这是用户在 2024-9-10 17:45 为 https://pubs.acs.org/doi/full/10.1021/acssuschemeng.2c00243 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Interface Stability Control by an Electron-Blocking Interlayer for Dendrite-free and Long-Cycle Solid Sodium-Ion Batteries
CONTENT TYPES

Figure 1Loading Img
  • Subscribed

研究文章 2022 年 5 月 30 日


通过电子阻挡中间层实现的界面稳定性控制,适用于无树突和长循环的固态钠离子电池

点击复制文章链接
Article link copied!

  •  田浩晴
    Haoqing Tian
    School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
    More by Haoqing Tian
  •  戴磊
    Lei Dai
    School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
    More by Lei Dai
  •  王玲*
    Ling Wang
    School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
    *Email: tswling@126.com
    More by Ling Wang
  •  刘珊*
    Shan Liu
    School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
    *Email: sliu@ncst.edu.cn
    More by Shan Liu
 打开 PDF
支持信息 (1)
OpenURL FUDAN UNIV

ACS Sustainable Chemistry & Engineering

Cite this: ACS Sustainable Chem. Eng. 2022, 10, 23, 7500–7507
Click to copy citationCitation copied!
https://doi.org/10.1021/acssuschemeng.2c00243
Published May 30, 2022
Copyright © 2022 American Chemical Society

 摘要


点击复制章节链接
Section link copied!


高安全性和高能量密度的固态钠离子电池(SSIBs)具有广泛的应用前景。不幸的是,钠与固体电解质之间的接触不良和 dendrite(树枝晶)生长严重阻碍了其发展。在此,设计了一种原位形成的电子阻挡中间层(EBI),该中间层位于 Na3.2Hf1.9Ca0.1Si2PO12(NHSP)表面。EBI 能够有效改善界面润湿性,并阻止电子的传输,从而确保钠与 NHSP 电解质之间的长期稳定性。具有 EBI@NHSP 电解质的电池在 0.2 mA cm–2 下能够稳定循环超过 700 小时。即使电流密度增加到 2.3 mA cm–2,电池仍然能够正常工作。与 Na3V2(PO4)3 正极配合的全电池也展现出良好的长期循环稳定性,在 0.5 C 下能够稳定循环超过 300 次,同时保持高达 99.76% 的库仑效率。该研究为防止钠 dendrite 生长和推动 SSIBs 的发展提供了一种新的可行策略。


本出版物根据您的机构订阅条款获得许可。请求重用权限。


版权所有 © 2022 美国化学会

 摘要


电子阻挡层从抑制电子传输的角度解决了固态钠离子电池中树突生长的问题。

 引言


点击复制章节链接
Section link copied!


随着对能源存储系统需求的增加,钠离子电池(SIBs)因其高能量密度和低价格而成为具有巨大开发潜力的新兴电池。(1−3) 然而,传统液体电解质(酯/醚)中的持续旁路反应和安全风险严重阻碍了 SIBs 的发展。(4,5) 固态钠离子电池(SSIBs)因其高安全性和高能量密度受到越来越多的关注。(6−8) 此外,固体电解质的应用使得使用钠金属阳极和高电压阴极成为可能,因其出色的化学稳定性,这将极大地提高电池的能量密度。(9−12)

然而,钠与固态电解质之间的接触不良和复杂的副反应使得固态钠离子电池(SSIBs)的发展面临许多不确定性。抑制副反应和枝晶生长已成为 SSIBs 发展的一个绊脚石。近年来,已经提出了几种策略来构建中间层,以改善界面润湿性和电荷传输动力学,如金属或金属氧化物涂层、聚合物中间层、无机物等。虽然这些方法已证明在界面稳定性方面具有初步效果,但抑制枝晶生长仍然是一个棘手的问题,尤其是在高电流密度下。

最近研究发现,固体电解质的高电子导电性可能是钠树枝晶生长的主要原因之一。(28,29) 研究表明,电解质的高电子导电性允许 Na+和电子渗透电解质,从而直接形成钠树枝晶(图 1a)。此外,固体电解质的相对密度也可能影响钠树枝晶的生长。然而,毫无疑问,为了持续降低电子导电性或改善电解质的密度,必须面对更多的挑战。(30) 最近的研究发现,即使电解质非常致密,当电解质的晶界具有高电子导电性时,阻止钠树枝晶的存在也是很困难的。(31,32)

 图 1


图 1. NASICON 表面上 EBI 的示意图。(a) 纯钠与 NHSP 之间接触不良,这会导致局部极化并加速钠枝晶及副反应的生成。(b) EBI 不仅保证了层间的紧密接触和快速的 Na+传输,而且本质上防止了钠枝晶的形成。


本文中,设计了一种电子阻挡中间层(EBI),在 NASICON 型 Na3.2Hf1.9Ca0.1Si2PO12 (NHSP)表面通过简单的预处理方法制备。该 EBI 显著改善了界面接触和离子传输动力学,并确保在循环过程中均匀的钠沉积/溶解(图 1b)。由于设计的 EBI 几乎是电子绝缘体(1.06 × 105 Ω cm),它能够有效防止钠树枝晶的生长和副反应。使用 EBI@NHSP 电解质的电池表现出优异的长循环寿命和高倍率性能。使用 EBI@NHSP 电解质的对称电池在 0.2 mA cm–2 下稳定循环超过 700 小时。此外,室温下临界电流密度可达到 2.3 mA cm–2,几乎是同类研究中的最高值(表 S1)。此外,Na/EBI@NHSP/Na3V2(PO4)3 (NVP)的全电池在 0.5 C 下也能稳定循环超过 300 个周期,实现了 99.76%的非常高的库伦效率。

 结果与讨论


点击复制章节链接
Section link copied!


固体电解质上 EBI 的制造


EBI 是通过一个简单的原位反应获得的:SnF2 + Na → NaxSn + NaF, (33,34),在将混合盐(SnF2/NaCl)溶液滴加到 NHSP 表面后。扫描电子显微镜(SEM)图像和能量色散光谱(EDS)映射确认混合盐均匀分布在 NHSP 表面,层间厚度约为 6 微米(图 2a-c)。混合盐修饰层中的 SnF2 和 NaCl 相由 X 射线衍射(XRD)图谱清晰显示(图 2e)。经过原位离子交换反应,混合盐从 SnF2/NaCl 转变为 NaF/NaxSn/NaCl,并且层间的颜色由白色变为黑色(图 2d 和 S1)。

 图 2


图 2. EBI 的结构和形态。(a) NHSP 上混合盐层的顶部视图 SEM 图像。(b) NHSP 上混合盐层的横截面视图 SEM 图像。(c) 层间横截面 Sn 的 EDS 成像。(d) 通过溶液预处理方法形成 EBI。(e) NHSP 表面在原位反应前后的 XRD 图谱。(f) 不同比例 SnF2 和 NaCl 的层间 D.C.电导率测量。


事实上,Na/NHSP 的润湿性和离子导电性也可以通过添加单一的 SnF2 溶液来改善[形成混合离子和电子相(MIE),NaF/NaxSn],根据之前的研究。然而,夹层中电子导电相(NaxSn)的高浓度无法抑制循环过程中的树枝晶生成,这将极大影响电池的循环寿命。在本工作中,将通过控制 SnF2 和 NaCl 的比例(SnF2:NaCl = 1:1, 1:0.67, 1:0.33 和 1:0 wt %)来调节界面电荷动力学。SnF2 将作为焊接和离子导电相,而 NaCl 将作为电子绝缘相。电化学阻抗谱(EIS)和对称电池测试证明,夹层的电子电阻率随着 NaCl 浓度的增加而增加,而比例为 1:0.33(SnF2/NaCl)溶液的夹层表现出最佳的沉积行为。与其他两个比例相比,EBI (1:0。在电解质表面均匀分散的 33)充分保护了钠阳极,使钠沉积均匀、光滑且没有树枝晶(图 S6)。通过直流电压测量对膜的绝缘电阻进行了测试(图 2f)。1:0.33 溶液的夹层电子电阻率约为 1.06 × 10^5 Ω cm,是纯 SnF2 电阻率的十分之一(图 S7)。 (41,42)

