱。在通用電氣製造的 MRI 掃描儀上,它被稱為 Spoiled Gradient Echo (SPGR)。在西門子系統上,它被稱為 Fast Low Angle Shot (FLASH)。在飛利浦掃描儀上,它被稱為 Fast Field Echo (FFE)。最近,一種改進版的 T1 加權脈衝序列變得越來越受歡迎。這個序列被稱為磁化準備快速獲取梯度回波(Magnetization Prepared Rapid Acquisition of Gradient Echo,MPRAGE)(Mugler 和 Brookeman,1991),它使用準備脈衝來增強灰質、白質和腦脊髓液之間的組織對比,從而允許更好的組織分割和影像配準。目前,MRPAGE 序列是腦體積研究中最廣泛使用的技術。
Brain volumetric images are usually collected at a high resolution. The typical voxel size of a brain volumetric image is around 1 × 1 × 1 mm 3 1 × 1 × 1 mm 3 1xx1xx1mm^(3)1 \times 1 \times 1 \mathrm{~mm}^{3}, although a slightly nonisotropic voxel size (e.g., 1 × 1 × 1.2 mm 3 1 × 1 × 1.2 mm 3 1xx1xx1.2mm^(3)1 \times 1 \times 1.2 \mathrm{~mm}^{3} ) is sometimes also used. This level of spatial resolution is needed in order to provide sufficient number of voxels across the thickness of cortical ribbon, which is around 2 4 mm 2 4 mm 2-4mm2-4 \mathrm{~mm}. A resolution higher than 1 mm is of course desirable, but often at a cost of scan duration and/or SNR. Thus, sub-millimeter resolution (e.g., 0.7 mm ) is only used when one is specifically interested in a small structure of the brain, for example identifying subfields of hippocampus. Under these circumstances, usually the image will focus on the specific structure but not cover the entire brain, i.e., only partial brain coverage.
腦部體積影像通常以高解析度收集。腦部體積影像的典型體素大小約為 1 × 1 × 1 mm 3 1 × 1 × 1 mm 3 1xx1xx1mm^(3)1 \times 1 \times 1 \mathrm{~mm}^{3} ,雖然有時也會使用稍微非各向同性的體素大小(例如, 1 × 1 × 1.2 mm 3 1 × 1 × 1.2 mm 3 1xx1xx1.2mm^(3)1 \times 1 \times 1.2 \mathrm{~mm}^{3} )。這種空間解析度的水平是必要的,以便在皮質帶的厚度上提供足夠的體素數量,該厚度約為 2 4 mm 2 4 mm 2-4mm2-4 \mathrm{~mm} 。當然,超過 1 毫米的解析度是理想的,但通常會以掃描時間和/或信噪比為代價。因此,只有在特別關注腦部的小結構時,才會使用亞毫米解析度(例如,0.7 毫米),例如識別海馬體的亞區。在這種情況下,影像通常會專注於特定結構,而不覆蓋整個腦部,即僅部分腦部覆蓋。
Brain volumetric images are acquired in 3D. In MRI acquisition, there is a clear distinction between “3D” and “multislice” acquisitions. In multislice acquisition, although the stack of 2D slices can cover the same brain volume as a 3D scan, the through-plane resolution is never as good as that of a 3D acquisition. That is, even if one prescribes the slice thickness in a multislice acquisition to be 1 mm , the actual resolution cannot reach 1 mm due to imperfection in slice selection profile. This is because the RF pulse used to excite the spins has a frequency-selection band that is not perfect. As a result, the spins adjacent to the intended slice are also partially excited, and this effect decays with distance. Fortunately, brain volumetric images are always collected in a 3D mode, thus the images will look equally sharp when viewed in axial, sagittal, or coronal planes. A corollary of this notion is that, from the image quality point of view, it does not matter if the original scan is performed in axial, sagittal, or coronal orientation, because the data can be reformatted into any orientation without loss of spatial resolution. From the acquisition efficiency (thereby scan duration) point-of-view, sagittal orientation is often used. The main reason for this choice is that the human brain is usually the shortest along the left-right direction, typically about 160 180 mm 160 180 mm 160-180mm160-180 \mathrm{~mm}. Thus, it requires the least number of slices to cover the brain from the left to right side. A second reason is that there is no other source of MRI signal to the left or right of the brain (unless the cushion or headset stabilizing the head contains fluid). Thus, even if the slice selection profile is not perfect, no spurious signal will be excited or detected outside the intended excitation volume. Such signals would have manifested themselves as foldover artifacts in which a spin to the left of the intended volume will overlap with the right end of the image, and vice versa.
腦部體積影像以 3D 方式獲取。在 MRI 獲取中,“3D”和“多切片”獲取之間有明顯的區別。在多切片獲取中,儘管 2D 切片的堆疊可以覆蓋與 3D 掃描相同的腦部體積,但其平面內的解析度永遠不如 3D 獲取的好。也就是說,即使在多切片獲取中將切片厚度設置為 1 毫米,實際解析度也無法達到 1 毫米,因為切片選擇輪廓存在不完美。這是因為用於激發自旋的射頻脈衝的頻率選擇帶並不完美。因此,鄰近預定切片的自旋也會部分被激發,這種效應隨距離而衰減。幸運的是,腦部體積影像總是以 3D 模式收集,因此在軸向、矢狀或冠狀平面查看時,影像看起來都同樣清晰。這一觀念的推論是,從影像質量的角度來看,原始掃描是以軸向、矢狀或冠狀方向進行並不重要,因為數據可以在不損失空間解析度的情況下重新格式化為任何方向。 從獲取效率(因此掃描持續時間)的角度來看,通常使用矢狀面方向。這種選擇的主要原因是人腦在左右方向上通常是最短的,通常約為 160 180 mm 160 180 mm 160-180mm160-180 \mathrm{~mm} 。因此,從左到右側覆蓋大腦所需的切片數量最少。第二個原因是大腦的左側或右側沒有其他 MRI 信號源(除非穩定頭部的墊子或耳機內含有液體)。因此,即使切片選擇輪廓不完美,也不會在預期的激發體積之外激發或檢測到虛假信號。這些信號會表現為折疊伪影,其中位於預期體積左側的自旋將與圖像的右端重疊,反之亦然。
Without any acquisition acceleration schemes (e.g., parallel imaging), typical scan duration for an MRPAGE sequence is between 8 10 8 10 8-108-10 minutes. With a parallel imaging acceleration factor of 2 , this becomes 4 5 4 5 4-54-5 minutes. When describing the MRPAGE sequence in a report, aside from the typical parameters such as voxel size, field-ofview, and echo time (TE), it is useful to specify an imaging parameter referred to as the inversion time (TI). In the MPRAGE sequence, the TI is crucial in determining the contrast of the image. In general, it is useful to describe the imaging parameters as thoroughly as possible when reading or writing an article.
在沒有任何獲取加速方案(例如,平行成像)的情況下,MRPAGE 序列的典型掃描時間為 8 10 8 10 8-108-10 分鐘。使用平行成像加速因子 2,這變為 4 5 4 5 4-54-5 分鐘。在報告中描述 MRPAGE 序列時,除了典型參數如體素大小、視野和回波時間(TE)外,指定一個稱為反轉時間(TI)的成像參數也是有用的。在 MPRAGE 序列中,TI 對於確定圖像的對比度至關重要。一般來說,在閱讀或撰寫文章時,盡可能詳細地描述成像參數是有用的。

Functional MRI  功能性磁共振成像

Functional MRI (fMRI) provides an approach to probe the brain function noninvasively (Bandettini et al., 1992; Kwong et al., 1992; Ogawa et al., 1992). The most commonly measured fMRI signal is based on an indirect effect of neural activity on blood flow and blood oxygenation. This signal is referred to as blood-oxygenation-level-dependent (BOLD) signal (Ogawa et al., 1990), since it is sensitive to blood oxygenation in the venous vessels. There are two forms of fMRI, task-related fMRI and resting-state fMRI. In task-related fMRI, one aims to measure BOLD signal changes in response to a time-controlled task. Thus, the researcher usually presents a predefined stimulus time series to the participant while the MRI scanner is continuously acquiring images of the brain. Then, in data analysis, mathematical algorithms such as linear regression are used to search for the expected temporal signal pattern throughout the brain. If any voxel manifests the expected pattern, one usually calls this voxel “activated” and labels it with a pseudocolor. In resting-state fMRI, no explicit task is applied during the experiment while images are continuously collected for a period of a few minutes. Then, in analysis, one either selects a seed voxel and looks throughout the brain for voxels that have a signal pattern similar to that of the seed, or one uses more advanced algorithms such as independent component analysis to identify clusters of voxels that have similar temporal fluctuation, presumably due to direct or indirect synaptic connections. Thus, resting-state fMRI is also referred to as functional connectivity MRI (fcMRI).
功能性磁共振成像(fMRI)提供了一種非侵入性探測大腦功能的方法(Bandettini et al., 1992; Kwong et al., 1992; Ogawa et al., 1992)。最常測量的 fMRI 信號是基於神經活動對血流和血氧飽和度的間接影響。這種信號被稱為血氧水平依賴(BOLD)信號(Ogawa et al., 1990),因為它對靜脈血管中的血氧飽和度敏感。fMRI 有兩種形式,任務相關 fMRI 和靜息態 fMRI。在任務相關 fMRI 中,目的是測量對時間控制任務的 BOLD 信號變化。因此,研究者通常會在 MRI 掃描儀持續獲取大腦圖像的同時,向參與者呈現預定義的刺激時間序列。然後,在數據分析中,使用數學算法如線性回歸來搜索整個大腦中預期的時間信號模式。如果任何體素顯示出預期的模式,通常會將該體素稱為“激活”,並用偽顏色標記。在靜息態 fMRI 中,實驗期間不施加明確的任務,同時持續收集幾分鐘的圖像。 然後,在分析中,選擇一個種子體素並在整個大腦中尋找與該種子具有相似信號模式的體素,或者使用更先進的算法,如獨立成分分析,來識別具有相似時間波動的體素集群,這可能是由於直接或間接的突觸連接。因此,靜息態功能性磁共振成像也被稱為功能連接性磁共振成像(fcMRI)。
Both task-related and resting-state fMRIs use a T2*-weighted echo-planarimaging (EPI) technique. The fMRI pulse sequence uses a multislice acquisition scheme to cover the whole brain, in which the images are taken on a slice-byslice basis. For each slice, a fast acquisition technique, EPI, is used to collect the data. For a typical brain volume containing 40 slices, it takes up to 3 , 000 ms 3 , 000 ms 3,000ms3,000 \mathrm{~ms} to complete the data collection. Since neural activity and the associated hemodynamic responses are transient, it is desirable to expedite the rate of data collection. This can be achieved using a recently developed multiband acquisition technique in which two or more slices are acquired simultaneously (Feinberg et al., 2010; Mueller et al., 2010; Setsompop et al., 2012). As such, the time it takes to complete the data collection of one volume can be shortened substantially. At present, the TR in an fMRI scan can be as short as 600 ms or less. These recent technologies have been utilized in major brain imaging initiatives such as the Human Connectome Project (Van Essen et al., 2012) and are gradually becoming the standard procedure for fMRI studies.
任務相關和靜息狀態的功能性磁共振成像(fMRI)均使用 T2*-加權回聲平面成像(EPI)技術。fMRI 脈衝序列使用多切片獲取方案來覆蓋整個大腦,其中圖像是逐片獲取的。對於每個切片,使用快速獲取技術 EPI 來收集數據。對於包含 40 個切片的典型大腦體積,完成數據收集最多需要 3 , 000 ms 3 , 000 ms 3,000ms3,000 \mathrm{~ms} 。由於神經活動及其相關的血流動力學反應是瞬時的,因此希望加快數據收集的速度。這可以通過最近開發的多帶獲取技術來實現,其中兩個或更多切片同時獲取(Feinberg 等,2010;Mueller 等,2010;Setsompop 等,2012)。因此,完成一個體積的數據收集所需的時間可以大大縮短。目前,fMRI 掃描中的 TR 可以短至 600 毫秒或更少。這些最近的技術已被應用於主要的大腦成像計劃,如人類連接組計劃(Van Essen 等,2012),並逐漸成為 fMRI 研究的標準程序。
The typical spatial resolution of fMRI is between 3 3.5 mm 3 3.5 mm 3-3.5mm3-3.5 \mathrm{~mm}, but there is a trend toward a higher spatial resolution of 2 2.5 mm 2 2.5 mm 2-2.5mm2-2.5 \mathrm{~mm} with recent advances in fast imaging technologies, including multiband, parallel imaging, and high-field MRI.
功能性磁共振成像(fMRI)的典型空間解析度介於 3 3.5 mm 3 3.5 mm 3-3.5mm3-3.5 \mathrm{~mm} 之間,但隨著快速成像技術的最新進展,包括多頻帶、平行成像和高場磁共振成像,對於更高空間解析度的趨勢正在增強,達到 2 2.5 mm 2 2.5 mm 2-2.5mm2-2.5 \mathrm{~mm}
FMRI signal value at any particular time point, often written in arbitrary units with a typical range of several hundred, has no physiological meaning. It is the temporal fluctuation or change of the signal that contains information about neural activity. Taking task-related fMRI, for example, a task stimulus may cause the fMRI signal to increase by a fraction of a percent. A signal change of 1 % 1 % 1%1 \% is considered a large signal in fMRI data, in particular for cognitive tasks. Does a 1 % 1 % 1%1 \% signal change mean that neural activity has increased by 1 % 1 % 1%1 \% ? Not really. FMRI signal is a complex function of several physiological parameters including cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of oxygen (CMRO2) (Davis et al., 1998; Hoge et al., 1999; Arthurs and Boniface, 2002). Figure 1.4A illustrates the pathway that leads to the observation of fMRI signal change due to a stimulus. Neural activation induced by the stimulus results in an elevation in metabolism and release of neurotransmitters. These factors could either directly dilate blood vessels or do so via activation of glial cells such as astrocytes, which have end feet attached to vessels. These effects cause an increase in CBV and CBF, which are referred to as the hemodynamic responses of the brain. It is important to note that the increase in oxygen supply (i.e., CBF) during brain activation is more prominent than the increase in oxygen demand (i.e., CMRO2), thus the oxygenation status of the venous blood is increased. Therefore, given a task stimulus such as shown in Figure 1.4B, BOLD fMRI signal change could be detected (Figure 1.4C).
在任何特定時間點的 FMRI 信號值,通常以任意單位表示,典型範圍為幾百,並沒有生理意義。信號的時間波動或變化包含了有關神經活動的信息。以任務相關的 fMRI 為例,任務刺激可能會使 fMRI 信號增加百分之一的某個小數。信號變化 1 % 1 % 1%1 \% 在 fMRI 數據中被視為一個大的信號,特別是在認知任務中。信號變化 1 % 1 % 1%1 \% 是否意味著神經活動增加了 1 % 1 % 1%1 \% ?並不一定。FMRI 信號是幾個生理參數的複雜函數,包括腦血流量(CBF)、腦血容量(CBV)和腦氧代謝率(CMRO2)(Davis 等,1998;Hoge 等,1999;Arthurs 和 Boniface,2002)。圖 1.4A 說明了由於刺激而導致 fMRI 信號變化的觀察路徑。刺激引起的神經激活導致代謝升高和神經遞質的釋放。這些因素可以直接擴張血管,或通過激活如星形膠質細胞等膠質細胞來實現,這些細胞的末端附著在血管上。 這些效應導致 CBV 和 CBF 的增加,這被稱為大腦的血流動力學反應。重要的是要注意,在大腦激活期間,氧氣供應的增加(即 CBF)比氧氣需求的增加(即 CMRO2)更為明顯,因此靜脈血的氧合狀態增加。因此,給定如圖 1.4B 所示的任務刺激,可以檢測到 BOLD fMRI 信號的變化(圖 1.4C)。

