这是用户在 2024-4-26 8:44 为 https://www.kdnuggets.com/7-steps-to-mastering-large-language-models-llms 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
 

7 Steps to Mastering Large Language Models (LLMs)

Large Language Models (LLMs) have unlocked a new era in natural language processing. So why not learn more about them? Go from learning what large language models are to building and deploying LLM apps in 7 easy steps with this guide.



7 Steps to Mastering Large Language Models (LLMs)

 

GPT-4, Llama, Falcon, and many more—Large Language Models—LLMs—are literally the talk of the town year. And if you’re reading this chances are you’ve already used one or more of these large language models through a chat interface or an API. 
GPT-4、Llama、Falcon等等,以及许多其他大型语言模型,今年成为了热门话题。如果你正在阅读这篇文章,很可能你已经通过聊天界面或API使用过其中一个或多个大型语言模型。

If you’ve ever wondered what LLMs really are, how they work, and what you can build with them, this guide is for you. Whether you’re a data professional interested in large language models or someone just curious about them, this is a comprehensive guide to navigating the LLM landscape.
如果你曾经想知道LLMs到底是什么,它们是如何工作的,以及你可以用它们构建什么,那么这个指南适合你。无论你是一名对大型语言模型感兴趣的数据专业人员,还是只是对它们感到好奇,这是一份全面指南,帮助你了解LLM领域。

From what LLMs are to building and deploying applications with LLMs, we break down—into 7 easy steps—learning all about large language models covering:
从LLMs是什么到使用LLMs构建和部署应用程序,我们将分解成 7 个简单步骤,全面了解大型语言模型,包括:

  • What you should know  你应该知道的内容
  • An overview of the concepts 
    概念概述
  • Learning resources   学习资源

Let’s get started!  让我们开始吧!

 

Step 1: Understanding LLM Basics
第一步:理解 LLM 基础知识

 

If you’re new to large language models, it’s helpful to start with a high-level overview of LLMs and what makes them so powerful. Start by trying to answer these questions:
如果您是大型语言模型的新手,从高层次的概述开始会很有帮助,了解 LLMs 以及它们的强大之处。首先尝试回答以下问题:

  • What are LLMs anyways?  LLMs 究竟是什么?
  • Why are they so popular?
    为什么它们如此受欢迎?
  • How are LLMs different from other deep learning models?
    LLMs 与其他深度学习模型有何不同?
  • What are the common LLM use cases? (You’d be familiar with this already; still a good exercise to list them down)
    常见的 LLM 使用案例有哪些?(您可能已经熟悉这些;但将它们列出仍然是一个很好的练习)

Were you able to answer them all? Well, let’s do it together!
你能回答完它们吗?好吧,让我们一起来做吧!

 

What are LLMs? LLMs 是什么?

 

Large Language Models—or  LLMs—are a subset of deep learning models trained on massive corpus of text data. They’re large—with tens of billions of parameters—and perform extremely well on a wide range of natural language tasks.
大型语言模型,即 LLMs,是在大规模文本数据语料库上训练的深度学习模型的一个子集。它们庞大,拥有数百亿个参数,并在各种自然语言任务上表现出色。

 

Why Are They Popular?
为什么它们如此受欢迎?

 

LLMs have the ability to understand and generate text that is coherent, contextually relevant, and grammatically accurate. Reasons for their popularity and wide-spread adoption include:
LLMs 有能力理解和生成连贯、上下文相关且语法准确的文本。它们受欢迎并被广泛采用的原因包括:

  • Exceptional performance on a wide range of language tasks
    在各种语言任务上表现出色
  • Accessibility and availability of pre-trained LLMs, democratizing AI-powered natural language understanding and generation
    预训练LLMs的可访问性和可用性,使 AI 驱动的自然语言理解和生成民主化

 

So How Are LLMs Different from Other Deep Learning Models?
那么LLMs与其他深度学习模型有何不同?

 

LLMs stand out from other deep learning models due to their size and architecture, which includes self-attention mechanisms. Key differentiators include:
LLMs与其他深度学习模型不同之处在于其规模和架构,其中包括自注意机制。关键的区别包括:

  • The Transformer architecture, which revolutionized natural language processing and underpins LLMs (coming up next in our guide)
    影响自然语言处理并支撑LLMs(即将在我们的指南中介绍)的变压器架构
  • The ability to capture long-range dependencies in text, enabling better contextual understanding
    能够捕捉文本中的长距离依赖关系,实现更好的上下文理解
  • Ability to handle a wide variety of language tasks, from text generation to translation, summarization and question-answering
    能够处理各种语言任务,从文本生成到翻译、摘要和问答

 

What Are the Common Use Cases of LLMs?
LLMs 的常见用例是什么?

