这是用户在 2024-7-2 12:01 为 https://app.immersivetranslate.com/pdf-pro/56ee7c3c-57de-4e33-b3e3-857a4fc896eb 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
2024_07_01_425c3c81f493c4a3e29dg

Feynman's

TIPS ON PHYSICS


《费曼物理学讲义》的问题解决补充资料

Richard P. Feynman 迈克尔·A·戈特利布 拉尔夫·莱顿


由马修·桑兹撰写的回忆录

练习和答案

罗伯特·B·莱顿和罗库斯·E·沃格

旧金山 波士顿 纽约


开普敦 香港 伦敦 马德里 墨西哥城


蒙特利尔 慕尼黑 巴黎 新加坡 悉尼 东京 多伦多

主编:亚当·布莱克

发展助理:布拉德·帕特森

高级营销经理:克里斯蒂·劳伦斯

主编:Erin Gregg

生产主管:Shannon Tozier

生产管理和构成:WestWords,Inc.

插图:Athertoncustoms

制造业采购员:迈克尔·厄利

打印机和装订机:快递

文本设计师:Lisa Devenish

封面设计师:Yvo Riezebos Design

封面信用:费曼约 1962 年(摄影师不详),由拉尔夫提供
 莱顿


国会图书馆编目数据

Feynman, Richard Phillips.

费曼物理学的技巧:费曼物理学讲义的问题解决补充/理查德·P·费曼,迈克尔·A·戈特利布和拉尔夫·莱顿;由马修·桑兹撰写的回忆录;由罗伯特·B·莱顿和罗克斯·E·沃格特编写的练习和答案。
 页。厘米。
 包括索引。

ISBN 0-8053-9063-4(平装书)
  1. Physics. 2. Physics-Problems, exercises, etc. I. Gottlieb, Michael A.

II. 莱顿,拉尔夫。III. 桑兹,马修·L.(马修·林兹)。
IV. Leighton, Robert B. V. Vogt, Rochus E. VI. Feynman, Richard Phillips.
Feynman lectures on physics. VII. Title.
 QC23.F47 1989 补编
530 '.076-dc22
2005013077
ISBN 0-8053-9063-4

2006 年 Michelle Feynman,Carl Feynman,Michael Gottlieb 和 Ralph Leighton 版权所有。保留所有权利。在美利坚合众国制造。本出版物受版权保护,任何禁止的复制、存储在检索系统中或以任何形式或任何方式传输,包括电子、机械、复印、录音等,均需事先获得出版商的许可。要获得使用本作品材料的许可,请向 Pearson Education, Inc.,Permissions Department,1900 E. Lake Ave.,Glenview,IL 60025 提交书面请求。有关许可的信息,请致电(847) 486-2635。

许多制造商和销售商用来区分其产品的名称被视为商标。在本书中出现这些名称时,出版商已经意识到商标声明,这些名称已经以首字母大写或全部大写的形式印刷出来。

 前言


在喜马拉雅边境上的一个孤独边防哨所,拉马斯瓦米·巴拉苏布拉马尼安透过望远镜看着驻扎在西藏的解放军士兵,他们也在透过瞄准镜回望着他。自 1962 年以来,印度和中国之间的紧张局势一直很高,当时两国在有争议的边界上交火。解放军士兵知道他们正被观察,他们挑衅地高举着西方更为熟知的《毛主席语录》——即“毛主席的小红书”的口袋大小、鲜红的副本,向巴拉苏布拉马尼安和他的印度战友们示威。

巴拉苏布拉马尼安(Balasubramanian)当时是一名被征召入伍的人,业余时间学习物理,很快对这些嘲讽感到厌倦。于是有一天,他带着一句合适的回应来到他的观察岗位。当解放军士兵们再次挥舞毛的《红宝书》时,他和另外两名印度士兵一起拿起并高举了三本明亮的大红色《费曼物理学讲义》。

有一天,我收到了巴拉苏布拉马尼先生的一封信。这是多年来我收到的数百封信中的一封,描述了理查德·费曼对人们生活的持久影响。在叙述了中印边境的“红皮书”事件后,他写道:“现在,二十年过去了,还有谁的红皮书在被阅读呢?”

事实上。今天,距离费曼物理学讲义出版已经超过四十年了,它们仍然被阅读,仍然在激励着人们,甚至在西藏,我猜想。

一个特殊的例子:几年前,我在一个派对上遇到了迈克尔·戈特利布,当时主人正在电脑屏幕上展示现场图瓦人喉音歌手的谐波共振-这种活动让生活在旧金山附近如此有趣。戈特利布学过数学,对物理学非常感兴趣,所以我建议他阅读《费曼物理学讲义》-大约一年后,他花了六个月的时间仔细阅读这些讲义。正如戈特利布在自己的介绍中描述的那样,最终导致了你现在正在阅读的这本书,以及《费曼物理学讲义》的新的“最终版”。

 iv - 前言

因此,我很高兴全世界对物理感兴趣的人现在可以通过这个补充卷来学习《费曼物理学讲义》的更正确、更完整的版本——这是一部伟大的作品,将继续在未来几十年里为学生提供信息和启发,无论是在曼哈顿市中心还是喜马拉雅山高处。
 拉尔夫·莱顿
 2005 年 5 月 11 日
Richard Feynman, circa 1962
 介绍

我第一次听说理查德·费曼和拉尔夫·莱顿是在 1986 年,通过他们有趣的书《费曼先生,您在开玩笑吗!》十三年后,我在一个派对上遇见了拉尔夫。我们成为朋友,接下来的一年里,我们一起设计了一枚致敬费曼的幻想邮票。与此同时,拉尔夫一直在给我推荐关于费曼的书籍,包括(因为我是一名计算机程序员)《费曼关于计算的讲座》。这本迷人的书中关于量子机械计算的讨论引起了我的兴趣,但由于我没有学过量子力学,我很难理解这些论点。拉尔夫建议我阅读《费曼物理学讲义第三卷:量子力学》,我开始阅读,但第三卷的第 1 和 2 章是从第一卷的第 37 和 38 章复制过来的,所以我发现自己在第一卷的引用中倒退,而不是在第三卷中继续前进。因此,我决定从头到尾阅读所有费曼的讲义-我决心学习一些量子力学!然而,随着时间的推移,我的目标变得次要起来,我越来越沉浸在费曼迷人的世界中。 学习物理的乐趣,仅仅是为了快乐,成为了我的最高优先事项。我着迷了!在第一卷的中途,我从编程中休息了一下,花了六个月在乡村哥斯达黎加全职学习《讲座》。

每天下午我学习一堂新的讲座并解决物理问题;早上我复习和校对昨天的讲座。我与拉尔夫通过电子邮件保持联系,他鼓励我跟踪我在第一卷中遇到的错误。这并不是什么负担,因为那一卷中的错误很少。然而,当我继续阅读第二卷和第三卷时,我惊讶地发现错误越来越多。最后,我总共编制了超过 170 个错误在《讲座》中。拉尔夫和我都感到惊讶:为什么这么多错误被长期忽视了呢?我们决定看看在下一版中如何纠正这些错误。

然后我注意到费曼序言中一些有趣的句子:

"没有关于如何解决问题的讲座的原因是有朗诵部分。虽然我在第一年确实安排了三次关于如何解决问题的讲座,但它们没有包括在这里。此外,还有一次关于惯性制导的讲座,它当然应该在有关旋转系统的讲座之后,但不幸地被遗漏了。"

这个建议了重建缺失的讲座的想法,如果它们被证明有趣,就将它们提供给加州理工学院和 Addison-Wesley,以便包括在更完整和错误更正的《讲座》版本中。但首先我必须找到缺失的讲座,而我仍然在哥斯达黎加!通过一点演绎逻辑和调查,拉尔夫能够找到讲座笔记,这些笔记以前被藏在他父亲的办公室和加州理工学院档案馆之间的某个地方。拉尔夫还获得了缺失讲座的录音带,而在我回到加利福尼亚后在档案馆中研究勘误时,我幸运地在一盒杂项底片中发现了黑板照片(长期以来被认为丢失)。费曼的继承人慷慨地允许我们使用这些材料,因此,在费曼-莱顿-桑兹三人组中现在唯一幸存的成员马特·桑兹提供了一些有用的批评后,拉尔夫和我重建了 B 评论作为样本,并将其与《讲座》的勘误一起呈现给加州理工学院和 Addison-Wesley。

Addison-Wesley 热情接受了我们的想法,但加州理工学院最初持怀疑态度。因此,拉尔夫向加州理工学院的理论物理学教授基普·索恩(Kip Thorne)求助,最终成功实现了所有相关人员之间的相互理解,并慷慨地自愿花时间监督我们的工作。由于加州理工学院不希望


为了历史原因修改《费曼物理学讲义》现有的卷册,拉尔夫建议将缺失的讲座放在一本单独的书中。这就是这个补充卷的起源。它与《费曼物理学讲义》的新定版同时出版,我发现的错误已经得到纠正,其他读者也发现了一些错误。

Matt Sands' memoir


在我们重建这四堂讲座的过程中,拉尔夫和我有许多问题。我们感到非常幸运,能够从马特·桑兹教授那里得到答案,他是发起这个雄心勃勃的项目的人,这个项目产生了《费曼物理学讲义》。我们惊讶地发现,他们的起源故事并不广为人知,意识到这个项目提供了一个机会来弥补这一不足,桑兹教授友好地同意撰写一篇关于《费曼物理学讲义》起源的回忆录,包括在这个补充材料中。

 四堂讲座


从马特·桑兹那里,我们得知在 1961 年 12 月,费曼在加州理工学院新生物理课程的第一个学期末朝向,决定在期末考试前几天不公平地向学生介绍新材料。因此,在考试前一周,费曼进行了三次可选的复习讲座,其中没有介绍新材料。复习讲座旨在帮助课堂上遇到困难的学生,强调理解和解决物理问题的技巧。一些示例问题具有历史意义,包括卢瑟福德发现原子核和确定派介子质量。费曼还以典型的人类洞察力讨论了另一类问题的解决方案,这对他新生班至少一半的学生同样重要:找到自己处于平均水平以下的情感问题。

第四次讲座《动力效应及其应用》是在大一学生第二学期初期进行的,学生们刚从寒假回来不久。最初,这是第 21 讲,其背后的想法是为了从第 18 至 20 章节中呈现的困难理论讨论中休息一下,并向学生展示一些有趣的应用和由旋转产生的现象,"只是为了娱乐"。讲座的大部分时间用来讨论相对较新的技术,即 1962 年的实用惯性导航。讲座的其余部分讨论了由旋转产生的自然现象,并提供了一个线索,解释为什么费曼将这次讲座从《费曼物理学讲义》中删去描述为"不幸"。

 讲座结束后


费曼讲完课后经常忘记关麦克风。这为我们提供了独特的机会,见证费曼与本科生互动的方式。这里给出的例子记录在动态效应及其应用课程之后,特别值得注意,因为它讨论了 1962 年从模拟到数字方法的实时计算中初期转变。

 练习


在这个项目的过程中,拉尔夫重新与他父亲的好友和同事罗克斯·福格特取得了联系,后者慷慨地同意重新发布《入门物理学习题与解答》中的练习和解决方案,这是罗伯特·莱顿和他在 1960 年代为《讲座》特别创建的合集。由于空间限制,我只选择了第一卷第 1 至 20 章的练习(在动力效应及其应用之前涵盖的内容),更喜欢那些,引用罗伯特·莱顿的话说,“在数值上或分析上简单,但内容深刻而启发性的问题。”

 网站


读者们可以访问 www.feynmanlectures.info 了解更多关于这一卷以及费曼物理学讲义的信息。
 迈克·戈特利布

塔马林多海滩,哥斯达黎加

 致谢


我们要向所有使这本书得以实现的人表示衷心的感谢,特别是:

托马斯·汤布雷洛代表加州理工学院物理、数学和天文学部主席批准了这个项目,卡尔·费曼和米歇尔·费曼,理查德·费曼的继承人,允许在这本书中出版他们父亲的讲座

马修·桑兹,感谢他的智慧、知识、建设性评论和建议;

迈克尔·哈特尔,感谢他对手稿的细致校对,以及在《费曼物理学讲义》勘误方面的勤奋工作;

Rochus E. Vogt,因《入门物理习题集》中巧妙的问题和答案以及允许在本卷中使用它们而受到表彰;

约翰·尼尔,为认真记录费曼在休斯飞机公司的讲座,并与我们分享这些笔记;

海伦·塔克,费曼的秘书多年来一直给予她鼓励和支持,

亚当·布莱克,Addison-Wesley 物理科学主编,因其热情和毅力将这一卷带到印刷

基普·索恩,因为他的优雅和不懈的工作,确保了所有参与者的信任和支持,并监督我们的工作。

 内容

 介绍 .....

