这是用户在 2024-4-18 17:14 为 https://app.immersivetranslate.com/pdf-pro/265926d6-805a-4ce1-a8dd-aa711b0eb3df 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
2024_04_18_f5fbcc6cac6a562918cag


杨刚强, 刘淑琪, 张晨, 俞丽萍, 邹宗吉, 王聪辉, 高萌,

李爽、马奕琪、徐若轩、宋志华、刘荣霞、王洪波*


引用: J. Med. Chem. 2023, 66, 8628-8642

摘要: P-糖蛋白(Pgp)的非底物变构抑制剂被认为是克服多药耐药性(MDR)的有前途的调节剂,但相对未知。在此,我们设计并合成了含有人肝产生的主要人参皂苷代谢物pyxinol的酰胺衍生物的氨基酸,并检查了它们的MDR逆转能力。鉴定出一种潜在的非底物抑制剂 (7a) 在核苷酸结合域处与 Pgp 的假定变构位点进行高亲和力结合。随后的测定证实, 它能够抑制基础和维拉帕米刺激的PgpATP酶活性(抑制率分别为87和 ),并且不能被Pgp泵出,表明它是一种罕见的非底物变构抑制剂。此外,7a 干扰了 Pgp 介导的 Rhodamine123 外排,同时对 Pgp 表现出高选择性。 值得注意的是,7a 还显着增强了紫杉醇的治疗效果,当用于治疗携带 KBV 异种移植肿瘤的裸鼠时,肿瘤抑制比为

 介绍


尽管近年来抗癌药物和相关治疗方法的开发取得了重大进展,但大多数转移性癌症患者最终还是死于与多药耐药性 (MDR) 相关的死亡率。 ATP 结合盒 转运蛋白被认为是 MDR 发展的主要贡献者,因为它们的外排功能可以降低各种结构无关的抗癌药物的细胞内浓度。 在 48 种已知的人类 转运蛋白中,P-糖蛋白 (Pgp 或 是一种 跨膜蛋白,由两个细胞质核苷酸结合域 (NBD) 和跨膜结构域 (TMD) 组成,可结合和转运各种化合物跨细胞膜,在各种肿瘤类型中广泛过表达。 Pgp 被认为是化疗最难治性癌症类型中 MDR 发作的重要介质,其上调与不良临床结果有关。 为了克服 Pgp 介导的 MDR,已经开发了分为三代的各种药物,目的是抑制 Pgp 外排功能。不幸的是,这些进入临床试验的抑制剂中的大多数最终都因反应不佳或内在毒性而被撤回。 这种毒性的一个潜在驱动因素是,大多数已知的 Pgp 抑制剂,包括维拉帕米 ( )、tariquidar 和 zosuquidar,是 Pgp 的良好底物,可以刺激其基础 Pgp-ATP 酶活性,并且

导致需要相对较高的抑制剂浓度才能达到疗效,从而增加了脱靶毒性的风险。

收稿日期: 2023-02-16

出版日期: 2023年06月19日



Pyxinol 是一种来自人参的 ocotillol 型三萜类化合物(图 1),已被确定为人参的主要肝脏代谢产物

图 1.pyxinol衍生物和人参皂苷的化学结构。

 结果与讨论



方案 1.Pyxinol 酰胺衍生物的合成

方案 2.Pyxinol 酯衍生物的合成
2
13
15

表 1.Pyxinol 衍生物对 Ptx 诱导的 KBV 细胞毒性的影响

数据是平均值 标准差 化合物在 10 或 . 未确定。

数据是 10 或 10 处的平均 标准差 化合物。 未确定。

表 2.精选 Pyxinol 衍生物对 Ptx 诱导的 KBV 细胞毒性 的影响
治疗 反转折叠 治疗 反转折叠
PTX的 1 Vrp (英语) 64
22 82
21 67
36 46
56 321
61 130
21 49
35 11楼 209
塔里基达尔 113 塔里基达尔 150

表 3.选定的 Pyxinol 衍生物 的对接
复合 药物结合位点 (TMD) 推定变构部位 (NBD)  TPSA (英语:TPSA) 共识
-6.7 13 -8.1 1 723 117.1 6.81
-6.8 10 -8.5 0.6 573 90.8 4.99
-7.2 5 -8.6 0.5 575 104.8 5.30
-7.7 2 -9.3 0.1 623 104.8 5.30
-6.8 10 -6.4 21 747 143.4 6.31
-7.2 5 -7.6 3 723 117.1 6.80
11楼 -8.3 0.8 -8.0 1 795 126.3 7.60

表 4.7a对人Pgp 的ATP水解活性的影响
复合
刺激
ATP酶
DMSO公司
影响
刺激
ATP酶
基础ATP酶
DMSO)
影响
基底
ATP酶
DMSO公司
Vrp (英语) 刺激
7 安培 抑制剂 抑制剂

和 Pgp-Glo 测定(表 3 和 4)。这些结果证实了7a是Pgp的非底物抑制剂。


评估 7a 对 Pgp 介导的外排的影响。为了评估7a是否能够在原位抑制Pgp功能,Pgp介导的荧光罗丹明123


(Rh123)外排测定使用KBV细胞进行,如我们之前的报告所示。 衍生物 7 a 处理显著增加了 KBV 细胞内 Rh123 的积累 以剂量依赖性方式(图4A),Vrp也是如此,作为阳性对照。与KB细胞(一种Ptx敏感细胞系)相比,Ptx-C是一种与香豆素偶联的Ptx荧光衍生物,在KBV细胞中的积累明显减少(图4B)。这是因为 KBV 细胞可以通过 Pgp 介导的外排减少 Ptx 及其衍生物的细胞内积累,从而导致 Ptx 耐药性。有趣的是,这个过程可以通过7a逆转。观察到衍生物7a处理以剂量依赖性方式显着增加KBV细胞中的Ptx-C积累(图 and S3).在7a浓度下 ,Ptx-C在KBV细胞中的积累几乎与KB细胞中的Ptx-C积累相同。我们进一步评估了对 KBV 细胞中 Pgp 蛋白水平和亚细胞定位的影响 ,但在 7a 处理后观察到这些水平和定位没有可测量的变化(图 5 和 S4),这表明 Pgp 表达及其亚细胞定位的变化与观察到的活性无关该化合物的活性。总之,这些发现表明, 通过增加 Ptx 的细胞内积累并通过直接抑制 Pgp 外排功能来抑制其 Pgp 介导的外排,从而逆转 KBV 细胞中的 Ptx 耐药性。