Figure 1.4 Illustration of BOLD fMRI. (A) Illustration of the neurovascular coupling pathway that leads to the observation of fMRI signal change due to a stimulus. (B) Example of taskfMRI stimulus paradigm. © Corresponding BOLD signal in visual cortex from an fMRI scan using the paradigm in (b). Red bars indicate stimulus periods. (See color plate also)
圖 1.4 BOLD fMRI 的插圖。(A) 神經血管耦合通路的插圖,該通路導致由於刺激而觀察到的 fMRI 信號變化。(B) 任務 fMRI 刺激範式的示例。© 使用(b)中的範式進行的 fMRI 掃描中視覺皮層的相應 BOLD 信號。紅色條形表示刺激期間。(另見彩色圖版)
How is venous blood oxygenation level related to fMRI signal? It is fortuitous that hemoglobin in the blood has a differential magnetic property between oxygenated and deoxygenated states, thus can serve as an endogenous contrast agent for MRI. When oxygenated, the hemoglobin is in a so-called diamagnetic state, which does not distinguish itself from the surrounding water in terms of magnetic property. In the deoxygenated state, on the other hand, it is in a paramagnetic state, which generates a small magnetic field in its surrounding, causing a disturbance to the homogeneity of the magnetic field. Since T2* of a voxel is closely associated with the homogeneity of the field, this MR parameter is dependent on the abundance of deoxyhemoglobin in the voxel and thereby the oxygenation status of the blood.
靜脈血氧合水平與功能性磁共振成像信號有何關聯?血液中的血紅蛋白在氧合和去氧狀態之間具有不同的磁性特性,因此可以作為 MRI 的內源性對比劑。當血紅蛋白氧合時,它處於所謂的抗磁性狀態,在磁性特性上與周圍的水無法區分。另一方面,在去氧狀態下,它處於順磁性狀態,這會在其周圍產生一個小的磁場,造成磁場均勻性的擾動。由於體素的 T2*與磁場的均勻性密切相關,因此這個 MR 參數依賴於體素中去氧血紅蛋白的豐富程度,從而影響血液的氧合狀態。
When integrating these cascades in a quantitative manner, the fMRI signal change due to task stimulation can be written as (Davis et al., 1998; Hoge et al., 1999):
當以定量方式整合這些級聯時,因任務刺激而引起的 fMRI 信號變化可以寫成(Davis 等,1998;Hoge 等,1999):
Δ B O L D B O L D = M [ 1 ( 1 + Δ C M R O 2 C M R O 2 ) β ( 1 + Δ C B F C B F ) α β ] Δ B O L D B O L D = M 1 1 + Δ C M R O 2 C M R O 2 β 1 + Δ C B F C B F α β (Delta BOLD)/(BOLD)=M*[1-(1+(Delta CMRO2)/(CMRO2))^(beta)*(1+(Delta CBF)/(CBF))^(alpha-beta)]\frac{\Delta B O L D}{B O L D}=M \cdot\left[1-\left(1+\frac{\Delta C M R O 2}{C M R O 2}\right)^{\beta} \cdot\left(1+\frac{\Delta C B F}{C B F}\right)^{\alpha-\beta}\right]
in which Δ CMRO / CMRO 2 Δ CMRO / CMRO 2 DeltaCMRO//CMRO2\Delta \mathrm{CMRO} / \mathrm{CMRO} 2 indicates task-induced change in brain metabolic rate; Δ CBF / CBF Δ CBF / CBF DeltaCBF//CBF\Delta \mathrm{CBF} / \mathrm{CBF} is the change in blood flow; M , α M , α M,alphaM, \alpha, and β β beta\beta are variables related to scanner field strength and imaging parameters, blood flow-volume relationship, and vessel geometry, respectively. To provide the readers with a realistic example of these parameters in the primary visual cortex, Hutchison et al. (2013) found that flashing grating caused a Δ CMRO 2 / CMRO 2 Δ CMRO 2 / CMRO 2 DeltaCMRO2//CMRO2\Delta \mathrm{CMRO} 2 / \mathrm{CMRO} 2 of 15 % 15 % 15%15 \% and a Δ CBF / CBF Δ CBF / CBF DeltaCBF//CBF\Delta \mathrm{CBF} / \mathrm{CBF} of 35 % 35 % 35%35 \%, which resulted in a fMRI signal increase by 0.7 % 0.7 % 0.7%0.7 \%.
在其中 Δ CMRO / CMRO 2 Δ CMRO / CMRO 2 DeltaCMRO//CMRO2\Delta \mathrm{CMRO} / \mathrm{CMRO} 2 表示任務引起的大腦代謝率變化; Δ CBF / CBF Δ CBF / CBF DeltaCBF//CBF\Delta \mathrm{CBF} / \mathrm{CBF} 是血流的變化; M , α M , α M,alphaM, \alpha β β beta\beta 分別是與掃描儀場強度和成像參數、血流-體積關係以及血管幾何形狀相關的變量。為了向讀者提供這些參數在初級視覺皮層中的現實例子,Hutchison 等人(2013)發現閃爍的格子圖案引起了 Δ CMRO 2 / CMRO 2 Δ CMRO 2 / CMRO 2 DeltaCMRO2//CMRO2\Delta \mathrm{CMRO} 2 / \mathrm{CMRO} 2 15 % 15 % 15%15 \% Δ CBF / CBF Δ CBF / CBF DeltaCBF//CBF\Delta \mathrm{CBF} / \mathrm{CBF} 35 % 35 % 35%35 \% ,這導致 fMRI 信號增加了 0.7 % 0.7 % 0.7%0.7 \%
More discussions on fMRI experimental design and analyses in aging studies can be found in chapters 4 and 6.
有關老年研究中 fMRI 實驗設計和分析的更多討論可以在第 4 章和第 6 章中找到。

Diffusion Tensor Imaging (DTI)
擴散張量成像 (DTI)

DTI provides a powerful tool to evaluate microstructural tissue integrity and whitematter connectivity, beyond those of conventional structural imaging (Basser et al., 1994). Diffusion MRI can reflect structural properties of the brain because tissue structures such as cell membrane act as barriers that prevent water molecules from free, random motion. Furthermore, some structures such as axonal membrane and myelin sheath disrupt free diffusion in an orientation-dependent manner. That is, along the white-matter fiber’s principal direction, the water diffusion is minimally affected, whereas across the fiber direction the diffusion is heavily influenced. As such, DTI can also provide an anisotropy measure of water diffusion, which can be used to determine white-matter fiber orientation (Mori et al., 1999; Le Bihan et al., 2001).
DTI 提供了一個強大的工具來評估微觀組織的完整性和白質連接性,超越了傳統結構成像的範疇(Basser et al., 1994)。擴散 MRI 可以反映大腦的結構特性,因為組織結構如細胞膜充當障礙,阻止水分子自由隨機運動。此外,一些結構如軸突膜和髓鞘以方向依賴的方式干擾自由擴散。也就是說,沿著白質纖維的主要方向,水的擴散受到的影響最小,而在纖維方向的交叉處,擴散則受到很大影響。因此,DTI 也可以提供水擴散的各向異性測量,這可以用來確定白質纖維的方向(Mori et al., 1999; Le Bihan et al., 2001)。
DTI measures the diffusion pattern of water molecules by applying two magnetic field gradients in the pulse sequence (Figure 1.5A), which can encode the distance of water diffusion during this period. The strength of the magnetic field gradients can be represented by an imaging parameter called “b value,” which is associated with both magnitude and duration of the gradients as well as their time gap:
DTI 測量水分子擴散模式,通過在脈衝序列中應用兩個磁場梯度(圖 1.5A),這可以編碼在此期間水擴散的距離。磁場梯度的強度可以用一個稱為“b 值”的成像參數來表示,該參數與梯度的大小和持續時間以及它們的時間間隔有關:

(A)

(B)

b = 0 s / mm 2 b = 1000 s / mm 2 b = 0 s / mm 2 b = 1000 s / mm 2 b=0s//mm^(2)quadb=1000s//mm^(2)quad\mathrm{b}=0 \mathrm{~s} / \mathrm{mm}^{2} \quad \mathrm{~b}=1000 \mathrm{~s} / \mathrm{mm}^{2} \quad ADC map   b = 0 s / mm 2 b = 1000 s / mm 2 b = 0 s / mm 2 b = 1000 s / mm 2 b=0s//mm^(2)quadb=1000s//mm^(2)quad\mathrm{b}=0 \mathrm{~s} / \mathrm{mm}^{2} \quad \mathrm{~b}=1000 \mathrm{~s} / \mathrm{mm}^{2} \quad ADC 地圖
©
D ¯ = [ D x x D x y D x z D y x D y y D y z D z x D z y D z z ] D ¯ = D x x D x y D x z D y x D y y D y z D z x D z y D z z bar(D)=[[D_(xx),D_(xy),D_(xz)],[D_(yx),D_(yy),D_(yz)],[D_(zx),D_(zy),D_(zz)]]\bar{D}=\left[\begin{array}{ccc} D_{x x} & D_{x y} & D_{x z} \\ D_{y x} & D_{y y} & D_{y z} \\ D_{z x} & D_{z y} & D_{z z} \end{array}\right]
(D)
A D C = [ D x x D x y D x z D y x D y y D y z D z x D z y D z z ] [ x y z ] A D C = D x x D x y D x z D y x D y y D y z D z x D z y D z z x y z ADC=[[D_(xx),D_(xy),D_(xz)],[D_(yx),D_(yy),D_(yz)],[D_(zx),D_(zy),D_(zz)]]*[[x],[y],[z]]A D C=\left[\begin{array}{lll} D_{x x} & D_{x y} & D_{x z} \\ D_{y x} & D_{y y} & D_{y z} \\ D_{z x} & D_{z y} & D_{z z} \end{array}\right] \cdot\left[\begin{array}{l} x \\ y \\ z \end{array}\right]
Figure 1.5 Illustration of diffusion tensor imaging (DTI). (A) A simplified DTI pulse sequence. (B) Diffusion images with two different b b bb values and the calculated ADC map. © Components of the diffusion tensor matrix. (D) ADC can be determined by the tensor matrix.
圖 1.5 擴散張量成像 (DTI) 的示意圖。 (A) 簡化的 DTI 脈衝序列。 (B) 具有兩個不同 b b bb 值的擴散影像及計算出的 ADC 地圖。 (C) 擴散張量矩陣的組成部分。 (D) ADC 可以通過張量矩陣來確定。
b = γ 2 G 2 δ 2 ( Δ δ / 3 ) b = γ 2 G 2 δ 2 ( Δ δ / 3 ) b=gamma^(2)G^(2)delta^(2)(Delta-delta//3)b=\gamma^{2} \mathrm{G}^{2} \delta^{2}(\Delta-\delta / 3)
where δ δ delta\delta is the duration of the gradient, G G GG is the magnitude of the gradient, and Δ Δ Delta\Delta is their time gap. The DTI signal is expected to follow a mono-exponential function of the b b bb value:
其中 δ δ delta\delta 是梯度的持續時間, G G GG 是梯度的大小, Δ Δ Delta\Delta 是它們的時間間隔。DTI 信號預期遵循 b b bb 值的單指數函數:
S = S 0 e b D S = S 0 e b D S=S_(0)e^(-bD)S=S_{0} e^{-b D}
in which S S SS is the DTI MRI signal, D D DD is called the apparent diffusion coefficient (ADC). Therefore, by applying a minimum of two b b bb values while measuring their corresponding MRI signal intensities, one can determine the ADC value (Figure 1.5B).
在其中 S S SS 是 DTI MRI 信號, D D DD 被稱為表觀擴散係數 (ADC)。因此,通過在測量其相應的 MRI 信號強度時應用至少兩個 b b bb 值,可以確定 ADC 值(圖 1.5B)。
It is important to note that magnetic field gradient has directionality, and it can be applied in any direction of the 3D space. Accordingly, one can measure an ADC along any direction in space. Therefore, an infinite number of ADC values exist for a given tissue, which makes it difficult to measure and to interpret in practice.
重要的是要注意,磁場梯度具有方向性,並且可以在三維空間的任何方向上應用。因此,可以沿著空間中的任何方向測量 ADC。因此,對於給定的組織,存在無限多的 ADC 值,這使得在實踐中測量和解釋變得困難。
Fortunately, with reasonable assumptions (e.g., single tissue compartment), one can show that these ADCs cannot take arbitrary values. Instead, they follow the constraints of a tensor matrix (Figure 1.5C). That is, the water diffusion pattern in a tissue has six degrees of freedom, corresponding to three directional variables and three magnitude variables, and once the tensor matrix is obtained, ADC value along any direction in space can be determined (Figure 1.5D). Other indices can also be derived from the diffusion tensor matrix:
幸運的是,在合理的假設下(例如,單一組織區域),可以顯示這些 ADC 無法取任意值。相反,它們遵循張量矩陣的約束(圖 1.5C)。也就是說,組織中的水擴散模式具有六個自由度,對應於三個方向變量和三個大小變量,一旦獲得張量矩陣,就可以確定空間中任何方向的 ADC 值(圖 1.5D)。其他指標也可以從擴散張量矩陣中推導出來:
Fractional anisotropy ( FA ) = ( λ 1 λ 2 ) 2 + ( λ 1 λ 3 ) 2 + ( λ 2 λ 3 ) 2 2 ( λ 1 2 + λ 2 2 + λ 3 2 ) , Mean diffusivity ( MD ) = ( λ 1 + λ 2 + λ 3 ) / 3 Radial diffusivity ( RD ) = ( λ 2 + λ 3 ) / 2 , Axial diffusivity ( AxD ) = λ 1 ,  Fractional anisotropy  ( FA ) = λ 1 λ 2 2 + λ 1 λ 3 2 + λ 2 λ 3 2 2 λ 1 2 + λ 2 2 + λ 3 2 ,  Mean diffusivity  ( MD ) = λ 1 + λ 2 + λ 3 / 3  Radial diffusivity  ( RD ) = λ 2 + λ 3 / 2 ,  Axial diffusivity  ( AxD ) = λ 1 , {:[" Fractional anisotropy "(FA)=(sqrt((lambda_(1)-lambda_(2))^(2)+(lambda_(1)-lambda_(3))^(2)+(lambda_(2)-lambda_(3))^(2)))/(sqrt(2(lambda_(1)^(2)+lambda_(2)^(2)+lambda_(3)^(2))))","],[" Mean diffusivity "(MD)=(lambda_(1)+lambda_(2)+lambda_(3))//3],[" Radial diffusivity "(RD)=(lambda_(2)+lambda_(3))//2","],[" Axial diffusivity "(AxD)=lambda_(1)","]:}\begin{aligned} & \text { Fractional anisotropy }(\mathrm{FA})=\frac{\sqrt{\left(\lambda_{1}-\lambda_{2}\right)^{2}+\left(\lambda_{1}-\lambda_{3}\right)^{2}+\left(\lambda_{2}-\lambda_{3}\right)^{2}}}{\sqrt{2\left(\lambda_{1}{ }^{2}+\lambda_{2}{ }^{2}+\lambda_{3}^{2}\right)}}, \\ & \text { Mean diffusivity }(\mathrm{MD})=\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) / 3 \\ & \text { Radial diffusivity }(\mathrm{RD})=\left(\lambda_{2}+\lambda_{3}\right) / 2, \\ & \text { Axial diffusivity }(\mathrm{AxD})=\lambda_{1}, \end{aligned}
here λ 1 , λ 2 λ 1 , λ 2 lambda_(1),lambda_(2)\lambda_{1}, \lambda_{2} and λ 3 λ 3 lambda_(3)\lambda_{3} are the eigenvalues of the diffusion tensor.
這裡 λ 1 , λ 2 λ 1 , λ 2 lambda_(1),lambda_(2)\lambda_{1}, \lambda_{2} λ 3 λ 3 lambda_(3)\lambda_{3} 是擴散張量的特徵值。