关于费曼的起源

Lectures on Physics

马修·桑兹的回忆录 1

 先决条件
 复习讲座 A

1-1 审查讲座简介.....15


1-2 加州理工学院从底部开始..... 16


1-3 物理数学 ..... 18


1-4 差异化 ..... 19


1-5 集成 ..... 22


1-6 矢量 ..... 23


1-7 区分向量 ..... 29


1-8 线积分 ..... 31


1-9 一个简单的例子 ..... 33


1-10 三角测量 ..... 38


2 法律和直觉

 复习讲座 B

2-1 物理定律 ..... 41


2-2 非相对论近似 ..... 43


2-3 运动与力 ..... 44


2-4 力和它们的势能 ..... 47


2-5 通过示例学习物理 ..... 49


2-6 理解物理学的物理学..... 50


2-7 机器设计中的一个问题 ..... 53


2-8 地球的逃逸速度 ..... 64


替代方案 ..... 67


使用几何学找到重量的加速度..... 67


B 通过找到重量的加速度

 三角函数 ..... 68

使用力矩和力来找到重力对物体的作用力


角动量 ..... 69

 问题和解决方案
 复习讲座 C

3-1 卫星运动 ..... 71


3-2 原子核的发现 ..... 76


3-3 基本火箭方程式 ..... 80


3-4 数值积分 ..... 82


3-5 化学火箭 ..... 84


3-6 离子推进火箭 ..... 85


3-7 光子推进火箭 ..... 88


3-8 一个静电质子束偏转器 ..... 88


3-9 确定π介子的质量 ..... 91


4 个动力学效应及其应用

 复习讲座 D

4-1 一个演示陀螺仪 ..... 96


4-2 方向陀螺仪 ..... 97


4-3 人工地平线 ..... 98


4-4 一种船舶稳定陀螺仪 ..... 99


4-5 陀螺罗经 ..... 100


4-6 陀螺仪设计和构造的改进.....104


4-7 加速度计 ..... 111


4-8 一个完整的导航系统 ..... 115


4-9 地球自转的影响 ..... 119


4-10 旋转盘..... 122


4-11 地球的章动 ..... 125


4-12 天文学中的角动量 ..... 125

4-13 Angular momentum in quantum mechanics ..... 127

4-14 讲座结束后..... 128

 5 个精选练习


5-1 能量守恒,静力学 135

5-2 开普勒定律和引力 138
 5-3 运动学 138

5-4 牛顿定律 139

5-5 动量守恒 141
 5-6 矢量 143

5-7 三维非相对论性两体碰撞
 5-8 力量 144

5-9 电势和场 145

5-10 单位和尺寸 147

5-11 相对论能量和动量 147

5-12 维度中的旋转,质心 148

5-13 角动量,惯性矩 149

5-14 三维旋转 151

练习答案 155
 照片来源 159

索引到讲座 161


关于费曼物理学讲义的起源


马修·桑兹的回忆录


20 世纪 50 年代的教育改革


当我于 1953 年首次成为加州理工学院的常任教职人员时,被要求教授一些研究生课程。我对研究生课程计划感到非常沮丧。在第一年,他们只学习古典物理学-力学和电磁学课程。(甚至 班只涵盖静力学,根本没有辐射理论。)我认为这些聪明的学生直到研究生第二或第三年才接触到现代物理学思想(其中许多已经存在了 20 到 50 年甚至更久),这是可耻的。因此,我开始了一场改革计划。我自从在洛斯阿拉莫斯时就认识理查德·费曼,我们几年前都来到了加州理工学院。我邀请费曼加入这场改革计划,我们制定了一个新的课程计划,并最终说服了物理学院采纳。第一年的课程包括由我教授的电动力学和电子理论课程,由费曼教授的入门量子力学课程,以及我记得的由罗伯特·沃克教授的数学方法课程。我认为新的课程计划非常成功。

大约在那个时候,麻省理工学院的杰罗尔德·扎卡里亚斯受到斯普特尼克的出现刺激,推动了一个计划,以振兴美国高中物理教育。其中一个结果是创建了 PSSC(物理科学研究委员会)计划,产生了许多新的材料和想法,以及一些争议。

当 PSSC 计划接近完成时,扎卡里亚斯和一些同事(我相信其中包括弗朗西斯·弗里德曼和菲利普·莫里森)决定是时候着手对大学物理进行修订。他们组织了几次大型物理教师会议,从中成立了大学物理委员会,这是一个由十几名大学物理教师组成的全国委员会。


得到国家科学基金会的支持,并被委托激励一些国家努力推动高校物理教学现代化。扎卡里亚斯邀请我参加了那些首次会议,后来我也在委员会任职,最终成为了主席。

 加州理工学院项目


这些活动促使我开始思考加州理工学院本科项目可以做些什么,我一直对此感到不满。物理学的入门课程是基于米利坎、罗勒和沃森的书籍,这是一本非常好的书,我相信是在 1930 年代写的,尽管后来由罗勒进行了修订,但几乎没有现代物理学内容。此外,这门课程没有讲座,因此几乎没有机会引入新材料。课程的优势是由福斯特·斯特朗编写的一套复杂的“问题”,用于每周的家庭作业,以及每周两次的复习课,学生在其中讨论分配的问题。

像其他物理学院的教师一样,每年我都被指定为几位物理专业的学生的顾问。与学生交谈时,我经常感到沮丧,因为到了他们的大三,这些学生对继续学习物理感到沮丧——至少部分原因是因为他们已经学习了两年的物理,但仍然没有接触到任何现代物理学的想法。因此, 决定不等待国家计划成熟,而是试图在加州理工学院做些什么。特别是,我希望在入门课程中看到一些“现代”物理学的内容——原子、核、量子和相对论。在与几位同事(尤其是托马斯·劳里特森和费曼)讨论之后,我向当时的物理学系主任罗伯特·巴赫提出,我们应该开始一个改革入门课程的计划。他的最初反应并不是很令人鼓舞。他实际上说:“我一直告诉人们我们有一个非常好的计划,我为此感到自豪。我们的讨论小组由一些资深教师担任。为什么我们要改变呢?我坚持了下来,并得到了几个人的支持,于是巴赫尔松了口,接受了这个想法,并很快从福特基金会获得了一笔资助(如果我没记错的话,金额超过一百万美元)。这笔资助将用于设计新的实验室设备的成本,以及为课程开发新内容,特别是为了让一些临时教师接替那些正在投入时间到项目中的常规教师的职责。

当拨款到位时,巴赫任命了一个小的工作组来领导该项目:罗伯特·莱顿担任主席,维克多·内赫和我。莱顿长期参与了高年级项目,他的著作《现代物理原理》是该项目的支柱,内赫被认为是一位杰出的乐器演奏家。当时,我有点生气巴赫没有让我成为这个小组的领导者。我猜想这可能部分原因是我已经相当忙于管理同步加速器实验室,但我一直认为他也担心我可能过于“激进”,他希望通过莱顿的保守来平衡这个项目。

委员会一开始就同意让内赫专注于开发新实验室,他有许多想法,我们应该努力在接下来的一年里推出一门讲座课程,认为讲座将为开发新课程内容提供最佳机制。莱顿和我负责为讲座设计教学大纲。我们开始独立工作,制定课程大纲,但每周会面,比较进展,并努力达成共识。

 僵局与灵感


很快就清楚地意识到,很难找到一个共同点。我通常认为莱顿的方法太过于重新包装了已经流行了 60 年的物理课程内容。莱顿认为我在推动不切实际的想法——新生们还没有准备好接受我想要引入的“现代”内容。幸运的是,我通过与费曼频繁交谈而坚定了自己的决心。费曼已经以出色的讲师而闻名,尤其擅长向普通观众解释现代物理学的思想。我经常在从研究所回家的路上顺便去他家,向他请教我所思考的问题,他经常提出建议,总是支持我。

经过几个月的努力,我变得相当沮丧;我看不出莱顿和我如何能就课程大纲达成一致。我们对课程的概念似乎完全不同。然后有一天我有了灵感:为什么不请费曼来为这门课程讲课呢?我们可以给他提供莱顿和我的大纲,让他决定该怎么做。我立即以以下方式向费曼提出了这个想法:“瞧,迪克,你现在已经花了四十年的时间寻求对物理世界的理解。这是一个让你把一切都整合起来并呈现给新一代科学家的机会。明年为什么不给大一新生讲课呢?”他并不立刻热情,但在接下来的几周里,我们继续讨论这个想法,他很快就被这个想法吸引住了。他会说也许我们可以这样或那样。或者这个可以放在这里,等等。经过几周的讨论后,他问我:“有没有过一位伟大的物理学家为大一新生讲课的情况?”我告诉他我认为从来没有过。他的回答是:“我会做的。”


费曼将会进行讲座


在我们委员会的下次会议上,我充满热情地提出了我的提案,但被莱顿冷漠的回应所困扰。“那不是一个好主意。费曼从未教过本科课程。他不知道如何与新生交流,或者他们能学到什么。” 但内尔挽救了局面。他眼睛闪烁着兴奋,说:“那将是很棒的。迪克懂得很多物理知识,知道如何让它变得有趣。如果他真的这样做,那将是太棒了。” 莱顿被说服了,一旦被说服,就全力支持这个想法。

过了几天,我面临了下一个障碍。我向巴赫提出了这个想法。他并不看重这个想法。他认为费曼对研究生项目太重要,不能脱身。谁来教授量子电动力学?谁会和理论研究生一起工作?而且,他真的能降到新生的水平吗?在这一点上,我向物理系的一些资深成员进行了游说,他们向巴赫提供了一些支持性的话语。最后,我使用了学术界常用的论点:如果费曼真的想做,你难道要说他不应该吗?决定就这样做出了。

在第一堂讲座开始前还有六个月的时间,莱顿和我与费曼谈论了我们的想法。他开始全力发展自己的想法。每周至少一次,我会去他家,我们会讨论他的想法。他有时会问我是否认为某种特定方法对学生来说是可行的,或者我是否认为这样或那样。


材料的顺序会“起作用”最好。我可能会提到一个特定的例子。费曼一直在研究如何呈现波的干涉和衍射的思想,并且在寻找一个既简单又强大的数学方法方面遇到了困难。他没有办法在不使用复数的情况下想出一个方法。他问我是否认为新生能够处理复数代数。我提醒他,加州理工学院录取的学生主要是根据他们在数学方面表现出的能力进行选拔的,我相信只要他们对复数代数进行简要介绍,他们就不会有问题。他的第二十二讲包含了对复数量代数的精彩介绍,然后他能够在随后的许多讲座中使用它来描述振荡系统,物理光学问题等。

早期出现了一个小问题。费曼长期承诺在秋季学期的第三周不在加州理工学院,因此会错过两节课。我们一致认为这个问题很容易解决。我会在那几天代替他。然而,为了不打破他演讲的连贯性,我会讲授一些可能对学生有用但与他的主要发展方向无关的辅助主题的两节课。这就解释了为什么第一卷的第 5 章和第 6 章有些反常。

大多数情况下,费曼独自一人努力制定了整个一年的完整大纲,填写了足够的细节,以确保不会出现意外困难。他在接下来的学年里努力工作,到了九月(现在是 1961 年),他准备好开始他的第一年讲课。


新的物理课程


最初认为费曼的讲座将成为加州理工学院所有新生必修的两年入门课程的修订计划的起点。人们认为在接下来的几年里,其他教职员工将分别负责两年中的每一年,最终发展出一个“课程”-包括教科书、家庭作业、实验室等等。

然而,在最初的几年里,需要设计一种不同的格式。没有课程资料可用,必须在我们进行时创建。安排了两个一小时的讲座-分别在周二和周四上午 11 点,学生被分配到一个小时的讨论部分。


每周,由一名教职员或研究生助教带领。每周还有一个由 Neher 指导的三小时实验室。

在讲座期间,费曼携带一个麦克风,悬挂在他的脖子上,与另一个房间里的磁带录音机相连。黑板上的内容定期被拍照。这两项服务由汤姆·哈维(Tom Harvey)负责管理,他是讲堂的技术助理。哈维还帮助费曼为讲座设计了偶尔的演示。录制的讲座由打字员朱莉·库尔西奥(Julie Cursio)转录成了一种相当易读的形式。

那年,莱顿承担了确保透明度编辑成绩单的责任,并尽快完成,以便学生在讲座结束后不久就能拿到印刷的讲座笔记进行学习。最初认为可以通过将每次讲座分配给领导讨论课和实验室的研究生来完成这项工作。然而,这种安排并不奏效,因为学生花费的时间太长,最终产品更多地反映了学生的想法而不是费曼的想法。莱顿迅速改变了安排,自己承担了大部分工作,并招募了来自物理学和工程学的各种教职人员来负责编辑一项或多项讲座。根据这个计划,我在那一年的第一年也编辑了几次讲座。

在第二年的课程中进行了一些更改。莱顿接管了一年级学生的责任-讲课并管理课程。幸运的是,学生们现在从一开始就可以获得上一年费曼讲座的抄录笔记。我负责照顾第二年课程的细节,费曼现在正在讲课。我留下了及时制作编辑过的抄本的责任。由于第二年材料的性质,我得出结论,最适合自己承担这项任务。

我也几乎参加了所有的讲座,就像我在第一年那样,并且自己负责了一个讨论小组,以便我能看到课程对学生的影响。每次讲座结束后,费曼、杰瑞·诺伊格鲍尔和我,偶尔还有一两个人,通常会去学生餐厅吃午餐,我们会讨论关于讲座主题适合作为家庭作业的练习。费曼通常会有几个这些练习的想法,其他的则会从讨论中浮现。


Neugebauer 负责收集这些练习,并每周制作一个“问题集”。


讲座是什么样的


坐在讲座上是一种极大的乐趣。费曼会在讲座计划开始前大约五分钟左右出现。他会从衬衫口袋里拿出一两张小纸片,可能是 5 乘 9 英寸大小,展开它们,然后在讲座大厅前排的中央平整地摊开。这些是他讲座的笔记,尽管他很少参考它们。(第二卷第 19 章开头的一张照片显示费曼在讲座中,站在讲座前的讲台后面,讲台上可见两张笔记。)一旦铃声响起,宣布正式上课时间开始,他就会开始讲座。每次讲座都是精心策划的戏剧表演,他显然已经详细计划好了,通常包括引言、发展、高潮和结局。他的时间掌控非常令人印象深刻。他几乎从不会在整点前后超过一点时间结束。甚至讲座大厅前面的粉笔板的使用似乎也是精心编排的。 他会从左边第一个黑板的左上角开始,到讲座结束时,会刚好填满最右边的第二块黑板。

但最大的乐趣当然是观察原始思想序列的发展-清晰而有风格地呈现。


做一本书的决定


尽管最初我们并没有考虑将讲座记录变成一本书,但这个想法在 1963 年春季的讲座第二年中期开始认真考虑。这个想法部分是受到其他学校物理学家的询问刺激,他们想知道是否可以向他们提供记录,另一部分是受到几位书籍编辑的建议刺激——他们当然已经得知讲座正在进行,并可能看到了记录的副本——他们建议我们考虑出版一本书,并表示他们愿意出版。

经过一些讨论,我们决定可以将这些成绩单经过一些工作转化成一本书,因此我们向感兴趣的出版商提出了要求


向我们提出这样做的建议。最具吸引力的提议来自 Addison-Wesley 出版公司(A-W)的代表,他们提出可以在 1963 年 9 月班级开始时为我们提供精装书籍-这仅仅是决定出版后的六个月。此外,考虑到我们并未要求作者获得版税,他们提出这些书籍可以以相当低的价格提供。

这样快速的出版时间表是可能的,因为他们在内部拥有完整的设施和员工进行编辑、排版,直至照片胶印。通过采用一个新颖(当时)的格式,包括一栏宽文本和一侧非常宽的“边距”,他们可以容纳图表和其他辅助材料。这种格式意味着通常会用于铅字校样的内容可以直接用于最终页面布局,无需重新设置文本材料以适应图表等内容。