 

LLMs have found applications across language tasks, including:
LLMs 已经在语言任务中找到了应用,包括:

  • Natural Language Understanding: LLMs excel at tasks like sentiment analysis, named entity recognition, and question answering.
    自然语言理解:LLMs 擅长情感分析、命名实体识别和问题回答等任务。
  • Text Generation: They can generate human-like text for chatbots and other content generation tasks. (Shouldn’t be surprising at all if you’ve ever used ChatGPT or its alternatives).
    文本生成: 它们可以为聊天机器人和其他内容生成任务生成类似人类的文本。(如果您曾经使用过 ChatGPT 或其替代品,这一点一点也不奇怪)。
  • Machine Translation: LLMs have significantly improved machine translation quality.
    机器翻译: LLMs 已显著提高了机器翻译质量。
  • Content Summarization: LLMs can generate concise summaries of lengthy documents. Ever tried summarizing YouTube video transcripts?
    内容摘要: LLMs 可以生成长度文档的简洁摘要。曾经尝试过总结 YouTube 视频的转录吗?

Now that you have a cursory overview of LLMs and their capabilities, here are a couple of resources if you’re interested in exploring further:
现在您已经对LLMs及其功能有了初步了解,如果您有兴趣进一步探索,这里有一些资源:

 

Step 2: Exploring LLM Architectures
步骤2:探索LLM架构

 

Now that you know what LLMs are, let’s move on to learning the transformer architecture that underpins these powerful LLMs. So in this step of your LLM journey, Transformers need all your attention (no pun intended).
现在你知道LLMs是什么了,让我们继续学习支撑这些强大LLMs的变压器架构。所以在你的LLM之旅中的这一步,变压器需要你所有的注意力(无意冒犯)。

The original Transformer architecture, introduced in the paper "Attention Is All You Need," revolutionized natural language processing:
最初的Transformer架构,由论文《Attention Is All You Need》引入,彻底改变了自然语言处理:

  • Key Features: Self-attention layers, multi-head attention, feed-forward neural networks, encoder-decoder architecture.
    关键特点:自注意力层,多头注意力,前馈神经网络,编码器-解码器架构。
  • Use Cases: Transformers are the basis for notable LLMs like BERT and GPT.
    用途: 变压器是像 BERT 和 GPT 这样著名的 LLMs 的基础。

The original Transformer architecture uses an encoder-decoder architecture; but encoder-only and decoder-only variants exist. Here’s a comprehensive overview of these along with their features, notable LLMs, and use cases:
最初的变压器架构使用编码器-解码器架构; 但存在仅编码器和仅解码器的变体。以下是这些变体及其特点、著名 LLMs 和用途的综合概述:

Architecture Key Features Notable LLMs Use Cases
Encoder-only Captures bidirectional context; suitable for natural language understanding
捕捉双向上下文;适用于自然语言理解
  • BERT
  • Also BERT architecture based RoBERTa, XLNet
    基于 BERT 架构的 RoBERTa,XLNet
  • Text classification  文本分类
  • Question answering  问题回答
Decoder-only Unidirectional language model; Autoregressive generation
单向语言模型;自回归生成
  • GPT
  • PaLM
  • Text generation (variety of content creation tasks)
    文本生成(各种内容创作任务)
  • Text completion  文本完成
Encoder-Decoder Input text to target text; any text-to-text task
将输入文本转换为目标文本;任何文本到文本的任务
  • T5
  • BART
  • Summarization  摘要
  • Translation  翻译
  • Question answering  问题回答
  • Document classification  文档分类

 

The following are great resources to learn about transformers:
以下是学习有关变压器的好资源:

 

Step 3: Pre-training LLMs
第三步:预训练LLMs

 

Now that you’re familiar with the fundamentals of Large Language Models (LLMs) and the transformer architecture, you can proceed to learn about pre-training LLMs. Pre-training forms the foundation of LLMs by exposing them to a massive corpus of text data, enabling them to understand the aspects and nuances of the language.
现在您已经熟悉了大型语言模型(LLMs)和变压器架构的基础知识,您可以继续学习有关预训练LLMs。预训练通过让LLMs接触大量文本数据来构建基础,使它们能够理解语言的各个方面和细微差别。

