这是用户在 2024-12-10 10:55 为 https://ai.nejm.org/doi/full/10.1056/AIoa2400659 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
Skip to main content
NEJM AI homepage

Monthly & Annual Options

Subscribe Now

Monthly & Annual Options

Subscribe Now

Abstract

Background


Nuance 的 Dragon Ambient eXperience (DAX) Copilot 是一种人工智能驱动的环境临床文档软件平台。阿特里健康,一个大型多站点学术学习健康系统,是第一个使用 DAX Copilot 的机构。本研究评估了在 DAX 实施后参与医生的治疗效果。

Methods


在这项纵向研究中,112 名使用 DAX 的全科医生在 2023 年 6 月至 8 月被招募,同时有 103 名来自相同诊所但未使用 DAX 的医生作为对照组。电子健康记录 (EHR) 使用情况和财务影响在持续 180 天后通过线性混合模型进行了评估。DAX 用户分为两组:活跃用户(转移了超过 25% 的 DAX 记录)和高用户(转移了超过 60% 的 DAX 记录)。 我们进行了探索性分析,将对照组与 DAX 子组进行比较,同时按患者数量和临床医生专长对子组进行分析。

Results


在控制干预时间、年龄、性别、提供商类型、执业年限和基线结果后,我们发现 EHR 和财务指标的统计差异不显著。初步分析表明,文档小时数的小减少可能由 DAX 使用量高(MR 0.93, 95% CI 0.88 到 0.98)和低量病例的临床医生(MR 0.91, 95% 置信区间 0.85 到 0.98。

Conclusions


AI 辅助的环境临床文档软件被推广为减轻门诊医生文档负担的有前景策略。然而,我们的研究结果表明,该工具并未显著提高整个门诊医生群体的效率。未来的研究可以进一步调查 DAX 对不同临床子群和改进临床采用的替代实现方法的有效性。(由维吉尼亚沃克福德大学医学院资助;ClinicalTrials.gov 编号:NCT06329427。)

Introduction


近年来,人工智能(AI)已融入医疗保健的各个领域,旨在革新临床实践和患者护理。其中,临床文档领域正经历显著变革,AI 工具正越来越多地用于自动化记录患者就诊过程。 1,2 这些工具利用了先进的机器学习算法和自然语言处理能力,捕捉并总结对话,从而简化流程,提高与临床医生回忆相比的准确性。通过减轻行政负担并使临床医生专注于患者护理,AI 资源库工具可能有助于缓解医生压力、提高医疗交付效率。 3,4

Nuance 的 Dragon Ambient eXperience (DAX) Copilot 是一种集成的 AI 书写软件,用于电子健康记录(EHR)。它通过“倾听”医生和患者在就诊过程中的对话,生成初步的门诊临床笔记。 2023 年 6 月起,安斯理健康对使用 DAX 在社区医疗中的效果进行了严格评估,以确定 DAX 是否能提高医生的效率(以 EHR 使用指标衡量)和系统的财务表现。一项独立的研究评估了对医生体验的影响。 5,6

Methods

 设置和数据来源


这项研究发生在 Advocate Health 起源于东南部的阿特里姆健康。阿特里姆健康拥有超过 900 家医疗机构,包括医院、急诊中心、临终护理机构和 palliative 养老院,以及北卡罗来纳州、南卡罗莱纳州、佐治亚州和阿拉巴马州的各种医疗实践。这些设施中有约 11,000 名执业医生和 2,000 名护士提供服务。 当时,Atrium Health 有两个 Epic EHR 系统。使用相同的流程,从两个系统中提取临床数据、用户行为日志和收费信息。该协议已获得维吉尼亚理工学院医学院的审查委员会(IRB00098063)的批准。

 DAX 的流程


DAX Copilot 使用环境 AI 和生成式 AI 从患者-医生对话中生成会诊笔记。早期版本的 DAX 在发布前需要人工审查草稿笔记。 7 医生使用了 Dragon Medical One (DMO) 版本的 DAX,因为 EHR 集成的 DAX 在我们的研究期间不可用。参与者使用智能手机上的 PowerMic 移动 DMO/DAX 应用程序来记录对话。

临床医生早上登录电子健康记录系统,从工具栏中打开 DAX。在进入患者房间前,他们打开 DMO 手机应用。在患者房间未进门之前,他们开始录音以记录患者的姓名、就诊原因等信息。进入房间后,他们解释了如何使用 DAX,并请求患者的口头同意来使用 DAX。 如果同意,医生将恢复初始录音并进行访问。访问结束后,医生关闭录音,并由 DAX 在 30 秒内草拟笔记。笔记的初步草稿可以在 DMO 手机应用或计算机上的 DAX 预览窗口中查看。两种视图都允许作者编辑笔记。然而,我们发现大多数医生没有使用这个功能。 相反,医生会通过语音命令或“复制”(部分或全部)按钮将病历转给电子健康记录系统,并在编辑后接受。