A-W 提案获胜。我承担了在讲座记录中进行任何必要修订和注释的任务,并通常与出版商一起校对排版材料等工作。(莱顿当时正忙于教授大一课程的第二轮。)我会为了清晰和准确而修改每个讲座记录,然后交给费曼进行最终检查,一旦几个讲座准备就绪,就会将它们发送给 A-W。

我很快发送了前几节课,很快收到了校样进行校对。这是一场灾难!A-W 的编辑进行了重大改写,将讲稿的非正式风格转换为传统、正式的教科书风格,将“你”改为“一个”等等。担心可能会就此事发生对抗,我给编辑打了电话。在解释我们认为非正式、会话式风格是讲座的重要组成部分,并且我们更喜欢个人代词而不是客观代词等等之后,她恍然大悟,此后做得很好——大多数情况下保持原样。与她合作是一种乐趣,但我希望能记住她的名字。

下一个绊脚石更为严重:为这本书选择一个名字。我记得有一天去费曼的办公室讨论这个话题。我建议我们采用一个简单的名字,比如“物理学”或“物理学一”,作者应该是费曼、莱顿和桑兹。他并不特别喜欢这个建议的标题,并对提议的作者有了相当激烈的反应:“为什么你们的名字要在那里——你们只是在做速记员的工作!”我不同意,指出如果没有莱顿和我的努力,这些讲座就永远不会存在。


书。分歧并没有立即解决。几天后,我回到讨论中,我们一起提出了一个妥协:“费曼物理学讲义,作者费曼、莱顿和桑兹”。

 费曼序言


在第二年讲座结束后-大约在 1963 年 6 月初,我正在办公室为期末考试分配成绩,费曼突然来拜访我,告别后离开城镇(也许去巴西)。他问学生们考得怎么样。我说我觉得还不错。他问平均分是多少,我告诉他-我记得大约是 65%。他的回答是:“哦,那太糟糕了,他们应该做得更好。我是个失败者。”我试图劝说他不要这样想,指出平均分是非常随意的,取决于许多因素,如所给问题的难度、评分方法等-我们通常会尽量使平均分足够低,以便成绩有一定的分布,为分配字母等级提供一个合理的“曲线”。(顺便说一句,这是我今天不赞成的态度。)我说我认为许多学生显然从这门课中受益匪浅。他并不被说服。

我随后告诉他,《讲座》的出版正在加快进行,不知道他是否愿意提供某种序言。这个想法对他很有趣,但他时间不够。我建议我可以打开我桌上的口授机,他可以口授他的序言。所以,他仍在考虑他对第二年学生期末考试平均成绩的沮丧,他口授了费曼序言的第一稿,你会在《讲座》的每一卷前面找到。在序言中,他说:“我认为我对学生们的帮助不是很好。”我经常后悔我以这种方式安排他做序言,因为我认为这不是一个经过深思熟虑的判断。我担心这已被许多老师用作不尝试与学生一起听《讲座》的借口。


第二卷和第三卷


第二年讲座出版的故事与第一年有些不同。首先,当第二年结束时(现在大约是 1963 年 6 月),决定将讲座笔记分成两部分,制作两个单独的卷:电学和磁学,以及量子。

物理学。其次,人们认为可以通过一些增补和相当广泛的改写大大改进量子物理学的讲义。为此,费曼提议,他将在接下来的一年末,就量子物理学进行一系列额外的讲座,这些讲座可以与原始讲座结合起来,组成印刷讲义的第三卷。

有一个额外的复杂情况。联邦政府大约一年前授权在斯坦福大学建造一条两英里长的线性加速器,用于产生 电子进行粒子物理研究。这将是迄今为止建造的最大、最昂贵的加速器,电子能量和强度比任何现有设施都高出许多倍-一个令人兴奋的项目。一年多来,新成立的实验室-斯坦福线性加速器中心的主任 W.K.H. Panofsky 一直在努力说服我加入他担任副主任,帮助建造新的加速器。那年春天,他成功了,我同意在七月初搬到斯坦福。然而,我已经承诺要完成《讲座》,所以协议的一部分是我会带着这项工作去。一到斯坦福,我发现我的新职责比我预期的更具挑战性,因此我发现如果要取得适当的进展,我必须在大多数晚上工作《讲座》。我设法在 1964 年 3 月完成了第二卷的最终编辑。 幸运的是,我有我的新秘书帕特里夏·普罗斯的非常有能力的帮助。

到了那年的五月,费曼已经进行了有关量子物理的额外讲座,我们开始着手第三卷的工作。由于需要进行一些重大的重组和修订,我多次前往帕萨迪纳与费曼进行长时间的磋商。问题很容易就得到解决,第三卷的材料在十二月份完成。

 学生的回应


通过与我讨论小组的学生接触,我对他们对讲座的反应有了相当清晰的印象。我相信许多学生,如果不是大多数,意识到他们正在经历一种特权体验。我也看到他们经常被思想的激动所吸引,并学到了很多物理知识。当然,并不是所有学生都是这样。请记住,这门课是所有新生必修的,尽管不到一半的学生打算成为物理专业,因此其他许多学生实际上形成了一个被动听众。此外,一些课程的不足之处也变得明显。


在学习过程中,学生们经常很难将讲座中的关键观点与一些引入的次要材料分开,以提供说明性应用。他们发现在备考考试时尤其令人沮丧。

在《费曼物理学讲义》纪念版的特别序言中,大卫·古德斯坦和杰瑞·诺伊格鲍尔写道:“...随着课程的进行,注册学生的出勤率开始急剧下降。”我不知道他们是从哪里得到这个信息的。我想知道他们有什么证据表明:“许多学生都害怕上这门课...”古德斯坦当时不在加州理工学院。诺伊格鲍尔是课程工作人员之一,有时会开玩笑地说讲堂里只剩下研究生了。这可能影响了他的记忆。我大多数时候坐在讲堂后排,我的记忆——当然,被岁月淡化了——是也许有大约 20%的学生没有去上课。这样的数字对于大型讲座课程来说并不罕见,我不记得有人“感到惊慌”。虽然在我的小组讨论课上可能有一些学生害怕上课,但大多数学生都对讲座感兴趣和激动——尽管其中一些很可能害怕作业。

我想给出三个例子,说明这些讲座对那两年的学生产生的影响。第一个例子发生在课程进行时,虽然那已经是 40 多年前的事情,但它给我留下了深刻的印象,我依然记忆犹新。那是在第二年的开头,由于时间安排的偶然,我的讨论小组恰好在那一年费曼的第一次讲座之前首次见面。由于我们没有讲座可讨论,也没有布置作业,不清楚我们应该谈论什么。我开始课堂时让学生们谈谈他们对前一年讲座的印象——那些讲座已经结束了大约三个月。在一些回答之后,一个学生说他被讨论蜜蜂眼睛结构的内容所吸引,以及它是如何通过几何光学效应和光的波动性质之间的平衡来优化的(见第 1 卷第 36-4 节)。我问他是否能重构这些论点。 他走到黑板前,几乎不需要我的提示,就能够重现论点的基本要素。而且这是在讲座六个月后,没有复习的情况下。

第二幅插图是我在 1997 年收到的一封信提供的,这是在讲座结束后 34 年,来自一位名叫比尔·萨特思维特的学生


谁参加了讲座,以及我的朗诵部分。这封信突如其来,是因为他在麻省理工学院遇到了我的一个老朋友。他写道:

这封信是为了感谢你和其他所有人对费曼物理的支持……费曼博士在序言中说他认为自己没有很好地为学生服务……我不同意。我和我的朋友们总是喜欢这些课程,并意识到它们是一次独特而美妙的经历。我们也学到了很多。至于我们的感受是否客观,我不记得我在加州理工学院的职业生涯中有其他任何一堂常规讲座会得到掌声,但我的记忆告诉我,在费曼博士的讲座结束时,这种情况经常发生……

最后一幅插图是几周前的。我碰巧正在阅读道格拉斯·奥舍罗夫写的自传草稿,他与大卫·李和罗伯特·理查森一起因在氦-3 中发现超流态而获得了 1996 年的诺贝尔物理学奖。奥舍罗夫写道:

这是在加州理工学院的一个好时机,因为费曼正在教授他著名的本科课程。这两年的课程对我的教育非常重要。虽然我不能说我全部理解了,但我认为它对我的物理直觉的发展起到了最大的贡献。

 事后的想法


我在卡尔特克理工学院第二年讲座结束后匆匆离开,因此没有机会观察初级物理课程的后续发展。因此,我对后来学生对已发表讲座的效果知之甚少。一直以来,很明显《讲座》本身不能作为教科书。教科书通常缺少太多常见的要素:章节摘要、详细的实例、家庭作业练习等等。这些必须由勤奋的教师提供,有些由莱顿和罗克斯·福格特提供,他们在 1963 年后负责该课程。我曾经考虑过这些内容可能会在补充卷中提供,但从未实现。

在我与大学物理委员会有关的旅行中,我经常会与各大学的物理系教师见面。我听说大多数教师认为《讲座》不适合在他们的课堂上使用,尽管我听说有些教师在“荣誉”课程中使用了其中一本书,或者作为常规教材的补充。(我必须说,我经常有这样的印象,一些教师可能是)


由于担心学生会问他们无法回答的问题,所以对尝试《讲座》持谨慎态度。最常见的情况是,我听说研究生发现《讲座》是资格考试复习的绝佳来源。

似乎《讲座》在国外的影响力比在美国更大。出版商已经安排将《讲座》翻译成许多语言,我记得有十二种。当我出国参加高能物理会议时,经常被问及是否是那些红书中的桑兹。我经常听说《讲座》被用于物理导论课程。

我离开加州理工学院的另一个不幸后果是,我再也无法与费曼和他的妻子格温斯保持密切的联系。自洛斯阿拉莫斯时代以来,他和我一直保持着友好的同事关系,在 20 世纪 50 年代中期,我还参加了他们的婚礼。1963 年后,我偶尔访问帕萨迪纳时,会和他们住在一起,或者当我和家人一起访问时,我们总会共度一个晚上。在最后一次这样的场合上,他告诉我们他最近为癌症接受的手术的故事,不久之后,这场病夺去了他的生命。

我非常高兴地得知,现在距离费曼物理学讲义首次出版已经有大约四十年了,它们仍然在印刷、销售、阅读,并且我敢说,受到了赏识。
Santa Cruz, California
 2004 年 12 月 2 日

 先决条件


1-1 回顾讲座介绍


这三堂可选讲座将会很无聊:它们涉及的内容与我们之前讲过的内容完全相同,没有任何新的东西。所以看到这么多人在这里,我感到非常惊讶。坦率地说,我更希望你们中间会有更少的人,而且这些讲座不会是必要的。

此时放松的目的是给你时间思考事情,闲逛一下你听到的事情。这绝对是学习物理最有效的方式:进来听一些复习并不是个好主意;最好是自己进行复习。所以我建议你——如果你没有太迷失、完全困惑和混乱——忘记这些讲座,自己闲逛一下,尝试找出有趣的事情,而不是一味地沿着某个特定轨道前行。通过选择一个你觉得有趣的问题来琢磨,比如你听到但不理解的事情,或者想进一步分析,或者想玩弄一些技巧——这是学习的最佳方式。

到目前为止我们一直在进行的讲座是一门新课程,旨在回答我们假定存在的一个问题:没有人知道如何教授物理,或者教育人们-这是一个事实,如果你不喜欢目前的教学方式,那是非常自然的。教学是不可能令人满意的:几百年来,甚至更长时间以来,人们一直在努力弄清楚如何教学,但没有人真正弄清楚。因此,如果这门新课程不令人满意,那并不是独一无二的。

在加州理工学院,我们总是改变课程,希望能够改进它们,今年我们再次改变了物理课程。过去的一个抱怨是,那些成绩靠前的学生觉得力学这门学科很枯燥:他们发现自己一直在做题、复习、考试,没有时间思考任何事情;没有激情;没有描述它与现代物理的关系,或者类似的内容。因此,这套讲座的设计就是为了在一定程度上更好地帮助那些同学,并且通过将其与宇宙的其他部分联系起来,尽可能地使这门学科更有趣。

另一方面,这种方法的缺点是让很多人感到困惑,因为他们不知道他们应该学习什么,或者说,有太多的东西他们无法全部学习,而且他们没有足够的智力来弄清楚什么对他们感兴趣,只关注那些内容。

因此,我面向那些发现讲座非常混乱、非常恼人和令人恼火的人,他们不知道该学什么,有点迷茫。其他人,不觉得迷茫的人,不应该在这里,所以现在我给你们机会离开...

我看到没有人有勇气。或者我猜我是一个巨大的失败者,如果我让每个人都迷失了的话!(也许你只是来这里娱乐的。)


1-2 加州理工学院从底部


现在,我想象着你们中的一位走进我的办公室说:“费曼,我听了所有的讲座,参加了期中考试,试着做题,但什么也做不出来,我觉得自己在班里排名最后,不知道该怎么办。”

我会对你说什么?

我要指出的第一件事是:来到加州理工学院在某些方面是有优势的,而在其他方面是有劣势的。它是优势的一些方面你可能曾经知道,但现在忘记了,这与学校拥有卓越的声誉有关,而这个声誉是当之无愧的。这里有非常好的课程。(我不了解这门特定的物理课程;当然我对此有自己的看法。)那些从加州理工学院毕业的人,当他们进入工业界,或者从事研究工作等等时,总是说他们在这里得到了非常好的教育,当他们与去过其他学校的人进行比较时(尽管许多其他学校也非常优秀),他们从未觉得自己落后或缺少什么;他们总是觉得自己上的是最好的学校。所以这是一个优势。

但也存在一定的缺点:因为加州理工学院声誉如此之高,几乎每个在高中班级中排名前两名的人都会申请这里。有很多高中,所有最优秀的人都会申请。现在,我们已经尝试设计一套选拔系统,进行各种测试,以便选出最优秀的人。因此,你们被精心挑选出来从所有这些学校来到这里。但我们仍在努力,因为我们发现了一个非常严重的问题:无论我们如何谨慎地选择这些人,无论我们如何耐心地进行分析,当他们来到这里时,总会发生一些事情:结果总是大约一半的人低于平均水平!

