Chemical Stabilization of Unnatural Nucleotide Triphosphates for the in Vivo Expansion of the Genetic Alphabet
非天然核苷酸三磷酸盐的化学稳定化,用于遗传字母表的体内扩增Click to copy article link
点击复制文章链接Article link copied!
点击复制文章链接Article link copied!
Abstract 抽象
单击以复制部分链接Section link copied!
We have developed an unnatural base pair (UBP) and a semisynthetic organism (SSO) that imports the constituent unnatural nucleoside triphosphates and uses them to replicate DNA containing the UBP. However, propagation of the UBP is at least in part limited by the stability of the unnatural triphosphates, which are degraded by cellular and secreted phosphatases. To circumvent this problem, we now report the synthesis and evaluation of unnatural triphosphates with their β,γ-bridging oxygen replaced with a difluoromethylene moiety, yielding dNaMTPCF2 and dTPT3TPCF2. We find that although dNaMTPCF2 cannot support in vivo replication, likely due to poor polymerase recognition, dTPT3TPCF2 can, and moreover, its increased stability can contribute to increased UBP retention. The data demonstrate the promise of this chemical approach to SSO optimization, and suggest that other modifications should be sought that confer phosphatase resistance without interfering with polymerase recognition.
我们开发了一种非天然碱基对 (UBP) 和一种半合成生物体 (SSO),它们进口组成非天然核苷三磷酸盐,并使用它们来复制含有 UBP 的 DNA。然而,UBP 的传播至少在一定程度上受到非天然三磷酸盐稳定性的限制,这些三磷酸盐被细胞和分泌的磷酸酶降解。为了规避这个问题,我们现在报道了非天然三磷酸盐的合成和评估,其 β,γ 桥氧被二氟亚甲基部分取代,产生 dNaMTPCF2 和 dTPT3TPCF2。我们发现,虽然 dNaMTPCF2 不能支持体内复制,可能是由于聚合酶识别差,但 dTPT3TPCF2 可以,而且,其增加的稳定性有助于提高 UBP 保留。数据证明了这种化学方法对 SSO 优化的前景,并建议应寻求其他修饰,以在不干扰聚合酶识别的情况下赋予磷酸酶抗性。
This publication is licensed under the terms of your
institutional subscription.
Request reuse permissions.
本出版物根据您的机构订阅条款获得许可。请求重用权限。
版权所有 © 2017 美国化学会
Introduction 介绍
单击以复制部分链接Section link copied!
自然遗传字母表在整个自然界中都是保守的,由四个核苷酸“字母”组成,它们通过互补的氢键配对以提供两个碱基对,而这两对字母是生物信息存储和检索的基础。人们已经投入了大量精力来开发选择性配对的合成核苷酸,从而构成非天然碱基对 (UBP),并且三种不同的设计策略已经产生了在 PCR 扩增过程中很好地保留在 DNA 中的 UBP。(1-3) Hirao 和 Benner 优雅地使用这些体外扩展的遗传字母来选择相对于完全天然的适配子具有改进特性的非天然适配子。(3-5) 尽管这些 UBP 是通过修改天然核碱基的形状或氢键模式开发的,但我们的方法反而依赖于合成核苷酸,这些核苷酸的核碱基与其天然对应物几乎没有相似性,并且通过疏水和堆积力相互作用;(6) 一种方法最终确定了以 dNaM-d 5SICS (7) 和 dNaM-d TPT3 (8, 9) 为代表的 UBP 家族(图 1A)。尽管与天然对应物几乎没有核碱基同源性,但这些 UBP 通过独特的互诱导拟合机制进行有效复制。(6、10、11)
与体外应用相反,我们的工作重点是使用 UBP 作为半合成生物体 (SSO) 的基础,该生物体可以稳定地存储和检索增加的信息。我们最近证明,在补充有非天然三磷酸盐 dNaMTP 和 d5SICSTP 的培养基中生长的大肠杆菌,并提供核苷三磷酸转运蛋白 PtNTT2 以输入它们,能够复制含有 dNaM-d 5SICS UBP 的质粒。(12) 然而,新生 SSO 的一个显着限制是 UBP 在延长或高密度生长时丢失,这似乎至少部分是由于非天然三磷酸盐的去磷酸化,将其浓度降低到有效复制所需的水平以下。(12) 尽管最近的工作表明 dNaM-d TPT3 UBP 比最初使用的 dNaM-d 5SICS UBP 更好地保留在 SSO 中,但 (13) dTPT3TP 也可能容易受到相同的磷酸降解。到目前为止,抑制降解或识别和删除编码负责磷酸酶的基因的努力尚未成功(我们未发表的结果和参考文献 12),但表明可能涉及多种磷酸酶。
尽管非自然三磷酸盐降解问题的潜在解决方案是在生长过程中不断添加它们,但这将是浪费,并且会使 SSO 的使用复杂化。相比之下,三磷酸盐的化学稳定化会更实用。为了探索这种化学方法,我们合成了非天然三磷酸盐的类似物,其 β,γ 桥氧原子被二氟亚甲基部分取代,产生 dNaMTPCF2 和 dTPT3TPCF2 (图 1B)。数据显示,尽管 β,γ-CF2 修饰赋予两种三磷酸盐稳定性,但它也以核碱基依赖性方式影响转运蛋白和聚合酶的识别。对聚合酶识别的影响似乎更大,并且排除了 dNaMTPCF2 的使用,但排除了 dTPT3TPCF2 的使用,这表明它或其他类似稳定的非天然三磷酸盐应该有助于扩展生物体的遗传字母表。
Experimental Section 实验部分
单击以复制部分链接Section link copied!
General 常规
对于合成程序,所有反应均在惰性气氛下在烘箱干燥的玻璃器皿中进行,所有溶剂均在 4 Å 分子筛上蒸馏和/或干燥。除非另有说明,否则所有其他化学试剂均购自 Aldrich。1H 和 13C 波谱在配备 QNP 探头的布鲁克 DPX 400 mHz NMR 仪器上记录。31P 和 19F NMR 波谱在配备 CPDCH 低温探头的布鲁克 AVIII HD 600 mHz NMR 仪器上记录。质谱数据来自斯克里普斯研究所的核心设施。
所有细菌培养物均在补充有磷酸钾 (50 mM,pH 7) 的液体 2×YT 培养基(酪蛋白蛋白胨 16 g/L、酵母提取物 10 g/L、NaCl 5 g/L)中生长。所有涉及细菌生长的实验均在微孔板(根据需要为 96 孔或 48 孔)中进行。注意到后,使用以下浓度的抗生素:氯霉素,5 μg/mL;氨苄青霉素,50 μg/mL。使用带有 590/20 nm 滤光片的 PerkinElmer EnVision 2103 多标记读数仪测量细胞生长,表示为 OD600。除非另有说明,否则分子生物学试剂购自 New England Biolabs(马萨诸塞州伊普斯威奇),并按照制造商的方案使用。必要时,通过微量洗脱柱(Zymo Research Corp;加利福尼亚州尔湾市)。所有天然寡核苷酸均购自 IDT(加利福尼亚州圣地亚哥),含有 dNaM 或 dTPT3 的寡核苷酸由 Biosearch Technologies(加利福尼亚州佩塔卢马)合成,通过反相小柱纯化,由 Synthorx(加利福尼亚州拉霍亚)友情提供。
Degradation of Nucleotide Triphosphates
核苷酸三磷酸盐的降解