Conceptually, the three-dimensional description of water diffusion is equivalent to dropping a small amount of ink in tissue and watching how it spreads with time. When there are barriers in the tissue (e.g., myelin sheath), the spatial distribution of the ink will not be spherical and instead will appear like an ellipsoid. This results in an anisotropy in diffusion.
從概念上講,水擴散的三維描述相當於在組織中滴入少量墨水,並觀察它隨時間的擴散情況。當組織中存在障礙物(例如,髓鞘)時,墨水的空間分佈將不會是球形,而是呈現橢圓形。這導致了擴散的各向異性。
One needs to apply the magnetic field gradients along a minimum of six non-collinear directions. Then, together with a b0 image acquired under the absence of the gradient, the diffusion tensor can be determined. In practice, more gradient directions are generally used in order to improve the reliability of the data. At present, most studies use 30 to 128 gradient directions. In theory, these directions can be arbitrarily chosen as long as they are not collinear. However, in order to obtain the best sampling of the 3D space, it is recommended to spread the gradient directions to be evenly spaced on the sphere. Optimal gradient tables for various numbers of directions have been reported in the literature (Jones et al., 1999; Skare et al., 2000).
需要沿至少六個非共線方向施加磁場梯度。然後,結合在無梯度情況下獲得的 b0 影像,可以確定擴散張量。在實踐中,通常使用更多的梯度方向以提高數據的可靠性。目前,大多數研究使用 30 到 128 個梯度方向。理論上,只要這些方向不共線,就可以任意選擇。然而,為了獲得最佳的三維空間取樣,建議將梯度方向均勻分佈在球面上。文獻中報導了各種方向數量的最佳梯度表(Jones et al., 1999; Skare et al., 2000)。
One technical point that an investigator should be cognizant of is whether the gradient directions are defined in magnet coordinates or in imaging slice coordinates. The magnet coordinates refer to the space defined by the MRI scanner’s physical axes, and are independent of the patient’s position or the slice orientation that the MRI operator places. The imaging slice coordinates refer to the space defined by the orientations of the acquired slices, and they change with the MRI operator’s tilting of the angulation of the slices. Therefore, depending on which coordinates the gradient directions are based upon, the data could appear quite differently. In essence, the ellipsoid depicted by the diffusion tensor could be tilted from the true angle if the gradient directions are not interpreted correctly. This does not change parametric maps such as mean diffusivity (MD) or fractional anisotropy (FA) of the data. However, when one aims to use the DTI data for fiber tractography or for determining the white matter principal
一個調查員應該注意的技術要點是,梯度方向是定義在磁場坐標還是成像切片坐標中。磁場坐標是指由 MRI 掃描儀的物理軸定義的空間,與病人的位置或 MRI 操作員所放置的切片方向無關。成像切片坐標是指由獲取的切片方向定義的空間,並且隨著 MRI 操作員對切片角度的傾斜而改變。因此,根據梯度方向所基於的坐標,數據可能會顯示出相當不同的情況。實質上,如果梯度方向未正確解釋,則擴散張量所描繪的橢圓體可能會與真實角度傾斜。這不會改變數據的參數圖,如平均擴散率(MD)或分數各向異性(FA)。然而,當人們旨在使用 DTI 數據進行纖維追蹤或確定白質主導時。

direction (e.g., color maps), the results will likely be incorrect. Different MRI vendors and pulse sequence programmers may define the gradient directions differently. The results are also dependent on the processing pipelines in terms of the orders of registration and tensor fitting. Therefore, it is useful to verify the specific acquisition and processing settings before conducting fiber tractography and displaying color maps in DTI analysis.
方向(例如,顏色圖),結果可能會不正確。不同的 MRI 供應商和脈衝序列程序員可能會以不同的方式定義梯度方向。結果還取決於處理管道中註冊和張量擬合的順序。因此,在進行纖維追蹤和顯示 DTI 分析中的顏色圖之前,驗證特定的獲取和處理設置是有用的。
DTI data are usually collected in multislice mode, in which a series of 2D axial slices are acquired to form a whole-brain volume. The acquisition voxel size of DTI is usually around 2 × 2 × 2 mm 3 2 × 2 × 2 mm 3 2xx2xx2mm^(3)2 \times 2 \times 2 \mathrm{~mm}^{3}, and is often interpolated to a reconstructed voxel size of 1 × 1 × 2 mm 3 1 × 1 × 2 mm 3 1xx1xx2mm^(3)1 \times 1 \times 2 \mathrm{~mm}^{3}. In the recent protocols of the Human Connectome Project, the acquisition resolution of DTI has been further improved to 1.25 × 1.25 × 1.25 mm 3 1.25 × 1.25 × 1.25 mm 3 1.25 xx1.25 xx1.25mm^(3)1.25 \times 1.25 \times 1.25 \mathrm{~mm}^{3} (Sotiropoulos et al., 2013). Multiband technology (Feinberg et al., 2010) is increasingly used in DTI to reduce the scan duration.
DTI 數據通常以多切片模式收集,其中獲取一系列 2D 軸向切片以形成整個大腦體積。DTI 的獲取體素大小通常約為 2 × 2 × 2 mm 3 2 × 2 × 2 mm 3 2xx2xx2mm^(3)2 \times 2 \times 2 \mathrm{~mm}^{3} ,並且經常插值到重建體素大小 1 × 1 × 2 mm 3 1 × 1 × 2 mm 3 1xx1xx2mm^(3)1 \times 1 \times 2 \mathrm{~mm}^{3} 。在最近的人類連接組計劃的協議中,DTI 的獲取解析度進一步提高到 1.25 × 1.25 × 1.25 mm 3 1.25 × 1.25 × 1.25 mm 3 1.25 xx1.25 xx1.25mm^(3)1.25 \times 1.25 \times 1.25 \mathrm{~mm}^{3} (Sotiropoulos 等,2013)。多頻帶技術(Feinberg 等,2010)在 DTI 中越來越多地使用,以縮短掃描時間。
Typical acquisitions of DTI use a single non-zero b value, between 700-1000 s/ mm 2 mm 2 mm^(2)\mathrm{mm}^{2}. This range of b values can provide a sizeable signal decay (thereby allowing a reliable fitting of the decay curve) while maintaining sufficient signal intensity. Recently, there is a trend to collect more b values (referred to as shells), which could allow the assessment of diffusion properties beyond a single tensor (Tuch et al., 2003; Jensen et al., 2005; Aganj et al., 2010; Descoteaux et al., 2011). These advanced measurements may permit the detection of crossing fibers in a voxel, the determination of axonal diameter, and the quantification of non-Gaussian diffusion metrics.
典型的 DTI 獲取使用單一非零 b 值,介於 700-1000 s/ mm 2 mm 2 mm^(2)\mathrm{mm}^{2} 。這個 b 值範圍可以提供相當大的信號衰減(從而允許可靠地擬合衰減曲線),同時保持足夠的信號強度。最近,有一種趨勢是收集更多的 b 值(稱為 shells),這可以允許評估超越單一張量的擴散特性(Tuch et al., 2003; Jensen et al., 2005; Aganj et al., 2010; Descoteaux et al., 2011)。這些先進的測量可能允許在體素中檢測交叉纖維、確定軸突直徑以及量化非高斯擴散指標。
Anisotropy indices such as FA can be further exploited to conduct analysis of fiber connections, termed tractography. Readers are referred to Chapter 3 for connectivity analysis of DTI and application of DTI in cerebral aging.
各向異性指數如 FA 可以進一步用於進行纖維連接的分析,稱為纖維追蹤。讀者可參考第 3 章以了解 DTI 的連接性分析及 DTI 在大腦老化中的應用。

Tissue Lesion Detection with Proton-Density, T2-weighted, and FLAIR MRI
組織病變檢測:質子密度、T2 加權和 FLAIR MRI

Cerebral aging is often associated with tissue lesions, in particular in the white matter (Gunning-Dixon and Raz, 2000; de Leeuw et al., 2001). MRI techniques that are capable of detecting tissue lesions include proton-density, T2-weighted, and FLAIR MRI, because lesion areas usually have high water density and longer T 2 relaxation time. The lesion regions therefore appear bright in these images.
腦部老化通常與組織損傷有關,特別是在白質中(Gunning-Dixon 和 Raz,2000;de Leeuw 等,2001)。能夠檢測組織損傷的 MRI 技術包括質子密度、T2 加權和 FLAIR MRI,因為損傷區域通常具有高水密度和較長的 T2 恢復時間。因此,這些影像中的損傷區域顯得明亮。
As mentioned earlier in the chapter, these images usually take longer time to acquire because the TR needs to be relatively long (several seconds) in order to allow the magnetization to recover sufficiently. Therefore, their spatial resolutions are often lower than that of T1-weighted image. Typical acquisition voxel size is approximately 1 × 1 × 2 mm 3 1 × 1 × 2 mm 3 1xx1xx2mm^(3)1 \times 1 \times 2 \mathrm{~mm}^{3}. The images are usually acquired in multislice mode, although 3D acquisitions are increasingly used. To accelerate the data collection efficiency, a fast imaging approach, turbo-spin-echo, is used, which allows the collection of 10-20 lines in the k-space following each excitation. Without this acceleration, it would have been impractical to collect these images within a clinically relevant time frame.
如本章前面所提到的,這些影像通常需要更長的時間來獲取,因為 TR 需要相對較長(幾秒鐘),以便讓磁化充分恢復。因此,它們的空間解析度通常低於 T1 加權影像。典型的獲取體素大小約為 1 × 1 × 2 mm 3 1 × 1 × 2 mm 3 1xx1xx2mm^(3)1 \times 1 \times 2 \mathrm{~mm}^{3} 。這些影像通常以多切片模式獲取,儘管 3D 獲取的使用越來越多。為了加快數據收集效率,使用了一種快速成像方法,稱為渦輪自旋回波,這允許在每次激發後在 k 空間中收集 10-20 條線。如果沒有這種加速,在臨床相關的時間範圍內收集這些影像將是不切實際的。
In terms of the analysis of these lesion-detection images, there is not a standard analysis protocol. Three categories of analysis approaches have been used. One is
在這些病變檢測影像的分析方面,並沒有標準的分析協議。已經使用了三種分析方法。第一種是

through manual, visual inspection of the images by a trained individual, e.g., a neuroradiologist. The rater will provide a quantitative rating of the lesion volume based on his/her experience, e.g., negligible lesion, modest amount of lesion, severe lesion, etc. (de Leeuw et al., 2001; Wahlund et al., 2001). Reliability of the rating can be checked by having a second rater evaluate the images and the consistency between the raters can be examined. A second category is a semi-automatic approach, in which the image is first analyzed with an algorithm, usually based on signal intensity thresholding together with cluster size requirement (Zijdenbos et al., 1994; Hulsey et al., 2012). The resulting mask is then manually edited by a rater to remove spurious voxels due to motion, heterogeneity in coil sensitivity, and so on. This analysis approach yields a quantification of total lesion volume as well as lesion volume by spatial location, e.g., periventricular lesion volume. A third category of approaches are fully automated algorithms to delineate lesion voxels based on sophisticated computational methods (Lao et al., 2008; de Boer et al., 2009). Usually these approaches utilize multiple image contrasts, e.g., proton-density, T2-weighted, FLAIR, and T1-weighted images, to improve the specificity of the voxel delineation. The advantage of this type of approach is, obviously, its reliability and potential sensitivity to image quality; however, it needs to be further evaluated. Additionally, the requirement of multiple image contrasts usually lengthens scan duration.
通過受過訓練的個體(例如神經放射科醫生)對圖像進行手動、視覺檢查。評估者將根據其經驗提供病變體積的定量評分,例如,微不足道的病變、適度的病變、嚴重的病變等(de Leeuw et al., 2001; Wahlund et al., 2001)。可以通過讓第二位評估者評估圖像來檢查評分的可靠性,並檢查評估者之間的一致性。第二類方法是半自動方法,其中圖像首先使用算法進行分析,通常基於信號強度閾值以及聚類大小要求(Zijdenbos et al., 1994; Hulsey et al., 2012)。然後,評估者手動編輯生成的掩模,以去除由於運動、線圈靈敏度的異質性等原因造成的虛假體素。這種分析方法產生了總病變體積的量化以及按空間位置的病變體積,例如,腦室周圍病變體積。第三類方法是完全自動化的算法,基於複雜的計算方法來劃定病變體素(Lao et al., 2008; de Boer et al., 2009)。 通常這些方法利用多種影像對比,例如質子密度、T2 加權、FLAIR 和 T1 加權影像,以提高體素描繪的特異性。這種方法的優勢顯然在於其可靠性和對影像質量的潛在敏感性;然而,這需要進一步評估。此外,多種影像對比的要求通常會延長掃描時間。
In recent years, some new advances in the application of T1-weighted and T2weighted MRI are being developed. For example, the ratio between T1-weighted and T2-weighted MRI signal intensity has shown to be sensitive in detecting agerelated change of intracortical myelin content during normal development and aging (Grydeland et al., 2013). However, validation studies are needed for such new techniques.
近年來,T1 加權和 T2 加權 MRI 應用方面出現了一些新的進展。例如,T1 加權和 T2 加權 MRI 信號強度之間的比率已被證明對於檢測正常發展和衰老過程中皮質內髓鞘含量的年齡相關變化具有敏感性(Grydeland 等,2013)。然而,這些新技術需要進行驗證研究。