当然,你会对此感到好笑,因为对于理性思维来说,这是不言自明的,但对于情感思维来说却不是-情感思维无法对此感到好笑。当你一直以高中科学课程中的第一名或第二名(甚至可能是第三名)生活,当你知道你来自的科学课程中处于平均水平以下的每个人都是一个完全的白痴,而现在你突然发现自己处于平均水平以下-你们中有一半是如此-这是一个可怕的打击,因为你想象这意味着你和那些高中时的家伙一样蠢,相对而言。这就是加州理工学院的巨大劣势:这种心理打击是如此难以承受。当然,我不是心理学家;我只是在想象这一切。我当然不知道真实情况会是怎样!

问题是如果你发现自己低于平均水平该怎么办。有两种可能性。首先,你可能会发现这是如此困难和烦人,以至于你不得不离开-这是一个情感问题。你可以运用你的理性思维,并指出给自己我刚刚指出给你的:这里一半的人会低于平均水平,即使他们都是顶尖的,所以这并不代表什么。你看,如果你能忍受那些胡说八道、滑稽的感觉四年,然后你会再次走出世界,你会发现世界还是和以前一样-例如,当你在某个地方找到工作时,你会发现自己又是第一人,你会得到成为专家的巨大快乐,每当他们不知道如何将英寸转换为厘米时,他们都会来找你! 这是真的:那些进入工业界或去一所声誉不佳的小学校学习物理的男性,即使他们曾经在班级的最后三分之一、最后五分之一或最后十分之一,如果他们不努力自我驱动(我会在一分钟内解释),那么他们会发现自己非常受欢迎,他们在这里学到的东西非常有用,他们又回到了以前的位置:快乐,第一。

另一方面,你可能犯一个错误:有些人可能会逼迫自己达到一个程度,坚持要成为第一,尽管一切都想去研究生院,想成为最好的博士生,即使他们从这里的班级最底层开始。嗯,他们很可能会感到失望,并让自己在一群非常优秀的人中始终处于最底层,因为他们选择了那个群体。这是一个问题,这取决于你的个性。(记住,我在和那个因为成绩最低而来找我谈话的人说话;我不是在和那些因为成绩在前十而感到高兴的人说话-这本来就是少数!)

所以,如果你能承受这种心理打击-如果你能对自己说,“我在班级的后三分之一,但有三分之一的人在班级的后三分之一,因为情况就是这样!我在高中是顶尖的人,我仍然是一个聪明的家伙。我们国家需要科学家,我将成为一名科学家,当我离开这所学校时,我会没事的,该死的!我会成为一个优秀的科学家!”-那么这将是真实的:你将成为一个优秀的科学家。唯一的问题是你是否能在这四年里忍受这些有趣的感觉,尽管有理性的论据。如果你发现自己无法忍受这些有趣的感觉,我想最好的做法是尝试去其他地方。这不是失败的问题;这只是一种情感问题。

即使你是班上最后几个人之一,也不代表你不行。你只需要将自己与一个合理的群体进行比较,而不是与加州理工学院这里的疯狂集合比较。因此,我特意为那些迷失的人做这个评论,让他们仍然有机会多留一会儿,看看自己是否能应对,好吗?

我现在再强调一点:这不是为了考试或类似的准备。我对考试一无所知——我的意思是,我与出题无关,也不知道考试内容会是什么,所以绝对不能保证考试内容只涉及这些讲座中复习过的内容,或者任何类似的胡说八道。


1-3 物理数学


所以,这个人走进我的办公室,要求我尽力让他学会的一切变得清晰明了,这是我能做到的最好的。问题在于要试图解释当时所教授的内容。所以我现在开始复习。

我会告诉这个家伙,“你必须学会的第一件事是数学。这涉及到,首先,微积分。在微积分中,有微分。”

现在,数学是一个美丽的学科,也有它的门道,但我们正在努力弄清楚为了物理目的我们必须学习的最少量是什么。因此,这里采取的态度是一种“不尊重”数学的态度,仅仅出于效率考虑;我并不是在试图否定数学。

我们要做的是学会区分,就像我们知道 3 加 5 是多少,或者 5 乘以 7 是多少一样,因为这种工作经常涉及到,最好不要被搞混。当你写下某样东西时,你应该能够立刻区分出来,甚至不用思考,也不会犯任何错误。你会发现你需要一直做这个操作-不仅在物理学中,而且在所有科学中。因此,区分就像你在学代数之前必须学会的算术一样。

顺便说一句,代数也是一样的:有很多代数。我们假设你可以在睡觉时倒立做代数,而不会出错。我们知道这不是真的,所以你也应该练习代数:写很多表达式,练习它们,不要犯任何错误。

代数、微分和积分中的错误只是胡说八道;它们只会让物理学变得烦人,让你在分析某事时感到烦躁。你应该尽可能快地进行计算,并尽量减少错误。这只需要死记硬背练习-这是唯一的方法。就像在小学时制作乘法表一样:他们会在黑板上写一堆数字,然后你会去:“这个乘以那个,这个乘以那个”,依此类推-嘭!嘭!嘭!

 1-4 差异化


以同样的方式,你必须学会区分。制作一张卡片,在卡片上写下一些以下一般类型的表达式:例如,

等等。写下,比如说,十几个这样的表达。然后,偶尔从口袋里拿出卡片,用手指指着一个表达,然后读出它的派生词。

换句话说,您应该能立即看到:

看到了吗?所以第一件事就是要记住怎么做导数-冷静。这是必要的练习。

现在,对于区分更复杂的表达式,求和的导数很简单:它只是每个单独求和项的导数之和。在我们物理课程的这个阶段,不需要知道如何区分比上面更复杂的表达式,或者它们的求和,所以在这个复习的精神中,我不应该告诉你更多。但是有一个用于区分复杂表达式的公式,通常在微积分课程中不会以我将要告诉你的形式给出,结果证明非常有用。你以后不会学到它,因为没有人会告诉你,但知道如何做这件事是很重要的。

假设我想要区分以下内容:

现在,问题是如何迅速地做到这一点。这就是你如何迅速地做到这一点。(这些只是规则;这是我简化数学的程度,因为我们正在与勉强能够坚持下去的人一起工作。)看!

您再次写下表达式,并在每个加数后面加上括号:

接下来,您将在括号内写入一些内容,这样当您完成所有工作时,您将得到原始表达式的导数。(这就是为什么您要再次写下表达式,以防您不想丢失它。)

现在,您看每个术语,画一条线-一个分隔符-并将术语放在分母中:第一个术语是 ;放在分母中。术语的幂放在前面(它是第一次幂,1),术语的导数(通过我们的实践游戏), ,放在分子中。这是一个术语:

6 怎么样?忘了吧!前面的任何数字都没有任何区别:如果你愿意的话,你可以开始,“6 放在分母里;它的幂,1,放在前面;它的导数,0,放在分子里。”

下一个项: 放在分母中;指数 +2 放在前面;导数 放在分子中。下一个项 放在分母中;指数 (倒数平方根是负半次幂)放在前面;导数 放在分子中。下一个项 放在分母中;其指数 放在前面;其导数 4 放在分子中。关闭括号。这是一个加数:

下一个被加数,第一项:幂是 。我们正在计算幂的对象是 ;导数为 2。下一个项的幂, ,是-1。(你看,这是一个倒数。)这个项放在分母中,它的导数(这是唯一比较困难的部分)有两部分,因为它是一个和: 。关闭括号:

这是原始表达式的导数。因此,您可以看到,通过记忆这种技巧,您可以对任何东西进行区分-除了正弦、余弦、对数等等,但您可以很容易地学习这些规则;它们非常简单。然后,即使术语包括切线和其他内容,您也可以使用这种技巧。

我注意到当我把它写下来时,你担心这是一个如此复杂的表达,但我认为你现在可以欣赏到这是一种非常强大的区分方法,因为它可以立即给出答案,无论多么复杂。

这里的想法是,函数 相对于 的导数是

(其中 是常数)。

然而,在这门物理课程中,我怀疑任何问题都不会那么复杂,所以我们可能不会有机会使用这个。无论如何,这就是我区分的方式,现在我做得相当不错,所以就这样吧。

 1-5 整合


现在,相反的过程是积分。您应该尽快学会同样熟练地进行积分。积分并不像微分那样容易,但您应该能够在脑中积分简单的表达式。并不需要能够积分每一个表达式;例如, 不可能以简单的方式积分,但下面的其他表达式可以。因此,当您选择要练习积分的表达式时,请注意它们可以轻松完成:

我没有更多关于微积分的东西要告诉你了。剩下的就看你了:你必须练习微分和积分,当然还有减少像方程(1.7)这样可怕的代数。以这种乏味的方式练习代数和微积分-这是第一要务。

 1-6 矢量


我们参与的数学的另一个分支作为一门纯数学学科是矢量。你首先必须知道什么是矢量,如果你对它没有感觉,我不知道该怎么办:我们需要互相交流一段时间,让我了解你的困难,否则我无法解释。矢量就像一个具有特定方向的推力,或者具有特定方向的速度,或者具有特定方向的运动-它在纸上由一个指向事物方向的箭头表示。例如,我们通过一个指向力方向的箭头来表示对某物体的力,箭头的长度是力的大小在某种任意比例尺度上的度量-然而,这个比例尺度必须对问题中的所有力保持不变。如果你使另一个力强度加倍,你可以用一个长度加倍的箭头来表示。(见图 1-1。)

现在,这些向量可以进行操作。也就是说,如果有两个力同时作用于一个物体,比如说,两个人在推一个东西,那么这两个力可以用两个向量表示。


图 1-1 两个由箭头表示的向量。

图 1-2 在同一点施加的两个力的表示。

箭头 。当我们绘制类似这样的图表时,通常方便将箭头的尾部放在施加力的位置,尽管一般来说矢量的位置没有意义。(见图 1-2。)

如果我们想要知道与矢量相加对应的净合力或总力,我们可以通过将一个矢量的尾部移动到另一个矢量的头部来绘制这个矢量。 (因为它们在移动后仍然是相同的矢量,因为它们具有相同的方向和相同的长度。)然后 是从 的尾部到 的头部绘制的矢量(或从 的尾部到 的头部),如图 1-3 所示。这种矢量相加的方法有时被称为“平行四边形法”。

另一方面,假设有两个作用于物体的力,但我们只知道其中一个是 ;另一个我们不知道的,我们将其称为 。然后,如果物体上的总力被确定为 ,我们有

图 1-3“平行四边形法”进行矢量相加。


。因此, 。因此,要找到 ,您必须取两个向量的差异,而这可以通过两种方式之一来实现:您可以取 ,这是一个与 方向相反的向量,并将其加到 上。(见图 1-4。)

否则, 只是从 的头到 的头绘制的向量。

现在,第二种方法的缺点是,您可能会倾向于绘制如图 1-5 所示的箭头;尽管差异的方向和长度是正确的,但力的应用并不位于箭头的尾部-所以要小心。如果您对此感到紧张,或者有任何困惑,请使用第一种方法。(见图 1-6。)

我们也可以沿着某些方向投影向量。例如,如果我们想知道在“ ”方向上的力是多少(称为该方向上的力的分量),很容易:我们只需将 垂直投影到 轴上,这就给出了该方向上的力的分量。

图 1-4 矢量减法,第一种方法。

图 1-5 矢量减法,第二种方法。


图 1-6 在同一点施加的两个力的减法。

方向,我们称之为 。在数学上, 的大小(我将写为 )乘以 轴所成角的余弦;这来自直角三角形的性质。(见图 1-7。)

现在,如果将 相加得到 ,那么显然在给定方向' '形成直角的投影也会相加。因此,矢量和的分量是矢量分量的和,这对任何方向的分量都成立。(见图 1-8。)

图 1-7 矢量 在方向 上的分量。


图 1-8 矢量和的一个分量等于相应矢量分量的和。

特别方便的是描述向量的方法,即它们在垂直轴上的分量 (以及 - 世界上有三个维度;我总是忘记了,因为我总是在黑板上画图!)。如果我们有一个在 平面上的向量 ,并且我们知道它在 方向上的分量,那并不能完全定义 ,因为在 平面上有许多具有相同 方向分量的向量。但如果我们还知道 方向上的分量,那么 就完全确定了。(见图 1-9。)

沿 轴的分量可以写成 ;矢量的求和等同于其分量的求和,因此如果另一个矢量 的分量是 ,那么 的分量就是

图 1-9 中的一个向量在 -y 平面上完全由两个分量确定。

这是容易的部分;现在变得有点困难。有一种方法可以将两个向量相乘,得到一个标量-一个在任何坐标系中都相同的数字。(事实上,有一种方法可以从一个向量中得到一个标量,我会回头再讲。)你看,如果坐标轴改变,那么分量也会改变,但向量之间的角度和它们的大小保持不变。如果 是向量,它们之间的角度是 ,我可以取 的大小,乘以 的大小再乘以 的余弦,将这个数称为 ("A 点 ")。这个数,称为“点积”或“标量积”,在所有坐标系中都是相同的:

很明显,由于 上的投影,等于 上的投影乘以 的大小。同样,由于 上的投影,也等于 上的投影乘以 的大小。然而,我发现对我来说, 是记住点积是什么的最简单方法;然后我总是能立即看到其他关系。问题在于,当然,你有很多种方式来表达同样的事情,试图记住它们都是没有用的——我将在几分钟内更完整地阐述这一点。

我们也可以根据 在任意一组坐标轴上的分量来定义 。如果我取三条相互垂直的坐标轴 ,在任意方向上,那么 将会是。

并不是立即显而易见的。虽然我可以证明它,但是我要花很长时间,所以我记住了它们两个。

图 1-10 矢量点积 A || 在所有坐标系中都是相同的。

当我们将一个向量与自身进行点积时, 为 0,而 0 的余弦值为 1,所以 。就分量而言,它是 。该数字的正平方根就是向量的大小。


1-7 区分向量


现在,我们可以做所谓的矢量微分。矢量关于时间的导数是没有意义的,除非矢量当然取决于时间。这意味着我们必须想象一些始终不同的矢量:随着时间的推移,矢量不断变化,我们想要变化的速率。

例如,向量 可能是一个物体在时间 的位置,该物体正在飞行。在下一个时刻, ,物体已经从 移动到 ;我们想要计算在时间 的变化率。

规则如下:在区间 内,物体已经从 移动到 ,因此位移为 ,是从旧位置到新位置的差向量。(见图 1-11。)

当然,间隔 越短, 越接近 。如果你将 除以 ,然后取它们都趋近于零时的极限-那就是导数。在这种情况下,当 是位置时,它的导数是一个速度向量;速度向量是沿曲线的切线方向,因为这是位移的方向;它的大小你无法通过查看这张图片来得到,因为它取决于物体沿着曲线移动的速度有多快。速度向量的大小就是速度;它告诉你物体每单位时间移动多远。所以,这就是速度向量的定义:它是切线路径,其大小等于路径上的运动速度。(见图 1-12。)

图 1-11 位置矢量 和位移 在间隔 期间。

图 1-12 位置矢量 及其在时间 的导数

顺便提一下,在同一张图中绘制位置矢量和速度矢量是危险的,除非你非常小心——而且由于我们对这些事情有点困惑,我指出我能想到的所有可能的陷阱,因为你接下来可能想做的事情是为某种目的添加 。这是不合法的,因为要真正绘制速度矢量,你必须知道时间的比例尺:速度矢量的比例尺与位置矢量不同;事实上,它们有不同的单位。一般情况下不能将位置和速度相加——在这里也不能相加。
In order for me to actually draw the picture of any vector, I have to make a decision as to the scale. When we talked about forces, we said that so-andso many newtons were going to be represented by 1 inch (or 1 meter, or whatever). And here, we have to say that so-and-so many meters per second is going to be represented by 1 inch. Someone else could draw the picture with position vectors the same lengths as ours, but with the velocity vector one-third as long as ours-he's just using a different scale for his velocity vector. There's no unique way to draw the length of a vector because the choice of scale is arbitrary. 