将大肠杆菌 BL21(DE3) lacZYA::CmR (13) 的过夜培养物 (∼3 mL) 稀释到新鲜培养基中 100 倍,并在 37 °C 下孵育 2 小时。此时,在含有 200 mM 核苷酸三磷酸的 500 μL 培养基中将细胞稀释回 OD600 0.10。将培养物与三磷酸盐在 37 °C 下振荡孵育,并在指定时间通过取出等分试样 (50 μL) 并立即沉淀细胞组分(9,000 r.c.f.,5 分钟,4 °C)来收集样品。除去等分试样 (40 μL) 上清液(即培养基组分)并与乙腈 (80 μL) 混合,然后在室温 (∼23 °C) 下孵育 30 分钟,然后沉淀(12,000 r.c.f.,10 分钟,RT)以去除沉淀物。收集上清液,干燥 (SpeedVac),重悬于 20 μL 0.1 M 三乙基碳酸氢铵 (TEAB) (pH 7.5) 中,然后如前所述使用 Phenomenex Jupiter 液相色谱柱(3 mm C18 300 Å,250 × 4.6 mm)通过 HPLC(Agilent 1100 系列)进行分析。(12) 通过将存在的每种物质(即三磷酸盐、二磷酸盐、单磷酸盐)的曲线下面积 (AUC) 积分,并将三磷酸盐峰的 AUC 除以三个峰的总和来确定剩余三磷酸盐的百分比。
Kinetic Assay 动力学测定
如前所述 (14) 使用表 S1 中描述的寡核苷酸引物和模板进行稳态动力学测定。通过变性 PAGE 分离反应产物,并在 Typhoon 9210 平板激光扫描仪 (GE Healthcare) 上对所得凝胶进行成像。Image Studio Lite (LI-COR Biosciences) 用于定量成像凝胶的条带密度。动力学参数 (K、M 和 Vmax) 是通过绘制观察到的掺入率与三磷酸盐浓度的关系并将数据拟合到 Michaelis-Menten 方程来确定的。报告的值是至少三个独立测定的平均值和标准差。
Inhibition-Based Uptake Assay
基于抑制的摄取测定
将大肠杆菌SSO YZ3 (13)的过夜培养物(∼3 mL)在补充有氯霉素(∼8 mL)的培养基中稀释100倍,并在37 °C下孵育至OD600 ∼ 0.4–0.6 (∼1.5 h)。向等分的细胞 (92.5 μL) 中加入非天然三磷酸盐 (500 μM)、ATP (50 μM) 和 [α-32P]-ATP(4 μCi/mL,珀金埃尔默)的溶液,最终体积为 100 μL。每个样品与等分试样平行运行,这些细胞接受无非天然三磷酸盐作为仅 ATP 对照。将处理过的细胞在 37 °C 下孵育 10 分钟,在 96 孔 0.65 mm 玻璃纤维过滤板(MultiScreen,EMD Millipore)真空下收集,然后用 ddH2O (2 × 100 μL) 洗涤。然后将滤光片暴露在存储荧光屏上过夜,然后按上述方式成像。通过对所得图像进行密度分析来确定 ATP 摄取的抑制,将放射性密度标准化为仅 ATP 对照,并将该值表示为 ATP 摄取的抑制百分比。报告的值是至少三个独立测定的平均值和标准差。
Analysis of in Vivo Replication
体内复制分析
如前所述制备含有 UBP 的质粒并用于转化 SSO。(12, 13)回收后,将细胞稀释到含有不同组合和浓度的 dNaMTP 和 dTPT3 或其 β,γ-CF2 修饰对应物的培养基中。在规定的时间回收质粒,并如前所述 (12, 13) 和支持信息中分析 UBP 的保留。
Results and Discussion 结果与讨论
单击以复制部分链接Section link copied!
为了探索非天然三磷酸盐的化学稳定性,我们合成了 dNaMTPCF2 和 dTPT3TPCF2。尽管 β,γ-CF2 修饰可能会影响聚合酶结合,但其电负性应有利于磷酸盐 a 的亲核攻击 (15-18),同时消除 β 磷酸盐和 γ 磷酸盐之间的磷酸裂解,这可能是降解的主要途径。简而言之,游离核苷 dNaM 和 dTPT3 按照先前报道的 (14, 19) 合成,然后,使用 McKenna 等人报道的方法 (20) 将它们转化为 dNaMTPCF2 和 dTPT3TPCF2。
有了这些类似物,我们首先在活跃生长的细菌培养物中测试了它们的细胞外稳定性。大肠杆菌BL21(DE3) 生长到早期对数期 (OD600 ∼ 0.1),此时加入 200 μM 修饰或未修饰的非天然三磷酸盐。在 37 °C 下孵育后,通过离心除去细胞,沉淀回收的生长培养基中的可溶性蛋白质,并通过 HPLC 测定完整三磷酸盐的量(图 2A)。在没有修饰的情况下,24 小时后未检测到三磷酸盐,这与快速降解一致,可能是由分泌的磷酸酶引起的。然而,dNaMTPCF2 或 dTPT3TPCF2 的降解均不明显,证实了 β,γ-CF2 部分在用于生长 SSO 的条件下显着稳定了三磷酸盐。
为了确定 β,γ-CF2 修饰是否与聚合酶介导的复制兼容,我们接下来使用大肠杆菌 DNA 聚合酶 I 的 Klenow 片段(支持信息)进行了稳态动力学测定,该片段在 UBP 开发过程中用作模型聚合酶。即使在强迫条件下,我们也无法检测到 dNaMTPCF2 与 dTPT3 相对的任何插入。相比之下,我们发现聚合酶确实在 dNaM 的对面插入 dTPT3TPCF2;然而,尽管它的合理 KM 为 15.7 ± 7.5 nM,但 1.4 ± 0.5 min–1 的 kcat 略低于观察到的 dTPT3TP(我们未发表的结果)。该数据表明 dNaMTPCF2 可能与 SSO 内的复制不兼容,虽然 dTPT3TPCF2 可能会发生复制,但 β,γ-CF2 部分可能会降低其效率。
为了与 SSO 一起使用,稳定的非天然三磷酸盐必须首先被 PtNTT2 识别为底物并导入细胞。为了开始检查 PtNTT2 的识别,我们表征了每种修饰和未修饰的类似物由于竞争性抑制而减少 [α-32P] ATP 输入的能力,如前所述。(21) 添加 500 mM 的 dNaMTPCF2 或 dTPT3TPCF2 抑制了 [α-32 P] ATP 的摄取(图 2B 和支持信息)。尽管抑制水平略低于 dNaMTP 和 dTPT3TP,但数据表明 CF2 修饰并不能完全消融 SSO 转运蛋白的识别。
接下来,我们继续检查 dNaMTPCF2 和/或 dTPT3TPCF2 是否可以支持 SSO 中 dNaM-d TPT3 UBP 的复制。通过 Golden Gate 组装构建含有嵌入 TK1 序列中的单个 dNaM-d TPT3 UBP 的 pUC19 质粒 (12),并用于转化 SSO。在补充有 3.0 μMd TPT3TP 和 250 μMd NaMTP 的培养基中,或用相同浓度的 CF2 修饰类似物替换其中一种非天然三磷酸盐,将细胞生长至 OD600 为 ∼0.7,并回收质粒并分析 UBP 保留(图 3 和支持信息)。在这些相对宽松的条件下,正如预期的那样,在培养基中提供 dNaMTP 和 dTPT3TP 会导致高 UBP 保留率 (99.1 ± 2.1%)。虽然当提供 dNaMTPCF2 和 dTPT3TP 时检测不到保留,但当提供 dNaMTP 和 dTPT3TPCF2 时,保留率很高 (86.0 ± 11.4%)。当与上述数据结合时,这表明两种修饰的非天然三磷酸盐都是输入的,但在复制过程中无法识别 dNaMTPCF2,而虽然识别了 dTPT3TPCF2,但它的识别保真度比未修饰的对应物略低。
为了探索 dTPT3TPCF2 稳定性的增加是否会导致细胞内浓度增加,从而导致更有效的 UBP 复制,尽管其固有的保真度降低,我们检查了 dNaM-d TPT3 UBP 在 SSO 内的复制在不太宽松的条件下,细胞生长至深固定相 (OD600 ∼ 9) 在 0.75 μM dTPT3TP 或 dTPT3TP CF2 存在下和 250、1000 或 2000 μM dNaMTP(图 3)。对于 dTPT3TP,不同 dNaMTP 浓度的 UBP 保留水平保持相对恒定,分别为 72 ± 9%、83 ± 4% 和 81 ± 9%。然而,随着 dNaMTP 浓度的增加,dTPT3TPCF2 的 UBP 保留率分别为 51 ± 11%、80 ± 9% 和 85 ± 14%。目前尚不清楚在允许条件下也观察到的 ∼85% 保留率是否显着,可能代表了聚合酶饱和度可能的最大保真度。无论如何,很明显,在这些更具挑战性的生长条件下,通过增加其浓度来补偿 dNaMTP 降解可以增加 UBP 保留,但这显然需要维持其同源三磷酸盐的足够水平,这似乎是通过 CF2 修饰实现的。
合成生物学的目标是赋予生物体新的和非自然的特征,甚至创造人工生命,(22),其核心是利用合成化学和更注重生物学的方法的能力。尽管我们实验室的早期 SSO 开发侧重于非天然核苷酸的化学优化,但最近的工作集中在优化细胞本身以导入和保留 UBP。本文提供的数据表明,正如预期的那样,非天然三磷酸盐的 β,γ-CF2 修饰赋予了抗降解性,但它也以依赖于核碱基的方式影响转运蛋白和聚合酶的识别。dNaMTPCF2 的聚合酶识别降低,使其无法在 SSO 中使用,但 dTPT3TPCF2 的稳定性以及至少合理的摄取和聚合酶识别证明了这种化学方法对 SSO 优化的前景。应寻求进一步的修饰,以稳定非天然三磷酸盐,并且以不干扰摄取或复制的方式。
Supporting Information 支持信息
单击以复制部分链接Section link copied!