 参与者


这项研究包括 238 名专门从事家庭医学、内科学和儿科一般病(包括医生和高级实践提供者)的临床医生,来自北卡罗来纳州和佐治亚州的门诊诊所。根据诊所位置,2023 年 6 月至 8 月将这些临床医生分为五个组。在账户激活前,他们接受了 1 小时的 DAX 培训。 还招募了五批未使用 DAX 的对照组,采用两种方法将实践地点和专长与干预组进行匹配:(1)服务线领导人的鼓励;(2)最初对 DAX 感兴趣但后来退出的人(图 1)。 在所有 DAX 用户中,将超过 25% 的 DAX 记录转移到 EHR 系统的临床医生被定义为活跃的 DAX 用户,而将超过 60% 的 DAX 记录转移到 EHR 系统的临床医生被认定为高 DAX 用户。 8 由于以下原因,临床医生被排除在分析之外:他们是受托人(n=11),他们是 DAX 参与者且从未打开过 DAX 或在培训日期后没有打开过(n=10),或年龄未知(n=2)。 最终分析样本包括干预组 112 名临床医生和对照组 103 名临床医生。详见表 1。)
Figure 1
Participant Selection Flowchart*
*DAX denotes Dragon Ambient eXperience.
Table 1
CharacteristicControl (n=103)DAX Users (n=112)P ValueActive DAX Users (n=84)P ValueHigh DAX Users (n=67)P Value
Age, median (IQR)43.5 (36.3–52.1)43.7 (37.6–50.9)0.91044.9 (37.8–51.3)0.98443.7 (37.9–50.7)0.945
Female, n (%)71 (68.9)66 (58.9)0.15645 (53.6)0.03536 (53.7)0.052
Provider type, n (%)  0.471 0.619 0.560
Physician71 (68.9)85 (75.9) 12 (14.3) 9 (13.4) 
Physician Assistant16 (15.5)12 (10.7) 9 (10.7) 7 (10.4) 
Nurse Practitioner16 (15.5)15 (13.4) 63 (75.0) 51 (76.1) 
Specialty, n (%)  0.087 0.044 0.075
Family medicine49 (47.6)67 (59.8) 55 (65.5) 44 (65.7) 
Internal medicine32 (31.1)21 (18.8) 15 (17.9) 14 (20.9) 
Pediatrics22 (21.4)24 (21.4) 14 (16.7) 9 (13.4) 
Patient volume, n (%)  0.120 0.171 0.159
Low volume29 (28.2)24 (21.4) 18 (21.4) 15 (22.4) 
Medium volume55 (53.4)54 (48.2) 41 (48.8) 31 (46.3) 
High volume19 (18.4)34 (30.4) 25 (29.8) 21 (31.3) 
Years of practice, median (IQR)14.2 (8.2–16.9)15.2 (9.1–17.0)0.60615.9 (9.1–17.0)0.47515.2 (9.1–17.0)0.680
Wave, n (%)  0.003 0.001 <0.001
124 (23.3)28 (25.0) 20 (23.8) 17 (25.4) 
243 (41.7)36 (32.1) 26 (31.0) 18 (26.9) 
332 (31.1)32 (28.6) 23 (27.4) 20 (29.9) 
43 (2.9)1 (0.9) 1 (1.2) 0 (0.0) 
51 (1.0)15 (13.4) 14 (16.7) 12 (17.9) 
Use of DAX transfer, n (%)       
<25%28 (25.0)     
25–49%5 (4.5)     
50–74%26 (23.2)     
≥75%53 (47.3)     
Characteristics of DAX Copilot Participants.*
*
P values were calculated for DAX/DAX subgroups versus control group. DAX denotes Dragon Ambient eXperience; and IQR, interquartile range.


