这是用户在 2024-5-7 15:46 为 https://www.science.org/doi/10.1126/science.adj4857?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&... 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?
Full access
Research Article 研究文章
CANCER IMMUNOLOGY 癌症免疫学

A blueprint for tumor-infiltrating B cells across human cancers
人类癌症中肿瘤浸润 B 细胞的蓝图

Jiaqiang Ma https://orcid.org/0000-0002-7427-6638, Yingcheng Wu https://orcid.org/0000-0001-9473-546X, Lifeng Ma https://orcid.org/0000-0001-9865-9695, Xupeng Yang https://orcid.org/0009-0005-7624-6722, Tiancheng Zhang https://orcid.org/0009-0009-3449-2318, Guohe Song https://orcid.org/0000-0002-9947-7268, Teng Li https://orcid.org/0009-0003-3427-7788, Ke Gao https://orcid.org/0009-0004-6571-1935, Xia Shen https://orcid.org/0000-0002-3711-2028, Jian Lin https://orcid.org/0000-0001-6457-7026, Yamin Chen https://orcid.org/0009-0000-9534-2916, Xiaoshan Liu https://orcid.org/0009-0009-9774-3911, Yuting Fu https://orcid.org/0000-0002-9342-8502, Xixi Gu https://orcid.org/0009-0009-4527-0315, Zechuan Chen https://orcid.org/0000-0003-4363-5949, Shan Jiang https://orcid.org/0000-0003-4238-8237, Dongning Rao https://orcid.org/0000-0002-0953-2957, Jiaomeng Pan https://orcid.org/0009-0007-6838-4329, Shu Zhang https://orcid.org/0000-0002-2680-255X, Jian Zhou https://orcid.org/0000-0002-2118-1117, Chen Huang https://orcid.org/0000-0002-1840-5765, Si Shi https://orcid.org/0000-0002-6652-0629, Jia Fan https://orcid.org/0000-0001-5158-629X gaoqiang@fudan.edu.cn, Guoji Guo https://orcid.org/0000-0002-1716-4621 gaoqiang@fudan.edu.cn, Xiaoming Zhang https://orcid.org/0000-0001-6732-9132 gaoqiang@fudan.edu.cn, and Qiang Gao https://orcid.org/0000-0002-6695-9906 gaoqiang@fudan.edu.cnAuthors Info & Affiliations
马家强 HTTPS://ORCID.ORG/0000-0002-7427-6638、吴英成 HTTPS://ORCID.ORG/0000-0001-9473-546X、[...] 和高强 HTTPS://ORCID .ORG/0000-0002-6695-9906 +23 位作者 作者信息和从属关系
Science 科学
3 May 2024 2024 年 5 月 3 日
Vol 384, Issue 6695 第 384 卷,第 6695 期

Editor’s summary 编辑总结

B cells are white blood cells that produce antibodies and are often found within the tumor microenvironment. Ma et al. examined tumor-infiltrating B cells across 21 different cancer types from more than 270 patients (see the Perspective by Tellier and Nutt). The authors compiled single-cell transcriptome, B cell receptor repertoire, and chromatin accessibility data and report that tumor-associated B cells differentiated into antibody-secreting cells by either an extrafollicular pathway or by a more canonical germinal center pathway. Tumors associated with the extrafollicular B cell profile demonstrated poor clinical prognosis and resistance to immunotherapy compared with tumors harboring germinal center B cells. Alterations in the availability of glutamine-derived metabolites, which are known to influence T cell–dependent immunosuppression, may be linked to a dysfunctional humoral response and the adverse effect of extrafollicular B cells on tumors. —Priscilla N. Kelly
B 细胞是产生抗体的白细胞,通常存在于肿瘤微环境中。马等人。检查了来自 270 多名患者的 21 种不同癌症类型的肿瘤浸润 B 细胞(参见 Tellier 和 Nutt 的观点)。作者汇编了单细胞转录组、B 细胞受体库和染色质可及性数据,并报告肿瘤相关 B 细胞通过滤泡外途径或更典型的生发中心途径分化为抗体分泌细胞。与含有生发中心 B 细胞的肿瘤相比,与滤泡外 B 细胞谱相关的肿瘤表现出较差的临床预后和对免疫治疗的抵抗力。谷氨酰胺衍生代谢物的可用性的改变已知会影响 T 细胞依赖性免疫抑制,可能与功能失调的体液反应和滤泡外 B 细胞对肿瘤的不利影响有关。 —普里西拉·N·凯利

Structured Abstract 结构化摘要

INTRODUCTION 介绍

Tumor-infiltrating B cells have emerged as important players in cancer immunity and served as predictors of response to immunotherapy. These B cells display multiple functions, primarily through their ability to differentiate into plasma cells to produce antibodies, but vary spatiotemporally across different cancer types. Dissecting the abundance and differentiation states of B cells across diverse cancer types holds promise for improving the immunotherapeutic response.
肿瘤浸润 B 细胞已成为癌症免疫的重要参与者,并可作为免疫治疗反应的预测因子。这些 B 细胞显示出多种功能,主要是通过分化为浆细胞以产生抗体的能力,但在不同的癌症类型中存在时空差异。剖析不同癌症类型中 B 细胞的丰度和分化状态有望改善免疫治疗反应。

RATIONALE 基本原理

To compile a comprehensive pan-cancer B cell landscape, we performed single-cell RNA sequencing (scRNA-seq) on paired tumors, lymph node metastases, adjacent normal tissues, and peripheral blood from patients with various cancer types, as well as incorporating substantial published scRNA-seq datasets. After correction of the batch effect, this atlas consists of scRNA-seq data from 269 patients across 20 cancer types. We assembled B cell receptor (BCR) sequencing of individual B cells with gene-expression profiles to characterize the dynamic transition between B cells and antibody-secreting cells (ASCs). We integrated the single-cell chromatin accessibility landscape of B cells from different cancers to dissect the epigenomic regulation networks that function in fine-tuning B cell development. We spatially localized B cells in mature versus immature tertiary lymphoid structures (TLSs) and investigated the potential regulators that direct B cells into specific responses.
为了编制全面的泛癌 B 细胞图谱,我们对配对肿瘤、淋巴结转移、邻近正常组织和来自各种癌症类型患者的外周血进行了单细胞 RNA 测序 (scRNA-seq),并纳入了大量的发布的 scRNA-seq 数据集。校正批次效应后,该图谱包含来自 20 种癌症类型的 269 名患者的 scRNA-seq 数据。我们对单个 B 细胞的 B 细胞受体 (BCR) 测序与基因表达谱进行了组装,以表征 B 细胞和抗体分泌细胞 (ASC) 之间的动态转变。我们整合了来自不同癌症的 B 细胞的单细胞染色质可及性景观,以剖析在微调 B 细胞发育中发挥作用的表观基因组调控网络。我们对成熟与未成熟三级淋巴结构 (TLS) 中的 B 细胞进行空间定位,并研究了引导 B 细胞产生特定反应的潜在调节因子。

RESULTS 结果

We revealed substantial heterogeneity within B and plasma cells, identifying 15 B cell subsets and 10 plasma cell subsets. We computationally derived and validated two independent developmental pathways to ASCs through canonical germinal center (GC) and alternative extrafollicular (EF) pathways and demonstrated an apparent cancer-type preference. Colon adenocarcinoma and liver hepatocellular carcinoma were the two representative types of cancer enriched for GC and EF pathways, respectively. We affirmed that EF-dominant cancers correlate with dysregulated immune responses and worse clinical outcomes. We then identified the dynamic metabolic-epigenetic-signaling networks engaged in fine-tuning tumor-infiltrating B cell differentiation and managing the balance between the EF and GC pathways. Atypical memory (AtM) B cells, the primary progenitors of EF-derived ASCs, exhibit an exhausted and bystander phenotype and develop independently of the GC pathway. We found that the AtM B cells reside in the center of immature TLSs and spatially relocate to the periphery during TLS maturation. Last, we mechanistically linked these findings to specific transcription factors and epigenomic regulations. We demonstrated that the glutamine-derived metabolite α-ketoglutarate (α-KG) could increase the expression of AtM B cell–associated transcription factors T-bet and BATF and promote their differentiation, accompanied by the activation of mammalian target of rapamycin complex 1 (mTORC1) signaling. Consequently, AtM B cells acquire an immunoregulatory function that dampens antitumor T cell responses and fosters an immunosuppressive microenvironment.
我们揭示了 B 细胞和浆细胞内的显着异质性,识别出 15 个 B 细胞亚群和 10 个浆细胞亚群。我们通过计算推导出并验证了通过典型生发中心 (GC) 和替代滤泡外 (EF) 途径形成 ASC 的两条独立发育途径,并证明了明显的癌症类型偏好。结肠腺癌和肝癌是分别富集GC和EF途径的两种代表性癌症类型。我们确认,以 EF 为主的癌症与免疫反应失调和较差的临床结果相关。然后,我们确定了动态代谢表观遗传信号网络,该网络参与微调肿瘤浸润 B 细胞分化并管理 EF 和 GC 途径之间的平衡。非典型记忆 (AtM) B 细胞是 EF 衍生的 ASC 的主要祖细胞,表现出疲惫和旁观者表型,并且独立于 GC 途径而发育。我们发现 AtM B 细胞位于未成熟 TLS 的中心,并在 TLS 成熟期间在空间上重新定位到外围。最后,我们将这些发现与特定的转录因子和表观基因组调控机制联系起来。我们证明谷氨酰胺衍生的代谢物 α-酮戊二酸 (α-KG) 可以增加 AtM B 细胞相关转录因子 T-bet 和 BATF 的表达并促进其分化,同时激活哺乳动物靶标雷帕霉素复合物 1( mTORC1) 信号传导。因此,AtM B 细胞获得免疫调节功能,抑制抗肿瘤 T 细胞反应并营造免疫抑制微环境。

CONCLUSION 结论

We compiled the blueprint of B cell heterogeneity and two dynamic differentiation pathways in human cancers, providing a fundamental reference of ASC differentiation trajectory for future studies. The systematic comparison between EF and GC pathways reveals the similarities and differences of B cell states across different cancer types, highlighting the unfavorable clinical outcome linked to the immunosuppressive microenvironment of EF pathway–associated AtM B cells. Metabolic-epigenetic networks are remarkably flexible and can reconfigure B cell fates in a way that will facilitate the development of B cell–targeted immunotherapies.
我们编制了人类癌症中B细胞异质性和两条动态分化途径的蓝图,为未来研究ASC分化轨迹提供了基础参考。 EF 和 GC 通路之间的系统比较揭示了不同癌症类型中 B 细胞状态的相似性和差异,强调了与 EF 通路相关 AtM B 细胞的免疫抑制微环境相关的不利临床结果。代谢-表观遗传网络非常灵活,可以重新配置 B 细胞的命运,从而促进 B 细胞靶向免疫疗法的开发。
Systematic analysis of a human pan-cancer B cell atlas.
人类泛癌 B 细胞图谱的系统分析。
We analyzed 474,718 B cells from 269 patients across 20 cancer types using single-cell sequencing data. By combining gene expression profiles, BCR sequences, and chromatin accessibility, we investigated the diversity and plasticity of tumor-infiltrating B cells and performed a multilevel comparison of EF- and GC-responsive plasma cells among cancer types. We visualized their dynamic spatial locations along the maturation of TLSs and identified potential metabolic-epigenetic mechanisms in regulating B cell differentiation.
我们使用单细胞测序数据分析了来自 269 名患者的 20 种癌症类型的 474,718 个 B 细胞。通过结合基因表达谱、BCR 序列和染色质可及性,我们研究了肿瘤浸润 B 细胞的多样性和可塑性,并对癌症类型之间的 EF 和 GC 反应性浆细胞进行了多水平比较。我们观察了它们在 TLS 成熟过程中的动态空间位置,并确定了调节 B 细胞分化的潜在代谢表观遗传机制。
Open in viewer

Abstract 抽象的

B lymphocytes are essential mediators of humoral immunity and play multiple roles in human cancer. To decode the functions of tumor-infiltrating B cells, we generated a B cell blueprint encompassing single-cell transcriptome, B cell–receptor repertoire, and chromatin accessibility data across 20 different cancer types (477 samples, 269 patients). B cells harbored extraordinary heterogeneity and comprised 15 subsets, which could be grouped into two independent developmental paths (extrafollicular versus germinal center). Tumor types grouped into the extrafollicular pathway were linked with worse clinical outcomes and resistance to immunotherapy. The dysfunctional extrafollicular program was associated with glutamine-derived metabolites through epigenetic-metabolic cross-talk, which promoted a T cell–driven immunosuppressive program. These data suggest an intratumor B cell balance between extrafollicular and germinal-center responses and suggest that humoral immunity could possibly be harnessed for B cell–targeting immunotherapy.
B 淋巴细胞是体液免疫的重要介质,在人类癌症中发挥多种作用。为了解码肿瘤浸润 B 细胞的功能,我们生成了 B 细胞蓝图,其中包括 20 种不同癌症类型(477 个样本,269 名患者)的单细胞转录组、B 细胞受体库和染色质可及性数据。 B 细胞具有非凡的异质性,由 15 个亚群组成,可分为两个独立的发育路径(滤泡外与生发中心)。分为滤泡外途径的肿瘤类型与较差的临床结果和对免疫治疗的抵抗力有关。功能失调的滤泡外程序通过表观遗传代谢串扰与谷氨酰胺衍生的代谢物相关,从而促进了 T 细胞驱动的免疫抑制程序。这些数据表明肿瘤内 B 细胞在滤泡外和生发中心反应之间存在平衡,并表明体液免疫可能可用于 B 细胞靶向免疫治疗。
B cells are essential components of the adaptive immune system, playing central roles in the humoral immune response and antibody generation (1). Within the tumor microenvironment (TME), tumor-infiltrating B cells (TIBs) display considerable functional heterogeneity, broadly spanning naïve B cells, memory B cells (Bm), germinal center (GC) B cells, and antibody-secreting cells [ASCs, including plasmablasts (PBs) and plasma cells (PCs)], primarily on the basis of their immunophenotypes (2, 3). However, the current paradigm of B cell research is largely hypothesis-driven and may not unbiasedly capture the full spectrum of B cell states within the tumor milieu. With a specific focus on antitumor capabilities of producing antibodies against tumor-associated antigens, facilitating phagocytosis, and presenting antigens to CD8+ T cells, recent reports suggest that B cells may be used for next-generation immunotherapy (46). Spatially, these cells densely interact with T cells within tertiary lymphoid structures (TLSs), which are associated with improved survival and hot tumor environment in several cancers (710). However, TIBs also exhibited tumor-promoting properties by releasing cytokines (11, 12), forming immune complexes (13, 14), and engaging immune checkpoints (15). These observations highlight the yin and yang roles of B cells and underscore the need for comprehensive data-driven analysis of B cells across human cancers.
B 细胞是适应性免疫系统的重要组成部分,在体液免疫反应和抗体生成中发挥核心作用 (1)。在肿瘤微环境 (TME) 内,肿瘤浸润 B 细胞 (TIB) 显示出相当大的功能异质性,广泛涵盖幼稚 B 细胞、记忆 B 细胞 (Bm)、生发中心 (GC) B 细胞和抗体分泌细胞 [ASC、包括浆母细胞 (PB) 和浆细胞 (PC)],主要基于其免疫表型 (2, 3)。然而,当前的 B 细胞研究范式很大程度上是假设驱动的,可能无法公正地捕获肿瘤环境内 B 细胞状态的全谱。最近的报告特别关注产生针对肿瘤相关抗原的抗体、促进吞噬作用以及将抗原呈递给 CD8 + T 细胞的抗肿瘤能力,表明 B 细胞可用于下一代免疫疗法 (4 –6)。在空间上,这些细胞与三级淋巴结构 (TLS) 内的 T 细胞密集相互作用,这与多种癌症的生存率和热肿瘤环境的改善有关 (7-10)。然而,TIB 还通过释放细胞因子 (11, 12)、形成免疫复合物 (13, 14) 和参与免疫检查点 (15) 表现出促肿瘤特性。这些观察结果强调了 B 细胞的阴阳作用,并强调需要对人类癌症中的 B 细胞进行全面的数据驱动分析。
Historically, ASCs were long believed to originate from the GC response. Under such a scenario, B cells encounter antigens, undergo somatic hypermutations, class-switch recombination (CSR), and clonal expansion, and eventually differentiate into long-lived PCs and generate high-affinity antibodies (16, 17). Alternatively, the recent discovery of extrafollicular (EF) differentiation highlighted short-lived ASCs, resulting in low-affinity and polyreactive antibodies (1823). EF-associated B cells, also documented as age-associated B cells (ABCs), double-negative B cells (BDN), or atypical memory (AtM) B cells in aging mice, autoimmune diseases, and chronic infection models, were characterized by CD21CD11c+ and by expression of T-box transcription factor (T-bet) (19, 20, 24). We and other independent groups also reported signals such as Toll-like receptor 7/9 (TLR7/9), interferon-γ (IFNγ), interleukin-21 (IL-21), and CD40 in driving the development of EF-associated B cell states in autoimmune diseases (21, 22, 24). These data raise a critical question of what B cell fates are composed of and how they can be precisely regulated in cancer ecosystems. Systematically decoding the developmental hierarchy of B cells in cancer may therefore delineate tumor-specific patterns as well as the clonal clades.
从历史上看,ASC 长期以来被认为源自 GC 反应。在这种情况下,B 细胞遇到抗原,经历体细胞超突变、类别转换重组 (CSR) 和克隆扩增,最终分化为长寿命 PC 并产生高亲和力抗体 (16, 17)。另外,最近发现的滤泡外 (EF) 分化强调了 ASC 的寿命较短,从而产生低亲和力和多反应性抗体 (18-23)。 EF 相关 B 细胞,也被记录为衰老小鼠、自身免疫性疾病和小鼠中的年龄相关 B 细胞 (ABC)、双阴性 B 细胞 (B DN ) 或非典型记忆 (AtM) B 细胞慢性感染模型的特征是 CD21 CD11c + 和 T-box 转录因子 (T-bet) 的表达 (19,20,24)。我们和其他独立小组还报告了 Toll 样受体 7/9 (TLR7/9)、干扰素-γ (IFNγ)、白介素-21 (IL-21) 和 CD40 等信号在驱动 EF 相关 B 细胞发展中的作用。自身免疫性疾病中的细胞状态 (21,22,24)。这些数据提出了一个关键问题:B 细胞命运由什么组成以及如何在癌症生态系统中精确调控它们。因此,系统地解码癌症中 B 细胞的发育层次可能会描绘出肿瘤特异性模式以及克隆分支。
In this study, we compiled an atlas of TIBs across 20 different human cancers. We systemically characterized 15 B cell subsets and identified previously unrecognized AtM B cells and the presence of the EF pathway in the TME. Our data revealed two distinct ASC differentiation pathways—GC and EF paths—exhibiting cancer-type preferences. We characterized the distinctive phenotype, function, TLS localization, and clinical significance of AtM B cells in contrast to conventional GC B cells. In particular, tumor-infiltrating AtM B cells, the progenitors of EF-derived ASCs, exhibited an exhausted and bystander phenotype and developed independently of the GC. We linked these findings to specific transcription factors and epigenomic regulation and demonstrated the influence of the metabolic microenvironment, with glutamine playing a role in regulating AtM B cell differentiation and adopting an immunoregulatory function. Our study provides unprecedented large-scale B cell transcriptome data as a valuable resource for studying TIBs and potentially guiding effective B cell–directed cancer immunotherapeutic strategies.
在这项研究中,我们编制了 20 种不同人类癌症的 TIB 图谱。我们系统地表征了 15 个 B 细胞亚群,并鉴定了以前未识别的 AtM B 细胞以及 TME 中 EF 途径的存在。我们的数据揭示了两种不同的 ASC 分化途径——GC 和 EF 途径——表现出癌症类型的偏好。我们表征了 AtM B 细胞与传统 GC B 细胞相比的独特表型、功能、TLS 定位和临床意义。特别是,肿瘤浸润的 AtM B 细胞(EF 衍生的 ASC 的祖细胞)表现出疲惫和旁观者表型,并且独立于 GC 发育。我们将这些发现与特定转录因子和表观基因组调控联系起来,并证明了代谢微环境的影响,其中谷氨酰胺在调节 AtM B 细胞分化和采用免疫调节功能中发挥着作用。我们的研究提供了前所未有的大规模 B 细胞转录组数据,作为研究 TIB 的宝贵资源,并有可能指导有效的 B 细胞导向的癌症免疫治疗策略。

Results 结果

A single B cell transcriptome blueprint across human cancers
跨人类癌症的单个 B 细胞转录组蓝图

B cell infiltration varies highly across human cancer types (1). To understand the overall infiltration pattern of B cells, we assessed the abundance of B cell infiltration in The Cancer Genome Atlas (TCGA) Pan-Cancer datasets (n = 8863 tumor samples of 31 cancer types) on the basis of the consensus of six existing deconvolution algorithms (fig. S1A). We selected the cancer types with high and medium intratumor B cell scores for further sampling. CD19+ B cells were sorted from 153 samples of 66 patients across 15 human cancer types covering matched tumors, lymph node metastases (LN_Mets), adjacent normal tissues, and peripheral blood, followed by paired single-cell RNA sequencing (scRNA-seq) and single-cell B cell–receptor sequencing (scBCR-seq) (Fig. 1A and fig. S1B). We also integrated diverse published datasets containing TIBs, corrected the batch effects using the Harmony algorithm (25), and finally established a single-cell transcriptional atlas in 477 samples from 269 donors across 20 cancer types. After stringent quality control, we obtained a total of 474,718 single B cell transcriptomes, 69.24% of which were newly generated in this study (fig. S1C and table S1). For scBCR-seq, a total of 166,733 cells from 150,949 clonotypes spanning 61 donors of 15 cancer types were newly produced, carrying at least one pair of productive heavy and light chains, of which 12.76% were clonal (≥two B cells containing the identical BCR pair), corresponding to 21,268 expanded clonotypes. Overall, our single-cell atlas creates a pan-cancer blueprint for B cell investigation (available at http://pancancer.cn/B/).
B 细胞浸润在不同的人类癌症类型中差异很大 (1)。为了了解 B 细胞的整体浸润模式,我们根据六种现有的共识,评估了癌症基因组图谱 (TCGA) 泛癌症数据集(n = 31 种癌症类型的 8863 个肿瘤样本)中 B 细胞浸润的丰度。反卷积算法(图S1A)。我们选择了肿瘤内 B 细胞评分高和中等的癌症类型进行进一步采样。 CD19 + B 细胞从 15 种人类癌症类型的 66 名患者的 153 个样本中分选,涵盖匹配的肿瘤、淋巴结转移 (LN_Mets)、邻近正常组织和外周血,然后进行配对单细胞 RNA 测序(scRNA-seq) 和单细胞 B 细胞受体测序 (scBCR-seq)(图 1A 和图 S1B)。我们还整合了包含 TIB 的不同已发表数据集,使用 Harmony 算法校正批次效应 (25),并最终在来自 269 名捐赠者、20 种癌症类型的 477 个样本中建立了单细胞转录图谱。经过严格的质量控制,我们总共获得了474,718个单B细胞转录组,其中69.24%是本研究新生成的(图S1C和表S1)。对于 scBCR-seq,新产生了来自 150,949 个克隆型的总共 166,733 个细胞,涵盖 15 种癌症类型的 61 个供体,携带至少一对生产性重链和轻链,其中 12.76% 是克隆细胞(≥两个 B 细胞含有相同的重链和轻链) BCR 对),对应于 21,268 个扩展克隆型。总体而言,我们的单细胞图谱为 B 细胞研究创建了泛癌蓝图(可在 http://pancancer.cn/B/ 获取)。
Fig. 1. Single-cell profiling of B cells across different human cancers.
图 1. 不同人类癌症中 B 细胞的单细胞分析。
(A) Schematics of the pan-cancer single-cell transcriptome, BCR repertoire, and chromatin accessibility of B cells. (B) Uniform manifold approximation and projection (UMAP) visualization of 15 B cell subsets. (C) Dot plot for the expression of marker genes in B cell subsets. Colors represent maximum-normalized mean expression of marker genes, and the size represents the percentage of cells expressing these genes. (D) Stacked bar plots showing the isotype distribution in the corresponding tissues within total B cells. (E) Heatmap showing the odds ratios (ORs) of B cell subset distribution in each tissue. The OR value represents the preference distribution in corresponding tissue. (F) Box plots of hypermutation frequency on the immunoglobulin H (IgH) chain of total B cells across different tissues. Data indicate median with interquartile range (IQR), and whiskers indicate minimum and maximum measurement. ****P < 0.0001. P values were determined by the two-sided Wilcoxon test.
(A) 泛癌单细胞转录组、BCR 库和 B 细胞染色质可及性的示意图。 (B) 15 个 B 细胞亚群的均匀流形近似和投影 (UMAP) 可视化。 (C) B 细胞亚群中标记基因表达的点图。颜色代表标记基因的最大标准化平均表达,大小代表表达这些基因的细胞的百分比。 (D) 堆积条形图显示总 B 细胞内相应组织中的同种型分布。 (E) 热图显示每个组织中 B 细胞子集分布的优势比 (OR)。 OR值代表相应组织中的偏好分布。 (F) 不同组织中总 B 细胞的免疫球蛋白 H (IgH) 链超突变频率的箱线图。数据表示中位数和四分位数范围 (IQR),须线表示最小和最大测量值。 ****P < 0.0001。 P值通过双边Wilcoxon检验确定。
Open in viewer

Transcriptional diversity of B cells
B 细胞的转录多样性

Unsupervised clustering analysis identified 15 distinct B cell subsets, all of which were reproducibly observed across cancer types and exhibited distinct tissue- and cancer-type preferences (Fig. 1B; fig. S1, D and E; and table S2). Among them, typical B cell subsets representing different B cell maturation stages were identified, including one naïve B cell (TCL1A, FCER2, and IGHD), three activated B cells (ACBs; CD69 and CD83), one Bm (CRIP2 and ITGB1), three GC B cells [LMO2+Light Zone (LZ), CXCR4+Dark Zone (DZ), and MKI67+cycling], and two ASCs (including TXNDC5+PBs and MZB1+ PCs) (Fig. 1C and fig. S1F).
无监督聚类分析确定了 15 个不同的 B 细胞亚群,所有这些亚群在各种癌症类型中均可重复观察到,并表现出不同的组织和癌症类型偏好(图 1B;图 S1、D 和 E;以及表 S2)。其中,鉴定了代表不同B细胞成熟阶段的典型B细胞亚群,包括一种幼稚B细胞(TCL1A、FCER2和IGHD)、三种活化B细胞(ACB;CD69和CD83)、一种Bm(CRIP2和ITGB1)、三个 GC B 细胞 [LMO2 + 亮区 (LZ)、CXCR4 + 暗区 (DZ) 和 MKI67 + 循环] 和两个 ASC(包括TXNDC5 + PB 和 MZB1 + PC)(图 1C 和图 S1F)。
We next identified four additional subsets that were largely uncharacterized previously (2630) (fig. S2A). The first was an interferon-stimulated gene-positive naïve B cell subset (B_02) that highly expressed IFIT3, IFI44L, and ISG15, which was associated with injury and was expanded during mucosal healing (31). The second subset was stressed B cells (B_03), predominant in the tumor with high expression of heat shock proteins, as confirmed by 37°C collagenase and 4°C mechanical dissociation and multiplex immunohistochemistry (mIHC) (fig. S2, B and C). In comparison with stressed T cells (32), stressed B cells also resided in the center of TLSs, with high expression of hypoxia-related genes, such as HIF1A, NFE2L2, RELB, NFKB1, and NFKB2 (fig. S2D). The third subset was pre-GC B cells (B_10) that were highly enriched in LN_Mets and tumors as compared with adjacent normal tissues and blood, expressing PSME2, NME1, and ENO1. Pre-GC B cells showed transcriptional similarity to naïve B cells, GC B cells, and PBs, respectively, indicating their transitional stages (Fig. 1C).
接下来,我们确定了之前基本上未表征的四个附加子集 (26-30)(图 S2A)。第一个是干扰素刺激的基因阳性幼稚 B 细胞亚群 (B_02),其高表达 IFIT3、IFI44L 和 ISG15,与损伤相关,并在粘膜愈合过程中扩增 (31)。第二个亚群是应激 B 细胞 (B_03),主要存在于热休克蛋白高表达的肿瘤中,经 37°C 胶原酶和 4°C 机械解离和多重免疫组织化学 (mIHC) 证实(图 S2、B 和 C) )。与应激的T细胞相比(32),应激的B细胞也位于TLS的中心,缺氧相关基因高表达,如HIF1A、NFE2L2、RELB、NFKB1和NFKB2(图S2D)。第三个亚群是GC前B细胞(B_10),与邻近的正常组织和血液相比,它们在LN_Met和肿瘤中高度富集,表达PSME2、NME1和ENO1。 GC前B细胞分别表现出与初始B细胞、GC B细胞和PB的转录相似性,表明它们的过渡阶段(图1C)。
The fourth subset we identified was a previously unknown AtM B cell subset (B_09) expressing DUSP4, ITGAX (CD11c), FCRL5, ZEB2, and FGR. Previously documented as ABCs, CD27IgD BDN, FCRL4+ B cells, or exhausted Bm cells reported in aging mice, autoimmune diseases, tonsil, and chronic infection, respectively (16, 19, 23, 24), this subset is now demonstrated to widely exist in the TME (Fig. 1C). We collected and isolated previously published scRNA-seq AtM B cells from autoimmune diseases and hepatitis B virus (HBV) infection datasets (table S1) and performed differentially expressed gene analysis, showing that tumor-infiltrating AtM B cells highly expressed stress-related genes (FOSB and HSPA1A), interferon-induced genes (IFITM1 and IFI30), and activation-related genes (CD83, NR4A1, and CD69), whereas naïve-related genes (TXNIP and IGHD) and metabolic-related genes (MT-ATP6 and NDUFB1) were enriched in autoimmune diseases and HBV infection (fig. S2, E and F, and table S2). Likewise, tumor AtM B cells were enriched in pathways of inflammatory response and hypoxia, whereas angiogenesis and metabolism pathways were dominant in those from autoimmune diseases and HBV infection (fig. S2G). These data highlight that AtM B cells in TME could be functionally distinct, despite their phenotypic concordance with those from autoimmune diseases and virus infections.
我们确定的第四个亚群是以前未知的 AtM B 细胞亚群 (B_09),表达 DUSP4、ITGAX (CD11c)、FCRL5、ZEB2 和 FGR。先前记录为 ABC、CD27 IgD B DN 、FCRL4 + B 细胞或衰老小鼠中报道的耗尽 Bm 细胞,自身免疫性疾病、扁桃体和慢性感染分别(16、19、23、24),该子集现已被证明广泛存在于 TME 中(图 1C)。我们从自身免疫性疾病和乙型肝炎病毒(HBV)感染数据集中收集并分离了先前发表的 scRNA-seq AtM B 细胞(表 S1),并进行差异表达基因分析,表明肿瘤浸润的 AtM B 细胞高表达应激相关基因( FOSB 和 HSPA1A)、干扰素诱导基因(IFITM1 和 IFI30)和激活相关基因(CD83、NR4A1 和 CD69),而幼稚相关基因(TXNIP 和 IGHD)和代谢相关基因(MT-ATP6 和 NDUFB1) )在自身免疫性疾病和 HBV 感染中富集(图 S2、E 和 F,以及表 S2)。同样,肿瘤 AtM B 细胞富含炎症反应和缺氧途径,而血管生成和代谢途径在自身免疫性疾病和 HBV 感染的细胞中占主导地位(图 S2G)。这些数据强调,TME 中的 AtM B 细胞在功能上可能不同,尽管它们的表型与自身免疫性疾病和病毒感染的细胞一致。
Integrative analysis of tissue distribution and transcriptional and repertoire features highlighted the potential tumor-reactive B cells from different tissue sources. TIBs contained more IGHG and IGHA than B cells from nontumor tissues, whereas B cells in blood were enriched with IGHD and IGHM, suggesting that TIBs were antigen-experienced and underwent CSR (Fig. 1D). By the odds ratio (OR) analysis (33), HSP+ B cells, EGR1+ACBs, and PBs showed a strong preference in tumor; MT1X+ B cells, cycling GC B cells, pre-GC B cells, GCLZ, GCDZ, and IFIT3+ B cells were significantly enriched in LN_Mets; TCL1A+ naïve B cells and DUSP4+ AtM B cells were highest in blood; and MZB1+ PCs were dominant in adjacent normal tissue (Fig. 1E). Again, TIBs had significantly more IGH mutations than those in other tissues, with GC B cells and two ASC subsets exhibiting tumor-specific clonal expansion, indicating their tumor reactivity with strong antigen-driven antibody affinity (Fig. 1F and fig. S2H). In addition, ITGB1+ Bm and DUSP4+ AtM B cells showed comparable enrichment in tumor, LN_Mets, and blood, slightly higher than adjacent normal tissue, implying intertissue migration potential. Indeed, the STARTRAC migration (pMigr) index (34), which quantifies the possibility of migration between tissues, and the Jaccard index (35), which illustrates the number of BCR clones shared between different tissues, showed that ITGB1+ Bm and AtM B cells had moderate mobility between blood and LN_Mets or tumor in about half of the cancers (fig. S2, I to K).
对组织分布以及转录和谱特征的综合分析强调了来自不同组织来源的潜在肿瘤反应性 B 细胞。 TIBs比来自非肿瘤组织的B细胞含有更多的IGHG和IGHA,而血液中的B细胞富含IGHD和IGHM,这表明TIBs经历过抗原并经历了CSR(图1D)。通过比值比(OR)分析(33),HSP + B 细胞、EGR1 + ACB 和 PB 在肿瘤中表现出强烈的偏好; MT1X + B 细胞、循环 GC B 细胞、GC 前 B 细胞、GC LZ 、GC DZ 和 IFIT3 + B细胞中 LN_Met 显着富集; TCL1A + 幼稚 B 细胞和 DUSP4 + AtM B 细胞在血液中最高;和MZB1 + PCs在邻近正常组织中占主导地位(图1E)。同样,TIB 的 IGH 突变明显多于其他组织,GC B 细胞和两个 ASC 亚群表现出肿瘤特异性克隆扩张,表明它们具有强抗原驱动抗体亲和力的肿瘤反应性(图 1F 和图 S2H)。此外,ITGB1 + Bm 和 DUSP4 + AtM B 细胞在肿瘤、LN_Mets 和血液中显示出相当的富集,略高于邻近正常组织,这意味着组织间迁移的潜力。事实上,量化组织间迁移可能性的 STARTRAC 迁移 (pMigr) 指数 (34) 和说明不同组织之间共享的 BCR 克隆数量的 Jaccard 指数 (35) 表明,ITGB1 +