此外,我们还应注意,尽管 EBI 能够通过其高电子电阻有效抑制钠树枝晶向电解质的渗透,但这并不会严重影响界面的离子传输(见图 S8 和表 S2)。与裸 NHSP 相比,基于 EBI 和 MIE 的电池界面电阻有效降低。根据等效电路的拟合结果,高频区域出现的半圆主要是由于 NHSP 的体电阻(Rb)。EBI@NHSP 的 Rb 在循环后没有显著变化,而 MIE@NHSP 的 Rb 显著降低,这表明 MIE 层无法阻止钠金属在固体电解质中的渗透。与钠离子通过界面层的扩散和迁移相关的半圆可归因于界面电阻(Rint)和电荷转移电阻(Rct)。由于原位反应的发生,电池的 Rint 降低。 这可以归因于 NaCl 的添加通过电解液中电子和钠离子的结合避免了钠树枝晶的形成,从而大大减缓了电池的失效。然而,对于纯 SnF2,原位反应形成的混合离子电子导电中间层在长循环过程中无法有效避免树枝晶的生长。此外,NaCl 的添加使 EBI 表现出比 MIE 更大的界面电阻,但该值仍然可以接受,特别是对于电池的长循环。


探索 EBI 的无枝晶作用


钠与 EBI@NHSP 和纯 NHSP 电解质的界面稳定性通过光学和扫描电子显微镜(图 3a-h)进行了表征。与纯 NHSP 电解质相比,使用 EBI@NHSP 电解质的电池表现出优良的界面稳定性,能够保持钠与 NHSP 电解质之间的紧密接触,即使经过 100 个循环,也未观察到明显的钠树枝晶(图 3a-d)。然而,在使用纯电解质时,观察到了大量的钠树枝晶(图 3e-h)。这应归因于钠与纯 NHSP 电解质之间的接触不良,导致在长时间循环后发生持续的副反应和由于不均匀的钠沉积而随机生长的钠树枝晶。MIE@NHSP 的界面稳定性和树枝晶阻断效果也进行了测试和评估(图 S9)。如上所述,由于其高电子导电性,MIE 中间层无法有效防止持续的副反应并阻碍钠树枝晶的生长。 此外,我们还发现,使用 EBI@NHSP 电解质的电池的层间形貌在循环次数增加时并没有显著变化,这表明 EBI 表现出极高的稳定性。然而,对于使用纯 NHSP 电解质的电池,由于接触不良和持续的副反应,形成了大量的钠树枝晶。尽管 MIE 层可以保证紧密接触,但在循环过程中无法有效阻止钠树枝晶的形成,必然会影响电池的循环寿命(图 S10)。

 图 3


图 3. EBI 保护固态电解质的 SEM 和光学显微镜图像。(a) 循环后 EBI@NHSP 电解质的顶视光学显微镜图像。(b) 循环后 EBI@NHSP 电解质的横截面光学显微镜图像。(c,d) 循环前后 EBI@NHSP 的横截面 SEM 图像。(e) 循环后纯 NHSP 电解质的顶视光学显微镜图像。(f) 循环后纯 NHSP 电解质的横截面光学显微镜图像。(g,h) 循环前后纯电解质的横截面 SEM 图像。(i) 循环前后 Sn 3d、F 1s 和 Cl 2p 的 XPS 图谱。(j) EBI 机制的示意图。


EBI@NHSP 的表面也通过 X 射线光电子能谱(XPS)进行了探测。如图 3i 所示,对于 EBI@NHSP 电解液,未循环前 Sn 3d 峰位于 487.05 eV 和 495.5 eV,分别对应于 Sn 3d5/2 和 Sn 3d3/2。而在循环后,这些位置分别 shifted 到 486.4 eV 和 495.3 eV,表明 SnF2 已转变为 NaxSn。(33) 同时,位于 685.3 eV 的单一 F 1s 峰对应于 F–Sn 键消失,循环后在 687.3 eV 出现了一个新峰,表明 SnF2 转变为 NaF,并伴随有界面原位反应。(26) 此外,层间中 NaCl 的存在也可以通过其在 Cl 2p 谱中的特征信号得到证明。

在循环后,电解质的表面也通过 XPS 和 XRD 进行了表征。如图 S11 所示,NHSP 的 Hf 4f 的 XPS 谱在循环后没有明显变化。结果表明,EBI@NHSP 电解质在长期循环过程中能够实现稳定并有效防止副反应。这一点可以通过 XRD 测试进一步证明(图 S12)。然而,对于裸 NHSP 电解质,在循环后,XPS 谱中出现了 Hf 4f 的额外峰,且在 XRD 谱中观察到 Na2SiO3 的额外杂质峰,这表明由于接触不良和电荷分布不均,应当存在钠与电解质之间的副反应(图 S11 和 S12)。总而言之,EBI 层卓越界面稳定性的机制可以理解为活性相(SnF2)和电子阻挡相(NaCl)的双重协同效应(图 3j)。活性相 SnF2 将在循环过程中与钠反应形成缓冲层(图 2e 和 S13)。 电池中以 SnF2 作为电极的充放电曲线清晰地总结了 Na+的嵌入过程以及 Na 与 SnF2 之间的化学反应。缓冲层中形成的 NamSnnF 和 NaF 将作为有效的钠离子导电相,促进 Na+的快速迁移。同时,少量合金元素的存在可以改善界面润湿性。此外,NaCl 的电子阻挡相将促使更多钠离子与 SnF2 反应生成 NamSnnF 或 NaF/Sn,以防止在循环过程中生成钠枝晶和副反应。 (26)


EBI 保护固体电解质的电化学性能


为了评估界面稳定性,采用 EBI@NHSP 和纯 NHSP 电解质的对称电池进行了测试。经过短暂的合金反应后,EBI@NHSP 能够在 0.2 mA cm–2 的条件下稳定循环超过 700 小时(图 4a)。不同电流密度下的长期循环也用于评估 EBI 抑制钠枝晶的能力,在高电流密度 0.4 mA cm–2 下没有出现短路现象(图 S14)。相反,使用纯 NHSP 的电池显示出较差的循环稳定性和极大的电压波动。在短周期后,由于枝晶穿透固体电解质,发生了短路(图 S15)。还测试了两个对称电池在阶梯增加电流密度过程中的时间相关电压曲线(图 4b,c)。在电流密度达到 2.3 mA cm–2 的高水平之前,使用 EBI@NHSP 的电池未观察到电压下降。然而,对于使用纯 NHSP 的电池,在 0.3 mA cm–2 开始时,电池电压因界面润湿性差和极高的界面电阻而突然下降。

 图 4


图 4. EBI@NHSP 和纯 NHSP 对称电池的电化学性能。(a) EBI@NHSP 在 0.2 mA cm–2 下的电压曲线。(b,c) EBI@NHSP 和纯 NHSP 的对称电池在不同电流密度下(从 0.1 到 2.5 mA cm–2)的恒流循环。(d) EBI@NHSP 对称电池在循环前和不同循环后的电化学阻抗谱(EIS)曲线。(e) 纯 NHSP 对称电池循环前后的 EIS 曲线(插图显示了循环后 Na/NHSP/Na 的 EIS 曲线)。