Emerging MRI Techniques Relevant for Cerebral Aging
與大腦老化相關的新興 MRI 技術

In addition to the techniques described above, recent advances in the MRI field have enabled several other methods that are ready for application in cerebral aging studies. This section will provide a brief introduction of these promising MRI techniques.
除了上述技術外,最近在 MRI 領域的進展使幾種其他方法能夠應用於腦部老化研究。本節將簡要介紹這些有前景的 MRI 技術。

Cerebral Perfusion with Arterial-Spin-Labeling (ASL) MRI
動脈自旋標記(ASL)MRI 的腦灌注

Cerebral perfusion, denoted by cerebral blood flow (CBF), is an important index for brain function and viability. Diminished CBF is a known cause of cognitive decline and can further cause dementia (Gorelick et al., 2011; Zlokovic, 2011). Many structural alterations in the brain such as white-matter lesions are also thought to be associated with CBF dysfunction (Schuff et al., 2009). Therefore, the ability to determine CBF will provide an important piece of information on cerebral aging.
腦灌注,通常用腦血流量(CBF)表示,是腦功能和生存能力的重要指標。CBF 減少是認知衰退的已知原因,並可能進一步導致癡呆(Gorelick et al., 2011; Zlokovic, 2011)。許多腦部的結構改變,如白質病變,也被認為與 CBF 功能障礙有關(Schuff et al., 2009)。因此,確定 CBF 的能力將提供有關腦部老化的重要信息。
CBF is traditionally measured with positron emission tomography (PET) (Mintun et al., 1984). However, safety concerns associated with radioactive tracers as well as the complexity of the procedure have limited its application in cerebral aging studies. CBF techniques based on MRI have previously been devised and have been routinely
CBF 通常是通過正電子發射斷層掃描 (PET) 來測量的 (Mintun et al., 1984)。然而,與放射性示蹤劑相關的安全問題以及程序的複雜性限制了其在腦部老化研究中的應用。基於 MRI 的 CBF 技術之前已經被設計出來並且已經常規使用。

Figure 1.6 The principle of ASL MRI. In the control scan, the magnetization of the blood is unchanged, whereas in the label scan, the magnetization of the blood is inverted when passing through the labeling plane. Note that the RF pulse train is still played out during the control scan, but it is essentially a zero-degree RF pulse. The purpose of this is to equate the magnetization transfer effects between the label and control images. After a time delay which allows the labeled blood to arrive at the imaging slice, a control image and a labeled image are acquired. The subtraction of control and labeled images can cancel the static tissue signal and the resulting difference image provides an estimation of CBF to the brain. (See color plate also)
圖 1.6 ASL MRI 的原理。在控制掃描中,血液的磁化不變,而在標記掃描中,血液的磁化在通過標記平面時被反轉。請注意,在控制掃描期間,RF 脈衝序列仍然會播放,但本質上是一個零度 RF 脈衝。這樣做的目的是使標記圖像和控制圖像之間的磁化轉移效應相等。在允許標記血液到達成像切片的時間延遲後,獲取控制圖像和標記圖像。控制圖像和標記圖像的相減可以消除靜態組織信號,從而得到的差異圖像提供了對大腦 CBF 的估計。(另見彩色圖版)

used in acute stroke (Ostergaard et al., 1996b; Ostergaard et al., 1996a; Sorensen et al., 1999). However, these earlier CBF techniques require the injection of MRI contrast agent. Therefore, for healthy participants who are not clinically implicated to receive contrast agent, this again presents a practical obstacle.
用於急性中風(Ostergaard et al., 1996b; Ostergaard et al., 1996a; Sorensen et al., 1999)。然而,這些早期的 CBF 技術需要注射 MRI 對比劑。因此,對於不需要臨床使用對比劑的健康參與者來說,這再次帶來了實際障礙。
More recently, an MRI technique called arterial-spin-labeling (ASL) has emerged as a noninvasive (i.e., does not require the injection of exogenous agent) method to measure CBF in humans (Williams et al., 1992; Kim, 1995; Wong et al., 1998; Yang et al., 1998; Golay et al., 1999; Wang et al., 2005; Dai et al., 2008). This method uses blood water as an endogenous tracer and, by noninvasively labeling it using radiofrequency pulses, CBF information can be obtained. Figure 1.6 illustrates the principle of ASL MRI. One first performs a labeled MRI scan (bottom panel, Figure 1.6), in which incoming arterial blood is labeled at its entry point to the brain, usually at the level of the neck or lower part of the brain. A time delay is then applied to allow the labeled water to reach its destination, the brain parenchyma. An image of the brain slice is then acquired, which contains signal of the newly arrived water as well as that of static tissue water (white arrows, Figure 1.6) that had been there all along. The signal from the newly arrived water molecules is the target signal and reflects CBF, but the data from the static signal is a nuisance. Therefore, a control MRI scan (top panel, Figure 1.6) is performed, during which the incoming water is not labeled. Following a delay time identical to that of the labeled scan, a brain image is acquired.
最近,一種名為動脈自旋標記(ASL)的 MRI 技術出現,作為一種非侵入性(即不需要注射外源性物質)的方法來測量人類的腦血流(CBF)(Williams et al., 1992; Kim, 1995; Wong et al., 1998; Yang et al., 1998; Golay et al., 1999; Wang et al., 2005; Dai et al., 2008)。這種方法使用血液中的水作為內源性示蹤劑,通過非侵入性地使用射頻脈衝對其進行標記,可以獲得 CBF 信息。圖 1.6 說明了 ASL MRI 的原理。首先進行標記的 MRI 掃描(圖 1.6 底部面板),在此過程中,進入大腦的動脈血在進入點被標記,通常是在頸部或大腦下部的水平。然後施加一個時間延遲,以允許標記的水到達其目的地,即大腦實質。然後獲取大腦切片的圖像,其中包含新到達的水的信號以及靜態組織水的信號(圖 1.6 中的白色箭頭),靜態組織水一直存在。新到達的水分子的信號是目標信號,反映了 CBF,但靜態信號的數據則是一種干擾。 因此,進行了一次控制 MRI 掃描(圖 1.6 的上面板),在此期間,進入的水沒有被標記。在與標記掃描相同的延遲時間後,獲得了一幅腦部影像。
In the control image, the static tissue signal is the same as that in the labeled scan. Therefore, the subtraction of labeled and control images can cancel the static tissue signal, and the resulting difference image provides an estimation of CBF to the brain. With a perfusion kinetic model (Chalela et al., 2000; Alsop et al., 2014), one can also convert the MRI signal intensity to quantitative CBF values in the units of ml blood per 100 g brain per minute ( ml / 100 g / min ml / 100 g / min ml//100g//min\mathrm{ml} / 100 \mathrm{~g} / \mathrm{min} ).
在控制影像中,靜態組織信號與標記掃描中的信號相同。因此,標記影像和控制影像的相減可以消除靜態組織信號,從而得到的差異影像提供了對大腦 CBF 的估算。使用灌注動力學模型(Chalela et al., 2000; Alsop et al., 2014),還可以將 MRI 信號強度轉換為以每分鐘每 100 克大腦的毫升血液為單位的定量 CBF 值( ml / 100 g / min ml / 100 g / min ml//100g//min\mathrm{ml} / 100 \mathrm{~g} / \mathrm{min} )。
The difference signal in ASL is only 1 % 1 % 1%1 \% or less of the original MRI signal intensity (Alsop and Detre, 1996; Liu et al., 2011), which limits its sensitivity and is considered a weakness of this technique. With recent advances in ASL technique, however, this drawback is mitigated to a large extent, and at present one can obtain a whole-brain CBF map within a reasonable scan duration of 4-6 minutes. There is now also a consensus in ASL implementation in the field (Alsop et al., 2014), and all major MRI vendors have included ASL in their product software. Age-specific post-labeling delay times have also been proposed (Alsop et al., 2014). It is generally recommended that a longer delay time should be used in older participants. Therefore, access to ASL MRI is becoming a routine procedure in research and clinical and settings. One caveat is that white-matter CBF is still difficult to measure reliably with the current ASL methods. Thus, at present, most investigations of cerebral perfusion is focused on the gray matter.
ASL 中的差異信號僅為原始 MRI 信號強度的 1 % 1 % 1%1 \% 或更低(Alsop 和 Detre,1996;Liu 等,2011),這限制了其靈敏度,並被認為是這項技術的一個弱點。然而,隨著 ASL 技術的最新進展,這一缺點在很大程度上得到了緩解,目前可以在合理的掃描時間 4-6 分鐘內獲得全腦 CBF 圖。現在在該領域的 ASL 實施中也達成了一致(Alsop 等,2014),所有主要的 MRI 供應商都已將 ASL 納入其產品軟件中。還提出了年齡特定的後標記延遲時間(Alsop 等,2014)。一般建議在年長參與者中使用較長的延遲時間。因此,獲取 ASL MRI 正成為研究和臨床環境中的常規程序。一個警告是,使用當前的 ASL 方法仍然難以可靠地測量白質 CBF。因此,目前大多數腦灌注的研究集中在灰質上。
ASL MRI has been applied in cerebral aging studies. CBF was found to decrease with age, which is most pronounced in the prefrontal cortex (Lu et al., 2011). This CBF reduction is independent of gray matter thickness (Chen et al., 2011) and is associated with white matter integrity as assessed by DTI (Chen et al., 2013). CBF was affected by genetic factors such as APOE e4 status, wherein cognitively normal e4 carriers displayed greater CBF than non-carriers (Wierenga et al., 2013). CBF was also affected by lifestyle factors such as physical exercise, in which individuals who maintain longterm aerobic exercise showed greater CBF in posterior cingulate cortex (Thomas et al., 2013). Cognitive training was also shown to be able to enhance CBF in frontal executive network (Chapman et al., 2015). On the other hand, hyperperfusion in the medial temporal lobe appears to be a sign of dysfunction, as elevated CBF has been observed in patients with Alzheimer’s disease (Alsop et al., 2008), and hippocampal CBF was found to be inversely correlated with verbal memory (Rane et al., 2013).
ASL MRI 已被應用於腦部老化研究。隨著年齡的增長,CBF 被發現減少,這在前額葉皮層中最為明顯(Lu et al., 2011)。這一 CBF 減少與灰質厚度無關(Chen et al., 2011),並且與通過 DTI 評估的白質完整性相關(Chen et al., 2013)。CBF 受到遺傳因素的影響,例如 APOE e4 狀態,其中認知正常的 e4 攜帶者顯示出比非攜帶者更高的 CBF(Wierenga et al., 2013)。CBF 也受到生活方式因素的影響,例如體育鍛煉,維持長期有氧運動的個體在後扣帶皮層中顯示出更高的 CBF(Thomas et al., 2013)。認知訓練也被證明能夠增強前額執行網絡中的 CBF(Chapman et al., 2015)。另一方面,內側顳葉的過度灌注似乎是功能障礙的跡象,因為在阿茲海默症患者中觀察到 CBF 升高(Alsop et al., 2008),而海馬體 CBF 與語言記憶呈負相關(Rane et al., 2013)。