Heterogeneity of tumor-infiltrating antibody-secreting cells
肿瘤浸润抗体分泌细胞的异质性

ASCs are terminally differentiated B cells that execute effector function by producing antibodies (36). Compared with the existing data classifying ASCs into a homogenous subset (14, 28, 37, 38), our high-resolution map revealed that tumor-infiltrated ASCs exhibited multifaceted diversities in tissue distribution, cancer-type preference, BCR repertoire, and transcriptomic profile. First, according to the Shannon equitability index (39), the proportion of ASCs showed great variation, with tumor-infiltrated ASCs showing higher diversity than those in adjacent normal tissues and blood (P < 0.01), whereas the diversity of non-ASCs was the highest in LN_Mets (fig. S3A). Second, we observed a higher diversity of BCR clonotypes along with an increased number of expanded BCR clonotypes. However, there was a lower clonal frequency observed in tumors, suggesting a higher homogeneity of clone size in tumors than in other tissues, where a small number of expanded clones dominate the repertoire (fig. S3B). Third, cancer types exerted a strong influence on the frequency of ASCs (fig. S1D). Of the two ASC subsets, the median frequency of tumor-infiltrated MZB1+ PCs was 12.52% of TIBs, ranging from high (70.18%) in colon adenocarcinoma (COAD) to barely detectable in cholangiocarcinoma (CHOL) (1.85%) and stomach adenocarcinoma (STAD) (3.32%) [analysis of variance (ANOVA), P < 2e−16] (fig. S3, C and D). The median frequency of tumor-infiltrated TXNDC5+ PBs was 0.13% but still varied among different cancer types (P = 1.1e−5). Last, ROGUE analysis (40), which quantifies the transcriptomic purity of identified cell types, further confirmed that of the 15 B cell subsets, 2 ASC subsets exhibited the highest heterogeneity of gene expression (fig. S3E). Subclustering of the ASC compartment (removing TXNDC5+ PBs) revealed 10 distinct PC subclusters with specific gene signatures and tissue distribution (Fig. 2, A and B; fig. S3F; and table S2). Among them, PC04.HSPA1A, PC05.NEAT1, and PC08.IFI6 were dominant in the tumor, PC09.RGS13 and PC10.SPINK2 accumulated in adjacent normal tissue, and PC02.RGS13 was prevalent in LN_Mets. In parallel, PC01.NME2 and PC07.CD83 showed comparable enrichment in LN_Mets and blood, PC03.DUSP5 was equally distributed in LN_Mets and tumor, and PC06.SLC3A2 was similarly distributed in the tumor and adjacent normal tissue (Fig. 2C). These findings may help explain the controversial roles of PCs in patient prognosis (5, 41, 42), which could be ascribed to the variability of different PC subsets and cancer types. Collectively, these data indicate that cancer origin has considerable impact on the frequency of ASCs and also imply different B cell origins for ASCs.
ASC 是终末分化的 B 细胞,通过产生抗体来执行效应功能 (36)。与现有将 ASC 分类为同质子集 (14、28、37、38) 的数据相比,我们的高分辨率图谱显示肿瘤浸润的 ASC 在组织分布、癌症类型偏好、BCR 库和转录组谱方面表现出多方面的多样性。首先,根据香农公平性指数(39),ASCs的比例表现出很大的变异性,肿瘤浸润的ASCs的多样性高于邻近正常组织和血液中的ASCs(P < 0.01),而非ASCs的多样性则较低。 LN_Mets 中最高(图 S3A)。其次,我们观察到 BCR 克隆型的多样性更高,并且扩展的 BCR 克隆型数量也有所增加。然而,在肿瘤中观察到的克隆频率较低,这表明肿瘤中克隆大小的同质性高于其他组织,在其他组织中,少数扩展的克隆占主导地位(图S3B)。第三,癌症类型对 ASC 的频率有很大影响(图 S1D)。在两个 ASC 亚群中,肿瘤浸润的 MZB1 + PC 的中位频率为 TIB 的 12.52%,范围从结肠腺癌 (COAD) 中的高频率 (70.18%) 到胆管癌 (CHOL) 中几乎检测不到。 1.85%) 和胃腺癌 (STAD) (3.32%) [方差分析 (ANOVA), P < 2e −16 ](图 S3、C 和 D)。肿瘤浸润的 TXNDC5 + PB 的中位频率为 0.13%,但不同癌症类型之间仍然存在差异 (P = 1.1e −5 )。最后,ROGUE 分析 (40) 对已识别细胞类型的转录组纯度进行量化,进一步证实在 15 个 B 细胞亚群中,2 个 ASC 亚群表现出最高的基因表达异质性(图 S3E)。 ASC 区室的亚聚类(除去 TXNDC5 + PB)揭示了 10 个具有特定基因特征和组织分布的不同 PC 亚聚类(图 2,A 和 B;图 S3F;和表 S2)。其中,PC04.HSPA1A、PC05.NEAT1和PC08.IFI6在肿瘤中占优势,PC09.RGS13和PC10.SPINK2在邻近正常组织中积累,PC02.RGS13在LN_Met中普遍存在。同时,PC01.NME2和PC07.CD83在LN_Mets和血液中显示出相当的富集,PC03.DUSP5在LN_Mets和肿瘤中均匀分布,并且PC06.SLC3A2在肿瘤和邻近正常组织中相似分布(图2C)。这些发现可能有助于解释 PC 在患者预后中具有争议的作用 (5,41,42),这可能归因于不同 PC 亚群和癌症类型的变异性。总的来说,这些数据表明癌症起源对 ASC 的频率有相当大的影响,也意味着 ASC 的 B 细胞起源不同。
Fig. 2. Two developmental pathways of plasma cells in human cancer.
图 2. 人类癌症中浆细胞的两条发育途径。
(A) UMAP visualization of 10 PC subsets. (B) Dot plot for expression of marker genes of identified PC subsets. Color represents the maximum-normalized mean expression of cells expressing marker genes, and size represents the percentage of cells expressing these genes. (C) Heatmap showing the ORs of PC subset distribution in each tissue. The OR value represents the preference distribution in corresponding tissue. (D) Pairwise transition index (pTrans) showing BCR overlap between non-ASCs and ASCs. Top two subsets with high connection with ASCs are highlighted. (E and F) The tumor-infiltrated naïve (Bn), memory B (Bm), and atypical memory (AtM) B cells from LIHC patients were isolated by FACS and stimulated in vitro with R848, IL-2, IL-10, and IL-21 for 11 days (donor number = 3 to 7). Representative flow plot (E) and frequency (F) of ASCs in CD19+ B cells were detected by FACS. Data indicate median with IQR, and whiskers indicate minimum and maximum measurement. (G) (Top) Phylogenic lineage trees of shared clonotypes between ASC cells and AtM B cells and (bottom) between ASCs and Bm or GC B cells. Acquisition of somatic mutation is shown by a number on the branch indicating the number of mutations and branches. Putative unmutated common ancestors are indicated by a white circle. (H) Heatmap showing the pTrans between ASCs and other B cell subsets according to different cancer types. Color represents the z-score–scaled pTrans value by row. (I) Boxplots showing the somatic hypermutation (SHM) frequency of EF- and GC-derived ASCs across different tissues. Data indicate median with IQR, and whiskers indicate minimum and maximum measurement. (J) Stacked column charts showing the frequencies of IGH isotypes in EF- and GC-derived ASCs across different tissues. (K) CSR frequencies of EF-derived (up) and GC-derived (down) ASCs in cancer. The thickness of the line indicates the number of shared clonotypes between two Ig isotypes, and the dot size represents the clone expansion of each isotype. (L) UMAP plots showing the identification of EF- and GC-derived ASCs (top left), development order by CytoTRACE (top right), differentiation state inferred by scTour (bottom left), and differentiation state inferred by Monocle3 (bottom right). (M) Sketch map showing the differentiation paths of EF versus GC responses. The middle table summarizes the features of EF and GC in the TME. For (F) and (I), *P < 0.05, **P < 0.01, ****P < 0.0001. P values were determined by the two-sided Wilcoxon test.
(A) 10 个 PC 子集的 UMAP 可视化。 (B) 已识别的 PC 子集的标记基因表达的点图。颜色代表表达标记基因的细胞的最大标准化平均表达,大小代表表达这些基因的细胞的百分比。 (C) 热图显示每个组织中 PC 子集分布的 OR。 OR值代表相应组织中的偏好分布。 (D) 成对过渡指数 (pTrans) 显示非 ASC 和 ASC 之间的 BCR 重叠。与 ASC 高度相关的前两个子集被突出显示。 (E 和 F) 通过 FACS 分离来自 LIHC 患者的肿瘤浸润的幼稚 (Bn)、记忆 B (Bm) 和非典型记忆 (AtM) B 细胞,并用 R848、IL-2、IL-10、和 IL-21 11 天(供体数量 = 3 至 7)。通过FACS检测CD19 + B细胞中ASC的代表性流图(E)和频率(F)。数据用 IQR 表示中值,须线表示最小和最大测量值。 (G)(上)ASC 细胞和 AtM B 细胞之间以及(下)ASC 和 Bm 或 GC B 细胞之间共享克隆型的系统发育谱系树。体细胞突变的获得由分支上的数字表示,指示突变和分支的数量。假定的未突变共同祖先用白色圆圈表示。 (H) 热图显示根据不同癌症类型的 ASC 和其他 B 细胞亚群之间的 pTrans。颜色代表按行缩放的 z 分数 pTrans 值。 (I) 箱线图显示不同组织中 EF 和 GC 衍生的 ASC 的体细胞超突变 (SHM) 频率。数据用 IQR 表示中值,须线表示最小和最大测量值。 (J) 堆积柱形图显示不同组织中 EF 和 GC 衍生的 ASC 中 IGH 同种型的频率。 (K) 癌症中 EF 衍生(上)和 GC 衍生(下)ASC 的 CSR 频率。线的粗细表示两个 Ig 同种型之间共享克隆型的数量,点大小表示每个同种型的克隆扩展。 (L) UMAP 图显示 EF 和 GC 衍生的 ASC 的识别(左上)、CytoTRACE 的发育顺序(右上)、scTour 推断的分化状态(左下)以及 Monocle3 推断的分化状态(右下) 。 (M) 示意图显示 EF 与 GC 反应的分化路径。中间的表总结了TME中EF和GC的特点。对于 (F) 和 (I),*P < 0.05,**P < 0.01,****P < 0.0001。 P值通过双边Wilcoxon检验确定。
Open in viewer

Both extrafollicular and germinal-center paths are hijacked by cancer
滤泡外和生发中心路径均被癌症劫持

Although B cell pathways derived from GC (1, 17, 42) or extrafollicular (EF) responses are commonly observed in autoimmune diseases and chronic infections (21, 43, 44), the potential for the tumor ecosystem to influence distinct B cell evolutionary trajectories has not been thoroughly explored. We thus used gene expression to infer the trajectories of ASC differentiation and observed that ASCs were mainly derived from GC B cells (fig. S3G), which is consistent with previous studies (2, 45). However, given that ASC subsets were significantly distinguished from the other subsets by unsupervised clustering on the basis of high expression of PC markers, traditional transcriptome-based trajectory analysis may not accurately reflect the true differentiation state. To address this, we used a BCR clonal-sharing strategy and unsupervised clustering to identify the progenitors of ASCs with STARTRAC [single T cell analysis by RNA-seq and TCR (T cell receptor) tracking] pairwise transition indices (pTrans) (34), Jaccard indices (35), and somatic hypermutations (SHM), because the BCR repertoire is a reliable molecular tag for tracing the lineage of ASCs. We showed that AtM and Bm cells were the two primary B cells clonally shared with ASCs, suggesting that ASCs may originate from both canonical GC and alternative EF pathways in the TME (Fig. 2D and fig. S3, H and I). To validate this, tumor-infiltrated naïve B, Bm, and AtM B cells from liver hepatocellular carcinoma (LIHC) patients were sorted and stimulated by using in vitro B cell differentiation methods (24). Indeed, AtM B cells could differentiate into ASCs more efficiently than naïve B cells (P = 0.035) but more weakly than Bm cells (P = 0.0027) (Fig. 2, E and F). In addition to AtM and Bm cells, we also identified pre-GC, cycling GC, and GCLZ B cells sharing BCRs with PBs, and IFIT3+ B, HSP+ B, and EGR1+ ACBs sharing BCRs with PCs, which were validated by phylogenetic lineage trees of shared clones between ASCs and these subsets (Fig. 2G and fig. S3, J to L).
尽管源自 GC (1, 17, 42) 或滤泡外 (EF) 反应的 B 细胞途径在自身免疫性疾病和慢性感染中常见 (21, 43, 44),但肿瘤生态系统有可能影响不同的 B 细胞进化轨迹尚未被彻底探索。因此,我们利用基因表达来推断ASC分化的轨迹,并观察到ASC主要来源于GC B细胞(图S3G),这与之前的研究一致(2, 45)。然而,鉴于ASC子集在PC标记高表达的基础上通过无监督聚类与其他子集显着区分,传统的基于转录组的轨迹分析可能无法准确反映真实的分化状态。为了解决这个问题,我们使用 BCR 克隆共享策略和无监督聚类,通过 STARTRAC [通过 RNA-seq 和 TCR(T 细胞受体)跟踪进行单 T 细胞分析] 成对转变指数 (pTrans) 来识别 ASC 的祖细胞 (34) 、Jaccard 指数 (35) 和体细胞超突变 (SHM),因为 BCR 库是追踪 ASC 谱系的可靠分子标签。我们发现 AtM 和 Bm 细胞是与 ASC 克隆共享的两种主要 B 细胞,这表明 ASC 可能起源于 TME 中的经典 GC 和替代 EF 途径(图 2D 和图 S3、H 和 I)。为了验证这一点,使用体外 B 细胞分化方法对来自肝细胞癌 (LIHC) 患者的肿瘤浸润的幼稚 B、Bm 和 AtM B 细胞进行分类和刺激 (24)。事实上,AtM B 细胞可以比初始 B 细胞更有效地分化为 ASC(P = 0.035),但比 Bm 细胞更弱(P = 0.0027)(图 2,E 和 F)。 除了 AtM 和 Bm 细胞外,我们还鉴定了前 GC、循环 GC 和与 PB 共享 BCR 的 GC LZ B 细胞,以及 IFIT3 + B、HSP + ACB 与 PC 共享 BCR,这通过 ASC 和这些子集之间共享克隆的系统发育谱系树进行了验证(图 2G 和图 S3,J 到 L)。
We next evaluated the prevalence of the two paths and classified the ASCs sharing BCRs with canonical Bm (66% of GC-derived ASCs), cycling GC (13%), GCLZ (12%), and GCDZ (7%) as GC-derived ASCs, whereas those ASCs overlapping with other B cell subsets, including AtM (47% of EF-derived ASCs), ACB (29%), IFIT3+ B (8%), HSP+ B (6%), pre-GC (5%), and MT1X+ B (3%) cells, were classified as EF-derived ASCs at the cellular level (fig. S4A). Subsequently, we used label transfer to acquire more EF- and GC-derived ASCs on the basis of the gene expression profile of already classified ASCs and then validated label-transfer accuracy (fig. S4B). With the defined EF-derived and GC-derived ASCs, we further computed the EF index and integrated with SHM to classify patients into two distinct groups—either EF-dominant or GC-dominant at the patient level—and this classification was further validated and refined by pTrans score (fig. S4, C to E). Both paths could be observed in individual patients and cancers despite obvious patient- and cancer-type preference, indicating both GC and EF responses as universal paths for ASC differentiation (Fig. 2H). COAD and thyroid carcinoma (THCA) used GCDZ, GCLZ, and cycling GC B cells, whereas gallbladder cancer (GBC), STAD, lung cancer (LC), and thymoma (THYM) used Bm cells as preferred to the GC pathway. Conversely, the AtM B cell–dominant EF path was enriched in LIHC, pancreatic adenocarcinoma (PAAD), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), and head and neck squamous cell carcinoma (HNSC), whereas pre-GC, ACB, and the IFIT3+-dominant EF path were abundant in renal cell carcinoma (RCC), bladder urothelial carcinoma (BLCA), and gastrointestinal stromal tumor (GIST), respectively (Fig. 2H and fig. S4F). AtM B cells had pTrans scores comparable to those of cycling GC and Bm cells in ovarian cancer (OV) and breast cancer (BRCA), respectively, indicating the equal presence of both pathways in these cancers (fig. S4G). In addition to intersubset BCR sharing, the developmental potential of GC and EF pathways could be validated by the expression signatures of non-ASC subsets in ASCs (fig. S4H). For example, PC01.NME2 expressed pre-GC signature genes, including PSME2 and ENO1, and these pre-GC B cells shared BCR with both TXNDC5+ PBs and MZB1+ PCs in BLCA and RCC. Similarly, PC04.HSPA1A expressed HSPA1A and HSPA1B, and HSP+ B cells favored to share BCR with MZB1+ PCs in BLCA, suggesting heterogeneous differentiation pathways toward ASCs. Together, these data suggest that two evolutionary paths (GC and EF) are hijacked by distinct cancer ecosystems.
接下来,我们评估了这两种路径的流行率,并将与典型 Bm 共享 BCR 的 ASC(GC 衍生的 ASC 的 66%)、循环 GC(13%)、GC LZ (12%)和 GC 分类 DZ (7%) 为 GC 衍生的 ASC,而这些 ASC 与其他 B 细胞亚群重叠,包括 AtM(EF 衍生的 ASC 的 47%)、ACB (29%)、IFIT3 + B (6%)、GC 前 (5%) 和 MT1X + B (3%) 细胞,被分类为细胞水平上的 EF 衍生 ASC(图 S4A)。随后,我们根据已分类的 ASC 的基因表达谱,使用标签转移来获取更多 EF 和 GC 衍生的 ASC,然后验证标签转移的准确性(图 S4B)。通过定义 EF 衍生和 GC 衍生的 ASC,我们进一步计算 EF 指数并与 SHM 集成,将患者分为两个不同的组——在患者水平上以 EF 为主或以 GC 为主——并且这种分类得到了进一步验证和验证。通过 pTrans 分数进行细化(图 S4,C 至 E)。尽管有明显的患者和癌症类型偏好,但在个体患者和癌症中都可以观察到这两种路径,表明 GC 和 EF 反应都是 ASC 分化的通用路径(图 2H)。 COAD 和甲状腺癌 (THCA) 使用 GC DZ 、 GC LZ 和循环 GC B 细胞,而胆囊癌 (GBC)、STAD、肺癌 (LC) 和胸腺瘤 ( THYM) 使用 Bm 细胞作为 GC 途径的首选。 相反,AtM B 细胞主导的 EF 路径在 LIHC、胰腺腺癌 (PAAD)、宫颈鳞状细胞癌和宫颈内膜腺癌 (CESC) 以及头颈鳞状细胞癌 (HNSC) 中丰富,而前 GC、ACB、 IFIT3 + 主导的EF路径分别在肾细胞癌(RCC)、膀胱尿路上皮癌(BLCA)和胃肠道间质瘤(GIST)中大量存在(图2H和图S4F)。 AtM B 细胞的 pTrans 评分分别与卵巢癌 (OV) 和乳腺癌 (BRCA) 中循环 GC 和 Bm 细胞的 pTrans 评分相当,表明这两种途径在这些癌症中同等存在(图 S4G)。除了子集间 BCR 共享之外,GC 和 EF 途径的发育潜力还可以通过 ASC 中非 ASC 子集的表达特征来验证(图 S4H)。例如,PC01.NME2 表达前 GC 特征基因,包括 PSME2 和 ENO1,并且这些前 GC B 细胞与 BLCA 中的 TXNDC5 + PB 和 MZB1 + PC 共享 BCR和RCC。类似地,PC04.HSPA1A 表达 HSPA1A 和 HSPA1B,HSP + B 细胞倾向于与 BLCA 中的 MZB1 + PC 共享 BCR,表明向 ASC 的异质分化途径。总之,这些数据表明两种进化路径(GC 和 EF)被不同的癌症生态系统劫持。
We next explored the BCR repertoire and matched transcriptional features of these two evolutionary paths. The median frequency of EF-derived ASCs in tumors was 1.52% [0.35 to 4.37% (interquartile range)], which was significantly higher than that of GC-derived ASCs (0.45%; 0.13 to 2.29%) (fig. S5A). By contrast, the diversity of gene expression and BCR clonotypes was reduced in EF-derived ASCs (fig. S5, B and C). These cells were characterized by oligoclonal expansions, with the top five clonotypes accounting for 11.51% of the total repertoire compared with 3.20% in GC-derived ASCs. Indeed, GC-derived ASCs exhibited high diversity and relatively homogeneous clone sizes (fig. S5C). Consistent with previous findings in autoimmune disease (43, 46), EF-derived ASCs in tumors displayed significantly lower SHM than those of GC-derived ones (Fig. 2I and fig. S5D). Isotype analysis demonstrated that EF-derived ASCs contained high interferon-induced immunoglobulin G (IgG) isotype and CSR relative to IGHG1 in tumor, along with higher IGHM enrichment and no CSR occurring in adjacent normal tissue and blood (Fig. 2J). By contrast, GC-derived ASCs showed significantly higher expansion and CSR relative to IGHA1 and IGHA2 in tumor, adjacent normal tissue, and blood, which was linked to tumor antigen–specific recognition and antitumor immunity (47) (Fig. 2K and fig. S5E). These differences may stem from the intrinsic distinctions between EF- and GC-derived ASCs, with EF-derived ASCs highly expressing IRF8, CD83, and HLA-DR, exhibiting an earlier immune-response phenotype (48) and enriching for pathways of hypoxia and inflammatory response. Conversely, GC-derived ASCs showed higher expression of immunoglobulin genes and exhibited a more mature PC phenotype—which is consistent with their appearance at later stages of the immune response—and were enriched for several metabolic pathways, including glycolysis, oxidative phosphorylation, and fatty-acid metabolism, highlighting extensive energetic and biosynthetic demands during CSR and GC response (fig. S5, F and G, and table S2). To compare the early and late differentiation stages of EF- and GC-derived ASCs, we used three methods to infer the differentiation state, including cytoTRACE (49), scTour (50), and Monocle3 (51), and showed that EF-derived ASCs were in the early stages compared with terminal differentiation of GC-derived ASCs, indicating an early EF response and a delayed GC response (52) (Fig. 2L and fig. S5H). These results were further validated because EF-derived ASCs were enriched for PC07.CD83, with high expression of HLA-DR and FOXP1, which has been demonstrated to impede germinal center (GC) formation and repress human PC differentiation (53, 54) (fig. S5I). Additionally, the enrichment of the IGHM isotype in PC07.CD83 further aligns with the characteristics of early immunoglobulin M (IgM) ASCs in bone marrow (48) (fig. S5, J and K). GC-derived ASCs were enriched for PC03.DUSP5, PC04.HSPA1A, and PC10.SPINK2. LIHC-infiltrated ASCs exhibited significantly higher EF-derived ASC markers, such as CD20, HLA-DR, CD37, CD74, CD83, and IRF8, than did COAD ones (fig. S5, L and M). These results were also validated with mIHC staining for IRF8 and HLA-DR in ASCs, using tissue microarray (TMA) encompassing both EF-dominant (BLCA, CESC, GIST, LIHC, PAAD, RCC; n = 49) and GC-dominant cancers (COAD, STAD, and LC; n = 23) (fig. S5N). The frequency of IRF8+ ASCs (median in EF = 13.67%, median in GC = 6.58%; P = 0.0315) and HLA-DR+ ASCs (median in EF = 50%, median in GC = 34.09%; P = 0.0066) among CD79+CD20 ASCs was significantly higher in EF-dominant cancers compared with GC-dominant cancers (fig. S5O). Taken together, these results further support the conception that the early response of EF-derived ASCs contrasts with the delayed response of GC-derived ASCs.
接下来,我们探索了 BCR 库并匹配了这两种进化路径的转录特征。肿瘤中 EF 衍生的 ASC 的中位频率为 1.52% [0.35 至 4.37%(四分位距)],显着高于 GC 衍生的 ASC(0.45%;0.13 至 2.29%)(图 S5A)。相比之下,EF 衍生的 ASC 中基因表达和 BCR 克隆型的多样性降低(图 S5、B 和 C)。这些细胞的特点是寡克隆扩增,前五种克隆型占总库的 11.51%,而 GC 衍生的 ASC 中仅占 3.20%。事实上,GC 衍生的 ASC 表现出高度多样性和相对均质的克隆大小(图 S5C)。与先前在自身免疫性疾病中的发现一致 (43, 46),肿瘤中 EF 衍生的 ASC 表现出显着低于 GC 衍生 ASC 的 SHM(图 2I 和图 S5D)。同种型分析表明,相对于肿瘤中的IGHG1,EF衍生的ASC含有较高的干扰素诱导的免疫球蛋白G(IgG)同种型和CSR,并且IGHM富集度更高,并且在邻近正常组织和血液中没有出现CSR(图2J)。相比之下,在肿瘤、邻近正常组织和血液中,GC 衍生的 ASC 相对于 IGHA1 和 IGHA2 表现出显着更高的扩增和 CSR,这与肿瘤抗原特异性识别和抗肿瘤免疫相关 (47)(图 2K 和图 2K)。 S5E)。这些差异可能源于 EF 衍生的 ASC 和 GC 衍生的 ASC 之间的内在区别,EF 衍生的 ASC 高表达 IRF8、CD83 和 HLA-DR,表现出早期的免疫反应表型 (48),并丰富了缺氧和缺氧的途径。炎症反应。 相反,GC 衍生的 ASC 显示出更高的免疫球蛋白基因表达,并表现出更成熟的 PC 表型(这与它们在免疫反应后期的表现一致),并且富集了多种代谢途径,包括糖酵解、氧化磷酸化和脂肪代谢途径。 -酸代谢,突出了 CSR 和 GC 响应期间广泛的能量和生物合成需求(图 S5、F 和 G,以及表 S2)。为了比较 EF 和 GC 衍生的 ASC 的早期和晚期分化阶段,我们使用了三种方法来推断分化状态,包括 cytoTRACE (49)、scTour (50) 和 Monocle3 (51),并表明 EF 衍生的 ASC与 GC 衍生的 ASC 的终末分化相比,ASC 处于早期阶段,表明早期的 EF 反应和延迟的 GC 反应 (52)(图 2L 和图 S5H)。这些结果得到了进一步验证,因为 EF 衍生的 ASC 富含 PC07.CD83,并高表达 HLA-DR 和 FOXP1,这已被证明可以阻碍生发中心 (GC) 形成并抑制人 PC 分化 (53, 54)(图S5I)。此外,PC07.CD83 中 IGHM 同种型的富集进一步符合骨髓中早期免疫球蛋白 M (IgM) ASC 的特征 (48)(图 S5、J 和 K)。 GC 衍生的 ASC 富含 PC03.DUSP5、PC04.HSPA1A 和 PC10.SPINK2。与 COAD 相比,LIHC 浸润的 ASC 表现出显着更高的 EF 衍生 ASC 标记,例如 CD20、HLA-DR、CD37、CD74、CD83 和 IRF8(图 S5、L 和 M)。这些结果还通过对 ASC 中 IRF8 和 HLA-DR 的 mIHC 染色进行了验证,使用组织微阵列 (TMA) 涵盖 EF 为主的癌症(BLCA、CESC、GIST、LIHC、PAAD、RCC;n = 49)和 GC 为主的癌症(COAD、STAD 和 LC;n = 23)(图 S5N)。 IRF8 + ASC 的频率(EF 中中位数 = 13.67%,GC 中中位数 = 6.58%;P = 0.0315)和 HLA-DR + ASC(EF 中中位数 = 50%) ,GC 中的中位数 = 34.09%;P = 0.0066),与 GC 为主的癌症相比,CD79 + CD20 ASC 在 EF 为主的癌症中显着更高(图 S5O)。总而言之,这些结果进一步支持了以下观点:EF 衍生的 ASC 的早期反应与 GC 衍生的 ASC 的延迟反应形成对比。
GC-derived ASCs had more frequent mutations in activation-induced cytidine deaminase (AID) WRC/GYW and WA/TW hotspots than did EF-derived ASCs (55, 56) (fig. S5, P and Q). Specifically, the mutation frequency of GC-derived ASCs in the AID hotspots was 6.05% (4.37 to 8.44%) for IGHA and 4.61% (1.05 to 7.07%) for IGHM. These frequencies were significantly higher than those in EF-derived ASCs, which were 4.65% (2.63 to 6.95%) for IGHA (P = 2.5e−12) and 0% (0 to 2.93%) for IGHM (P < 2.2e−16). GC-derived ASCs displayed positive selection for replacement mutation in the complementarity-determining region (CDR) of IGHA2 and IGHG2, further supporting their increased CSR (fig. S5R). By contrast, IGHG4 was increased in EF-derived ASCs compared with GC-derived ASCs, which was consistent with a recent report showing IgG4-related autoimmune disease with enriched EF response (57). Likewise, comparing IGHV gene usages between EF- and GC-derived ASCs in tumors revealed that GC-derived ASCs overexpressed IGHV1-8 and IGHV1-24 (fig. S5S), where IGHV1-8 preference was correlated with higher SHM rate (58), indicating their strong antigen-specific affinity. EF-derived ASCs up-regulated a group of IGHV genes (IGHV3-15, IGHV3-23, IGHV3-33, IGHV3-49, IGHV4-34, and IGHV4-59), and increased usage of these IGHV genes has been associated with COVID-19, viral infections, and autoimmune disease (43, 46, 59, 60), implying a polyreactive BCR repertoire. Together, our data indicate that distinct cancer ecosystems hijack two evolutionary paths (EF and GC) and reveal differences in BCR repertoires and transcriptional features between EF- and GC-derived ASCs, highlighting their distinctive roles in antitumor response (Fig. 2M).
与 EF 衍生的 ASC 相比,GC 衍生的 ASC 在激活诱导的胞苷脱氨酶 (AID) WRC/GYW 和 WA/TW 热点中具有更频繁的突变 (55, 56)(图 S5、P 和 Q)。具体而言,AID 热点中 GC 衍生的 ASC 的突变频率对于 IGHA 为 6.05%(4.37 至 8.44%),对于 IGHM 为 4.61%(1.05 至 7.07%)。这些频率显着高于 EF 衍生的 ASC,IGHA 为 4.65%(2.63 至 6.95%)(P = 2.5e −12 ),IGHM 为 0%(0 至 2.93%)。 P < 2.2e −16 )。 GC 衍生的 ASC 在 IGHA2 和 IGHG2 的互补决定区 (CDR) 中显示出对替换突变的正选择,进一步支持了它们增加的 CSR(图 S5R)。相比之下,与 GC 衍生的 ASC 相比,EF 衍生的 ASC 中 IGHG4 增加,这与最近的一份报告一致,该报告显示 IgG4 相关的自身免疫性疾病具有丰富的 EF 反应 (57)。同样,比较肿瘤中 EF 和 GC 衍生的 ASC 之间的 IGHV 基因使用情况表明,GC 衍生的 ASC 过表达 IGHV1-8 和 IGHV1-24(图 S5S),其中 IGHV1-8 偏好与较高的 SHM 率相关 (58) ,表明它们具有很强的抗原特异性亲和力。 EF 衍生的 ASC 上调一组 IGHV 基因(IGHV3-15、IGHV3-23、IGHV3-33、IGHV3-49、IGHV4-34 和 IGHV4-59),并且这些 IGHV 基因的使用增加与COVID-19、病毒感染和自身免疫性疾病 (43, 46, 59, 60),意味着存在多反应性 BCR 全部。总之,我们的数据表明,不同的癌症生态系统劫持了两条进化路径(EF和GC),并揭示了EF和GC衍生的ASC之间BCR库和转录特征的差异,突出了它们在抗肿瘤反应中的独特作用(图2M)。

Regulatory elements epigenetically license extrafollicular and germinal-center balance
调控元件通过表观遗传学许可卵泡外和生发中心的平衡