使用 MIE@NHSP 电解质的电池也进行了测试。对于使用 MIE@NHSP 的电池,它在 0.2 mA cm–2 下稳定循环超过 400 小时(图 S16)。界面润湿性可以相应改善,但无法抑制在重复镀层/剥离过程中树枝晶的生长,因为界面层具有电子导电性(图 S2)。因此,MIE@NHSP 的临界电流密度只能达到 1.4 mA cm–2(图 S17)。Na/EBI@NHSP 的界面稳定性也通过 EIS 进行了测试。结果证明,含 EBI@NHSP 电解质的电池在长期循环后仍能保持较小且稳定的界面电阻(图 4d)。与新鲜的含 SnF2 和 NaCl 的电池相比,界面电阻更小,这应归因于一开始 SnF2 与钠之间的电化学反应(图 S8)。然而,对于纯 NHSP 的电池,由于钠与电解质之间的糟糕界面接触,它表现出较大的界面电阻。 此外,界面电阻接近于零,这应归因于循环后发生的短路(图 4e)。

Na/EBI@NHSP/NVP 的全电池与 MIE@NHSP 和纯 NHSP 进行了评估和比较。如图 5a 所示,搭载 EBI 的全电池展现出最佳电池性能,具有最高的比容量为 109.6 mA h g–1。相比之下,MIE 界层和纯 NHSP 表现出的容量较低且界面电阻明显更高。此外,搭载 EBI@NHSP 的电池可稳定循环超过 300 个循环。然而,MIE@NHSP 电池只能循环不到 120 个循环,且容量显著下降(图 S18)。如上所述,搭载 EBI@NHSP 的电池具有稳定的界面接触,能够有效阻挡电子传输,以确保界面的长期稳定性。对于搭载 MIE@NHSP 电解液的电池,尽管存在界面合金相,但在长期循环过程中,副反应是不可避免的。对于纯 NHSP 的电池,由于钠与 NHSP 之间的润湿性差,不仅放电容量低,而且电池容量非常不稳定。 速率性能测试还证明,使用 EBI@NHSP 的电池比其他电池具有更优越的性能(图 5b)。

 图 5


图 5. Na/NVP 全电池的性能与不同电解质的电池有限元模拟。(a) 不同界面下全电池在 0.5 C 下的恒流充放电曲线。(b) 全电池从 0.5 C 到 5 C 的速率性能。有限元模拟的钠离子浓度梯度在 0.3 V 的电解质中(c) 无电子导电性和(d) 有电子导电性。


根据上述讨论,我们已确认 EBI 可以有效改善界面接触并阻止界面电子传输。为了进一步验证其对电池电化学性能的影响,通过使用 COMSOL 的有限元模拟探索了不同电解质电池的钠沉积行为的结果。(46)结果表明,使用 EBI 的电池能够稳定且均匀地沉积(图 5c)。然而,对于使用具有电子导电性的电解质的电池,将会导致局部极化和钠树枝晶的形成(图 5d)。这些结果进一步证明,通过中间层有效阻止电解质的电子导电性在实现无树枝晶生长和钠均匀沉积方面将发挥重要作用。

 结论


点击复制章节链接
Section link copied!


总之,在这项工作中,Na/NHSP 的界面电荷转移动力学通过简单的原位反应被 EBI 调节。在设计的中间层中,NaxSn/NaF 能够实现紧密的焊接和快速的电荷转移,而 NaF/NaCl 的存在则能有效抑制树枝晶的生长。基于 EBI@NHSP 电解质,对称电池在 0.2 mA cm–2 的高电流密度下能够稳定循环,超过 700 小时。即使电流密度增加到 2.3 mA cm–2,电池仍能够正常工作。此外,完整的电池在 0.5 C 的条件下在 300 个循环中展现出优异的循环稳定性,并具有出色的倍率性能。这项工作提供了一种简单有效的抑制固态离子电池中树枝晶生长的方法,并为未来固态电池的实际应用提出了新的探索。

 辅助信息


点击复制章节链接
Section link copied!


支持信息可在 https://pubs.acs.org/doi/10.1021/acssuschemeng.2c00243 免费获得。


  • 实验部分;固态钠离子电池的电化学性能比较;循环后钠金属的 XRD 谱图;MIE@NHSP 示意图;纯 SnF2 修饰 NHSP 的 XRD 图谱;不同浓度的 SnF2:NaCl 的 Nyquist 图、电压曲线和顶视 SEM 图像;带有和不带有 NaCl 的界面层的直流电导比较;EBI@NHSP 和 MIE@NHSP 对称电池的 EIS 比较;EBI@NHSP 和 MIE@NHSP 对称电池的阻抗分析结果;EBI@NHSP、纯 NHSP 和 MIE@NHSP 循环前后的顶视 SEM 图像;EBI@NHSP 和 MIE@NHSP 循环前后的侧视 SEM 图像;Hf 4f 的 XPS 谱图;EBI 纯 NHSP 在循环过程中的 XRD 图谱;SnF2|Na 电池的恒流充放电曲线;EBI@NHSP 的恒流循环;纯 NHSP 的电压曲线;MIE@NHSP 的电压曲线;以及 Na/NVP 全电池的长循环(PDF)

 条款与条件


大多数电子支持信息文件在没有订阅 ACS Web Editions 的情况下可以获取。这些文件可以按文章下载用于研究(如果相关文章链接有公共使用许可证,该许可证可能允许其他使用)。可通过 RightsLink 许可系统向 ACS 申请其他用途的许可:http://pubs.acs.org/page/copyright/permissions.html。

Author Information

Click to copy section linkSection link copied!

  • Corresponding Authors
  • Authors
    • Haoqing Tian - School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
    • Lei Dai - School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, China
  • Notes
    The authors declare no competing financial interest.

Acknowledgments

Click to copy section linkSection link copied!

The authors appreciate the support from the Natural Science Foundation of China (Grant nos. 52004092 and 51872090) and the Ph.D. Research Startup Foundation of North China University of Science and Technology (no. BS2019001).

References

Click to copy section linkSection link copied!

This article references 46 other publications.