(Rh123)外排测定使用KBV细胞进行,如我们之前的报告所示。 衍生物7a处理以剂量依赖性方式显着增加KBV细胞 内Rh123的积累(图4A),作为阳性对照的Vrp也是如此。与KB细胞(一种Ptx敏感细胞系)相比,Ptx-C是一种与香豆素偶联的Ptx荧光衍生物,在KBV细胞中的积累明显减少(图4B)。这是因为 KBV 细胞可以通过 Pgp 介导的外排减少 Ptx 及其衍生物的细胞内积累,从而导致 Ptx 耐药性。有趣的是,这个过程可以通过7a逆转。观察到衍生物 7a 处理以剂量依赖性方式显着增加 KBV 细胞中 Ptx-C 的积累(图 和 S3)。在7a浓度下 ,Ptx-C在KBV细胞中的积累几乎与KB细胞中的Ptx-C积累相同。我们进一步评估了对 KBV 细胞中 Pgp 蛋白水平和亚细胞定位的影响 ,但在 7a 处理后观察到这些水平和定位没有可测量的变化(图 5 和 S4),这表明 Pgp 表达及其亚细胞定位的变化与观察到的活性无关该化合物的活性。总之,这些发现表明, 通过增加 Ptx 的细胞内积累并通过直接抑制 Pgp 外排功能来抑制其 Pgp 介导的外排,从而逆转 KBV 细胞中的 Ptx 耐药性。
Analysis of 7a Selectivity for Pgp. Pgp and MDRassociated protein 1 (MRP1 or ) are the primary proteins thought to be involved in MDR phenotypes, and all are
Figure 5. Effects of 7a on Pgp protein expression (A) and subcellular localization (B). Following treatment with 7a, Pgp levels in KBV cells were assessed via western blotting (A) and immunofluorescence (B) assay. Dapi (blue) indicates the nuclei. Scale bar: .
overexpressed by KBV cells. Notably, most known Pgp modulators have been found to inhibit to varying extents due to the similarities in both structure and function between Pgp and ABCC1. Thus, the selectivity of was examined by assessing its capacity to sensitize KBV cells to exporter-mediated anticancer agents. As shown in Tables 2 and 5, derivative 7a markedly sensitized MDR cells to the Pgp substrates adriamycin and Ptx, where it failed to sensitize KBV
Table 5. Assessment of the Selectivity of as an Inhibitor of ABC Transporters Overexpressed in KBV Cells
treatment  反转折叠
adriamycin 1.0
8.0
15.8
Vrp 13.2
cisplatin 1.0
1.0
1.0
MK571 3.6
Data are mean .
cells to cisplatin, a nonsubstrate of Pgp. However, MK571, a specific inhibitor, could robustly sensitize KBV cells to cisplatin (Table 5), consistent with the observation that ABCC1 is involved in cisplatin resistance. These data suggest that selectively inhibits Pgp efflux activity.
Cellular Thermal Shift Assay (CETSA). A CETSA approach was next used to assess the binding affinity of with in situ Pgp as this label-free method can enable efficient analyses of protein-compound interactions in physiological environments. Briefly, live KBV cells were incubated with followed by thermal denaturation at different temperatures. Cell lysate soluble fractions were then collected and evaluated following freeze-thaw cycles. The binding of a protein to a given compound can increase its overall resistance to denaturation such that it may remain stable in the soluble lysate fraction at a higher temperature relative to the unbound protein. Indeed, treatment with stabilized Pgp at higher temperatures compared with DMSO treatment, but not ABCC1 (Figures 6
和S5),与选择性抑制试验的结果一致(表5)。这些数据强烈表明 Pgp 是 并且这种结合涉及其 MDR 逆转活动。
7a 对 Ptx 介导的细胞周期停滞的影响。接下来使用流式细胞术来评估 Ptx介导的KBV细胞的细胞周期停滞和随之而来的细胞凋亡。与对照组相比,在单独用7 a处理的细胞中未观察到细胞周期进程或细胞凋亡的明显变化(图7)。同样,由于 KBV 细胞的 MDR 状态,单独 Ptx 处理未能影响这些活性。然而 Ptx 联合治疗与细胞停滞增加相关 阶段 ,并且细胞凋亡的发生率显着增加,这表现为亚凋亡频率的增加。 这些发现共同表明,7a 逆转了 MDR 细胞中的 Ptx 耐药性,而不影响 Ptx 诱导的细胞凋亡。
7a治疗对肿瘤化学敏感性的体内影响评估。鉴于 7a 通过对 Pgp 的非底物变构抑制作为 MDR 逆转剂的强大能力,对 CYP3A4 活性没有明显影响(数据未显示),我们接下来评估了其在携带 KBV 肿瘤异种移植物的裸鼠体内逆转化疗耐药性的能力。在有或没有 Ptx 的 7a 治疗后,在治疗期间每 3 天监测一次肿瘤体积,并在实验结束时称量肿瘤。正如预期的那样,KBV肿瘤对Ptx治疗具有耐药性 ),因此Ptx组和载体对照组之间的肿瘤进展没有明显差异,这与我们的体外结果一致(图8)。与 7a (20 ),然而,与 Ptx 介导的肿瘤生长的显着抑制有关 ,抑制比高达 没有伴随任何毒性的增加。相比之下,单独的7 a对肿瘤生长没有影响。这些结果表明,在耐受剂量下,7 a可以在体内有效地恢复Ptx对MDR人肿瘤的敏感性。

结论

Pyxinol 衍生物作为可能的 MDR 逆转剂已被广泛研究, 先前的证据表明,pyxinol 衍生物与 Pgp 的 TMD 结合,从而调节其外排活性。 在此,我们合成了一系列带有氨基酸残基的pyxinol酰胺衍生物,并取得了很高的收率。使用KBV细胞探索了这些化合物在体外逆转Ptx耐药性的能力,并根据所得数据预测了可能的构效关系。值得注意的是,分子对接分析表明,衍生物 7a 可能优先结合 Pgp NBD 内的推定变构位点,而不是位于 Pgp TMD 中的药物结合位点。与分子对接分析的预测一致,随后的 Pgp-Glo 测定证实 7 a 能够在工作浓度下强烈抑制基础和刺激的 Pgp-ATP 酶活性。这种抑制模式通常是由Pgp的非底物变构抑制引起的。 CETSA方法进一步证实,7a可以直接与Pgp相互作用,但不能与另一个相互作用 出口商就地。其他机理分析表明, 能够选择性地抑制 Pgp 介导的药物外排,并且其 MDR 逆转能力不归因于 Pgp 蛋白表达的降低,而是其功能抑制。因此,衍生物 7a 通过将细胞周期停滞在 阶段,导致 Ptx 诱导细胞凋亡。
本研究为天然产物Pgp非底物变构抑制剂的开发提供了新的方向。所选化合物 被证实可作为潜在的非底物变构抑制剂。因此, 在裸鼠中,Ptx对KBV细胞异种移植物的抗肿瘤活性大大增加,而没有任何额外的毒性。因此,我们的结果表明,7a可能作为一种新型的有前途的先导化合物,用于治疗Pgp介导的MDR。显然,需要进一步的研究来充分探索确切的结合位点,并开发更有效的非底物变构抑制剂来抵消Pgp介导的MDR。