现在,根据 分量的速度非常容易,因为例如,位置的 分量的变化率等于速度的 分量,依此类推。这仅仅是因为导数实际上是一个差异,而且由于差异向量的分量等于相应分量的差异,我们有

然后取极限,我们有导数的分量:

这对于任何方向都是正确的:如果我在任何方向上取 的分量,那么在该方向上的速度矢量分量就是该方向上 的分量的导数,但有一个严重的警告:方向不能随时间改变。你不能说,“我要在 的方向上取 的分量”,或者类似的话,因为 在移动。只有当你取分量的方向本身固定时,位置分量的导数等于速度分量才是正确的。因此,方程(1.15)和(1.16)只对 和其他固定轴有效;如果轴在你尝试求导时转动,那么公式就会复杂得多。
Those are some of the deviations and difficulties of differentiating vectors. 
Of course, you can differentiate the derivative of a vector, then differentiate that, and so on. I called the derivative of A "velocity," but that's only because is the position; if is something else, its derivative is something other than velocity. For example, if is the momentum, the time derivative of momentum equals the force, so the derivative of would be the force. And if were the velocity, the time derivative of the velocity is the acceleration, and so on. What I've been telling you is generally true of differentiating vectors, but here I've given only the example of positions and velocities. 

1-8 Line integrals 

Finally, there's only one more thing that I have to talk about for vectors, and that is a horrible, complicated thing, called a "line integral": 
We'll take as an example that you have a certain vector field , which you want to integrate along a curve from point to point . Now, in order for this line integral to mean something, there must be some way of defining the value of at every point on between and . If is defined as the force applied to an object at point , but you can't tell me how the force changes as you move along , at least between and , then "the integral 
FIGURE 1-13 A constant force F defined on the straight-line path . 
of along from to " makes no sense. (I said "at least," because could be defined anywhere else too, but at least you must define it on the part of the curve that you are integrating along.) 
In a moment I'll define the line integral of an arbitrary vector field along an arbitrary curve, but first let's consider the case where is constant, and is a straight-line path from to -a displacement vector, which I'll call . (See Fig. 1-13.) Then, since is constant, we can take it outside the integral (just like ordinary integration), and the integral of srom to is just , so the answer is . That's the line integral for a constant force and a straight-line path-the easy case: 
(Remember that is the component of the force in the direction of the displacement times the magnitude of the displacement; in other words, it's simply the distance along the line times the component of force in that direction. There are a lot of other ways to look at it, too: it's the component of the displacement in the direction of the force, times the magnitude of the force; it's the magnitude of the force times the magnitude of the displacement, times the cosine of the angle between them. These are all equivalent.) 
More generally, the line integral is defined as follows. First, we break up the integral by dividing between and into equal segments: , . Then the integral along is the integral along plus the integral along plus the integral along , and so on. We choose large so that we can approximate each by a little displacement vector, , over which has an approximately constant value, . (See Fig. 1-14.) Then, by the "constant force straight-line path" rule, segment contributes approximately to the integral. So, if you add together for equals 1 to , that's an excellent approximation to the integral. The integral is exactly equal to this sum only if we take the limit as goes 
FIGURE 1-14 A variable force defined on the curve . 
to infinity: you take the segments as fine as you can; you take them a little finer than that, and you get the correct integral: 
(This integral, of course, depends upon the curve-generally-though sometimes it doesn't in the physics.) 
Well, then, that's all there is to the mathematics that you have to know to do the physics-for now, at least-and these things, most particularly the calculus and the early parts of the vector theory, should become second nature. Some things-like the line integral—may not be second nature now, but they will be, eventually, as you use them more; they aren't so vital yet, and that's harder. The things you "gotta get into your head good," right now, are the calculus, and the little things about taking the components of vectors in various directions. 

1-9 A simple example 

I'll give one example-just a very simple one-to show how to take components of vectors. Suppose we have a machine of some kind, as illustrated in Figure 1-15: it's got two rods connected by a pivot (like an elbow joint) with a big weight on it. The end of one rod is connected to the floor by a stationary pivot, and the end of the other rod has a rolling pivot that rolls along the floor in a slot-it's part of a machine, see, and it's going choochoog, choo-choog-the roller's going back and forth, the weight's going up and down, and so on. 
choo- 
choog 
FIGURE 1-15 A simple machine. 
Let's say the weight is , the rods are 0.5 meters long, and at a certain moment when the machine is standing still, the distance from the weight to the floor just happens to come out, luckily, to 0.4 meters-so that we have a 3-4-5 triangle, to make the arithmetic easier. (See Fig. 1-16.) (The arithmetic shouldn't make any difference; the real difficulty is to get the ideas right.) 
The problem is to figure out what horizontal push you have to make on the roller in order to hold that weight up. Now, I'm going to make an assumption that we will need in order to do the problem. We make the assumption that when a rod has pivots at both ends, then the net force is always directed along the rod. (It turns out to be true; you may feel it's selfevident.) It would not necessarily be true if there were a pivot only at one end of the rod, because then I could push the rod sideways. But if there's a 
FIGURE 1-16 What force, P, is required to hold up the weight? 
pivot at both ends, I can only push along the rod. So let's suppose that we know that-that the forces must lie in the directions of the rods. 
We also know something else from the physics: that the forces are equal and opposite at the ends of the rods. For example, whatever force is exerted by the rod on the roller must also be exerted by that rod, in the opposite direction, on the weight. So, that's the problem: with these ideas about the properties of rods, we try to figure out what's the horizontal force on the roller. 
I think the way I'd like to try to do it is this: the horizontal force exerted on the roller by the rod is a certain component of the net force on it. (Of course, there's also a vertical component due to the "confining slot," which is unknown and uninteresting; it's part of the net force on the roller, which is exactly opposite the net force on the weight.) Therefore I can get the components of the force exerted on the roller by the rod-in particular, the horizontal component I want-if I can get the components of the force exerted by the rod on the weight. If I call the horizontal force on the weight , then the horizontal force on the roller is , and the force needed to hold the weight up is equal and opposite to that, so . 
The vertical force on the weight from the rod, , is very easy: it's simply equal to the weight of the thing, which is , times , the gravitational constant. (Something else you have to know from physics-g is 9.8 , in the mks system.) is 2 times , or 19.6 newtons, so the vertical force on the roller is -19.6 newtons. Now, how can I get the horizontal force? Answer: I get it by knowing that the net force must lie along the rod. If is 19.6 , and the net force lies along the rod, then how much must be? (See Fig. 1-17.) 
Well, we have the projections of the triangles, which have been designed very nicely, so that the ratio of the horizontal to the vertical sides is 3 to 4 ; that's the same ratio as is to , (I don't care about the net force, , here; I only need the force in the horizontal direction) and I already know what the vertical force is. So, the magnitude of the horizontal force-unknown-is to 19.6 as 0.3 is to 0.4 . Therefore I multiply by 19.6 and I get: 
We conclude that the horizontal force on the roller needed to hold the weight up, is 14.7 newtons. That's the answer to this problem. 
FIGURE 1-17 The force on the weight and the force on the roller from one rod. 

Or is it? 

You see, you can't do physics just by plugging in the formulas: you'll never get anywhere without having something else besides knowing the rules, the formulas for projections, and all that stuff; you have to have a certain feeling for the real situation! I'll make some more remarks about that in a minute, but here, in this particular problem, the difficulty is the following: the net force on the weight is not only from one rod, there's also a force exerted on it by the other rod, in some direction, and I left that out when I made the analysis-so it's all wrong! 
I also have to worry about the force that the rod with the stationary pivot exerts on the weight. Now it's getting complicated: how can I figure out what that force is? Well, what is the net force of everything on the weight? Just the gravity-it just balances the gravity; there is no force horizontally on the weight. So the clue by which I can find out how much "juice" there is along the rod with the stationary pivot, is to notice that it must exert just enough horizontally to balance the horizontal force that the other rod is exerting. 
Therefore, if I were to draw the force that the rod with the stationary pivot exerts, its horizontal component would be exactly opposite the horizontal component that the rod with the roller exerts, and the vertical components would be equal because of the identical 3-4-5 triangles the rods make: both rods are pushing up the same amount because their horizontal 
components must balance-if the rods were different lengths, you'd have a little more work to do, but it's the same idea. 
So, let's start out with the weight again: the forces from the rods on the weight are the first things to get straightened out. So, let's look at the forces from the rods on the weight. The reason I keep repeating this to myself is because otherwise I get the signs all mixed up: The force from the weight on the rods is the opposite of the force from the rods on the weight. I always have to start over after I get all balled up like this; I have to think it out again, and make up my mind as to what I want to talk about. So I say, "Look at the forces from the rods on the weight: there's a force , which is in the direction of one rod. Then there's a force , in the direction of the other rod. Those are the only two forces, and they are in the directions of the rods." 
Now, the net of these two forces-ahhhh! I'm beginning to see the light! The net of these two forces has no horizontal component, and a vertical component of 19.6 newtons. Ah! Let me draw the picture again, since I did it wrong before. (See Fig. 1-18.) 
FIGURE 1-18 The force on the weight and the forces on the roller and pivot, from both rods. 
The horizontal forces balance, therefore the vertical components add, and the 19.6 newtons is not just the vertical component of the force from one rod, but the total from both; since each rod contributes half, the vertical component from the rod with the roller is only 9.8 newtons. 
Now when we take the horizontal projection of this force, multiplying it by as we did before, we get the horizontal component of force from the rod with the roller on the weight, and that takes care of that: 

1-10 Triangulation 

I have a few moments left, so I'd like to make a little speech about the relation of the mathematics to the physics-which, in fact, was well illustrated by this little example. It will not do to memorize the formulas, and to say to yourself, "I know all the formulas; all I gotta do is figure out how to put 'em in the problem!" 
Now, you may succeed with this for a while, and the more you work on memorizing the formulas, the longer you'll go on with this method-but it doesn't work in the end. 
You might say, "I'm not gonna believe him, because I've always been successful: that's the way I've always done it; I'm always gonna do it that way." 
You are not always going to do it that way: you're going to flunknot this year, not next year, but eventually, when you get your job, or something-you're going to lose along the line somewhere, because physics is an enormously extended thing: there are millions of formulas! It's impossible to remember all the formulas-it's impossible! 
And the great thing that you're ignoring, the powerful machine that you're not using, is this: suppose Figure 1-19 is a map of all the physics formulas, all the relations in physics. (It should have more then two dimensions, but let's suppose it's like that.) 
Now, suppose that something happened to your mind, that somehow all the material in some region was erased, and there was a little spot of missing goo in there. The relations of nature are so nice that it is possible, by logic, to "triangulate" from what is known to what's in the hole. (See Fig. 1-20.) 
FIGURE 1-19 Imaginary map of all the physics formulas. 
FIG URE 1-20 Forgotten facts can be recreated by triangulating from known facts. 
And you can re-create the things that you've forgotten perpetually-if you don't forget too much, and if you know enough. In other words, there comes a time-which you haven't quite got to, yet-where you'll know so many things that as you forget them, you can reconstruct them from the pieces that you can still remember. It is therefore of first-rate importance that you know how to "triangulate" -that is, to know how to figure something out from what you already know. It is absolutely necessary. You might say, "Ah, I don't care; I'm a good memorizer! I know how to really memorize! In fact, I took a course in memory!" 
That still doesn't work! Because the real utility of physicists-both to discover new laws of nature, and to develop new things in industry, and so 
FIGURE 1-21 New discoveries are made by physicists triangulating from the known to the previously unknown. 
on-is not to talk about what's already known, but to do something newand so they triangulate out from the known things: they make a "triangulation" that no one has ever made before. (See Fig. 1-21.) 
In order to learn how to do that, you've got to forget the memorizing of formulas, and to try to learn to understand the interrelationships of nature. That's very much more difficult at the beginning, but it's the only successful way. 

Laws and Intuition 

REVIEW LECTURE B 

Last time we discussed the mathematics that you need to know to do the physics, and I pointed out that equations should be memorized as a tool, but that it isn't a good idea to memorize everything. In fact, it's impossible in the long run to do everything by memory. That doesn't mean to do nothing by memory-the more you remember, in a certain sense, the better it isbut you should be able to re-create anything that you forgot. 
Incidentally, on the subject of suddenly finding yourself below average when you come to Caltech, which we also discussed last time, if you somehow escape from being in the bottom half of the class, you're just making it miserable for somebody else, because now you're forcing somebody else to go down to the bottom half! But there is a way you can do it without disturbing anybody: find and pursue something interesting that delights you especially, so you become a kind of temporary expert in some phenomenon that you heard about. It's the way to save your soul—then you can always say, "Well, at least the other guys don't know anything about this!" 