Transcription regulation is fundamental for dictating and maintaining B cell identity (6164), but the tumor-specific regulatory network and the molecular drivers that contribute to TIBs’ identity remain poorly defined. To address this challenge, we applied paired scRNA-seq and scATAC-seq (ATAC, assay for transposase-accessible chromatin sequencing) to characterize the epigenomics of TIBs and obtained chromatin accessibility maps for 53,428 TIBs from nine patients of five cancer types, including GC pathway–dominant cancers (COAD, THCA, LC, and STAD) and EF pathway–dominant cancers (LIHC), with a median of 11,853 distinctly aligned fragments, and ~67.87% of Tn5 insertions within ATAC-seq peaks (Fig. 3A and fig. S6, A to C). By integrating scATAC-seq and scRNA-seq data, we observed eight analogous B cell subpopulations, covering naïve, two ACB, Bm, AtM, GC (DZ and LZ), and PC subsets (Fig. 3A and table S3). As a result, there was strong consistency between subset identities and subset-specific markers annotated in both scRNA-seq and scATAC-seq (Fig. 3B and fig. S6D). Open chromatin accessibility of signature genes for B cell subsets, such as TCL1A, RGS13, ITGAX, and XBP1, further confirmed their cellular identities (Fig. 3C and fig. S6E). To define the transcription factors (TFs) involved in modifying chromatin accessibility of different B cell subsets, we identified TFs whose chromatin accessibility activity was significantly and positively correlated with their gene expression. Such analysis generated a full spectrum of enriched TFs, including known B cell lineage TFs such as PAX5, EBF1, and SPIB (65) (fig. S6, F and G). By combing the footprint and signature of TFs (66), we identified shared and distinctive regulatory patterns across B cell subsets (Fig. 3D). For example, regulatory TF activities harbored shared patterns between similar cell states, such as those active in naïve, ACB, and Bm (i.e., BCL11A, ELF2, SPIB, and STAT6), or in GCDZ and GCLZ B cells (i.e., CTCFL, EBF1, HMGA1, and POU2F1) (Fig. 3D). Conversely, a broad spectrum of TFs was specifically enriched in certain B cell subsets (i.e., ETS1 in naïve B; TBX21 and FOSL2 in AtM; POU2F1, MEF2B, and BCL6 in GC B; and IRF2/3/4/5/6/7/8, PRDM1, and ZNF652 in PCs) (Fig. 3, D and E, and fig. S6H). Overall, our data not only unbiasedly shed light on both known and uncharacterized TFs in controlling B cell identity but also provide a comprehensive resource of gene regulatory networks for major B cell subsets across cancers.
转录调控对于决定和维持 B 细胞身份至关重要 (61-64),但肿瘤特异性调控网络和有助于 TIB 身份的分子驱动因素仍然不明确。为了应对这一挑战,我们应用配对的 scRNA-seq 和 scATAC-seq(ATAC,转座酶可及染色质测序分析)来表征 TIB 的表观基因组学,并获得了来自 5 种癌症类型(包括 GC)的 9 名患者的 53,428 个 TIB 的染色质可及性图谱通路主导型癌症(COAD、THCA、LC 和 STAD)和 EF 通路主导型癌症(LIHC),中位数为 11,853 个明显对齐的片段,ATAC-seq 峰内约 67.87% 的 Tn5 插入(图 3A 和图 S6,A 至 C)。通过整合 scATAC-seq 和 scRNA-seq 数据,我们观察到了八个类似的 B 细胞亚群,涵盖幼稚的、两个 ACB、Bm、AtM、GC(DZ 和 LZ)和 PC 亚群(图 3A 和表 S3)。因此,scRNA-seq 和 scATAC-seq 中注释的子集身份和子集特异性标记之间存在很强的一致性(图 3B 和图 S6D)。 B 细胞亚群特征基因(例如 TCL1A、RGS13、ITGAX 和 XBP1)的开放染色质可及性进一步证实了它们的细胞身份(图 3C 和图 S6E)。为了定义参与改变不同 B 细胞亚群染色质可及性的转录因子 (TF),我们鉴定了其染色质可及性活性与其基因表达显着正相关的 TF。此类分析生成了全谱富集的 TF,包括已知的 B 细胞谱系 TF,例如 PAX5、EBF1 和 SPIB (65)(图 S6、F 和 G)。通过结合 TF 的足迹和特征 (66),我们确定了 B 细胞亚群之间共享且独特的调控模式(图 3D)。 例如,调节性 TF 活性在相似的细胞状态之间具有共享模式,例如在幼稚、ACB 和 Bm 中活跃的那些(即 BCL11A、ELF2、SPIB 和 STAT6),或在 GC DZ 和 GC 中 LZ B 细胞(即 CTCFL、EBF1、HMGA1 和 POU2F1)(图 3D)。相反,广泛的 TF 在某些 B 细胞亚群中特异性富集(即幼稚 B 中的 ETS1;AtM 中的 TBX21 和 FOSL2;GC B 中的 POU2F1、MEF2B 和 BCL6;以及 IRF2/3/4/5/6/ 7/8、PRDM1 和 PC 中的 ZNF652)(图 3、D 和 E,以及图 S6H)。总体而言,我们的数据不仅公正地揭示了控制 B 细胞身份的已知和未表征的 TF,而且还为跨癌症的主要 B 细胞亚群提供了全面的基因调控网络资源。
Fig. 3. Single-cell epigenomic profiles of EF and GC responses in human cancer.
图 3. 人类癌症中 EF 和 GC 反应的单细胞表观基因组图谱。
(A) UMAP visualization of scATAC-seq–annotated B cell subsets (top) and cancer types (bottom). (B) Heatmap of gene activity score determined by scATAC-seq of all marker genes from each subset. Color represents z-score–scaled gene expression. (C) Genome accessibility tracks of indicated signature gene loci in B cell subsets. (D) Heatmap of TF activity by SCENIC (left) and TF motif enrichment at the specific open chromatin regions (right) of the annotated B cell subsets. (E) UMAP visualization of RNA expression (top) and motif deviation scores (bottom) for B cell subsets’ specific TFs. (F) Differentially expressed TF deviation score between EF-dominant and GC-dominant cancer–derived MZB1+ PCs were calculated [log2 fold change (FC) >0.5, Benjamini-Hochberg adjusted P value <0.05, two-sided Wilcoxon test]. Ranking of TF deviation score by P-adjusted value within (red) EF-dominant versus (blue) GC-dominant cancer–derived MZB1+ PCs. (G) Schematic of differential putative regulatory TFs driving B cell differentiation from naïve B cells to PCs in (left) GC-dominant cancer and (right) EF-dominant cancer.
(A) scATAC-seq 注释的 B 细胞亚群(上)和癌症类型(下)的 UMAP 可视化。 (B) 由来自每个子集的所有标记基因的 scATAC-seq 确定的基因活性评分热图。颜色代表 z 分数尺度的基因表达。 (C) B 细胞亚群中指定特征基因位点的基因组可及性轨迹。 (D) SCENIC 的 TF 活性热图(左)和注释 B 细胞亚群的特定开放染色质区域(右)的 TF 基序富集。 (E) B 细胞亚群特定 TF 的 RNA 表达(顶部)和基序偏差评分(底部)的 UMAP 可视化。 (F) 计算 EF 显性和 GC 显性癌症衍生的 MZB1 + PC 之间差异表达的 TF 偏差评分 [log 2 倍数变化 (FC) >0.5,Benjamini-Hochberg调整后的P值<0.05,双面Wilcoxon检验]。在(红色)EF 主导型与(蓝色)GC 主导型癌症衍生的 MZB1 + PC 中,按 P 调整值对 TF 偏差评分进行排名。 (G) 在(左)GC 为主的癌症和(右)EF 为主的癌症中驱动 B 细胞从初始 B 细胞分化为 PC 的差异推定调节 TF 的示意图。
Open in viewer
Upon closer inspection of Bm, AtM, and PCs, we found that they were predominantly composed of cells from specific EF and GC cancer types, prompting us to investigate potential cancer entity–specific differences in the chromatin landscape of Bm, AtM, and PCs (Fig. 3A). We therefore studied the lineage trajectories of B cells from EF- and GC-dominant cancers (fig. S7, A to C). We identified sequential activities of positive TF regulators, including PAX5, BCL11A, POU2F2, EBF1, REL, TBX21, PRDM1, IRF4, RORA, RUNX2, and XBP1, which promote B cell–lineage specification, maintenance, CSR, and differentiation (62, 64, 65, 67). These activities varied between EF- and GC-dominant cancers along B cell differentiation. Subsequently, we evaluated the TF deviation scores to pinpoint the differential positive TF regulators between EF- and GC-dominant cancers. Bm and AtM in EF-dominant cancers were enriched with AP-1 factors, including FOS and JUN, which are involved in BCR signaling pathway and signify B cell activation and differentiation (68) (fig. S7, D and E). By contrast, Bm and AtM in GC-dominant cancers were enriched with nuclear factor κB (NF-κb) subunits, including REL, RELA, and RELB, which is consistent with their reported functions in GC B cell maintenance and homeostasis (69). Compared with PCs in GC-dominant cancers that showed a high RUNX1-3 deviation score, PCs in EF-dominant cancers showed high activity of TFs that regulate rapid induction of interferon-β (IFN-β) and inflammatory TME, including IRF1/3/4/5/8 and STAT2 (70) (Fig. 3F). To validate this, we confirmed that IRF4 and RUNX2 were enriched in tumor-infiltrated ASCs as compared with other B cells and that IRF4 was up-regulated in LIHC-associated ASCs as compared with COAD-associated ASCs, whereas RUNX2 showed the opposite trend (fig. S7, F and G). These results were substantiated by mIHC staining for IRF4 and RUNX2 in ASCs from a TMA including both EF-dominant (n = 49) and GC-dominant cancers (n = 23) (fig. S7H). The frequency of IRF4+ (median in EF = 55.09%, median in GC = 50%; P = 0.0416) in CD79a+CD20 ASCs was significantly higher in EF-dominant cancers than in GC-dominant cancers, whereas the frequency of RUNX2+ ASCs showed the opposite trend (median in EF = 26.11%, median in GC = 56.89%; P < 0.0001) (fig. S7I). Collectively, these data highlight a dynamic epigenetic regulatory network that functions in fine-tuning B cell differentiation and selection within cancer ecosystems, and they underscore the fundamental role of lineage TFs in managing the balance between EF and GC pathways (Fig. 3G).
经过对 Bm、AtM 和 PC 的仔细检查,我们发现它们主要由来自特定 EF 和 GC 癌症类型的细胞组成,这促使我们研究 Bm、AtM 和 PC 染色质景观中潜在的癌症实体特异性差异。图3A)。因此,我们研究了来自 EF 和 GC 显性癌症的 B 细胞的谱系轨迹(图 S7,A 到 C)。我们确定了正 TF 调节因子的连续活性,包括 PAX5、BCL11A、POU2F2、EBF1、REL、TBX21、PRDM1、IRF4、RORA、RUNX2 和 XBP1,它们促进 B 细胞谱系规范、维持、CSR 和分化(62, 64、65、67)。随着 B 细胞分化,EF 主导型癌症和 GC 主导型癌症之间的这些活性有所不同。随后,我们评估了 TF 偏差评分,以确定 EF 和 GC 为主的癌症之间差异性的阳性 TF 调节因子。 EF 为主的癌症中的 Bm 和 AtM 富含 AP-1 因子,包括 FOS 和 JUN,这些因子参与 BCR 信号通路并意味着 B 细胞激活和分化 (68)(图 S7、D 和 E)。相比之下,GC 显性癌症中的 Bm 和 AtM 富含核因子 κB (NF-κb) 亚基,包括 REL、RELA 和 RELB,这与报道的它们在 GC B 细胞维持和稳态中的功能一致 (69)。与 GC 为主的癌症中表现出较高 RUNX1-3 偏差评分的 PC 相比,EF 为主的癌症中的 PC 显示出调节干扰素-β (IFN-β) 和炎症 TME 快速诱导的 TF 的高活性,包括 IRF1/3 /4/5/8 和 STAT2 (70) (图 3F)。 为了验证这一点,我们证实与其他 B 细胞相比,IRF4 和 RUNX2 在肿瘤浸润的 ASC 中富集,并且与 COAD 相关的 ASC 相比,IRF4 在 LIHC 相关的 ASC 中上调,而 RUNX2 显示相反的趋势。图 S7、F 和 G)。这些结果通过 TMA 的 ASC 中 IRF4 和 RUNX2 的 mIHC 染色得到证实,包括 EF 为主的癌症 (n = 49) 和 GC 为主的癌症 (n = 23)(图 S7H)。 CD79a + CD20 ASC 中 IRF4 + 的频率(EF 中位数 = 55.09%,GC 中位数 = 50%;P = 0.0416)显着EF 为主的癌症高于 GC 为主的癌症,而 RUNX2 + ASC 的频率呈现相反的趋势(EF 中中位数 = 26.11%,GC 中中位数 = 56.89%;P < 0.0001)(图S7I)。总的来说,这些数据强调了一个动态表观遗传调控网络,该网络在癌症生态系统内微调 B 细胞分化和选择方面发挥作用,并强调了谱系 TF 在管理 EF 和 GC 途径之间的平衡方面的基本作用(图 3G)。

Extrafollicular AtM B cells harbor an exhaustion phenotype, developing independently of germinal centers
滤泡外 AtM B 细胞具有衰竭表型,独立于生发中心发育

Recognizing the critical role of AtM B cells as primary progenitors for the EF pathway in the TME, we comprehensively examined their phenotype and function. Compared with the previously defined signature markers in nontumor contexts (21, 22, 24), tumor-infiltrating AtM B cells also showed reduced expression of CD27, CD38, IRF8, and SDC1, together with increased expression of PRDM1, IRF4, and XBP1 in comparison with Bm cells, the well-characterized progenitors for GC-derived ASCs (1). XBP1 is known to dampen B cell proliferation and promote differentiation toward ASCs (71), supporting the differentiation potential of AtM to ASCs (Fig. 4A). AtM B cells exhibited an exhausted and resident memory phenotype, distinguished from the effector phenotype of Bm. In brief, AtM B cells up-regulated immunocheckpoints (PDCD1, CD274, CTLA4, ENTPD1, LAG3, and HAVCR2), exhaustion-associated TFs (TOX, TOX2, ZBED2, BATF, RBPJ, and VDR) (33, 72), and Fc receptor family involved in immunoglobulins and immune complex binding (FCRL2/3/4/5 and CD32A/B) (Fig. 4A). Among them, FCRL4 is linked to tissue-resident memory cells that could inhibit BCR signaling (16). CD32B stands out as the low-affinity inhibitory receptor that inhibits antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and B cell activation (73). Similarly to exhausted T cells with overactivated TCR signaling, AtM B cells also highly expressed genes of BCR signaling (SYK), immunomodulation, and activation (TLR7/9, CD80, CD86, and CD72). These distinctive phenotypes were further corroborated by flow cytometry (Fig. 4B and fig. S8A). These data collectively demonstrate the distinctive immunophenotypes and molecular features of extrafollicular AtM B cells.
认识到 AtM B 细胞作为 TME 中 EF 途径的主要祖细胞的关键作用,我们全面检查了它们的表型和功能。与之前在非肿瘤环境中定义的特征标记相比 (21,22,24),肿瘤浸润 AtM B 细胞还表现出 CD27、CD38、IRF8 和 SDC1 表达减少,以及 PRDM1、IRF4 和 XBP1 表达增加。与 Bm 细胞(GC 衍生的 ASC 的特征明确的祖细胞)进行比较 (1)。已知 XBP1 会抑制 B 细胞增殖并促进向 ASC 分化 (71),支持 AtM 向 ASC 的分化潜力(图 4A)。 AtM B 细胞表现出耗尽且常驻的记忆表型,与 Bm 的效应子表型不同。简而言之,AtM B 细胞上调免疫检查点(PDCD1、CD274、CTLA4、ENTPD1、LAG3 和 HAVCR2)、耗竭相关 TF(TOX、TOX2、ZBED2、BATF、RBPJ 和 VDR)(33, 72), Fc受体家族参与免疫球蛋白和免疫复合物结合(FCRL2/3/4/5和CD32A/B)(图4A)。其中,FCRL4 与组织驻留记忆细胞相关,可以抑制 BCR 信号传导 (16)。 CD32B 是一种突出的低亲和力抑制性受体,可抑制抗体依赖性细胞毒性 (ADCC)、抗体依赖性细胞吞噬作用 (ADCP) 和 B 细胞活化 (73)。与 TCR 信号过度激活的疲惫 T 细胞类似,AtM B 细胞也高度表达 BCR 信号 (SYK)、免疫调节和激活基因(TLR7/9、CD80、CD86 和 CD72)。这些独特的表型通过流式细胞术得到进一步证实(图4B和图S8A)。这些数据共同证明了滤泡外 AtM B 细胞独特的免疫表型和分子特征。
Fig. 4. GC-independent development of AtM B cells in human cancer.
图 4. AtM B 细胞在人类癌症中的不依赖 GC 的发育。
(A) Heatmap showing the relative expression of representative genes in naïve, Bm, and AtM B cells. The color scale represents the z-score–scaled gene expression value by row, and each column represents an individual patient. (B) Representative markers of tumor-infiltrated naïve, Bm, and AtM B cells from LIHC patient were detected by FACS (n = 3). (C) Heatmap showing the detection of autoantigens’ and tumor-associated antigens’ specific IgA in the supernatant of tumor-infiltrated naive, Bm, and AtM B cells from LIHC patients after 11 days in vitro stimulation (n = 4). (D) (Left) Monocle3 trajectory analysis depicting the developmental trajectories of non-ASC, revealing (right) two major divergent trajectories (from gray skeleton line: red, path 1; blue, path 2). (Bottom right) Cells are color coded for their corresponding pseudotime. (E) Two-dimensional plots showing the dynamic expression scores for high-affinity, low-affinity, exhaustion, and CSR signatures in cells of path 1 (red) and path 2 (blue), respectively, along the inferred pseudotime. The center line indicates linear fit, and shaded lines indicate 95% confidence interval.
(A) 热图显示了 naïve、Bm 和 AtM B 细胞中代表性基因的相对表达。色标按行表示 z 分数标度的基因表达值,每列代表单个患者。 (B) 通过 FACS 检测来自 LIHC 患者的肿瘤浸润幼稚 B 细胞、Bm 和 AtM B 细胞的代表性标记物 (n = 3)。 (C) 热图显示 LIHC 患者的肿瘤浸润初始 B 细胞、Bm 和 AtM B 细胞上清液中检测到的自身抗原和肿瘤相关抗原特异性 IgA,体外刺激 11 天后 (n = 4)。 (D)(左)Monocle3 轨迹分析描绘了非 ASC 的发育轨迹,揭示了(右)两个主要的分歧轨迹(来自灰色骨架线:红色,路径 1;蓝色,路径 2)。 (右下)单元格根据其相应的伪时间进行颜色编码。 (E) 二维图显示沿着推断的伪时间分别在路径 1(红色)和路径 2(蓝色)的单元格中高亲和力、低亲和力、耗尽和 CSR 特征的动态表达分数。中心线表示线性拟合,阴影线表示 95% 置信区间。
Open in viewer
To further explore the immune repertoire of extrafollicular AtM B cells, isotype analysis indicated that tumor-infiltrating AtM B cells were less switched and contained higher IGHD and IGHM than did Bm cells (P < 0.01), whereas IGHA1, IGHA2, and IGHG2 were prevalent in Bm (P < 0.01) (fig. S8, B and C). Moreover, supernatants of tumor AtM B cells from LIHC patients, collected after 11 days of in vitro activation and differentiation, contained lower IgG, IgA, and IgM than did Bm (fig. S8D). Again, antigen microarrays testing the reactivity of these supernatant antibodies revealed that ASCs derived from AtM B cells produced higher levels of autoantibodies, whereas Bm-derived ASCs produced higher levels of tumor-associated antigen-reactive antibodies (Fig. 4C) for all three types: IgG, IgA, and IgM (fig. S8E). In line with these findings, we observed high SHM in Bm but low or medium levels in AtM B cells (fig. S8F). Collectively, our data show that exhausted AtM B cells exhibit impaired antibody production capacity, bystander activation, and weak tumor reactivity.
为了进一步探索滤泡外 AtM B 细胞的免疫库,同种型分析表明,与 Bm 细胞相比,肿瘤浸润的 AtM B 细胞转换较少,且含有更高的 IGHD 和 IGHM (P < 0.01),而 IGHA1、IGHA2 和 IGHG2 普遍存在单位为 Bm (P < 0.01)(图 S8、B 和 C)。此外,体外活化和分化11天后收集的来自LIHC患者的肿瘤AtM B细胞上清液中的IgG、IgA和IgM含量低于Bm(图S8D)。同样,测试这些上清抗体反应性的抗原微阵列显示,对于所有三种类型,源自 AtM B 细胞的 ASC 产生更高水平的自身抗体,而源自 Bm 的 ASC 产生更高水平的肿瘤相关抗原反应性抗体(图 4C) :IgG、IgA 和 IgM(图 S8E)。与这些发现一致,我们观察到 Bm 中的 SHM 水平较高,但 AtM B 细胞中的 SHM 水平较低或中等(图 S8F)。总的来说,我们的数据表明,耗尽的 AtM B 细胞表现出抗体生产能力受损、旁观者激活和肿瘤反应性较弱。
Another crucial issue is whether AtM B cells could enter GC or originate from bona fide GC B cells (19, 7476). To address this, we jointly analyzed the BCR repertoire, developmental trajectory, epigenomic regulation, and gene expression features. We observed comparable IGHV usage, CDR3 amino acid length, and SHM between AtM and three GC B cells. These data supported the notion that AtM and GC B clones were generally independent rather than interchangeable (fig. S8, G and H). We thus reconstructed the lineage tree for the most expanded clones of AtM and GC B cells, showing that clonal lineages were predominantly derived from either AtM or GC B cells (fig. S8I). Pseudotime trajectory analysis confirmed that AtM and GC B cells were completely separated on two independent branches, with naïve B cells at the beginning and AtM (path 1) plus cycling GC B cells (path 2) in the terminal branches (Fig. 4D). Along the trajectory, high-affinity signature score and CD24, CD38, and SELL gradually up-regulated in path 2, whereas low affinity and exhaustion-associated signature score–related genes (i.e., PDCD1, ENTPD1, and HAVCR2) correspondingly up-regulated in path 1, recapitulating B cell development from the naïve state through the activated state and finally to the AtM state (Fig. 4E and fig. S8, J and K). During this process, the degree of exhaustion progressively escalated. This developmental trajectory was uniformly observed in different cancer types (fig. S9A) and was confirmed by scATAC-seq data (fig. S9B).
另一个关键问题是 AtM B 细胞是否可以进入 GC 或源自真正的 GC B 细胞 (19, 74–76)。为了解决这个问题,我们共同分析了 BCR 库、发育轨迹、表观基因组调控和基因表达特征。我们观察到 AtM 和三个 GC B 细胞之间的 IGHV 使用、CDR3 氨基酸长度和 SHM 具有可比性。这些数据支持这样的观点:AtM 和 GC B 克隆通常是独立的而不是可互换的(图 S8、G 和 H)。因此,我们重建了 AtM 和 GC B 细胞最扩展克隆的谱系树,表明克隆谱系主要源自 AtM 或 GC B 细胞(图 S8I)。伪时间轨迹分析证实AtM和GC B细胞在两个独立的分支上完全分离,初始B细胞在起始处,AtM(路径1)加上循环GC B细胞(路径2)在末端分支(图4D)。沿着轨迹,高亲和力特征得分和 CD24、CD38 和 SELL 在路径 2 中逐渐上调,而低亲和力和耗竭相关特征得分相关基因(即 PDCD1、ENTPD1 和 HAVCR2)相应上调在路径 1 中,概括了 B 细胞从初始状态到激活状态,最后到 AtM 状态的发育(图 4E 和图 S8、J 和 K)。在这个过程中,疲惫的程度逐渐升级。这种发展轨迹在不同的癌症类型中得到了一致的观察(图S9A),并得到了scATAC-seq数据的证实(图S9B)。
We further identified the dynamic expression, chromatin activity, and footprint of AtM. Compared with Bm and GC B cells, AtM B cells exhibited high activity of TFs involved in CSR and exhausted phenotype, and they enhanced immune function of isotype-specific IgG+ Bm (33, 67, 77, 78), including TBX21 and BATF (fig. S9, C and D), indicating distinct regulatory programs (Fig. 3D). CSR-related signature score and genes (APEX1, APEX2, XRCC5, XRCC6, POLD2, and AICDA) progressively up-regulated along the trajectory, suggesting that AtM B cells may undergo CSR without experiencing GC response (Fig. 4E and fig. S8K). Similarly, AtM had shared BCR with IFIT3+ B in EF-dominant cancers, including HNSC, OV, GIST, BRCA and CESC, suggesting that naïve B cells induced by interferons could directionally differentiate into AtM without entering the GC (fig. S9, E to G). Collectively, these findings suggest that AtM and GC B cells underwent separate developmental processes leading to EF- and GC-derived ASCs.
我们进一步确定了 AtM 的动态表达、染色质活性和足迹。与 Bm 和 GC B 细胞相比,AtM B 细胞表现出参与 CSR 和耗尽表型的 TF 的高活性,并且增强了同种型特异性 IgG + Bm 的免疫功能 (33, 67, 77, 78) ,包括 TBX21 和 BATF(图 S9、C 和 D),表明不同的监管计划(图 3D)。 CSR相关的特征评分和基因(APEX1、APEX2、XRCC5、XRCC6、POLD2和AICDA)沿着轨迹逐渐上调,表明AtM B细胞可能在不经历GC反应的情况下经历CSR(图4E和图S8K) 。同样,在 EF 主导的癌症(包括 HNSC、OV、GIST、BRCA 和 CESC)中,AtM 与 IFIT3 + B 共享 BCR,这表明干扰素诱导的幼稚 B 细胞可以在不进入 GC 的情况下定向分化为 AtM (图 S9,E 至 G)。总的来说,这些发现表明 AtM 和 GC B 细胞经历了独立的发育过程,导致 EF 和 GC 衍生的 ASC。

Extrafollicular B cells spatially reside in immature tertiary lymphoid structures
滤泡外 B 细胞在空间上驻留在未成熟的三级淋巴结构中

TLSs are often formed by B cells with varying sizes and cellular compositions. However, the spatial architecture and relationship between TLSs and TIBs, specifically AtM B cells, remain unclear. We found that AtM B cells highly expressed TLS signature (7) and were confirmed in pan-cancer TCGA data, indicating their potential localization in TLSs (fig. S10, A and B). We thus performed mIHC staining of TMA containing EF-dominant cancers [LIHC (n = 358; n = 180) and PAAD (n = 48)] and GC-dominant cancers [COAD (n = 98), STAD (n = 52), and LC (n = 90)] to characterize TLSs and AtM B cells (table S1). By using our well-established TLS quantification pipeline (8), we divided tumor tissue into TLS and non-TLS regions and observed a significant correlation between AtM B cells and TLSs, suggesting a potential role for AtM B cells in TLS formation (fig. S10, C and D).
TLS 通常由不同大小和细胞组成的 B 细胞形成。然而,TLS 和 TIB(特别是 AtM B 细胞)之间的空间结构和关系仍不清楚。我们发现 AtM B 细胞高度表达 TLS 特征 (7),并在泛癌 TCGA 数据中得到证实,表明它们在 TLS 中的潜在定位(图 S10、A 和 B)。因此,我们对含有 EF 为主的癌症 [LIHC (n = 358; n = 180) 和 PAAD (n = 48)] 和 GC 为主的癌症 [COAD (n = 98)、STAD (n = 52) 的 TMA 进行了 mIHC 染色和 LC (n = 90)] 来表征 TLS 和 AtM B 细胞(表 S1)。通过使用我们完善的 TLS 量化流程 (8),我们将肿瘤组织分为 TLS 和非 TLS 区域,并观察到 ​​AtM B 细胞和 TLS 之间的显着相关性,表明 AtM B 细胞在 TLS 形成中的潜在作用(图 1)。 S10、C 和 D)。
Given the clinical significance of TLS maturation [mature TLSs: stage III and IV GC-like structure containing follicular dendritic cells (fDCs); immature TLSs: stage I and II lymphoid aggregates] and the rarity of GC-like TLS in TME (8, 7982), we further screened whole-tissue sections with different TLS stages from LIHC (n = 17) and COAD (n = 6). TLSs were classified into four stages on the basis of the cell number of T and B cells together with fDC staining (8) (Fig. 5A). AtM B cells were significantly enriched in immature TLSs, whereas Bm was mainly located in mature TLSs in both COAD and LIHC (Fig. 5, B and C). No difference in ASC density was observed across different TLS stages (fig. S10E). As expected, AtM B cells were predominantly enriched in EF-dominant cancers, such as GIST, CESC, LIHC, and HNSC, whereas GC B cells were highly abundant in GC-dominant cancers, such as COAD, THCA, and LC (fig. S10F), indicating that GC-dominant cancers mainly contained mature TLSs versus immature ones in EF-dominant cancers. Cancer with equal presence of EF and GC paths, such as OV, showed moderate infiltration of AtM and GCLZ B cells as compared with other cancers. Spatially, we calculated the density of AtM B cells within 200 μm of the inner and outer edges of TLSs or follicles and the distance of AtM B cells to the interface. We observed that AtM B cells were predominantly located in the center of immature TLSs, which is consistent with early EF response and facilitation of TLS formation (Fig. 5, D and E, and fig. S10, G and H). As TLS maturated, AtM B cells migrated to the periphery, while naïve B cells consistently resided in the center of TLSs (fig. S10C). These data validate the GC-independent development of AtM B cells and also suggest that TLS maturation stages drive distinct B cell differentiation in EF- and GC-dominant cancers.
鉴于 TLS 成熟的临床意义[成熟 TLS:含有滤泡树突状细胞 (fDC) 的 III 期和 IV 期 GC 样结构;不成熟的 TLS:I 期和 II 期淋巴聚集体]以及 TME 中 GC 样 TLS 的罕见性 (8, 79–82),我们进一步从 LIHC (n = 17) 和 COAD (n = 17) 中筛选具有不同 TLS 阶段的全组织切片= 6)。根据T细胞和B细胞的细胞数量以及fDC染色将TLS分为四个阶段(8)(图5A)。在 COAD 和 LIHC 中,AtM B 细胞在未成熟 TLS 中显着富集,而 Bm 主要位于成熟 TLS 中(图 5,B 和 C)。不同 TLS 阶段的 ASC 密度没有观察到差异(图 S10E)。正如预期的那样,AtM B 细胞主要富集在 EF 为主的癌症中,如 GIST、CESC、LIHC 和 HNSC,而 GC B 细胞在 GC 为主的癌症中高度丰富,如 COAD、THCA 和 LC(图 2)。 S10F),表明 GC 为主的癌症主要含有成熟的 TLS,而 EF 为主的癌症则主要含有未成熟的 TLS。与其他癌症相比,EF 和 GC 路径均等存在的癌症(例如 OV)显示 AtM 和 GC LZ B 细胞的中度浸润。在空间上,我们计算了 TLS 或滤泡内外边缘 200 μm 范围内 AtM B 细胞的密度以及 AtM B 细胞到界面的距离。我们观察到 AtM B 细胞主要位于未成熟 TLS 的中心,这与早期 EF 反应和 TLS 形成的促进一致(图 5、D 和 E,以及图 S10、G 和 H)。随着 TLS 的成熟,AtM B 细胞迁移到外围,而幼稚 B 细胞始终驻留在 TLS 的中心(图 S10C)。 这些数据验证了 AtM B 细胞的不依赖 GC 的发育,并且还表明 TLS 成熟阶段驱动 EF 和 GC 显性癌症中不同的 B 细胞分化。
Fig. 5. AtM B cells aggregate in immature TLS and are induced by Tph via the IL-21–IL-21R axis.
图 5. AtM B 细胞在未成熟的 TLS 中聚集,并由 Tph 通过 IL-21–IL-21R 轴诱导。
(A) Representative mIHC staining of CD20, CD3, and fDC [CD21 (long isoform), CD23, and CD35] for the maturity of TLSs (first row), CD20, CD27, T-bet, and CD79a for B cell subset (second row), AtM B cells (third row), and infiltration bands of TLS (fourth row) in a COAD case. Yellow, green, purple, brown, red, and cyan arrows represent the fDC, CD3+ T cells, CD20+ B cells, CD20+CD27+ Bm, CD20+T-bet+ AtM B cells, and CD20CD79a+ ASCs, respectively. (B and C) Density of Bm and AtM B cells between immature and mature TLSs in COAD [(B), n = 6] and LIHC [(C), n = 17] revealed by mIHC. (D) The density of AtM B cells within serial bands of immature and mature TLSs in COAD (top, n = 6) and LIHC (bottom, n = 17). The dashed line indicates the interface line. The line plot represents the median with IQR. (E) The median distance of AtM to the interface between immature and mature TLS in COAD (left, n = 6) and LIHC tissue (right, n = 17). The dash line indicates the interface line. (F) Correlation of tumor-infiltrated major immune subsets with AtM B cells in LIHC patients by flow cytometry (n = 46). PCC, Pearson correlation coefficient. (G) The up-regulated ligand-receptor cross-talk between AtM B cells and T cells. The y axis represents the subsets, and the x axis represents the ligand and receptor names. The circle size represents the log-normalized P value, and the color darkness represents the mean expression of ligand and receptor. (H and I) Spatial colocation correlation (H) and representative images (I) between AtM B cell signature and TLS or PD1HiCD4+ Tph in 81 spatial transcriptomics datasets from nine cancer types. Correlation was computed by Spearman rho. Data sources and accessions are summarized in table S4. (J) Representative mIHC staining showing colocation of PD1HiCD4+ Tph and AtM B cells in LIHC tumor tissue. Green, yellow, red, and cyan arrows represent the PD1HiCD4+ Tph, CD20+T-bet+ AtM B cells, and CD20-CD138+ PCs, respectively. (K) (Left) Infiltrating density and (right) frequency of PD1HiCD4+ Tph cells within a 20-μm radius surrounding AtM B cells in TLS and non-TLS regions of the tumor and adjacent areas from LIHC TMA (n = 180). (L and M) Tumor-infiltrated Treg, Th, and PD1HiCD4+ Tph cells were sorted and co-cultured with healthy blood B cells at ratio of 1:5 in the presence or absence of isotype and anti-IL-21R for 7 days. Representative flow plots (L) and frequencies (M) of AtM B cells were determined by FACS (n = 6 to 8). Data indicate median with IQR in (B) to (D), (E), and (K), and whiskers indicate minimum and maximum measurement in (H) and (M). **P < 0.01, ***P < 0.001, ****P < 0.0001; ns, no significance. P values were determined by the two-sided unpaired Wilcoxon test for (B) and (C), the two-sided paired Wilcoxon test for (K), and the two-sided paired Student’s t test for (M).
(A) CD20、CD3 和 fDC [CD21(长亚型)、CD23 和 CD35] 的代表性 mIHC 染色,用于了解 B 细胞亚群的 TLS(第一行)、CD20、CD27、T-bet 和 CD79a 的成熟度( COAD 病例中的 AtM B 细胞(第三行)和 TLS 浸润带(第四行)。黄色、绿色、紫色、棕色、红色和青色箭头代表 fDC、CD3 + T 细胞、CD20 + B 细胞、CD20 + CD27 + Bm、CD20 + T-bet + AtM B 细胞和 CD20 CD79a + ASC。 (B 和 C) mIHC 显示 COAD [(B),n = 6] 和 LIHC [(C),n = 17] 中未成熟和成熟 TLS 之间的 Bm 和 AtM B 细胞密度。 (D) COAD(顶部,n = 6)和 LIHC(底部,n = 17)中未成熟和成熟 TLS 的系列带内 AtM B 细胞的密度。虚线表示接口线。线图代表 IQR 的中位数。 (E) COAD(左,n = 6)和 LIHC 组织(右,n = 17)中 AtM 到未成熟和成熟 TLS 之间界面的中位距离。虚线表示接口线。 (F) 通过流式细胞术分析 LIHC 患者中肿瘤浸润的主要免疫亚群与 AtM B 细胞的相关性 (n = 46)。 PCC,皮尔逊相关系数。 (G) AtM B 细胞和 T 细胞之间配体-受体串扰上调。 y 轴代表子集,x 轴代表配体和受体名称。圆圈大小代表对数归一化 P 值,颜色深浅代表配体和受体的平均表达。 (H 和 I)来自 9 种癌症的 81 个空间转录组数据集中 AtM B 细胞特征与 TLS 或 PD1 Hi CD4 + Tph 之间的空间共置相关性 (H) 和代表性图像 (I)类型。相关性由 Spearman rho 计算。 数据来源和加入情况总结于表 S4 中。 (J) 代表性 mIHC 染色显示 LIHC 肿瘤组织中 PD1 Hi CD4 + Tph 和 AtM B 细胞并置。绿色、黄色、红色和青色箭头代表 PD1 Hi CD4 + Tph、CD20 + T-bet + AtM B 细胞、和 CD20CD138 + PC 分别。 (K)(左)TLS 和非 TLS 区域中 AtM B 细胞周围 20 μm 半径内 PD1 Hi CD4 + Tph 细胞的浸润密度和(右)频率来自 LIHC TMA 的肿瘤和邻近区域 (n = 180)。 (左和中)将肿瘤浸润的 T reg 、Th 和 PD1 Hi CD4 + Tph 细胞分选并与健康血液 B 细胞共培养,在存在或不存在同种型和抗IL-21R的情况下以1:5的比例进行7天。 AtM B 细胞的代表性流动图 (L) 和频率 (M) 通过 FACS 确定(n = 6 至 8)。数据表示 (B) 至 (D)、(E) 和 (K) 中的 IQR 中值,须线表示 (H) 和 (M) 中的最小和最大测量值。 **P < 0.01,***P < 0.001,****P < 0.0001; ns,没有意义。 P 值由 (B) 和 (C) 的两侧未配对 Wilcoxon 检验、(K) 的两侧配对 Wilcoxon 检验以及 (M) 的两侧配对 Student t 检验确定。
Open in viewer
This particular location of AtM B cells was echoed by the up-regulation of homing receptors such as CCR7, CXCR3, and EBI2 (encoding GPR183) (Fig. 4A), which could drive AtM B cells into the B-zone–T-zone boundary to await T cell help (52, 83). Indeed, the strong correlation between AtM B cells and T follicular helper (Tfh) or type 1 T helper (Th1) cells, which secrete IFNγ, IL-21, and CD40L in viral infection (76, 84), points to the possibility of cross-talk between these T cell types and AtM B cell development. Flow cytometry and pan-cancer TCGA data deconvoluted by BayesPrism (85), a Bayesian statistical model that infers cell type composition using our paired CD45+ scRNA-seq data as reference, showed that AtM B cells positively correlated with PD1Hi exhausted T cells (Fig. 5F and fig. S11, A to D), especially PD1HiCD4+ T cells exhibiting a PD1HiCXCL13+CXCR5 phenotype (named as peripheral helper T cells, Tph) that can promote TLS formation and B cell terminal differentiation in autoimmune diseases (86, 87). Ligand-receptor analysis provided additional evidence supporting the cross-talk between PD1HiCD4+ Tph cells and AtM B cells, particularly through the IL-21R–IL-21 axis, as compared with Bm cells. This interaction implies a potential role for PD1HiCD4+ Tph cells in promoting AtM B cell differentiation (Fig. 5G and fig. S11E), which was also validated by another independent algorithm, CellChat (88) (fig. S11F). Visualizing CD4+PD1Hi Tph and AtM B cells through published spatial transcriptomics datasets [81 datasets from nine cancer types, including BRCA, CESC, COAD, LIHC, LGG, OV, prostate adenocarcinoma (PRAD), RCC, and skin cutaneous melanoma (SKCM)] revealed a positive correlation between them in TLSs (Fig. 5, H and I, and table S4), which was further supported by mIHC staining on LIHC TMA (n = 180), showing significantly higher CD4+PD1Hi Tph cell density and frequency in close proximity to AtM B cells in TLS than in non-TLS regions of both tumor and adjacent tissues (Fig. 5, J and K). To validate this, LIHC-infiltrated PD1HiCD4+ Tph, Th, and regulatory T (Treg) cells were sorted and co-cultured with either peripheral total B or sorted naïve B cells from healthy donors (Fig. 5L and fig. S11G). The results showed that Tph cells induced differentiation of AtM B cells more efficiently than Th and Treg cells, which was significantly attenuated by IL-21R blockade (Fig. 5M and fig. S11H). Together, these data suggest that tumor-infiltrated Tph cells significantly contribute to AtM B cell differentiation.
AtM B 细胞的这一特定位置与 CCR7、CXCR3 和 EBI2(编码 GPR183)等归巢受体的上调相呼应(图 4A),这可以驱动 AtM B 细胞进入 B 区-T 区等待 T 细胞帮助的边界 (52, 83)。事实上,AtM B 细胞与滤泡辅助性 T (Tfh) 或 1 型辅助性 T (Th1) 细胞(在病毒感染中分泌 IFNγ、IL-21 和 CD40L)之间存在很强的相关性 (76, 84),这表明了以下可能性:这些 T 细胞类型与 AtM B 细胞发育之间的串扰。流式细胞术和泛癌 TCGA 数据由 BayesPrism (85) 解卷积,BayesPrism 是一种贝叶斯统计模型,使用我们的配对 CD45 + scRNA-seq 数据作为参考来推断细胞类型组成,结果表明 AtM B 细胞与PD1 Hi 耗尽 T 细胞(图 5F 和图 S11,A 至 D),尤其是 PD1 Hi CD4 + T 细胞,表现出 PD1 Hi CXCL13 + CXCR5 表型(称为外周辅助 T 细胞,Tph)可促进自身免疫性疾病中 TLS 形成和 B 细胞终末分化 (86, 87)。配体受体分析提供了额外的证据支持 PD1 Hi CD4 + Tph 细胞和 AtM B 细胞之间的串扰,特别是通过 IL-21R–IL-21 轴。与 Bm 细胞。这种相互作用意味着 PD1 Hi CD4 + Tph 细胞在促进 AtM B 细胞分化中的潜在作用(图 5G 和图 S11E),这也得到了另一个独立算法的验证, CellChat (88)(图 S11F)。 通过已发布的空间转录组数据集可视化 CD4 + PD1 Hi Tph 和 AtM B 细胞 [来自九种癌症类型的 81 个数据集,包括 BRCA、CESC、COAD、LIHC、LGG、OV、前列腺腺癌(PRAD)、RCC 和皮肤黑色素瘤 (SKCM)] 显示它们在 TLS 中呈正相关(图 5、H 和 I 以及表 S4),LIHC TMA 上的 mIHC 染色进一步支持了这一点(n = 180) ),与肿瘤和邻近组织的非 TLS 区域相比,TLS 中靠近 AtM B 细胞的 CD4 + PD1 Hi Tph 细胞密度和频率显着更高(图 1)。 5、J 和 K)。为了验证这一点,对 LIHC 浸润的 PD1 Hi CD4 + Tph、Th 和调节性 T (T reg ) 细胞进行分选并与任一外周血共培养。来自健康捐赠者的总 B 细胞或分选的幼稚 B 细胞(图 5L 和图 S11G)。结果表明,Tph 细胞比 Th 和 T reg 细胞更有效地诱导 AtM B 细胞分化,并且 IL-21R 阻断显着减弱这种分化(图 5M 和图 S11H)。总之,这些数据表明肿瘤浸润的 Tph 细胞对 AtM B 细胞分化有显着贡献。