图7.7a 对 Ptx 介导的 KBV 细胞周期进程变化的影响。通过流式细胞术评估细胞 用指定的化合物进行后处理。
图8.评估 7a 对携带 Ptx 耐 Ptx 的 KBV 异种移植肿瘤小鼠中 Ptx 抗癌功效的影响。测量 KBV 细胞植入后体重 (A) 和肿瘤体积 (B) 的变化。在植入后第 23 天采集肿瘤、成像 (C) 并称重 (D)。数据是平均值 ,与控制。

实验部分


化学。材料和溶剂从商业供应商处获得,并酌情进一步干燥。 用JEOL ECA400波谱仪(日本)测量 核磁共振波谱,使用四甲基硅烷(TMS, )作为内标,单位 ppm。分别使用SGW-3光谱仪(中国)、Waters ACQUITY UPLC(或Waters e2695)和Thermo Scientific QExactive质谱仪评估旋光度、纯度和高分辨率质谱(HRMS)。所有最终化合物都是 纯的(Waters色谱柱,C18, ,流速 ,或XBridge C18, ,流速 )。

.制备了关键中间体1、2、5和10,并按照我们公布的程序通过重结晶进一步纯化。 合成方法如下所述。在含有关键中间体( )和 -Boc氨基酸 的溶液中加入无水DMF Ar。将溶液在室温(RT)下搅拌, 然后通过加水终止反应。将混合物用EtOAc萃取,用盐水洗涤,干燥 ,浓缩,并用硅胶柱层析纯化,得到化合物

TFA 被添加到化合物 中, 。将溶液在室温下搅拌, 然后将溶液真空浓缩六次, 生成化合物

(20S,24R)-环氧-3 -N-(N-叔丁氧羰基-L-脯氨酰基)-达马烷-12 ,25 二醇 (6a)。收率: 90%; ( C 1.0, , 核 磁共振 、49.4、47.9、47.1、39.7、39.3、38.6、37.9、37.0、34.7、32.6、31.2、31.2、28.5、28.3(5C)、27.9、27.6、26.1、25.6、25.0、18.5、18.1、16.2(2C)、15.3。人力资源管理系统 (ESI) 钙化 673.5150,找到 673.5161。