结果测量和协变量


评估了两组主要结果:电子健康记录(EHR)使用指标和财务指标。EHR 使用指标包括 EHR 时长(EHR-Time 8 )、工作时间外的办公时间(WOW 8 )、笔记时长(Note-Time 8 )、完成预约率、当日关闭率和笔记长度。财务指标包括每次就诊的总收入和每次就诊的工作相对价值单位 (wRVUs)。指数日期定义为干预组开始使用 DAX 的日期,以及控制组的每个周期开始的日期。 我们在第 180 天对两组的量化指标进行了测量。EHR-Time 8 、WOW 8 和 Note-Time 8 使用了 8 小时的安排患者时间来标准化 EHR 的使用时间,按照美国医学协会 (AMA) 的描述。 9 其他指标使用非归因数据进行分析。(见附录表 S1 中的定义))

独立变量包括从索引日期到的持续时间、临床特征和基线结果(即在索引日期前 90 天内的每个结果的平均值)。临床特征包括年龄、性别、执业年限和提供商类型。执业年限基于索引日期和国家/providers ID 注册表获取的枚举日期计算。提供商类型分为医生、助理医生或护士执业者。 患者量由每小时的就诊次数计算得出,并按四分位分类:低量级包括前四分位的临床医生;中量级包括第二和第三四分位的临床医生;高量级包括第四四分位的临床医生。

 统计分析


我们估计,每个治疗组中有 83 个提供者,检测总体治疗效果(即时间平均差异)达到单个观察值标准差的 50%所需至少有 80%的效度。功率分析假设为复对称或一阶自回归(AR[1])误差结构,自相关系数在 0.2 到 0.8 之间,显著水平为 0.05/8。

我们在 90 天基线期和随访期内,报告了临床医生特征和结果的中位数。使用卡方检验、费舍尔精确检验和学生 t 检验,进行了二元分析,比较了 DAX 用户与对照组的临床医生特征和结果分布。对于主要分析,我们使用线性混合模型 (LMMs) 进行重复测量分析,以推断总体情况(即。时间平均治疗效果。 10 大样本模型包括了治疗、起始日期与样本日期之间的治疗-时间交互项,以及临床特征和基线结果的协变量。为了允许不同临床医生的截距和时间斜率变化,大样本模型包含随机效应项来表示临床医生和临床医生-时间交互项。 除了完成预约率和同一天关闭率,其他指标进行了对数变换,以处理分布的显著偏斜。AR(1) 方差结构用于内临床误差部分,以考虑时间依赖性。我们计算了点估计、95% 布尔费罗尼校正 CI 和 t 检验,比较两组在不同时间的整体差异。显著水平调整为 0.05/8(使用 Bonferroni 方法)在进行八个同时的初步分析时,将家庭错误率控制在 5%,同时执行八项主要分析。我们进行了探索性分析,通过相同的建模方法研究不同利用水平下 DAX 的使用效果,并将控制组与活跃 DAX 用户以及高 DAX 用户进行比较。 为了探索性分析,额外拟合了模型,比较了不同患者数量和科室的控制组和 DAX 用户。使用 SAS 9.4(SAS Institute, �北卡罗来纳州 Cary),进行分析。

 结果


在 215 名参与者中,63.7%是女性。平均年龄为 43.7 岁,平均执业经验为 15.2 年。专科分布如下:家庭医学占 54.0%,内科学占 24.7%,儿科占 21.4%。四分之三的 DAX 用户(84/112)将超过 25%的 DAX 笔记转移到 Epic(即活跃的 DAX 用户),而大约 60%的 DAX 用户(67/112)将超过 60%的 DAX 笔记转移到 Epic(即高 DAX 用户)。 (所有结果的汇总统计,包括基线和研究期间,详见附录表 S2。)