  1. 1
    Muñoz-Márquez, M. Á.; Saurel, D.; Gómez-Cámer, J. L.; Casas-Cabanas, M.; Castillo-Martínez, E.; Rojo, T. Na-Ion Batteries for Large Scale Applications: A Review on Anode Materials and Solid Electrolyte Interphase Formation. Adv. Energy Mater. 2017, 7, 1700463,  DOI: 10.1002/aenm.201700463
  2. 2
    Zhao, C.; Liu, L.; Qi, X.; Lu, Y.; Wu, F.; Zhao, J.; Yu, Y.; Hu, Y.-S.; Chen, L. Solid-State Sodium Batteries. Adv. Energy Mater. 2018, 8, 1703012,  DOI: 10.1002/aenm.201703012
  3. 3
    Chu, C.; Li, R.; Cai, F.; Bai, Z.; Wang, Y.; Xu, X.; Wang, N.; Yang, J.; Dou, S. Recent Advanced Skeletons in Sodium Metal Anodes. Energy Environ. Sci. 2021, 14, 43184340,  DOI: 10.1039/d1ee01341f
  4. 4
    Kim, J.-J.; Yoon, K.; Park, I.; Kang, K. Progress in the Development of Sodium-Ion Solid Electrolytes. Small Methods 2017, 1, 1700219,  DOI: 10.1002/smtd.201700219
  5. 5
    Chen, R.; Li, Q.; Yu, X.; Chen, L.; Li, H. Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. Chem. Rev. 2020, 120, 68206877,  DOI: 10.1021/acs.chemrev.9b00268
  6. 6
    Zhao, Y.; Adair, K. R.; Sun, X. Recent Developments and Insights into the Understanding of Na Metal Anodes for Na-metal Batteries. Energy Environ. Sci. 2018, 11, 26732695,  DOI: 10.1039/c8ee01373j
  7. 7
    Oh, J. A. S.; He, L.; Chua, B.; Zeng, K.; Lu, L. Inorganic Sodium Solid-state Electrolyte and Interface with Sodium Metal for Room-temperature Metal Solid-state Batteries. Energy Storage Mater. 2021, 34, 2844,  DOI: 10.1016/j.ensm.2020.08.037
  8. 8
    Xu, L.; Li, J.; Liu, C.; Zou, G.; Hou, H.; Ji, X. Research Progress in Inorganic Solid-State Electrolytes for Sodium-Ion Batteries. Acta Phys.-Chim. Sin. 2020, 36, 1905013,  DOI: 10.3866/pku.Whxb201905013
  9. 9
    Zhou, C.; Bag, S.; Thangadurai, V. Engineering Materials for Progressive All-Solid-State Na Batteries. ACS Energy Lett. 2018, 3, 21812198,  DOI: 10.1021/acsenergylett.8b00948
  10. 10
    Gao, Z.; Yang, J.; Yuan, H.; Fu, H.; Li, Y.; Li, Y.; Ferber, T.; Guhl, C.; Sun, H.; Jaegermann, W.; Hausbrand, R.; Huang, Y. Stabilizing Na3Zr2Si2PO12/Na Interfacial Performance by Introducing a Clean and Na-Deficient Surface. Chem. Mater. 2020, 32, 39703979,  DOI: 10.1021/acs.chemmater.0c00474
  11. 11
    Wang, C.; Sun, Z.; Zhao, Y.; Wang, B.; Shao, C.; Sun, C.; Zhao, Y.; Li, J.; Jin, H.; Qu, L. Grain Boundary Design of Solid Electrolyte Actualizing Stable All-Solid-State Sodium Batteries. Small 2021, 17, 2103819,  DOI: 10.1002/smll.202103819
  12. 12
    Zhang, Z.; Zhang, Q.; Shi, J.; Chu, Y. S.; Yu, X.; Xu, K.; Ge, M.; Yan, H.; Li, W.; Gu, L.; Hu, Y.-S.; Li, H.; Yang, X.-Q.; Chen, L.; Huang, X. A Self-Forming Composite Electrolyte for Solid-State Sodium Battery with Ultralong Cycle Life. Adv. Energy Mater. 2017, 7, 1601196,  DOI: 10.1002/aenm.201601196
  13. 13
    Li, Z.; Zhu, K.; Liu, P.; Jiao, L. 3D Confinement Strategy for Dendrite-Free Sodium Metal Batteries. Adv. Energy Mater. 2021, 12, 2100359,  DOI: 10.1002/aenm.202100359
  14. 14
    Lou, S.; Zhang, F.; Fu, C.; Chen, M.; Ma, Y.; Yin, G.; Wang, J. Interface Issues and Challenges in All-Solid-State Batteries: Lithium, Sodium, and Beyond. Adv. Mater. 2021, 33, 2000721,  DOI: 10.1002/adma.202000721
  15. 15
    Zhang, Z.; Wenzel, S.; Zhu, Y.; Sann, J.; Shen, L.; Yang, J.; Yao, X.; Hu, Y.-S.; Wolverton, C.; Li, H.; Chen, L.; Janek, J. Na3Zr2Si2PO12: A Stable Na+-Ion Solid Electrolyte for Solid-State Batteries. ACS Appl. Energy Mater. 2020, 3, 74277437,  DOI: 10.1021/acsaem.0c00820
  16. 16
    Hou, W.; Guo, X.; Shen, X.; Amine, K.; Yu, H.; Lu, J. Solid Electrolytes and Interfaces in All-solid-state Sodium Batteries: Progress and Perspective. Nano Energy 2018, 52, 279291,  DOI: 10.1016/j.nanoen.2018.07.036
  17. 17
    Uchida, Y.; Hasegawa, G.; Shima, K.; Inada, M.; Enomoto, N.; Akamatsu, H.; Hayashi, K. Insights into Sodium Ion Transfer at the Na/NASICON Interface Improved by Uniaxial Compression. ACS Appl. Energy Mater. 2019, 2, 29132920,  DOI: 10.1021/acsaem.9b00250
  18. 18
    Oh, J. A. S.; Wang, Y.; Zeng, Q.; Sun, J.; Sun, Q.; Goh, M.; Chua, B.; Zeng, K.; Lu, L. Intrinsic Low Sodium/NASICON Interfacial Resistance Paving the Way for Room Temperature Sodium-metal Battery. J. Colloid Interface Sci. 2021, 601, 418426,  DOI: 10.1016/j.jcis.2021.05.123
  19. 19
    He, M.; Cui, Z.; Chen, C.; Li, Y.; Guo, X. Formation of Self-limited, Stable and Conductive Interfaces between Garnet Electrolytes and Lithium Anodes for Reversible Lithium Cycling in Solid-state Batteries. J. Mater. Chem. A 2018, 6, 1146311470,  DOI: 10.1039/c8ta02276c
  20. 20
    Hao, X.; Zhao, Q.; Su, S.; Zhang, S.; Ma, J.; Shen, L.; Yu, Q.; Zhao, L.; Liu, Y.; Kang, F.; He, Y. B. Constructing Multifunctional Interphase between Li1.4Al0.4Ti1.6(PO4)3 and Li Metal by Magnetron Sputtering for Highly Stable Solid-State Lithium Metal Batteries. Adv. Energy Mater. 2019, 9, 1901604,  DOI: 10.1002/aenm.201901604
  21. 21
    Yang, J.; Gao, Z.; Ferber, T.; Zhang, H.; Guhl, C.; Yang, L.; Li, Y.; Deng, Z.; Liu, P.; Cheng, C.; Che, R.; Jaegermann, W.; RenéHausbrand; Huang, Y. Guided-formation of a Favorable Interface for Stabilizing Na Metal Solid-state Batteries. J. Mater. Chem. A 2020, 8, 78287835,  DOI: 10.1039/d0ta01498b
  22. 22
    Yang, J.; Xu, H.; Wu, J.; Gao, Z.; Hu, F.; Wei, Y.; Li, Y.; Liu, D.; Li, Z.; Huang, Y. Improving Na/Na3Zr2Si2PO12 Interface via SnOx/Sn Film for High-Performance Solid-State Sodium Metal Batteries. Small Methods 2021, 5, 2100339,  DOI: 10.1002/smtd.202100339
  23. 23
    Gao, H.; Xue, L.; Xin, S.; Park, K.; Goodenough, J. B. A Plastic-Crystal Electrolyte Interphase for All-Solid-State Sodium Batteries. Angew. Chem., Int. Ed. Engl. 2017, 56, 55415545,  DOI: 10.1002/anie.201702003
  24. 24
    Xu, Y.; Wang, C.; Matios, E.; Luo, J.; Hu, X.; Yue, Q.; Kang, Y.; Li, W. Sodium Deposition with a Controlled Location and Orientation for Dendrite-Free Sodium Metal Batteries. Adv. Energy Mater. 2020, 10, 2002308,  DOI: 10.1002/aenm.202002308