(20S,24R)-环氧-3 - -(N-叔丁氧羰基- -叔丁基-L-天冬氨酰基)-达马烷-12 ,25-二醇(6c)。收率: 90%; 1.0, (DDD, 11.4、10.1、5.0 赫兹、1H)、 NMR , 31.2, 31.2, 28.6, 28.3 (4C), 28.0 (3C), 27.9, 27.6, 26.1, 25.3, 25.0, 18.5, 18.1, 16.2, 16.1, 15.3.HRMS (ESI) 计算 747.5518,找到 747.5536。
(20S, 24R)-Epoxy-3 - -(N -di-Boc-L-lysinyl)-dammarane12 , 25-Diol (6d). Yield: 90%; (c 1.0, NMR , , , , NMR (100 , 56.6, 56.4, 54.9, 52.0, 50.4, 49.4, 47.9, 39.7 (2C), 39.3, 38.6, 37.8, 37.0, 34.7, 32.6, 31.6, 31.2, 31.2, 28.5, 28.4 (3C), 28.3, 28.3 (3C), 27.9, 27.6, 26.1, 25.5, 25.0, 22.5, 18.5, 18.1, 16.2, 16.2, 15.3. HRMS (ESI) calcd 804.6096, found 804.6112.
(20S, 24R)-Epoxy-3 - -(N-Boc-L-phenylalanyl)-dammarane-12 , 25-Diol (6e). Yield: 92%; ( c 1.02, ); NMR (400 , (dd, , , NMR ( ) (2C), 128.7 (2C), 126.9, 86.5, 85.4, 80.2, 70.9, 70.1, 56.7, 56.6, 56.2, 52.0, , 28.2 (3C), 28.2, 27.9, 27.6, 26.1, 25.4, 25.0, 18.4, 18.1, 16.1, 15.9, 15.3. HRMS (ESI) calcd 745.5162, found 745.5145.
(20S, 24R)-Epoxy-3 - -(N-Boc-O-tert-butyl-L-tyrosyl)-dammarane-12 , 25-Diol (6f). Yield: 91%; , , 3.84 (dd, (m, 2H), 3.08 (dd, , , , NMR ( (2C), 124.3 (2C), 86.5, 85.4, 80.1, 78.4, 70.9, 70.1, 56.6, 56.2, 52.0, 50.4, 49.3, 47.9, 39.6, 39.3, 38.6, 37.6, 37.5, 36.9, 34.7, 32.5, 31.2, 31.2, 28.8 (3C), 28.5, 28.2 (3C), 28.2, 27.9, 27.6, 26.1, 25.4, 25.0, 18.4, 18.1, 16.1, 16.0, 15.3. HRMS (ESI) calcd 795.5882, found 795.5900.
(20S, 24R)-Epoxy-3 - -(L-prolinyl)-dammarane-12 , 25-Diol (7a). Quantitative yield; NMR ( 400 , , , NMR , , , 29.2, 27.1, 26.8, 26.6, 26.1, 26.0, 25.1, 19.6, 18.7, 17.0, 16.8, 15.9. HRMS (ESI) calcd 573.4626, found 573.4636 .
(20S, 24R)-Epoxy-3 - -(L-valinyl)-dammarane-12 , 25-Diol (7b). Quantitative yield; (c 1.02, MeOH); NMR , 12.6, 4.3 Hz, 1n), 3.49 (td, (m, 2n), (s, 3n), 1.08 (d, ), 1.06 (d, (s, 3n), 0.95 (s, 3n), 0.93 (s, 3n), 0.87 (s, 3n), 0.83 (s, 3n); NMR ( , , 39.3, 38.2, 35.8, 33.7, 32.8, 32.1, 31.7, 29.6, 29.4, 27.1, 26.7, 26.6, 26.3, 26.0, 19.6, 19.1, 18.7, 17.9, 17.1, 16.8, 15.9. HRMS (ESI) calcd 575.4782, found 575.4770 .
(20S, 24R)-Epoxy-3 - -(L-aspartyl)-dammarane-12 , 25-Diol (7c). Quantitative yield; NMR , , NMR , 72.3, 71.9, 58.8, 58.0, 53.2, 51.8, 51.1, 50.1, 41.0, 40.7, 39.4, 38.9, 38.2, 36.4, 35.8, 33.7, 32.8, 32.1, 29.6, 29.1, 27.1, 26.7, 26.6, 26.1, 26.0, 19.6, 18.6, 16.9, 16.8, 15.9. HRMS (ESI) calcd 591.4368, found 591.4376 .
(20S, 24R)-Epoxy-3 - -(L-lysinyl)-dammarane-12 , 25-Diol (7d). Quantitative yield; 1.0, MeOH); NMR ( , , NMR (100 MHz, , , 32.5, 32.1, 29.6, 29.4, 28.1, 27.1, 26.8, 26.6, 26.1, 26.0, 23.1, 19.6, 18.7, 17.1, 16.8, 15.9. HRMS (ESI) calcd 604.5048, found 604.5056.
(20S, 24R)-Epoxy-3 - -(L-phenylalanyl)-dammarane-12 , 25 Diol (7e). Quantitative yield; (c 1.02, MeOH); NMR , ), 3.15 (dd, ), , , NMR , (2C), 130.2 (2C), 128.9, 87.9, 86.0, 72.3, 71.9, 58.8, 58.0, , 32.1, 29.6, 29.2, 27.1, 26.7, 26.6, 26.1, 26.0, 19.6, 18.6, 16.7, 16.7, 15.9. HRMS (ESI) calcd 623.4782, found 623.4763 .
(20S, 24R)-Epoxy-3 -(L-tyrosyl)-dammarane-12 , 25-Diol (7f). Quantitative yield; NMR ,
(dd, , NMR (100 MHz, (2C), 126.1, 116.9 (2C), 87.8, 86.0, 72.3, 71.9, 58.8, 58.0, 56.1, 53.2, 51.8, 50.1, 41.0, 40.7, 39.1, 38.9, 38.2, 38.1, 35.7, 33.7, 32.8, 32.1, 29.6, 29.2, 27.1, 26.7, 26.6, 26.1, 26.0, 19.6, 18.6, 16.7, 16.7, 15.9. HRMS (ESI) calcd 639.4731, found 639.4738 .
(20S, 24S)-Epoxy-3 - -(N-Boc-L-prolinyl)-dammarane-12 , 25Diol (11a). Yield: 87%; (c 1.0, NMR (400 , , NMR 171.7, 155.5, 87.3, 87.1, 80.3, 70.4, 70.0, 56.6 (2C), 52.1, 50.1, 48.9, 48.8, 47.1, 39.7, 39.3, 37.9 (2C), 37.0, 34.6, 32.1, 31.6 (2C), 28.8, 28.5, 28.3 (5C), 28.0 (2C), 25.0, 24.2 (2C), 18.5, 17.7, 16.2 (2C), 15.4. HRMS (ESI) calcd 695.4970, found 695.4984 .
(20S, 24S)-Epoxy-3 -N-(N-Boc-L-valinyl)-dammarane-12 , 25 Diol (11b). Yield: ; NMR 11.0, , , , , 0.76 (s, NMR , , 37.0, 34.6, 32.1, 31.6 (2C), 30.4, 28.8, 28.5, 28.4, 28.3 (3C), 27.9, 25.6, 25.0, 24.2, 19.5, 18.5, 17.7 (2C), 16.3, 16.1, 15.4. HRMS (ESI) calcd 697.5126, found 697.5131.
(20S, 24S)-Epoxy-3 - -(N-Boc- -tert-butyl-L-aspartyl)-dammarane-12 , 25-Diol (11c). Yield: 92%; (c 1.0, NMR , , , , NMR , , 56.6, 52.1, 50.1, 48.9, 48.7, 39.7, 39.3, 38.6, 37.8, 37.5, 37.0, 34.6, 32.1, 31.6, 31.5, 28.8, 28.5, 28.3 (3C), 28.0 (3C), 28.0, 27.9, 25.3, 25.0, 24.2, 18.5, 17.7, 16.1, 16.1, 15.4. HRMS (ESI) calcd 769.5337, found 769.5354 .
(20S, 24S)-Epoxy-3 - -(N -di-Boc-L-lysinyl)-dammarane12 , 25-Diol (11d). Yield: 93%; NMR , (dd, , , NMR , 156.2, 155.7, 87.3, 87.1, 79.9, 79.1, 70.4, 70.0, 56.5, 56.4, 54.9, 52.1, 50.1, 48.8, 48.7, 39.6 (2C), 39.3, 37.8, 37.0, 34.6, 32.1, 31.6, 31.5, 31.5, 28.8, 28.5, 28.4 (3C), 28.3, 28.3 (3C), 27.9, 25.4, 25.0, 24.2 (2C), 22.5, 18.5, 17.7, 16.2, 16.1, 15.4. HRMS (ESI) calcd 826.5916, found 826.5915.
(20S, 24S)-Epoxy-3 - -(N-Boc-L-phenylalanyl)-dammarane-12 , 25-Diol (11e). Yield: 89%; (c 1.0, NMR (400 , (dd, (dd, , , NMR (2C), 128.7 (2C), 126.9, 87.3, 87.1, 80.2, 70.5, 70.0, 56.7, 56.6, 56.2, 52.1, , 28.5, 28.2 (3C), 28.2, 28.0, 25.4, 25.0, 24.2, 18.4, 17.7, 16.1, 15.9, 15.4. HRMS (ESI) calcd , found 745.5130.
(20S, 24S)-Epoxy-3 -N-(N-Boc-O-tert-butyl-L-tyrosyl)-dammarane-12 , 25-Diol (11f). Yield: 91%; 1.0, NMR , , , , , , NMR 170.5, 155.3, 154.2, 131.4, 129.7 (2C), 124.4 (2C), 87.3, 87.1, 80.2, , 37.5, 36.9, 34.6, 32.1, 31.5 (2C), 28.8, 28.7 (3C), 28.5, 28.2 (3C), 28.2, 28.0, 25.4, 25.0, 24.2, 18.4, 17.7, 16.1, 16.0, 15.4. HRMS (ESI) calcd 817.5701, found 817.5718.
(20S, 24S)-Epoxy-3 - -(L-prolinyl)-dammarane-12 , 25-Diol (12a). Quantitative yield; c 1.0, MeOH); NMR ( 400 , , , NMR , , , 19.6, 18.3, 17.0, 16.8, 15.9. HRMS (ESI) calcd 573.4626, found 573.4611 .
(20S, 24S)-Epoxy-3 - -(L-valinyl)-dammarane-12 , 25-Diol (12b). Quantitative yield; ( c 1.01, MeOH); NMR , , , NMR , 53.3, 51.5, 50.2, 49.8, 40.9, 40.8, 39.3, 38.2, 35.8, 33.4, 32.8, 32.7, 31.7, 29.4, 29.4, 29.1, 26.5, 26.3, 26.2, 26.1, 19.6, 19.1, 18.3, 17.9, 17.2, 16.8, 15.9. HRMS (ESI) calcd , found 575.4772 .
