As effective communication between cellular compartments is facilitated by the vicinity of the organelles involved [44], physical contacts between the ER and mitochondria are emerging as key signaling hubs [
[35],
[36],
[37],
[38],
[39],
[40],
[41],
[42],
[43],
[44],
[45]]. In the case of H
2O
2, vicinity is of paramount relevance, as the reactivity of this compound and the abundance of scavenger antioxidants in the cytosol would limit signal diffusion [
46,
47]. We and others have shown previously that key redox modulators including AQP11 and Ero1α accumulate partly in MAMs [
[22],
[23],
[24],
[25],
[26],
[27],
[28],
[29],
[30],
[31],
[32],
[33],
[34],
48,
49]. Therefore, we reasoned that the entry of H
2O
2 molecules generated in mitochondria upon Ero1α silencing, would be facilitated by tightening of the ER-mitochondria physical links. To visualize MAMs, we performed systematic morphometric analyses of transmission electron microscopy images (Fig. 4A and B). As there is still controversy on minimal length of the interorganellar interface that can define a MAM from casual contacts between organelles in crowded cells, we selected a stringent gap width threshold for discrimination (≤30 nm) [
50]. The results of this endeavor are summarized in panel B of
Fig. 4. Clearly, the number of ER-mitochondria contacts was dramatically increased upon Ero1α silencing. Importantly, these were not due to an expansion of mitochondrial dimensions as Ero1α silencing slightly reduced their area (
Fig. S3). Simultaneous downregulation of AQP11 neither prevented nor inhibited the effects of Ero1α silencing. Thus, like complex III activation, MAM remodeling can occur also without efficient H
2O
2 transport across the ER membrane. Numerous proteins are thought to dynamically control MAMs [[51],
[52],
[53]]. To prove that the tightening of the ER-mitochondria contacts observed above was important for H
2O
2 transfer, we silenced the vesicle-associated membrane protein-associated protein B (VAPB), and mitofusin-2 (Mfn2), two proteins known to be essential for correct juxtaposition of the two organelles, despite in different manner [26–54],
[55],
[56],
[57]]. Clearly, neither VAPB nor Mfn2 silencing impacted the ER H
2O
2 basal levels (
Fig. 4C columns pink and purple). However, the increase in H
2O
2 normally observed upon Ero1α downregulation was no longer detectable in cells devoid of VAPB or Mfn2 (
Fig. 4C red-pink and red-purple striped columns). These results confirm that the flux of H
2O
2 from mitochondria to ER depends also on the architecture of MAMs.
由于相关细胞器附近促进了细胞区室之间的有效通讯[ 44 ],内质网和线粒体之间的物理接触正在成为关键的信号传导中枢[ [35] 、 [36] 、 [37] 、 [38] 、 [ 39] 、 [40] 、 [41] 、 [42] 、 [43] 、 [44] 、 [45] ]。就 H 2 O 2而言,附近至关重要,因为该化合物的反应性和细胞质中丰富的清除抗氧化剂会限制信号扩散[ 46 , 47 ]。 我们和其他人之前已经证明,包括 AQP11 和 Ero1α 在内的关键氧化还原调节剂部分积聚在 MAM 中 [ [22] 、 [ 23 ] 、 [24] 、 [ 25] 、 [ 26] 、 [27] 、 [28] 、 [29] , [30] , [31] , [32] , [33] , [34] , 48 , 49 ]。因此,我们推断 Ero1α 沉默后线粒体中产生的 H 2 O 2分子的进入将通过加强 ER-线粒体物理联系而促进。为了可视化 MAM,我们对透射电子显微镜图像进行了系统的形态分析(图 4 A 和 B)。由于对于可以根据拥挤细胞中细胞器之间的偶然接触来定义 MAM 的细胞间界面的最小长度仍然存在争议,因此我们选择了严格的间隙宽度阈值进行区分(≤30 nm)[ 50 ]。这一努力的结果总结在图4的B组中。 显然,Ero1α 沉默后 ER-线粒体接触的数量显着增加。重要的是,这并不是由于线粒体尺寸的扩大,因为 Ero1α 沉默略微减少了线粒体面积(图 S3 )。同时下调 AQP11 既不能阻止也不能抑制 Ero1α 沉默的作用。因此,与复合物 III 激活一样,MAM 重塑也可能在没有有效的 H 2 O 2跨内质网转运的情况下发生。许多蛋白质被认为可以动态控制 MAM [ [51] 、 [52] 、 [53] ]。为了证明上述观察到的 ER-线粒体接触的收紧对于 H 2 O 2转移很重要,我们沉默了囊泡相关膜蛋白相关蛋白 B (VAPB) 和线粒体融合蛋白-2 (Mfn2),这两种蛋白已知尽管方式不同,但对于两个细胞器的正确并置至关重要[26-54], [55] , [56] , [57] ]。显然,VAPB 和 Mfn2 沉默均不影响 ER H 2 O 2基础水平(图 4 C 柱粉色和紫色)。然而,在缺乏 VAPB 或 Mfn2 的细胞中,不再检测到 Ero1α 下调时通常观察到的 H 2 O 2增加(图 1)。 4 C 红粉色和红紫色条纹柱)。这些结果证实,H 2 O 2从线粒体到内质网的通量也取决于 MAM 的结构。