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b12731.
支持信息可在 ACS Publications 网站免费获取,网址为 DOI:10.1021/jacs.6b12731。
Supporting methods, synthesis, and characterization of dTPT3TPCF2 and dNaMTPCF2 (PDF)
dTPT3TPCF2 和 dNaMTPCF2 的支持方法、合成和表征 (PDF)
Terms & Conditions 条款和条件
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
大多数电子支持信息文件无需订阅 ACS Web 版本即可获得。此类文件可以按文章下载用于研究用途(如果有链接到相关文章的公共使用许可证,则该许可证可能允许其他用途)。可以通过 RightsLink 权限系统(http://pubs.acs.org/page/copyright/permissions.html)请求从 ACS 获得用于其他用途的许可。
Acknowledgment 确认
单击以复制部分链接Section link copied!
This work was supported by the National Institutes of Health (Grant Nos. GM060005 and GM118178 to F.E.R.) and National Science Foundation Graduate Research Fellowships (Grant No. NSF/DGE-1346837 to A.W.F.)
这项工作得到了美国国立卫生研究院(F.E.R. 的第 GM060005 号和GM118178号)和美国国家科学基金会研究生研究奖学金(第 1 号)的支持。NSF/DGE-1346837 至 A.W.F.)
References 引用
单击以复制部分链接Section link copied!
This article references
22 other publications.
本文引用了其他 22 种出版物。
- 1Malyshev, D. A.; Dhami, K.; Quach, H. T.; Lavergne, T.; Ordoukhanian, P.; Torkamani, A.; Romesberg, F. E. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 12005– 12010 DOI: 10.1073/pnas.1205176109
1马雷舍夫,DA; 达米,K.; 夸奇,HT; 拉弗涅,T.; Ordoukhanian, P.; 托卡马尼,A.; Romesberg, F. E.美国国家科学院院刊 2012, 109, 12005– 12010 DOI: 10.1073/pnas.1205176109Google Scholar没有相应的记录。 - 2Kimoto, M.; Hirao, I. In Chemical Biology of Nucleic Acids: Fundamentals and Clinical Applications; Erdmann, A. V.; Markiewicz, T. W.; Barciszewski, J., Eds.; Springer: Berlin Heidelberg:, 2014; pp 131– 148.
- 3Zhang, L.; Yang, Z.; Sefah, K.; Bradley, K. M.; Hoshika, S.; Kim, M. J.; Kim, H. J.; Zhu, G.; Jimenez, E.; Cansiz, S.; Teng, I. T.; Champanhac, C.; McLendon, C.; Liu, C.; Zhang, W.; Gerloff, D. L.; Huang, Z.; Tan, W.; Benner, S. A. J. Am. Chem. Soc. 2015, 137, 6734– 6737 DOI: 10.1021/jacs.5b02251Google Scholar3https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2MXot1Sru70%253D&md5=8f8f6e892516e704800cf45cc0aea51aEvolution of functional six-nucleotide DNAZhang, Liqin; Yang, Zunyi; Sefah, Kwame; Bradley, Kevin M.; Hoshika, Shuichi; Kim, Myong-Jung; Kim, Hyo-Joong; Zhu, Guizhi; Jimenez, Elizabeth; Cansiz, Sena; Teng, I-Ting; Champanhac, Carole; McLendon, Christopher; Liu, Chen; Zhang, Wen; Gerloff, Dietlind L.; Huang, Zhen; Tan, Weihong; Benner, Steven A.Journal of the American Chemical Society (2015), 137 (21), 6734-6737CODEN: JACSAT; ISSN:0002-7863. (American Chemical Society)Axiomatically, the d. of information stored in DNA, with just four nucleotides (GACT), is higher than in a binary code, but less than it might be if synthetic biologists succeed in adding independently replicating nucleotides to genetic systems. Such addn. could also add functional groups not found in natural DNA, but useful for mol. performance. Here, we consider two new nucleotides (Z and P, 6-amino-5-nitro-3-(1'-β-D-2'-deoxyribo-furanosyl)-2(1H)-pyridone and 2-amino-8-(1'-β-D-2'-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one). These are designed to pair via complete Watson-Crick geometry. These were added to a library of oligonucleotides used in a lab. in vitro evolution (LIVE) expt.; the GACTZP library was challenged to deliver mols. that bind selectively to liver cancer cells, but not to untransformed liver cells. Unlike in classical in vitro selection, low levels of mutation allow this system to evolve to create binding mols. not necessarily present in the original library. Over a dozen binding species were recovered. The best had Z and/or P in their sequences. Several had multiple, nearby, and adjacent Zs and Ps. Only the weaker binders contained no Z or P at all. This suggests that this system explored much of the sequence space available to this genetic system and that GACTZP libraries are richer reservoirs of functionality than std. libraries.
- 4Kimoto, M.; Yamashige, R.; Matsunaga, K.; Yokoyama, S.; Hirao, I. Nat. Biotechnol. 2013, 31, 453– 457 DOI: 10.1038/nbt.2556Google Scholar4https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3sXltlOhur4%253D&md5=068493fd06e1537c468ed340055ce3ecGeneration of high-affinity DNA aptamers using an expanded genetic alphabetKimoto, Michiko; Yamashige, Rie; Matsunaga, Ken-ichiro; Yokoyama, Shigeyuki; Hirao, IchiroNature Biotechnology (2013), 31 (5), 453-457CODEN: NABIF9; ISSN:1087-0156. (Nature Publishing Group)DNA aptamers produced with natural or modified natural nucleotides often lack the desired binding affinity and specificity to target proteins. Here we describe a method for selecting DNA aptamers contg. the four natural nucleotides and an unnatural nucleotide with the hydrophobic base 7-(2-thienyl)imidazo[4,5-b]pyridine (Ds). We incorporated up to three Ds nucleotides in a random sequence library, which is expected to increase the chem. and structural diversity of the DNA mols. Selection expts. against two human target proteins, vascular endothelial cell growth factor-165 (VEGF-165) and interferon-γ (IFN-γ), yielded DNA aptamers that bind with KD values of 0.65 pM and 0.038 nM, resp., affinities that are >100-fold improved over those of aptamers contg. only natural bases. These results show that incorporation of unnatural bases can yield aptamers with greatly augmented affinities, suggesting the potential of genetic alphabet expansion as a powerful tool for creating highly functional nucleic acids.