  25. 25
    Zhang, Q.; Lu, Y.; Guo, W.; Shao, Y.; Liu, L.; Lu, J.; Rong, X.; Han, X.; Li, H.; Chen, L.; Hu, Y.-S. Hunting Sodium Dendrites in NASICON-Based Solid-State Electrolytes. Energy Mater. Adv. 2021, 2021, 1,  DOI: 10.34133/2021/9870879
  26. 26
    Miao, X.; Di, H.; Ge, X.; Zhao, D.; Wang, P.; Wang, R.; Wang, C.; Yin, L. AlF3-modified Anode-electrolyte Interface for Effective Na Dendrites Restriction in NASICON-based Solid-state Electrolyte. Energy Storage Mater. 2020, 30, 170178,  DOI: 10.1016/j.ensm.2020.05.011
  27. 27
    Lu, Y.; Alonso, J. A.; Yi, Q.; Lu, L.; Wang, Z. L.; Sun, C. A High-Performance Monolithic Solid-State Sodium Battery with Ca2+ Doped Na3Zr2Si2PO12 Electrolyte. Adv. Energy Mater. 2019, 9, 1901205,  DOI: 10.1002/aenm.201901205
  28. 28
    Han, F.; Westover, A. S.; Yue, J.; Fan, X.; Wang, F.; Chi, M.; Leonard, D. N.; Dudney, N. J.; Wang, H.; Wang, C. High Electronic Conductivity as the Origin of Lithium Dendrite Formation within Solid Electrolytes. Nat. Energy 2019, 4, 187196,  DOI: 10.1038/s41560-018-0312-z
  29. 29
    Tu, Q.; Shi, T.; Chakravarthy, S.; Ceder, G. Understanding Metal Propagation in Solid Electrolytes Due to Mixed Ionic-electronic Conduction. Matter 2021, 4, 32483268,  DOI: 10.1016/j.matt.2021.08.004
  30. 30
    Ping, W.; Wang, C.; Lin, Z.; Hitz, E.; Yang, C.; Wang, H.; Hu, L. Reversible Short-Circuit Behaviors in Garnet-Based Solid-State Batteries. Adv. Energy Mater. 2020, 10, 2000702,  DOI: 10.1002/aenm.202000702
  31. 31
    Gao, B.; Jalem, R.; Tian, H. K.; Tateyama, Y. Revealing Atomic-Scale Ionic Stability and Transport around Grain Boundaries of Garnet Li7La3Zr2O12 Solid Electrolyte. Adv. Energy Mater. 2022, 12, 2102151,  DOI: 10.1002/aenm.202102151
  32. 32
    Huo, H.; Gao, J.; Zhao, N.; Zhang, D.; Holmes, N. G.; Li, X.; Sun, Y.; Fu, J.; Li, R.; Guo, X.; Sun, X. A Flexible Electron-blocking Interfacial Shield for Dendrite-free Solid Lithium Metal Batteries. Nat. Commun. 2021, 12, 176,  DOI: 10.1038/s41467-020-20463-y
  33. 33
    Guo, W.; Han, Q.; Jiao, J.; Wu, W.; Zhu, X.; Chen, Z.; Zhao, Y. In situ Construction of Robust Biphasic Surface Layers on Lithium Metal for Lithium-Sulfide Batteries with Long Cycle Life. Angew. Chem., Int. Ed. Engl. 2021, 60, 72677274,  DOI: 10.1002/anie.202015049
  34. 34
    Li, W.; Gao, J.; Tian, H.; Li, X.; He, S.; Li, J.; Wang, W.; Li, L.; Li, H.; Qiu, J.; Zhou, W. SnF2-Catalyzed Formation of Polymerized Dioxolane as Solid Electrolyte and its Thermal Decomposition Behavior. Angew. Chem., Int. Ed. Engl. 2021, 61, e202114805  DOI: 10.1002/anie.202114805
  35. 35
    Pathak, R.; Chen, K.; Gurung, A.; Reza, K. M.; Bahrami, B.; Pokharel, J.; Baniya, A.; He, W.; Wu, F.; Zhou, Y.; Xu, K.; Qiao, Q. Fluorinated Hybrid Solid-electrolyte-interphase for Dendrite-free Lithium Deposition. Nat. Commun. 2020, 11, 93,  DOI: 10.1038/s41467-019-13774-2
  36. 36
    Wang, J.; Zhang, Z.; Ying, H.; Han, G.; Han, W.-Q. In-situ Formation of LiF-rich Composite Interlayer for Dendrite-free All-solid-state Lithium Batteries. Chem. Eng. J. 2021, 411, 128534,  DOI: 10.1016/j.cej.2021.128534
  37. 37
    Gross, M. M.; Small, L. J.; Peretti, A. S.; Percival, S. J.; Rodriguez, M. A.; Spoerke, E. D. Tin-based Ionic Chaperone Phases to Improve Low Temperature Molten Sodium-NaSICON Interfaces. J. Mater. Chem. A 2020, 8, 1701217018,  DOI: 10.1039/d0ta03571h
  38. 38
    Chi, X.; Hao, F.; Zhang, J.; Wu, X.; Zhang, Y.; Gheytani, S.; Wen, Z.; Yao, Y. A High-energy Quinone-based All-solid-state Sodium Metal Battery. Nano Energy 2019, 62, 718724,  DOI: 10.1016/j.nanoen.2019.06.005
  39. 39
    Liang, X.; Pang, Q.; Kochetkov, I. R.; Sempere, M. S.; Huang, H.; Sun, X.; Nazar, L. F. A Facile Surface Chemistry Route to a Stabilized Lithium Metal Anode. Nat. Energy 2017, 2, 17119,  DOI: 10.1038/nenergy.2017.119
  40. 40
    Chu, I.-H.; Kompella, C. S.; Nguyen, H.; Zhu, Z.; Hy, S.; Deng, Z.; Meng, Y. S.; Ong, S. P. Room-Temperature All-solid-state Rechargeable Sodium-ion Batteries with a Cl-doped Na3PS4 Superionic Conductor. Sci. Rep. 2016, 6, 33733,  DOI: 10.1038/srep33733
  41. 41
    Hu, P.; Zhang, Y.; Chi, X.; Kumar Rao, K.; Hao, F.; Dong, H.; Guo, F.; Ren, Y.; Grabow, L. C.; Yao, Y. Stabilizing the Interface between Sodium Metal Anode and Sulfide-Based Solid-State Electrolyte with an Electron-Blocking Interlayer. ACS Appl. Mater. Interfaces 2019, 11, 96729678,  DOI: 10.1021/acsami.8b19984
  42. 42
    Zheng, G.; Lee, S. W.; Liang, Z.; Lee, H.-W.; Yan, K.; Yao, H.; Wang, H.; Li, W.; Chu, S.; Cui, Y. Interconnected Hollow Carbon Nanospheres for Stable Lithium Metal Anodes. Nat. Nanotechnol. 2014, 9, 618623,  DOI: 10.1038/nnano.2014.152
  43. 43
    Xu, M.; Li, Y.; Ihsan-Ul-Haq, M.; Mubarak, N.; Liu, Z.; Wu, J.; Luo, Z.; Kim, J. K. NaF-rich Solid Electrolyte Interphase for Dendrite-free Sodium Metal Batteries. Energy Storage Mater. 2022, 44, 477486,  DOI: 10.1016/j.ensm.2021.10.038
  44. 44
    Yan, C.; Cheng, X.-B.; Yao, Y.-X.; Shen, X.; Li, B.-Q.; Li, W.-J.; Zhang, R.; Huang, J.-Q.; Li, H.; Zhang, Q. An Armored Mixed Conductor Interphase on a Dendrite-Free Lithium-Metal Anode. Adv. Mater. 2018, 30, 1804461,  DOI: 10.1002/adma.201804461
  45. 45
    Tian, H.; Liu, S.; Deng, L.; Wang, L.; Dai, L. New-type Hf-based NASICON Electrolyte for Solid-state Na-ion Batteries with Superior Long-cycling Stability and Rate Capability. Energy Storage Mater. 2021, 39, 232238,  DOI: 10.1016/j.ensm.2021.04.026
  46. 46
    Tamwattana, O.; Park, H.; Kim, J.; Hwang, I.; Yoon, G.; Hwang, T.-h.; Kang, Y.-S.; Park, J.; Meethong, N.; Kang, K. High-Dielectric Polymer Coating for Uniform Lithium Deposition in Anode-Free Lithium Batteries. ACS Energy Lett. 2021, 6, 44164425,  DOI: 10.1021/acsenergylett.1c02224