Accounting for Vascular Aging Effect in Functional MRI
功能性磁共振成像中考慮血管老化效應

Much of our understanding of brain functional changes with age is based on fMRI findings. However, because fMRI signal is a vascular response (Arthurs and Boniface, 2002) and the brain vasculature has known degradation with age (Lu et al., 2011), it is not straightforward to interpret age-related fMRI changes. For example, when an age-related signal decline is observed, it could be due to diminished neural activity or dampened vasodilatory response (or both).
我們對大腦隨著年齡變化的功能變化的理解大多基於功能性磁共振成像(fMRI)的研究結果。然而,由於 fMRI 信號是一種血管反應(Arthurs 和 Boniface,2002),而大腦血管隨著年齡的增長已知會退化(Lu 等,2011),因此解釋與年齡相關的 fMRI 變化並不簡單。例如,當觀察到與年齡相關的信號下降時,這可能是由於神經活動減少或血管擴張反應減弱(或兩者皆是)。
To accurately examine neural activity changes with age, the vascular changes need to be separately measured and factored out (D’Esposito et al., 1999; Jezzard and Buxton, 2006; Liu et al., 2013a). One way to estimate vasodilatory capacity of the blood vessels is to induce a transient hypercapnic condition while monitoring MRI signal changes (Davis et al., 1998; Hoge et al., 1999; Kastrup et al., 1999;
為了準確檢查隨著年齡變化的神經活動變化,需要單獨測量血管變化並將其排除在外(D’Esposito et al., 1999; Jezzard and Buxton, 2006; Liu et al., 2013a)。估計血管擴張能力的一種方法是誘導暫時性高碳酸血症,同時監測 MRI 信號變化(Davis et al., 1998; Hoge et al., 1999; Kastrup et al., 1999;
Yezhuvath et al., 2009; Kannurpatti et al., 2010). CO 2 CO 2 CO_(2)\mathrm{CO}_{2} is a potent vasodilatory stimulus and is known to result in increased blood flow and oxygenation in the brain. Hypercapnia can usually be induced via two approaches. One is to ask the subject to hold breath briefly (for 15-30 seconds) based on instructions displayed on the screen (Kastrup et al., 1999; Kannurpatti et al., 2010). The advantage of this approach is that no additional apparatus or equipment is needed, thus it is relatively convenient to deliver the hypercapnic stimulus. A limitation of this approach is that the success of this maneuver is highly dependent on the cooperation of the participant, and furthermore, the actual quantity of the stimulus strength is not determined because end-tidal CO 2 CO 2 CO_(2)\mathrm{CO}_{2}, which reflects the CO 2 CO 2 CO_(2)\mathrm{CO}_{2} concentration in the lung and arterial blood, cannot be measured during breath-hold. A second approach to induce hypercapnia to a subject is via inhalation of a gas mixture containing a small amount of CO 2 CO 2 CO_(2)\mathrm{CO}_{2} (Davis et al., 1998; Hoge et al., 1999; Yezhuvath et al., 2009). Usually, the CO 2 CO 2 CO_(2)\mathrm{CO}_{2} content in the gas mixture is about 5 % 5 % 5%5 \%, which does not induce discomfort when breathing briefly (e.g., 1 minute at a time). The advantages of this approach are that physiological state can be well controlled, end-tidal CO 2 CO 2 CO_(2)\mathrm{CO}_{2} can be continuously measured, and it does not strongly depend on the cooperation of the subject. Its disadvantage is that additional apparatus is required to allow the delivery of the gas mixture to the subject while he or she is inside the MRI scanner. However, with an increasing interest in using hypercapnia in research and clinical imaging, many implementations of the gas delivery apparatus are now available (Slessarev et al., 2007; Wise et al., 2007; Yezhuvath et al., 2009).
Yezhuvath et al., 2009; Kannurpatti et al., 2010)。 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} 是一種強效的血管擴張刺激物,已知會導致大腦血流和氧合增加。高碳酸血症通常可以通過兩種方法誘導。一種是根據螢幕上顯示的指示要求受試者短暫屏息(15-30 秒)(Kastrup et al., 1999; Kannurpatti et al., 2010)。這種方法的優點是無需額外的裝置或設備,因此相對方便提供高碳酸刺激。這種方法的限制是,這一操作的成功高度依賴於參與者的配合,此外,由於在屏息期間無法測量呼氣末 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} ,這反映了肺部和動脈血中的 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} 濃度,因此實際的刺激強度無法確定。誘導受試者高碳酸血症的第二種方法是通過吸入含有少量 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} 的氣體混合物(Davis et al., 1998; Hoge et al., 1999; Yezhuvath et al., 2009)。通常,氣體混合物中的 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} 含量約為 5 % 5 % 5%5 \% ,在短暫呼吸時不會引起不適(例如,每次 1 分鐘)。這種方法的優點在於生理狀態可以得到良好的控制,呼氣末二氧化碳濃度 CO 2 CO 2 CO_(2)\mathrm{CO}_{2} 可以持續測量,並且不強烈依賴受試者的配合。其缺點是需要額外的設備來將氣體混合物輸送給受試者,當他或她在 MRI 掃描儀內時。然而,隨著對在研究和臨床影像中使用高碳酸血症的興趣日益增加,現在已有許多氣體輸送設備的實現(Slessarev et al., 2007; Wise et al., 2007; Yezhuvath et al., 2009)。
MRI response to hypercapnia is often referred to as cerebrovascular reactivity (CVR), which is an index representing the ability of the blood vessels to dilate when stimulated. CVR can then be used to correct fMRI signal (Davis et al., 1998; Hoge et al., 1999; Sowell et al., 2003; Ances et al., 2009; Gauthier et al., 2013; Hutchison et al., 2013; Liu et al., 2013b).
MRI 對高碳酸血症的反應通常被稱為腦血管反應性(CVR),這是一個代表血管在受到刺激時擴張能力的指標。CVR 可以用來修正 fMRI 信號(Davis et al., 1998; Hoge et al., 1999; Sowell et al., 2003; Ances et al., 2009; Gauthier et al., 2013; Hutchison et al., 2013; Liu et al., 2013b)。
Correction of task-related fMRI signal with CVR can generally take two approaches. One approach uses BOLD MRI pulse sequence during the hypercapnia scan and obtains a CVR index in the units of %BOLD per m m H g CO 2 m m H g CO 2 mmHgCO_(2)m m H g \mathrm{CO}_{2}. The fMRI signal can then be corrected by (Liu et al., 2013b):
使用 CVR 修正與任務相關的 fMRI 信號通常可以採取兩種方法。一種方法是在高二氧化碳血症掃描期間使用 BOLD MRI 脈衝序列,並以%BOLD 每 m m H g CO 2 m m H g CO 2 mmHgCO_(2)m m H g \mathrm{CO}_{2} 的單位獲得 CVR 指數。然後可以通過(Liu et al., 2013b)修正 fMRI 信號:
S f M R I , c o r r = S f M R I , uncorr / C V R S f M R I , c o r r = S f M R I ,  uncorr  / C V R S_(fMRI,corr)=S_(fMRI," uncorr ")//CVRS_{f M R I, c o r r}=S_{f M R I, \text { uncorr }} / C V R
in which S f M R I , u n c o r r S f M R I , u n c o r r S_(fMRI,uncorr)S_{f M R I, u n c o r r} and S f M R I , c o r r S f M R I , c o r r S_(fMRI,corr)S_{f M R I, c o r r} are the uncorrected and corrected fMRI signal, respectively. This approach does not require any change to the fMRI scanning protocol (thus the investigator can still have a complete dataset of original, uncorrected fMRI). A second correction method, termed calibrated fMRI, uses a more model-based approach (Davis et al., 1998; Hoge et al., 1999; Ances et al., 2009; Gauthier et al., 2013; Hutchison et al., 2013). In this approach, vascular response due to hypercapnia is assessed by both BOLD and CBF changes, using an advanced pulse sequence combining T2* and ASL MRI. Therefore, more information is collected. When fitting these experimental data to a comprehensive model, task-related changes in cerebral metabolic rate of oxygen ( CMRO 2 ) CMRO 2 (CMRO_(2))\left(\mathrm{CMRO}_{2}\right) can be estimated, which are thought to reflect aggregated neural activity in the brain. The disadvantage of this approach is that the
在這種情況下, S f M R I , u n c o r r S f M R I , u n c o r r S_(fMRI,uncorr)S_{f M R I, u n c o r r} S f M R I , c o r r S f M R I , c o r r S_(fMRI,corr)S_{f M R I, c o r r} 分別是未校正和已校正的 fMRI 信號。這種方法不需要對 fMRI 掃描協議進行任何更改(因此研究者仍然可以擁有完整的原始未校正 fMRI 數據集)。第二種校正方法稱為校準 fMRI,使用更基於模型的方法(Davis et al., 1998; Hoge et al., 1999; Ances et al., 2009; Gauthier et al., 2013; Hutchison et al., 2013)。在這種方法中,通過 BOLD 和 CBF 變化來評估由於高碳酸血症引起的血管反應,使用結合 T2* 和 ASL MRI 的先進脈衝序列。因此,收集了更多的信息。在將這些實驗數據擬合到綜合模型時,可以估計與任務相關的腦氧代謝率變化 ( CMRO 2 ) CMRO 2 (CMRO_(2))\left(\mathrm{CMRO}_{2}\right) ,這被認為反映了大腦中聚合的神經活動。這種方法的缺點是

fMRI data acquisition is also required to use the combined T 2 T 2 T2**\mathrm{T} 2 * and ASL sequence, which is less efficient due to the longer TR necessary and generally has a lower SNR. As a result, most of the calibrated fMRI studies have been limited to sensory or motor tasks (Davis et al., 1998; Hoge et al., 1999; Ances et al., 2009; Hutchison et al., 2013). There have been few studies that used cognitive tasks or examined regions outside the visual or motor cortices (Gauthier et al., 2013).
fMRI 數據獲取也需要使用結合 T 2 T 2 T2**\mathrm{T} 2 * 和 ASL 序列,這是因為所需的 TR 較長,效率較低,且通常具有較低的 SNR。因此,大多數經過校準的 fMRI 研究僅限於感覺或運動任務(Davis et al., 1998; Hoge et al., 1999; Ances et al., 2009; Hutchison et al., 2013)。使用認知任務或檢查視覺或運動皮層以外區域的研究很少(Gauthier et al., 2013)。
Age-related fMRI data could reveal very different results with and without CVR correction. For example, Liu et al. showed that, before CVR correction, fMRI response in the visual cortex manifests an age-related decrease (Liu et al., 2013b). However, after correction it appears that the true neural response actually increases with age, similar to the age pattern in the prefrontal cortex. That is, the uncorrected BOLD signal reduction in the visual cortex may be purely a vascular artifact. A similar finding of age-related increase in the visual cortex is observed in Hutchison et al. (2013), using the calibrated fMRI approach.
與年齡相關的 fMRI 數據在有無 CVR 校正的情況下可能顯示出非常不同的結果。例如,劉等人顯示,在 CVR 校正之前,視覺皮層的 fMRI 反應表現出與年齡相關的減少(劉等人,2013b)。然而,經過校正後,實際的神經反應似乎隨著年齡的增長而增加,類似於前額葉皮層的年齡模式。也就是說,視覺皮層中未校正的 BOLD 信號減少可能純粹是一種血管伪影。在 Hutchison 等人(2013)中,使用校準的 fMRI 方法觀察到視覺皮層中與年齡相關的增加的類似發現。
Aside from the utility of correcting fMRI signal, CVR itself is a useful index of vascular health of the brain. With age, CVR has been shown to decrease throughout the brain, and the rate of the decline is faster than baseline perfusion (Lu et al., 2011). This is consistent with the brain’s autoregulation function, which aims to maintain a relatively constant blood flow by reducing the vascular tone.
除了修正 fMRI 信號的實用性外,CVR 本身也是大腦血管健康的一個有用指標。隨著年齡的增長,CVR 在整個大腦中顯示出下降,且下降的速度快於基線灌注(Lu et al., 2011)。這與大腦的自我調節功能一致,該功能旨在通過降低血管緊張度來維持相對穩定的血流。

Susceptibility Weighted Imaging (SWI)
易感性加權成像 (SWI)

The aging brain is usually associated with accumulation of iron (Zecca et al., 2004), increased incidence of microbleeds (Poels et al., 2010), and decreased blood oxygenation (Lu et al., 2011; Peng et al., 2014). SWI is a useful tool to examine these parameters (Haacke et al., 2004). Unlike most MRI sequences where only magnitude information of the MRI signal is collected, SWI also acquires the phase information. The phase of MRI signal is highly sensitive to iron, calcium, and blood oxygenation, and provides information complementary to magnitude image.
老化的大腦通常與鐵的積累(Zecca et al., 2004)、微出血的發生率增加(Poels et al., 2010)以及血氧濃度降低(Lu et al., 2011; Peng et al., 2014)相關。SWI 是一種檢查這些參數的有用工具(Haacke et al., 2004)。與大多數僅收集 MRI 信號幅度信息的 MRI 序列不同,SWI 還獲取相位信息。MRI 信號的相位對鐵、鈣和血氧濃度高度敏感,並提供與幅度圖像互補的信息。
A standard SWI scan employs a 3D gradient-echo sequence using a relatively high resolution with in-plane voxel size of 0.5 to 1 mm and through-plane thickness of 1 to 2 mm . A whole-brain scan usually takes 5 to 10 minutes. Depending on the focus of the study, there exist several implementations of the SWI technique.
標準的 SWI 掃描使用 3D 梯度回聲序列,具有相對較高的解析度,平面體素大小為 0.5 至 1 毫米,通過平面厚度為 1 至 2 毫米。整腦掃描通常需要 5 到 10 分鐘。根據研究的重點,SWI 技術有幾種不同的實現方式。
A major utility of SWI is to visualize brain venous vessels and detect microbleeds (Kidwell et al., 2002; Sehgal et al., 2005). In this application, a single gradient-echo sequence is performed, and magnitude and phase images are generated. Two postprocessing schemes are then used to enhance the image contrast so that veins and bleeds are conspicuous (Haacke et al., 2004; Haacke et al., 2009). One scheme is to conduct multiplication of the magnitude images using the phase image. This is usually repeated three to four times to achieve an optimal result. With this scheme, the venous vessel regions, which already have relatively low signal intensity in the magnitude image due to short T2*, are further darkened because phase of a vein is characteristically different from that of an artery or tissue (Figure 1.7). A second scheme to enhance the image contrast is to conduct an image-processing step termed minimum intensity projection (mIP). In mIP, the signal intensities along several consecutive
SWI 的一個主要用途是可視化大腦靜脈血管並檢測微出血(Kidwell et al., 2002; Sehgal et al., 2005)。在這個應用中,執行單一的梯度回波序列,並生成幅度和相位圖像。然後使用兩種後處理方案來增強圖像對比度,使靜脈和出血顯得明顯(Haacke et al., 2004; Haacke et al., 2009)。一種方案是使用相位圖像對幅度圖像進行乘法運算。這通常重複三到四次以達到最佳效果。使用這種方案,靜脈血管區域在幅度圖像中由於短 T2* 而已經具有相對較低的信號強度,進一步變暗,因為靜脈的相位與動脈或組織的相位特徵上是不同的(圖 1.7)。增強圖像對比度的第二種方案是進行一個稱為最小強度投影(mIP)的圖像處理步驟。在 mIP 中,沿著幾個連續的信號強度進行處理。