- 5Sefah, K.; Yang, Z.; Bradley, K. M.; Hoshika, S.; Jimenez, E.; Zhang, L.; Zhu, G.; Shanker, S.; Yu, F.; Turek, D.; Tan, W.; Benner, S. A. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 1449– 1454 DOI: 10.1073/pnas.1311778111Google Scholar5https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2cXhsF2qsb8%253D&md5=6ed5367323689776b0698472540c1f71In vitro selection with artificial expanded genetic information systemsSefah, Kwame; Yang, Zunyi; Bradley, Kevin M.; Hoshika, Shuichi; Jimenez, Elizabeth; Zhang, Liqin; Zhu, Guizhi; Shanker, Savita; Yu, Fahong; Turek, Diane; Tan, Weihong; Benner, Steven A.Proceedings of the National Academy of Sciences of the United States of America (2014), 111 (4), 1449-1454CODEN: PNASA6; ISSN:0027-8424. (National Academy of Sciences)Artificially expanded genetic information systems (AEGISs) are unnatural forms of DNA that increase the no. of independently replicating nucleotide building blocks. To do this, AEGIS pairs are joined by different arrangements of hydrogen bond donor and acceptor groups, all while retaining their Watson-Crick geometries. We report here a unique case where AEGIS DNA has been used to execute a systematic evolution of ligands by exponential enrichment (SELEX) expt. This AEGIS-SELEX was designed to create AEGIS oligonucleotides that bind to a line of breast cancer cells. AEGIS-SELEX delivered an AEGIS aptamer (ZAP-2012) built from six different kinds of nucleotides (the std. G, A, C, and T, and the AEGIS nonstandard P and Z nucleotides, the last having a nitro functionality not found in std. DNA). ZAP-2012 has a dissocn. const. of 30 nM against these cells. The affinity is diminished or lost when Z or P (or both) is replaced by std. nucleotides and compares well with affinities of std. GACT aptamers selected against cell lines using std. SELEX. The success of AEGIS-SELEX relies on various innovations, including (i) the ability to synthesize GACTZP libraries, (ii) polymerases that PCR amplify GACTZP DNA with little loss of the AEGIS nonstandard nucleotides, and (iii) technologies to deep sequence GACTZP DNA survivors. These results take the next step toward expanding the power and utility of SELEX and offer an AEGIS-SELEX that could possibly generate receptors, ligands, and catalysts having sequence diversities nearer to that displayed by proteins.
- 6Malyshev, D. A.; Romesberg, F. E. Angew. Chem., Int. Ed. 2015, 54, 11930– 11944 DOI: 10.1002/anie.201502890Google Scholar6https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2MXhsVSjtLrL&md5=56b77b89dbbf47428bf446e8de15ca82The expanded genetic alphabetMalyshev, Denis A.; Romesberg, Floyd E.Angewandte Chemie, International Edition (2015), 54 (41), 11930-11944CODEN: ACIEF5; ISSN:1433-7851. (Wiley-VCH Verlag GmbH & Co. KGaA)A review. All biol. information, since the last common ancestor of all life on Earth, has been encoded by a genetic alphabet consisting of only four nucleotides that form two base pairs. Long-standing efforts to develop two synthetic nucleotides that form a third, unnatural base pair (UBP) have recently yielded three promising candidates, one based on alternative hydrogen bonding, and two based on hydrophobic and packing forces. All three of these UBPs are replicated and transcribed with remarkable efficiency and fidelity, and the latter two thus demonstrate that hydrogen bonding is not unique in its ability to underlie the storage and retrieval of genetic information. This Review highlights these recent developments as well as the applications enabled by the UBPs, including the expansion of the evolution process to include new functionality and the creation of semi-synthetic life that stores increased information.
- 7Leconte, A. M.; Hwang, G. T.; Matsuda, S.; Capek, P.; Hari, Y.; Romesberg, F. E. J. Am. Chem. Soc. 2008, 130, 2336– 2343 DOI: 10.1021/ja078223dGoogle ScholarThere is no corresponding record for this reference.
- 8Dhami, K.; Malyshev, D. A.; Ordoukhanian, P.; Kubelka, T.; Hocek, M.; Romesberg, F. E. Nucleic Acids Res. 2014, 42, 10235– 10244 DOI: 10.1093/nar/gku715Google ScholarThere is no corresponding record for this reference.
- 9Lavergne, T.; Malyshev, D. A.; Romesberg, F. E. Chem. - Eur. J. 2012, 18, 1231– 1239 DOI: 10.1002/chem.201102066Google Scholar9https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3MXhs1Ghur3L&md5=e3fe084c25ab1596e07e721de72d4408Major groove substituents and polymerase recognition of a class of predominantly hydrophobic unnatural base pairsLavergne, Thomas; Malyshev, Denis A.; Romesberg, Floyd E.Chemistry - A European Journal (2012), 18 (4), 1231-1239, S1231/1-S1231/27CODEN: CEUJED; ISSN:0947-6539. (Wiley-VCH Verlag GmbH & Co. KGaA)Expansion of the genetic alphabet with an unnatural base pair is a long-standing goal of synthetic biol. The authors have developed a class of unnatural base pairs, formed between d5SICS and analogs of dMMO2 that are efficiently and selectively replicated by the Klenow fragment (Kf) DNA polymerase. In an effort to further characterize and optimize replication, the authors report the synthesis of five new dMMO2 analogs bearing different substituents designed to be oriented into the developing major groove and an anal. of their insertion opposite d5SICS by Kf and Thermus aquaticus DNA polymerase I (Taq). We also expand the anal. of the previously optimized pair, dNaM-d5SICS, to include replication by Taq. Finally, the efficiency and fidelity of PCR amplification of the base pairs by Taq or Deep Vent polymerases was examd. The resulting structure-activity relationship data suggest that the major determinants of efficient replication are the minimization of desolvation effects and the introduction of favorable hydrophobic packing, and that Taq is more sensitive than Kf to structural changes. In addn., the authors identify an analog (dNMO1) that is a better partner for d5SICS than any of the previously identified dMMO2 analogs with the exception of dNaM. They also found that dNaM-d5SICS is replicated by both Kf and Taq with rates approaching those of a natural base pair.
- 10Betz, K.; Malyshev, D.; Lavergne, T.; Welte, W.; Diederichs, K.; Romesberg, F. E.; Marx, A. J. Am. Chem. Soc. 2013, 135, 18637– 18643 DOI: 10.1021/ja409609jGoogle ScholarThere is no corresponding record for this reference.
- 11Betz, K.; Malyshev, D. A.; Lavergne, T.; Welte, W.; Diederichs, K.; Dwyer, T. J.; Ordoukhanian, P.; Romesberg, F. E.; Marx, A. Nat. Chem. Biol. 2012, 8, 612– 614 DOI: 10.1038/nchembio.966Google Scholar11https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC38XnvVyrurw%253D&md5=3f53105607a419a1d1326125178d682dKlenTaq polymerase replicates unnatural base pairs by inducing a Watson-Crick geometryBetz, Karin; Malyshev, Denis A.; Lavergne, Thomas; Welte, Wolfram; Diederichs, Kay; Dwyer, Tammy J.; Ordoukhanian, Phillip; Romesberg, Floyd E.; Marx, AndreasNature Chemical Biology (2012), 8 (7), 612-614CODEN: NCBABT; ISSN:1552-4450. (Nature Publishing Group)Many candidate unnatural DNA base pairs have been developed, but some of the best-replicated pairs adopt intercalated structures in free DNA that are difficult to reconcile with known mechanisms of polymerase recognition. Here we present crystal structures of KlenTaq DNA polymerase at different stages of replication for one such pair, dNaM-d5SICS, and show that efficient replication results from the polymerase itself, inducing the required natural-like structure.