Glutamine metabolism establishes the epigenetic identity of extrafollicular AtM B cells
谷氨酰胺代谢建立了滤泡外 AtM B 细胞的表观遗传特性

We next examined what factors mechanistically drive the primary response toward EF versus GC paths in TME. Pathway analysis of B cells revealed a strong variance of metabolic pathways across human cancer types, suggesting the potential metabolic regulation of B cell identity (fig. S12A). We computed the metabolic pathway scores of Bm and AtM B cells using scMetabolism (89) and unsupervised clustering of metabolism-associated genes (Fig. 6A). Glutamine, glutamate, and sphingolipid metabolism were up-regulated in tumor-infiltrated AtM B cells, whereas arachidonic acid metabolism was significantly up-regulated in Bm cells. The core genes in these pathways, such as glutaminase (GLS), GLA, and PTGES3, showed similar trends (fig. S12B). The results were observed in individual types of cancer without cancer-type preference (fig. S12C). Given the essential role and large abundance of glutamine in TME (9092), we investigated the association between glutamine and B cell immunophenotypes in our cohort. Through mass spectrometry–based untargeted metabolomics, our data indicated that EF response–dominant cancers (LIHC, CESC, and RCC) have significantly higher glutamine than those in GC-dominant cancers (STAD and LC) (fig. S12D). Moreover, glutamine was significantly higher in tumors than in adjacent normal tissues in LIHC (n = 109) (fig. S12E), whereas COAD and STAD, two GC-dominant cancers, exhibited lower glutamine levels than adjacent normal tissues (93). Thus, we hypothesize that glutamine metabolism may have a potential role in priming EF response in TME.
接下来我们研究了哪些因素在机制上驱动 TME 中对 EF 与 GC 路径的主要响应。 B 细胞的通路分析揭示了不同人类癌症类型的代谢通路存在很大差异,表明 B 细胞身份的潜在代谢调节(图 S12A)。我们使用 scMetabolism (89) 和代谢相关基因的无监督聚类计算了 Bm 和 AtM B 细胞的代谢途径评分(图 6A)。肿瘤浸润的 AtM B 细胞中谷氨酰胺、谷氨酸和鞘脂代谢上调,而 Bm 细胞中花生四烯酸代谢显着上调。这些途径中的核心基因,例如谷氨酰胺酶(GLS)、GLA和PTGES3,表现出相似的趋势(图S12B)。结果是在没有癌症类型偏好的个体癌症类型中观察到的(图S12C)。鉴于谷氨酰胺在 TME 中的重要作用和大量丰度 (90-92),我们在队列中研究了谷氨酰胺与 B 细胞免疫表型之间的关联。通过基于质谱的非靶向代谢组学,我们的数据表明,EF 反应为主的癌症(LIHC、CESC 和 RCC)的谷氨酰胺含量显着高于 GC 为主的癌症(STAD 和 LC)(图 S12D)。此外,LIHC 中肿瘤中的谷氨酰胺显着高于邻近正常组织 (n = 109)(图 S12E),而 COAD 和 STAD 这两种 GC 为主的癌症的谷氨酰胺水平低于邻近正常组织 (93)。因此,我们假设谷氨酰胺代谢可能在 TME 中启动 EF 反应中具有潜在作用。
Fig. 6. Glutamine promotes AtM B cell differentiation to acquire immunoregulatory function.
图 6. 谷氨酰胺促进 AtM B 细胞分化以获得免疫调节功能。
(A) Heatmap of median metabolic pathway score (left) and average metabolic gene expression of Bm and AtM B cells across different tissue (right). Both the circle size and color of the dot plot represent the scaled metabolic score (left). The color of the heatmap represents the average metabolic gene expression (right). (B and C) Healthy blood B cells were stimulated with R848 alone or with R848 in the presence of IFNγ or glutamine or glutamine and CB839 for 4 days. (B) Representative flow plots of AtM (top) and Bm (bottom) cells were detected by FACS. (C) (Left) The frequency of Bm and AtM in CD20+ B cells and (right) the frequency of tri-methyl-histone H3 (K27) in Bm or AtM B cells were detected by FACS (n = 6 to 10). (D) The real-time oxygen consumption rate (OCR) in healthy blood B cells stimulated with phosphate-buffered saline (PBS) (control) or with R848 in presence and absence of glutamine for 24 hours and following the additions of oligomycin, FCCP, and rotenone+antimycin A (Rot/AA) (n = 4). The plot is mean ± SD. (E) Metabolic tracing analysis of 13C-labeled glutamine in healthy blood B cells stimulated with R848 for 24 hours (n = 4). Indicated labeled metabolites in R848 and glutamine-stimulated B cells were detected by MS. (F) Healthy blood B cells were stimulated with R848 alone or with R848 in the presence of IFNγ or glutamine; or glutamine and CB839; or glutamine, CB839 and DMαKG; or DMαKG for 4 days. The frequency of AtM in CD20+ B cells was detected by FACS (n = 3 to 5). (G) Chromatin accessibility heatmap showing healthy blood B cells stimulated with DPBS or R848 alone or R848 and glutamine for 4 days (n = 3). The color represents the intensity of AtM identity peaks identified in our scATAC-seq datasets. (H) Heatmap of pathway enrichment analysis of R848 alone or with R848 in the presence of glutamine-treated healthy blood B cells for 4 days (n = 3). The color represents scaled pathway enrichment score. (I and J) Representative flow plots (I) and boxplots (J) showing mTOR-signaling related phosphorylated proteins among tumor-infiltrated naïve, Bm, and AtM B cells from LIHC patients (n = 7 to 9). (K and L) Healthy blood B cells were stimulated with R848 alone or with R848 in the presence of glutamine or glutamine and rapamycin for 4 days. (K) shows representative flow plots from FMO (fluorescence minus one) (top) and experiment group (bottom), and (L) shows frequency of AtM in CD20+ B cells as determined by FACS (n = 12). (M) Healthy blood B cells were stimulated with R848 alone or with R848 in the presence of glutamine for 4 days. Stimulated B cells were collected and co-cultured with CFSE-labeled healthy blood T cells at a ratio of 2:1 in the presence of CD3/CD28 beads for 3 days. The frequency of proliferated CD4+ and CD8+ T cells was determined by flow cytometry (n = 12). (N) Healthy blood B cells were stimulated with R848 alone or with R848 in the presence of glutamine for 4 days. Stimulated B cells were collected and co-cultured with healthy blood T cells at ratio of 2:1 in the presence of CD3/CD28 beads for 5 days. The frequency of cytotoxic CD4+ and CD8+ T cells and the frequency of Tregs in CD4+ T cells were determined by flow cytometry (n = 13). (O) Kaplan-Meier plot for overall survival according to the frequency of Bm and AtM B cells in CD20+ B cells from COAD (n = 98, top) and LIHC (n = 358, bottom) patients. (P) Response rates (left) and overall survival (right) of SKCM patients (98) treated by anti-PD1, stratified on the basis of Bm and AtM B cells’ signature score (n = 26). CR, complete response; PR, partial response; PD, progressive disease; SD, stable disease. (Q) Kaplan-Meier plot for progression-free survival of LC patients (99) treated by anti-PD1, stratified on the basis of Bm and AtM B cells’ signature score (n = 26). Data indicate median with IQR in (C) and (M); whiskers indicate minimum and maximum measurement in (J), (L), and (N). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001; ns, no significance. P values were determined by the two-sided Wilcoxon test for (C), (D), and (F); Mann-Whitney test for (D) and (N); two-sided paired Student’s t test for (L) to (N); two-sided log-rank tests for (O) (right), (P), and (Q), and the χ2 test for (P) (left).
(A) 不同组织中 Bm 和 AtM B 细胞的中值代谢途径评分(左)和平均代谢基因表达的热图(右)。点图的圆圈大小和颜色都代表缩放后的代谢评分(左)。热图的颜色代表平均代谢基因表达(右)。 (B 和 C) 单独用 R848 或在 IFNγ 或谷氨酰胺或谷氨酰胺和 CB839 存在下用 R848 刺激健康血液 B 细胞 4 天。 (B) 通过 FACS 检测 AtM(顶部)和 Bm(底部)细胞的代表性流图。 (C)(左)FACS检测CD20 + B细胞中Bm和AtM的频率以及(右)Bm或AtM B细胞中三甲基组蛋白H3(K27)的频率( n = 6 至 10)。 (D) 在添加寡霉素、FCCP 的情况下,在存在和不存在谷氨酰胺的情况下,用磷酸盐缓冲盐水 (PBS)(对照)或 R848 刺激 24 小时,健康血液 B 细胞的实时耗氧率 (OCR) ,和鱼藤酮+抗霉素 A (Rot/AA) (n = 4)。该图为平均值±标准差。 (E) 用 R848 刺激 24 小时的健康血液 B 细胞中 13 C 标记的谷氨酰胺的代谢追踪分析 (n = 4)。 MS 检测到 R848 和谷氨酰胺刺激的 B 细胞中指示的标记代谢物。 (F) 单独用 R848 或在 IFNγ 或谷氨酰胺存在下用 R848 刺激健康血液 B 细胞;或谷氨酰胺和CB839;或谷氨酰胺、CB839和DMαKG;或 DMαKG 4 天。通过FACS检测CD20 + B细胞中AtM的频率(n=3至5)。 (G) 染色质可及性热图显示健康血液 B 细胞用 DPBS 或单独的 R848 或 R848 和谷氨酰胺刺激 4 天 (n = 3)。颜色代表我们的 scATAC-seq 数据集中识别出的 AtM 同一峰的强度。 (H) 在谷氨酰胺处理的健康血液 B 细胞存在下,单独 R848 或与 R848 一起进行 4 天的途径富集分析的热图 (n = 3)。颜色代表缩放的通路富集分数。 (I 和 J) 代表性流程图 (I) 和箱线图 (J) 显示来自 LIHC 患者(n = 7 至 9)的肿瘤浸润的幼稚 Bm、Bm 和 AtM B 细胞中与 mTOR 信号传导相关的磷酸化蛋白。 (K 和 L) 单独用 R848 或在谷氨酰胺或谷氨酰胺和雷帕霉素存在下用 R848 刺激健康血液 B 细胞 4 天。 (K) 显示来自 FMO(荧光减一)(上)和实验组(下)的代表性流图,(L) 显示由 FACS 测定的 CD20 + B 细胞中 AtM 的频率(n = 12)。 (M) 单独使用 R848 或在谷氨酰胺存在下使用 R848 刺激健康血液 B 细胞 4 天。收集受刺激的 B 细胞,并在 CD3/CD28 珠存在的情况下与 CFSE 标记的健康血 T 细胞以 2:1 的比例共培养 3 天。通过流式细胞术测定增殖的 CD4 + 和 CD8 + T 细胞的频率 (n = 12)。 (N) 单独使用 R848 或在谷氨酰胺存在下使用 R848 刺激健康血液 B 细胞 4 天。收集受刺激的 B 细胞,并在 CD3/CD28 珠存在的情况下与健康血液 T 细胞以 2:1 的比例共培养 5 天。流式细胞术测定细胞毒性CD4 + 和CD8 + T细胞的频率以及CD4 + T细胞中T regs 的频率细胞计数(n = 13)。 (O) 根据 COAD(n = 98,上)和 LIHC(n = 358,下)患者的 CD20 + B 细胞中 Bm 和 AtM B 细胞的频率绘制的总体生存 Kaplan-Meier 图。 (P) 接受抗 PD1 治疗的 SKCM 患者 (98) 的缓解率(左)和总生存率(右),根据 Bm 和 AtM B 细胞特征评分进行分层 (n = 26)。 CR,完整响应; PR,部分反应; PD,进行性疾病; SD,疾病稳定。 (Q) 接受抗 PD1 治疗的 LC 患者 (99) 无进展生存的 Kaplan-Meier 图,根据 Bm 和 AtM B 细胞特征评分进行分层 (n = 26)。数据用(C)和(M)中的IQR表示中位数;晶须表示 (J)、(L) 和 (N) 中的最小和最大测量值。 *P < 0.05,**P < 0.01,***P < 0.001,****P < 0.0001; ns,没有意义。 (C)、(D) 和 (F) 的 P 值通过两侧 Wilcoxon 检验确定; (D) 和 (N) 的曼-惠特尼检验; (L) 至 (N) 的两侧配对学生 t 检验; (O)(右)、(P) 和 (Q) 的双边对数秩检验,以及 (P)(左)的 χ 2 检验。
Open in viewer
To test this hypothesis, we collected B cells from healthy blood and stimulated them with R848 (a TLR7 agonist), IFNγ, and glutamine. Similarly to IFNγ’s role in the autoimmune disease (21, 22), glutamine significantly induced AtM differentiation compared with R848 alone, whereas GLS inhibition (CB839) significantly attenuated it (Fig. 6, B and C). As control, Bm cells were significantly reduced in response to IFNγ and glutamine stimulation, suggesting the opposing regulatory mechanisms for AtM and Bm cells by glutamine. Moreover, AtM gradually increased and peaked around day 4 after in vitro glutamine stimulation in a dose-dependent manner that maximized at around 10-fold of physiological concentration (fig. S12F). We monitored the oxygen consumption rate and adenosine triphosphate (ATP) production of B cells under glutamine stimulation and observed a global reduction of mitochondrial respiration plus glycolysis (Fig. 6D). This indicates that glutamine may remodel the metabolic traits of B cells, leading us to hypothesize that glutamine suppresses the clonal expansion or positive selection of B cells, thus shifting B cell differentiation toward AtM B cells (94).
为了验证这一假设,我们从健康血液中收集了 B 细胞,并用 R848(一种 TLR7 激动剂)、IFNγ 和谷氨酰胺刺激它们。与 IFNγ 在自身免疫性疾病中的作用类似 (21, 22),与单独使用 R848 相比,谷氨酰胺显着诱导 AtM 分化,而 GLS 抑制 (CB839) 显着减弱 AtM 分化(图 6、B 和 C)。作为对照,Bm 细胞对 IFNγ 和谷氨酰胺刺激的反应显着减少,表明谷氨酰胺对 AtM 和 Bm 细胞的相反调节机制。此外,AtM 逐渐增加,并在体外谷氨酰胺刺激后第 4 天左右达到峰值,呈剂量依赖性,在生理浓度的 10 倍左右达到最大值(图 S12F)。我们监测了谷氨酰胺刺激下 B 细胞的耗氧率和三磷酸腺苷 (ATP) 产量,并观察到线粒体呼吸和糖酵解的整体减少(图 6D)。这表明谷氨酰胺可能重塑 B 细胞的代谢特征,使我们推测谷氨酰胺会抑制 B 细胞的克隆扩增或正选择,从而使 B 细胞分化为 AtM B 细胞 (94)。
We then analyzed the intracellular metabolites of peripheral B cells after R848 and glutamine stimulation and found increased levels of glutamate, α-ketoglutarate (α-KG), and a high ratio of glutamine to glutamate as compared with R848 stimulation alone (fig. S12G). CB839 treatment inhibited this trend, suggesting that GLS plays an essential role in B cell glutaminolysis. The metabolic fate of 13C-labeled glutamine after R848 treatment confirmed that glutamine was catalyzed into glutamate (M5 labeled) and entered into the tricarboxylic acid (TCA) cycle through α-KG (M5 labeled), succinate (M4 labeled), fumarate (M4 labeled), pyruvate (M3 labeled), and lactate (M3 labeled), which is consistent with the reported glutaminolysis route (95) (Fig. 6E). Given that glutamine-derived α-KG could regulate T-bet expression in Th1 cells (90, 91), we next asked whether α-KG was also critical for AtM differentiation by supplementing with the cell-permeable α-KG analog dimethyl-αKG (DMαKG). Indeed, AtM differentiation in GLS-inhibited cells was restored when supplemented with DMαKG, comparable to direct stimulation with glutamine. In addition, direct supplementation of DMαKG with R848 induced a similar level of AtM differentiation, suggesting that glutamine-derived α-KG can directly regulate AtM differentiation (Fig. 6F).
然后,我们分析了 R848 和谷氨酰胺刺激后外周 B 细胞的细胞内代谢物,发现与单独 R848 刺激相比,谷氨酸、α-酮戊二酸 (α-KG) 水平增加,并且谷氨酰胺与谷氨酸的比率较高(图 S12G) 。 CB839 治疗抑制了这种趋势,表明 GLS 在 B 细胞谷氨酰胺分解中起着重要作用。 13 C标记的谷氨酰胺在R848处理后的代谢命运证实,谷氨酰胺被催化成谷氨酸(M5标记),并通过α-KG(M5标记)、琥珀酸(M5标记)进入三羧酸(TCA)循环。 M4标记)、富马酸(M4标记)、丙酮酸(M3标记)和乳酸(M3标记),这与报道的谷氨酰胺分解途径一致(95)(图6E)。鉴于谷氨酰胺衍生的 α-KG 可以调节 Th1 细胞中的 T-bet 表达 (90, 91),我们接下来通过补充细胞渗透性 α-KG 类似物二甲基-αKG 来询问 α-KG 是否对 AtM 分化也至关重要(DMαKG)。事实上,当补充 DMαKG 时,GLS 抑制细胞中的 AtM 分化得到恢复,与谷氨酰胺的直接刺激相当。此外,直接补充R848的DMαKG诱导了类似水平的AtM分化,表明谷氨酰胺衍生的α-KG可以直接调节AtM分化(图6F)。
Considering the impact of α-KG on histone methylation and chromatin accessibility remodeling (91, 96), we next questioned its role in establishing the epigenetic identity of extrafollicular AtM B cells. We found that glutamine stimulation led to increased H3K27 trimethylation, whereas CB839 had no effect on H3K27 itself (Fig. 6C). Further ATAC-seq and RNA-seq revealed that glutamine-treated B cells showed robust activation of AtM identity peaks (Fig. 6G), indicating their acquired extrafollicular identity. Consistently, we also observed enriched TF motifs for AtM cell differentiation, including TBX21 and BATF (fig. S12H). We further used glutamine to stimulate B cells with T-bet overexpression and observed a significant increase in AtM B cells in the overexpression group as compared with the control, providing additional support for the notion that glutamine induces AtM differentiation through the regulation of TBX21 (fig. S12, I and J). Pathway enrichment analysis again demonstrated that EF-associated PI3K-AKT-mTORC1 and xenobiotic-metabolism pathways were activated, which is consistent with our scRNA-seq data (mTORC1, mammalian target of rapamycin complex 1) (Fig. 6H). Several regulators of the mTORC1 pathway were also increased under glutamine stimulation, including PIK3IP1 and AKT1 (fig. S12K). The levels of phospho-mTORC1 and its downstream targets phospho-S6 and phospho-AKT showed a greater increase in tumor-infiltrated AtM B cells than in Bm and naïve B cells, suggesting that mTORC1 signaling might participate in the glutamine regulation (Fig. 6, I and J). Further inhibition of the mTORC1 pathway by rapamycin significantly reduced AtM differentiation under glutamine stimulation (Fig. 6, K and L). Contradictorily, R848-treated B cells were enriched with oxidative phosphorylation and fatty-acid metabolism pathways and showed high expression of CSR family genes versus glutamine-treated B cells, confirming the above hypothesis (fig. S12L). Collectively, these results demonstrate that glutamine metabolism establishes the epigenetic identity of extrafollicular AtM B cells.
考虑到 α-KG 对组蛋白甲基化和染色质可及性重塑的影响 (91, 96),我们接下来质疑其在建立滤泡外 AtM B 细胞表观遗传身份中的作用。我们发现谷氨酰胺刺激导致H3K27三甲基化增加,而CB839对H3K27本身没有影响(图6C)。进一步的 ATAC-seq 和 RNA-seq 显示,谷氨酰胺处理的 B 细胞表现出 AtM 身份峰的强烈激活(图 6G),表明它们获得了滤泡外身份。一致地,我们还观察到 AtM 细胞分化的丰富 TF 基序,包括 TBX21 和 BATF(图 S12H)。我们进一步使用谷氨酰胺刺激 T-bet 过表达的 B 细胞,并观察到过表达组中 AtM B 细胞与对照组相比显着增加,这为谷氨酰胺通过调节 TBX21 诱导 AtM 分化的观点提供了额外的支持(图S12、I 和 J)。通路富集分析再次证明EF相关的PI3K-AKT-mTORC1和异生物质代谢通路被激活,这与我们的scRNA-seq数据(mTORC1,雷帕霉素复合物1的哺乳动物靶标)一致(图6H)。 mTORC1 通路的几个调节因子在谷氨酰胺刺激下也增加,包括 PIK3IP1 和 AKT1(图 S12K)。磷酸化 mTORC1 及其下游靶标磷酸化 S6 和磷酸化 AKT 的水平在肿瘤浸润的 AtM B 细胞中显示出比 Bm 和幼稚 B 细胞更大的增加,表明 mTORC1 信号传导可能参与谷氨酰胺调节(图 6) ,I 和 J)。雷帕霉素对 mTORC1 通路的进一步抑制显着降低了谷氨酰胺刺激下的 AtM 分化(图 6,K 和 L)。 相反,与谷氨酰胺处理的 B 细胞相比,R848 处理的 B 细胞富含氧化磷酸化和脂肪酸代谢途径,并且显示出 CSR 家族基因的高表达,证实了上述假设(图 S12L)。总的来说,这些结果表明谷氨酰胺代谢建立了滤泡外 AtM B 细胞的表观遗传特性。

Extrafollicular B cells foster an immunoregulatory niche and link with poor prognosis of human cancers
滤泡外 B 细胞培育免疫调节生态位并与人类癌症的不良预后相关

In light of the spatial colocalization of extrafollicular AtM B cells and T cells within TLSs, we explored the potential impact of AtM B cells on T cells (Fig. 5A). After stimulation, the sorted LIHC-infiltrated AtM B cells secreted more IL-10 and transforming growth factor–β (TGFβ) and expressed higher PDL-1 than did non-AtM B cells, and this was validated by glutamine-induced B cells as compared with the control (fig. S13, A to C). We next induced peripheral B cells into AtM with glutamine and co-cultured with peripheral CD3+ T cells in vitro. AtM B cells could reduce the proliferation of both CD4+ and CD8+ T cells (Fig. 6M and fig. S13, D and E) and impair the ability of T cells to produce IFNγ, tumor necrosis factor–α (TNFα), and granzyme B (Fig. 6N and fig. S13, F and G). AtM B cells promoted the differentiation toward Tregs and exhausted T cells (fig. S13H), which was akin to previous studies showing that CD27 exhausted B cells and B cells within immature TLSs correlated and colocalized with Tregs (41, 97).
鉴于滤泡外AtM B细胞和TLS内T细胞的空间共定位,我们探索了AtM B细胞对T细胞的潜在影响(图5A)。刺激后,分选的 LIHC 浸润的 AtM B 细胞比非 AtM B 细胞分泌更多的 IL-10 和转化生长因子-β (TGFβ),并表达更高的 PDL-1,这通过谷氨酰胺诱导的 B 细胞得到验证:与对照相比(图 S13,A 至 C)。接下来,我们用谷氨酰胺诱导外周 B 细胞进入 AtM,并在体外与外周 CD3 + T 细胞共培养。 AtM B 细胞可以减少 CD4 + 和 CD8 + T 细胞的增殖(图 6M 和图 S13、D 和 E),并损害 T 细胞产生的能力IFNγ、肿瘤坏死因子-α (TNFα) 和颗粒酶 B(图 6N 和图 S13、F 和 G)。 AtM B 细胞促进向 T regs 分化并耗尽 T 细胞(图 S13H),这与之前的研究类似,表明 CD27 耗尽了 B 细胞和未成熟 TLS 内的 B 细胞与 T regs 相关并共定位 (41, 97)。
Last, we explored the prognostic values of Bm and AtM B cells across cancers. Bm cells were associated with favorable prognosis, whereas AtM B cells correlated with worse survival in four independent cohorts (COAD, STAD, LC, and LIHC) by mIHC, irrespective of EF- or GC-dominant cancer (Fig. 6O and fig. S13I). Moreover, in published cohorts of melanoma (n = 26) (98) and lung cancer (n = 21) (99) with anti-PD1 treatment, the abundance of AtM B cell significantly correlated with treatment resistance, whereas Bm cells correlated with improved responses and longer survival (Fig. 6, P and Q). Collectively, these observations suggest that EF-derived B cells are associated with immature TLSs and exhausted T cells, leading to immunotherapeutic resistance and poor prognosis in certain cancers.
最后,我们探讨了 Bm 和 AtM B 细胞在癌症中的预后价值。 Bm 细胞与良好的预后相关,而 AtM B 细胞与 mIHC 的四个独立队列(COAD、STAD、LC 和 LIHC)中较差的生存相关,无论是 EF 或 GC 为主的癌症(图 6O 和图 S13I) )。此外,在已发表的接受抗 PD1 治疗的黑色素瘤 (n = 26) (98) 和肺癌 (n = 21) (99) 队列中,AtM B 细胞的丰度与治疗耐药性显着相关,而 Bm 细胞与改善的治疗耐药性相关。反应和更长的生存期(图 6,P 和 Q)。总的来说,这些观察结果表明,EF 衍生的 B 细胞与不成熟的 TLS 和耗尽的 T 细胞有关,导致某些癌症的免疫治疗耐药性和预后不良。

Discussion 讨论

Tumor-infiltrating T and B cells serve as essential and synergistic components within the TME. Recent investigations have underscored the importance of elucidating T cell states and compositions across various cancer types, revealing substantial plasticity in response to stress and tumor reactivity (32, 33); however, the transcriptional heterogeneity of TIBs has been underestimated, leaving their controversial roles across different cancer types. In this study, we systematically charted pan-cancer B cells in multifaceted ways by deciphering their transcriptomics, epigenomics, and BCR repertoires. Strikingly, the validated presence of stressed B cells, which shared similarities with the recently discovered pan-cancer stressed T cells (32) and were originally considered to be an artifact (100), highlighted the importance of systemic analysis at a pan-cancer scale. Our study uncovered diverse ASC differentiation pathways and the cancer-type preference of these pathways. Such preference can be attributed to the maturity of TLSs and metabolic factors.
肿瘤浸润 T 细胞和 B 细胞是 TME 中必不可少的协同成分。最近的研究强调了阐明各种癌症类型中 T 细胞状态和组成的重要性,揭示了对应激和肿瘤反应性的反应具有显着的可塑性 (32, 33);然而,TIB 的转录异质性被低估了,这使得它们在不同癌症类型中的作用存在争议。在这项研究中,我们通过破译其转录组学、表观基因组学和 BCR 库,以多方面的方式系统地绘制了泛癌 B 细胞的图谱。引人注目的是,应激 B 细胞的存在得到验证,它与最近发现的泛癌应激 T 细胞 (32) 有相似之处,最初被认为是一种伪影 (100),这突显了泛癌规模系统分析的重要性。我们的研究揭示了不同的 ASC 分化途径以及这些途径的癌症类型偏好。这种偏好可归因于 TLS 和代谢因素的成熟。
The developmental trajectories of TIBs have focused on the canonical GC pathway, with Bm or GC B cells acting as progenitors of ASCs (17, 101, 102). Due to the lack of paired BCR repertoire analysis, the alternative EF pathway has been largely overlooked. Paradoxically, GC response required TLSs with mature GC structure, which were mostly absent or rarely found in the TME (10, 79, 80, 103, 104). Conversely, most cancers lack TLSs or form immature TLSs, leading to incomplete B cell differentiation and a shift toward the EF response (79, 103, 105). In our cohort, we found over half of the patients (61.22%) were dominant by EF response. EF-dominant cancers such as LIHC and CHOL were dominated by immature TLSs, whereas GC-dominant cancers such as COAD, LC, and STAD contained more mature, GC-like TLSs (7981, 106). These results suggest that different TMEs can have varying effects on TLS formation, which in turn may impact the differentiation of EF- and GC-derived ASCs. Similar patterns were well documented in chronic infections and autoimmune diseases in which immature TLSs and the EF response prevailed (107). Compared with GC-derived ASCs with high-affinity, tumor-specific antibody production (28, 108), EF-derived ASCs showed low levels of CSR, SHM, and antigenic selection pressure with high overlap with naïve, activated, and AtM B cells, and were preferentially recognizing autoantigens, similar to what is seen in autoimmune disease and COVID-19 (43, 109). This may explain the greater clinical benefit associated with the GC response (mature TLS) as compared with the EF response (immature TLS) (41, 81, 104, 110). In contrast to what we found in our treatment-naïve patients, recent studies have found that immature, GC-deficient TLS was also associated with favorable clinical outcome after chemotherapy. This suggests that chemotherapy might remodel the TME and promote chemotherapy-induced tumor-antigen recognition and presentation of B cells, leading to a better prognosis (111).
TIB 的发育轨迹集中在典型的 GC 途径,其中 Bm 或 GC B 细胞充当 ASC 的祖细胞 (17, 101, 102)。由于缺乏配对 BCR 库分析,替代 EF 途径在很大程度上被忽视。矛盾的是,GC 响应需要具有成熟 GC 结构的 TLS,而这些在 TME 中大多不存在或很少发现 (10, 79, 80, 103, 104)。相反,大多数癌症缺乏 TLS 或形成不成熟的 TLS,导致 B 细胞分化不完全并转向 EF 反应 (79,103,105)。在我们的队列中,我们发现超过一半的患者 (61.22%) 以 EF 反应为主。以 EF 为主的癌症,如 LIHC 和 CHOL,以不成熟的 TLS 为主,而以 GC 为主的癌症,如 COAD、LC 和 STAD,则含有更成熟的、类似 GC 的 TLS (79–81, 106)。这些结果表明,不同的 TME 对 TLS 的形成有不同的影响,进而可能影响 EF 和 GC 衍生的 ASC 的分化。类似的模式在慢性感染和自身免疫性疾病中得到了充分记录,其中不成熟的 TLS 和 EF 反应占主导地位 (107)。与具有高亲和力、肿瘤特异性抗体产生的 GC 衍生的 ASC 相比 (28, 108),EF 衍生的 ASC 显示出较低水平的 CSR、SHM 和抗原选择压力,与初始、活化和 AtM B 细胞高度重叠,并且优先识别自身抗原,类似于自身免疫性疾病和 COVID-19 (43, 109)。这可以解释与 EF 反应(不成熟 TLS)相比,GC 反应(成熟 TLS)具有更大的临床益处(41,81,104,110)。 与我们在初治患者中发现的情况相反,最近的研究发现,不成熟、GC 缺陷的 TLS 也与化疗后良好的临床结果相关。这表明化疗可能重塑 TME 并促进化疗诱导的肿瘤抗原识别和 B 细胞呈递,从而带来更好的预后 (111)。
AtM B cells have been described in autoimmune disease and chronic infection models, suggesting that this subset is expanded after chronic B cell activation (19, 24, 43). Similarly to T cell exhaustion, tumor AtM B cells exhibited an exhausted phenotype, which is consistent with previously reported CD27 Bm cells in tumor (41, 112). Consistent with the existing knowledge that SHM and CSR can occur before and without GC entry (16, 113), we validated that tumor AtM B cells likely originated from a divergent terminal differentiation path and were primed to undergo SHM and CSR before GC response, confirming their GC independence. AtM B cells were predominantly enriched and located in the center of immature TLSs but were mapped to marginal regions of the mature TLSs (7). These data suggest that AtM B cells may be continuously stimulated by tumor-associated self-antigens and thus generated self-reactive antibodies (10, 24). Spatially, AtM B cells interacted with PD1HiCXCL13+ Tph cells rather than Tfh cells and were induced in an IL21-IL21R–dependent manner, which contradicts a previous report in mouse (76). Conversely, tumor AtM B cells could induce immune exhaustion and suppressive microenvironment and thus correlated with a worse prognosis and resistance to immunotherapy. Thus, targeting AtM B cells and preserving protective GC function, rather than simply deleting all B cells, may yield optimal clinical benefits (14).
AtM B 细胞已在自身免疫性疾病和慢性感染模型中得到描述,表明该亚群在慢性 B 细胞激活后会扩展 (19,24,43)。与 T 细胞耗竭类似,肿瘤 AtM B 细胞表现出耗竭表型,这与之前报道的肿瘤中 CD27 Bm 细胞一致 (41, 112)。与 SHM 和 CSR 可以在 GC 进入之前和不进入 GC 之前发生的现有知识一致 (16, 113),我们验证了肿瘤 AtM B 细胞可能起源于不同的终末分化路径,并且在 GC 响应之前准备好进行 SHM 和 CSR,从而证实他们的GC独立性。 AtM B 细胞主要富集并位于未成熟 TLS 的中心,但被映射到成熟 TLS 的边缘区域 (7)。这些数据表明 AtM B 细胞可能会受到肿瘤相关自身抗原的持续刺激,从而产生自身反应性抗体 (10, 24)。在空间上,AtM B 细胞与 PD1 Hi CXCL13 + Tph 细胞而不是 Tfh 细胞相互作用,并以 IL21-IL21R 依赖性方式诱导,这与之前在小鼠中的报告相矛盾(76 )。相反,肿瘤 AtM B 细胞可诱导免疫耗竭和抑制性微环境,从而与较差的预后和对免疫治疗的抵抗相关。因此,针对 AtM B 细胞并保留保护性 GC 功能,而不是简单地删除所有 B 细胞,可能会产生最佳的临床效益 (14)。
Metabolic-epigenetic networks are remarkably flexible and can reconfigure B cell fate decisions (114). Metabolites directly influence epigenetic modifications, such as DNA and histone methylation, by acting as substrates or cofactors for enzymes that catalyze these modifications (115). B cells also undergo metabolic reprogramming during differentiation, which can be influenced by the availability of metabolites that act as cofactors or substrates for epigenetic enzymes, thereby affecting B cell fate decisions (116). In line with this functional plasticity, tumor AtM B cell differentiation necessitates the catabolism of glutamine to α-KG, thereby replenishing the metabolic intermediates of the TCA cycle and considerably enhancing AtM-specific regulatory elements such as TBX21 and BATF. This emphasizes that AtM B cells possess a distinct metabolic state requiring robust anabolic support, a mechanism also observed in Th1 polarization and autoimmune disease (90, 91, 117). Thus, specific targeting of B cell glutamine metabolism may lead to a switch from EF to GC response, thus generating a long-lasting antitumor activity and fine-tuning the TME balance.
代谢-表观遗传网络非常灵活,可以重新配置 B 细胞的命运决定 (114)。代谢物通过充当催化这些修饰的酶的底物或辅因子,直接影响表观遗传修饰,例如 DNA 和组蛋白甲基化 (115)。 B 细胞在分化过程中也会经历代谢重编程,这可能会受到作为表观遗传酶的辅因子或底物的代谢物的可用性的影响,从而影响 B 细胞的命运决定 (116)。与这种功能可塑性一致,肿瘤 AtM B 细胞分化需要谷氨酰胺分解代谢为 α-KG,从而补充 TCA 循环的代谢中间体,并显着增强 AtM 特异性调节元件,如 TBX21 和 BATF。这强调了 AtM B 细胞具有独特的代谢状态,需要强大的合成代谢支持,这种机制也在 Th1 极化和自身免疫性疾病中观察到 (90,91,117)。因此,特异性靶向 B 细胞谷氨酰胺代谢可能导致从 EF 反应转变为 GC 反应,从而产生持久的抗肿瘤活性并微调 TME 平衡。
Our human cancer B cell blueprint is a comprehensive resource for the cancer research community that defines the molecular hallmarks and transcriptional signatures of TIB cells. The discovery of bystander extrafollicular AtM B cells suggests a pervasive mechanism to hijack the immune-suppressive ecosystem across cancers. Our work not only bridges the gap of epigenetic-metabolic cross-talk in shaping adaptive immune responses but also opens therapeutic avenues such as B cell–targeting immunotherapies.
我们的人类癌症 B 细胞蓝图是癌症研究界的综合资源,它定义了 TIB 细胞的分子标志和转录特征。旁观者滤泡外 AtM B 细胞的发现表明了一种劫持癌症免疫抑制生态系统的普遍机制。我们的工作不仅弥补了表观遗传-代谢串扰在形成适应性免疫反应方面的差距,而且还开辟了治疗途径,例如 B 细胞靶向免疫疗法。