(20S, 24S)-Epoxy-3 -N-(L-aspartyl)-dammarane-12 , 25-Diol (12c). Quantitative yield; ( c 1.06, MeOH); NMR , , , , NMR (100 MHz, , 71.3, 58.8, 58.0, 53.3, 51.5, 51.1, 50.2, 49.8, 40.9, 40.7, 39.5, 38.2, 36.4, 35.8, 33.4, 32.8, 32.6, 29.4, 29.1, 28.3, 26.5, 26.2, 26.1 (2C), 19.6, 18.3, 16.9, 16.8, 15.9. HRMS (ESI) calcd 613.4187, found 613.4170.
(20S, 24S)-Epoxy-3 - -(L-lysinyl)-dammarane-12 , 25-Diol (12d). Quantitative yield; (c 1.02, MeOH); NMR , , , NMR , , (2C), 29.1, 28.1, 26.5, 26.2, 26.1, 26.0, 23.1, 19.6, 18.3, 17.2, 16.8, 15.9. HRMS (ESI) calcd 604.5048, found 604.5031.
(20S, 24S)-Epoxy-3 -(L-phenylalanyl)-dammarane-12 , 25 Diol (12e). Quantitative yield; ( c 1.0, MeOH); NMR , (m, (dd, ,
, NMR (100 MHz, (2C), 130.2 (2C), 128.8, , , 26.0, 19.6, 18.3, 16.7 (2C), 15.9. HRMS (ESI) calcd C 623.4782, found 623.4766 .
(20S, 24S)-Epoxy-3 - -(L-tyrosyl)-dammarane-12 , 25-Diol (12f). Quantitative yield; (c 1.0, MeOH); NMR ( , ), 3.80 (dd, (dd, , (dd, (dd, ), 2.96 (dd, , . NMR ( (2C), 126.1, 116.9 (2C), 89.0, 88.5, 72.1, 71.3, 58.8, 58.0, 56.1, 53.3, 51.5, 50.2, 49.8, 40.9, 40.7, 39.1, 38.3, 38.1, 35.8, 33.4, 32.8, 32.6, 29.4, 29.2, 29.1, 26.5, 26.2, 26.1, 26.0, 19.6, 18.3, 16.7 (2C), 15.9. HRMS (ESI) calcd 639.4731, found 639.4714.
Synthesis of Compounds . To a solution containing a given intermediate (1 or 2 ) , 1-ethyl-3-(3dimethylaminopropyl)carbodiimide hydrochloride (EDCI, , ), and -Boc-L-proline in dry , 4-dimethylaminopyridine (DMAP, ) was added under argon. The solution was stirred for at RT, and the reaction was then terminated via adding . The mixture was then extracted with , washed with brine, dried over , and purified by silica gel column chromatography to yield and .
TFA was added to 13 (or 15 at , and the mixture was stirred for at RT, after which it was concentrated to yield compounds 14 and 16 .
(20S, 24R)-Epoxy-3 -O-(N-Boc-L-prolinyl)-dammarane-12 , 25 Diol (13). Yield: 82%; (c 1.00, NMR , , , , , NMR , , 38.0, 37.0, 34.7, 32.6, 31.3, 31.2, 31.1, 28.6, 28.5, 28.4 (2C), 28.1, 27.9, 27.6, 26.1, 25.0, 23.7, 23.4, 18.1 (2C), 16.4, 16.3, 15.4. HRMS (ESI) calcd 696.4810, found 696.4783.
(20S, 24R)-Epoxy-3 -O-(L-prolinyl)-dammarane-12 , 25-Diol (14). Quantitative yield; NMR , , , , NMR (100 MHz, , 53.2, 51.7, 50.1, 49.3, 47.0, 41.0, 39.7, 39.2, 38.2, 35.7, 33.7, 32.9, 32.1, 30.7, 29.6, 28.5, 27.1, 26.8, 26.6, 26.0, 24.6, 24.5, 19.2, 18.7, 16.9 (2C), 15.9. HRMS (ESI) calcd , found 574.4451 .
(20S, 24S)-Epoxy-3 -O-(N-Boc-L-prolinyl)-dammarane-12 , 25Diol (15). Yield: 87%; (c 1.00, ); NMR (400 , , NMR , , 46.2, 39.8, 38.5, 38.0, 37.1, 34.7, 32.2, 31.9, 31.6, 31.4, 28.8, 28.5, 28.5, 28.4 (2C), 28.1, 28.0, 25.1, 24.2, 23.7, 23.4, 18.1, 17.7, 16.4, 16.3, 15.4 . HRMS (ESI) calcd 696.4810, found 696.4788 .
(20S, 24S)-Epoxy-3 -O-(L-prolinyl)-dammarane-12 , 25-Diol (16). Quantitative yield; ( c 1.00, NMR (dd, , , , NMR , , 39.7, 39.2, 38.2, 35.7, 33.4, 32.8, 32.7, 31.8, 29.4, 29.1, 28.6, 26.5, 26.2, 26.0, 24.6, 24.5, 19.2, 18.3, 16.9, 16.9, 15.9. HRMS (ESI) calcd 574.4466, found 574.4450 .
Cell Culture. KBV cells (from Dr. Xiaoguang Chen of the Institute of Materia Medica, Chinese Academy of Medical Sciences) were grown in DMEM supplemented with fetal bovine serum (FBS), penicillin, and streptomycin in a humidified incubator at . The drug-resistant properties of these cells were maintained by routinely treating them with Ptx .
MDR Reversal Assay. An MTT assay was utilized to assess cell viability as discussed previously. Briefly, following a incubation with test compounds of interest, cells were treated with an MTT solution for . Dark blue crystals were dissolved in DMSO (150 , and absorbance at was then evaluated to assess the rate of cell survival.
Molecular Docking Analyses. Potential modes of binding between the compounds and the dynamic models of human Pgp in an outward-facing conformation or the human Pgp structure (PDB: ) in inward-facing conformation were predicted using AutoDock 4.2.6. The protein structure was established by the protonation and the removal of ligands, water molecules, and other heteroatoms. Ligand docking was limited in a grid box centered on the putative allosteric site of Pgp points; grid point spacing: . The grid box centered on the drug-binding site of Pgp was set a dimension of 40 points with a grid point spacing of . One hundred replicates for each compound were calculated, with the docking programs being used to compute the lowest estimated binding energy to the protein. Structural figures were drawn using PyMOL and LigPlus.
ATPase Activity Assay. A Promega Pgp-Glo assay kit was employed to examine the impact of on the Pgp-ATPase activity as discussed previously. Briefly, Pgp was pretreated for with test compounds (25,500 or of and/or of and reacted for with at . The reaction was then terminated via the addition of the ATP Detection Reagent and incubated for at RT, and luminescence was then measured with a SpectraMax M5 multifunctional microplate reader.
Intracellular Accumulation of Pyxinol Derivatives. Approximately or cells were treated with pyxinol or pyxinol derivatives for . The cells were collected, washed in phosphate-buffered saline (PBS), and lysed in of PBS by sonication. Intracellular pyxinol and pyxinol derivatives were extracted by EtOAc . Supernatants were collected after centrifugation , dried under gas, and redissolved in . The samples were analyzed on an Agilent 1290 Infinity (Agilent column, SB-C18, ) coupled with an AB SCIEX mass spectrometer (QTRAP 5500) by ultraperformance liquid chromatography coupled with mass spectrometry (UPLC-MS) analysis (the mobile phases: A, ammonium acetate aqueous; B, in ; isocratic A for 6 min with a flow rate of ; mass conditions: positive mode; ion spray voltage ; temperature ; declustering potential, for pyxinol and for and 11f). The following precursors and fragments were used:

Pyxinol:母离子477.4,碎片离子303.4。

Y30:母离子689.5,碎片离子553.5。

7a:母离子573.5,碎片离子143.1。

11 C:母离子747.5,碎片离子591.4。

11F:母离子795.6,碎片离子695.5。
Assessment of Intracellular Rh123 Accumulation. The impact of 7a on Rh123 accumulation was assessed via flow cytometry assay as published previously. Briefly, KBV cells were treated for with test compounds and with for . The cells were then collected, rinsed with PBS, and evaluated with a BD flow cytometer, with mean fluorescence intensity of 8000 being calculated.
Fluorescence Imaging. Fluorescence imaging was used to assess the accumulation of Ptx-C (fluorescent analogue of Ptx conjugated with coumarin). After planting in the glass-bottom dish, the cells were treated with Ptx-C in the absence or presence of ) for and then imaged by a Zeiss confocal microscope (LSM800) or quantified by a microplate reader.
Western Blotting. Western blotting was used to assess protein levels in KBV cells as per our previous protocols. Briefly, following treatment, KBV cells were lysed using radioimmunoprecipitation assay (RIPA) buffer, and proteins in the resultant lysates were separated via sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDSPAGE) and transferred to poly(vinylidene fluoride) (PVDF) membranes, which were then probed with antibodies against glyceraldehyde 3-phosphate dehydrogenase (GAPDH, AG019, Beyotime), ABCC1 (AF7503, Beyotime), or Pgp (ab3366, Abcam), and then with an HRP-conjugated secondary antibody (Beyotime). Chemiluminescent detection was then performed with an ECL reagent (Beyotime).
Immunofluorescence Assay. KBV cells were plated in the glassbottom plates and incubated with for . The cells were then fixed with formaldehyde (4%) for , permeabilized with Triton X-100 (0.1%) for , blocked with bovine serum albumin (BSA, 5%) for , and treated with the anti-Pgp antibody (ab3366, Abcam) at overnight. The cells were subsequently incubated with an Alexa Fluor 488-conjugated secondary antibody (A0428, Beyotime) for , counterstained with DAPI for , and imaged using a Zeiss confocal microscope (LSM800).
Cellular Thermal Shift Assay. KBV cells were pretreated for with or DMSO as a solvent control at , after which they were treated for an additional with or DMSO at 37 prior to separation into eight PCR tubes. The cells were then heated for to the indicated temperatures before being allowed to cool to RT. The samples were then lysed through six freeze-thaw cycles performed using liquid nitrogen, after which the samples were centrifuged at and supernatants were assessed via Western blotting.
Cell Cycle Distribution Assay. Cell cycle progression was assessed via flow cytometry as previously described. Briefly, KBV cells were cultured for in six-well plates with appropriate test compounds, after which they were collected and fixed overnight at in ethanol. Samples were then stained for with PI and RNaseA in PBS, after which they were analyzed with a BD flow cytometer.
Xenograft Studies. Nude male BALB/c mice ( weeks old) were employed to establish a xenograft model based on our previous study. Briefly, KBV cells were subcutaneously implanted on the back of each mouse. When tumors were in size, the animals were randomized into four groups: the control, Ptx , and Ptx groups. Ptx was administered intraperitoneally to appropriate mice once every three days, while was administered once per day. Tumor growth was assessed every three days over the treatment period. After treatment, the mice were euthanized and the tumors were weighed. The Animal Experimentation Ethics Committee of Yantai University approved the present study (protocol number 20180407), which was consistent with the guidelines for ethical conduct in the care and use of animals.
Statistical analysis. Data are presented as mean and were compared with Student's -test. **: .

 相关内容


(sI 支持信息


支持信息可在 https://pubs.acs.org/doi/10.1021/acs.jmedchem.3c00283 免费获得。

对接结果,Pgp-ATP酶活性;Ptx-C的细胞内积累;蛋白质印迹的重现性;关键化合物5、7a、10、11c、11e和11f的HPLC色谱图;以及化合物 6a-16 的 NMR 和 HRMS 谱图 (PDF)


分子式字符串 (CSV)
Coordinates of modeled structures in PDB format: 7a in complex with Pgp (the dynamic model of human Pgp in an outward-facing conformation ) (PDB)

 作者信息

 通讯作者

Gangqiang Yang - School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (1) orcid.org/0000-0001-6030-3570; Phone: +86535-6706095; Email: oceanygq@ytu.edu.cn
Hongbo Wang - School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (1) orcid.org/0000-0001-5055-4261;

 作者


刘淑琪 - 烟台大学药学院,分子药理学与药物评价教育部重点实验室,山东大学先进药物递送系统与生物技术药物协同创新中心,烟台264005

张晨 - 烟台大学药学院,分子药理学与药物评价教育部重点实验室,山东大学先进药物递送系统与生物技术药物协同创新中心,烟台264005

俞丽萍 - 烟台大学药学院,分子药理学与药物评价教育部重点实验室,山东大学先进药物递送系统与生物技术药物协同创新中心,烟台264005

邹宗基 - 烟台大学药学院,分子药理学与药物评价教育部重点实验室,山东省高校先进药物递送系统与生物技术药物协同创新中心,烟台264005

王聪辉 - 烟台大学药学院,分子药理学与药物评价教育部重点实验室,山东大学先进药物递送系统与生物技术药物协同创新中心,烟台264005

高萌 - 烟台大学药学院,分子药理学与药物评价教育部重点实验室,山东大学先进药物递送系统与生物技术药物协同创新中心,烟台264005

李爽 - 烟台大学药学院,分子药理学与药物评价教育部重点实验室,先进药物递送系统与生物技术药物协同创新中心

山东大学, 烟台大学, 烟台264005, 中国

Yiqi 马 - 烟台大学药学院,分子药理学与药物评价教育部重点实验室,山东大学先进药物递送系统与生物技术药物协同创新中心,烟台264005

徐若轩 - 烟台大学药学院,分子药理学与药物评价教育部重点实验室,山东大学先进药物递送系统与生物技术药物协同创新中心,烟台264005

宋志华 - 烟台大学药学院,分子药理学与药物评价教育部重点实验室,山东省高校先进药物递送系统与生物技术药物协同创新中心,烟台大学,烟台264005

刘荣霞 - 烟台大学药学院,分子药理学与药物评价教育部重点实验室,山东大学先进药物递送系统与生物技术药物协同创新中心,烟台264005

完整的联系信息可在以下网址获得:

 作者贡献

G.Y., S.L., and C.Z. contributed equally. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