- 12Malyshev, D. A.; Dhami, K.; Lavergne, T.; Chen, T.; Dai, N.; Foster, J. M.; Correa, I. R., Jr.; Romesberg, F. E. Nature 2014, 509, 385– 388 DOI: 10.1038/nature13314Google Scholar12https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2cXotVyqtb8%253D&md5=97b4b184cda52cc809b1705e5e88ad8eA semi-synthetic organism with an expanded genetic alphabetMalyshev, Denis A.; Dhami, Kirandeep; Lavergne, Thomas; Chen, Tingjian; Dai, Nan; Foster, Jeremy M.; Correa, Ivan R.; Romesberg, Floyd E.Nature (London, United Kingdom) (2014), 509 (7500), 385-388CODEN: NATUAS; ISSN:0028-0836. (Nature Publishing Group)Organisms are defined by the information encoded in their genomes, and since the origin of life this information has been encoded using a two-base-pair genetic alphabet (A-T and G-C). In vitro, the alphabet has been expanded to include several unnatural base pairs (UBPs). We have developed a class of UBPs formed between nucleotides bearing hydrophobic nucleobases, exemplified by the pair formed between d5SICS and dNaM (d5SICS-dNaM), which is efficiently PCR-amplified and transcribed in vitro, and whose unique mechanism of replication has been characterized. However, expansion of an organism's genetic alphabet presents new and unprecedented challenges: the unnatural nucleoside triphosphates must be available inside the cell; endogenous polymerases must be able to use the unnatural triphosphates to faithfully replicate DNA contg. the UBP within the complex cellular milieu; and finally, the UBP must be stable in the presence of pathways that maintain the integrity of DNA. Here we show that an exogenously expressed algal nucleotide triphosphate transporter efficiently imports the triphosphates of both d5SICS and dNaM (d5SICSTP and dNaMTP) into Escherichia coli, and that the endogenous replication machinery uses them to accurately replicate a plasmid contg. d5SICS-dNaM. Neither the presence of the unnatural triphosphates nor the replication of the UBP introduces a notable growth burden. Lastly, we find that the UBP is not efficiently excised by DNA repair pathways. Thus, the resulting bacterium is the first organism to propagate stably an expanded genetic alphabet.
- 13Zhang, Y.; Lamb, B.; Feldman, A. W.; Zhou, A. X.; Lavergne, T.; Li, L.; Romesberg, F. E. Proc. Natl. Acad. Sci. U. S. A. 2017, 201616443 DOI: 10.1073/pnas.1616443114Google ScholarThere is no corresponding record for this reference.
- 14Seo, Y. J.; Hwang, G. T.; Ordoukhanian, P.; Romesberg, F. E. J. Am. Chem. Soc. 2009, 131, 3246– 3252 DOI: 10.1021/ja807853mGoogle ScholarThere is no corresponding record for this reference.
- 15Sucato, C. A.; Upton, T. G.; Kashemirov, B. A.; Batra, V. K.; Martinek, V.; Xiang, Y.; Beard, W. A.; Pedersen, L. C.; Wilson, S. H.; McKenna, C. E.; Florian, J.; Warshel, A.; Goodman, M. F. Biochemistry 2007, 46, 461– 471 DOI: 10.1021/bi061517bGoogle ScholarThere is no corresponding record for this reference.
- 16Sucato, C. A.; Upton, T. G.; Kashemirov, B. A.; Osuna, J.; Oertell, K.; Beard, W. A.; Wilson, S. H.; Florian, J.; Warshel, A.; McKenna, C. E.; Goodman, M. F. Biochemistry 2008, 47, 870– 879 DOI: 10.1021/bi7014162Google ScholarThere is no corresponding record for this reference.
- 17Batra, V. K.; Pedersen, L. C.; Beard, W. A.; Wilson, S. H.; Kashemirov, B. A.; Upton, T. G.; Goodman, M. F.; McKenna, C. E. J. Am. Chem. Soc. 2010, 132, 7617– 7625 DOI: 10.1021/ja909370kGoogle ScholarThere is no corresponding record for this reference.
- 18Oertell, K.; Chamberlain, B. T.; Wu, Y.; Ferri, E.; Kashemirov, B. A.; Beard, W. A.; Wilson, S. H.; McKenna, C. E.; Goodman, M. F. Biochemistry 2014, 53, 1842– 1848 DOI: 10.1021/bi500101zGoogle ScholarThere is no corresponding record for this reference.
- 19Li, L.; Degardin, M.; Lavergne, T.; Malyshev, D. A.; Dhami, K.; Ordoukhanian, P.; Romesberg, F. E. J. Am. Chem. Soc. 2014, 136, 826– 829 DOI: 10.1021/ja408814gGoogle ScholarThere is no corresponding record for this reference.
- 20McKenna, C. E.; Kashemirov, B. A.; Upton, T. G.; Batra, V. K.; Goodman, M. F.; Pedersen, L. C.; Beard, W. A.; Wilson, S. H. J. Am. Chem. Soc. 2007, 129, 15412– 15413 DOI: 10.1021/ja072127vGoogle ScholarThere is no corresponding record for this reference.
- 21Ast, M.; Gruber, A.; Schmitz-Esser, S.; Neuhaus, H. E.; Kroth, P. G.; Horn, M.; Haferkamp, I. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 3621– 3626 DOI: 10.1073/pnas.0808862106Google ScholarThere is no corresponding record for this reference.
- 22Leduc, S. The Mechanisms of Life; Rebman Company: New York, 1911.Google ScholarThere is no corresponding record for this reference.
Cited By
This article is cited by 25 publications.
- Jianyun Guo, Pascal Balić, Vladimir S. Borodkin, Dmitri V. Filippov, Jeroen D. C. Codée. Synthesis of Unsymmetrical Difluoromethylene Bisphosphonates. Organic Letters 2024, 26
(3)
, 739-744. https://doi.org/10.1021/acs.orglett.3c04211
- Pouya Haratipour, Corinne Minard, Maryam Nakhjiri, Amirsoheil Negahbani, Brian T. Chamberlain, Jorge Osuna, Thomas G. Upton, Michelle Zhao, Boris A. Kashemirov, Charles E. McKenna. Completing the β,γ-CXY-dNTP Stereochemical Probe Toolkit: Synthetic Access to the dCTP Diastereomers and 31P and 19F NMR Correlations with Absolute Configurations. The Journal of Organic Chemistry 2020, 85
(22)
, 14592-14609. https://doi.org/10.1021/acs.joc.0c01204
- Anne Xiao-Zhou Zhou, Kai Sheng, Aaron W. Feldman, Floyd E. Romesberg. Progress toward Eukaryotic Semisynthetic Organisms: Translation of Unnatural Codons. Journal of the American Chemical Society 2019, 141
(51)
, 20166-20170. https://doi.org/10.1021/jacs.9b09080
- Vinayak Krishnamurti, Colby Barrett, G. K. Surya Prakash. Siladifluoromethylation and Deoxo-trifluoromethylation of PV–H Compounds with TMSCF3: Route to PV–CF2– Transfer Reagents and P–CF3 Compounds. Organic Letters 2019, 21
(5)
, 1526-1529. https://doi.org/10.1021/acs.orglett.9b00381
- Aaron W. Feldman and Floyd E. Romesberg . Expansion of the Genetic Alphabet: A Chemist’s Approach to Synthetic Biology. Accounts of Chemical Research 2018, 51
(2)
, 394-403. https://doi.org/10.1021/acs.accounts.7b00403