Cited By

Click to copy section linkSection link copied!
Citation Statements
  • Supporting
    Supporting0
  • Mentioning
    Mentioning10
  • Contrasting
    Contrasting0
Explore this article's citation statements on scite.ai

This article is cited by 3 publications.

  1. Qi Sun, Guohua Zhu, Lei Dai, Wei Meng, Ling Wang, Shan Liu. High-Efficiency Two-Dimensional Catalysts Derived from CoxZny-ZIF-L MOFs for Solid-State Na–Air Battery. ACS Sustainable Chemistry & Engineering 2023, 11 (31) , 11625-11634. https://doi.org/10.1021/acssuschemeng.3c02484
  2. Sudharshan Vasudevan, Sushmita Dwivedi, Palani Balaya. Overview and perspectives of solid electrolytes for sodium batteries. International Journal of Applied Ceramic Technology 2023, 20 (2) , 563-584. https://doi.org/10.1111/ijac.14267
  3. Qi Sun, Lei Dai, Tingting Luo, Ling Wang, Feng Liang, Shan Liu. Recent advances in solid‐state metal–air batteries. Carbon Energy 2023, 5 (2) https://doi.org/10.1002/cey2.276
Open PDF


ACS 可持续化学与工程


引用此文:ACS Sustainable Chem. Eng.2022, 10, 23, 7500–7507
 点击复制引用Citation copied!
https://doi.org/10.1021/acssuschemeng.2c00243

发表日期:2022 年 5 月 30 日

版权所有 © 2022 美国化学会

 文章浏览量

826

 替代指标

2

 引用


了解这些指标

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Schematic diagram of the EBI on the surface of NASICON. (a) There is poor contact between pure sodium and NHSP, which will cause local polarization and accelerate the generation of sodium dendrites and side reactions. (b) The EBI not only guarantees a close contact and a fast Na+ transmission through the interlayer but also prevents the formation of sodium dendrites essentially.

    Figure 2

    Figure 2. Structure and morphology of the EBI. (a) Top-view SEM image of the mixed salt layer on NHSP. (b) Cross-sectional view SEM image of the mixed salt layer on NHSP. (c) EDS mapping of Sn of cross section of the interlayer. (d) Formation of EBI by the solution pretreatment method. (e) XRD pattern of the surface of NHSP before and after the in situ reaction. (f) Measurements of D.C. conductivity of interlayers with different ratios of SnF2 and NaCl.

    Figure 3

    Figure 3. SEM and optical microscopy of the EBI-protected solid electrolyte. (a) Top-view optical microscopy image of the EBI@NHSP electrolyte after cycling. (b) Cross-sectional optical microscopy image of the EBI@NHSP electrolyte after cycling. (c,d) Cross-sectional SEM images of the EBI@NHSP before and after cycling. (e) Top-view optical microscopy image of the pure NHSP electrolyte after cycling. (f) Cross-sectional optical microscopy image of the pure NHSP electrolyte after cycling. (g,h) Cross-sectional SEM images of the pure electrolyte before and after cycling. (i) XPS patterns of Sn 3d, F 1s, and Cl 2p before and after cycling. (j) Schematic diagram of the mechanism of EBI.

    Figure 4

    Figure 4. Electrochemical performance of symmetric cells with EBI@NHSP and pure NHSP. (a) Voltage profile of EBI@NHSP at 0.2 mA cm–2. (b,c) Galvanostatic cycling of symmetric cells with EBI@NHSP and pure NHSP at different current densities from 0.1 to 2.5 mA cm–2. (d) EIS curves of the symmetric cell with EBI@NHSP before cycling and after different cycles. (e) EIS curves of the symmetric cell with pure NHSP before and after cycling (the inset shows the EIS curve of Na/NHSP/Na after cycling).

    Figure 5

    Figure 5. Performance of the full cell of Na/NVP and finite element simulation of batteries with various electrolytes. (a) Galvanostatic charge/discharge profiles of full cells with different interfaces at 0.5 C. (b) Rate performance of the full cell from 0.5 to 5 C. Finite element simulation of the sodium-ion concentration gradient with a potential of 0.3 V within the electrolyte (c) without electronic conductivity and (d) with electronic conductivity.

  • References


    This article references 46 other publications.