2-1 The physical laws 

Now, in this review, I'm going to talk about the physical laws, and the first thing to do is to state what they are. We stated them in words a lot during the lectures so far, and it's hard to say it all again without using the same amount of time, but the physical laws can also be summarized by some equations, which I'll write down here. (By this time I'll suppose that your mathematics is developed to a point that you can understand the notation right away.) The following are all the physical laws that you should know. 
First: 
That is, the force, , is equal to the rate of change, with respect to time, of the momentum, . ( and are vectors. You're supposed to know what the symbols mean by this time.) 
I'd like to emphasize that in any physical equation it is necessary to understand what the letters stand for. That doesn't mean to say, "Oh, I know that's , which stands for the mass in motion times the velocity, or the mass at rest times the velocity over the square root of 1 minus squared over c squared": 1 
Instead, to understand physically what the stands for, you have to know that is not just "the momentum"; it's the momentum of something-the momentum of a particle whose mass is and whose velocity is . And, in Eq. 2.1, F is the total force-the vector sum of all the forces that are acting on that particle. Only then can you have an understanding of these equations. 
Now, here's another physical law that you should know, called the conservation of momentum: 
The law of conservation of momentum says that the total momentum is a constant in any situation. What does that mean, physically? For instance in a collision, it's the same as saying that the sum of the momenta of all the particles before a collision is the same as the sum of the momenta of all the particles after the collision. In the relativistic world, the particles can be different after the collision-you can create new particles and destroy old ones-but it's still true that the vector sum of the total momenta of everything before and after is the same. 
The next physical law you should know, called the conservation of energy, takes the same form: 
That is, the sum of the energies of all the particles before a collision is equal to the sum of the energies of all the particles after the collision. In order to use this formula, you have to know what the energy of a particle is. The energy of a particle with rest mass and speed is 

2-2 The nonrelativistic approximation 

Now, those are the laws that are correct in the relativistic world. In the nonrelativistic approximation-that is, if we look at particles at low velocity compared to the speed of light-then there are some special cases of the above laws. 
To begin with, the momentum at low velocities is easy: is almost 1, so Eq. (2.2) becomes 
That means the formula for the force, , can also be written . Then, by moving the constant, , out in front, we see that for low velocities, the force equals the mass times the acceleration: 
The conservation of momentum for particles at low velocities has the same form as Eq. (2.3), except that the formula for the momenta is (and the masses are all constant): 
However, the conservation of energy at low velocities becomes two laws: first, that the mass of each particle is constant-you can't create or destroy any material-and second, that the sum of the s (the total kinetic energy, or K.E.) of all the particles is constant:  
If we think of large, everyday objects as particles with low velocitieslike an ashtray is a particle, approximately-then the law that the sum of the kinetic energies before equals the sum after is not true, because there can be some s of the particles all mixed up on the inside of the objects, in the form of internal motion-heat, for example. So in a collision between large objects, this law appears to fail. It's only true for fundamental particles. Of course with large objects, in can happen that not much energy goes into the internal motion, so the conservation of energy appears to be nearly true, and that's called a nearly elastic collision-which is sometimes idealized as a perfectly elastic collision. So energy is much more difficult to keep track of than momentum, because the conservation of energy needn't be true when the objects involved are large, like weights and so on. 

2-3 Motion with forces 

Now, if we look not at a collision, but at motion when forces act-then we get first a theorem that tells us that the change in kinetic energy of a particle is equal to the work done on it by the forces: 
Remember, this means something-you have to know what all the letters mean: it means that if a particle is moving on some curve, , from point to point , and it's moving under the influence of a force , where is the total force acting on the particle, then if you knew what the of the particle is at point , and what it is over at point , they differ by the integral, from to , of , where is an increment of displacement along . (See Fig. 2-1). 
and
In certain cases, that integral can be calculated easily ahead of time, because the force on the particle depends only on its position in a simple way. Under those circumstances we can write that the work done on the particle is equal to the change in another quantity called its potential energy, or P.E. Such forces are said to be "conservative": 
FIGURE 2-1 . 
Incidentally, the words that we use in physics are terrible: "conservative forces" doesn't mean that the forces are conserved, but rather that the forces are such that the energy of the things that the forces work on can be conserved. It's very confusing, I admit, and I can't help it. 
The total energy of a particle is its kinetic energy plus its potential energy: 
When only conservative forces act, a particle's total energy does not change: 
But when nonconservative forces act-forces not included in any potential-then the change in a particle's energy is equal to the work done on it by those forces. 
FIGURE 2-2 Velocity and acceleration vectors for circular motion. 
Now, the end of this part of the review comes when we give all the rules that are known for the various forces. 
But before I do that, there's a formula for acceleration that is very useful: if, at a given instant, a thing is moving on a circle of radius at velocity , then its acceleration is directed toward the center, and is equal in magnitude to . (See Fig. 2-2.) That's sort of at "right angles" to everything else I've been talking about, but it's good to remember that formula, because it's a pain in the neck to derive it:  
TABLE 2-1 
False in general 
True always 
(true only at low velocities) 
Force 
Momentum 
Energy 
TABLE  
True with conservative forces 
. is undefined. 
Definitions: Kinetic Energy, K.E. Work, . 

2-4 Forces and their potentials 

Now, to get back on the track, I will list a series of laws of force, and the formulas for their potentials. 
TABLE 2-3 
Force  Potential 
Gravity, near the earth's surface 
Gravity, between particles 
Electric Charge 
Electric Field 
Ideal Spring 
Friction 
First is surface gravity on the earth. The force is down, but never mind the sign; just remember which direction the force is, because who knows what your axes are-maybe you're making the axis down! (You're allowed to.) So the force is , and potential energy is , where is the mass of an object, is a constant (the acceleration of gravity at the surface of the earth-otherwise, the formula is no good!), and is the height above the ground, or any other level. That means the value of the potential energy can be zero any place you want. The way we're going to use potential energy is to talk about its changes-and then, of course, it doesn't make any difference if you add a constant. 

接下来是粒子之间的空间重力;这种力是向中心方向作用的,并且与两个质量的乘积除以两者之间距离的平方成正比, ,或 ,或者您想要写的任何其他方式。最好只是


记住力的方向比担心符号更重要。但这部分你必须记住:重力的力与粒子之间距离的平方反比。(那么符号是哪个方向?嗯,重力中喜欢相互吸引,所以力与半径矢量方向相反。这告诉你我不记得符号;我只记得物理上符号的方向:粒子相互吸引-这就是我要记住的全部。)

现在,两个粒子之间的势能是 。我很难记住势能的方向。让我们看看:当粒子靠近时会失去能量,这意味着当 较小时,势能应该较小,所以是负的-希望这是对的!我在符号方面有很大困难。

对于电力,力与电荷的乘积成正比, ,除以它们之间的距离的平方。但是比例常数,与重力不同,不是写在分子中,而是写在分母中作为 。电力作用力是径向的,就像引力一样,但是符号规律相反:同性相斥,电性上,因此电势能的符号与重力势能相反,但比例常数不同: 而不是

根据电学定律的一些技术要点:对 单位电荷的力可以写成电场 倍, ,能量可以写成电势 倍, 。这里, 是一个矢量场, 是一个标量场。 以库仑为单位, 以伏特为单位-当能量以焦耳为常用单位时。

继续这个公式表,接下来是一个理想弹簧。拉出理想弹簧到距离 的力是一个常数 ,乘以 。现在,你又得知道这些字母的意思: 是你把弹簧从平衡位置拉开的距离,力会把它拉回 的距离。我加上符号只是为了说明弹簧是往后拉的;你很清楚弹簧会把东西往后拉,而不是在你拉它时把它推出更远。现在,势能是 。为了拉出弹簧,你要对它做功,所以拉出后,势能是正的。所以这个符号的问题对于弹簧来说很简单。

你看,像我记不住的标志这样的细节,我尝试通过论证来重建,这就是我记住所有我不记得的事情的方式。

摩擦:干燥表面上的摩擦力是 ,而且你必须知道符号的含义:当一个物体被推到另一个表面上,其垂直于表面的分量为 时,为了使其沿表面滑动,所需的力是


。您可以轻松地确定力的方向;它与您滑动的方向相反。

现在,在表 2-3 中摩擦的势能下,答案是否定的:摩擦不会保存能量,因此我们没有摩擦的势能公式。如果你沿着表面推动物体,你会做功;然后,当你把它拖回来时,你又会做功。所以在完成一个完整的循环后,你并没有没有能量变化;你已经做了功-因此摩擦没有势能。


2-5 通过示例学习物理


这些是我记得必要的所有规则。所以你说,“嗯,这很容易:我只需记住整个该死的表格,然后我就会知道所有的物理。”嗯,这行不通。

实际上,一开始可能会运作得相当不错,但随着时间的推移会变得越来越困难,正如我在第一章中指出的那样。因此,我们接下来要学习的是如何将数学应用于物理,以便理解这个世界。方程式为我们跟踪事物,因此我们将它们用作工具,但为了做到这一点,我们必须知道方程式所讨论的对象是什么。
The problem of how to deduce new things from old, and how to solve problems, is really very difficult to teach, and I don't really know how to do it. I don't know how to tell you something that will transform you from a person who can't analyze new situations or solve problems, to a person who can. In the case of the mathematics, I can transform you from somebody who can't differentiate to somebody who can, by giving you all the rules. But in the case of the physics, I can't transform you from somebody who can't to somebody who can, so I don't know what to do. 
Because I intuitively understand what's going on physically, I find it difficult to communicate: I can only do it by showing you examples. Therefore, the rest of this lecture, as well as the next one, will consist of doing a whole lot of little examples-of applications, of phenomena in the physical world or in the industrial world, of applications of physics in different places-to show you how what you already know will permit you to understand or to analyze what's going on. Only from the examples will you be able to catch on. 
We have found many old texts of ancient Babylonian mathematics. Among them is a great library full of mathematics workbooks for students. And it's very interesting: the Babylonians could solve quadratic equations; they even had tables for solving cubic equations. They could do triangles (See Fig. 2-3); they could do all kinds of things, but they never wrote down 
FIG U RE 2-3 Pythagorean triples in the Plimpton 322 tablet from about 1700 B.C. 
an algebraic formula. The ancient Babylonians had no way of writing formulas; instead, they did one example after the other-that's all. The idea was you're supposed to look at examples until you get the idea. That's because the ancient Babylonians didn't have the power of expression in mathematical form. 
Today we do not have the power of expression to tell a student how to understand physics physically! We can write the laws, but we still can't say how to understand them physically. The only way you can understand physics physically, because of our lack of machinery for expressing this, is to follow the dull, Babylonian way of doing a whole lot of problems until you get the idea. That's all I can do for you. And the students who didn't get the idea in Babylonia flunked, and the guys who did get the idea died, so it's all the same! 
So, now we try. 

2-6 Understanding physics physically 

The first problem that I mentioned in Chapter 1 involved a lot of physical things. There were two rods, a roller, a pivot, and a weight-it was , I believe. The geometrical relation of the rods was , and 0.5 , and 
FIGURE 2-4 The simple machine of Chapter 1. 
the problem was, what is the horizontal force required at the roller to hold the weight up, as shown in Figure 2-4? It took a little fiddling around (in fact, I had to do it twice before I got it right), but we found that the horizontal force on the roller corresponded to a weight of , as shown in Figure 2-5. 
Now, if you just let yourself loose of the equations and think about it a while, and you pull back your sleeves and wave your arms, you can almost understand what the answer's going to be-at least can. Now, I have to teach you how to do that. 
FIG URE 2-5 Distribution of force from the weight, through the rods, to the roller and pivot. 
You could say, "Well, the force from the weight comes straight down, and it corresponds to , and the weight is balanced equally on two legs. So the vertical force from each leg must be enough to hold up . Now, the corresponding horizontal force on each leg must be the fraction of the vertical force that is merely the horizontal to vertical ratio in this right triangle, which is 3 to 4 . Therefore, the horizontal force on the roller corresponds to weight—period." 
Now, let's see if it makes sense: according to that idea, if the roller were shoved much closer to the pivot, so that the distance between the legs was much smaller, I would expect much less force on the roller. Is it true, that when the weight is waaaay up there, the force on the roller should be low? Yeah! (See Fig. 2-6.) 
If you can't see it, it's hard to explain why-but if you try to hold something up with a ladder, say, and you get the ladder directly under the thing, it's easy to keep the ladder from sliding out. But if the ladder is leaning way out at an angle, it's damn hard to keep the thing up! In fact, if you go waaaaay out, so that the far end of the ladder is only a very tiny distance from the ground, you'll find a nearly infinite horizontal force is required to hold the thing up at a very slight angle. 
Now, all these things you can feel. You don't have to feel them; you can work them out by making diagrams and calculations, but as problems get more and more difficult, and as you try to understand nature in more and more complicated situations, the more you can guess at, feel, and understand without actually calculating, the much better off you are! So that's what you should practice doing on the various problems: when you have time somewhere, and you're not worried about getting the answer for a quiz or something, look the problem over and see if you can understand the way it behaves, roughly, when you change some of the numbers. 
FIGURE 2-6 The force on the roller varies with the height of the weight. 
Now, how to explain how to do that, I don't know. I remember once trying to teach somebody who was having a great deal of trouble taking the physics course, even though he did well in mathematics. A good example of a problem that he found impossible to solve was this: "There's a round table on three legs. Where should you lean on it, so the table will be the most unstable?" 
The student's solution was, "Probably on top of one of the legs, but let me see: I'll calculate how much force will produce what lift, and so on, at different places." 
Then I said, "Never mind calculating. Can you imagine a real table?" 
"But that's not the way you're supposed to do it!" 
"Never mind how you're supposed to do it; you've got a real table here with the various legs, you see? Now, where do you think you'd lean? What would happen if you pushed down directly over a leg?" 
"Nothin'!" 
I say, "That's right; and what happens if you push down near the edge, halfway between two of the legs?" 
"It flips over!" 
I say, "OK! That's better!" 
The point is that the student had not realized that these were not just mathematical problems; they described a real table with legs. Actually, it wasn't a real table, because it was perfectly circular, the legs were straight up and down, and so on. But it nearly described, roughly speaking, a real table, and from knowing what a real table does, you can get a very good idea of what this table does without having to calculate anything-you know darn well where you have to lean to make the table flip over. 
So, how to explain that, I don't know! But once you get the idea that the problems are not mathematical problems but physical problems, it helps a lot. 
Now I'm going to apply this approach to a series of problems: first, in machine design; second, to motions of satellites; third, to the propulsion of rockets; fourth, to beam analyzers, and then, if I still have time, to the disintegration of pi mesons, and a couple of other things. All these problems are pretty difficult, but they illustrate various points as we go along. So, let's see what happens. 