- Aaron W. Feldman, Emil C. Fischer, Michael P. Ledbetter, Jen-Yu Liao, John C. Chaput, and Floyd E. Romesberg . A Tool for the Import of Natural and Unnatural Nucleoside Triphosphates into Bacteria. Journal of the American Chemical Society 2018, 140
(4)
, 1447-1454. https://doi.org/10.1021/jacs.7b11404
- Feng Ni, Alvin Kung, Yankun Duan, Vivek Shah, Carolina D. Amador, Ming Guo, Xuegong Fan, Lin Chen, Yongheng Chen, Charles E. McKenna, and Chao Zhang . Remarkably Stereospecific Utilization of ATP α,β-Halomethylene Analogues by Protein Kinases. Journal of the American Chemical Society 2017, 139
(23)
, 7701-7704. https://doi.org/10.1021/jacs.7b03266
- Brennan Ashwood, Steffen Jockusch, and Carlos E. Crespo-Hernández . Photochemical Reactivity of dTPT3: A Crucial Nucleobase Derivative in the Development of Semisynthetic Organisms. The Journal of Physical Chemistry Letters 2017, 8
(11)
, 2387-2392. https://doi.org/10.1021/acs.jpclett.7b00926
- Karola Gerecht, Niklas Freund, Wei Liu, Yang Liu, Maximilian J.L.J. Fürst, Philipp Holliger. The Expanded Central Dogma: Genome Resynthesis, Orthogonal Biosystems, Synthetic Genetics. Annual Review of Biophysics 2023, 52
(1)
, 413-432. https://doi.org/10.1146/annurev-biophys-111622-091203
- Bianbian Huo, Xiguang Zhang, Chao Wang, Honglei Wang, Gongming Zhu, Wuyuan Zhu, Anlian Zhu, Hui Mei, Lingjun Li. Mechanistic Insight into the Photoinduced Damage of an Unnatural Base Pair. Chemistry – A European Journal 2022, 28
(53)
https://doi.org/10.1002/chem.202201730
- Mykhailo Shevchuk, Gerd-Volker Röschenthaler. Chemistry of difluoromethylene phosphonates: history, state of the art, and prospects. Ukrainica Bioorganica Acta 2022, 17
(1)
, 40-55. https://doi.org/10.15407/bioorganica2022.01.040
- Pradeep Pant, Leena Aggarwal. Assessing the DNA structural integrity via selective annihilation of Watson-Crick hydrogen bonds: Insights from molecular dynamics simulations. Biophysical Chemistry 2022, 282 , 106758. https://doi.org/10.1016/j.bpc.2021.106758
- Saptarshi Biswas, Trishita Ghosh, Subhrapratim Nath. Selective Run-Length Constrained Encoding Scheme on Extended Nucleic Acid Memory. 2022, 148-153. https://doi.org/10.1109/VLSIDCS53788.2022.9811440
- Michael Shevchuk, Qian Wang, Romana Pajkert, Jingcheng Xu, Haibo Mei, Gerd‐Volker Röschenthaler, Jianlin Han. Recent Advances in Synthesis of Difluoromethylene Phosphonates for Biological Applications. Advanced Synthesis & Catalysis 2021, 363
(12)
, 2912-2968. https://doi.org/10.1002/adsc.202001464
- Nassim Beiranvand, Marek Freindorf, Elfi Kraka. Hydrogen Bonding in Natural and Unnatural Base Pairs—A Local Vibrational Mode Study. Molecules 2021, 26
(8)
, 2268. https://doi.org/10.3390/molecules26082268
- Michiko Kimoto, Ichiro Hirao. Genetic alphabet expansion technology by creating unnatural base pairs. Chemical Society Reviews 2020, 49
(21)
, 7602-7626. https://doi.org/10.1039/D0CS00457J
- Eszter Csibra, Marleen Renders, Vitor B. Pinheiro. Bacterial Cell Display as a Robust and Versatile Platform for Engineering Low‐Affinity Ligands and Enzymes. ChemBioChem 2020, 21
(19)
, 2844-2853. https://doi.org/10.1002/cbic.202000203
- Fabienne Levi‐Acobas, Pascal Röthlisberger, Ivo Sarac, Philippe Marlière, Piet Herdewijn, Marcel Hollenstein. On the Enzymatic Formation of Metal Base Pairs with Thiolated and p
K
a
‐Perturbed Nucleotides. ChemBioChem 2019, 20
(24)
, 3032-3040. https://doi.org/10.1002/cbic.201900399
- Michiko Kimoto, Kiyohiko Kawai. Molecular Technology Toward Expansion of Nucleic Acid Functionality. 2019, 165-181. https://doi.org/10.1002/9783527823987.vol2_c8
- Pascal Röthlisberger, Fabienne Levi-Acobas, Ivo Sarac, Philippe Marlière, Piet Herdewijn, Marcel Hollenstein. Towards the enzymatic formation of artificial metal base pairs with a carboxy-imidazole-modified nucleotide. Journal of Inorganic Biochemistry 2019, 191 , 154-163. https://doi.org/10.1016/j.jinorgbio.2018.11.009
- Brennan Ashwood, Marvin Pollum, Carlos E. Crespo‐Hernández. Photochemical and Photodynamical Properties of Sulfur‐Substituted Nucleic Acid Bases,. Photochemistry and Photobiology 2019, 95
(1)
, 33-58. https://doi.org/10.1111/php.12975
- Kiyofumi Hamashima, Michiko Kimoto, Ichiro Hirao. Creation of unnatural base pairs for genetic alphabet expansion toward synthetic xenobiology. Current Opinion in Chemical Biology 2018, 46 , 108-114. https://doi.org/10.1016/j.cbpa.2018.07.017
- Pol Arranz-Gibert, Koen Vanderschuren, Farren J. Isaacs. Next-generation genetic code expansion. Current Opinion in Chemical Biology 2018, 46 , 203-211. https://doi.org/10.1016/j.cbpa.2018.07.020
- Kyung Hyun Lee, Kiyofumi Hamashima, Michiko Kimoto, Ichiro Hirao. Genetic alphabet expansion biotechnology by creating unnatural base pairs. Current Opinion in Biotechnology 2018, 51 , 8-15. https://doi.org/10.1016/j.copbio.2017.09.006
- Sk Jahiruddin, Nilangshu Mandal, Ayan Datta. Structure and Electronic Properties of Unnatural Base Pairs: The Role of Dispersion Interactions. ChemPhysChem 2018, 19
(1)
, 67-74. https://doi.org/10.1002/cphc.201700997
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
Recommended Articles
Progress Toward a Semi-Synthetic Organism with an Unrestricted Expanded Genetic Alphabet
Natural-like Replication of an Unnatural Base Pair for the Expansion of the Genetic Alphabet and Biotechnology Applications
A Tool for the Import of Natural and Unnatural Nucleoside Triphosphates into Bacteria
Optimization of Replication, Transcription, and Translation in a Semi-Synthetic Organism
Transcription and Reverse Transcription of an Expanded Genetic Alphabet In Vitro and in a Semisynthetic Organism
References
This article references 22 other publications.
- 1Malyshev, D. A.; Dhami, K.; Quach, H. T.; Lavergne, T.; Ordoukhanian, P.; Torkamani, A.; Romesberg, F. E. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 12005– 12010 DOI: 10.1073/pnas.1205176109There is no corresponding record for this reference.
- 2Kimoto, M.; Hirao, I. In Chemical Biology of Nucleic Acids: Fundamentals and Clinical Applications; Erdmann, A. V.; Markiewicz, T. W.; Barciszewski, J., Eds.; Springer: Berlin Heidelberg:, 2014; pp 131– 148.There is no corresponding record for this reference.