在主要分析中,我们发现控制年龄、性别、提供商类型、执业年限和基线结果后,临床组之间没有显著差异。探索性结果表明,DAX 用户的整体文档时间减少了约 7%(平均比 [MR] 0.93, 95% 置信区间 0.88 到 0.98),与对照组相比。 否则,高 DAX 用户和活跃 DAX 用户与对照组之间没有显著差异(表 2)。探索性分层分析显示,在低量临床医生(MR 0.91, 95% CI 0.83 到 0.99)和家庭医学医生(MR 0.91, 95% CI 0.85 到 0.98)的子群中,DAX 用户文档小时低于对照组。 DAX 对高工作量的医生完成预约率的影响较小(平均差异 [MD] 2.62%,95% 置信区间 1.33 到 3.90),对低工作量的医生同一日关闭率的影响也较小(MD 3.13%,95% 置信区间 1.06 到 5.20),以及儿科医生的门诊率影响较小(MD 2.92%,95% 置信区间 1.07 到 4.76)。其他子组结果见表 3 和 4。
Table 2
OutcomeDAXActive DAX Estimate (95% CI)High DAX Estimate (95% CI)
Estimate (95% Bonferroni-Corrected CI)P Value
EHR-Time8 (MR)0.99 (0.95 to 1.04)0.5720.99 (0.96 to 1.02)0.99 (0.96 to 1.03)
WOW8 (MR)1.01 (0.92 to 1.12)0.7041.01 (0.94 to 1.09)1.01 (0.93 to 1.09)
Note-Time8 (MR)0.96 (0.89 to 1.02)0.0720.95 (0.90 to 1.00)0.93 (0.88 to 0.98)
Completed appointment rate (MD)0.41 (−0.47 to 1.29)0.2040.21 (−0.42 to 0.83)0.11 (−0.56 to 0.78)
Same-day closure rate (MD)0.16 (−1.17 to 1.49)0.7430.20 (−0.75 to 1.15)0.34 (−0.69 to 1.36
Gross revenue per visit (MR)0.95 (0.82 to 1.09)0.3031.00 (0.93 to 1.08)1.02 (0.95 to 1.10)
wRVU per visit (MR)0.98 (0.92 to 1.03)0.2420.99 (0.96 to 1.03)1.00 (0.96 to 1.04)
Progress note length (MR)1.01 (0.86 to 1.19)0.8921.04 (0.93 to 1.16)1.07 (0.96 to 1.19)
Linear Mixed Models on EHR Use Metrics and Financial Metrics.*
*
CI denotes confidence interval; DAX, Dragon Ambient eXperience; EHR, electronic health record; MD, means difference; MR, means ratio; WOW, work time outside of work; and wRVU, work relative value unit.
Completed appointment rate and same-day closure rate were analyzed as percentages.
Table 3
OutcomeLow Volume Estimate (95% CI)Medium Volume Estimate (95% CI)High Volume Estimate (95% CI)
EHR-Time8 (MR)0.96 (0.90 to 1.03)1.00 (0.95 to 1.04)1.03 (0.96 to 1.09)
WOW8 (MR)0.96 (0.79 to 1.18)1.03 (0.94 to 1.13)1.06 (0.96 to 1.18)
Note-Time8 (MR)0.91 (0.83 to 0.99)0.99 (0.91 to 1.07)0.95 (0.86 to 1.05)
Completed appointment rate (MD)−1.40 (−2.81 to 0.00)−0.57 (−1.50 to 0.35)2.62 (1.33 to 3.90)
Same-day closure rate (MD)3.13 (1.06 to 5.20)−0.30 (−1.53 to 0.93)−0.07 (−1.87 to 1.74)
Gross revenue per visit (MR)1.12 (0.94 to 1.32)0.90 (0.78 to 1.04)0.91 (0.71 to 1.17)
wRVU per visit (MR)1.07 (0.98 to 1.16)0.95 (0.89 to 1.02)0.93 (0.85 to 1.01)
Progress note length (MR)1.02 (0.84 to 1.23)1.03 (0.88 to 1.22)0.95 (0.72 to 1.27)
Linear Mixed Models on EHR Use Metrics and Financial Metrics by Patient Volume.*
*
CI denotes confidence interval; EHR, electronic health record; MD, means difference; MR, means ratio; WOW, work time outside of work; and wRVU, work relative value unit.
Completed appointment rate and same-day closure rate were analyzed as percentages.
Table 4
OutcomeFamily Medicine Estimate (95% CI)Internal Medicine Estimate (95% CI)Pediatrics Estimate (95% CI)
EHR-Time8 (MR)0.98 (0.94 to 1.03)1.01 (0.94 to 1.08)0.97 (0.91 to 1.03)
WOW8 (MR)1.03 (0.94 to 1.14)0.97 (0.83 to 1.14)0.99 (0.87 to 1.12)
Note-Time8 (MR)0.91 (0.85 to 0.98)1.03 (0.93 to 1.15)0.98 (0.90 to 1.08)
Completed appointment rate (MD)1.02 (0.20 to 1.83)−1.10 (−2.48 to 0.27)−0.77 (−2.47 to 0.93)
Same-day closure rate (MD)−0.76 (−2.03 to 0.51)0.07 (−1.90 to 2.04)2.92 (1.07 to 4.76)
Gross revenue per visit (MR)1.00 (0.86 to 1.16)0.88 (0.75 to 1.02)0.88 (0.76 to 1.02)
wRVU per visit (MR)0.98 (0.92 to 1.05)0.96 (0.91 to 1.01)0.97 (0.90 to 1.05)
Progress note length (MR)0.96 (0.80 to 1.15)1.00 (0.81 to 1.24)1.01 (0.83 to 1.24)
Linear Mixed Models on EHR Use Metrics and Financial Metrics by Clinician Specialty.*
*
CI denotes confidence interval; EHR, electronic health record; MD, means difference; MR, means ratio; WOW, work time outside of work; and wRVU, work relative value unit.
Completed appointment rate and same-day closure rate were analyzed as percentages.