Methods summary 方法总结

scRNA-seq and scBCR-seq scRNA-seq 和 scBCR-seq

The scRNA-seq data of B cells were obtained from both previously published datasets and newly generated data. For the newly generated scRNA-seq data, paired cancer, adjacent normal, LN_Met, and blood samples were collected from patients who underwent surgical resection at Zhongshan Hospital Fudan University with written consent and approval of the Institutional Review Board–approved protocols. Matched cancer, adjacent normal, and LN_Met tissues were digested with Tumor Dissociation Kit or Collagenase IV using GentleMACS (Miltenyi Biotec), according to the manufacturer’s instructions. CD19+ B cells were isolated from mononuclear cells (MNCs) and peripheral blood mononuclear cells (PBMCs) and sorted by FACSAria II (BD Biosciences). In addition, CD45+ living cells were also isolated from samples with sufficient cells. The sorted cells were sequenced using 10x Chromium Single-Cell 5′ and V(D)J library construction (10x Genomics, USA), according to the manufacturer’s instructions. We applied CellRanger V7 for read alignment and gene-count matrix generation and BCR sequence assembly. Potential doublets were identified and removed using DoubletFinder (v2.0.3).
B 细胞的 scRNA-seq 数据是从之前发布的数据集和新生成的数据中获得的。对于新生成的 scRNA-seq 数据,配对癌症、邻近正常、LN_Met 和血液样本是从在复旦大学附属中山医院接受手术切除的患者中收集的,并获得了机构审查委员会批准的方案的书面同意和批准。根据制造商的说明,使用 GentleMACS (Miltenyi Biotec) 使用肿瘤解离试剂盒或胶原酶 IV 消化匹配的癌症、邻近正常组织和 LN_Met 组织。 CD19 + B 细胞从单核细胞 (MNC) 和外周血单核细胞 (PBMC) 中分离,并通过 FACSAria II (BD Biosciences) 分选。此外,还从细胞充足的样品中分离出CD45 + 活细胞。根据制造商的说明,使用 10x Chromium Single-Cell 5' 和 V(D)J 文库构建(10x Genomics,美国)对分选的细胞进行测序。我们应用 CellRanger V7 进行读取比对和基因计数矩阵生成以及 BCR 序列组装。使用 DoubletFinder (v2.0.3) 识别并删除潜在的双联体。
To integrate different datasets, we applied SCTransform function to identify highly variable genes within each dataset. We then selected the top 2000 genes on the basis of their frequency as highly variable genes for the integrated dataset. All blacklisted genes (immunoglobulin, TCR genes, ribosomal protein coding genes, and tissue dissociation operation–induced genes) were specifically excluded. Harmony (v0.1.0) was applied for dataset integration, and the matrix was used for clustering with the default Seurat pipeline. Marker genes were calculated using FindAllMarker function of Seurat (table S2). The Change-O repertoire clonal assignment toolkit was applied to defined clones, SHM, BCR clonal diversity, and abundances. Paired scBCR-seq data were integrated with scRNA-seq data based on matched cell barcodes. BCR lineage tracing and overlap was calculated by the Jaccard index and the STARTRAC package (v0.1.0).
为了整合不同的数据集,我们应用 SCTransform 函数来识别每个数据集中高度可变的基因。然后,我们根据频率选择前 2000 个基因作为集成数据集的高度可变基因。所有列入黑名单的基因(免疫球蛋白、TCR基因、核糖体蛋白编码基因和组织解离操作诱导基因)均被明确排除。 Harmony (v0.1.0) 用于数据集集成,矩阵用于通过默认 Seurat 管道进行聚类。使用Seurat的FindAllMarker函数计算标记基因(表S2)。 Change-O 库克隆分配工具包应用于定义的克隆、SHM、BCR 克隆多样性和丰度。配对的 scBCR-seq 数据与基于匹配细胞条形码的 scRNA-seq 数据进行整合。 BCR 谱系追踪和重叠是通过 Jaccard 指数和 STARTRAC 软件包 (v0.1.0) 计算的。
EF- and GC-derived ASCs were classified according to the overlap of BCR sequences and gene expression. We classified ASC sharing BCR with canonical Bm and GC B cells as GC-derived ASCs, whereas ASCs containing overlap with other B cell subsets were classified as EF-derived ASCs at the cellular level. For ASCs without clonal sharing, we utilized the label transfer based on the gene expression of already classified ASCs by the TransferData function in the Seurat package. Only the classified cells with a prediction score greater than 0.6 were retained for further analysis. At patient levels, k-means clustering was performed on the basis of the SHM and EF pathway index (the ratio of EF-derived ASCs) to divide patients into two distinct groups. The pTrans score calculated by the STARTRAC package was also used to further validate the classification. We ensured consistent classification of those patients who met the criteria by using both cellular- and patient-level classifications for further analysis. Differential gene expression analysis was performed with the muscat package (v1.16.0) at patient levels.
EF 和 GC 衍生的 ASC 根据 BCR 序列和基因表达的重叠进行分类。我们将与典型 Bm 和 GC B 细胞共享 BCR 的 ASC 归类为 GC 衍生的 ASC,而在细胞水平上将与其他 B 细胞亚群重叠的 ASC 归类为 EF 衍生的 ASC。对于没有克隆共享的 ASC,我们通过 Seurat 包中的 TransferData 函数利用基于已分类 ASC 基因表达的标签转移。仅保留预测分数大于 0.6 的分类细胞进行进一步分析。在患者层面,根据 SHM 和 EF 通路指数(EF 衍生的 ASC 的比率)进行 k 均值聚类,将患者分为两个不同的组。 STARTRAC 软件包计算的 pTrans 评分也用于进一步验证分类。我们通过使用细胞级别和患者级别的分类进行进一步分析,确保对符合标准的患者进行一致的分类。使用 muscat 软件包 (v1.16.0) 在患者水平上进行差异基因表达分析。
To model the PCs’ and non-ASCs’ state transition, we applied multiple methodologies, including scTour (v0.1.3), Monocle3 (v1.0.0), and CytoTRACE (v0.3.3) to separately infer the pseudotime of PC and non-ASC subsets. We used SCENIC to predict and validate the TF regulatory network. CellPhoneDB and CellChat were applied to identify the potential receptor and ligand interaction between B cells and other immune cells. To perform cross-study comparisons, we used our dataset and cell annotation as a reference and trained logistic regression (LR) models using the CellTypist package. The BayesPrism computational method was used to assess the cell-type abundances of bulk transcriptomic data from TCGA.
为了模拟 PC 和非 ASC 的状态转换,我们应用了多种方法,包括 scTour (v0.1.3)、Monocle3 (v1.0.0) 和 CytoTRACE (v0.3.3) 来分别推断 PC 和非 ASC 的伪时间。 ASC 子集。我们使用 SCENIC 来预测和验证 TF 监管网络。 CellPhoneDB 和 CellChat 用于识别 B 细胞和其他免疫细胞之间潜在的受体和配体相互作用。为了进行交叉研究比较,我们使用数据集和单元格注释作为参考,并使用 CellTypist 包训练逻辑回归 (LR) 模型。 BayesPrism 计算方法用于评估来自 TCGA 的大量转录组数据的细胞类型丰度。

scATAC-seq scATAC序列

Nuclei suspensions of sorted CD19+ B cells were prepared according to the manufacturer’s instructions. Mononuclear GEMs with specific 10× barcodes were further generated using a 10x Genomics microfluidic platform. Raw scATAC-seq datasets were processed using the 10x Genomics cellranger-atac count pipeline (v.1.2.0), and downstream analysis was carried out by ArchR (v.1.0.2). Doublet was identified and excluded using the “addDoubletScores” and “filterDoublets” functions of ArchR (v.1.0.2), respectively. Sample batch correction was performed with Harmony (v0.1.0). Cell clustering was performed using the “addClusters” and “addUMAP” functions on the Harmony-corrected data, and “getMarkerFeatures” was applied to identify marker gene scores of each cluster (table S3). scRNA-seq gene expression and metadata was further integrated with scATAC data using the “addGeneIntegrationMatrix” function.
根据制造商的说明制备分选的 CD19 + B 细胞的细胞核悬浮液。使用 10x Genomics 微流体平台进一步生成具有特定 10x 条形码的单核 GEM。使用 10x Genomics cellranger-atac 计数管道 (v.1.2.0) 处理原始 scATAC-seq 数据集,并由 ArchR (v.1.0.2) 进行下游分析。分别使用 ArchR (v.1.0.2) 的“addDoubletScores”和“filterDoublets”函数来识别和排除 Doublet。使用 Harmony (v0.1.0) 进行样本批次校正。使用“addClusters”和“addUMAP”函数对 Harmony 校正数据进行细胞聚类,并应用“getMarkerFeatures”来识别每个簇的标记基因分数(表 S3)。使用“addGeneIntegrationMatrix”功能将 scRNA-seq 基因表达和元数据进一步与 scATAC 数据整合。
After clustering and cell identification, cell-type-specific peaks were called by MACS2 using the “addReproduciblePeakSet” function. Background peak set was generated with “addBgdPeaks” and used for TF motif enrichment analyses. Peak co-accessibility and Peak2Gene linkages were computed using the “addCoAccessibility” and “addPeak2GeneLinks” functions. The enrichment of chromatin accessibility at different TF motif sequences in single cells was calculated by “addDeviationsMatrix” using the cisbp motif set. Differential peak testing was performed using the “getMarkerFeatures” function, and TF motif enrichment in differential peaks was performed using the “peakAnnoEnrichment” function. TF footprinting analysis was performed using the “getFootprints” function.
聚类和细胞识别后,MACS2 使用“addReproduciblePeakSet”功能调用细胞类型特异性峰。使用“addBgdPeaks”生成背景峰集,并用于 TF 基序富集分析。使用“addCoAccessibility”和“addPeak2GeneLinks”函数计算峰共可访问性和 Peak2Gene 连接。使用 cisbp 基序集通过“addDeviationsMatrix”计算单细胞中不同 TF 基序序列处染色质可及性的富集。使用“getMarkerFeatures”函数进行差异峰测试,并使用“peakAnnoEnrichment”函数进行差异峰中的TF基序富集。使用“getFootprints”函数进行 TF 足迹分析。

Flow cytometry 流式细胞术

MNCs or PBMCs were routinely stained with FVS780 to filter out dead cells. For surface phenotype staining, cells were stained with antibodies in MACS buffer for 15 min at room temperature. For intracellular staining, cells were fixed and permeabilized with a fixation and permeabilization kit for 1 hour at 4°C. Intracellular antibodies were then stained in the permeabilization buffer for 30 min at 4°C. Data were acquired using an LSRFortessa flow cytometer (BD Biosciences) and analyzed using FlowJo software (v10.8.1, BD Biosciences).
MNC 或 PBMC 常规用 FVS780 染色以滤除死细胞。对于表面表型染色,细胞用 MACS 缓冲液中的抗体在室温下染色 15 分钟。对于细胞内染色,使用固定和透化试剂盒在 4°C 下固定和透化细胞 1 小时。然后细胞内抗体在透化缓冲液中在 4°C 下染色 30 分钟。使用 LSRFortessa 流式细胞仪(BD Biosciences)采集数据并使用 FlowJo 软件(v10.8.1,BD Biosciences)进行分析。

In vitro cell culture 体外细胞培养

Purified tumor-infiltrating naïve, Bm, and AtM B cells were stimulated with 1μg/ml human R848, 10 ng/ml human IL-2, 10 ng/ml human IL-10, and 40 ng/ml human IL-21 in total 200-μl culture medium. On day 11, cells were harvested and stained for plasma cells by fluorescence-activated cell sorting (FACS). Cell-free supernatants were collected and stored at −80°C for further antibody array detection. For AtM B cell differentiation experiments, healthy blood B cells were stimulated with 1μg/ml R848 in the absence or presence of glutamine at different glutamine physiological plasma concentrations and at different times of co-culture. Furthermore, 100ng/ml IFNγ or 10× physiological plasma concentrations of glutamine, or 500 nM CB-839 or 1.5 mM dimethyl-2-oxoglutarate (DMαKG) or 1 nmol rapamycin and 1μg/ml R848 were used to stimulate B cells for 4 days, respectively. AtM B cell phenotypes were stained and acquired by an LSRFortessa flow cytometer (BD Biosciences).
用总计 1μg/ml 人 R848、10 ng/ml 人 IL-2、10 ng/ml 人 IL-10 和 40 ng/ml 人 IL-21 刺激纯化的肿瘤浸润幼稚 Bm 和 AtM B 细胞200 μl 培养基。第11天,收获细胞并通过荧光激活细胞分选术(FACS)对浆细胞进行染色。收集无细胞上清液并储存在-80°C用于进一步的抗体阵列检测。对于 AtM B 细胞分化实验,在不存在或存在谷氨酰胺的情况下,以不同的谷氨酰胺生理血浆浓度和不同的共培养时间,用 1μg/ml R848 刺激健康的血液 B 细胞。此外,使用100ng/ml IFNγ或10×生理血浆浓度的谷氨酰胺,或500 nM CB-839或1.5 mM二甲基-2-酮戊二酸(DMαKG)或1 nmol雷帕霉素和1μg/ml R848刺激B细胞4天。 , 分别。 AtM B 细胞表型通过 LSRFortessa 流式细胞仪 (BD Biosciences) 进行染色和获取。

Co-culture experiment 共培养实验

For the Tph and B cell co-culture experiment, sorted tumor-infiltrated Treg, Th, and PD1HiCD4 Tph cells were stimulated with CD3/CD28 beads or IL-21R and were further plated with isolated total B cells and naïve B cells from healthy blood at a ratio of 1:5 and 1:2 in the final volume of 200 μl for 7 and 5 days, respectively. Phenotypic staining of AtM B cells was performed.
对于 Tph 和 B 细胞共培养实验,用 CD3/CD28 珠或 IL-21R 刺激分选的肿瘤浸润 T reg 、Th 和 PD1 Hi CD4 Tph 细胞,进一步将来自健康血液的分离的总 B 细胞和幼稚 B 细胞以 1:5 和 1:2 的比例分别接种到最终体积 200 μl 中 7 和 5 天。对 AtM B 细胞进行表型染色。
For the AtM B and T cell co-culture experiment, glutamine-induced AtM B cells were collected and co-cultured with CD3/CD28 beads–treated healthy blood T cells at a ratio of 5:1 in the final volume of 200 μl. On day 5, cells were collected, and T cell subsets (CD8, CD4, and Treg) and functional markers (Ki67, GZMB, IFNγ, TNFα, and PD1) were stained. All of this staining was detected using an LSRFortessa flow cytometer (BD Biosciences).
对于 AtM B 和 T 细胞共培养实验,收集谷氨酰胺诱导的 AtM B 细胞,并与 CD3/CD28 珠处理的健康血 T 细胞以 5:1 的比例在最终体积 200 μl 中共培养。第5天,收集细胞,并对T细胞亚群(CD8、CD4和T reg )和功能标记物(Ki67、GZMB、IFNγ、TNFα和PD1)进行染色。所有这些染色均使用 LSRFortessa 流式细胞仪 (BD Biosciences) 进行检测。

Metabolomics LC-MS 代谢组学 LC-MS

Paired adjacent and cancer tissue were immediately frozen in liquid nitrogen. The tissues were then cut into small pieces and homogenized using a homogenizer. Fifty- percent methanol/acetonitrile was added to the homogenized solution for metabolite extraction. The mixture was centrifuged, and the supernatant was dried in a vacuum centrifuge. For liquid chromatography–mass spectrometry (LC-MS) analysis, the samples were redissolved in 50% acetonitrile/water solvent and centrifuged for 15 min, then the supernatant was injected. The intracellular metabolites of glutamine- and CB-839-treated healthy blood B cells were collected with prechilled 80% methanol. The samples were then centrifuged, and supernatant was diluted with LC-MS–grade water. The samples were subsequently centrifuged and injected into the Thermo Fisher Scientific TSQ Quantis system.
配对的邻近组织和癌组织立即冷冻在液氮中。然后将组织切成小块并使用均质器均质化。将百分之五十的甲醇/乙腈添加到均质溶液中以提取代谢物。将混合物离心,并在真空离心机中干燥上清液。对于液相色谱-质谱(LC-MS)分析,将样品重新溶解在50%乙腈/水溶剂中并离心15分钟,然后注入上清液。用预冷的 80% 甲醇收集经谷氨酰胺和 CB-839 处理的健康血 B 细胞的细胞内代谢物。然后将样品离心,并用 LC-MS 级水稀释上清液。随后将样品离心并注入 Thermo Fisher Scientific TSQ Quantis 系统中。
For 13C glutamine tracing, healthy blood B cells were treated with R848 and 13C-labeled glutamine in glutamine-deficient culture medium for 24 hours. Unlabeled glutamine and R848 treatment were used as negative controls. Cells were reconstituted by 500 μl cold extraction buffer (methanol, acetonitrile, and water). The supernatants were thoroughly lyophilized and resuspended in methanol-water (1:1) before measurement. MS measurement of isotopologue distribution was analyzed using a Thermo Fisher Q-Exactive plus hybrid quadrupole-orbitrap mass spectrometer coupled to a Thermo Fisher Vanquish UPLC system. Data processing and ion annotation based on accurate mass were performed in TraceFinder 5.0 (Thermo Fisher) and Xcalibur 4.0 (Thermo Fisher).
对于 13 C 谷氨酰胺示踪,在缺乏谷氨酰胺的培养基中用 R848 和 13 C 标记的谷氨酰胺处理健康血液 B 细胞 24 小时。未标记的谷氨酰胺和R848处理用作阴性对照。用 500 μl 冷提取缓冲液(甲醇、乙腈和水)重构细胞。测量前将上清液彻底冻干并重悬于甲醇-水(1:1)中。使用与 Thermo Fisher Vanquish UPLC 系统联用的 Thermo Fisher Q-Exactive plus 混合四极杆轨道阱质谱仪对同位素体分布的 MS 测量结果进行分析。基于精确质量的数据处理和离子注释在TraceFinder 5.0 (Thermo Fisher)和Xcalibur 4.0 (Thermo Fisher)中进行。

mIHC and spatial analysis
mIHC 和空间分析

We performed mIHC to identify ASCs, AtM B cells, PD1HiCD4 Tph cells, and different TLS structures. Slides were scanned using PerkinElmer’s Vectra 3 platform, and images were quantified using Inform software (v.2.6.0). TLS and non-TLS regions were trained using “tissue segment” functions and quantified on all whole slides. TLS maturity was evaluated by fDC and hematoxylin and eosin (H&E) staining.
我们进行 mIHC 来鉴定 ASC、AtM B 细胞、PD1 Hi CD4 Tph 细胞和不同的 TLS 结构。使用 PerkinElmer 的 Vectra 3 平台扫描载玻片,并使用 Inform 软件(v.2.6.0)对图像进行量化。使用“组织片段”功能对 TLS 和非 TLS 区域进行训练,并在所有整个幻灯片上进行量化。通过 fDC 和苏木精和伊红 (H&E) 染色评估 TLS 成熟度。
We used the Spatial Analysis module of HALO software (Indica labs) to analyze the spatial location of AtM B cells between immature and mature TLSs. We then selected the edge of lymphocyte aggregation and the follicular region as the interface and subdivided by 20 μm per band into a total of 20 bands. Infiltration analysis was used to quantify the density and absolute number of AtM B cells in each band inside and outside the interface and the distance of each AtM B cell to the interface. We also used spatstat (v2.3-4) to quantify density and frequency of PD1HiCD4+ Tph cells surrounding 20 μm of AtM B cells in TLS versus non-TLS areas.
我们使用 HALO 软件(Indica labs)的空间分析模块来分析 AtM B 细胞在未成熟和成熟 TLS 之间的空间位置。然后选择淋巴细胞聚集的边缘和滤泡区域作为界面,将每个条带以20μm细分为总共20个条带。使用渗透分析来量化界面内外每个条带中AtM B细胞的密度和绝对数量以及每个AtM B细胞到界面的距离。我们还使用 spatstat (v2.3-4) 来量化 TLS 与非 TLS 区域中 20 μm AtM B 细胞周围 PD1 Hi CD4 + Tph 细胞的密度和频率。

Acknowledgments 致谢

We acknowledge and thank L. Tang and M. Wang from the Suzhou Blood Center for clinical sample collection.
我们感谢并感谢苏州血液中心的 L. Tang 和 M. Wang 收集临床样本。
We acknowledge and thank D. Li from the Shanghai Institute of Biochemistry and Cell Biology of the Chinese Academy of Sciences for helpful discussion and feedback on the manuscript. This project was supported by Shanghai Municipal Science and Technology Major Project. Funding: This project was supported by the National Natural Science Foundation of China (nos. 82130077, 81961128025, 82121002, 31930028, 82203643, and 82273187) to Q.G., G.J.G., and G.H.S.; the Research Projects from the Science and Technology Commission of Shanghai Municipality (nos. 21JC1410100, 21JC1401200, 20JC1418900, 20YF1407400, 22490760100, and 23XD1404300) to J.F., Q.G., S.Z., and X.M.Z.; the Strategic Priority Research Program of Chinese Academy of Sciences (no. XDPB0303) to X.M.Z.; and the Shanghai Municipal Science and Technology Major Project to Q.G.
我们感谢中国科学院上海生物化学与细胞生物学研究所的 D. Li 对本文的有益讨论和反馈。该项目得到了上海市科技重大专项的资助。资助: 该项目得到了国家自然科学基金(编号:82130077、81961128025、82121002、31930028、82203643和82273187)Q.G.、G.J.G.和G.H.S.的资助;上海市科委科研项目(编号:21JC1410100、21JC1401200、20JC1418900、20YF1407400、22490760100 和 23XD1404300)至 J.F.、Q.G.、S.Z. 和 X.M.Z.;中国科学院战略性先导研究计划(编号:XDPB0303)X.M.Z.;和上海市科技重大专项Q.G.
Author contributions: Conceptualization: J.F., G.J.G., X.M.Z., and Q.G. Methodology: J.Q.M., Y.C.W., L.F.M., T.C.Z., X.P.Y., G.H.S., J.L., T.L., K.G., X.X.G., J.M.P., S.Z., and S.J. Investigation: J.Q.M., Y.C.W., X.P.Y., J.L., K.G., X.S., Y.M.C., X.S.L., W.C.B., D.N.R., L.H.T., M.Y.W., and D.P.H. Visualization: J.Q.M., Y.C.W., L.F.M., Z.C.C., and Y.T.F. Funding acquisition: G.H.S., G.Y.D., S.Z., J.F., G.J.G., X.M.Z., and Q.G. Project administration: J.F., G.J.G., X.M.Z., and Q.G. Supervision: J.F., G.J.G., and X.M.Z., and Q.G. Resources: C.H. and S.S. Writing – original draft: J.Q.M., Y.C.W., L.F.M., G.J.G., X.M.Z., and Q.G. Writing – review and editing: J.Q.M., Y.C.W., L.F.M., T.C.Z., G.H.S., J.L., T.L., K.G., X.S., Y.M.C., X.S.L., Z.C.C., S.J., D.N.R., J.M.P., S.Z., J.Z., C.H., S.S., J.F., G.J.G., X.M.Z., and Q.G.
作者贡献:概念化:J.F.、G.J.G.、X.M.Z. 和 Q.G.方法论:J.Q.M.、Y.C.W.、L.F.M.、T.C.Z.、X.P.Y.、G.H.S.、J.L.、T.L.、K.G.、X.X.G.、J.M.P.、S.Z. 和 S.J.调查:J.Q.M.、Y.C.W.、X.P.Y.、J.L.、K.G.、X.S.、Y.M.C.、X.S.L.、W.C.B.、D.N.R.、L.H.T.、M.Y.W. 和 D.P.H.可视化:J.Q.M.、Y.C.W.、L.F.M.、Z.C.C. 和 Y.T.F.资金收购:G.H.S.、G.Y.D.、S.Z.、J.F.、G.J.G.、X.M.Z. 和 Q.G.项目管理:J.F.、G.J.G.、X.M.Z. 和 Q.G.监督:J.F.、G.J.G.、X.M.Z. 和 Q.G.资源:C.H.和 S.S. 写作 – 初稿:J.Q.M.、Y.C.W.、L.F.M.、G.J.G.、X.M.Z. 和 Q.G.写作 – 审阅和编辑:J.Q.M.、Y.C.W.、L.F.M.、T.C.Z.、G.H.S.、J.L.、T.L.、K.G.、X.S.、Y.M.C.、X.S.L.、Z.C.C.、S.J.、D.N.R.、J.M.P.、S.Z.、J.Z.、C.H.、S.S.、 F.、G.J.G.、X.M.Z.、和 Q.G.
Competing interests: The authors declare that they have no competing interests.
竞争利益:作者声明他们没有竞争利益。
Data and materials availability: All data presented in the paper are shown in the paper and/or in the supplementary materials. Sequencing datasets including scRNA-seq, scBCR-seq, and scATAC-seq are available at the National Genomics Data Center (accession no. PRJCA020880), and processed gene expression data can be downloaded at Cancer B cell blueprint (http://pancancer.cn/B/) and Zenodo (118). Codes used for data analysis are available at GitHub (https://github.com/ma-jq/B).
数据和材料可用性:论文中提供的所有数据均显示在论文和/或补充材料中。包括scRNA-seq、scBCR-seq和scATAC-seq在内的测序数据集可在国家基因组数据中心获得(登录号PRJCA020880),处理后的基因表达数据可在Cancer B cell blueprint(http://pancancer.org)下载。 cn/B/) 和 Zenodo (118)。用于数据分析的代码可在 GitHub (https://github.com/ma-jq/B) 获取。
License information: Copyright © 2024 the authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original US government works. https://www.science.org/about/science-licenses-journal-article-reuse
许可信息:版权所有 © 2024 作者,保留部分权利;独家被许可人美国科学促进会。没有声称拥有美国政府原创作品。 https://www.science.org/about/science-licenses-journal-article-reuse

Supplementary Materials 补充材料

This PDF file includes: 该 PDF 文件包括:

Materials and Methods 材料和方法
Figs. S1 to S13 无花果。 S1至S13
References (119138) 参考文献 (119–138)

Other Supplementary Material for this manuscript includes the following:
本手稿的其他补充材料包括以下内容:

Tables S1 to S4 表 S1 至 S4
MDAR Reproducibility Checklist
MDAR 再现性检查表

References and Notes 参考文献和注释

1
C. M. Laumont, B. H. Nelson, B cells in the tumor microenvironment: Multi-faceted organizers, regulators, and effectors of anti-tumor immunity. Cancer Cell 41, 466–489 (2023).
C. M. Laumont,B. H. Nelson,肿瘤微环境中的 B 细胞:抗肿瘤免疫的多方面组织者、调节者和效应者。癌细胞 41, 466–489 (2023)。
2
C. M. Laumont, A. C. Banville, M. Gilardi, D. P. Hollern, B. H. Nelson, Tumour-infiltrating B cells: Immunological mechanisms, clinical impact and therapeutic opportunities. Nat. Rev. Cancer 22, 414–430 (2022).
C. M. Laumont、A. C. Banville、M. Gilardi、D. P. Hollern、B. H. Nelson,肿瘤浸润 B 细胞:免疫机制、临床影响和治疗机会。纳特。癌症杂志 22, 414–430 (2022)。
3
D. R. Glass, A. G. Tsai, J. P. Oliveria, F. J. Hartmann, S. C. Kimmey, A. A. Calderon, L. Borges, M. C. Glass, L. E. Wagar, M. M. Davis, S. C. Bendall, An Integrated Multi-omic Single-Cell Atlas of Human B Cell Identity. Immunity 53, 217–232.e5 (2020).
D. R. Glass、A. G. Tsai、J. P. Oliveria、F. J. Hartmann、S. C. Kimmey、A. A. Calderon、L. Borges、M. C. Glass、L. E. Wagar、M. M. Davis、S. C. Bendall,人类 B 细胞身份的综合多组学单细胞图谱。免疫 53, 217–232.e5 (2020)。
4
B. Yang, Z. Zhang, X. Chen, X.-Y. Wang, S. Qin, L. Du, C. Yang, L. Zhu, W. Sun, Y. Zhu, Q. Zheng, S. Zhao, Q. Wang, L. Zhao, Y. Lin, J. Huang, F. Wu, L. Lu, F. Wang, W. Zheng, X.-H. Zhou, X. Zhao, Z. Wang, S. Xiao-Lin, Y. Ye, S. Wang, Z. Li, H. Qi, Z. Zhang, D.-M. Kuang, L. Zhang, Z. Shen, W. Liu, An Asia-specific variant of human IgG1 represses colorectal tumorigenesis by shaping the tumor microenvironment. J. Clin. Invest. 132, e153454 (2022).
B.杨,Z.张,X.陈,X.-Y。王、勤、杜、杨、朱、孙、朱、郑、赵、王、赵、林、黄、 F.吴,L.卢,F.王,W.郑,X.-H。周X.赵,Z.王,S.晓林,Y.叶,S.王,Z.李,H.齐,Z.张,D.-M。 Kuang,L.Zhang,Z.Shen,W.Liu,人类 IgG1 的亚洲特异性变体通过塑造肿瘤微环境来抑制结直肠肿瘤的发生。 J.克林。投资。 132,e153454 (2022)。
5
R. D. Mazor, N. Nathan, A. Gilboa, L. Stoler-Barak, L. Moss, I. Solomonov, A. Hanuna, Y. Divinsky, M. D. Shmueli, H. Hezroni, I. Zaretsky, M. Mor, O. Golani, G. Sabah, A. Jakobson-Setton, N. Yanichkin, M. Feinmesser, D. Tsoref, L. Salman, E. Yeoshoua, E. Peretz, I. Erlich, N. M. Cohen, J. M. Gershoni, N. Freund, Y. Merbl, G. Yaari, R. Eitan, I. Sagi, Z. Shulman, Tumor-reactive antibodies evolve from non-binding and autoreactive precursors. Cell 185, 1208–1222.e21 (2022).
6
Y. Lu, Q. Zhao, J.-Y. Liao, E. Song, Q. Xia, J. Pan, Y. Li, J. Li, B. Zhou, Y. Ye, C. Di, S. Yu, Y. Zeng, S. Su, Complement Signals Determine Opposite Effects of B Cells in Chemotherapy-Induced Immunity. Cell 180, 1081–1097.e24 (2020).
7
M. Meylan, F. Petitprez, E. Becht, A. Bougoüin, G. Pupier, A. Calvez, I. Giglioli, V. Verkarre, G. Lacroix, J. Verneau, C.-M. Sun, P. Laurent-Puig, Y.-A. Vano, R. Elaïdi, A. Méjean, R. Sanchez-Salas, E. Barret, X. Cathelineau, S. Oudard, C.-A. Reynaud, A. de Reyniès, C. Sautès-Fridman, W. H. Fridman, Tertiary lymphoid structures generate and propagate anti-tumor antibody-producing plasma cells in renal cell cancer. Immunity 55, 527–541.e5 (2022).
8
G. Y. Ding, J.-Q. Ma, J.-P. Yun, X. Chen, Y. Ling, S. Zhang, J.-Y. Shi, Y.-Q. Chang, Y. Ji, X.-Y. Wang, W.-M. Tan, K.-F. Yuan, B. Yan, X.-M. Zhang, F. Liang, J. Zhou, J. Fan, Y. Zeng, M.-Y. Cai, Q. Gao, Distribution and density of tertiary lymphoid structures predict clinical outcome in intrahepatic cholangiocarcinoma. J. Hepatol. 76, 608–618 (2022).
9
W. H. Fridman, M. Meylan, F. Petitprez, C.-M. Sun, A. Italiano, C. Sautès-Fridman, B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. Nat. Rev. Clin. Oncol. 19, 441–457 (2022).
10
C. Sautès-Fridman, F. Petitprez, J. Calderaro, W. H. Fridman, Tertiary lymphoid structures in the era of cancer immunotherapy. Nat. Rev. Cancer 19, 307–325 (2019).
11
F. Z. Ouyang, R.-Q. Wu, Y. Wei, R.-X. Liu, D. Yang, X. Xiao, L. Zheng, B. Li, X.-M. Lao, D.-M. Kuang, Dendritic cell-elicited B-cell activation fosters immune privilege via IL-10 signals in hepatocellular carcinoma. Nat. Commun. 7, 13453 (2016).
12
S. Y. Yang, J. Long, M.-X. Huang, P.-Y. Luo, Z.-H. Bian, Y.-F. Xu, C.-B. Wang, S.-H. Yang, L. Li, C. Selmi, M. E. Gershwin, Z.-B. Zhao, Z.-X. Lian, Characterization of Organ-Specific Regulatory B Cells Using Single-Cell RNA Sequencing. Front. Immunol. 12, 711980 (2021).
13
N. I. Affara, B. Ruffell, T. R. Medler, A. J. Gunderson, M. Johansson, S. Bornstein, E. Bergsland, M. Steinhoff, Y. Li, Q. Gong, Y. Ma, J. F. Wiesen, M. H. Wong, M. Kulesz-Martin, B. Irving, L. M. Coussens, B cells regulate macrophage phenotype and response to chemotherapy in squamous carcinomas. Cancer Cell 25, 809–821 (2014).
14
Y. Wei, X.-M. Lao, X. Xiao, X.-Y. Wang, Z.-J. Wu, Q.-H. Zeng, C.-Y. Wu, R.-Q. Wu, Z.-X. Chen, L. Zheng, B. Li, D.-M. Kuang, Plasma Cell Polarization to the Immunoglobulin G Phenotype in Hepatocellular Carcinomas Involves Epigenetic Alterations and Promotes Hepatoma Progression in Mice. Gastroenterology 156, 1890–1904.e16 (2019).
15
X. Xiao, X.-M. Lao, M.-M. Chen, R.-X. Liu, Y. Wei, F.-Z. Ouyang, D.-P. Chen, X.-Y. Zhao, Q. Zhao, X.-F. Li, C.-L. Liu, L. Zheng, D.-M. Kuang, PD-1hi Identifies a Novel Regulatory B-cell Population in Human Hepatoma That Promotes Disease Progression. Cancer Discov. 6, 546–559 (2016).
16
H. W. King, N. Orban, J. C. Riches, A. J. Clear, G. Warnes, S. A. Teichmann, L. K. James, Single-cell analysis of human B cell maturation predicts how antibody class switching shapes selection dynamics. Sci. Immunol. 6, eabe6291 (2021).
17
D. Hao, G. Han, A. Sinjab, L. I. Gomez-Bolanos, R. Lazcano, A. Serrano, S. D. Hernandez, E. Dai, X. Cao, J. Hu, M. Dang, R. Wang, Y. Chu, X. Song, J. Zhang, E. R. Parra, J. A. Wargo, S. G. Swisher, T. Cascone, B. Sepesi, A. P. Futreal, M. Li, S. M. Dubinett, J. Fujimoto, L. M. Solis Soto, I. I. Wistuba, C. S. Stevenson, A. Spira, S. Shalapour, H. Kadara, L. Wang, The Single-Cell Immunogenomic Landscape of B and Plasma Cells in Early-Stage Lung Adenocarcinoma. Cancer Discov. 12, 2626–2645 (2022).
18
M. C. Woodruff, R. P. Ramonell, D. C. Nguyen, K. S. Cashman, A. S. Saini, N. S. Haddad, A. M. Ley, S. Kyu, J. C. Howell, T. Ozturk, S. Lee, N. Suryadevara, J. B. Case, R. Bugrovsky, W. Chen, J. Estrada, A. Morrison-Porter, A. Derrico, F. A. Anam, M. Sharma, H. M. Wu, S. N. Le, S. A. Jenks, C. M. Tipton, B. Staitieh, J. L. Daiss, E. Ghosn, M. S. Diamond, R. H. Carnahan, J. E. Crowe Jr., W. T. Hu, F. E.-H. Lee, I. Sanz, Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat. Immunol. 21, 1506–1516 (2020).
19
J. W. Austin, C. M. Buckner, L. Kardava, W. Wang, X. Zhang, V. A. Melson, R. G. Swanson, A. J. Martins, J. Q. Zhou, K. B. Hoehn, J. N. Fisk, Y. Dimopoulos, A. Chassiakos, S. O’Dell, M. G. Smelkinson, C. A. Seamon, R. W. Kwan, M. C. Sneller, S. Pittaluga, N. A. Doria-Rose, A. McDermott, Y. Li, T.-W. Chun, S. H. Kleinstein, J. S. Tsang, C. Petrovas, S. Moir, Overexpression of T-bet in HIV infection is associated with accumulation of B cells outside germinal centers and poor affinity maturation. Sci. Transl. Med. 11, eaax0904 (2019).
20
M. P. Cancro, Age-Associated B Cells. Annu. Rev. Immunol. 38, 315–340 (2020).
21
C. Wu, Q. Fu, Q. Guo, S. Chen, S. Goswami, S. Sun, T. Li, X. Cao, F. Chu, Z. Chen, M. Liu, Y. Liu, T. Fu, P. Hao, Y. Hao, N. Shen, C. Bao, X. Zhang, Lupus-associated atypical memory B cells are mTORC1-hyperactivated and functionally dysregulated. Ann. Rheum. Dis. 78, 1090–1100 (2019).
22
S. A. Jenks, K. S. Cashman, E. Zumaquero, U. M. Marigorta, A. V. Patel, X. Wang, D. Tomar, M. C. Woodruff, Z. Simon, R. Bugrovsky, E. L. Blalock, C. D. Scharer, C. M. Tipton, C. Wei, S. S. Lim, M. Petri, T. B. Niewold, J. H. Anolik, G. Gibson, F. E.-H. Lee, J. M. Boss, F. E. Lund, I. Sanz, Distinct Effector B Cells Induced by Unregulated Toll-like Receptor 7 Contribute to Pathogenic Responses in Systemic Lupus Erythematosus. Immunity 49, 725–739.e6 (2018).
23
Y. Hao, P. O’Neill, M. S. Naradikian, J. L. Scholz, M. P. Cancro, A B-cell subset uniquely responsive to innate stimuli accumulates in aged mice. Blood 118, 1294–1304 (2011).
24
S. Wang, J. Wang, V. Kumar, J. L. Karnell, B. Naiman, P. S. Gross, S. Rahman, K. Zerrouki, R. Hanna, C. Morehouse, N. Holoweckyj, H. Liu, Z. Manna, R. Goldbach-Mansky, S. Hasni, R. Siegel, M. Sanjuan, K. Streicher, M. P. Cancro, R. Kolbeck, R. Ettinger, Autoimmunity Molecular Medicine Team, IL-21 drives expansion and plasma cell differentiation of autoreactive CD11chiT-bet+ B cells in SLE. Nat. Commun. 9, 1758 (2018).
25
I. Korsunsky, N. Millard, J. Fan, K. Slowikowski, F. Zhang, K. Wei, Y. Baglaenko, M. Brenner, P. R. Loh, S. Raychaudhuri, Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).
26
R. Xue, Q. Zhang, Q. Cao, R. Kong, X. Xiang, H. Liu, M. Feng, F. Wang, J. Cheng, Z. Li, Q. Zhan, M. Deng, J. Zhu, Z. Zhang, N. Zhang, Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature 612, 141–147 (2022).
27
K. Pelka, M. Hofree, J. H. Chen, S. Sarkizova, J. D. Pirl, V. Jorgji, A. Bejnood, D. Dionne, W. H. Ge, K. H. Xu, S. X. Chao, D. R. Zollinger, D. J. Lieb, J. W. Reeves, C. A. Fuhrman, M. L. Hoang, T. Delorey, L. T. Nguyen, J. Waldman, M. Klapholz, I. Wakiro, O. Cohen, J. Albers, C. S. Smillie, M. S. Cuoco, J. Wu, M. J. Su, J. Yeung, B. Vijaykumar, A. M. Magnuson, N. Asinovski, T. Moll, M. N. Goder-Reiser, A. S. Applebaum, L. K. Brais, L. K. DelloStritto, S. L. Denning, S. T. Phillips, E. K. Hill, J. K. Meehan, D. T. Frederick, T. Sharova, A. Kanodia, E. Z. Todres, J. Jané-Valbuena, M. Biton, B. Izar, C. D. Lambden, T. E. Clancy, R. Bleday, N. Melnitchouk, J. Irani, H. Kunitake, D. L. Berger, A. Srivastava, J. L. Hornick, S. Ogino, A. Rotem, S. Vigneau, B. E. Johnson, R. B. Corcoran, A. H. Sharpe, V. K. Kuchroo, K. Ng, M. Giannakis, L. T. Nieman, G. M. Boland, A. J. Aguirre, A. C. Anderson, O. Rozenblatt-Rosen, A. Regev, N. Hacohen, Spatially organized multicellular immune hubs in human colorectal cancer. Cell 184, 4734–4752.e20 (2021).
28
A. Wieland, M. R. Patel, M. A. Cardenas, C. S. Eberhardt, W. H. Hudson, R. C. Obeng, C. C. Griffith, X. Wang, Z. G. Chen, H. T. Kissick, N. F. Saba, R. Ahmed, Defining HPV-specific B cell responses in patients with head and neck cancer. Nature 597, 274–278 (2021).
29
N. Kim, H. K. Kim, K. Lee, Y. Hong, J. H. Cho, J. W. Choi, J.-I. Lee, Y.-L. Suh, B. M. Ku, H. H. Eum, S. Choi, Y.-L. Choi, J.-G. Joung, W.-Y. Park, H. A. Jung, J.-M. Sun, S.-H. Lee, J. S. Ahn, K. Park, M.-J. Ahn, H.-O. Lee, Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nat. Commun. 11, 2285 (2020).
30
A. M. Laughney, J. Hu, N. R. Campbell, S. F. Bakhoum, M. Setty, V.-P. Lavallée, Y. Xie, I. Masilionis, A. J. Carr, S. Kottapalli, V. Allaj, M. Mattar, N. Rekhtman, J. B. Xavier, L. Mazutis, J. T. Poirier, C. M. Rudin, D. Pe’er, J. Massagué, Regenerative lineages and immune-mediated pruning in lung cancer metastasis. Nat. Med. 26, 259–269 (2020).
31
A. Frede, P. Czarnewski, G. Monasterio, K. P. Tripathi, D. A. Bejarano, R. O. Ramirez Flores, C. Sorini, L. Larsson, X. Luo, L. Geerlings, C. Novella-Rausell, C. Zagami, R. Kuiper, R. A. Morales, F. Castillo, M. Hunt, L. L. Mariano, Y. O. O. Hu, C. Engblom, A.-M. Lennon-Duménil, R. Mittenzwei, A. M. Westendorf, N. Hövelmeyer, J. Lundeberg, J. Saez-Rodriguez, A. Schlitzer, S. Das, E. J. Villablanca, B cell expansion hinders the stroma-epithelium regenerative cross talk during mucosal healing. Immunity 55, 2336–2351.e12 (2022).
32
Y. Chu, E. Dai, Y. Li, G. Han, G. Pei, D. R. Ingram, K. Thakkar, J.-J. Qin, M. Dang, X. Le, C. Hu, Q. Deng, A. Sinjab, P. Gupta, R. Wang, D. Hao, F. Peng, X. Yan, Y. Liu, S. Song, S. Zhang, J. V. Heymach, A. Reuben, Y. Y. Elamin, M. P. Pizzi, Y. Lu, R. Lazcano, J. Hu, M. Li, M. Curran, A. Futreal, A. Maitra, A. A. Jazaeri, J. A. Ajani, C. Swanton, X.-D. Cheng, H. A. Abbas, M. Gillison, K. Bhat, A. J. Lazar, M. Green, K. Litchfield, H. Kadara, C. Yee, L. Wang, Pan-cancer T cell atlas links a cellular stress response state to immunotherapy resistance. Nat. Med. 29, 1550–1562 (2023).
33
L. Zheng, S. Qin, W. Si, A. Wang, B. Xing, R. Gao, X. Ren, L. Wang, X. Wu, J. Zhang, N. Wu, N. Zhang, H. Zheng, H. Ouyang, K. Chen, Z. Bu, X. Hu, J. Ji, Z. Zhang, Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science 374, abe6474 (2021).
34
L. Zhang, X. Yu, L. Zheng, Y. Zhang, Y. Li, Q. Fang, R. Gao, B. Kang, Q. Zhang, J. Y. Huang, H. Konno, X. Guo, Y. Ye, S. Gao, S. Wang, X. Hu, X. Ren, Z. Shen, W. Ouyang, Z. Zhang, Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature 564, 268–272 (2018).
35
V. Greiff, E. Miho, U. Menzel, S. T. Reddy, Bioinformatic and Statistical Analysis of Adaptive Immune Repertoires. Trends Immunol. 36, 738–749 (2015).
36
Y. Wei, C.-X. Huang, X. Xiao, D.-P. Chen, H. Shan, H. He, D.-M. Kuang, B cell heterogeneity, plasticity, and functional diversity in cancer microenvironments. Oncogene 40, 4737–4745 (2021).
37
G. Song, Y. Shi, L. Meng, J. Ma, S. Huang, J. Zhang, Y. Wu, J. Li, Y. Lin, S. Yang, D. Rao, Y. Cheng, J. Lin, S. Ji, Y. Liu, S. Jiang, X. Wang, S. Zhang, A. Ke, X. Wang, Y. Cao, Y. Ji, J. Zhou, J. Fan, X. Zhang, R. Xi, Q. Gao, Single-cell transcriptomic analysis suggests two molecularly distinct subtypes of intrahepatic cholangiocarcinoma. Nat. Commun. 13, 1642 (2022).
38
N. S. Patil, B. Y. Nabet, S. Müller, H. Koeppen, W. Zou, J. Giltnane, A. Au-Yeung, S. Srivats, J. H. Cheng, C. Takahashi, P. E. de Almeida, A. S. Chitre, J. L. Grogan, L. Rangell, S. Jayakar, M. Peterson, A. W. Hsia, W. E. O’Gorman, M. Ballinger, R. Banchereau, D. S. Shames, Intratumoral plasma cells predict outcomes to PD-L1 blockade in non-small cell lung cancer. Cancer Cell 40, 289–300.e4 (2022).
39
C. E. Shannon, A mathematical theory of communication. Mob. Comput. Commun. Rev. 5, 3–55 (2001).
40
B. Liu, C. Li, Z. Li, D. Wang, X. Ren, Z. Zhang, An entropy-based metric for assessing the purity of single cell populations. Nat. Commun. 11, 3155 (2020).
41
A. T. Ruffin, A. R. Cillo, T. Tabib, A. Liu, S. Onkar, S. R. Kunning, C. Lampenfeld, H. I. Atiya, I. Abecassis, C. H. L. Kürten, Z. Qi, R. Soose, U. Duvvuri, S. Kim, S. Oesterrich, R. Lafyatis, L. G. Coffman, R. L. Ferris, D. A. A. Vignali, T. C. Bruno, B cell signatures and tertiary lymphoid structures contribute to outcome in head and neck squamous cell carcinoma. Nat. Commun. 12, 3349 (2021).
42
A. J. Gentles, A. M. Newman, C. L. Liu, S. V. Bratman, W. Feng, D. Kim, V. S. Nair, Y. Xu, A. Khuong, C. D. Hoang, M. Diehn, R. B. West, S. K. Plevritis, A. A. Alizadeh, The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015).
43
C. M. Tipton, C. F. Fucile, J. Darce, A. Chida, T. Ichikawa, I. Gregoretti, S. Schieferl, J. Hom, S. Jenks, R. J. Feldman, R. Mehr, C. Wei, F. E.-H. Lee, W. C. Cheung, A. F. Rosenberg, I. Sanz, Diversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosus. Nat. Immunol. 16, 755–765 (2015).
44
J. H. Lam, F. L. Smith, N. Baumgarth, B Cell Activation and Response Regulation During Viral Infections. Viral Immunol. 33, 294–306 (2020).
45
J. G. Cyster, C. D. C. Allen, B Cell Responses: Cell Interaction Dynamics and Decisions. Cell 177, 524–540 (2019).
46
Y. Ye, Z. Chen, S. Jiang, F. Jia, T. Li, X. Lu, J. Xue, X. Lian, J. Ma, P. Hao, L. Lu, S. Ye, N. Shen, C. Bao, Q. Fu, X. Zhang, Single-cell profiling reveals distinct adaptive immune hallmarks in MDA5+ dermatomyositis with therapeutic implications. Nat. Commun. 13, 6458 (2022).
47
S. Biswas, G. Mandal, K. K. Payne, C. M. Anadon, C. D. Gatenbee, R. A. Chaurio, T. L. Costich, C. Moran, C. M. Harro, K. E. Rigolizzo, J. A. Mine, J. Trillo-Tinoco, N. Sasamoto, K. L. Terry, D. Marchion, A. Buras, R. M. Wenham, X. Yu, M. K. Townsend, S. S. Tworoger, P. C. Rodriguez, A. R. Anderson, J. R. Conejo-Garcia, IgA transcytosis and antigen recognition govern ovarian cancer immunity. Nature 591, 464–470 (2021).
48
M. Duan, D. C. Nguyen, C. J. Joyner, C. L. Saney, C. M. Tipton, J. Andrews, S. Lonial, C. Kim, I. Hentenaar, A. Kosters, E. Ghosn, A. Jackson, S. Knechtle, S. Maruthamuthu, S. Chandran, T. Martin, R. Rajalingam, F. Vincenti, C. Breeden, I. Sanz, G. Gibson, F. E.-H. Lee, Understanding heterogeneity of human bone marrow plasma cell maturation and survival pathways by single-cell analyses. Cell Rep. 42, 112682 (2023).
49
G. S. Gulati, S. S. Sikandar, D. J. Wesche, A. Manjunath, A. Bharadwaj, M. J. Berger, F. Ilagan, A. H. Kuo, R. W. Hsieh, S. Cai, M. Zabala, F. A. Scheeren, N. A. Lobo, D. Qian, F. B. Yu, F. M. Dirbas, M. F. Clarke, A. M. Newman, Single-cell transcriptional diversity is a hallmark of developmental potential. Science 367, 405–411 (2020).
50
Q. Li, scTour: A deep learning architecture for robust inference and accurate prediction of cellular dynamics. Genome Biol. 24, 149 (2023).
51
J. Cao, M. Spielmann, X. Qiu, X. Huang, D. M. Ibrahim, A. J. Hill, F. Zhang, S. Mundlos, L. Christiansen, F. J. Steemers, C. Trapnell, J. Shendure, The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).
52
S. A. Jenks, K. S. Cashman, M. C. Woodruff, F. E. Lee, I. Sanz, Extrafollicular responses in humans and SLE. Immunol. Rev. 288, 136–148 (2019).
53
A. Sagardoy, J. I. Martinez-Ferrandis, S. Roa, K. L. Bunting, M. A. Aznar, O. Elemento, R. Shaknovich, L. Fontán, V. Fresquet, I. Perez-Roger, E. F. Robles, L. De Smedt, X. Sagaert, A. Melnick, J. A. Martinez-Climent, Downregulation of FOXP1 is required during germinal center B-cell function. Blood 121, 4311–4320 (2013).
54
K. M. Toellner, FOXP1 inhibits plasma cell differentiation. Blood 126, 2076–2077 (2015).
55
C. Bohannon, R. Powers, L. Satyabhama, A. Cui, C. Tipton, M. Michaeli, I. Skountzou, R. S. Mittler, S. H. Kleinstein, R. Mehr, F. E.-Y. Lee, I. Sanz, J. Jacob, Long-lived antigen-induced IgM plasma cells demonstrate somatic mutations and contribute to long-term protection. Nat. Commun. 7, 11826 (2016).
56
K. Csomos, B. Ujhazi, P. Blazso, J. L. Herrera, C. M. Tipton, T. Kawai, S. Gordon, M. Ellison, K. Wu, M. Stowell, L. Haynes, R. Cruz, B. Zakota, J. Nguyen, M. Altrich, C. B. Geier, S. Sharapova, J. F. Dasso, J. W. Leiding, G. Smith, W. Al-Herz, M. de Barros Dorna, O. Fadugba, E. Fronkova, V. Kanderova, M. Svaton, S. E. Henrickson, J. D. Hernandez, T. Kuijpers, S. M. Kandilarova, E. Naumova, T. Milota, A. Sediva, D. Moshous, B. Neven, T. Saco, R. Sargur, S. Savic, J. Sleasman, G. Sunkersett, B. R. Ward, M. Komatsu, S. Pittaluga, A. Kumanovics, M. J. Butte, M. P. Cancro, S. Pillai, E. Meffre, L. D. Notarangelo, J. E. Walter, Partial RAG deficiency in humans induces dysregulated peripheral lymphocyte development and humoral tolerance defect with accumulation of T-bet+ B cells. Nat. Immunol. 23, 1256–1272 (2022).
57
Y. Li, Z. Wang, F. Han, M. Zhang, T. Yang, M. Chen, J. Du, Y. Wang, L. Zhu, H. Hou, Y. Chang, L. Han, X. Lyu, N. Zhang, W. Sun, Z. Cai, W. Wei, Single-cell transcriptome analysis profiles cellular and molecular alterations in submandibular gland and blood in IgG4-related disease. Ann. Rheum. Dis. 82, 1348–1358 (2023).
58
R. Alaggio, C. Amador, I. Anagnostopoulos, A. D. Attygalle, I. B. O. Araujo, E. Berti, G. Bhagat, A. M. Borges, D. Boyer, M. Calaminici, A. Chadburn, J. K. C. Chan, W. Cheuk, W.-J. Chng, J. K. Choi, S.-S. Chuang, S. E. Coupland, M. Czader, S. S. Dave, D. de Jong, M.-Q. Du, K. S. Elenitoba-Johnson, J. Ferry, J. Geyer, D. Gratzinger, J. Guitart, S. Gujral, M. Harris, C. J. Harrison, S. Hartmann, A. Hochhaus, P. M. Jansen, K. Karube, W. Kempf, J. Khoury, H. Kimura, W. Klapper, A. E. Kovach, S. Kumar, A. J. Lazar, S. Lazzi, L. Leoncini, N. Leung, V. Leventaki, X.-Q. Li, M. S. Lim, W.-P. Liu, A. Louissaint Jr., A. Marcogliese, L. J. Medeiros, M. Michal, R. N. Miranda, C. Mitteldorf, S. Montes-Moreno, W. Morice, V. Nardi, K. N. Naresh, Y. Natkunam, S.-B. Ng, I. Oschlies, G. Ott, M. Parrens, M. Pulitzer, S. V. Rajkumar, A. C. Rawstron, K. Rech, A. Rosenwald, J. Said, C. Sarkozy, S. Sayed, C. Saygin, A. Schuh, W. Sewell, R. Siebert, A. R. Sohani, R. Tooze, A. Traverse-Glehen, F. Vega, B. Vergier, A. D. Wechalekar, B. Wood, L. Xerri, W. Xiao, The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 36, 1720–1748 (2022).
59
W. Wen, W. Su, H. Tang, W. Le, X. Zhang, Y. Zheng, X. Liu, L. Xie, J. Li, J. Ye, L. Dong, X. Cui, Y. Miao, D. Wang, J. Dong, C. Xiao, W. Chen, H. Wang, Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell Discov. 6, 31 (2020).
60
S. A. Ehrhardt, M. Zehner, V. Krähling, H. Cohen-Dvashi, C. Kreer, N. Elad, H. Gruell, M. S. Ercanoglu, P. Schommers, L. Gieselmann, R. Eggeling, C. Dahlke, T. Wolf, N. Pfeifer, M. M. Addo, R. Diskin, S. Becker, F. Klein, Polyclonal and convergent antibody response to Ebola virus vaccine rVSV-ZEBOV. Nat. Med. 25, 1589–1600 (2019).
61
H. W. King, K. L. Wells, Z. Shipony, A. S. Kathiria, L. E. Wagar, C. Lareau, N. Orban, R. Capasso, M. M. Davis, L. M. Steinmetz, L. K. James, W. J. Greenleaf, Integrated single-cell transcriptomics and epigenomics reveals strong germinal center-associated etiology of autoimmune risk loci. Sci. Immunol. 6, eabh3768 (2021).
62
M. You, L. Chen, D. Zhang, P. Zhao, Z. Chen, E.-Q. Qin, Y. Gao, M. M. Davis, P. Yang, Single-cell epigenomic landscape of peripheral immune cells reveals establishment of trained immunity in individuals convalescing from COVID-19. Nat. Cell Biol. 23, 620–630 (2021).
63
C. D. Scharer, E. L. Blalock, T. Mi, B. G. Barwick, S. A. Jenks, T. Deguchi, K. S. Cashman, B. E. Neary, D. G. Patterson, S. L. Hicks, A. Khosroshahi, F. Eun-Hyung Lee, C. Wei, I. Sanz, J. M. Boss, Epigenetic programming underpins B cell dysfunction in human SLE. Nat. Immunol. 20, 1071–1082 (2019).
64
A. T. Satpathy, J. M. Granja, K. E. Yost, Y. Qi, F. Meschi, G. P. McDermott, B. N. Olsen, M. R. Mumbach, S. E. Pierce, M. R. Corces, P. Shah, J. C. Bell, D. Jhutty, C. M. Nemec, J. Wang, L. Wang, Y. Yin, P. G. Giresi, A. L. S. Chang, G. X. Y. Zheng, W. J. Greenleaf, H. Y. Chang, Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nat. Biotechnol. 37, 925–936 (2019).
65
S. L. Nutt, B. L. Kee, The transcriptional regulation of B cell lineage commitment. Immunity 26, 715–725 (2007).
66
S. Aibar, C. B. González-Blas, T. Moerman, V. A. Huynh-Thu, H. Imrichova, G. Hulselmans, F. Rambow, J.-C. Marine, P. Geurts, J. Aerts, J. van den Oord, Z. K. Atak, J. Wouters, S. Aerts, SCENIC: Single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).
67
N. S. Wang, L. J. McHeyzer-Williams, S. L. Okitsu, T. P. Burris, S. L. Reiner, M. G. McHeyzer-Williams, Divergent transcriptional programming of class-specific B cell memory by T-bet and RORα. Nat. Immunol. 13, 604–611 (2012).
68
Y. Ohkubo, M. Arima, E. Arguni, S. Okada, K. Yamashita, S. Asari, S. Obata, A. Sakamoto, M. Hatano, J. O-Wang, M. Ebara, H. Saisho, T. Tokuhisa, A role for c-fos/activator protein 1 in B lymphocyte terminal differentiation. J. Immunol. 174, 7703–7710 (2005).
69
N. S. De Silva, M. M. Anderson, A. Carette, K. Silva, N. Heise, G. Bhagat, U. Klein, Transcription factors of the alternative NF-κB pathway are required for germinal center B-cell development. Proc. Natl. Acad. Sci. U.S.A. 113, 9063–9068 (2016).
70
D. Langlais, L. B. Barreiro, P. Gros, The macrophage IRF8/IRF1 regulome is required for protection against infections and is associated with chronic inflammation. J. Exp. Med. 213, 585–603 (2016).
71
S. M. Downs-Canner, J. Meier, B. G. Vincent, J. S. Serody, B Cell Function in the Tumor Microenvironment. Annu. Rev. Immunol. 40, 169–193 (2022).
72
J. Ma, B. Zheng, S. Goswami, L. Meng, D. Zhang, C. Cao, T. Li, F. Zhu, L. Ma, Z. Zhang, S. Zhang, M. Duan, Q. Chen, Q. Gao, X. Zhang, PD1Hi CD8+ T cells correlate with exhausted signature and poor clinical outcome in hepatocellular carcinoma. J. Immunother. Cancer 7, 331 (2019).
73
A. Musolino, W. J. Gradishar, H. S. Rugo, J. L. Nordstrom, E. P. Rock, F. Arnaldez, M. D. Pegram, Role of Fcγ receptors in HER2-targeted breast cancer therapy. J. Immunother. Cancer 10, e003171 (2022).
74
J. J. Knox, A. Myles, M. P. Cancro, T-bet+ memory B cells: Generation, function, and fate. Immunol. Rev. 288, 149–160 (2019).
75
J. L. Johnson, R. L. Rosenthal, J. J. Knox, A. Myles, M. S. Naradikian, J. Madej, M. Kostiv, A. M. Rosenfeld, W. Meng, S. R. Christensen, S. E. Hensley, J. Yewdell, D. H. Canaday, J. Zhu, A. B. McDermott, Y. Dori, M. Itkin, E. J. Wherry, N. Pardi, D. Weissman, A. Naji, E. T. L. Prak, M. R. Betts, M. P. Cancro, The Transcription Factor T-bet Resolves Memory B Cell Subsets with Distinct Tissue Distributions and Antibody Specificities in Mice and Humans. Immunity 52, 842–855.e6 (2020).
76
W. Song, O. Q. Antao, E. Condiff, G. M. Sanchez, I. Chernova, K. Zembrzuski, H. Steach, K. Rubtsova, D. Angeletti, A. Lemenze, B. J. Laidlaw, J. Craft, J. S. Weinstein, Development of Tbet- and CD11c-expressing B cells in a viral infection requires T follicular helper cells outside of germinal centers. Immunity 55, 290–307.e5 (2022).
77
W. Ise, M. Kohyama, B. U. Schraml, T. Zhang, B. Schwer, U. Basu, F. W. Alt, J. Tang, E. M. Oltz, T. L. Murphy, K. M. Murphy, The transcription factor BATF controls the global regulators of class-switch recombination in both B cells and T cells. Nat. Immunol. 12, 536–543 (2011).
78
B. Daniel, K. E. Yost, S. Hsiung, K. Sandor, Y. Xia, Y. Qi, K. J. Hiam-Galvez, M. Black, C. J. Raposo, Q. Shi, S. L. Meier, J. A. Belk, J. R. Giles, E. J. Wherry, H. Y. Chang, T. Egawa, A. T. Satpathy, Divergent clonal differentiation trajectories of T cell exhaustion. Nat. Immunol. 23, 1614–1627 (2022).
79
J. Calderaro, F. Petitprez, E. Becht, A. Laurent, T. Z. Hirsch, B. Rousseau, A. Luciani, G. Amaddeo, J. Derman, C. Charpy, J. Zucman-Rossi, W. H. Fridman, C. Sautès-Fridman, Intra-tumoral tertiary lymphoid structures are associated with a low risk of early recurrence of hepatocellular carcinoma. J. Hepatol. 70, 58–65 (2019).
80
M. Meylan, F. Petitprez, L. Lacroix, L. Di Tommaso, M. Roncalli, A. Bougoüin, A. Laurent, G. Amaddeo, D. Sommacale, H. Regnault, J. Derman, C. Charpy, F. Lafdil, J.-M. Pawlotsky, C. Sautès-Fridman, W. H. Fridman, J. Calderaro, Early Hepatic Lesions Display Immature Tertiary Lymphoid Structures and Show Elevated Expression of Immune Inhibitory and Immunosuppressive Molecules. Clin. Cancer Res. 26, 4381–4389 (2020).
81
K. Siliņa, A. Soltermann, F. M. Attar, R. Casanova, Z. M. Uckeley, H. Thut, M. Wandres, S. Isajevs, P. Cheng, A. Curioni-Fontecedro, P. Foukas, M. P. Levesque, H. Moch, A. Linē, M. van den Broek, Germinal Centers Determine the Prognostic Relevance of Tertiary Lymphoid Structures and Are Impaired by Corticosteroids in Lung Squamous Cell Carcinoma. Cancer Res. 78, 1308–1320 (2018).
82
A. J. Gunderson, V. Rajamanickam, C. Bui, B. Bernard, J. Pucilowska, C. Ballesteros-Merino, M. Schmidt, K. McCarty, M. Philips, B. Piening, C. Dubay, T. Medler, P. Newell, P. Hansen, E. Tran, E. Tang, C. Bifulco, M. Crittenden, M. Gough, K. H. Young, Germinal center reactions in tertiary lymphoid structures associate with neoantigen burden, humoral immunity and long-term survivorship in pancreatic cancer. OncoImmunology 10, 1900635 (2021).
83
L. M. Kelly, J. P. Pereira, T. Yi, Y. Xu, J. G. Cyster, EBI2 guides serial movements of activated B cells and ligand activity is detectable in lymphoid and nonlymphoid tissues. J. Immunol. 187, 3026–3032 (2011).
84
K. Miyauchi, A. Sugimoto-Ishige, Y. Harada, Y. Adachi, Y. Usami, T. Kaji, K. Inoue, H. Hasegawa, T. Watanabe, A. Hijikata, S. Fukuyama, T. Maemura, M. Okada-Hatakeyama, O. Ohara, Y. Kawaoka, Y. Takahashi, T. Takemori, M. Kubo, Protective neutralizing influenza antibody response in the absence of T follicular helper cells. Nat. Immunol. 17, 1447–1458 (2016).
85
T. Chu, Z. Wang, D. Pe’er, C. G. Danko, Cell type and gene expression deconvolution with BayesPrism enables Bayesian integrative analysis across bulk and single-cell RNA sequencing in oncology. Nat. Cancer 3, 505–517 (2022).
86
D. A. Rao, M. F. Gurish, J. L. Marshall, K. Slowikowski, C. Y. Fonseka, Y. Liu, L. T. Donlin, L. A. Henderson, K. Wei, F. Mizoguchi, N. C. Teslovich, M. E. Weinblatt, E. M. Massarotti, J. S. Coblyn, S. M. Helfgott, Y. C. Lee, D. J. Todd, V. P. Bykerk, S. M. Goodman, A. B. Pernis, L. B. Ivashkiv, E. W. Karlson, P. A. Nigrovic, A. Filer, C. D. Buckley, J. A. Lederer, S. Raychaudhuri, M. B. Brenner, Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542, 110–114 (2017).
87
A. V. Bocharnikov, J. Keegan, V. S. Wacleche, Y. Cao, C. Y. Fonseka, G. Wang, E. S. Muise, K. X. Zhang, A. Arazi, G. Keras, Z. J. Li, Y. Qu, M. F. Gurish, M. Petri, J. P. Buyon, C. Putterman, D. Wofsy, J. A. James, J. M. Guthridge, B. Diamond, J. H. Anolik, M. F. Mackey, S. E. Alves, P. A. Nigrovic, K. H. Costenbader, M. B. Brenner, J. A. Lederer, D. A. Rao, Accelerating Medicines Partnership (AMP) RA/SLE Network, PD-1hiCXCR5- T peripheral helper cells promote B cell responses in lupus via MAF and IL-21. JCI Insight 4, e130062 (2019).
88
S. Jin, C. F. Guerrero-Juarez, L. Zhang, I. Chang, R. Ramos, C.-H. Kuan, P. Myung, M. V. Plikus, Q. Nie, Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088 (2021).
89
Y. Wu, S. Yang, J. Ma, Z. Chen, G. Song, D. Rao, Y. Cheng, S. Huang, Y. Liu, S. Jiang, J. Liu, X. Huang, X. Wang, S. Qiu, J. Xu, R. Xi, F. Bai, J. Zhou, J. Fan, X. Zhang, Q. Gao, Spatiotemporal Immune Landscape of Colorectal Cancer Liver Metastasis at Single-Cell Level. Cancer Discov. 12, 134–153 (2022).
90
D. Klysz, X. Tai, P. A. Robert, M. Craveiro, G. Cretenet, L. Oburoglu, C. Mongellaz, S. Floess, V. Fritz, M. I. Matias, C. Yong, N. Surh, J. C. Marie, J. Huehn, V. Zimmermann, S. Kinet, V. Dardalhon, N. Taylor, Glutamine-dependent α-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci. Signal. 8, ra97 (2015).
91
M. O. Johnson, M. M. Wolf, M. Z. Madden, G. Andrejeva, A. Sugiura, D. C. Contreras, D. Maseda, M. V. Liberti, K. Paz, R. J. Kishton, M. E. Johnson, A. A. de Cubas, P. Wu, G. Li, Y. Zhang, D. C. Newcomb, A. D. Wells, N. P. Restifo, W. K. Rathmell, J. W. Locasale, M. L. Davila, B. R. Blazar, J. C. Rathmell, Distinct Regulation of Th17 and Th1 Cell Differentiation by Glutaminase-Dependent Metabolism. Cell 175, 1780–1795.e19 (2018).
92
I. Elia, M. C. Haigis, Metabolites and the tumour microenvironment: From cellular mechanisms to systemic metabolism. Nat. Metab. 3, 21–32 (2021).
93
A. Hirayama, K. Kami, M. Sugimoto, M. Sugawara, N. Toki, H. Onozuka, T. Kinoshita, N. Saito, A. Ochiai, M. Tomita, H. Esumi, T. Soga, Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res. 69, 4918–4925 (2009).
94
D. Chen, Y. Wang, G. K. Manakkat Vijay, S. Fu, C. W. Nash, D. Xu, D. He, N. Salomonis, H. Singh, H. Xu, Coupled analysis of transcriptome and BCR mutations reveals role of OXPHOS in affinity maturation. Nat. Immunol. 22, 904–913 (2021).
95
P. S. Liu, Y.-T. Chen, X. Li, P.-C. Hsueh, S.-F. Tzeng, H. Chen, P.-Z. Shi, X. Xie, S. Parik, M. Planque, S.-M. Fendt, P.-C. Ho, CD40 signal rewires fatty acid and glutamine metabolism for stimulating macrophage anti-tumorigenic functions. Nat. Immunol. 24, 452–462 (2023).
96
T. Xu, K. M. Stewart, X. Wang, K. Liu, M. Xie, J. K. Ryu, K. Li, T. Ma, H. Wang, L. Ni, S. Zhu, N. Cao, D. Zhu, Y. Zhang, K. Akassoglou, C. Dong, E. M. Driggers, S. Ding, Metabolic control of TH17 and induced Treg cell balance by an epigenetic mechanism. Nature 548, 228–233 (2017).
97
T. C. Bruno, P. J. Ebner, B. L. Moore, O. G. Squalls, K. A. Waugh, E. B. Eruslanov, S. Singhal, J. D. Mitchell, W. A. Franklin, D. T. Merrick, M. D. McCarter, B. E. Palmer, J. A. Kern, J. E. Slansky, Antigen-Presenting Intratumoral B Cells Affect CD4+ TIL Phenotypes in Non-Small Cell Lung Cancer Patients. Cancer Immunol. Res. 5, 898–907 (2017).
98
W. Hugo, J. M. Zaretsky, L. Sun, C. Song, B. H. Moreno, S. Hu-Lieskovan, B. Berent-Maoz, J. Pang, B. Chmielowski, G. Cherry, E. Seja, S. Lomeli, X. Kong, M. C. Kelley, J. A. Sosman, D. B. Johnson, A. Ribas, R. S. Lo, Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma. Cell 165, 35–44 (2016).
99
A. Prat, A. Navarro, L. Paré, N. Reguart, P. Galván, T. Pascual, A. Martínez, P. Nuciforo, L. Comerma, L. Alos, N. Pardo, S. Cedrés, C. Fan, J. S. Parker, L. Gaba, I. Victoria, N. Viñolas, A. Vivancos, A. Arance, E. Felip, Immune-Related Gene Expression Profiling After PD-1 Blockade in Non-Small Cell Lung Carcinoma, Head and Neck Squamous Cell Carcinoma, and Melanoma. Cancer Res. 77, 3540–3550 (2017).
100
C. Gregoire, L. Spinelli, S. Villazala-Merino, L. Gil, M. P. Holgado, M. Moussa, C. Dong, A. Zarubica, M. Fallet, J.-M. Navarro, B. Malissen, P. Milpied, M. Gaya, Viral infection engenders bona fide and bystander subsets of lung-resident memory B cells through a permissive mechanism. Immunity 55, 1216–1233.e9 (2022).
101
Q. Hu, Y. Hong, P. Qi, G. Lu, X. Mai, S. Xu, X. He, Y. Guo, L. Gao, Z. Jing, J. Wang, T. Cai, Y. Zhang, Atlas of breast cancer infiltrated B-lymphocytes revealed by paired single-cell RNA-sequencing and antigen receptor profiling. Nat. Commun. 12, 2186 (2021).
102
J. Qian, S. Olbrecht, B. Boeckx, H. Vos, D. Laoui, E. Etlioglu, E. Wauters, V. Pomella, S. Verbandt, P. Busschaert, A. Bassez, A. Franken, M. V. Bempt, J. Xiong, B. Weynand, Y. van Herck, A. Antoranz, F. M. Bosisio, B. Thienpont, G. Floris, I. Vergote, A. Smeets, S. Tejpar, D. Lambrechts, A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling. Cell Res. 30, 745–762 (2020).
103
H. Li, J. Wang, H. Liu, T. Lan, L. Xu, G. Wang, K. Yuan, H. Wu, Existence of intratumoral tertiary lymphoid structures is associated with immune cells infiltration and predicts better prognosis in early-stage hepatocellular carcinoma. Aging (Albany NY) 12, 3451–3472 (2020).
104
L. Vanhersecke, M. Brunet, J.-P. Guégan, C. Rey, A. Bougouin, S. Cousin, S. L. Moulec, B. Besse, Y. Loriot, M. Larroquette, I. Soubeyran, M. Toulmonde, G. Roubaud, S. Pernot, M. Cabart, F. Chomy, C. Lefevre, K. Bourcier, M. Kind, I. Giglioli, C. Sautès-Fridman, V. Velasco, F. Courgeon, E. Oflazoglu, A. Savina, A. Marabelle, J.-C. Soria, C. Bellera, C. Sofeu, A. Bessede, W. H. Fridman, F. L. Loarer, A. Italiano, Mature tertiary lymphoid structures predict immune checkpoint inhibitor efficacy in solid tumors independently of PD-L1 expression. Nat. Cancer 2, 794–802 (2021).
105
N. Horeweg, H. H. Workel, D. Loiero, D. N. Church, L. Vermij, A. Léon-Castillo, R. T. Krog, S. M. de Boer, R. A. Nout, M. E. Powell, L. R. Mileshkin, H. MacKay, A. Leary, N. Singh, I. M. Jürgenliemk-Schulz, V. T. H. B. M. Smit, C. L. Creutzberg, V. H. Koelzer, H. W. Nijman, T. Bosse, M. de Bruyn, TransPORTEC consortium, Tertiary lymphoid structures critical for prognosis in endometrial cancer patients. Nat. Commun. 13, 1373 (2022).
106
F. Posch, K. Silina, S. Leibl, A. Mündlein, H. Moch, A. Siebenhüner, P. Samaras, J. Riedl, M. Stotz, J. Szkandera, H. Stöger, M. Pichler, R. Stupp, M. van den Broek, P. Schraml, A. Gerger, U. Petrausch, T. Winder, Maturation of tertiary lymphoid structures and recurrence of stage II and III colorectal cancer. OncoImmunology 7, e1378844 (2017).
107
C. D. Buckley, F. Barone, S. Nayar, C. Bénézech, J. Caamaño, Stromal cells in chronic inflammation and tertiary lymphoid organ formation. Annu. Rev. Immunol. 33, 715–745 (2015).
108
C. Cui, J. Wang, E. Fagerberg, P.-M. Chen, K. A. Connolly, M. Damo, J. F. Cheung, T. Mao, A. S. Askari, S. Chen, B. Fitzgerald, G. G. Foster, S. C. Eisenbarth, H. Zhao, J. Craft, N. S. Joshi, Neoantigen-driven B cell and CD4 T follicular helper cell collaboration promotes anti-tumor CD8 T cell responses. Cell 184, 6101–6118.e13 (2021).
109
M. C. Woodruff, R. P. Ramonell, N. S. Haddad, F. A. Anam, M. E. Rudolph, T. A. Walker, A. D. Truong, A. N. Dixit, J. E. Han, M. Cabrera-Mora, M. C. Runnstrom, R. Bugrovsky, J. Hom, E. C. Connolly, I. Albizua, V. Javia, K. S. Cashman, D. C. Nguyen, S. Kyu, A. Singh Saini, M. Piazza, C. M. Tipton, A. Khosroshahi, G. Gibson, G. S. Martin, C. L. Maier, A. Esper, S. A. Jenks, F. E.-H. Lee, I. Sanz, Dysregulated naive B cells and de novo autoreactivity in severe COVID-19. Nature 611, 139–147 (2022).
110
M. Rakaee, T. K. Kilvaer, S. Jamaly, T. Berg, E.-E. Paulsen, M. Berglund, E. Richardsen, S. Andersen, S. Al-Saad, M. Poehl, F. Pezzella, D. J. Kwiatkowski, R. M. Bremnes, L. R. Busund, T. Donnem, Tertiary lymphoid structure score: A promising approach to refine the TNM staging in resected non-small cell lung cancer. Br. J. Cancer 124, 1680–1689 (2021).
111
J. Lv, Y. Wei, J.-H. Yin, Y.-P. Chen, G.-Q. Zhou, C. Wei, X.-Y. Liang, Y. Zhang, C.-J. Zhang, S.-W. He, Q.-M. He, Z.-L. Huang, J.-L. Guan, J.-Y. Shen, X.-M. Li, J.-Y. Li, W.-F. Li, L.-L. Tang, Y.-P. Mao, R. Guo, R. Sun, Y.-H. Zheng, W.-W. Zhou, K.-X. Xiong, S.-Q. Wang, X. Jin, N. Liu, G.-B. Li, D.-M. Kuang, Y. Sun, J. Ma, The tumor immune microenvironment of nasopharyngeal carcinoma after gemcitabine plus cisplatin treatment. Nat. Med. 29, 1424–1436 (2023).
112
L. Gong, D. L.-W. Kwong, W. Dai, P. Wu, S. Li, Q. Yan, Y. Zhang, B. Zhang, X. Fang, L. Liu, M. Luo, B. Liu, L. K.-Y. Chow, Q. Chen, J. Huang, V. H.-F. Lee, K.-O. Lam, A. W.-I. Lo, Z. Chen, Y. Wang, A. W.-M. Lee, X.-Y. Guan, Comprehensive single-cell sequencing reveals the stromal dynamics and tumor-specific characteristics in the microenvironment of nasopharyngeal carcinoma. Nat. Commun. 12, 1540 (2021).
113
J. A. Roco, L. Mesin, S. C. Binder, C. Nefzger, P. Gonzalez-Figueroa, P. F. Canete, J. Ellyard, Q. Shen, P. A. Robert, J. Cappello, H. Vohra, Y. Zhang, C. R. Nowosad, A. Schiepers, L. M. Corcoran, K.-M. Toellner, J. M. Polo, M. Meyer-Hermann, G. D. Victora, C. G. Vinuesa, Class-Switch Recombination Occurs Infrequently in Germinal Centers. Immunity 51, 337–350.e7 (2019).
114
J. Jellusova, Metabolic control of B cell immune responses. Curr. Opin. Immunol. 63, 21–28 (2020).
115
W. G. Kaelin Jr, S. L. McKnight, Influence of metabolism on epigenetics and disease. Cell 153, 56–69 (2013).
116
S. H. Cho, A. L. Raybuck, K. Stengel, M. Wei, T. C. Beck, E. Volanakis, J. W. Thomas, S. Hiebert, V. H. Haase, M. R. Boothby, Germinal centre hypoxia and regulation of antibody qualities by a hypoxia response system. Nature 537, 234–238 (2016).
117
M. H. Sumikawa, S. Iwata, M. Zhang, H. Miyata, M. Ueno, Y. Todoroki, A. Nagayasu, R. Kanda, K. Sonomoto, K. Torimoto, S. Lee, S. Nakayamada, K. Yamamoto, Y. Okada, Y. Tanaka, An enhanced mitochondrial function through glutamine metabolism in plasmablast differentiation in systemic lupus erythematosus. Rheumatology (Oxford) 61, 3049–3059 (2022).
118
J. Ma, Y. Wu, L. Ma, Processed data for the paper ‘A blueprint for tumor-infiltrating B cells across human cancers,’ Zenodo (2024);
119
A. Butler, P. Hoffman, P. Smibert, E. Papalexi, R. Satija, Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).
120
S. C. van den Brink, F. Sage, Á. Vértesy, B. Spanjaard, J. Peterson-Maduro, C. S. Baron, C. Robin, A. van Oudenaarden, Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat. Methods 14, 935–936 (2017).
121
N. T. Gupta, J. A. Vander Heiden, M. Uduman, D. Gadala-Maria, G. Yaari, S. H. Kleinstein, Change-O: A toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data. Bioinformatics 31, 3356–3358 (2015).
122
J. N. Stern, G. Yaari, J. A. Vander Heiden, G. Church, W. F. Donahue, R. Q. Hintzen, A. J. Huttner, J. D. Laman, R. M. Nagra, A. Nylander, D. Pitt, S. Ramanan, B. A. Siddiqui, F. Vigneault, S. H. Kleinstein, D. A. Hafler, K. C. O’Connor, B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes. Sci. Transl. Med. 6, 248ra107 (2014).
123
M. Delacher, M. Simon, L. Sanderink, A. Hotz-Wagenblatt, M. Wuttke, K. Schambeck, L. Schmidleithner, S. Bittner, A. Pant, U. Ritter, T. Hehlgans, D. Riegel, V. Schneider, F. K. Groeber-Becker, A. Eigenberger, C. Gebhard, N. Strieder, A. Fischer, M. Rehli, P. Hoffmann, M. Edinger, T. Strowig, J. Huehn, C. Schmidl, J. M. Werner, L. Prantl, B. Brors, C. D. Imbusch, M. Feuerer, Single-cell chromatin accessibility landscape identifies tissue repair program in human regulatory T cells. Immunity 54, 702–720.e17 (2021).
124
J. M. Granja, M. R. Corces, S. E. Pierce, S. T. Bagdatli, H. Choudhry, H. Y. Chang, W. J. Greenleaf, ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat. Genet. 53, 403–411 (2021).
125
A. N. Schep, B. Wu, J. D. Buenrostro, W. J. Greenleaf, chromVAR: Inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat. Methods 14, 975–978 (2017).
126
D. Aran, Z. Hu, A. J. Butte, xCell: Digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 18, 220 (2017).
127
E. Becht, N. A. Giraldo, L. Lacroix, B. Buttard, N. Elarouci, F. Petitprez, J. Selves, P. Laurent-Puig, C. Sautès-Fridman, W. H. Fridman, A. de Reyniès, Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 17, 218 (2016).
128
F. Finotello, C. Mayer, C. Plattner, G. Laschober, D. Rieder, H. Hackl, A. Krogsdam, Z. Loncova, W. Posch, D. Wilflingseder, S. Sopper, M. Ijsselsteijn, T. P. Brouwer, D. Johnson, Y. Xu, Y. Wang, M. E. Sanders, M. V. Estrada, P. Ericsson-Gonzalez, P. Charoentong, J. Balko, N. F. D. C. C. de Miranda, Z. Trajanoski, Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med. 11, 34 (2019).
129
M. S. Rooney, S. A. Shukla, C. J. Wu, G. Getz, N. Hacohen, Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015).
130
P. Danaher, S. Warren, L. Dennis, L. D’Amico, A. White, M. L. Disis, M. A. Geller, K. Odunsi, J. Beechem, S. P. Fling, Gene expression markers of Tumor Infiltrating Leukocytes. J. Immunother. Cancer 5, 18 (2017).
131
G. Bindea, B. Mlecnik, M. Tosolini, A. Kirilovsky, M. Waldner, A. C. Obenauf, H. Angell, T. Fredriksen, L. Lafontaine, A. Berger, P. Bruneval, W. H. Fridman, C. Becker, F. Pagès, M. R. Speicher, Z. Trajanoski, J. Galon, Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39, 782–795 (2013).
132
V. Bergen, M. Lange, S. Peidli, F. A. Wolf, F. J. Theis, Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).
133
F. A. Wolf, F. K. Hamey, M. Plass, J. Solana, J. S. Dahlin, B. Göttgens, N. Rajewsky, L. Simon, F. J. Theis, PAGA: Graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 20, 59 (2019).
134
C. Domínguez Conde, C. Xu, L. B. Jarvis, D. B. Rainbow, S. B. Wells, T. Gomes, S. K. Howlett, O. Suchanek, K. Polanski, H. W. King, L. Mamanova, N. Huang, P. A. Szabo, L. Richardson, L. Bolt, E. S. Fasouli, K. T. Mahbubani, M. Prete, L. Tuck, N. Richoz, Z. K. Tuong, L. Campos, H. S. Mousa, E. J. Needham, S. Pritchard, T. Li, R. Elmentaite, J. Park, E. Rahmani, D. Chen, D. K. Menon, O. A. Bayraktar, L. K. James, K. B. Meyer, N. Yosef, M. R. Clatworthy, P. A. Sims, D. L. Farber, K. Saeb-Parsy, J. L. Jones, S. A. Teichmann, Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science 376, eabl5197 (2022).
135
A. Andersson, L. Larsson, L. Stenbeck, F. Salmén, A. Ehinger, S. Z. Wu, G. Al-Eryani, D. Roden, A. Swarbrick, Å. Borg, J. Frisén, C. Engblom, J. Lundeberg, Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions. Nat. Commun. 12, 6012 (2021).
136
S. Hänzelmann, R. Castelo, J. Guinney, GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14, 7 (2013).
137
R. Vento-Tormo, M. Efremova, R. A. Botting, M. Y. Turco, M. Vento-Tormo, K. B. Meyer, J.-E. Park, E. Stephenson, K. Polański, A. Goncalves, L. Gardner, S. Holmqvist, J. Henriksson, A. Zou, A. M. Sharkey, B. Millar, B. Innes, L. Wood, A. Wilbrey-Clark, R. P. Payne, M. A. Ivarsson, S. Lisgo, A. Filby, D. H. Rowitch, J. N. Bulmer, G. J. Wright, M. J. T. Stubbington, M. Haniffa, A. Moffett, S. A. Teichmann, Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 563, 347–353 (2018).
138
H. L. Crowell, C. Soneson, P.-L. Germain, D. Calini, L. Collin, C. Raposo, D. Malhotra, M. D. Robinson, muscat detects subpopulation-specific state transitions from multi-sample multi-condition single-cell transcriptomics data. Nat. Commun. 11, 6077 (2020).