 笔记


作者声明没有相互竞争的经济利益。

 确认


本研究由山东省自然科学基金(ZR2022MB043,ZR2021LSW011)、山东省高等学校青年创新团队人才培养计划、国家自然科学基金(82073888,82273969)、山东省高校青年创新科技支持计划(2019KJM009)、国家留学基金委(202108370160)n、山东省泰山学者项目(tsqn202211112)资助。感谢烟台大学研究生创新基金和国家实验药学教育示范中心(烟台大学)的支持。

 使用的缩略语

-Binding Cassette; BCRP, breast cancer resistance protein; CETSA, cellular thermal shift assay; Cryo-EM, cryoelectron microscopy; DMF, -dimethylformamide; EDCI, 1ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride; HBTU, -tetramethyl- -(1H-benzotriazol-1-yl)uronium hexafluorophosphate; MDR, multidrug resistance; MRP2, MDR-associated protein 2; MW, molecular weights; NBDs, nucleotide-binding domains; Pgp, P-glycoprotein; Ptx, paclitaxel; Rh123, Rhodamine123; RT, room temperature; TFA, trifluoroacetic acid; TMDs, transmembrane domains;
TPSA, topological polar surface areas; UPLC, ultraperformance liquid chromatography; Vrp, verapamil

 引用

(1) Marine, J. C.; Dawson, S. J.; Dawson, M. A. Non-genetic mechanisms of therapeutic resistance in cancer. Nat. Rev. Cancer 2020, 20, .

(2) 泽维尔,C.P.R.;贝利萨里奥,哥伦比亚特区;雷贝洛,R.;阿萨拉夫,Y.G.;乔瓦内蒂,E.;科佩卡,J.;瓦斯孔塞洛斯,MH细胞外囊泡在向癌细胞转移耐药能力中的作用。耐药性。更新日志 2022, 62, No. 100833.

(3) 埃克福德,PDW;Sharom, F. J. ABC 外排泵对化疗药物的耐药性。化学修订版 2009, 109, 2989-3011.
(4) Robey, R. W.; Pluchino, K. M.; Hall, M. D.; Fojo, A. T.; Bates, S. E.; Gottesman, M. M. Revisiting the role of transporters in multidrug-resistant cancer. Nat. Rev. Cancer 2018, 18, 452-464.

(5) 米尔扎伊,S.;戈拉米,MH;哈希米,F.;扎博利安,A.;法拉哈尼,MV;胡什曼迪,K.;扎拉比,A.;戈德曼,A.;阿什拉菲扎德,M.;Orive, G. 了解 P-gp 在多柔比星耐药性中的作用的进展:分子途径、治疗策略和前景。今日药物发现 2022, 27, 436-455.

(6) Waghray, D.;Zhang, Q. H. 在癌症治疗中抑制或逃避多药耐药性 P-糖蛋白。化学学报 2018, 61, 51085121 .
(7) Kathawala, R. J.; Gupta, P.; Ashby, C. R.; Chen, Z.-S. The modulation of transporter-mediated multidrug resistance in cancer: A review of the past decade. Drug Resist. Updates 2015, 18, 117.
(8) Loo, T. W.; Bartlett, M. C.; Detty, M. R.; Clarke, D. M. The ATPase activity of the P-glycoprotein drug pump is highly activated when the -terminal and central regions of the nucleotide-binding domains are linked closely together. J. Biol. Chem. 2012, 287, 2680626816.

(9) 诺索尔,K.;罗曼,K.;伊罗巴利耶娃,RN;阿拉姆,A.;科瓦尔,J.;藤田,N.;Locher, K. P. 冷冻电镜结构揭示了抑制人多药转运蛋白 ABCB1 的不同机制。美国科学院院刊 2020, 117, 26245-26253.

(10) 怀斯,J.G.;纳纳亚卡拉,AK;阿尔乔尼,M.;陈,G.;德奥利维拉,MC;阿默曼,L.;奥伦格,K.;利珀特,AR;Vogel, P. D. 使用计算和结构引导方法优化 P-糖蛋白的靶向抑制剂。化学学报 2019, 62, 10645-10663.

(11) 金彦;Chen, J. ATP 结合、向外构象中人 P-糖蛋白的分子结构。科学 2018, 359, 915919.

(12) 阿拉姆,A.;科瓦尔,J.;布劳德,E.;罗宁森,I.;Locher, K. P. 人 P-糖蛋白对底物和抑制剂鉴别的结构见解。科学 2019, 363, 753-756.

(13) 冯大律师;周, H. F.;吴大英;郑,D.C.;曲,B.;刘,R.M.;张,C.;李志强;谢彦;Luo, H. B. Nobiletin 及其衍生物克服癌症中的多药耐药性 (MDR):全合成和发现有效的 MDR 逆转剂。Acta Pharm. Sin.乙 2020, 10, 327-343.

(14) 王斌;马,L.Y.;王J.Q.;雷,Z.N.;古普塔,P.;赵耀;李志华;刘彦;张旭华;李彦娥;等。发现含有酰基脲部分的 5-氰基 6-苯基嘧啶衍生物作为口服生物可利用逆转剂,对抗 P-糖蛋白介导的多药耐药性。医学化学 2018, 61, 5988-6001.

(15) 张玉斌;张, H.;张国义;王玉杰;卡塔瓦拉,RJ;硅,R.;帕特尔,文学学士;徐,J.;Chen, Z. S. 半合成奥替洛尔类似物作为选择性 ABCB1 介导的耐药性逆转剂。肿瘤靶标 2015, 6, 24277-24290.

(16) 王淑婷;滕Q.X.;王旭;雷,Z.N.;胡,H.H.;吕慧辉;陈,B.B.;王J.Z.;石旭杰;徐伟峰;等。三唑并1,5-a嘧啶衍生物WS-716作为高效、特异性和口服活性的P-糖蛋白(P-gp)抑制剂的临床前研究。Acta Pharm. Sin.乙 2022, 12, 3263-3280.

(17) 布鲁尔,F.K.;福利特,CA;沃格尔,PD;怀斯,J.G.计算机筛选靶向核苷酸结合域的p-糖蛋白抑制剂。Mol. 药理学2014, 86, 716-726.

(18)李立;陈旭;李,D.;人肝微粒体和人肝细胞中20(S)原那二醇代谢物的鉴定。药物Metab。处置。2011, 39, 472-483.研究支持,非美国政府。

(19) 王伟;王玲玲;吴旭;徐,L.;孟,Q.;Liu, W. 体内和体外 20(s)-原萬二醇 ocotillol 型差向异构体的立体选择性形成和代谢。手性 2015, 27, 170-176.(20) 杨国Q.;杨玉旭;杨,Q.;李彦;江,Y.T.;傅福华;Wang, H. B. 基于新型荧光 pyxinol 的探针:设计、合成和生物学评估。下巴。有机化学 2017, 37, 2109-2114.
(21) Wang, T.; Meng, Q.; Zhang, J.; Bi, Y.; Jiang, N. Study on the structure-function relationship of -panaxadiol and its epimeric derivatives in myocardial injury induced by isoproterenol. Fitoterapia 2010, 81, 783-787. Research Support, Non-U.S. Gov't.