Here’s an overview of concepts you should know:
这里是您应该了解的概念概述:

  • Objectives of Pre-training LLMs: Exposing LLMs to massive text corpora to learn language patterns, grammar, and context. Learn about the specific pre-training tasks, such as masked language modeling and next sentence prediction.
    预训练 LLMs 的目标:将 LLMs 暴露给大量文本语料库,以学习语言模式、语法和语境。了解特定的预训练任务,如掩盖语言建模和下一个句子预测。
  • Text Corpus for LLM Pre-training: LLMs are trained on massive and diverse text corpora, including web articles, books, and other sources. These are large datasets—with billions to trillions of text tokens. Common datasets include C4, BookCorpus, Pile, OpenWebText, and more.
    LLM预训练文本语料库:LLMs在大量和多样化的文本语料库上进行训练,包括网络文章、书籍和其他来源。这些是大型数据集,包含数十亿到数万亿的文本标记。常见的数据集包括C4、BookCorpus、Pile、OpenWebText等。
  • Training Procedure: Understand the technical aspects of pre-training, including optimization algorithms, batch sizes, and training epochs. Learn about challenges such as mitigating biases in data.
    培训程序:了解预训练的技术方面,包括优化算法、批量大小和训练周期。学习如何应对数据中的偏见等挑战。

If you’re interested in learning further, refer to the module on LLM training from CS324: Large Language Models.
如果您对进一步学习感兴趣,请参考 CS324: 大型语言模型中关于LLM培训的模块。

Such pre-trained LLMs serve as a starting point for fine-tuning on specific tasks. Yes, fine-tuning LLMs is our next step!
这些预训练的LLMs作为在特定任务上微调的起点。是的,微调LLMs是我们的下一步!

 

Step 4: Fine-Tuning LLMs
步骤4:微调 LLMs

 

After pre-training LLMs on massive text corpora, the next step is to fine-tune them for specific natural language processing tasks. Fine-tuning allows you to adapt pre-trained models to perform specific tasks like sentiment analysis, question answering, or translation with higher accuracy and efficiency.
在大规模文本语料库上进行预训练LLMs后,下一步是对其进行微调,以用于特定的自然语言处理任务。微调可以让您调整预训练模型,以实现更高的准确性和效率,执行特定任务,如情感分析、问答或翻译。

 

Why Fine-Tune LLMs 为什么要微调LLMs

 

Fine-tuning is necessary for several reasons:
微调是必要的几个原因:

  • Pre-trained LLMs have gained general language understanding but require fine-tuning to perform well on specific tasks. And fine-tuning helps the model learn the nuances of the target task.
    预训练模型已经获得了一般语言理解能力,但需要进行微调才能在特定任务上表现良好。微调有助于模型学习目标任务的细微差别。
  • Fine-tuning significantly reduces the amount of data and computation needed compared to training a model from scratch. Because it leverages the pre-trained model's understanding, the fine-tuning dataset can be much smaller than the pre-training dataset.
    与从头开始训练模型相比,微调显著减少了所需的数据量和计算量。因为它利用了预训练模型的理解能力,微调数据集可以比预训练数据集小得多。

 

How to Fine-Tune LLMs
如何微调LLMs

 

Now let's go over the how of fine-tuning LLMs:
现在让我们来看看如何微调LLMs:

  • Choose the Pre-trained LLM: Choose the pre-trained LLM that matches your task. For example, if you're working on a question-answering task, select a pre-trained model with the architecture that facilitates natural language understanding.
    选择预训练的LLM:选择与您的任务相匹配的预训练LLM。例如,如果您正在处理一个问答任务,请选择一个具有促进自然语言理解架构的预训练模型。
  • Data Preparation: Prepare a dataset for the specific task you want the LLM to perform. Ensure it includes labeled examples and is formatted appropriately.
    数据准备:为您希望LLM执行的特定任务准备数据集。确保数据集包含标记示例并格式正确。
  • Fine-Tuning: After you’ve chosen the base LLM and prepared the dataset, it’s time to actually fine-tune the model.But how? 
    微调:在选择基础LLM并准备好数据集之后,现在是时候实际微调模型了。但是如何操作呢?