(0)eLetters 电子信件

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.
eLetters 是一个持续进行同行评审的论坛。电子信件未经编辑、校对或索引,但经过筛选。电子信件应提供有关文章的实质性和学术评论。无法提交嵌入的图形,并且我们一般不鼓励在电子信件中使用图形。如果图表是必需的,请在电子信件的文本中包含该图表的链接。请在提交电子信件之前阅读我们的服务条款。

Log In to Submit a Response

No eLetters have been published for this article yet.
本文尚未发布任何电子信件。

Recommended articles from TrendMD
TrendMD 推荐文章

  1. B cell trajectories influence cancer outcomes
    B 细胞轨迹影响癌症结果
    Julie Tellier et al., Science, 2024
    Julie Tellier 等人,《科学》,2024
  2. Molecular signatures of antitumor neoantigen-reactive T cells from metastatic human cancers
    来自转移性人类癌症的抗肿瘤新抗原反应性 T 细胞的分子特征
    Frank J. Lowery et al., Science, 2022
    Frank J. Lowery 等人,《科学》,2022
  3. Germinal Center Survival
    生发中心生存
    Kristen L. Mueller, Sci Signal, 2010
    克里斯汀·穆勒 (Kristen L. Mueller),《科学信号》,2010
  4. Cancer Immunotherapy Based on Mutation-Specific CD4+ T Cells in a Patient with Epithelial Cancer
    基于突变特异性 CD4+ T 细胞的上皮癌患者癌症免疫治疗
    Eric Tran et al., Science, 2014
    Eric Tran 等人,《科学》,2014 年
  5. Hyperglycosylation of prosaposin in tumor dendritic cells drives immune escape
    肿瘤树突状细胞中前列腺素的高糖基化驱动免疫逃逸
    Pankaj Sharma et al., Science, 2024
    Pankaj Sharma 等人,《科学》,2024

Information & Authors

Information

Published In

Science
Volume 384 | Issue 6695
3 May 2024

Article versions

Submission history

Received: 2 July 2023
Accepted: 6 March 2024
Published in print: 3 May 2024

Permissions

Request permissions for this article.

Acknowledgments

We acknowledge and thank L. Tang and M. Wang from the Suzhou Blood Center for clinical sample collection.
We acknowledge and thank D. Li from the Shanghai Institute of Biochemistry and Cell Biology of the Chinese Academy of Sciences for helpful discussion and feedback on the manuscript. This project was supported by Shanghai Municipal Science and Technology Major Project. Funding: This project was supported by the National Natural Science Foundation of China (nos. 82130077, 81961128025, 82121002, 31930028, 82203643, and 82273187) to Q.G., G.J.G., and G.H.S.; the Research Projects from the Science and Technology Commission of Shanghai Municipality (nos. 21JC1410100, 21JC1401200, 20JC1418900, 20YF1407400, 22490760100, and 23XD1404300) to J.F., Q.G., S.Z., and X.M.Z.; the Strategic Priority Research Program of Chinese Academy of Sciences (no. XDPB0303) to X.M.Z.; and the Shanghai Municipal Science and Technology Major Project to Q.G.
Author contributions: Conceptualization: J.F., G.J.G., X.M.Z., and Q.G. Methodology: J.Q.M., Y.C.W., L.F.M., T.C.Z., X.P.Y., G.H.S., J.L., T.L., K.G., X.X.G., J.M.P., S.Z., and S.J. Investigation: J.Q.M., Y.C.W., X.P.Y., J.L., K.G., X.S., Y.M.C., X.S.L., W.C.B., D.N.R., L.H.T., M.Y.W., and D.P.H. Visualization: J.Q.M., Y.C.W., L.F.M., Z.C.C., and Y.T.F. Funding acquisition: G.H.S., G.Y.D., S.Z., J.F., G.J.G., X.M.Z., and Q.G. Project administration: J.F., G.J.G., X.M.Z., and Q.G. Supervision: J.F., G.J.G., and X.M.Z., and Q.G. Resources: C.H. and S.S. Writing – original draft: J.Q.M., Y.C.W., L.F.M., G.J.G., X.M.Z., and Q.G. Writing – review and editing: J.Q.M., Y.C.W., L.F.M., T.C.Z., G.H.S., J.L., T.L., K.G., X.S., Y.M.C., X.S.L., Z.C.C., S.J., D.N.R., J.M.P., S.Z., J.Z., C.H., S.S., J.F., G.J.G., X.M.Z., and Q.G.
Competing interests: The authors declare that they have no competing interests.
Data and materials availability: All data presented in the paper are shown in the paper and/or in the supplementary materials. Sequencing datasets including scRNA-seq, scBCR-seq, and scATAC-seq are available at the National Genomics Data Center (accession no. PRJCA020880), and processed gene expression data can be downloaded at Cancer B cell blueprint (http://pancancer.cn/B/) and Zenodo (118). Codes used for data analysis are available at GitHub (https://github.com/ma-jq/B).
License information: Copyright © 2024 the authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original US government works. https://www.science.org/about/science-licenses-journal-article-reuse

Authors

Affiliations

Funding Information

Shanghai Municipal Science and Technology Major Project: 2019SHZDZX02
Strategic Priority Research Program of Chinese Academy of Sciences: XDPB0303
Shanghai Municipal Science and Technology Major Project: XDPB0303

Notes

*
Corresponding author. Email: gaoqiang@fudan.edu.cn (Q.G.); xmzhang@ips.ac.cn (X.Z.); ggj@zju.edu.cn (G.G.); fan.jia@zs-hospital.sh.cn (J.F.)
These authors contributed equally to this work.

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

View Options

View options

PDF format

Download this article as a PDF file

Download PDF

Media

Figures

Systematic analysis of a human pan-cancer B cell atlas.
We analyzed 474,718 B cells from 269 patients across 20 cancer types using single-cell sequencing data. By combining gene expression profiles, BCR sequences, and chromatin accessibility, we investigated the diversity and plasticity of tumor-infiltrating B cells and performed a multilevel comparison of EF- and GC-responsive plasma cells among cancer types. We visualized their dynamic spatial locations along the maturation of TLSs and identified potential metabolic-epigenetic mechanisms in regulating B cell differentiation.
Fig. 1. Single-cell profiling of B cells across different human cancers.
(A) Schematics of the pan-cancer single-cell transcriptome, BCR repertoire, and chromatin accessibility of B cells. (B) Uniform manifold approximation and projection (UMAP) visualization of 15 B cell subsets. (C) Dot plot for the expression of marker genes in B cell subsets. Colors represent maximum-normalized mean expression of marker genes, and the size represents the percentage of cells expressing these genes. (D) Stacked bar plots showing the isotype distribution in the corresponding tissues within total B cells. (E) Heatmap showing the odds ratios (ORs) of B cell subset distribution in each tissue. The OR value represents the preference distribution in corresponding tissue. (F) Box plots of hypermutation frequency on the immunoglobulin H (IgH) chain of total B cells across different tissues. Data indicate median with interquartile range (IQR), and whiskers indicate minimum and maximum measurement. ****P < 0.0001. P values were determined by the two-sided Wilcoxon test.
Fig. 2. Two developmental pathways of plasma cells in human cancer.
(A) UMAP visualization of 10 PC subsets. (B) Dot plot for expression of marker genes of identified PC subsets. Color represents the maximum-normalized mean expression of cells expressing marker genes, and size represents the percentage of cells expressing these genes. (C) Heatmap showing the ORs of PC subset distribution in each tissue. The OR value represents the preference distribution in corresponding tissue. (D) Pairwise transition index (pTrans) showing BCR overlap between non-ASCs and ASCs. Top two subsets with high connection with ASCs are highlighted. (E and F) The tumor-infiltrated naïve (Bn), memory B (Bm), and atypical memory (AtM) B cells from LIHC patients were isolated by FACS and stimulated in vitro with R848, IL-2, IL-10, and IL-21 for 11 days (donor number = 3 to 7). Representative flow plot (E) and frequency (F) of ASCs in CD19+ B cells were detected by FACS. Data indicate median with IQR, and whiskers indicate minimum and maximum measurement. (G) (Top) Phylogenic lineage trees of shared clonotypes between ASC cells and AtM B cells and (bottom) between ASCs and Bm or GC B cells. Acquisition of somatic mutation is shown by a number on the branch indicating the number of mutations and branches. Putative unmutated common ancestors are indicated by a white circle. (H) Heatmap showing the pTrans between ASCs and other B cell subsets according to different cancer types. Color represents the z-score–scaled pTrans value by row. (I) Boxplots showing the somatic hypermutation (SHM) frequency of EF- and GC-derived ASCs across different tissues. Data indicate median with IQR, and whiskers indicate minimum and maximum measurement. (J) Stacked column charts showing the frequencies of IGH isotypes in EF- and GC-derived ASCs across different tissues. (K) CSR frequencies of EF-derived (up) and GC-derived (down) ASCs in cancer. The thickness of the line indicates the number of shared clonotypes between two Ig isotypes, and the dot size represents the clone expansion of each isotype. (L) UMAP plots showing the identification of EF- and GC-derived ASCs (top left), development order by CytoTRACE (top right), differentiation state inferred by scTour (bottom left), and differentiation state inferred by Monocle3 (bottom right). (M) Sketch map showing the differentiation paths of EF versus GC responses. The middle table summarizes the features of EF and GC in the TME. For (F) and (I), *P < 0.05, **P < 0.01, ****P < 0.0001. P values were determined by the two-sided Wilcoxon test.
Fig. 3. Single-cell epigenomic profiles of EF and GC responses in human cancer.
(A) UMAP visualization of scATAC-seq–annotated B cell subsets (top) and cancer types (bottom). (B) Heatmap of gene activity score determined by scATAC-seq of all marker genes from each subset. Color represents z-score–scaled gene expression. (C) Genome accessibility tracks of indicated signature gene loci in B cell subsets. (D) Heatmap of TF activity by SCENIC (left) and TF motif enrichment at the specific open chromatin regions (right) of the annotated B cell subsets. (E) UMAP visualization of RNA expression (top) and motif deviation scores (bottom) for B cell subsets’ specific TFs. (F) Differentially expressed TF deviation score between EF-dominant and GC-dominant cancer–derived MZB1+ PCs were calculated [log2 fold change (FC) >0.5, Benjamini-Hochberg adjusted P value <0.05, two-sided Wilcoxon test]. Ranking of TF deviation score by P-adjusted value within (red) EF-dominant versus (blue) GC-dominant cancer–derived MZB1+ PCs. (G) Schematic of differential putative regulatory TFs driving B cell differentiation from naïve B cells to PCs in (left) GC-dominant cancer and (right) EF-dominant cancer.
Fig. 4. GC-independent development of AtM B cells in human cancer.
(A) Heatmap showing the relative expression of representative genes in naïve, Bm, and AtM B cells. The color scale represents the z-score–scaled gene expression value by row, and each column represents an individual patient. (B) Representative markers of tumor-infiltrated naïve, Bm, and AtM B cells from LIHC patient were detected by FACS (n = 3). (C) Heatmap showing the detection of autoantigens’ and tumor-associated antigens’ specific IgA in the supernatant of tumor-infiltrated naive, Bm, and AtM B cells from LIHC patients after 11 days in vitro stimulation (n = 4). (D) (Left) Monocle3 trajectory analysis depicting the developmental trajectories of non-ASC, revealing (right) two major divergent trajectories (from gray skeleton line: red, path 1; blue, path 2). (Bottom right) Cells are color coded for their corresponding pseudotime. (E) Two-dimensional plots showing the dynamic expression scores for high-affinity, low-affinity, exhaustion, and CSR signatures in cells of path 1 (red) and path 2 (blue), respectively, along the inferred pseudotime. The center line indicates linear fit, and shaded lines indicate 95% confidence interval.
Fig. 5. AtM B cells aggregate in immature TLS and are induced by Tph via the IL-21–IL-21R axis.
(A) Representative mIHC staining of CD20, CD3, and fDC [CD21 (long isoform), CD23, and CD35] for the maturity of TLSs (first row), CD20, CD27, T-bet, and CD79a for B cell subset (second row), AtM B cells (third row), and infiltration bands of TLS (fourth row) in a COAD case. Yellow, green, purple, brown, red, and cyan arrows represent the fDC, CD3+ T cells, CD20+ B cells, CD20+CD27+ Bm, CD20+T-bet+ AtM B cells, and CD20CD79a+ ASCs, respectively. (B and C) Density of Bm and AtM B cells between immature and mature TLSs in COAD [(B), n = 6] and LIHC [(C), n = 17] revealed by mIHC. (D) The density of AtM B cells within serial bands of immature and mature TLSs in COAD (top, n = 6) and LIHC (bottom, n = 17). The dashed line indicates the interface line. The line plot represents the median with IQR. (E) The median distance of AtM to the interface between immature and mature TLS in COAD (left, n = 6) and LIHC tissue (right, n = 17). The dash line indicates the interface line. (F) Correlation of tumor-infiltrated major immune subsets with AtM B cells in LIHC patients by flow cytometry (n = 46). PCC, Pearson correlation coefficient. (G) The up-regulated ligand-receptor cross-talk between AtM B cells and T cells. The y axis represents the subsets, and the x axis represents the ligand and receptor names. The circle size represents the log-normalized P value, and the color darkness represents the mean expression of ligand and receptor. (H and I) Spatial colocation correlation (H) and representative images (I) between AtM B cell signature and TLS or PD1HiCD4+ Tph in 81 spatial transcriptomics datasets from nine cancer types. Correlation was computed by Spearman rho. Data sources and accessions are summarized in table S4. (J) Representative mIHC staining showing colocation of PD1HiCD4+ Tph and AtM B cells in LIHC tumor tissue. Green, yellow, red, and cyan arrows represent the PD1HiCD4+ Tph, CD20+T-bet+ AtM B cells, and CD20-CD138+ PCs, respectively. (K) (Left) Infiltrating density and (right) frequency of PD1HiCD4+ Tph cells within a 20-μm radius surrounding AtM B cells in TLS and non-TLS regions of the tumor and adjacent areas from LIHC TMA (n = 180). (L and M) Tumor-infiltrated Treg, Th, and PD1HiCD4+ Tph cells were sorted and co-cultured with healthy blood B cells at ratio of 1:5 in the presence or absence of isotype and anti-IL-21R for 7 days. Representative flow plots (L) and frequencies (M) of AtM B cells were determined by FACS (n = 6 to 8). Data indicate median with IQR in (B) to (D), (E), and (K), and whiskers indicate minimum and maximum measurement in (H) and (M). **P < 0.01, ***P < 0.001, ****P < 0.0001; ns, no significance. P values were determined by the two-sided unpaired Wilcoxon test for (B) and (C), the two-sided paired Wilcoxon test for (K), and the two-sided paired Student’s t test for (M).
Fig. 6. Glutamine promotes AtM B cell differentiation to acquire immunoregulatory function.
(A) Heatmap of median metabolic pathway score (left) and average metabolic gene expression of Bm and AtM B cells across different tissue (right). Both the circle size and color of the dot plot represent the scaled metabolic score (left). The color of the heatmap represents the average metabolic gene expression (right). (B and C) Healthy blood B cells were stimulated with R848 alone or with R848 in the presence of IFNγ or glutamine or glutamine and CB839 for 4 days. (B) Representative flow plots of AtM (top) and Bm (bottom) cells were detected by FACS. (C) (Left) The frequency of Bm and AtM in CD20+ B cells and (right) the frequency of tri-methyl-histone H3 (K27) in Bm or AtM B cells were detected by FACS (n = 6 to 10). (D) The real-time oxygen consumption rate (OCR) in healthy blood B cells stimulated with phosphate-buffered saline (PBS) (control) or with R848 in presence and absence of glutamine for 24 hours and following the additions of oligomycin, FCCP, and rotenone+antimycin A (Rot/AA) (n = 4). The plot is mean ± SD. (E) Metabolic tracing analysis of 13C-labeled glutamine in healthy blood B cells stimulated with R848 for 24 hours (n = 4). Indicated labeled metabolites in R848 and glutamine-stimulated B cells were detected by MS. (F) Healthy blood B cells were stimulated with R848 alone or with R848 in the presence of IFNγ or glutamine; or glutamine and CB839; or glutamine, CB839 and DMαKG; or DMαKG for 4 days. The frequency of AtM in CD20+ B cells was detected by FACS (n = 3 to 5). (G) Chromatin accessibility heatmap showing healthy blood B cells stimulated with DPBS or R848 alone or R848 and glutamine for 4 days (n = 3). The color represents the intensity of AtM identity peaks identified in our scATAC-seq datasets. (H) Heatmap of pathway enrichment analysis of R848 alone or with R848 in the presence of glutamine-treated healthy blood B cells for 4 days (n = 3). The color represents scaled pathway enrichment score. (I and J) Representative flow plots (I) and boxplots (J) showing mTOR-signaling related phosphorylated proteins among tumor-infiltrated naïve, Bm, and AtM B cells from LIHC patients (n = 7 to 9). (K and L) Healthy blood B cells were stimulated with R848 alone or with R848 in the presence of glutamine or glutamine and rapamycin for 4 days. (K) shows representative flow plots from FMO (fluorescence minus one) (top) and experiment group (bottom), and (L) shows frequency of AtM in CD20+ B cells as determined by FACS (n = 12). (M) Healthy blood B cells were stimulated with R848 alone or with R848 in the presence of glutamine for 4 days. Stimulated B cells were collected and co-cultured with CFSE-labeled healthy blood T cells at a ratio of 2:1 in the presence of CD3/CD28 beads for 3 days. The frequency of proliferated CD4+ and CD8+ T cells was determined by flow cytometry (n = 12). (N) Healthy blood B cells were stimulated with R848 alone or with R848 in the presence of glutamine for 4 days. Stimulated B cells were collected and co-cultured with healthy blood T cells at ratio of 2:1 in the presence of CD3/CD28 beads for 5 days. The frequency of cytotoxic CD4+ and CD8+ T cells and the frequency of Tregs in CD4+ T cells were determined by flow cytometry (n = 13). (O) Kaplan-Meier plot for overall survival according to the frequency of Bm and AtM B cells in CD20+ B cells from COAD (n = 98, top) and LIHC (n = 358, bottom) patients. (P) Response rates (left) and overall survival (right) of SKCM patients (98) treated by anti-PD1, stratified on the basis of Bm and AtM B cells’ signature score (n = 26). CR, complete response; PR, partial response; PD, progressive disease; SD, stable disease. (Q) Kaplan-Meier plot for progression-free survival of LC patients (99) treated by anti-PD1, stratified on the basis of Bm and AtM B cells’ signature score (n = 26). Data indicate median with IQR in (C) and (M); whiskers indicate minimum and maximum measurement in (J), (L), and (N). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001; ns, no significance. P values were determined by the two-sided Wilcoxon test for (C), (D), and (F); Mann-Whitney test for (D) and (N); two-sided paired Student’s t test for (L) to (N); two-sided log-rank tests for (O) (right), (P), and (Q), and the χ2 test for (P) (left).