Discussion

In this evaluation, we found no statistically significant differences in EHR-related and financial metrics between DAX users and the control group. However, exploratory results suggested that modest reductions in note time could result from using DAX at a high utilization level or deploying DAX to select clinician subgroups. Taken as a whole, these findings suggest that AI-enabled documentation’s efficiencies may translate to decreased markers of burnout for a subset of clinicians, and perhaps more broadly when the implementation of DAX achieves a higher adoption level. However, widespread implementation of DAX in its current form is unlikely to generate appreciable gains for health care systems looking to increase productivity.
To our knowledge, this is the first study to investigate whether this ambient-listening AI tool improves both efficiency and financial metrics from a health care system standpoint. These findings have important and timely implications as health care systems weigh the cost of adopting new technology. Indeed, the hype and novelty of ambient-listening AI tools have outpaced the evidence to support or refute claims that these tools are transformational in terms of time savings and efficiency. Consequently, health care systems, which already operate on small margins in hypercompetitive environments, run the risk of overpaying and not realizing the expected benefits. This study also contributes to the evidence-based incorporation of EHR use metrics into the evaluation of emerging technology and creates a foundational standard for comparison of outcomes across future studies.
There are several possible explanations for why we did not see large improvements in either EHR time or financial metrics. For example, while overall note time decreased, clinicians may have simply repurposed that time for other EHR activity they might otherwise not have done. In terms of financial metrics, clinicians with more free time may choose to use that time for other clinical activities or to leave work sooner. While our primary outcome found modest overall time saved (as viewed through a health system lens); our analysis identified subgroups among DAX users that saved substantial time. For example, 18% of participants saw a reduction of more than 1 hour a day in the EHR. While exploratory and unadjusted, these findings raise additional questions for future research to explore which user subgroups might achieve disproportionate benefits from using DAX. Additionally, a subset of clinicians noted that the documentation tool did indeed save them time; but rather than seeing more patients, these time savings allowed them to sleep more, spend less time working at home, and make existing encounters more focused and personal.5 Future research will need to evaluate whether modest time savings can add patient capacity or improve quality of care for existing patients, to support the expense of adding new technology. Additionally, in our organization, ambulatory clinicians are responsible for determining the level of service for billing encounters. Clinicians indicated that DAX captures more details from the clinician–patient interaction and gives clinicians documentary support for all the condition management they performed, often resulting in more comprehensive notes.5 With expansion to a larger cohort of users and over a longer time frame, this greater comprehensiveness could lead to more complete billing for services rendered, but additional study will be required to track its financial impact.
Research that evaluates how technology impacts clinicians’ daily work, in a variety of clinic specialties, has mixed findings.3,4,7,11-14 Some studies have found that using AI tools helps create chart notes quickly and easily, thereby reducing EHR-related burnout and increasing clinician satisfaction.3,4,11,12 However, many of these studies also show that these chart notes may need validation by clinicians due to possible inconsistencies and misinformation.12-14 In a recent AMA survey, clinicians from different specialties expressed high levels of enthusiasm for using AI-powered tools to reduce documentation burden but also shared concern that it may impact the patient–physician relationship.15 With the evolution of the technology, DAX has addressed many implementation challenges and quality concerns. For example, DAX has improved its capability to accurately distinguish and transcribe when multiple people are talking, even when linguistic variations are present — a major barrier in other early-stage digital scribe tools.16 DAX can also perform near real-time note creation, allowing clinicians to retrieve transcribed notes within 30 seconds of completing the visit; this rapidity addresses clinical workflow challenges identified with older solutions.7,14,17
Our study aligns with results from another study using a different ambient AI tool that was found to reduce time in notes for primary care physicians.13 Although we did not observe statistically significant improvements in total time in EHR or work time outside of work, in our separate qualitative study clinicians said DAX eased their cognitive burden, saved time on documentation, and allowed them to have more personal time.5 Even though “time saved” may not be captured with objective EHR use metrics, the clinicians’ reflections on improved work–life balance are noteworthy and demonstrate the potential for such tools to mitigate clinician burnout.
A few limitations should be noted. First, this is not a randomized controlled trial, and while we adjusted for a variety of factors, there will inherently be unmeasured confounding. In particular, the willingness to use DAX is a potential confounder. However, prior studies suggest that provider characteristics such as age, years of practice, specialty, and provider type are possible determinants of clinical adoption of AI18,19; hence, the willingness to use DAX might be controlled to some extent by adjusting for the existing covariates in the analyses. In the fast-paced setting of emerging technology, health systems frequently must deploy the most rigorous evaluation possible based on the real-world situation. In this case, randomization was not possible, but the phased roll-out enabled the addition of a control group, which, while imperfect, adds a contemporaneous comparison.
Second, we were not able to obtain comprehensive editing time in DAX from all participating clinicians because the vendor only had data starting midway through the study (July). Hence, our data may underestimate the actual time in EHR and notes, if significant time was spent editing in the DAX editing window. However, our observations suggest that most clinicians transferred the drafted note into Epic prior to review and editing, because approximately 85% of recordings did not have edit times provided by DAX. Of the approximately 15% of recordings with an edit time, the average time was 177 seconds (about 3 minutes).
A third limitation that may have biased EHR time toward the null hypothesis is a learning curve among DAX users that may have resulted in inefficiencies. However, we conducted sensitivity analyses to include a 2-week washout period and the results remained the same.
Fourth, during the study period, Epic reported a widespread issue resulting in misclassification or underestimation of user audit log data, impacting EHR-Time8, WOW8, and Note-Time8 metrics. Any potential undermeasurement would not be different between DAX users and the control group, so we do not expect this issue to influence our findings, and it highlights the value of a contemporaneous control group.
AI-powered ambient clinical documentation software presents a promising strategy to alleviate the documentation burden faced by outpatient clinicians. Our findings suggest that the tool did not make them more efficient in different aspects of EHR or financial metrics. However, the potential for substantial time savings and preventing clinician burnout emerged in our exploratory analysis and qualitative substudy.5 The pricing of this and other emerging technology will need to reflect demonstrable real-world benefits to make widespread implementation feasible and sustainable in a health care environment facing cost-control pressures. Further research may clarify which subgroups will gain efficiency from using the ambient documentation, and reveal opportunities to enhance the efficiency and seamless integration of the technology into workflows.