Figure 1.7 An example of images obtained at 7T using Susceptibility Weighted Imaging (SWI). After phase unwrapping, the phase image is multiplied four times onto the magnitude image so that the venous vessel regions are darkened in the processed image. The final image shown here is the minimum intensity projection (mIP) image of 8 slices centered on the displayed magnitude and phase images, in which venous voxels are further darkened (Courtesy of Dr. Yulin Ge, New York University).
圖 1.7 使用敏感度加權成像 (SWI) 在 7T 獲得的圖像示例。經過相位解包後,相位圖像乘以四倍於幅度圖像,使得靜脈血管區域在處理後的圖像中變暗。這裡顯示的最終圖像是以顯示的幅度和相位圖像為中心的 8 個切片的最小強度投影 (mIP) 圖像,其中靜脈體素進一步變暗(由紐約大學的葛玉林博士提供)。

slices are compared, and the lowest signal value is assigned to the new mIP image. Therefore, in the mIP image, venous voxels are further darkened (Figure 1.7).
切片被比較,最低的信號值被分配給新的 mIP 圖像。因此,在 mIP 圖像中,靜脈體素進一步變暗(圖 1.7)。
The above approach is useful for qualitative examination of brain image, as the image contrast is visually conspicuous. However, it lacks the ability to quantify a physical or physiological parameter because both phase multiplication and minimum intensity projection are nonlinear operations to the original image, and the resulting new image has no direct relationship to the underlying tissue property. For quantitative assessment of brain tissue properties, for example iron concentration, other approaches are needed. One approach is to use the phase value as an approximation of the magnetic susceptibility, which is thought to be directly related to iron content (Haacke et al., 2010). Another approach is to use a multi-echo acquisition to obtain the magnitude signal as a function of echo time (TE), from which an exponential model to obtain the decay constant, T 2 T 2 T2^(**)\mathrm{T} 2^{*}. T 2 T 2 T2^(**)\mathrm{T} 2^{*} is also closely associated with iron content (Rodrigue et al., 2011)
上述方法對於腦部影像的定性檢查是有用的,因為影像對比在視覺上非常明顯。然而,它缺乏量化物理或生理參數的能力,因為相位乘法和最小強度投影都是對原始影像的非線性操作,並且所產生的新影像與基礎組織特性之間沒有直接關係。對於腦組織特性的定量評估,例如鐵濃度,需要其他方法。一種方法是使用相位值作為磁化率的近似,這被認為與鐵含量直接相關(Haacke et al., 2010)。另一種方法是使用多回波獲取來獲得隨回波時間(TE)變化的幅度信號,從中建立指數模型以獲得衰減常數, T 2 T 2 T2^(**)\mathrm{T} 2^{*} T 2 T 2 T2^(**)\mathrm{T} 2^{*} 也與鐵含量密切相關(Rodrigue et al., 2011)。
Recently, a more advanced SWI implementation was developed. This method is termed quantitative susceptibility mapping (QSM), which aims to provide a direct, quantitative estimation of the magnetic field source inside a voxel, commonly referred to as magnetic susceptibility (Li and Leigh, 2004; Bilgic et al., 2012). In QSM, the image acquisition schemes are similar to a conventional SWI. A single-echo or multiecho 3D gradient-echo sequence is used, and phase images are obtained. The primary
最近,開發了一種更先進的 SWI 實現。這種方法被稱為定量易感性映射(QSM),旨在提供對體素內磁場源的直接定量估計,通常稱為磁易感性(Li 和 Leigh,2004;Bilgic 等,2012)。在 QSM 中,圖像獲取方案類似於傳統的 SWI。使用單回波或多回波 3D 梯度回波序列,並獲得相位圖像。主要

technical advance of QSM lies in the post-processing algorithms. The main motivation behind QSM is that a routine phase image does not provide a direct assessment of quantity of magnetic susceptibility (e.g., amount of iron, amount of calcium, amount of deoxyhemoglobin, or amount of hemosiderin) in the region of interest. Instead, it represents a result of convolution between the magnetic susceptibility and an impulse response. QSM therefore aims to solve the so-called “inverse problem,” to estimate magnetic susceptibility from the phase image. This is an ill-conditioned problem. It is an active area of research in the MRI field, and various algorithms have been developed by using different constraints (de Rochefort et al., 2008; Liu et al., 2009; de Rochefort et al., 2010; Liu et al., 2012).
QSM 的技術進步在於後處理算法。QSM 的主要動機在於常規相位圖像並不能直接評估感興趣區域的磁性易變性(例如,鐵的量、鈣的量、去氧血紅蛋白的量或含鐵血黃素的量)。相反,它代表了磁性易變性與脈衝響應之間的卷積結果。因此,QSM 旨在解決所謂的“逆問題”,從相位圖像中估計磁性易變性。這是一個病態條件問題。這是 MRI 領域的一個活躍研究領域,並且已經通過使用不同的約束開發了各種算法(de Rochefort et al., 2008; Liu et al., 2009; de Rochefort et al., 2010; Liu et al., 2012)。

Conclusion  結論

MRI is a powerful imaging modality that has enormous potential in studies of cerebral aging. Over the past decade, MRI technologies have undergone rapid progress in both image quality and acquisition speed. Due to its noninvasive nature and the absence of radiation, the translation of these new methodologies to clinical and cognitive applications has also been amazingly fast. Many new imaging techniques that were viewed as emerging methods only a few years ago have now become routine. The MRI vendors have also enthusiastically adopted these new technologies and made them more widely available to researchers and clinicians. Therefore, MRI has become one of the most important tools in cognitive neuroscience and cerebral aging.
MRI 是一種強大的影像技術,在大腦老化研究中具有巨大的潛力。在過去十年中,MRI 技術在影像質量和獲取速度上都經歷了快速進步。由於其非侵入性和無輻射的特性,這些新方法在臨床和認知應用中的轉化也非常迅速。許多幾年前被視為新興方法的影像技術,如今已經成為常規。MRI 供應商也熱情地採用這些新技術,並使其更廣泛地提供給研究人員和臨床醫生。因此,MRI 已成為認知神經科學和大腦老化中最重要的工具之一。

References  參考文獻

Aganj I, Lenglet C, Sapiro G, Yacoub E, Ugurbil K, Harel N (2010) Reconstruction of the orientation distribution function in single- and multiple-shell q-ball imaging within constant solid angle. Magn Reson Med 64:554-566.
Aganj I, Lenglet C, Sapiro G, Yacoub E, Ugurbil K, Harel N (2010) 在恆定固體角下,單層和多層 q 球成像中重建取向分佈函數。磁共振醫學 64:554-566。

Alsop DC, Detre JA (1996) Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 16:1236-1249.
Alsop DC, Detre JA (1996) 在非侵入性磁共振成像中對人類腦血流的過境時間敏感性降低。腦血流與代謝雜誌:國際腦血流與代謝學會的官方期刊 16:1236-1249。

Alsop DC, Casement M, de Bazelaire C, Fong T, Press DZ (2008) Hippocampal hyperperfusion in Alzheimer’s disease. NeuroImage 42:1267-1274.
Alsop DC, Casement M, de Bazelaire C, Fong T, Press DZ (2008) 阿茲海默症中的海馬體過度灌注。神經影像 42:1267-1274。

Alsop DC, Detre JA, Golay X, Gunther M, Hendrikse J, Hernandez-Garcia L, Lu H, Macintosh BJ, Parkes LM, Smits M, van Osch MJ, Wang DJ, Wong EC, Zaharchuk G (2014) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 73:102-116.
Alsop DC, Detre JA, Golay X, Gunther M, Hendrikse J, Hernandez-Garcia L, Lu H, Macintosh BJ, Parkes LM, Smits M, van Osch MJ, Wang DJ, Wong EC, Zaharchuk G (2014) 建議在臨床應用中實施動脈自旋標記灌注 MRI:ISMRM 灌注研究小組和歐洲痴呆 ASL 聯盟的共識。Magn Reson Med 73:102-116.

Ances BM, Liang CL, Leontiev O, Perthen JE, Fleisher AS, Lansing AE, Buxton RB (2009) Effects of aging on cerebral blood flow, oxygen metabolism, and blood oxygenation level dependent responses to visual stimulation. Human Brain Mapping 30:1120-1132.
Ances BM, Liang CL, Leontiev O, Perthen JE, Fleisher AS, Lansing AE, Buxton RB (2009) 老化對大腦血流、氧代謝和血氧水平依賴性對視覺刺激反應的影響。人腦映射 30:1120-1132。

Arthurs OJ, Boniface S (2002) How well do we understand the neural origins of the fMRI BOLD signal? Trends in Neurosciences 25:27-31.
Arthurs OJ, Boniface S (2002) 我們對 fMRI BOLD 信號的神經起源了解得如何?神經科學趨勢 25:27-31。

Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25:390-397.
Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) 人腦功能在任務激活期間的時間過程 EPI。磁共振醫學 25:390-397。
Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophysical Journal 66:259-267.
Basser PJ, Mattiello J, LeBihan D (1994) MR 擴散張量光譜學與成像。生物物理學期刊 66:259-267。

Bilgic B, Pfefferbaum A, Rohlfing T, Sullivan EV, Adalsteinsson E (2012) MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping. NeuroImage 59:2625-2635.
Bilgic B, Pfefferbaum A, Rohlfing T, Sullivan EV, Adalsteinsson E (2012) 使用定量敏感度映射的 MRI 估計正常老化中的大腦鐵濃度。神經影像 59:2625-2635。

Bradley WG, Jr. (2008) Pros and cons of 3 tesla MRI. Journal of the American College of Radiology: JACR 5:871-878.
Bradley WG, Jr. (2008) 3 特斯拉 MRI 的優缺點。美國放射學會雜誌:JACR 5:871-878。

Chalela JA, Alsop DC, Gonzalez-Atavales JB, Maldjian JA, Kasner SE, Detre JA (2000) Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 31:680-687.
Chalela JA, Alsop DC, Gonzalez-Atavales JB, Maldjian JA, Kasner SE, Detre JA (2000) 使用連續動脈自旋標記的急性缺血性中風磁共振灌注成像。中風 31:680-687。

Chapman SB, Aslan S, Spence JS, Hart JJ, Jr., Bartz EK, Didehbani N, Keebler MW, Gardner CM, Strain JF, Defina LF, Lu H (2015) Neural Mechanisms of Brain Plasticity with Complex Cognitive Training in Healthy Seniors. Cerebral Cortex 25:396-405.
Chapman SB, Aslan S, Spence JS, Hart JJ, Jr., Bartz EK, Didehbani N, Keebler MW, Gardner CM, Strain JF, Defina LF, Lu H (2015) 健康老年人複雜認知訓練的腦可塑性神經機制。大腦皮層 25:396-405。

Chen JJ, Rosas HD, Salat DH (2011) Age-associated reductions in cerebral blood flow are independent from regional atrophy. NeuroImage 55:468-478.
Chen JJ, Rosas HD, Salat DH (2011) 年齡相關的腦血流減少與區域性萎縮無關。NeuroImage 55:468-478。

Chen JJ, Rosas HD, Salat DH (2013) The relationship between cortical blood flow and subcortical white-matter health across the adult age span. PloS One 8:e56733.
Chen JJ, Rosas HD, Salat DH (2013) 皮質血流與成年年齡範圍內皮下白質健康之間的關係。PloS One 8:e56733。

D’Esposito M, Zarahn E, Aguirre GK, Rypma B (1999) The effect of normal aging on the coupling of neural activity to the bold hemodynamic response. NeuroImage 10:6-14.
D’Esposito M, Zarahn E, Aguirre GK, Rypma B (1999) 正常老化對神經活動與血氧濃度依賴性血流反應耦合的影響。神經影像 10:6-14。

Dai W, Garcia D, de Bazelaire C, Alsop DC (2008) Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 60:1488-1497.
Dai W, Garcia D, de Bazelaire C, Alsop DC (2008) 連續流驅動的動脈自旋標記反轉,使用脈衝射頻和梯度場。磁共振醫學 60:1488-1497。

Davis TL, Kwong KK, Weisskoff RM, Rosen BR (1998) Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proceedings of the National Academy of Sciences of the United States of America 95:1834-1839.
Davis TL, Kwong KK, Weisskoff RM, Rosen BR (1998) 校準功能性磁共振成像:映射氧化代謝的動態。美國國家科學院院刊 95:1834-1839。

de Boer R, Vrooman HA, van der Lijn F, Vernooij MW, Ikram MA, van der Lugt A, Breteler MM, Niessen WJ (2009) White matter lesion extension to automatic brain tissue segmentation on MRI. NeuroImage 45:1151-1161.
de Boer R, Vrooman HA, van der Lijn F, Vernooij MW, Ikram MA, van der Lugt A, Breteler MM, Niessen WJ (2009) 白質病變擴展至 MRI 自動腦組織分割。NeuroImage 45:1151-1161。

de Leeuw FE, de Groot JC, Achten E, Oudkerk M, Ramos LM, Heijboer R, Hofman A, Jolles J, van Gijn J, Breteler MM (2001) Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study. Journal of Neurology, Neurosurgery, and Psychiatry 70:9-14.
de Leeuw FE, de Groot JC, Achten E, Oudkerk M, Ramos LM, Heijboer R, Hofman A, Jolles J, van Gijn J, Breteler MM (2001) 老年人腦白質病變的流行率:一項基於人群的磁共振成像研究。鹿特丹掃描研究。神經學、神經外科和精神病學期刊 70:9-14。

de Rochefort L, Brown R, Prince MR, Wang Y (2008) Quantitative MR susceptibility mapping using piece-wise constant regularized inversion of the magnetic field. Magn Reson Med 60:1003-1009.
de Rochefort L, Brown R, Prince MR, Wang Y (2008) 使用分段常數正則化反演磁場的定量 MR 易感性映射。Magn Reson Med 60:1003-1009。

de Rochefort L, Liu T, Kressler B, Liu J, Spincemaille P, Lebon V, Wu J, Wang Y (2010) Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging. Magn Reson Med 63:194-206.
de Rochefort L, Liu T, Kressler B, Liu J, Spincemaille P, Lebon V, Wu J, Wang Y (2010) 使用貝葉斯正則化從 MR 相位數據重建定量易感性圖:驗證及其在腦成像中的應用。Magn Reson Med 63:194-206。