- 3Zhang, L.; Yang, Z.; Sefah, K.; Bradley, K. M.; Hoshika, S.; Kim, M. J.; Kim, H. J.; Zhu, G.; Jimenez, E.; Cansiz, S.; Teng, I. T.; Champanhac, C.; McLendon, C.; Liu, C.; Zhang, W.; Gerloff, D. L.; Huang, Z.; Tan, W.; Benner, S. A. J. Am. Chem. Soc. 2015, 137, 6734– 6737 DOI: 10.1021/jacs.5b022513https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2MXot1Sru70%253D&md5=8f8f6e892516e704800cf45cc0aea51aEvolution of functional six-nucleotide DNAZhang, Liqin; Yang, Zunyi; Sefah, Kwame; Bradley, Kevin M.; Hoshika, Shuichi; Kim, Myong-Jung; Kim, Hyo-Joong; Zhu, Guizhi; Jimenez, Elizabeth; Cansiz, Sena; Teng, I-Ting; Champanhac, Carole; McLendon, Christopher; Liu, Chen; Zhang, Wen; Gerloff, Dietlind L.; Huang, Zhen; Tan, Weihong; Benner, Steven A.Journal of the American Chemical Society (2015), 137 (21), 6734-6737CODEN: JACSAT; ISSN:0002-7863. (American Chemical Society)Axiomatically, the d. of information stored in DNA, with just four nucleotides (GACT), is higher than in a binary code, but less than it might be if synthetic biologists succeed in adding independently replicating nucleotides to genetic systems. Such addn. could also add functional groups not found in natural DNA, but useful for mol. performance. Here, we consider two new nucleotides (Z and P, 6-amino-5-nitro-3-(1'-β-D-2'-deoxyribo-furanosyl)-2(1H)-pyridone and 2-amino-8-(1'-β-D-2'-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one). These are designed to pair via complete Watson-Crick geometry. These were added to a library of oligonucleotides used in a lab. in vitro evolution (LIVE) expt.; the GACTZP library was challenged to deliver mols. that bind selectively to liver cancer cells, but not to untransformed liver cells. Unlike in classical in vitro selection, low levels of mutation allow this system to evolve to create binding mols. not necessarily present in the original library. Over a dozen binding species were recovered. The best had Z and/or P in their sequences. Several had multiple, nearby, and adjacent Zs and Ps. Only the weaker binders contained no Z or P at all. This suggests that this system explored much of the sequence space available to this genetic system and that GACTZP libraries are richer reservoirs of functionality than std. libraries.
- 4Kimoto, M.; Yamashige, R.; Matsunaga, K.; Yokoyama, S.; Hirao, I. Nat. Biotechnol. 2013, 31, 453– 457 DOI: 10.1038/nbt.25564https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3sXltlOhur4%253D&md5=068493fd06e1537c468ed340055ce3ecGeneration of high-affinity DNA aptamers using an expanded genetic alphabetKimoto, Michiko; Yamashige, Rie; Matsunaga, Ken-ichiro; Yokoyama, Shigeyuki; Hirao, IchiroNature Biotechnology (2013), 31 (5), 453-457CODEN: NABIF9; ISSN:1087-0156. (Nature Publishing Group)DNA aptamers produced with natural or modified natural nucleotides often lack the desired binding affinity and specificity to target proteins. Here we describe a method for selecting DNA aptamers contg. the four natural nucleotides and an unnatural nucleotide with the hydrophobic base 7-(2-thienyl)imidazo[4,5-b]pyridine (Ds). We incorporated up to three Ds nucleotides in a random sequence library, which is expected to increase the chem. and structural diversity of the DNA mols. Selection expts. against two human target proteins, vascular endothelial cell growth factor-165 (VEGF-165) and interferon-γ (IFN-γ), yielded DNA aptamers that bind with KD values of 0.65 pM and 0.038 nM, resp., affinities that are >100-fold improved over those of aptamers contg. only natural bases. These results show that incorporation of unnatural bases can yield aptamers with greatly augmented affinities, suggesting the potential of genetic alphabet expansion as a powerful tool for creating highly functional nucleic acids.
- 5Sefah, K.; Yang, Z.; Bradley, K. M.; Hoshika, S.; Jimenez, E.; Zhang, L.; Zhu, G.; Shanker, S.; Yu, F.; Turek, D.; Tan, W.; Benner, S. A. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 1449– 1454 DOI: 10.1073/pnas.13117781115https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2cXhsF2qsb8%253D&md5=6ed5367323689776b0698472540c1f71In vitro selection with artificial expanded genetic information systemsSefah, Kwame; Yang, Zunyi; Bradley, Kevin M.; Hoshika, Shuichi; Jimenez, Elizabeth; Zhang, Liqin; Zhu, Guizhi; Shanker, Savita; Yu, Fahong; Turek, Diane; Tan, Weihong; Benner, Steven A.Proceedings of the National Academy of Sciences of the United States of America (2014), 111 (4), 1449-1454CODEN: PNASA6; ISSN:0027-8424. (National Academy of Sciences)Artificially expanded genetic information systems (AEGISs) are unnatural forms of DNA that increase the no. of independently replicating nucleotide building blocks. To do this, AEGIS pairs are joined by different arrangements of hydrogen bond donor and acceptor groups, all while retaining their Watson-Crick geometries. We report here a unique case where AEGIS DNA has been used to execute a systematic evolution of ligands by exponential enrichment (SELEX) expt. This AEGIS-SELEX was designed to create AEGIS oligonucleotides that bind to a line of breast cancer cells. AEGIS-SELEX delivered an AEGIS aptamer (ZAP-2012) built from six different kinds of nucleotides (the std. G, A, C, and T, and the AEGIS nonstandard P and Z nucleotides, the last having a nitro functionality not found in std. DNA). ZAP-2012 has a dissocn. const. of 30 nM against these cells. The affinity is diminished or lost when Z or P (or both) is replaced by std. nucleotides and compares well with affinities of std. GACT aptamers selected against cell lines using std. SELEX. The success of AEGIS-SELEX relies on various innovations, including (i) the ability to synthesize GACTZP libraries, (ii) polymerases that PCR amplify GACTZP DNA with little loss of the AEGIS nonstandard nucleotides, and (iii) technologies to deep sequence GACTZP DNA survivors. These results take the next step toward expanding the power and utility of SELEX and offer an AEGIS-SELEX that could possibly generate receptors, ligands, and catalysts having sequence diversities nearer to that displayed by proteins.
- 6Malyshev, D. A.; Romesberg, F. E. Angew. Chem., Int. Ed. 2015, 54, 11930– 11944 DOI: 10.1002/anie.2015028906https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2MXhsVSjtLrL&md5=56b77b89dbbf47428bf446e8de15ca82The expanded genetic alphabetMalyshev, Denis A.; Romesberg, Floyd E.Angewandte Chemie, International Edition (2015), 54 (41), 11930-11944CODEN: ACIEF5; ISSN:1433-7851. (Wiley-VCH Verlag GmbH & Co. KGaA)A review. All biol. information, since the last common ancestor of all life on Earth, has been encoded by a genetic alphabet consisting of only four nucleotides that form two base pairs. Long-standing efforts to develop two synthetic nucleotides that form a third, unnatural base pair (UBP) have recently yielded three promising candidates, one based on alternative hydrogen bonding, and two based on hydrophobic and packing forces. All three of these UBPs are replicated and transcribed with remarkable efficiency and fidelity, and the latter two thus demonstrate that hydrogen bonding is not unique in its ability to underlie the storage and retrieval of genetic information. This Review highlights these recent developments as well as the applications enabled by the UBPs, including the expansion of the evolution process to include new functionality and the creation of semi-synthetic life that stores increased information.
- 7Leconte, A. M.; Hwang, G. T.; Matsuda, S.; Capek, P.; Hari, Y.; Romesberg, F. E. J. Am. Chem. Soc. 2008, 130, 2336– 2343 DOI: 10.1021/ja078223dThere is no corresponding record for this reference.
- 8Dhami, K.; Malyshev, D. A.; Ordoukhanian, P.; Kubelka, T.; Hocek, M.; Romesberg, F. E. Nucleic Acids Res. 2014, 42, 10235– 10244 DOI: 10.1093/nar/gku715There is no corresponding record for this reference.