Notes

A data sharing statement provided by the authors is available with the full text of this article.
Disclosure forms provided by the authors are available with the full text of this article.
Cayla Mansel from Operations Performance Improvement, Medical Group, and Brittani M. Porter from Finance, Medical Group, helped pull operational and financial metrics from Atrium Health. Todd M. Banks from Ambulatory Services Department helped pull operational and financial metrics from Atrium Health Wake Forest Baptist Health. David Harold Russ from Human Resources assisted with the provision of clinicians’ demographics for analyses. Teammates mentioned above did not receive compensation beyond their usual salary for their contribution.

Supplementary Material

Supplementary Appendix (aioa2400659_appendix.pdf)
Disclosure Forms (aioa2400659_disclosures.pdf)
Data Sharing Statement (aioa2400659_data-sharing.pdf)

References

1.
Krittanawong C. The rise of artificial intelligence and the uncertain future for physicians. Eur J Intern Med 2018;48:e13-e14.
2.
Kocaballi AB, Ijaz K, Laranjo L, et al. Envisioning an artificial intelligence documentation assistant for future primary care consultations: a co-design study with general practitioners. J Am Med Inform Assoc 2020;27:1695-1704.
3.
Kang C, Sarkar IN. Interventions to reduce electronic health record-related burnout: a systematic review. Appl Clin Inform 2024;15:10-25.
4.
McBride S, Alexander GL, Baernholdt M, Vugrin M, Epstein B. Scoping review: positive and negative impact of technology on clinicians. Nurs Outlook 2023;71:101918.
6.
Liu T-L, Hetherington TC, Stephens C, McWilliams A, Dharod A, Cleveland JA. AI-powered clinical documentation and clinicians’ electronic health records’ experience: a nonrandomized controlled trial. JAMA Netw Open 2024;7:e2432460.
7.
Haberle T, Cleveland C, Snow GL, et al. The impact of nuance DAX ambient listening AI documentation: a cohort study. J Am Med Inform Assoc 2024;31:975-979.
8.
Peterson J, Culver E, Piatti G, et al. How University of Michigan Health-West improved clinician wellbeing: reducing documentation and cognitive burden with Nuance’s Dragon Ambient eXperience (DAX). Advisory Board, 2023:1-22.
9.
Sinsky CA, Rule A, Cohen G, et al. Metrics for assessing physician activity using electronic health record log data. J Am Med Inform Assoc 2020;27:639-643.
10.
Brown H, Prescott R. Repeated Measures Data. In: Senn S and Barnett V, eds. Applied mixed models in medicine. 2nd ed. Edinburgh, UK: Wiley, 2006:215-270.
11.
Garcia P, Ma SP, Shah S, et al. Artificial intelligence-generated draft replies to patient inbox messages. JAMA Network Open 2024;7:e243201.
12.
Riyahi AM. The use of artificial intelligence for assisting dentist in writing chart notes. Int J Med Dent 2023;27:546-548.
13.
Tierney AA, Gayre G, Hoberman B, et al. Ambient artificial intelligence scribes to alleviate the burden of clinical documentation. NEJM Catalyst 2024;5:1-15.
14.
Yim WW, Fu Y, Ben Abacha A, Snider N, Lin T, Yetisgen M. Aci-bench: a novel ambient clinical intelligence dataset for benchmarking automatic visit note generation. Sci Data 2023;10:586.