Descoteaux M, Deriche R, Le Bihan D, Mangin JF, Poupon C (2011) Multiple q-shell diffusion propagator imaging. Medical Image Analysis 15:603-621.
Descoteaux M, Deriche R, Le Bihan D, Mangin JF, Poupon C (2011) 多重 q-shell 擴散傳播成像。醫學影像分析 15:603-621。

Feinberg DA, Moeller S, Smith SM, Auerbach E, Ramanna S, Gunther M, Glasser MF, Miller KL, Ugurbil K, Yacoub E (2010) Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PloS One 5:e15710.
Feinberg DA, Moeller S, Smith SM, Auerbach E, Ramanna S, Gunther M, Glasser MF, Miller KL, Ugurbil K, Yacoub E (2010) 多重回聲平面成像用於亞秒級全腦功能性磁共振成像和快速擴散成像。PloS One 5:e15710。

Gauthier CJ, Madjar C, Desjardins-Crepeau L, Bellec P, Bherer L, Hoge RD (2013) Age dependence of hemodynamic response characteristics in human functional magnetic resonance imaging. Neurobiology of Aging 34:1469-1485.
Gauthier CJ, Madjar C, Desjardins-Crepeau L, Bellec P, Bherer L, Hoge RD (2013) 年齡對人類功能性磁共振成像中血流動力學反應特徵的依賴性。老年神經生物學 34:1469-1485。

Ge Y, Grossman RI, Babb JS, Rabin ML, Mannon LJ, Kolson DL (2002) Age-related total gray matter and white matter changes in normal adult brain. Part I: volumetric MR imaging analysis. AJNR American Journal of Neuroradiology 23:1327-1333.
Ge Y, Grossman RI, Babb JS, Rabin ML, Mannon LJ, Kolson DL (2002) 年齡相關的正常成人大腦總灰質和白質變化。第一部分:體積 MR 影像分析。AJNR 美國神經放射學雜誌 23:1327-1333。
Golay X, Stuber M, Pruessmann KP, Meier D, Boesiger P (1999) Transfer insensitive labeling technique (TILT): application to multislice functional perfusion imaging. Journal of Magnetic Resonance Imaging JMRI 9:454-461.
Golay X, Stuber M, Pruessmann KP, Meier D, Boesiger P (1999) 轉移不敏感標記技術 (TILT):應用於多切片功能灌注成像。 磁共振成像雜誌 JMRI 9:454-461。

Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) A voxelbased morphometric study of ageing in 465 normal adult human brains. NeuroImage 14:21-36.
Gorelick PB et al. (2011) Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke; a Journal of Cerebral Circulation 42:2672-2713.
Gorelick PB 等 (2011) 血管對認知障礙和癡呆的貢獻:美國心臟協會/美國中風協會為醫療專業人員發表的聲明。中風;《腦循環雜誌》42:2672-2713。

Grydeland H, Walhovd KB, Tamnes CK, Westlye LT, Fjell AM (2013) Intracortical myelin links with performance variability across the human lifespan: results from T1- and T2weighted MRI myelin mapping and diffusion tensor imaging. The Journal of neuroscience: the official journal of the Society for Neuroscience 33:18618-18630.
Grydeland H, Walhovd KB, Tamnes CK, Westlye LT, Fjell AM (2013) 皮質內髓鞘與人類生命週期中的表現變異性相關:來自 T1 和 T2 加權 MRI 髓鞘映射及擴散張量成像的結果。《神經科學雜誌:神經科學學會的官方期刊》33:18618-18630。

Gunning-Dixon FM, Raz N (2000) The cognitive correlates of white matter abnormalities in normal aging: a quantitative review. Neuropsychology 14:224-232.
Gunning-Dixon FM, Raz N (2000) 正常老化中白質異常的認知相關性:一項定量回顧。神經心理學 14:224-232。

Haacke EM, Xu Y, Cheng YC, Reichenbach JR (2004) Susceptibility weighted imaging (SWI). Magn Reson Med 52:612-618.
Haacke EM, Xu Y, Cheng YC, Reichenbach JR (2004) 易感性加權成像 (SWI)。磁共振醫學 52:612-618。

Haacke EM, Tang J, Neelavalli J, Cheng YC (2010) Susceptibility mapping as a means to visualize veins and quantify oxygen saturation. Journal of Magnetic Resonance Imaging: JMRI 32:663-676.
Haacke EM, Tang J, Neelavalli J, Cheng YC (2010) 易感性映射作為可視化靜脈和量化氧飽和度的一種方法。磁共振成像雜誌:JMRI 32:663-676。

Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YC (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR American Journal of Neuroradiology 30:19-30.
Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YC (2009) 敏感性加權影像:技術方面和臨床應用,第一部分。AJNR 美國神經放射學雜誌 30:19-30。

Herscovitch P, Raichle ME (1985) What is the correct value for the brain–blood partition coefficient for water? Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 5:65-69.
Herscovitch P, Raichle ME (1985) 水的腦-血分配係數的正確值是多少?《腦血流與代謝雜誌:國際腦血流與代謝學會官方期刊》5:65-69。

Hoge RD, Atkinson J, Gill B, Crelier GR, Marrett S, Pike GB (1999) Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model. Magn Reson Med 42:849-863.
Hoge RD, Atkinson J, Gill B, Crelier GR, Marrett S, Pike GB (1999) 研究 BOLD 信號對腦血流和氧氣消耗的依賴性:去氧血紅蛋白稀釋模型。磁共振醫學 42:849-863。

Hulsey KM, Gupta M, King KS, Peshock RM, Whittemore AR, McColl RW (2012) Automated quantification of white matter disease extent at 3 T : comparison with volumetric readings. Journal of Magnetic Resonance Imaging: JMRI 36:305-311.
Hulsey KM, Gupta M, King KS, Peshock RM, Whittemore AR, McColl RW (2012) 自動量化 3T 白質病變範圍:與體積讀數的比較。磁共振成像雜誌:JMRI 36:305-311。

Hutchison JL, Lu H, Rypma B (2013) Neural mechanisms of age-related slowing: the DeltaCBF/ DeltaCMRO2 ratio mediates age-differences in BOLD signal and human performance. Cerebral Cortex 23:2337-2346.
Hutchison JL, Lu H, Rypma B (2013) 年齡相關減慢的神經機制:DeltaCBF/ DeltaCMRO2 比率調節 BOLD 信號和人類表現的年齡差異。大腦皮層 23:2337-2346。

Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K (2005) Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine 53:1432-1440.
Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K (2005) 擴散峰度成像:通過磁共振成像量化非高斯水擴散。醫學磁共振:醫學磁共振學會的官方期刊/醫學磁共振學會 53:1432-1440。

Jezzard P, Buxton RB (2006) The clinical potential of functional magnetic resonance imaging. Journal of Magnetic Resonance Imaging: JMRI 23:787-793
Jezzard P, Buxton RB (2006) 功能性磁共振成像的臨床潛力。磁共振成像雜誌:JMRI 23:787-793

Jones DK, Horsfield MA, Simmons A (1999) Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med 42:515-525.
Jones DK, Horsfield MA, Simmons A (1999) 透過磁共振成像測量各向異性系統中擴散的最佳策略。Magn Reson Med 42:515-525。

Kannurpatti SS, Motes MA, Rypma B, Biswal BB (2010) Neural and vascular variability and the fMRI-BOLD response in normal aging. Magnetic Resonance Imaging 28:466-476.
Kannurpatti SS, Motes MA, Rypma B, Biswal BB (2010) 神經和血管變異性及正常老化中的 fMRI-BOLD 反應。磁共振成像 28:466-476。

Kastrup A, Li TQ, Glover GH, Moseley ME (1999) Cerebral blood flow-related signal changes during breath-holding. AJNR American Journal of Neuroradiology 20:1233-1238.
Kastrup A, Li TQ, Glover GH, Moseley ME (1999) 在屏息期間與腦血流相關的信號變化。AJNR 美國神經放射學雜誌 20:1233-1238。

Kidwell CS, Saver JL, Villablanca JP, Duckwiler G, Fredieu A, Gough K, Leary MC, Starkman S, Gobin YP, Jahan R, Vespa P, Liebeskind DS, Alger JR, Vinuela F (2002) Magnetic
Kidwell CS, Saver JL, Villablanca JP, Duckwiler G, Fredieu A, Gough K, Leary MC, Starkman S, Gobin YP, Jahan R, Vespa P, Liebeskind DS, Alger JR, Vinuela F (2002) 磁性

resonance imaging detection of microbleeds before thrombolysis: an emerging application. Stroke; a Journal of Cerebral Circulation 33:95-98.
在溶栓前微出血的共振成像檢測:一個新興的應用。中風;腦循環雜誌 33:95-98。

Kim SG (1995) Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 34:293-301
金 SG (1995) 透過流敏感交替反轉恢復(FAIR)技術量化相對腦血流變化:應用於功能映射。磁共振醫學 34:293-301

Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, et al. (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences of the United States of America 89:5675-5679.
Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, et al. (1992) 動態磁共振成像在人類大腦活動中的初級感官刺激。美國國家科學院院刊 89:5675-5679。

Lao Z, Shen D, Liu D, Jawad AF, Melhem ER, Launer LJ, Bryan RN, Davatzikos C (2008) Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine. Academic Radiology 15:300-313.
Lao Z, Shen D, Liu D, Jawad AF, Melhem ER, Launer LJ, Bryan RN, Davatzikos C (2008) 使用支持向量機在 3D MR 影像中進行白質病變的計算機輔助分割。學術放射學 15:300-313。

Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H (2001) Diffusion tensor imaging: concepts and applications. Journal of Magnetic Resonance Imaging: JMRI 13:534-546.
Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H (2001) 擴散張量成像:概念與應用。磁共振成像雜誌:JMRI 13:534-546。

Li L, Leigh JS (2004) Quantifying arbitrary magnetic susceptibility distributions with MR. Magn Reson Med 51:1077-1082.
Li L, Leigh JS (2004) 使用磁共振量化任意磁化率分佈。磁共振醫學 51:1077-1082。

Lin C, Bernstein MA, Huston J, Fain S (2001) Measurements of T1 Relaxation times at 3.0T: Implications for clinical MRA. In: Proceedings of the 9th Annual Meeting of ISMRM, p. 1391. Glasgow, UK.
Lin C, Bernstein MA, Huston J, Fain S (2001) 在 3.0T 下的 T1 弛豫時間測量:對臨床 MRA 的影響。載於:第九屆 ISMRM 年會論文集,第 1391 頁。格拉斯哥,英國。
Liu J, Liu T, de Rochefort L, Ledoux J, Khalidov I, Chen W, Tsiouris AJ, Wisnieff C, Spincemaille P, Prince MR, Wang Y (2012) Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map. NeuroImage 59:2560-2568.
Liu J, Liu T, de Rochefort L, Ledoux J, Khalidov I, Chen W, Tsiouris AJ, Wisnieff C, Spincemaille P, Prince MR, Wang Y (2012) 形態學啟用的偶極反演,用於利用幅度影像和易感性圖之間的結構一致性進行定量易感性映射。神經影像 59:2560-2568。

Liu P, Uh J, Lu H (2011) Determination of spin compartment in arterial spin labeling MRI. Magn Reson Med 65:120-127.
Liu P, Uh J, Lu H (2011) 動脈自旋標記磁共振成像中自旋區域的確定。Magn Reson Med 65:120-127。

Liu P, Hebrank AC, Rodrigue KM, Kennedy KM, Park DC, Lu H (2013a) A comparison of physiologic modulators of fMRI signals. Human Brain Mapping 34:2078-2088.
Liu P, Hebrank AC, Rodrigue KM, Kennedy KM, Park DC, Lu H (2013a) fMRI 信號的生理調節因子的比較。人腦地圖 34:2078-2088。

Liu P, Hebrank AC, Rodrigue KM, Kennedy KM, Section J, Park DC, Lu H (2013b) Agerelated differences in memory-encoding fMRI responses after accounting for decline in vascular reactivity. NeuroImage 78:415-425.
Liu P, Hebrank AC, Rodrigue KM, Kennedy KM, Section J, Park DC, Lu H (2013b) 年齡相關的記憶編碼 fMRI 反應差異,考慮到血管反應性下降。神經影像 78:415-425。

Liu T, Spincemaille P, de Rochefort L, Kressler B, Wang Y (2009) Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI. Magn Reson Med 61:196-204.
Liu T, Spincemaille P, de Rochefort L, Kressler B, Wang Y (2009) 通過多方向取樣計算磁化率 (COSMOS):一種將測量的磁場圖轉換為磁化率源圖像的逆問題的條件化方法。磁共振醫學 61:196-204。

Lu H, Nagae-Poetscher LM, Golay X, Lin D, Pomper M, van Zijl PC (2005) Routine clinical brain MRI sequences for use at 3.0 Tesla. Journal of Magnetic Resonance Imaging: JMRI 22:13-22.
Lu H, Nagae-Poetscher LM, Golay X, Lin D, Pomper M, van Zijl PC (2005) 3.0 特斯拉常規臨床腦部 MRI 序列。磁共振成像雜誌:JMRI 22:13-22。

Lu H, Xu F, Rodrigue KM, Kennedy KM, Cheng Y, Flicker B, Hebrank AC, Uh J, Park DC (2011) Alterations in cerebral metabolic rate and blood supply across the adult lifespan. Cerebral Cortex 21:1426-1434
Lu H, Xu F, Rodrigue KM, Kennedy KM, Cheng Y, Flicker B, Hebrank AC, Uh J, Park DC (2011) 成人生命週期中大腦代謝率和血液供應的變化。大腦皮層 21:1426-1434

Mintun MA, Raichle ME, Martin WR, Herscovitch P (1984) Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography. J Nucl Med 25:177-187.
Mintun MA, Raichle ME, Martin WR, Herscovitch P (1984) 腦氧氣利用率的測量,使用 O-15 放射性示蹤劑和正電子發射斷層掃描。J Nucl Med 25:177-187.

Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annals of Neurology 45:265-269
Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) 透過磁共振成像進行大腦軸突投射的三維追蹤。神經學年鑑 45:265-269

Mueller D, Sauerland S, Neugebauer EA, Immenroth M (2010) Reported effects in randomized controlled trials were compared with those of nonrandomized trials in cholecystectomy. J Clin Epidemiol 63:1082-1090.
Mueller D, Sauerland S, Neugebauer EA, Immenroth M (2010) 在隨機對照試驗中報告的效果與膽囊切除術中的非隨機試驗進行了比較。J Clin Epidemiol 63:1082-1090.