    1. 1
      Muñoz-Márquez, M. Á.; Saurel, D.; Gómez-Cámer, J. L.; Casas-Cabanas, M.; Castillo-Martínez, E.; Rojo, T. Na-Ion Batteries for Large Scale Applications: A Review on Anode Materials and Solid Electrolyte Interphase Formation. Adv. Energy Mater. 2017, 7, 1700463,  DOI: 10.1002/aenm.201700463
    2. 2
      Zhao, C.; Liu, L.; Qi, X.; Lu, Y.; Wu, F.; Zhao, J.; Yu, Y.; Hu, Y.-S.; Chen, L. Solid-State Sodium Batteries. Adv. Energy Mater. 2018, 8, 1703012,  DOI: 10.1002/aenm.201703012
    3. 3
      Chu, C.; Li, R.; Cai, F.; Bai, Z.; Wang, Y.; Xu, X.; Wang, N.; Yang, J.; Dou, S. Recent Advanced Skeletons in Sodium Metal Anodes. Energy Environ. Sci. 2021, 14, 43184340,  DOI: 10.1039/d1ee01341f
    4. 4
      Kim, J.-J.; Yoon, K.; Park, I.; Kang, K. Progress in the Development of Sodium-Ion Solid Electrolytes. Small Methods 2017, 1, 1700219,  DOI: 10.1002/smtd.201700219
    5. 5
      Chen, R.; Li, Q.; Yu, X.; Chen, L.; Li, H. Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. Chem. Rev. 2020, 120, 68206877,  DOI: 10.1021/acs.chemrev.9b00268
    6. 6
      Zhao, Y.; Adair, K. R.; Sun, X. Recent Developments and Insights into the Understanding of Na Metal Anodes for Na-metal Batteries. Energy Environ. Sci. 2018, 11, 26732695,  DOI: 10.1039/c8ee01373j
    7. 7
      Oh, J. A. S.; He, L.; Chua, B.; Zeng, K.; Lu, L. Inorganic Sodium Solid-state Electrolyte and Interface with Sodium Metal for Room-temperature Metal Solid-state Batteries. Energy Storage Mater. 2021, 34, 2844,  DOI: 10.1016/j.ensm.2020.08.037
    8. 8
      Xu, L.; Li, J.; Liu, C.; Zou, G.; Hou, H.; Ji, X. Research Progress in Inorganic Solid-State Electrolytes for Sodium-Ion Batteries. Acta Phys.-Chim. Sin. 2020, 36, 1905013,  DOI: 10.3866/pku.Whxb201905013
    9. 9
      Zhou, C.; Bag, S.; Thangadurai, V. Engineering Materials for Progressive All-Solid-State Na Batteries. ACS Energy Lett. 2018, 3, 21812198,  DOI: 10.1021/acsenergylett.8b00948
    10. 10
      Gao, Z.; Yang, J.; Yuan, H.; Fu, H.; Li, Y.; Li, Y.; Ferber, T.; Guhl, C.; Sun, H.; Jaegermann, W.; Hausbrand, R.; Huang, Y. Stabilizing Na3Zr2Si2PO12/Na Interfacial Performance by Introducing a Clean and Na-Deficient Surface. Chem. Mater. 2020, 32, 39703979,  DOI: 10.1021/acs.chemmater.0c00474
    11. 11
      Wang, C.; Sun, Z.; Zhao, Y.; Wang, B.; Shao, C.; Sun, C.; Zhao, Y.; Li, J.; Jin, H.; Qu, L. Grain Boundary Design of Solid Electrolyte Actualizing Stable All-Solid-State Sodium Batteries. Small 2021, 17, 2103819,  DOI: 10.1002/smll.202103819
    12. 12
      Zhang, Z.; Zhang, Q.; Shi, J.; Chu, Y. S.; Yu, X.; Xu, K.; Ge, M.; Yan, H.; Li, W.; Gu, L.; Hu, Y.-S.; Li, H.; Yang, X.-Q.; Chen, L.; Huang, X. A Self-Forming Composite Electrolyte for Solid-State Sodium Battery with Ultralong Cycle Life. Adv. Energy Mater. 2017, 7, 1601196,  DOI: 10.1002/aenm.201601196
    13. 13
      Li, Z.; Zhu, K.; Liu, P.; Jiao, L. 3D Confinement Strategy for Dendrite-Free Sodium Metal Batteries. Adv. Energy Mater. 2021, 12, 2100359,  DOI: 10.1002/aenm.202100359
    14. 14
      Lou, S.; Zhang, F.; Fu, C.; Chen, M.; Ma, Y.; Yin, G.; Wang, J. Interface Issues and Challenges in All-Solid-State Batteries: Lithium, Sodium, and Beyond. Adv. Mater. 2021, 33, 2000721,  DOI: 10.1002/adma.202000721
    15. 15
      Zhang, Z.; Wenzel, S.; Zhu, Y.; Sann, J.; Shen, L.; Yang, J.; Yao, X.; Hu, Y.-S.; Wolverton, C.; Li, H.; Chen, L.; Janek, J. Na3Zr2Si2PO12: A Stable Na+-Ion Solid Electrolyte for Solid-State Batteries. ACS Appl. Energy Mater. 2020, 3, 74277437,  DOI: 10.1021/acsaem.0c00820
    16. 16
      Hou, W.; Guo, X.; Shen, X.; Amine, K.; Yu, H.; Lu, J. Solid Electrolytes and Interfaces in All-solid-state Sodium Batteries: Progress and Perspective. Nano Energy 2018, 52, 279291,  DOI: 10.1016/j.nanoen.2018.07.036
    17. 17
      Uchida, Y.; Hasegawa, G.; Shima, K.; Inada, M.; Enomoto, N.; Akamatsu, H.; Hayashi, K. Insights into Sodium Ion Transfer at the Na/NASICON Interface Improved by Uniaxial Compression. ACS Appl. Energy Mater. 2019, 2, 29132920,  DOI: 10.1021/acsaem.9b00250
    18. 18
      Oh, J. A. S.; Wang, Y.; Zeng, Q.; Sun, J.; Sun, Q.; Goh, M.; Chua, B.; Zeng, K.; Lu, L. Intrinsic Low Sodium/NASICON Interfacial Resistance Paving the Way for Room Temperature Sodium-metal Battery. J. Colloid Interface Sci. 2021, 601, 418426,  DOI: 10.1016/j.jcis.2021.05.123
    19. 19
      He, M.; Cui, Z.; Chen, C.; Li, Y.; Guo, X. Formation of Self-limited, Stable and Conductive Interfaces between Garnet Electrolytes and Lithium Anodes for Reversible Lithium Cycling in Solid-state Batteries. J. Mater. Chem. A 2018, 6, 1146311470,  DOI: 10.1039/c8ta02276c
    20. 20
      Hao, X.; Zhao, Q.; Su, S.; Zhang, S.; Ma, J.; Shen, L.; Yu, Q.; Zhao, L.; Liu, Y.; Kang, F.; He, Y. B. Constructing Multifunctional Interphase between Li1.4Al0.4Ti1.6(PO4)3 and Li Metal by Magnetron Sputtering for Highly Stable Solid-State Lithium Metal Batteries. Adv. Energy Mater. 2019, 9, 1901604,  DOI: 10.1002/aenm.201901604
    21. 21
      Yang, J.; Gao, Z.; Ferber, T.; Zhang, H.; Guhl, C.; Yang, L.; Li, Y.; Deng, Z.; Liu, P.; Cheng, C.; Che, R.; Jaegermann, W.; RenéHausbrand; Huang, Y. Guided-formation of a Favorable Interface for Stabilizing Na Metal Solid-state Batteries. J. Mater. Chem. A 2020, 8, 78287835,  DOI: 10.1039/d0ta01498b
    22. 22
      Yang, J.; Xu, H.; Wu, J.; Gao, Z.; Hu, F.; Wei, Y.; Li, Y.; Liu, D.; Li, Z.; Huang, Y. Improving Na/Na3Zr2Si2PO12 Interface via SnOx/Sn Film for High-Performance Solid-State Sodium Metal Batteries. Small Methods 2021, 5, 2100339,  DOI: 10.1002/smtd.202100339
    23. 23
      Gao, H.; Xue, L.; Xin, S.; Park, K.; Goodenough, J. B. A Plastic-Crystal Electrolyte Interphase for All-Solid-State Sodium Batteries. Angew. Chem., Int. Ed. Engl. 2017, 56, 55415545,  DOI: 10.1002/anie.201702003
    24. 24
      Xu, Y.; Wang, C.; Matios, E.; Luo, J.; Hu, X.; Yue, Q.; Kang, Y.; Li, W. Sodium Deposition with a Controlled Location and Orientation for Dendrite-Free Sodium Metal Batteries. Adv. Energy Mater. 2020, 10, 2002308,  DOI: 10.1002/aenm.202002308
    25. 25
      Zhang, Q.; Lu, Y.; Guo, W.; Shao, Y.; Liu, L.; Lu, J.; Rong, X.; Han, X.; Li, H.; Chen, L.; Hu, Y.-S. Hunting Sodium Dendrites in NASICON-Based Solid-State Electrolytes. Energy Mater. Adv. 2021, 2021, 1,  DOI: 10.34133/2021/9870879
    26. 26
      Miao, X.; Di, H.; Ge, X.; Zhao, D.; Wang, P.; Wang, R.; Wang, C.; Yin, L. AlF3-modified Anode-electrolyte Interface for Effective Na Dendrites Restriction in NASICON-based Solid-state Electrolyte. Energy Storage Mater. 2020, 30, 170178,  DOI: 10.1016/j.ensm.2020.05.011