15.
American Medical Association. AMA Augmented Intelligence Research: Physician sentiments around the use of AI in health care: motivations, opportunities, risks, and use cases. Chicago, IL: American Medical Association, 2023:27. Accessed April 2, 2024.
16.
Ghatnekar S, Faletsky A, Nambudiri VE. Digital scribe utility and barriers to implementation in clinical practice: a scoping review. Health Technol (Berl) 2021;11:803-809.
17.
Wang J, Lavender M, Hoque E, Brophy P, Kautz H. A patient-centered digital scribe for automatic medical documentation. JAMIA Open 2021;4:ooab003.
18.
Davenport TH, Glaser JP. Factors governing the adoption of artificial intelligence in healthcare providers. Discov Health Syst 2022;1:4.
19.
Lambert SI, Madi M, Sopka S, et al. An integrative review on the acceptance of artificial intelligence among healthcare professionals in hospitals. NPJ Digit Med 2023;6:111.

Information & Authors

Information

Published In

History

Submitted: June 27, 2024
Revised: August 30, 2024
Accepted: September 3, 2024
Published online: November 22, 2024
Published in issue: November 27, 2024

Topics

Authors

Affiliations

Notes

Dr. Liu can be contacted at tsai-ling.liu@atriumhealth.org or at 1300 Scott Avenue, Charlotte, NC 28204.
Dr. Liu and Mr. Hetherington, and Dr. McWilliams and Dr. Cleveland contributed equally to this article.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citation of this publication.

View Options

View options

PDF

View PDF

Media

Figures

Participant Selection Flowchart*
*DAX denotes Dragon Ambient eXperience.

Other

Tables

CharacteristicControl (n=103)DAX Users (n=112)P ValueActive DAX Users (n=84)P ValueHigh DAX Users (n=67)P Value
Age, median (IQR)43.5 (36.3–52.1)43.7 (37.6–50.9)0.91044.9 (37.8–51.3)0.98443.7 (37.9–50.7)0.945
Female, n (%)71 (68.9)66 (58.9)0.15645 (53.6)0.03536 (53.7)0.052
Provider type, n (%)  0.471 0.619 0.560
Physician71 (68.9)85 (75.9) 12 (14.3) 9 (13.4) 
Physician Assistant16 (15.5)12 (10.7) 9 (10.7) 7 (10.4) 
Nurse Practitioner16 (15.5)15 (13.4) 63 (75.0) 51 (76.1) 
Specialty, n (%)  0.087 0.044 0.075
Family medicine49 (47.6)67 (59.8) 55 (65.5) 44 (65.7) 
Internal medicine32 (31.1)21 (18.8) 15 (17.9) 14 (20.9) 
Pediatrics22 (21.4)24 (21.4) 14 (16.7) 9 (13.4) 
Patient volume, n (%)  0.120 0.171 0.159
Low volume29 (28.2)24 (21.4) 18 (21.4) 15 (22.4) 
Medium volume55 (53.4)54 (48.2) 41 (48.8) 31 (46.3) 
High volume19 (18.4)34 (30.4) 25 (29.8) 21 (31.3) 
Years of practice, median (IQR)14.2 (8.2–16.9)15.2 (9.1–17.0)0.60615.9 (9.1–17.0)0.47515.2 (9.1–17.0)0.680
Wave, n (%)  0.003 0.001 <0.001
124 (23.3)28 (25.0) 20 (23.8) 17 (25.4) 
243 (41.7)36 (32.1) 26 (31.0) 18 (26.9) 
332 (31.1)32 (28.6) 23 (27.4) 20 (29.9) 
43 (2.9)1 (0.9) 1 (1.2) 0 (0.0) 
51 (1.0)15 (13.4) 14 (16.7) 12 (17.9) 
Use of DAX transfer, n (%)       
<25%28 (25.0)     
25–49%5 (4.5)     
50–74%26 (23.2)     
≥75%53 (47.3)     
*
P values were calculated for DAX/DAX subgroups versus control group. DAX denotes Dragon Ambient eXperience; and IQR, interquartile range.
Characteristics of DAX Copilot Participants.*