- 9Lavergne, T.; Malyshev, D. A.; Romesberg, F. E. Chem. - Eur. J. 2012, 18, 1231– 1239 DOI: 10.1002/chem.2011020669https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3MXhs1Ghur3L&md5=e3fe084c25ab1596e07e721de72d4408Major groove substituents and polymerase recognition of a class of predominantly hydrophobic unnatural base pairsLavergne, Thomas; Malyshev, Denis A.; Romesberg, Floyd E.Chemistry - A European Journal (2012), 18 (4), 1231-1239, S1231/1-S1231/27CODEN: CEUJED; ISSN:0947-6539. (Wiley-VCH Verlag GmbH & Co. KGaA)Expansion of the genetic alphabet with an unnatural base pair is a long-standing goal of synthetic biol. The authors have developed a class of unnatural base pairs, formed between d5SICS and analogs of dMMO2 that are efficiently and selectively replicated by the Klenow fragment (Kf) DNA polymerase. In an effort to further characterize and optimize replication, the authors report the synthesis of five new dMMO2 analogs bearing different substituents designed to be oriented into the developing major groove and an anal. of their insertion opposite d5SICS by Kf and Thermus aquaticus DNA polymerase I (Taq). We also expand the anal. of the previously optimized pair, dNaM-d5SICS, to include replication by Taq. Finally, the efficiency and fidelity of PCR amplification of the base pairs by Taq or Deep Vent polymerases was examd. The resulting structure-activity relationship data suggest that the major determinants of efficient replication are the minimization of desolvation effects and the introduction of favorable hydrophobic packing, and that Taq is more sensitive than Kf to structural changes. In addn., the authors identify an analog (dNMO1) that is a better partner for d5SICS than any of the previously identified dMMO2 analogs with the exception of dNaM. They also found that dNaM-d5SICS is replicated by both Kf and Taq with rates approaching those of a natural base pair.
- 10Betz, K.; Malyshev, D.; Lavergne, T.; Welte, W.; Diederichs, K.; Romesberg, F. E.; Marx, A. J. Am. Chem. Soc. 2013, 135, 18637– 18643 DOI: 10.1021/ja409609jThere is no corresponding record for this reference.
- 11Betz, K.; Malyshev, D. A.; Lavergne, T.; Welte, W.; Diederichs, K.; Dwyer, T. J.; Ordoukhanian, P.; Romesberg, F. E.; Marx, A. Nat. Chem. Biol. 2012, 8, 612– 614 DOI: 10.1038/nchembio.96611https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC38XnvVyrurw%253D&md5=3f53105607a419a1d1326125178d682dKlenTaq polymerase replicates unnatural base pairs by inducing a Watson-Crick geometryBetz, Karin; Malyshev, Denis A.; Lavergne, Thomas; Welte, Wolfram; Diederichs, Kay; Dwyer, Tammy J.; Ordoukhanian, Phillip; Romesberg, Floyd E.; Marx, AndreasNature Chemical Biology (2012), 8 (7), 612-614CODEN: NCBABT; ISSN:1552-4450. (Nature Publishing Group)Many candidate unnatural DNA base pairs have been developed, but some of the best-replicated pairs adopt intercalated structures in free DNA that are difficult to reconcile with known mechanisms of polymerase recognition. Here we present crystal structures of KlenTaq DNA polymerase at different stages of replication for one such pair, dNaM-d5SICS, and show that efficient replication results from the polymerase itself, inducing the required natural-like structure.
- 12Malyshev, D. A.; Dhami, K.; Lavergne, T.; Chen, T.; Dai, N.; Foster, J. M.; Correa, I. R., Jr.; Romesberg, F. E. Nature 2014, 509, 385– 388 DOI: 10.1038/nature1331412https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2cXotVyqtb8%253D&md5=97b4b184cda52cc809b1705e5e88ad8eA semi-synthetic organism with an expanded genetic alphabetMalyshev, Denis A.; Dhami, Kirandeep; Lavergne, Thomas; Chen, Tingjian; Dai, Nan; Foster, Jeremy M.; Correa, Ivan R.; Romesberg, Floyd E.Nature (London, United Kingdom) (2014), 509 (7500), 385-388CODEN: NATUAS; ISSN:0028-0836. (Nature Publishing Group)Organisms are defined by the information encoded in their genomes, and since the origin of life this information has been encoded using a two-base-pair genetic alphabet (A-T and G-C). In vitro, the alphabet has been expanded to include several unnatural base pairs (UBPs). We have developed a class of UBPs formed between nucleotides bearing hydrophobic nucleobases, exemplified by the pair formed between d5SICS and dNaM (d5SICS-dNaM), which is efficiently PCR-amplified and transcribed in vitro, and whose unique mechanism of replication has been characterized. However, expansion of an organism's genetic alphabet presents new and unprecedented challenges: the unnatural nucleoside triphosphates must be available inside the cell; endogenous polymerases must be able to use the unnatural triphosphates to faithfully replicate DNA contg. the UBP within the complex cellular milieu; and finally, the UBP must be stable in the presence of pathways that maintain the integrity of DNA. Here we show that an exogenously expressed algal nucleotide triphosphate transporter efficiently imports the triphosphates of both d5SICS and dNaM (d5SICSTP and dNaMTP) into Escherichia coli, and that the endogenous replication machinery uses them to accurately replicate a plasmid contg. d5SICS-dNaM. Neither the presence of the unnatural triphosphates nor the replication of the UBP introduces a notable growth burden. Lastly, we find that the UBP is not efficiently excised by DNA repair pathways. Thus, the resulting bacterium is the first organism to propagate stably an expanded genetic alphabet.
- 13Zhang, Y.; Lamb, B.; Feldman, A. W.; Zhou, A. X.; Lavergne, T.; Li, L.; Romesberg, F. E. Proc. Natl. Acad. Sci. U. S. A. 2017, 201616443 DOI: 10.1073/pnas.1616443114There is no corresponding record for this reference.
- 14Seo, Y. J.; Hwang, G. T.; Ordoukhanian, P.; Romesberg, F. E. J. Am. Chem. Soc. 2009, 131, 3246– 3252 DOI: 10.1021/ja807853mThere is no corresponding record for this reference.
- 15Sucato, C. A.; Upton, T. G.; Kashemirov, B. A.; Batra, V. K.; Martinek, V.; Xiang, Y.; Beard, W. A.; Pedersen, L. C.; Wilson, S. H.; McKenna, C. E.; Florian, J.; Warshel, A.; Goodman, M. F. Biochemistry 2007, 46, 461– 471 DOI: 10.1021/bi061517bThere is no corresponding record for this reference.
- 16Sucato, C. A.; Upton, T. G.; Kashemirov, B. A.; Osuna, J.; Oertell, K.; Beard, W. A.; Wilson, S. H.; Florian, J.; Warshel, A.; McKenna, C. E.; Goodman, M. F. Biochemistry 2008, 47, 870– 879 DOI: 10.1021/bi7014162There is no corresponding record for this reference.
- 17Batra, V. K.; Pedersen, L. C.; Beard, W. A.; Wilson, S. H.; Kashemirov, B. A.; Upton, T. G.; Goodman, M. F.; McKenna, C. E. J. Am. Chem. Soc. 2010, 132, 7617– 7625 DOI: 10.1021/ja909370kThere is no corresponding record for this reference.
- 18Oertell, K.; Chamberlain, B. T.; Wu, Y.; Ferri, E.; Kashemirov, B. A.; Beard, W. A.; Wilson, S. H.; McKenna, C. E.; Goodman, M. F. Biochemistry 2014, 53, 1842– 1848 DOI: 10.1021/bi500101zThere is no corresponding record for this reference.
- 19Li, L.; Degardin, M.; Lavergne, T.; Malyshev, D. A.; Dhami, K.; Ordoukhanian, P.; Romesberg, F. E. J. Am. Chem. Soc. 2014, 136, 826– 829 DOI: 10.1021/ja408814gThere is no corresponding record for this reference.
- 20McKenna, C. E.; Kashemirov, B. A.; Upton, T. G.; Batra, V. K.; Goodman, M. F.; Pedersen, L. C.; Beard, W. A.; Wilson, S. H. J. Am. Chem. Soc. 2007, 129, 15412– 15413 DOI: 10.1021/ja072127vThere is no corresponding record for this reference.
- 21Ast, M.; Gruber, A.; Schmitz-Esser, S.; Neuhaus, H. E.; Kroth, P. G.; Horn, M.; Haferkamp, I. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 3621– 3626 DOI: 10.1073/pnas.0808862106There is no corresponding record for this reference.
- 22Leduc, S. The Mechanisms of Life; Rebman Company: New York, 1911.There is no corresponding record for this reference.
Supporting Information
Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b12731.
Supporting methods, synthesis, and characterization of dTPT3TPCF2 and dNaMTPCF2 (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.