    27. 27
      Lu, Y.; Alonso, J. A.; Yi, Q.; Lu, L.; Wang, Z. L.; Sun, C. A High-Performance Monolithic Solid-State Sodium Battery with Ca2+ Doped Na3Zr2Si2PO12 Electrolyte. Adv. Energy Mater. 2019, 9, 1901205,  DOI: 10.1002/aenm.201901205
    28. 28
      Han, F.; Westover, A. S.; Yue, J.; Fan, X.; Wang, F.; Chi, M.; Leonard, D. N.; Dudney, N. J.; Wang, H.; Wang, C. High Electronic Conductivity as the Origin of Lithium Dendrite Formation within Solid Electrolytes. Nat. Energy 2019, 4, 187196,  DOI: 10.1038/s41560-018-0312-z
    29. 29
      Tu, Q.; Shi, T.; Chakravarthy, S.; Ceder, G. Understanding Metal Propagation in Solid Electrolytes Due to Mixed Ionic-electronic Conduction. Matter 2021, 4, 32483268,  DOI: 10.1016/j.matt.2021.08.004
    30. 30
      Ping, W.; Wang, C.; Lin, Z.; Hitz, E.; Yang, C.; Wang, H.; Hu, L. Reversible Short-Circuit Behaviors in Garnet-Based Solid-State Batteries. Adv. Energy Mater. 2020, 10, 2000702,  DOI: 10.1002/aenm.202000702
    31. 31
      Gao, B.; Jalem, R.; Tian, H. K.; Tateyama, Y. Revealing Atomic-Scale Ionic Stability and Transport around Grain Boundaries of Garnet Li7La3Zr2O12 Solid Electrolyte. Adv. Energy Mater. 2022, 12, 2102151,  DOI: 10.1002/aenm.202102151
    32. 32
      Huo, H.; Gao, J.; Zhao, N.; Zhang, D.; Holmes, N. G.; Li, X.; Sun, Y.; Fu, J.; Li, R.; Guo, X.; Sun, X. A Flexible Electron-blocking Interfacial Shield for Dendrite-free Solid Lithium Metal Batteries. Nat. Commun. 2021, 12, 176,  DOI: 10.1038/s41467-020-20463-y
    33. 33
      Guo, W.; Han, Q.; Jiao, J.; Wu, W.; Zhu, X.; Chen, Z.; Zhao, Y. In situ Construction of Robust Biphasic Surface Layers on Lithium Metal for Lithium-Sulfide Batteries with Long Cycle Life. Angew. Chem., Int. Ed. Engl. 2021, 60, 72677274,  DOI: 10.1002/anie.202015049
    34. 34
      Li, W.; Gao, J.; Tian, H.; Li, X.; He, S.; Li, J.; Wang, W.; Li, L.; Li, H.; Qiu, J.; Zhou, W. SnF2-Catalyzed Formation of Polymerized Dioxolane as Solid Electrolyte and its Thermal Decomposition Behavior. Angew. Chem., Int. Ed. Engl. 2021, 61, e202114805  DOI: 10.1002/anie.202114805
    35. 35
      Pathak, R.; Chen, K.; Gurung, A.; Reza, K. M.; Bahrami, B.; Pokharel, J.; Baniya, A.; He, W.; Wu, F.; Zhou, Y.; Xu, K.; Qiao, Q. Fluorinated Hybrid Solid-electrolyte-interphase for Dendrite-free Lithium Deposition. Nat. Commun. 2020, 11, 93,  DOI: 10.1038/s41467-019-13774-2
    36. 36
      Wang, J.; Zhang, Z.; Ying, H.; Han, G.; Han, W.-Q. In-situ Formation of LiF-rich Composite Interlayer for Dendrite-free All-solid-state Lithium Batteries. Chem. Eng. J. 2021, 411, 128534,  DOI: 10.1016/j.cej.2021.128534
    37. 37
      Gross, M. M.; Small, L. J.; Peretti, A. S.; Percival, S. J.; Rodriguez, M. A.; Spoerke, E. D. Tin-based Ionic Chaperone Phases to Improve Low Temperature Molten Sodium-NaSICON Interfaces. J. Mater. Chem. A 2020, 8, 1701217018,  DOI: 10.1039/d0ta03571h
    38. 38
      Chi, X.; Hao, F.; Zhang, J.; Wu, X.; Zhang, Y.; Gheytani, S.; Wen, Z.; Yao, Y. A High-energy Quinone-based All-solid-state Sodium Metal Battery. Nano Energy 2019, 62, 718724,  DOI: 10.1016/j.nanoen.2019.06.005
    39. 39
      Liang, X.; Pang, Q.; Kochetkov, I. R.; Sempere, M. S.; Huang, H.; Sun, X.; Nazar, L. F. A Facile Surface Chemistry Route to a Stabilized Lithium Metal Anode. Nat. Energy 2017, 2, 17119,  DOI: 10.1038/nenergy.2017.119
    40. 40
      Chu, I.-H.; Kompella, C. S.; Nguyen, H.; Zhu, Z.; Hy, S.; Deng, Z.; Meng, Y. S.; Ong, S. P. Room-Temperature All-solid-state Rechargeable Sodium-ion Batteries with a Cl-doped Na3PS4 Superionic Conductor. Sci. Rep. 2016, 6, 33733,  DOI: 10.1038/srep33733
    41. 41
      Hu, P.; Zhang, Y.; Chi, X.; Kumar Rao, K.; Hao, F.; Dong, H.; Guo, F.; Ren, Y.; Grabow, L. C.; Yao, Y. Stabilizing the Interface between Sodium Metal Anode and Sulfide-Based Solid-State Electrolyte with an Electron-Blocking Interlayer. ACS Appl. Mater. Interfaces 2019, 11, 96729678,  DOI: 10.1021/acsami.8b19984
    42. 42
      Zheng, G.; Lee, S. W.; Liang, Z.; Lee, H.-W.; Yan, K.; Yao, H.; Wang, H.; Li, W.; Chu, S.; Cui, Y. Interconnected Hollow Carbon Nanospheres for Stable Lithium Metal Anodes. Nat. Nanotechnol. 2014, 9, 618623,  DOI: 10.1038/nnano.2014.152
    43. 43
      Xu, M.; Li, Y.; Ihsan-Ul-Haq, M.; Mubarak, N.; Liu, Z.; Wu, J.; Luo, Z.; Kim, J. K. NaF-rich Solid Electrolyte Interphase for Dendrite-free Sodium Metal Batteries. Energy Storage Mater. 2022, 44, 477486,  DOI: 10.1016/j.ensm.2021.10.038
    44. 44
      Yan, C.; Cheng, X.-B.; Yao, Y.-X.; Shen, X.; Li, B.-Q.; Li, W.-J.; Zhang, R.; Huang, J.-Q.; Li, H.; Zhang, Q. An Armored Mixed Conductor Interphase on a Dendrite-Free Lithium-Metal Anode. Adv. Mater. 2018, 30, 1804461,  DOI: 10.1002/adma.201804461
    45. 45
      Tian, H.; Liu, S.; Deng, L.; Wang, L.; Dai, L. New-type Hf-based NASICON Electrolyte for Solid-state Na-ion Batteries with Superior Long-cycling Stability and Rate Capability. Energy Storage Mater. 2021, 39, 232238,  DOI: 10.1016/j.ensm.2021.04.026
    46. 46
      Tamwattana, O.; Park, H.; Kim, J.; Hwang, I.; Yoon, G.; Hwang, T.-h.; Kang, Y.-S.; Park, J.; Meethong, N.; Kang, K. High-Dielectric Polymer Coating for Uniform Lithium Deposition in Anode-Free Lithium Batteries. ACS Energy Lett. 2021, 6, 44164425,  DOI: 10.1021/acsenergylett.1c02224
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acssuschemeng.2c00243.

    • Experimental section; comparison of electrochemical performance of solid sodium-ion batteries; XRD spectra of sodium metal after cycling; schematic diagram of MIE@NHSP; XRD pattern of pure SnF2-modified NHSP; Nyquist plots, voltage profiles, and top-view SEM images with different concentrations of SnF2:NaCl; comparison of DC conductivity of interface layers with and without NaCl; EIS comparison of symmetric cells with EBI@NHSP and MIE@NHSP; impedance analysis results of EBI@NHSP and MIE@NHSP symmetric cells; top-view SEM images of EBI@NHSP, pure NHSP and MIE@NHSP before and after cycling; side-view SEM images of EBI@NHSP and MIE@NHSP before and after cycling; XPS spectra of Hf 4f; XRD pattern of EBI pure NHSP during cycling; galvanostatic charge/discharge profiles of the SnF2|Na battery; galvanostatic cycling of EBI@NHSP; voltage profile of pure NHSP; voltage profile of MIE@NHSP; and long-cycle of the full cell of Na/NVP (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.