Are there parameter-efficient techniques? Remember, LLMs have 10s of billions of parameters. And the weight matrix is huge!
有没有参数高效的技术?记住,LLMs有数百亿个参数。而且权重矩阵非常庞大!

What if you don’t have access to the weights? 
如果您无法访问权重怎么办?

 

7 Steps to Mastering Large Language Models (LLMs)

 

How do you fine-tune an LLM when you don't have access to the model’s weights and accessing the model through an API? Large Language Models are capable of in-context learning—without the need for an explicit fine-tuning step. you can leverage their ability to learn from analogy by providing input; sample output examples of the task.
当您无法访问模型的权重并通过 API 访问模型时,如何对 LLM 进行微调?大型语言模型能够进行上下文学习,无需显式的微调步骤。您可以通过提供输入来利用它们从类比中学习的能力;任务的示例输出示例。

Prompt tuning—modifying the prompts to get more helpful outputs—can be: hard prompt tuning or (soft) prompt tuning.
提示调整-修改提示以获得更有帮助的输出-可以是:硬提示调整或(软)提示调整。

Hard prompt tuning involves modifying the input tokens in the prompt directly; so it doesn’t update the model's weights. 
硬提示调整涉及直接修改提示中的输入标记;因此它不会更新模型的权重。

Soft prompt tuning concatenates the input embedding with a learnable tensor. A related idea is prefix tuning where learnable tensors are used with each Transformer block as opposed to only the input embeddings.
软提示调整将输入嵌入与可学习张量连接起来。相关的想法是前缀调整,其中可学习张量与每个Transformer块一起使用,而不仅仅是输入嵌入。

As mentioned, large language models have tens of billions of parameters. So fine-tuning the weights in all the layers is a resource-intensive task. Recently, Parameter-Efficient Fine-Tuning Techniques (PEFT) like LoRA and QLoRA have become popular. With QLoRA you can fine-tune a 4-bit quantized LLM—on a single consumer GPU—without any drop in performance.
正如提到的,大型语言模型具有数百亿个参数。因此,在所有层中微调权重是一项资源密集型任务。最近,像LoRA和QLoRA这样的参数高效微调技术(PEFT)变得流行起来。使用QLoRA,您可以在单个消费级GPU上微调一个4位量化的LLM,而不会降低性能。

These techniques introduce a small set of learnable parameters—adapters—are tuned instead of the entire weight matrix. Here are useful resources to learn more about fine-tuning LLMs:
这些技术引入了一小组可学习参数——适配器——而不是整个权重矩阵进行调整。以下是了解有关微调 LLMs 的有用资源:

 

Step 5: Alignment and Post-Training in LLMs
步骤5:在LLMs中进行对齐和后训练

 

Large Language models can potentially generate content that may be harmful, biased, or misaligned with what users actually want or expect. Alignment refers to the process of aligning an LLM's behavior with human preferences and ethical principles. It aims to mitigate risks associated with model behavior, including biases, controversial responses, and harmful content generation.
大型语言模型可能会生成有害、偏见或与用户实际想要或期望的内容不一致的内容。对齐是指将LLM的行为与人类偏好和道德原则对齐的过程。它旨在减轻与模型行为相关的风险,包括偏见、争议性回应和有害内容生成。

You can explore techniques like:
您可以探索技术,如:

  • Reinforcement Learning from Human feedback (RLHF)
    人类反馈的强化学习(RLHF)
  • Contrastive Post-training
    对比后训练

RLHF uses human preference annotations on LLM outputs and fits a reward model on them. Contrastive post-training aims at leveraging contrastive techniques to automate the construction of preference pairs.
RLHF 使用 LLM 个输出上的人类偏好标注,并在其上拟合奖励模型。对比后训练旨在利用对比技术自动构建偏好对。

 
7 Steps to Mastering Large Language Models (LLMs)
Techniques for Alignment in LLMs | Image Source
LLMs中的对齐技术 | 图像来源

 

To learn more, check out the following resources:
要了解更多信息,请查看以下资源:

 

Step 6: Evaluation and Continuous Learning in LLMs
第六步:在LLMs中进行评估和持续学习

 