(22) 孙彦;方,X.;高,M.;王,C.;高,H.;毕,W.;唐,H.;崔彦;张,L.;范,H.;等。pyxinol衍生物作为新型抗炎药的合成及构效关系.化学学报 2020, 11, 457-463.

(23) 杨旭;高,M.;孙,Y.;王,C.;方,X.;高,H.;刁,W.;Yu, H. ocotillol型皂苷元的3-氨基酸衍生物的设计、合成和抗炎活性。欧洲医学化学杂志 2020, 202, No. 112507.

(24) 周;马,C.;张, H.;毕,Y.;陈旭;田,H.;谢旭;孟,Q.;刘易斯,PJ;新型奥替洛尔型三萜类衍生物作为抗菌剂的合成与生物学评价.欧洲医学化学杂志 2013, 68, 444-453.

(25) 毕彦;杨,X.;张,T.;刘志强;张旭;卢,J.;程国强;徐,J.;王旭东;吕,G.;等。新型硝化奥西洛尔型衍生物的设计、合成、一氧化氮释放和抗菌评价。欧洲医学化学杂志 2015, 101, 71-80.

(26)张建奎;张,Q.;徐永R.;李旭华;赵 F. L.;王志明;刘志强;刘,P.;刘永N.;孟Q.G.;C20差向异构体Ocotillol型三萜和原萜二醇的合成和体外抗炎活性。植物医学 2019, 85, 292-301.

(27) 王建彦;周,Z.W.;张汉彦;曹玉斌;徐建彦;马,C.;孟Q.G.;Bi, Y. 3-取代的 ocotillol 型衍生物的设计、合成和抗菌评价。分子 2018, 23, 3320.(28) 刘建林;刘玉华;俞淑贞;张勇;许, A. C. Y.;张,M.M.;郭永华;孙,W.;王,F.;李炳鹏;具有抗心力衰竭活性的新型pyxinol衍生物的设计、合成和生物学评价.生物医学。药剂师。2021, 133, 第111050号.

(29)王勇;米,X.;杜彦;李,S.;俞禹;高,M.;杨,X.;宋,Z.;俞淑贞;Yang, G. 12-脱氢吡葵醇衍生物的设计、合成和抗炎活性。分子 2023, 28, 1307.

(30) 任,Q.W.;杨G.Q.;郭明奎;郭建华;李彦;卢,J.;杨,Q.;唐,H.H.;方,X.J.;孙Y.X.;等。设计、合成和发现 ocotillol 型酰胺衍生物作为 P-糖蛋白介导的多药耐药性的口服调节剂。欧洲医学化学杂志 2019, 161, 118-130.

(31) 王斌;高,M.;刘,S.;邹志强;任,R.;张,C.;谢旭东;孙,J.;祁,Y.;曲,Q.;等。含有氨基酸残基的Pyxinol:易于实现且有前途的P-糖蛋白介导的多药耐药性调节剂。欧洲医学化学杂志 2021, 216, No. 113317.

(32) 杨国Q.;李彦;杨,Q.;岳,X.;姚,L.;江, Y. T. 假人参皂苷总部的简单高效合成.下巴。有机化学杂志 2017, 37, 1530-1536.

(33) 卢T.W.;Clarke, D. M. Tariquidar 抑制 P-糖蛋白药物外排,但通过阻断向开放构象的转变来激活 ATP 酶活性。生化。药理学。2014, 92, 558-566.
(34) Wang, X.; Ren, Q. W.; Liu, X. X.; Yang, Y. T.; Wang, B. H.; Zhai, R.; Qi, J. G.; Tian, J. W.; Wang, H. B.; Bi, Y. Synthesis and biological evaluation of novel analogues as drug resistance reversal agents. Eur. J. Med. Chem. 2019, 161, 364-377.

(35) 杨玉旭;关大K.;雷磊;卢,J.;刘建奎;杨G.Q.;闫,C.H.;翟,R.;田J.W.;毕,Y.;等。H6 是一种新型橙黄素衍生物,可在体外和体内逆转多药耐药性。毒理学。应用药理学。2018, 341, 98-105.

(36)王文;吴旭;王玲玲;孟,Q.;20(S)-原蒲二醇Ocotilol型差向异构体的立体选择性影响其吸收和P-糖蛋白的抑制。PLoS One 2014,9,编号 e98887。
(37) Boumendjel, A.; Baubichon-Cortay, H.; Trompier, D.; Perrotton, T.; Di Pietro, A. Anticancer multidrug resistance mediated by MRP1: Recent advances in the discovery of reversal agents. Med. Res. Rev. 2005, .
(38) Devine, K.; Villalobos, E.; Kyle, C. J.; Andrew, R.; Reynolds, R. M.; Stimson, R. H.; Nixon, M.; Walker, B. R. The ATP-binding cassette proteins and as modulators of glucocorticoid action. Nat. Rev. Endocrinol. 2023, 19, 112-124.

(39) 樊振东;蔡英文;林志强;张,L.C.;杨,J.C.;陈国英;谢尔,Y.P.;王旭东;萧先生;Chang, W. C. EFHD2 通过激活 NOX4-ROS-ABCC1 轴促进非小细胞肺癌顺铂耐药。氧化还原生物学 2020, 34, No. 101571.

(40) 卡瓦特卡,A.;谢夫特,M.;赫尔曼森,N.O.;斯奈德,A.;德克尔,N.;布朗,DG;伦德贝克,T.;张,A.X.;Castaldi, M. P. CETSA 超越可溶性靶标:多通道跨膜蛋白的广泛应用。ACS 化学生物学 2019, 14, 1913-1920.

(41) 贾法里,R.;阿尔姆奎斯特,H.;阿克塞尔森,H.;伊格纳图申科,M.;伦德贝克,T.;诺德伦德,P.;马丁内斯·莫利纳,D.用于评估细胞中药物靶标相互作用的细胞热位移测定法。Nat. Protoc.2014, 9, 2100-2122.

(42) 吕国英;孙,DJ;张J.W.;谢旭;吴旭问;方,W.S.;田J.W.;闫,C.H.;王,H.B.;Fu, F. H. Lx2-32c是一种新型半合成紫杉烷,在体外和体内对前列腺癌细胞具有抗肿瘤活性。Acta Pharm. Sin.乙 2017, 7, 52-58.

(43) 马, Y. T.;杨玉旭;蔡,P.;孙,D.Y.;宾夕法尼亚州桑切斯-穆尔西亚;张旭勇;贾樟柯;雷磊;郭明奎;加戈,F.;等。一系列焓优化的多西紫杉醇类似物,具有增强的抗肿瘤活性和水溶性。J. Nat. Prod. 2018, 81, 524533.