Share

Share

CONTENT LINK

Share

References

References

1.
Krittanawong C. The rise of artificial intelligence and the uncertain future for physicians. Eur J Intern Med 2018;48:e13-e14.
2.
Kocaballi AB, Ijaz K, Laranjo L, et al. Envisioning an artificial intelligence documentation assistant for future primary care consultations: a co-design study with general practitioners. J Am Med Inform Assoc 2020;27:1695-1704.
3.
Kang C, Sarkar IN. Interventions to reduce electronic health record-related burnout: a systematic review. Appl Clin Inform 2024;15:10-25.
4.
McBride S, Alexander GL, Baernholdt M, Vugrin M, Epstein B. Scoping review: positive and negative impact of technology on clinicians. Nurs Outlook 2023;71:101918.
6.
Liu T-L, Hetherington TC, Stephens C, McWilliams A, Dharod A, Cleveland JA. AI-powered clinical documentation and clinicians’ electronic health records’ experience: a nonrandomized controlled trial. JAMA Netw Open 2024;7:e2432460.
7.
Haberle T, Cleveland C, Snow GL, et al. The impact of nuance DAX ambient listening AI documentation: a cohort study. J Am Med Inform Assoc 2024;31:975-979.
8.
Peterson J, Culver E, Piatti G, et al. How University of Michigan Health-West improved clinician wellbeing: reducing documentation and cognitive burden with Nuance’s Dragon Ambient eXperience (DAX). Advisory Board, 2023:1-22.
9.
Sinsky CA, Rule A, Cohen G, et al. Metrics for assessing physician activity using electronic health record log data. J Am Med Inform Assoc 2020;27:639-643.
10.
Brown H, Prescott R. Repeated Measures Data. In: Senn S and Barnett V, eds. Applied mixed models in medicine. 2nd ed. Edinburgh, UK: Wiley, 2006:215-270.
11.
Garcia P, Ma SP, Shah S, et al. Artificial intelligence-generated draft replies to patient inbox messages. JAMA Network Open 2024;7:e243201.
12.
Riyahi AM. The use of artificial intelligence for assisting dentist in writing chart notes. Int J Med Dent 2023;27:546-548.
13.
Tierney AA, Gayre G, Hoberman B, et al. Ambient artificial intelligence scribes to alleviate the burden of clinical documentation. NEJM Catalyst 2024;5:1-15.
14.
Yim WW, Fu Y, Ben Abacha A, Snider N, Lin T, Yetisgen M. Aci-bench: a novel ambient clinical intelligence dataset for benchmarking automatic visit note generation. Sci Data 2023;10:586.
15.
American Medical Association. AMA Augmented Intelligence Research: Physician sentiments around the use of AI in health care: motivations, opportunities, risks, and use cases. Chicago, IL: American Medical Association, 2023:27. Accessed April 2, 2024.
16.
Ghatnekar S, Faletsky A, Nambudiri VE. Digital scribe utility and barriers to implementation in clinical practice: a scoping review. Health Technol (Berl) 2021;11:803-809.
17.
Wang J, Lavender M, Hoque E, Brophy P, Kautz H. A patient-centered digital scribe for automatic medical documentation. JAMIA Open 2021;4:ooab003.
18.
Davenport TH, Glaser JP. Factors governing the adoption of artificial intelligence in healthcare providers. Discov Health Syst 2022;1:4.
19.
Lambert SI, Madi M, Sopka S, et al. An integrative review on the acceptance of artificial intelligence among healthcare professionals in hospitals. NPJ Digit Med 2023;6:111.
View figure
Figure 1
Participant Selection Flowchart*
*DAX denotes Dragon Ambient eXperience.
Table 1
Characteristics of DAX Copilot Participants.*
Table 2
Linear Mixed Models on EHR Use Metrics and Financial Metrics.*
Table 3
Linear Mixed Models on EHR Use Metrics and Financial Metrics by Patient Volume.*
Table 4
Linear Mixed Models on EHR Use Metrics and Financial Metrics by Clinician Specialty.*

Your trusted guide to rigorous evaluation of clinical applications of AI.

Monthly & Annual Options

Subscribe Now