Once you've fine-tuned an LLM for a specific task, it's essential to evaluate its performance and consider strategies for continuous learning and adaptation. This step ensures that your LLM remains effective and up-to-date.
一旦您为特定任务调整了LLM,评估其性能并考虑持续学习和适应策略就变得至关重要。这一步骤确保您的LLM保持有效和最新。

 

Evaluation of LLMs LLMs评估

 

Evaluate the performance to assess their effectiveness and identify areas for improvement. Here are key aspects of LLM evaluation:
评估性能以评估其有效性并确定改进领域。以下是LLM评估的关键方面:

  • Task-Specific Metrics: Choose appropriate metrics for your task. For example, in text classification, you may use conventional evaluation metrics like accuracy, precision, recall, or F1 score. For language generation tasks, metrics like perplexity and BLEU scores are common.
    任务特定的度量标准:选择适合您任务的度量标准。例如,在文本分类中,您可以使用传统的评估度量标准,如准确率、精确率、召回率或F1分数。对于语言生成任务,困惑度和BLEU分数是常见的度量标准。
  • Human Evaluation: Have experts or crowdsourced annotators assess the quality of generated content or the model's responses in real-world scenarios.
    人类评估:请专家或众包标注者在真实场景中评估生成内容的质量或模型的响应。
  • Bias and Fairness: Evaluate LLMs for biases and fairness concerns, particularly when deploying them in real-world applications. Analyze how models perform across different demographic groups and address any disparities.
    偏见和公平性:评估LLMs是否存在偏见和公平性问题,特别是在实际应用中部署时。分析模型在不同人群中的表现,并解决任何不平等现象。
  • Robustness and Adversarial Testing: Test the LLM's robustness by subjecting it to adversarial attacks or challenging inputs. This helps uncover vulnerabilities and enhances model security.
    鲁棒性和对抗测试:通过对LLM进行对抗攻击或挑战性输入来测试其鲁棒性。这有助于发现漏洞并增强模型的安全性。

 

Continuous Learning and Adaptation
持续学习和适应

 

To keep LLMs updated with new data and tasks, consider the following strategies:
为了让LLMs保持更新的数据和任务,考虑以下策略:

  • Data Augmentation: Continuously augment your data store to avoid performance degradation due to lack of up-to-date info.
    数据增强:持续增加您的数据存储,以避免由于缺乏最新信息而导致性能下降。
  • Retraining: Periodically retrain the LLM with new data and fine-tune it for evolving tasks. Fine-tuning on recent data helps the model stay current.
    定期重新训练LLM,使用新数据对其进行微调,以适应不断发展的任务。在最新数据上进行微调有助于使模型保持最新状态。
  • Active Learning: Implement active learning techniques to identify instances where the model is uncertain or likely to make errors. Collect annotations for these instances to refine the model.
    主动学习:实施主动学习技术,识别模型不确定或可能出错的实例。为这些实例收集注释以完善模型。

Another common pitfall with LLMs is hallucinations. Be sure to explore techniques like Retrieval augmentation to mitigate hallucinations.
LLMs的另一个常见问题是幻觉。务必探索检索增强等技术,以减轻幻觉。

Here are some helpful resources:
这里有一些有用的资源:

 

Step 7: Building and Deploying LLM Apps
步骤7:构建和部署LLM应用程序

 

After developing and fine-tuning an LLM for specific tasks, start building and deploying applications that leverage the LLM's capabilities. In essence, use LLMs to build useful real-world solutions
在为特定任务开发和优化LLM后,开始构建和部署利用LLM功能的应用程序。本质上,使用LLMs来构建有用的现实世界解决方案。

 
7 Steps to Mastering Large Language Models (LLMs)
Image by Author 作者提供的图片

 

Building LLM Applications
构建 LLM 应用程序

 

Here are some considerations:
这里有一些考虑因素:

  • Task-Specific Application Development: Develop applications tailored to your specific use cases. This may involve creating web-based interfaces, mobile apps, chatbots, or integrations into existing software systems.
    任务特定的应用程序开发:开发适合您特定用例的应用程序。这可能涉及创建基于 Web 的界面、移动应用程序、聊天机器人或集成到现有软件系统中。
  • User Experience (UX) Design: Focus on user-centered design to ensure your LLM application is intuitive and user-friendly. 
    用户体验(UX)设计:专注于以用户为中心的设计,确保您的LLM应用程序直观且用户友好。
  • API Integration: If your LLM serves as a language model backend, create RESTful APIs or GraphQL endpoints to allow other software components to interact with the model seamlessly.
    API 集成:如果您的LLM用作语言模型后端,请创建 RESTful API 或 GraphQL 端点,以使其他软件组件能够与模型无缝交互。
  • Scalability and Performance: Design applications to handle different levels of traffic and demand. Optimize for performance and scalability to ensure smooth user experiences.
    可扩展性和性能:设计应用程序以处理不同级别的流量和需求。优化性能和可扩展性,以确保用户体验流畅。