2-7 A problem in machine design 

First, machine design. Here's the problem: there are two pivoted rods, each a half a meter long, which carry a weight of -sound familiar?-and at the left a roller is being driven back or forth by some machinery at a constant 
velocity of 2 meters per second, OK? And the question for you is, what is the force required to do that when the height of the weight is 0.4 meters? (See Fig. 2-7.) 
You might be thinking, "We did that already! The horizontal force required to balance the weight was of a weight." 
But I argue, "The force is not , because the weight is moving." 
You might counter, "When an object is moving, is a force required to keep it moving? No!" 
"But a force is required to change the object's motion." 
"Yes, but the roller is moving at a constant velocity!" 
"Ah, yes, that's true: the roller is moving at a constant velocity of 2 meters per second. But what about the weight: is that moving at a constant velocity? Let's feel it: does the weight move slowly sometimes, and fast sometimes?" 
"Yes . . ." 
"Then its motion is changing-and that's the problem we have: to figure out the force required to keep the roller moving constantly at 2 meters per second when the weight is at a height of 0.4 meters." 
Let's see if we can understand how the weight's motion is changing. 
Well, if the weight is near the top and the roller is almost directly underneath it, the weight hardly moves up and down. In this position the weight is not moving very fast. But if the weight is down low, like we had before, and you push the roller just a shade to the right-boy, that weight has to move way up to get out of the way! So, as we push the roller, the weight starts moving up very fast, and then slows down, correct? If it's going up very fast and it gets slower, which way is the acceleration, then? The acceleration must be down: it's like I threw it up fast and it slowed down-like it's falling, sort of, so that the force must be reduced. That is, the horizontal force I'm going to 
FIGURE 2-7 The simple machine, in motion. 
get on the roller is going to be less than it would be if it weren't moving. So we have to figure out how much less. (The reason I went through all this is that I couldn't keep the signs right in the equations, so I had at the end to figure out which way the sign was by this physical argument.) 
Incidentally, I have done this problem about four times-making a mistake every time-but I have, at last, got it right. I appreciate that when you do a problem the first time, there are many, many things that get confused: I got the numbers mixed up, I forgot to square, I put the sign of the time wrong, and I did a lot of other things wrong, but anyway, now I have it right, and I can show you how it can be done correctly-but I must admit, frankly, that it took me quite a while to get it right. (Boy, I'm glad I've still got my notes!) 
Now, in order to calculate the force, we need the acceleration. It's impossible to find the acceleration by just looking at the diagram, with all dimensions fixed at the time of interest. To find the rate of change, we can't leave it fixed-I mean, we can't say, "Well, this is 0.3 , this is 0.4 , this is 0.5 , this is 2 meters per second, what's the acceleration?" There's no easy way to get at that. The only way to find the acceleration is to find the general motion and differentiate it with respect to time. Then we can put in the value of the time that corresponds to this particular diagram. 
So I need, therefore, to analyze this thing in a more general circumstance, when the weight is at some arbitrary position. Let's say the pivot and the roller are together at time , and that the distance between them is , because the roller is moving at 2 meters per second. The time when we want to make the analysis is 0.3 seconds before they're together, which is , and so the distance between them is actually negative -but it'll be all right if we use and let the distance be . There will be a lot of signs wrong at the end, but because of my little fishing around at the beginning as to what the right sign was for the force, I'll be all right-I'd rather leave the mathematics alone and get the sign right from physics, than the other way around. Anyhow, here we are. (Don't you do this; it's too difficult-it takes practice!) 
(Remember what the means: is the time before the pivots are together, which is sort of a negative time, which will make everybody crazy, but I can't help it-this is the way I did it.) 
Now, the geometry is such that the weight is always (horizontally) halfway between the roller and the pivot. So, if we put the origin of our coordinate system at the pivot, then the coordinate of the weight is . The length of the rods is 0.5 , so for the height of the weight, its coordinate, I got , by the Pythagorean theorem. (See Fig. 2-8.) Can you imagine, the first time I worked this problem out, very carefully, I got ? 
Now we need the acceleration, and the acceleration has two components: one is the horizontal acceleration, and the other is the vertical acceleration. If there's a horizontal acceleration, then there's a horizontal force, and we've got to chase that down through the rod and figure out what it is on the roller. This problem is a little easier than it looks because there is no horizontal acceleration-the coordinate of the weight is always half that of the roller; it moves in the same direction, but at half its speed. So, the weight moves horizontally at a constant 1 meter per second. There's no acceleration sideways, thank god! That makes the problem a little easier; we only have to worry about the up and down acceleration. 
Therefore to get the acceleration, I must differentiate the height of the weight twice: once to get the velocity in the direction, and again, to get the acceleration. The height is . You should be able to differentiate this fast, and the answer is 
It's negative, even though the weight is moving up. But I got my signs all bungled up, so I'll leave it this way; anyway, I know the speed is up, so this would be wrong if were positive, but should really be negative-so it's right anyway. 
Now, we calculate the acceleration. There are several ways you can do this: You can do it using ordinary methods, but I'll use the new "super" method I showed you in Chapter 1: you write down again; then you say, 
FIGURE 2-8 Using the Pythagorean Theorem to find the height of the weight. 
"The first term that I want to differentiate is to the first power, . Derivative of is -1 . The next term that I want to differentiate is to the minus one-half power; the term is . The derivative is . Done!" 
Now we have the acceleration at any time. In order to find the force, we need to multiply it by the mass. So, the force-that is, the extra force besides gravity that's involved because of the acceleration-is the mass, which is 2 kilograms, times this acceleration. Let's put the numbers into this thing: is 0.3 . The square root of is the square root of 0.25 minus 0.09 , which is 0.16 , the square root of which is 0.4 -well, how convenient! Is that right? Yes indeed, sir; this square root is the same as itself, and when is 0.3 , according to our diagram, is 0.4 . , no mistake. 
(I'm always checking things while I calculate because I make so many mistakes. One way to check it is to do the mathematics very carefully; the other way to check it is to keep seeing whether the numbers that come out are sensible, whether they describe what's really happening.) 
Now we calculate. (The first time I did this I put instead of 0.16 -it took me a while to find that one!) We get some number or other, which I have worked out; it's about 3.9. 
So, the acceleration is 3.9 , and now for the force: the vertical force that this acceleration corresponds to is 3.9 times 2 kilograms times . No, that's not right! I forgot there's no now; 3.9 is the true acceleration. The vertical force of gravity is times the acceleration due to gravity, 9.8-that's -and the vertical component of the force of the rod on the weight is the sum of these two, with a minus sign for one; the relative signs are opposite. So, you subtract, and you get 
But remember, now, this is the vertical force on the weight. How much is the horizontal force on the roller? The answer is, the horizontal force on the roller is three-quarters of one-half of the vertical force on the weight. We noticed that before: the force pulling down is balanced by the two legs, which divides it by two, and then the geometry is such that the ratio of the horizontal component to the vertical component is -and so the answer is that the horizontal force on the roller is three-eighths of the vertical force 
on the weight. I worked out the three-eighths of each of these things, and I got 7.35 for gravity, and 2.925 for the inertial force, and the difference is 4.425 newtons-about 3 newtons less than the force required to support the weight in the same position when it was not moving. (See Fig. 2-9.) 
Anyway, that's how you design machines; you know how much force you need to drive that thing forward. 
Now, you say, is that the correct way do to it? 
There is no such thing! There is no "correct" way to do anything. A particular way of doing it may be correct, but it is not the correct way. You can do it any damn way you want! (Well, excuse me: there are incorrect ways to do things . . . ) 
Now, if I were sufficiently smart, I could just look at this thing and tell you what the force is, but I'm not sufficiently smart, so I had to do it some way or other-but there are many ways of doing it. I will illustrate one other way, which is very useful, especially if you are involved in designing real machines. This problem is somewhat simplified by having the legs equal, and so on, because I didn't want to complicate the arithmetic. But the physical ideas are such that you can figure the whole thing out another way, even when the geometry is not so simple. And that is the following, interesting, other way. 
When you have a whole lot of levers moving a lot of weights, you can do this: as you drive the thing along, and all the weights begin to move 
FIGURE 2-9 Using similar triangles to find the force on the roller. 
because of all the levers, you're doing a certain amount of work, . At any given time there's a certain power going in, which is the rate at which you are working, . At the same time, the energy of all the weights, , is changing at some rate, , and those should match each other; that is, the rate at which you put work in should match the rate of change of the total energy of all of the weights: 
As you may recall from the lectures, power is equal to force times velocity:  
And so, we have 
The idea, then, is that at a given instant the weights have some kind of a speed, and thus they have a kinetic energy. They also have a certain height above the ground, and so they have a potential energy. So if we can figure out how fast the weights are moving and where they are, in order to get their total energy, and then we differentiate that with respect to time, that would be equal to the product of the component of force in the direction that the thing being worked on is moving, times its speed. 
Let's see if we can apply that to our problem. 
Now, when I push on the roller with a force while moving it at a velocity , the rate of change of the energy of the whole darn thing, with respect to time, should equal the magnitude of the force times the speed, , because in this case the force and the velocity are both in the same direction. It's not a general formula; if I had asked you for the force in some other direction, I couldn't have gotten it by this argument directly because this method only gives you the component of the force that does the work! (Of course, you can get it indirectly because you can know the force is going along the rod. If there were several more rods connected, this method would still work, provided you took the force in a direction of motion.) 
What about all the work done by all the forces of the constraints-the roller, the pivots, and all the other machinery that holds this stuff in the right motion? No work is done by them, provided they aren't worked on by other forces as they go along. For example, if somebody else is sitting over there, pulling one leg out while I'm pushing the other one in, I've got to take the work done by the other guy into account! But nobody's doing that, so, with , we have 
So I'm all set if I can calculate -divide by two, and lo and behold: the force! 
Ready? Let's go! 
Now, we have the total energy of the weight in two pieces: kinetic energy plus potential energy. Well, the potential energy is easy: it's mgy (see Table 2-3). We already know that is 0.4 meters, is , and is 9.8 meters per second squared. So the potential energy is joules. And now the kinetic energy: well, after a lot of fiddling around, I'll get the velocity of the weight, and I'll write in the kinetic energy for that; we'll do that in just a second. Then I'm all set because I'll have the total energy. 
I'm not all set: unfortunately, I don't want the energy! I need the derivative of the energy with respect to time, and you cannot find how fast something changes by figuring out how much it is right now! You've either got to figure it out at two adjacent times-now, and an instant later-or, if you want to use the mathematical form, you figure it out for an arbitrary time, , and differentiate with respect to . It depends on which is the easiest to do: it may be numerically much easier to figure out the geometry for two positions than it is to figure out the geometry in general, and to differentiate. 
(Most people immediately try to put a problem in mathematical form and differentiate it because they don't have enough experience with arithmetic to appreciate the tremendous power and ease of doing calculations with numbers instead of letters. Nevertheless, we'll do it with letters.) 
Again, we have to solve this problem, where , and , so that we will be able to calculate the derivative. 
Now, we need the potential energy. That we can get very easily: it's times the height, , and that comes out to 
But more interesting, and harder to figure out, is the kinetic energy. The kinetic energy is . To figure out the kinetic energy, I need to figure out the velocity squared, and that takes a lot of fooling around: the velocity squared is its component squared plus its component squared. I could figure out the component just like I did before; the component, I've already pointed out, is 1 , and I could have squared those and added them together. But supposing I hadn't already done that, and I wanted to think of still another way to get the velocity. 
Well, after thinking about it, a good machine designer usually can figure it out from the principles of geometry and the layout of the machinery. For example, since the pivot is stationary, the weight must move around it in a circle. So, in which direction must the velocity of the weight be? It can have no velocity parallel to the rod, because that would change the length of the rod, right? Therefore, the velocity vector is perpendicular to the rod. (See Fig. 2-10.) 
You might say to yourself, "Ooh! I have to learn that trick!" 
No. That trick is only good for a special kind of problem; it doesn't work most of the time. Very rarely do you happen to need the velocity of something that is rotating around a fixed point; there's no rule that says, "velocities are perpendicular to rods," or anything like that. You have to use common sense as often as possible. It's the general idea of analyzing the machine geometrically that's important here-not any specific rule. 
So, now we know the direction of the velocity. The horizontal component of the velocity, we already know, is 1 , because it's half the speed of the roller. But look! The velocity is the hypotenuse of a right triangle that is 
FIGURE 2-10 The weight moves in a circle, so its velocity is perpendicular to the rod. 
similar to a triangle having the rod as its hypotenuse! To obtain the magnitude of the velocity is no harder than finding its proportion to its horizontal component, and we can get that proportion from the other triangle, which we already know all about. (See Fig. 2-11.) 
Finally, for the kinetic energy we get 
joules. 
Now, for the signs: the kinetic energy is certainly positive, and the potential energy is positive because I measured the distance from the floor. So now I'm all right with the signs. So, the energy at any time is 
Now, in order to find the force using this trick, we need to differentiate the energy and then we can divide by two and everything will be ready. (The apparent ease with which I do this is false: I swear I did it more than once before I got it right!) 
Now, we differentiate the energy with respect to time. I'm not going to stall around with this; you're supposed to know how to differentiate by now. So there we are, with the answer for (which, incidentally, is twice the force required): 
FIGURE 2-11 Using similar triangles to find the velocity of the weight. 
So I'm all finished; I need merely put 0.3 in for , and I'm all done: 
Now, let's see whether this makes sense. If there were no motion, and I didn't have to worry about the kinetic energy, then the total energy of the weight would just be its potential energy, and its derivative should be the force due to the weight. And sure enough, it comes out here the same as we calculated in Chapter 1, 2 times 9.8 times . 
The sign of is negative, which must mean that the direction of the gravitational part of the force is opposite the direction of the kinetic part of the force. Anyhow, one is positive and the other is negative, which is all I want to know. I know which way the gravitational part of the force is: I've got to push on the roller to support the weight, so the kinetic part must reduce the force. You can put the numbers in, and sure enough, the force comes out to be the same as before: 
In fact, this is why I had to do it so many times: after doing it the first time, and being completely satisfied with my wrong answer, I decided to try to do it another, completely different, way. After I did it the other way, I was satisfied with a completely different answer! When you work hard, there are moments when you think, "At last, I've discovered that mathematics is inconsistent!" But pretty soon you discover the error, as I finally did. 
Anyway, that's just two ways of solving this problem. There's no unique way of doing any specific problem. By greater and greater ingenuity, you can find ways that require less and less work, but that takes experience.  