Mugler JP, 3rd, Brookeman JR (1991) Rapid three-dimensional T1-weighted MR imaging with the MP-RAGE sequence. Journal of Magnetic Resonance Imaging: JMRI 1:561-567.
Mugler JP, 3rd, Brookeman JR (1991) 快速三維 T1 加權磁共振成像,使用 MP-RAGE 序列。磁共振成像期刊:JMRI 1:561-567。
Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences 87:9868-9872.
Ogawa S, Lee TM, Kay AR, Tank DW (1990) 腦部磁共振成像與血氧依賴的對比。美國國家科學院院刊 87:9868-9872。

Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proceedings of the National Academy of Sciences of the United States of America 89:5951-5955.
Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) 伴隨感官刺激的內在信號變化:使用磁共振成像的功能性大腦映射。美國國家科學院院刊 89:5951-5955。

Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR (1996a) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis. Magn Reson Med 36:715-725.
Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR (1996a) 使用血管內示蹤劑波動通過進行腦血流的高解析度測量。第一部分:數學方法和統計分析。磁共振醫學 36:715-725。

Ostergaard L, Sorensen AG, Kwong KK, Weisskoff RM, Gyldensted C, Rosen BR (1996b) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: Experimental comparison and preliminary results. Magn Reson Med 36:726-736.
Ostergaard L, Sorensen AG, Kwong KK, Weisskoff RM, Gyldensted C, Rosen BR (1996b) 使用血管內示蹤劑波衝通過進行腦血流的高分辨率測量。第二部分:實驗比較和初步結果。磁共振醫學 36:726-736。

Peng SL, Dumas JA, Park DC, Liu P, Filbey FM, McAdams CJ, Pinkham AE, Adinoff B, Zhang R, Lu H (2014) Age-related increase of resting metabolic rate in the human brain. NeuroImage 98:176-183.
Peng SL, Dumas JA, Park DC, Liu P, Filbey FM, McAdams CJ, Pinkham AE, Adinoff B, Zhang R, Lu H (2014) 年齡相關的人腦靜息代謝率增加。神經影像 98:176-183。

Pfefferbaum A, Mathalon DH, Sullivan EV, Rawles JM, Zipursky RB, Lim KO (1994) A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Archives of Neurology 51:874-887.
Pfefferbaum A, Mathalon DH, Sullivan EV, Rawles JM, Zipursky RB, Lim KO (1994) 一項定量磁共振成像研究,探討從嬰兒期到晚年大腦形態的變化。神經學檔案 51:874-887。

Poels MM, Vernooij MW, Ikram MA, Hofman A, Krestin GP, van der Lugt A, Breteler MM (2010) Prevalence and risk factors of cerebral microbleeds: an update of the Rotterdam scan study. Stroke; a Journal of Cerebral Circulation 41:S103-S106.
Poels MM, Vernooij MW, Ikram MA, Hofman A, Krestin GP, van der Lugt A, Breteler MM (2010) 腦微出血的流行率和風險因素:鹿特丹掃描研究的更新。中風;腦循環期刊 41:S103-S106。

Rane S, Ally BA, Hussey E, Wilson T, Thornton-Wells T, Gore JC, Donahue MJ (2013) Inverse correspondence between hippocampal perfusion and verbal memory performance in older adults. Hippocampus 23:213-220.
Rane S, Ally BA, Hussey E, Wilson T, Thornton-Wells T, Gore JC, Donahue MJ (2013) 老年人海馬灌注與語言記憶表現之間的反向關係。海馬體 23:213-220。

Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A, Dahle C, Gerstorf D, Acker JD (2005) Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cerebral Cortex 15:1676-1689.
Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A, Dahle C, Gerstorf D, Acker JD (2005) 年齡健康成人的區域性大腦變化:一般趨勢、個體差異和修飾因子。大腦皮層 15:1676-1689。

Rodrigue KM, Haacke EM, Raz N (2011) Differential effects of age and history of hypertension on regional brain volumes and iron. NeuroImage 54:750-759.
Rodrigue KM, Haacke EM, Raz N (2011) 年齡和高血壓病史對區域腦容量和鐵的差異影響。神經影像 54:750-759。

Schuff N, Matsumoto S, Kmiecik J, Studholme C, Du A, Ezekiel F, Miller BL, Kramer JH, Jagust WJ, Chui HC, Weiner MW (2009) Cerebral blood flow in ischemic vascular dementia and Alzheimer’s disease, measured by arterial spin-labeling magnetic resonance imaging. Alzheimer’s & dementia: the journal of the Alzheimer’s Association 5:454-462.
Schuff N, Matsumoto S, Kmiecik J, Studholme C, Du A, Ezekiel F, Miller BL, Kramer JH, Jagust WJ, Chui HC, Weiner MW (2009) 腦血流在缺血性血管性癡呆和阿茲海默症中的變化,通過動脈自旋標記磁共振成像測量。阿茲海默症與癡呆:阿茲海默症協會期刊 5:454-462。

Sehgal V, Delproposto Z, Haacke EM, Tong KA, Wycliffe N, Kido DK, Xu Y, Neelavalli J, Haddar D, Reichenbach JR (2005) Clinical applications of neuroimaging with susceptibil-ity-weighted imaging. Journal of Magnetic Resonance Imaging: JMRI 22:439-450.
Sehgal V, Delproposto Z, Haacke EM, Tong KA, Wycliffe N, Kido DK, Xu Y, Neelavalli J, Haddar D, Reichenbach JR (2005) 神經影像學的臨床應用,使用敏感度加權影像。磁共振成像雜誌:JMRI 22:439-450。

Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL (2012) Blippedcontrolled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine 67:1210-1224.
Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL (2012) 在平行成像中進行的閃爍控制別名技術,用於同時多切片回聲平面成像,並減少 g 因子懲罰。磁共振醫學:磁共振醫學學會官方期刊 67:1210-1224。

Skare S, Hedehus M, Moseley ME, Li TQ (2000) Condition number as a measure of noise performance of diffusion tensor data acquisition schemes with MRI. Journal of Magnetic Resonance 147:340-352.
Skare S, Hedehus M, Moseley ME, Li TQ (2000) 條件數作為擴散張量數據獲取方案在 MRI 中噪聲性能的衡量指標。 磁共振雜誌 147:340-352。

Slessarev M, Han J, Mardimae A, Prisman E, Preiss D, Volgyesi G, Ansel C, Duffin J, Fisher JA (2007) Prospective targeting and control of end-tidal CO2 and O2 concentrations. The Journal of Physiology 581:1207-1219.
Slessarev M, Han J, Mardimae A, Prisman E, Preiss D, Volgyesi G, Ansel C, Duffin J, Fisher JA (2007) 前瞻性目標設定與控制呼氣末二氧化碳和氧氣濃度。《生理學雜誌》581:1207-1219。

Sorensen AG, Copen WA, Ostergaard L, Buonanno FS, Gonzalez RG, Rordorf G, Rosen BR, Schwamm LH, Weisskoff RM, Koroshetz WJ (1999) Hyperacute stroke: simultaneous
Sorensen AG, Copen WA, Ostergaard L, Buonanno FS, Gonzalez RG, Rordorf G, Rosen BR, Schwamm LH, Weisskoff RM, Koroshetz WJ (1999) 超急性中風:同時

measurement of relative cerebral blood volume, relative cerebral blood flow, and mean tissue transit time. Radiology 210:519-527.
相對腦血容量、相對腦血流量和平均組織通過時間的測量。放射學 210:519-527。

Sotiropoulos SN, Jbabdi S, Xu J, Andersson JL, Moeller S, Auerbach EJ, Glasser MF, Hernandez M, Sapiro G, Jenkinson M, Feinberg DA, Yacoub E, Lenglet C, Van Essen DC, Ugurbil K, Behrens TE, Consortium WU-MH (2013) Advances in diffusion MRI acquisition and processing in the Human Connectome Project. NeuroImage 80:125-143.
Sotiropoulos SN, Jbabdi S, Xu J, Andersson JL, Moeller S, Auerbach EJ, Glasser MF, Hernandez M, Sapiro G, Jenkinson M, Feinberg DA, Yacoub E, Lenglet C, Van Essen DC, Ugurbil K, Behrens TE, Consortium WU-MH (2013) 人類連接組計畫中擴散 MRI 獲取和處理的進展。神經影像 80:125-143。

Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW (2003) Mapping cortical change across the human life span. Nature Neuroscience 6:309-315.
Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW (2003) 映射人類生命週期中的皮質變化。自然神經科學 6:309-315。

Thomas BP, Yezhuvath US, Tseng BY, Liu P, Levine BD, Zhang R, Lu H (2013) Life-long aerobic exercise preserved baseline cerebral blood flow but reduced vascular reactivity to CO2. Journal of Magnetic Resonance Imaging: JMRI 38:1177-1183.
Thomas BP, Yezhuvath US, Tseng BY, Liu P, Levine BD, Zhang R, Lu H (2013) 終生有氧運動保留了基線腦血流,但降低了對二氧化碳的血管反應性。磁共振成像雜誌:JMRI 38:1177-1183。

Tuch DS, Reese TG, Wiegell MR, Wedeen VJ (2003) Diffusion MRI of complex neural architecture. Neuron 40:885-895.
Tuch DS, Reese TG, Wiegell MR, Wedeen VJ (2003) 複雜神經結構的擴散 MRI。神經元 40:885-895。

Van Essen DC et al. (2012) The Human Connectome Project: a data acquisition perspective. NeuroImage 62:2222-2231.
Van Essen DC et al. (2012) 人類連接組計畫:數據獲取的視角。神經影像 62:2222-2231。

Wahlund LO, Barkhof F, Fazekas F, Bronge L, Augustin M, Sjogren M, Wallin A, Ader H, Leys D, Pantoni L, Pasquier F, Erkinjuntti T, Scheltens P, European Task Force on Age-Related White Matter C (2001) A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke; a Journal of Cerebral Circulation 32:1318-1322.
Wang J, Zhang Y, Wolf RL, Roc AC, Alsop DC, Detre JA (2005) Amplitude-modulated continuous arterial spin-labeling 3.0-T perfusion MR imaging with a single coil: feasibility study. Radiology 235:218-228.
Wang J, Zhang Y, Wolf RL, Roc AC, Alsop DC, Detre JA (2005) 振幅調變連續動脈自旋標記 3.0-T 灌注 MR 成像單圈的可行性研究。放射學 235:218-228。

Wierenga CE, Clark LR, Dev SI, Shin DD, Jurick SM, Rissman RA, Liu TT, Bondi MW (2013) Interaction of age and APOE genotype on cerebral blood flow at rest. Journal of Alzheimer’s Disease: JAD 34:921-935.
Wierenga CE, Clark LR, Dev SI, Shin DD, Jurick SM, Rissman RA, Liu TT, Bondi MW (2013) 年齡與 APOE 基因型對靜息狀態下腦血流的相互作用。《阿茲海默病雜誌》:JAD 34:921-935。

Williams DS, Detre JA, Leigh JS, Koretsky AP (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proceedings of the National Academy of Sciences of the United States of America 89:212-216.
Williams DS, Detre JA, Leigh JS, Koretsky AP (1992) 磁共振成像的灌注使用動脈水的自旋反轉。美國國家科學院院刊 89:212-216。

Willinek WA, Kuhl CK (2006) 3.0 T neuroimaging: technical considerations and clinical applications. Neuroimaging Clinics of North America 16:217-228, ix.
Willinek WA, Kuhl CK (2006) 3.0 T 神經影像學:技術考量與臨床應用。北美神經影像學期刊 16:217-228, ix.

Wise RG, Pattinson KT, Bulte DP, Chiarelli PA, Mayhew SD, Balanos GM, O’Connor DF, Pragnell TR, Robbins PA, Tracey I, Jezzard P (2007) Dynamic forcing of end-tidal carbon dioxide and oxygen applied to functional magnetic resonance imaging. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism 27:1521-1532.
Wise RG, Pattinson KT, Bulte DP, Chiarelli PA, Mayhew SD, Balanos GM, O’Connor DF, Pragnell TR, Robbins PA, Tracey I, Jezzard P (2007) 動態強迫末梢二氧化碳和氧氣應用於功能性磁共振成像。腦血流與代謝雜誌:國際腦血流與代謝學會官方雜誌 27:1521-1532。

Wong EC, Buxton RB, Frank LR (1998) A theoretical and experimental comparison of continuous and pulsed arterial spin labeling techniques for quantitative perfusion imaging. Magn Reson Med 40:348-355.
Wong EC, Buxton RB, Frank LR (1998) 連續與脈衝動脈自旋標記技術在定量灌注成像中的理論與實驗比較。磁共振醫學 40:348-355。

Yang Y, Frank JA, Hou L, Ye FQ, McLaughlin AC, Duyn JH (1998) Multislice imaging of quantitative cerebral perfusion with pulsed arterial spin labeling. Magn Reson Med 39:825-832.
Yang Y, Frank JA, Hou L, Ye FQ, McLaughlin AC, Duyn JH (1998) 脈衝動脈自旋標記的定量腦灌注多切片成像。Magn Reson Med 39:825-832。

Yezhuvath US, Lewis-Amezcua K, Varghese R, Xiao G, Lu H (2009) On the assessment of cerebrovascular reactivity using hypercapnia BOLD MRI. NMR in Biomedicine 22:779-786.
Yezhuvath US, Lewis-Amezcua K, Varghese R, Xiao G, Lu H (2009) 在使用高碳酸血症 BOLD 磁共振成像評估腦血管反應性方面的研究。生物醫學中的 NMR 22:779-786。

Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nature Reviews Neuroscience 5:863-873.
Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) 鐵、腦部老化與神經退行性疾病。自然評論神經科學 5:863-873。

Zijdenbos AP, Dawant BM, Margolin RA, Palmer AC (1994) Morphometric analysis of white matter lesions in MR images: method and validation. IEEE Transactions on Medical Imaging 13:716-724.
Zijdenbos AP, Dawant BM, Margolin RA, Palmer AC (1994) 磁共振影像中白質病變的形態計量分析:方法與驗證。IEEE 醫學影像學報 13:716-724。

Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nature Reviews Neuroscience 12:723-738.
Zlokovic BV (2011) 神經血管通路與阿茲海默症及其他疾病中的神經退化。自然評論神經科學 12:723-738。