 

Deploying LLM Applications
部署 LLM 应用程序

 

You’ve developed your LLM app and are ready to deploy them to production. Here’s what you should consider:
您已经开发了您的 LLM 应用程序,并准备将它们部署到生产环境。以下是您应该考虑的事项:

  • Cloud Deployment: Consider deploying your LLM applications on cloud platforms like AWS, Google Cloud, or Azure for scalability and easy management.
    云部署:考虑在 AWS、Google Cloud 或 Azure 等云平台上部署您的 LLM 应用程序,以实现可伸缩性和便捷管理。
  • Containerization: Use containerization technologies like Docker and Kubernetes to package your applications and ensure consistent deployment across different environments.
    容器化:使用 Docker 和 Kubernetes 等容器化技术打包您的应用程序,确保在不同环境中实现一致的部署。
  • Monitoring: Implement monitoring to track the performance of your deployed LLM applications and detect and address issues in real time.
    监控:实施监控以跟踪您部署的LLM应用程序的性能,并实时检测和解决问题。

 

Compliance and Regulations
合规和法规

 

Data privacy and ethical considerations are undercurrents:
数据隐私和道德考虑是潜在因素:

  • Data Privacy: Ensure compliance with data privacy regulations when handling user data and personally identifiable information (PII).
    数据隐私:在处理用户数据和个人可识别信息(PII)时确保符合数据隐私法规。
  • Ethical Considerations: Adhere to ethical guidelines when deploying LLM applications to mitigate potential biases, misinformation, or harmful content generation.
    道德考虑:在部署LLM应用程序时,遵守道德准则,以减少潜在的偏见、错误信息或有害内容的生成。

You can also use frameworks like LlamaIndex and LangChain to help you build end-to-end LLM applications. Some useful resources:
您还可以使用 LlamaIndex 和 LangChain 等框架来帮助您构建端到端的LLM应用程序。一些有用的资源:

 

Wrapping Up 总结

 

We started our discussion by defining what large language models are, why they are popular, and gradually delved into the technical aspects. We’ve wrapped up our discussion with building and deploying LLM applications requiring careful planning, user-focused design, robust infrastructure, while prioritizing data privacy and ethics.
我们从定义大型语言模型以及它们为何受欢迎开始讨论,并逐渐深入技术方面。我们最后讨论了构建和部署LLM应用程序所需的仔细规划、以用户为中心的设计、强大的基础设施,同时优先考虑数据隐私和道德。

As you might have realized, it’s important to stay updated with the recent advances in the field and keep building projects. If you have some experience and natural language processing, this guide builds on the foundation. Even if not, no worries. We’ve got you covered with our 7 Steps to Mastering Natural Language Processing guide. Happy learning!
正如你可能已经意识到的那样,保持与该领域最新进展的同步并继续构建项目是很重要的。如果你在自然语言处理方面有一些经验,这个指南将在此基础上进行拓展。即使没有经验,也不用担心。我们为你提供了《掌握自然语言处理的7个步骤指南》。祝学习愉快!

 
 

Bala Priya C is a developer and technical writer from India. She likes working at the intersection of math, programming, data science, and content creation. Her areas of interest and expertise include DevOps, data science, and natural language processing. She enjoys reading, writing, coding, and coffee! Currently, she's working on learning and sharing her knowledge with the developer community by authoring tutorials, how-to guides, opinion pieces, and more. Bala also creates engaging resource overviews and coding tutorials.
Bala Priya C 是来自印度的开发人员和技术作家。她喜欢在数学、编程、数据科学和内容创作的交叉领域工作。她感兴趣并擅长的领域包括DevOps、数据科学和自然语言处理。她喜欢阅读、写作、编码和咖啡!目前,她正在通过撰写教程、指南、观点文章等来学习并与开发者社区分享知识。Bala 还创建引人入胜的资源概述和编码教程。