2-8 Earth's escape velocity 

I don't have much time left, but the next problem we'll talk about is something involving the motion of planets. I'll have to come back to it because I certainly can't tell you everything about it this time. The first problem is, what is the velocity required to leave the earth's surface? How fast does something have to move so that it can just escape from Earth's gravity? 
Now, one way to work that out would be to calculate the motion under the force of gravity, but another way is by the conservation of energy. When the thing reaches way out there, infinitely far away, the kinetic energy will be zero, and the potential energy will be whatever it comes out for infinite distance. The formula for the gravitational potential is in Table 2-3; and it tells us that the potential energy, for particles that are infinitely distant, equals zero. 
So, the total energy of something when it leaves Earth at escape velocity must be the same after the thing has gone an infinite distance and Earth's gravity has slowed it down to zero velocity (assuming there are no other forces involved). If is the mass of the earth, is the radius of the earth, and is the universal gravitational constant, we find that the square of the escape velocity must be . 
Incidentally, the gravity constant, (the acceleration of gravity near the earth's surface) is because the law of force, for a mass, , is . In terms of the easier-to-remember gravity constant I can write . Now, is , and the radius of the earth is , so the earth's escape velocity is 
So you have to go 11 kilometers per second to get out-which is pretty fast. 
Next, I would talk about what happens if you are going 15 kilometers per second, and you're shooting past the earth at some distance. 
Now, at 15 kilometers per second, the thing has enough energy to get out, going straight up. But is it obviously necessary that it gets out if it's not going straight up? Is it possible that the thing will go around and come back? That's not self-evident; it takes some thought. You say, "It has enough energy to get out," but how do you know? We didn't calculate the escape velocity for that direction. Could it be that the sideways acceleration due to Earth's gravity is enough to make it turn around? (See Fig. 2-12.) 
It is possible, in principle. You know the law that you sweep out equal areas in equal times, so you know that when you get far out, you have to be moving sideways somehow or other. It's not clear that some of the motion that you need to escape isn't going sideways, so that even at 15 kilometers per second you don't escape. 
Actually, it turns out that at 15 kilometers per second it does escape-it escapes as long as the velocity is greater than the escape velocity we computed above. As long as it can escape, it does escape-although that's not self-evident-and the next time, I'm going to try to show it. But to give you a hint as to how I'm going to show it, so you can play around with it yourself, it's the following. 
We'll use the conservation of energy at two points, A and , at its shortest distance from Earth, , and at its longest distance from Earth, , as shown in Figure 2-13; the problem is to calculate . We know the total 
This one gets out all right! 
FIGURE 2-12 Does having the escape velocity guarantee escape? 
energy of the thing at , and it's the same at because the energy is conserved, so if we knew the velocity at , we could calculate its potential energy, and thus . But we don't know the velocity at B! 
Yet we do: from the law that equal areas are swept out in equal times, we know that the speed at must be lower than the speed at , in a certain proportion-in fact, it's to . Using that fact to get the speed at , we're able to find this distance in terms of , and we'll do that next time. 
FIGURE 2-13 Satellite distance and velocity at perihelion and aphelion. 

Alternate Solutions By Michael A. Gottlieb 

Here are three more approaches to solving the machine design problem presented earlier in this chapter (Section 2-7), beginning on p. 39 . 

A Finding the acceleration of the weight using geometry 


重量始终水平位于滚轮和枢轴之间,因此其水平速度为 ,是滚轮速度的一半。重量在一个圆上移动(以枢轴为中心),因此其速度垂直于杆。通过相似三角形,我们得到了重量的速度。(见图 2-14a。)

因为重量在圆上移动,其加速度的径向分量是

根据方程(2.17)。重量的垂直加速度是其径向和横向分量的总和。(见图 2-14b。)

再次利用相似三角形,我们得到垂直加速度:
(a)
(b)

图 2-14


B 使用三角法找到重量的加速度


重量沿半径 的圆弧移动,因此它的运动方程可以用杆与地面所成角度来表示。(见图 2-15。)

重物的水平速度为 (滚筒速度的一半)。所以 ,而 。垂直加速度可以通过对 关于 两次求导来计算。但首先,由于
 因此,

时,我们有 (因为 。因此,垂直加速度的大小是
 图 2-15


使用力矩和角动量找到作用在重量上的力量


重量上的扭矩为 。重量以 移动,因此它上面没有水平力: 。让 ,扭矩减少到 。扭矩是角动量的时间导数,因此如果我们可以找到重量的角动量 ,我们可以对其进行微分并除以 得到

重量的角动量很容易找到,因为重量在圆圈中移动。它的角动量就是杆的长度 乘以重量的动量,即其质量 乘以其速度 。速度可以使用费曼的几何方法(见图 2-16)或通过微分重量的运动方程来找到。

将所有这些放在一起,我们有:

在时间 ,我们有 。除以 得到我们之前找到的垂直加速度:3.90625。
 图 2-16


3 个问题和解决方案

 复习讲座 C


我们将通过解决一系列问题来继续这个物理学的复习。我选择的所有问题都是复杂而困难的;我会留给你们去做简单的问题。另外,我患有所有教授都患有的病——那就是,似乎永远没有足够的时间,我设计的问题比我们能够解决的问题还要多,因此我试图通过提前在黑板上写一些东西来加快进度,带有每位教授都有的幻觉:如果他谈论更多东西,他就会教授更多东西。当然,人类大脑吸收材料的速度是有限的,然而我们忽视了这一现象,尽管如此我们还是走得太快了。所以,我想我会慢慢地进行,看看我们能走多远。

 3-1 卫星运动


我们上次讨论的最后一个问题是卫星运动。我们正在讨论一个问题,即一个粒子是否会逃逸,因为这并不是显而易见的。如果它直线向外径向运动,那么它会逃逸;但如果它垂直于半径运动,它是否会逃逸,这是另一个问题。


图 3-1 逃逸速度径向和垂直于半径方向。

事实证明,如果我们能记住凯普勒的一些定律,并添加一些其他定律,比如能量守恒定律,我们就可以推断出,如果粒子没有逃逸,它将形成一个椭圆,我们可以推断出它会飞多远,这就是我们现在要做的。如果椭圆的近日点是 ,那么远日点有多远, ?(顺便说一句,我试图在黑板上写这个问题,但我发现我拼不出“近日点”!)(见图 3-2。)

图 3-2 卫星在椭圆轨道上近日点和远日点的速度和距离。

图 3-3 从质量 在距离 的逃逸速度。

上次我们通过能量守恒来计算逃逸速度。(见图 3-3。)

现在,这是在半径 处的逃逸速度的公式,但假设速度 是任意的,我们试图找到 的关系。能量守恒告诉我们,在近日点处的粒子的动能加势能必须等于在远日点处的动能加势能-这就是我们可以用来计算 的方法,乍一看:

不幸的是, 但是,我们没有 ,所以除非有一些外部机械或分析来获得 ,否则我们永远无法解决方程(3.2)以求得
But if we remember Kepler's law of equal areas, we know that in a given time the same area is swept out at the aphelion as is swept out at the perihelion: in a short time the particle at the perihelion moves a distance so the area swept out is about , while at the aphelion, where the particle moves , the area swept out is about . And so "equal areas" means that equals -which means that the velocities vary inversely as the radii. (See Fig. 3-4.) 
That gives us, then, a formula for in terms of , which we can substitute in Eq. (3.2). Then we will have an equation to determine : 
FIGURE 3-4 Using Kepler's law of equal areas to find the velocity of a satellite at aphelion. 
Dividing by , and rearranging, we get 
If you look at Eq. (3.5) a while, you could say, "Well, I can multiply by , and then it'll be a quadratic equation in ," or, if you prefer, you could look at it just the way it is, and solve the quadratic equation for -either way. The solution for is 
I'm not going to discuss the algebra from here on; you know how to solve a quadratic equation, and there are two solutions for : one of them is equals , it turns out-and that's happy, because if you look at Eq. (3.2) you see it's obvious that if equals , the equation will match. (Of course, that doesn't mean that is .) With the other solution, we get a formula for in terms of , which is given here: 
The question is whether we can write the formula in such a way that the relationship of to the escape velocity at the distance can readily be seen. Notice that by Eq. (3.1) 2 GM/a is the square of the escape velocity, and therefore we can write the formula this way: 
That's the final result, and it is rather interesting. Suppose, first, that is less than the escape velocity. Under those circumstances, we'd expect the particle not to escape, so we should get a sensible value for . And sure enough, if is less than , then is greater than 1 , and the square is also greater than 1 ; taking away 1 , you get some nice positive number, and divided by that number tells us . 
To check roughly how accurate our analysis is, a good thing to play around with is the numerical calculation we made of the orbit in the ninth lecture, to see how close the that we calculated then agrees with the we get from Eq. (3.8). Why should they not agree perfectly? Because, of course, the numerical method of integration treats time as little blobs instead of continuous, and therefore it isn't perfect. 
Anyway, that's how we get when is less than . (Incidentally, knowing and knowing , we know the semi-major axis of the ellipse, and thus we could figure out the period of the orbit from Eq. (3.2), if we wanted to.) 
But the interesting thing is this: suppose, first, that is exactly the velocity of escape. Then is 1 , and Eq. (3.8) says that then is infinite. That means that the orbit is not an ellipse; it means that the orbit goes off to infinity. (It can be shown that it is a parabola, in this special case.) So, it turns out, that if you're anywhere near a star or a planet, and no matter what direction you're moving, if you have the velocity of escape, you'll escape, all right-you won't get caught, even though you're not pointed in the right direction. 
Still another question is, what happens if exceeds the velocity of escape? Then is less than 1 , and turns out negative-and that doesn't mean anything; there is no real . Physically, that solution looks more like this: with a very high velocity, much higher than the velocity of escape, a particle coming in is deflected-but its orbit is not an ellipse. It is, in fact, a hyperbola. So the orbits of objects moving around the sun are not only ellipses, as Kepler thought, but the generalization to higher speeds includes ellipses, parabolas, and hyperbolas. (We didn't prove here that they are ellipses, parabolas, or hyperbolas, but that's the answer to the problem.) 

3-2 Discovery of the atomic nucleus 

This hyperbolic orbit business is interesting, and has a very interesting historical application, which I'd like to show you; it is illustrated in Figure 3-5. We take the limiting case of an enormously high speed, and a relatively small force. That is, the object is going by so fast that in the first approximation it goes in a straight line. (See Fig. 3-5.) 
Suppose we have a nucleus with charge (where is the electron charge), and a charged particle that is moving past it at a distance an ion of some kind (it was originally done with an alpha particle), it doesn't make any difference; you can put in your own case-let's take a proton of mass , velocity , and charge (for an alpha particle, it would be ). The proton doesn't go quite in a straight line, but is deflected through a very small angle. The question is, what's the angle? Now, I'm not going to do it exactly, but roughly-to get some idea of how the angle varies with . (I'll do it nonrelativistically, although it's just as easy to take relativity into account-just a minor change that you can figure out for yourself.) Of course, the bigger is, the smaller the angle ought to be. And the question is, does the angle decrease as the square of , the cube of , as , or what? We want to get some idea about this. 
(This is, as a matter of fact, the way you start on any complicated or unfamiliar problem: you first get a rough idea; then you go back when you understand it better and do it more carefully.) 
So the first rough analysis will run something like this: as the proton flies by, there are sideways forces on it from the nucleus-of course, there 
nucleus 
FIGURE 3-5 A high-speed proton is deflected by the electric field as it passes near the nucleus of an atom. 

  1. 'Our stamp appears in the liner notes of Back TUVA Future, a CD featuring the Tuvan throat-singing master Ondar and a cameo appearance by Richard Feynman (Warner Bros. 9 47131-2), released in 1999. 
    Feynman Lectures on Computation, by Richard P. Feynman, edited by Anthony J.G. Hey and Robin W. Allen. 1996. Addison-Wesley, ISBN 0-201-48991-0.
  2. The academic year at Caltech is divided into three terms; the first runs from late September to early December, the second from early January to early March, and the third from late March to early June. 
  3. The exercises in Chapter 5 of this volume include more than a dozen problems from Foster Strong's collection that were reproduced with permission in Exercises in Introductory Physics by Robert B. Leighton and Rochus E. Vogt. 
  4. Principles of Modern Physics, by Robert B. Leighton, 1959, McGraw-Hill, Library of Congress Catalog Card Number 58-8847. 
  5. All footnotes are comments from the authors (other than Feynman), editors, or contributors. 
  6. No one went out. 
  7. Only men were admitted to Caltech in 1961. 
  8. See Vol. I, Sec. 11-7. 
  9. is the speed of the particle; is the speed of light. 
  10. The relationship between the kinetic energy of a particle and its total (relativistic) energy can readily be seen by substituting the first two terms of the Taylor series expansion of into Eq. (2.5): 
  11. force is defined to be conservative when the total work it does on a particle that moves from one place to another is the same regardless of the path the particle moves on-the total work done depends only on the endpoints of the path. In particular, the work done by a conservative force on a particle that goes around a closed path, ending where it began, is always zero. See Vol. I, Section 14-3. 
  12. See Alternate Solutions on page 67 for a way to find the acceleration of the weight without differentiating. 
  13. See Vol. I, Chapter 13 . 
  14. The derivative of the total energy with respect to is the magnitude of the force due to the weight (in the direction). However, because happens to equal in this particular problem, the derivative of the weight's energy with respect to equals its derivative with respect to . 
    See Alternate Solutions, beginning on p. 67, for three other approaches to solving this problem. 
  15. 1"Unfortunately," in Brazilian Portuguese. 
  16. See Vol. I, Section 9-7.