Multimedia

Tables

Share

Share

Share article link

Share on social media

References 参考

References

1
C. M. Laumont, B. H. Nelson, B cells in the tumor microenvironment: Multi-faceted organizers, regulators, and effectors of anti-tumor immunity. Cancer Cell 41, 466–489 (2023).

1C. M. Laumont,B. H. Nelson,肿瘤微环境中的 B 细胞:抗肿瘤免疫的多方面组织者、调节者和效应者。癌细胞 41, 466–489 (2023)。
2
C. M. Laumont, A. C. Banville, M. Gilardi, D. P. Hollern, B. H. Nelson, Tumour-infiltrating B cells: Immunological mechanisms, clinical impact and therapeutic opportunities. Nat. Rev. Cancer 22, 414–430 (2022).

2C。 M. Laumont、A. C. Banville、M. Gilardi、D. P. Hollern、B. H. Nelson,肿瘤浸润 B 细胞:免疫机制、临床影响和治疗机会。纳特。癌症杂志 22, 414–430 (2022)。
3
D. R. Glass, A. G. Tsai, J. P. Oliveria, F. J. Hartmann, S. C. Kimmey, A. A. Calderon, L. Borges, M. C. Glass, L. E. Wagar, M. M. Davis, S. C. Bendall, An Integrated Multi-omic Single-Cell Atlas of Human B Cell Identity. Immunity 53, 217–232.e5 (2020).

3D。 R. Glass、A. G. Tsai、J. P. Oliveria、F. J. Hartmann、S. C. Kimmey、A. A. Calderon、L. Borges、M. C. Glass、L. E. Wagar、M. M. Davis、S. C. Bendall,人类 B 细胞身份的综合多组学单细胞图谱。免疫 53, 217–232.e5 (2020)。
4
B. Yang, Z. Zhang, X. Chen, X.-Y. Wang, S. Qin, L. Du, C. Yang, L. Zhu, W. Sun, Y. Zhu, Q. Zheng, S. Zhao, Q. Wang, L. Zhao, Y. Lin, J. Huang, F. Wu, L. Lu, F. Wang, W. Zheng, X.-H. Zhou, X. Zhao, Z. Wang, S. Xiao-Lin, Y. Ye, S. Wang, Z. Li, H. Qi, Z. Zhang, D.-M. Kuang, L. Zhang, Z. Shen, W. Liu, An Asia-specific variant of human IgG1 represses colorectal tumorigenesis by shaping the tumor microenvironment. J. Clin. Invest. 132, e153454 (2022).

4B。杨,张,X.陈,X.-Y。王、勤、杜、杨、朱、孙、朱、郑、赵、王、赵、林、黄、 F.吴,L.卢,F.王,W.郑,X.-H。周X.赵,Z.王,S.晓林,Y.叶,S.王,Z.李,H.齐,Z.张,D.-M。 Kuang,L.Zhang,Z.Shen,W.Liu,人类 IgG1 的亚洲特异性变体通过塑造肿瘤微环境来抑制结直肠肿瘤的发生。 J.克林。投资。 132,e153454 (2022)。
5
R. D. Mazor, N. Nathan, A. Gilboa, L. Stoler-Barak, L. Moss, I. Solomonov, A. Hanuna, Y. Divinsky, M. D. Shmueli, H. Hezroni, I. Zaretsky, M. Mor, O. Golani, G. Sabah, A. Jakobson-Setton, N. Yanichkin, M. Feinmesser, D. Tsoref, L. Salman, E. Yeoshoua, E. Peretz, I. Erlich, N. M. Cohen, J. M. Gershoni, N. Freund, Y. Merbl, G. Yaari, R. Eitan, I. Sagi, Z. Shulman, Tumor-reactive antibodies evolve from non-binding and autoreactive precursors. Cell 185, 1208–1222.e21 (2022).

5R。 D. Mazor、N. Nathan、A. Gilboa、L. Stoler-Barak、L. Moss、I. Solomonov、A. Hanuna、Y. Divinsky、M. D. Shmueli、H. Hezroni、I. Zaretsky、M. Mor、O . Golani、G. Sabah、A. Jakobson-Setton、N. Yanichkin、M. Feinmesser、D. Tsoref、L. Salman、E. Yeoshoua、E. Peretz、I. Erlich、N. M. Cohen、J. M. Gershoni、N. Freund ,Y. Merbl,G. Yaari,R. Eitan,I. Sagi,Z. Shulman,肿瘤反应性抗体从非结合和自身反应性前体进化而来。单元格 185, 1208–1222.e21 (2022)。
6
Y. Lu, Q. Zhao, J.-Y. Liao, E. Song, Q. Xia, J. Pan, Y. Li, J. Li, B. Zhou, Y. Ye, C. Di, S. Yu, Y. Zeng, S. Su, Complement Signals Determine Opposite Effects of B Cells in Chemotherapy-Induced Immunity. Cell 180, 1081–1097.e24 (2020).

6Y。卢庆,赵建宇。廖,E. Song,Q. Xia,J. Pan,Y. Li,J. Li,B. Zhou,Y. Ye,C. Di,S. Yu,Y. Zeng,S. Su,补体信号确定相反B 细胞在化疗诱导免疫中的作用。单元格 180, 1081–1097.e24 (2020)。
7
M. Meylan, F. Petitprez, E. Becht, A. Bougoüin, G. Pupier, A. Calvez, I. Giglioli, V. Verkarre, G. Lacroix, J. Verneau, C.-M. Sun, P. Laurent-Puig, Y.-A. Vano, R. Elaïdi, A. Méjean, R. Sanchez-Salas, E. Barret, X. Cathelineau, S. Oudard, C.-A. Reynaud, A. de Reyniès, C. Sautès-Fridman, W. H. Fridman, Tertiary lymphoid structures generate and propagate anti-tumor antibody-producing plasma cells in renal cell cancer. Immunity 55, 527–541.e5 (2022).

7M。 Meylan、F. Petitprez、E. Becht、A. Bougoüin、G. Pupier、A. Calvez、I. Giglioli、V. Verkarre、G. Lacroix、J. Verneau、C.-M。 Sun,P. Laurent-Puig,Y.-A。 Vano、R. Elaïdi、A. Méjean、R. Sanchez-Salas、E. Barret、X. Cathelineau、S. Oudard、C.-A. Reynaud、A. de Reyniès、C. Sautès-Fridman、W. H. Fridman,肾细胞癌中第三淋巴结构生成并传播产生抗肿瘤抗体的浆细胞。免疫 55, 527–541.e5 (2022)。
8
G. Y. Ding, J.-Q. Ma, J.-P. Yun, X. Chen, Y. Ling, S. Zhang, J.-Y. Shi, Y.-Q. Chang, Y. Ji, X.-Y. Wang, W.-M. Tan, K.-F. Yuan, B. Yan, X.-M. Zhang, F. Liang, J. Zhou, J. Fan, Y. Zeng, M.-Y. Cai, Q. Gao, Distribution and density of tertiary lymphoid structures predict clinical outcome in intrahepatic cholangiocarcinoma. J. Hepatol. 76, 608–618 (2022).

8G。 Y.丁,J.-Q。马,J.-P。云,陈X,凌Y,张S,J.-Y。石,Y.-Q。张,Y.吉,X.-Y。王,W.-M。谭,K.-F。袁斌,严X.-M。张,梁,周,范,曾,M.-Y。 Cai,Q.Gao,三级淋巴结构的分布和密度预测肝内胆管癌的临床结果。 J.肝素。 76, 608–618 (2022)。
9
W. H. Fridman, M. Meylan, F. Petitprez, C.-M. Sun, A. Italiano, C. Sautès-Fridman, B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. Nat. Rev. Clin. Oncol. 19, 441–457 (2022).

9W。 H. Fridman、M. Meylan、F. Petitprez、C.-M。 Sun、A. Italiano、C. Sautès-Fridman,B 细胞和三级淋巴结构作为肿瘤免疫环境和临床结果的决定因素。纳特。克林牧师。安科尔。 19, 441–457 (2022)。
10
C. Sautès-Fridman, F. Petitprez, J. Calderaro, W. H. Fridman, Tertiary lymphoid structures in the era of cancer immunotherapy. Nat. Rev. Cancer 19, 307–325 (2019).

10C。 Sautès-Fridman、F. Petitprez、J. Calderaro、W. H. Fridman,癌症免疫治疗时代的第三淋巴结构。纳特。癌症杂志 19, 307–325 (2019)。
11
F. Z. Ouyang, R.-Q. Wu, Y. Wei, R.-X. Liu, D. Yang, X. Xiao, L. Zheng, B. Li, X.-M. Lao, D.-M. Kuang, Dendritic cell-elicited B-cell activation fosters immune privilege via IL-10 signals in hepatocellular carcinoma. Nat. Commun. 7, 13453 (2016).

11楼。 Z.欧阳,R.-Q。吴,Y.魏,R.-X。刘,D.杨,X.肖,L.郑,B.李,X.-M。老挝,D.-M。 Kuang,树突状细胞引发的 B 细胞激活通过 IL-10 信号在肝细胞癌中促进免疫特权。纳特。交流。 7、13453(2016)。
12
S. Y. Yang, J. Long, M.-X. Huang, P.-Y. Luo, Z.-H. Bian, Y.-F. Xu, C.-B. Wang, S.-H. Yang, L. Li, C. Selmi, M. E. Gershwin, Z.-B. Zhao, Z.-X. Lian, Characterization of Organ-Specific Regulatory B Cells Using Single-Cell RNA Sequencing. Front. Immunol. 12, 711980 (2021).

12S。 Y.杨,J.龙,M.-X。黄,P.-Y。罗,Z.-H。卞,Y.-F。徐,C.-B。王,S.-H。 Yang,L. Li,C. Selmi,M. E. Gershwin,Z.-B。赵,Z.-X。 Lian,使用单细胞 RNA 测序表征器官特异性调节 B 细胞。正面。免疫学。 12、711980 (2021)。
13
N. I. Affara, B. Ruffell, T. R. Medler, A. J. Gunderson, M. Johansson, S. Bornstein, E. Bergsland, M. Steinhoff, Y. Li, Q. Gong, Y. Ma, J. F. Wiesen, M. H. Wong, M. Kulesz-Martin, B. Irving, L. M. Coussens, B cells regulate macrophage phenotype and response to chemotherapy in squamous carcinomas. Cancer Cell 25, 809–821 (2014).

13N。 I. Affara、B. Ruffell、T. R. Medler、A. J. Gunderson、M. Johansson、S. Bornstein、E. Bergsland、M. Steinhoff、Y. Li、Q. Kong、Y. Ma、J. F. Wiesen、M. H. Wong、M. Kulesz-Martin、B. Irving、L. M. Coussens,B 细胞调节巨噬细胞表型和鳞状癌化疗反应。癌细胞 25, 809–821 (2014)。
14
Y. Wei, X.-M. Lao, X. Xiao, X.-Y. Wang, Z.-J. Wu, Q.-H. Zeng, C.-Y. Wu, R.-Q. Wu, Z.-X. Chen, L. Zheng, B. Li, D.-M. Kuang, Plasma Cell Polarization to the Immunoglobulin G Phenotype in Hepatocellular Carcinomas Involves Epigenetic Alterations and Promotes Hepatoma Progression in Mice. Gastroenterology 156, 1890–1904.e16 (2019).

14岁。魏,X.-M。劳,肖,X.-Y。王,Z.-J。吴,Q.-H。曾,C.-Y。吴,R.-Q。吴,Z.-X。陈,郑,李,D.-M。 Kuang,肝细胞癌中浆细胞极化至免疫球蛋白 G 表型涉及表观遗传改变并促进小鼠肝癌进展。胃肠病学 156, 1890–1904.e16 (2019)。
15
X. Xiao, X.-M. Lao, M.-M. Chen, R.-X. Liu, Y. Wei, F.-Z. Ouyang, D.-P. Chen, X.-Y. Zhao, Q. Zhao, X.-F. Li, C.-L. Liu, L. Zheng, D.-M. Kuang, PD-1hi Identifies a Novel Regulatory B-cell Population in Human Hepatoma That Promotes Disease Progression. Cancer Discov. 6, 546–559 (2016).

15X。肖,X.-M。老挝,M.-M。陈,R.-X。刘玉伟,F.-Z。欧阳,D.-P。陈,X.-Y。赵,Q. 赵X.-F。李,C.-L。刘,郑,D.-M。 Kuang,PD-1hi 鉴定出人类肝癌中一种可促进疾病进展的新型调节性 B 细胞群。癌症发现。 6、546-559(2016)。
16
H. W. King, N. Orban, J. C. Riches, A. J. Clear, G. Warnes, S. A. Teichmann, L. K. James, Single-cell analysis of human B cell maturation predicts how antibody class switching shapes selection dynamics. Sci. Immunol. 6, eabe6291 (2021).

16点。 W. King、N. Orban、J. C. Riches、A. J. Clear、G. Warnes、S. A. Teichmann、L. K. James,人类 B 细胞成熟的单细胞分析预测抗体类别转换如何塑造选择动态。科学。免疫学。 6、eabe6291(2021)。
17
D. Hao, G. Han, A. Sinjab, L. I. Gomez-Bolanos, R. Lazcano, A. Serrano, S. D. Hernandez, E. Dai, X. Cao, J. Hu, M. Dang, R. Wang, Y. Chu, X. Song, J. Zhang, E. R. Parra, J. A. Wargo, S. G. Swisher, T. Cascone, B. Sepesi, A. P. Futreal, M. Li, S. M. Dubinett, J. Fujimoto, L. M. Solis Soto, I. I. Wistuba, C. S. Stevenson, A. Spira, S. Shalapour, H. Kadara, L. Wang, The Single-Cell Immunogenomic Landscape of B and Plasma Cells in Early-Stage Lung Adenocarcinoma. Cancer Discov. 12, 2626–2645 (2022).

17D。郝,G. Han,A. Sinjab,L. I. Gomez-Bolanos,R. Lazcano,A. Serrano,S. D. Hernandez,E. Dai,X. Cao,J. Hu,M. Dang,R. Wang,Y. Chu, X. Song、J. 张、E. R. Parra、J. A. Wargo、S. G. Swisher、T. Cascone、B. Sepesi、A. P. Futreal、M. Li、S. M. Dubinett、J. Fujimoto、L. M. Solis Soto、I. I. Wistuba、C. S. Stevenson、A . Spira, S. Shalapour, H. Kadara, L. Wang,早期肺腺癌中 B 细胞和浆细胞的单细胞免疫基因组景观。癌症发现。 12, 2626–2645 (2022)。
18
M. C. Woodruff, R. P. Ramonell, D. C. Nguyen, K. S. Cashman, A. S. Saini, N. S. Haddad, A. M. Ley, S. Kyu, J. C. Howell, T. Ozturk, S. Lee, N. Suryadevara, J. B. Case, R. Bugrovsky, W. Chen, J. Estrada, A. Morrison-Porter, A. Derrico, F. A. Anam, M. Sharma, H. M. Wu, S. N. Le, S. A. Jenks, C. M. Tipton, B. Staitieh, J. L. Daiss, E. Ghosn, M. S. Diamond, R. H. Carnahan, J. E. Crowe Jr., W. T. Hu, F. E.-H. Lee, I. Sanz, Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat. Immunol. 21, 1506–1516 (2020).

18M。 C. Woodruff、R. P. Ramonell、D. C. Nguyen、K. S. Cashman、A. S. Saini、N. S. Haddad、A. M. Ley、S. Kyu、J. C. Howell、T. Ozturk、S. Lee、N. Suryadevara、J. B. Case、R. Bugrovsky、W. Chen、J. Estrada、A. Morrison-Porter、A. Derrico、F. A. Anam、M. Sharma、H. M. Wu、S. N. Le、S. A. Jenks、C. M. Tipton、B. Staitieh、J. L. Daiss、E. Ghosn、M. S. Diamond、R. H. Carnahan,J. E. Crowe Jr.,W. T. Hu,F. E.-H。 Lee, I. Sanz,滤泡外 B 细胞反应与中和抗体和 COVID-19 发病率相关。纳特。免疫学。 21, 1506–1516 (2020)。
19
J. W. Austin, C. M. Buckner, L. Kardava, W. Wang, X. Zhang, V. A. Melson, R. G. Swanson, A. J. Martins, J. Q. Zhou, K. B. Hoehn, J. N. Fisk, Y. Dimopoulos, A. Chassiakos, S. O’Dell, M. G. Smelkinson, C. A. Seamon, R. W. Kwan, M. C. Sneller, S. Pittaluga, N. A. Doria-Rose, A. McDermott, Y. Li, T.-W. Chun, S. H. Kleinstein, J. S. Tsang, C. Petrovas, S. Moir, Overexpression of T-bet in HIV infection is associated with accumulation of B cells outside germinal centers and poor affinity maturation. Sci. Transl. Med. 11, eaax0904 (2019).

19J。 W. Austin、C. M. Buckner、L. Kardava、W. Wang、X. Zhang、V. A. Melson、R. G. Swanson、A. J. Martins、J. Q. Zhou、K. B. Hoehn、J. N. Fisk、Y. Dimopoulos、A. Chassiakos、S. O'Dell 、M. G. Smelkinson、C. A. Seamon、R. W. Kwan、M. C. Sneller、S. Pittaluga、N. A. Doria-Rose、A. McDermott、Y. Li、T.-W. Chun, S. H. Kleinstein, J. S. Tsang, C. Petrovas, S. Moir,HIV 感染中 T-bet 的过度表达与生发中心外 B 细胞的积累和亲和力成熟不良有关。科学。译。医学。 11、eaax0904(2019)。
20
M. P. Cancro, Age-Associated B Cells. Annu. Rev. Immunol. 38, 315–340 (2020).

20M。 P. Cancro,年龄相关 B 细胞。安努。免疫学牧师。 38, 315–340 (2020)。
21
C. Wu, Q. Fu, Q. Guo, S. Chen, S. Goswami, S. Sun, T. Li, X. Cao, F. Chu, Z. Chen, M. Liu, Y. Liu, T. Fu, P. Hao, Y. Hao, N. Shen, C. Bao, X. Zhang, Lupus-associated atypical memory B cells are mTORC1-hyperactivated and functionally dysregulated. Ann. Rheum. Dis. 78, 1090–1100 (2019).

21C。吴,富,郭,陈,S. Goswami,孙,李,曹,F. Chu,Z. Chen,M. Liu,Y. Liu,T. Fu, P.Hao、Y.Hao、N.Shen、C.Bao、X.Zhang,狼疮相关的非典型记忆 B 细胞 mTORC1 过度激活且功能失调。安.感冒。迪斯。 78、1090-1100(2019)。
22
S. A. Jenks, K. S. Cashman, E. Zumaquero, U. M. Marigorta, A. V. Patel, X. Wang, D. Tomar, M. C. Woodruff, Z. Simon, R. Bugrovsky, E. L. Blalock, C. D. Scharer, C. M. Tipton, C. Wei, S. S. Lim, M. Petri, T. B. Niewold, J. H. Anolik, G. Gibson, F. E.-H. Lee, J. M. Boss, F. E. Lund, I. Sanz, Distinct Effector B Cells Induced by Unregulated Toll-like Receptor 7 Contribute to Pathogenic Responses in Systemic Lupus Erythematosus. Immunity 49, 725–739.e6 (2018).

22S。 A. Jenks、K. S. Cashman、E. Zumaquero、U. M. Marigorta、A. V. Patel、X. Wang、D. Tomar、M. C. Woodruff、Z. Simon、R. Bugrovsky、E. L. Blalock、C. D. Scharer、C. M. Tipton、C. Wei、S. S. Lim、M. Petri、T. B. Niewold、J. H. Anolik、G. Gibson、F. E.-H。 Lee, J. M. Boss, F. E. Lund, I. Sanz,不受调节的 Toll 样受体 7 诱导的独特效应 B 细胞有助于系统性红斑狼疮的致病反应。免疫 49, 725–739.e6 (2018)。
23
Y. Hao, P. O’Neill, M. S. Naradikian, J. L. Scholz, M. P. Cancro, A B-cell subset uniquely responsive to innate stimuli accumulates in aged mice. Blood 118, 1294–1304 (2011).

23Y。 hao、P. O’Neill、M. S. Naradikian、J. L. Scholz、M. P. Cancro,对先天刺激有独特反应的 B 细胞亚群在老年小鼠中积累。血 118, 1294–1304 (2011)。
24
S. Wang, J. Wang, V. Kumar, J. L. Karnell, B. Naiman, P. S. Gross, S. Rahman, K. Zerrouki, R. Hanna, C. Morehouse, N. Holoweckyj, H. Liu, Z. Manna, R. Goldbach-Mansky, S. Hasni, R. Siegel, M. Sanjuan, K. Streicher, M. P. Cancro, R. Kolbeck, R. Ettinger, Autoimmunity Molecular Medicine Team, IL-21 drives expansion and plasma cell differentiation of autoreactive CD11chiT-bet+ B cells in SLE. Nat. Commun. 9, 1758 (2018).

24S。 Wang、J. Wang、V. Kumar、J. L. Karnell、B. Naiman、P. S. Gross、S. Rahman、K. Zerrouki、R. Hanna、C. Morehouse、N. Holoweckyj、H. Liu、Z. Manna、R. Goldbach-Mansky、S. Hasni、R. Siegel、M. Sanjuan、K. Streicher、M. P. Cancro、R. Kolbeck、R. Ettinger,自身免疫分子医学团队,IL-21 驱动自身反应性 CD11c 的扩增和浆细胞分化 hi T-bet + SLE 中的 B 细胞。纳特。交流。 9, 1758 (2018)。
25
I. Korsunsky, N. Millard, J. Fan, K. Slowikowski, F. Zhang, K. Wei, Y. Baglaenko, M. Brenner, P. R. Loh, S. Raychaudhuri, Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

25I。 Korsunsky、N. Millard、J. Fan、K. Slowikowski、F. Zhang、K. Wei、Y. Baglaenko、M. Brenner、P. R. Loh、S. Raychaudhuri,利用 Harmony 快速、灵敏且准确地整合单细胞数据。纳特。方法 16, 1289–1296 (2019)。
26
R. Xue, Q. Zhang, Q. Cao, R. Kong, X. Xiang, H. Liu, M. Feng, F. Wang, J. Cheng, Z. Li, Q. Zhan, M. Deng, J. Zhu, Z. Zhang, N. Zhang, Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature 612, 141–147 (2022).

26R。薛、张、曹、孔、向、刘、冯、王、程、李、詹、邓、朱、 Z.Zhang,N.Zhang,肝脏肿瘤免疫微环境亚型和中性粒细胞异质性。自然 612, 141–147 (2022)。
27
K. Pelka, M. Hofree, J. H. Chen, S. Sarkizova, J. D. Pirl, V. Jorgji, A. Bejnood, D. Dionne, W. H. Ge, K. H. Xu, S. X. Chao, D. R. Zollinger, D. J. Lieb, J. W. Reeves, C. A. Fuhrman, M. L. Hoang, T. Delorey, L. T. Nguyen, J. Waldman, M. Klapholz, I. Wakiro, O. Cohen, J. Albers, C. S. Smillie, M. S. Cuoco, J. Wu, M. J. Su, J. Yeung, B. Vijaykumar, A. M. Magnuson, N. Asinovski, T. Moll, M. N. Goder-Reiser, A. S. Applebaum, L. K. Brais, L. K. DelloStritto, S. L. Denning, S. T. Phillips, E. K. Hill, J. K. Meehan, D. T. Frederick, T. Sharova, A. Kanodia, E. Z. Todres, J. Jané-Valbuena, M. Biton, B. Izar, C. D. Lambden, T. E. Clancy, R. Bleday, N. Melnitchouk, J. Irani, H. Kunitake, D. L. Berger, A. Srivastava, J. L. Hornick, S. Ogino, A. Rotem, S. Vigneau, B. E. Johnson, R. B. Corcoran, A. H. Sharpe, V. K. Kuchroo, K. Ng, M. Giannakis, L. T. Nieman, G. M. Boland, A. J. Aguirre, A. C. Anderson, O. Rozenblatt-Rosen, A. Regev, N. Hacohen, Spatially organized multicellular immune hubs in human colorectal cancer. Cell 184, 4734–4752.e20 (2021).

27K。 Pelka、M. Hofree、J. H. Chen、S. Sarkizova、J. D. Pirl、V. Jorgji、A. Bejnood、D. Dionne、W. H. Ge、K. H. Xu、S. X. Chao、D. R. Zollinger、D. J. Lieb、J. W. Reeves、C. A. Fuhrman、M. L. Hoang、T. Delorey、L. T. Nguyen、J. Waldman、M. Klapholz、I. Wakiro、O. Cohen、J. Albers、C. S. Smillie、M. S. Cuoco、J. Wu、M. J. Su、J. Yeung、B. Vijaykumar、 A. M. Magnuson、N. Asinovski、T. Moll、M. N. Goder-Reiser、A. S. Applebaum、L. K. Brais、L. K. DelloStritto、S. L. Denning、S. T. Phillips、E. K. Hill、J. K. Meehan、D. T. Frederick、T. Sharova、A. Kanodia、E. Z. Todres 、J. Jané-Valbuena、M. Biton、B. Izar、C. D. Lambden、T. E. Clancy、R. Bleday、N. Melnitchouk、J. Irani、H. Kunitake、D. L. Berger、A. Srivastava、J. L. Hornick、S. Ogino 、A. Rotem、S. Vigneau、B. E. Johnson、R. B. Corcoran、A. H. Sharpe、V. K. Kuchroo、K. Ng、M. Giannakis、L. T. Nieman、G. M. Boland、A. J. Aguirre、A. C. Anderson、O. Rozenblatt-Rosen、A. Regev ,N. Hacohen,人类结直肠癌中空间组织的多细胞免疫中枢。单元格 184, 4734–4752.e20 (2021)。
28
A. Wieland, M. R. Patel, M. A. Cardenas, C. S. Eberhardt, W. H. Hudson, R. C. Obeng, C. C. Griffith, X. Wang, Z. G. Chen, H. T. Kissick, N. F. Saba, R. Ahmed, Defining HPV-specific B cell responses in patients with head and neck cancer. Nature 597, 274–278 (2021).

28A。 Wieland、M. R. Patel、M. A. Cardenas、C. S. Eberhardt、W. H. Hudson、R. C. Obeng、C. C. Griffith、X. Wang、Z. G. Chen、H. T. Kissick、N. F. Saba、R. Ahmed,定义头颈部患者的 HPV 特异性 B 细胞反应癌症。自然 597, 274–278 (2021)。
29
N. Kim, H. K. Kim, K. Lee, Y. Hong, J. H. Cho, J. W. Choi, J.-I. Lee, Y.-L. Suh, B. M. Ku, H. H. Eum, S. Choi, Y.-L. Choi, J.-G. Joung, W.-Y. Park, H. A. Jung, J.-M. Sun, S.-H. Lee, J. S. Ahn, K. Park, M.-J. Ahn, H.-O. Lee, Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nat. Commun. 11, 2285 (2020).

29N。 Kim, H.K. Kim, K. Lee, Y. Hong, J. H. Cho, J. W. Choi, J.-I.李,Y.-L。 Suh,B.M.Ku,H.H.Eum,S.Choi,Y.-L。崔,J.-G。琼,W.-Y。帕克,H.A. 荣格,J.-M。孙,S.-H。 Lee, J. S. Ahn, K. Park, M.-J。安,H.-O。 Lee,单细胞 RNA 测序证明了转移性肺腺癌的分子和细胞重编程。纳特。交流。 11, 2285 (2020)。
30
A. M. Laughney, J. Hu, N. R. Campbell, S. F. Bakhoum, M. Setty, V.-P. Lavallée, Y. Xie, I. Masilionis, A. J. Carr, S. Kottapalli, V. Allaj, M. Mattar, N. Rekhtman, J. B. Xavier, L. Mazutis, J. T. Poirier, C. M. Rudin, D. Pe’er, J. Massagué, Regenerative lineages and immune-mediated pruning in lung cancer metastasis. Nat. Med. 26, 259–269 (2020).

30A。 M. Laughney、J. Hu、N. R. Campbell、S. F. Bakhoum、M. Setty、V.-P。 Lavallée、Y. Xie、I. Masilionis、A. J. Carr、S. Kottapalli、V. Allaj、M. Mattar、N. Rekhtman、J. B. Xavier、L. Mazutis、J. T. Poirier、C. M. Rudin、D. Pe'er、J. Massagué,肺癌转移中的再生谱系和免疫介导的修剪。纳特。医学。 26, 259–269 (2020)。
31
A. Frede, P. Czarnewski, G. Monasterio, K. P. Tripathi, D. A. Bejarano, R. O. Ramirez Flores, C. Sorini, L. Larsson, X. Luo, L. Geerlings, C. Novella-Rausell, C. Zagami, R. Kuiper, R. A. Morales, F. Castillo, M. Hunt, L. L. Mariano, Y. O. O. Hu, C. Engblom, A.-M. Lennon-Duménil, R. Mittenzwei, A. M. Westendorf, N. Hövelmeyer, J. Lundeberg, J. Saez-Rodriguez, A. Schlitzer, S. Das, E. J. Villablanca, B cell expansion hinders the stroma-epithelium regenerative cross talk during mucosal healing. Immunity 55, 2336–2351.e12 (2022).

31A。 Frede、P. Czarnewski、G. Monasterio、K. P. Tripathi、D. A. Bejarano、R. O. Ramirez Flores、C. Sorini、L. Larsson、X. Luo、L. Geerlings、C. Novella-Rausell、C. Zagami、R. Kuiper、 R. A. Morales、F. Castillo、M. Hunt、L. L. Mariano、Y. O. O. Hu、C. Engblom、A.-M. Lennon-Duménil、R. Mittenzwei、A. M. Westendorf、N. Hövelmeyer、J. Lundeberg、J. Saez-Rodriguez、A. Schlitzer、S. Das、E. J. Villablanca,B 细胞扩张阻碍粘膜愈合过程中的间质-上皮再生串扰。免疫 55, 2336–2351.e12 (2022)。
32
Y. Chu, E. Dai, Y. Li, G. Han, G. Pei, D. R. Ingram, K. Thakkar, J.-J. Qin, M. Dang, X. Le, C. Hu, Q. Deng, A. Sinjab, P. Gupta, R. Wang, D. Hao, F. Peng, X. Yan, Y. Liu, S. Song, S. Zhang, J. V. Heymach, A. Reuben, Y. Y. Elamin, M. P. Pizzi, Y. Lu, R. Lazcano, J. Hu, M. Li, M. Curran, A. Futreal, A. Maitra, A. A. Jazaeri, J. A. Ajani, C. Swanton, X.-D. Cheng, H. A. Abbas, M. Gillison, K. Bhat, A. J. Lazar, M. Green, K. Litchfield, H. Kadara, C. Yee, L. Wang, Pan-cancer T cell atlas links a cellular stress response state to immunotherapy resistance. Nat. Med. 29, 1550–1562 (2023).

32Y。 Chu,E. Dai,Y. Li,G. Han,G. Pei,D. R. Ingram,K. Thakkar,J.-J。秦,M.Dang,X.Le,C.Hu,Q.Deng,A.Sinjab,P.Gupta,R.Wang,D.Ha,F.Peng,X.Yan,Y.Liu,S.Song, S. 张、J. V. Heymach、A. Reuben、Y. Y. Elamin、M. P. Pizzi、Y. Lu、R. Lazcano、J. Hu、M. Li、M. Curran、A. Futreal、A. Maitra、A. A. Jazaeri、J. A. Ajani ,C.斯旺顿,X.-D。 Cheng、H. A. Abbas、M. Gillison、K. Bhat、A. J. Lazar、M. Green、K. Litchfield、H. Kadara、C. Yee、L. Wang,泛癌 T 细胞图谱将细胞应激反应状态与免疫治疗联系起来反抗。纳特。医学。 29, 1550–1562 (2023)。
33
L. Zheng, S. Qin, W. Si, A. Wang, B. Xing, R. Gao, X. Ren, L. Wang, X. Wu, J. Zhang, N. Wu, N. Zhang, H. Zheng, H. Ouyang, K. Chen, Z. Bu, X. Hu, J. Ji, Z. Zhang, Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science 374, abe6474 (2021).

33L。郑思勤、司伟、王阿、邢斌、高瑞、任晓、王丽、吴晓、张建、吴宁、张宁、郑华、 H. Ouyang,K. Chen,Z. Bu,X. Hu,J. Ji,Z. Zhang,肿瘤浸润 T 细胞的泛癌单细胞景观。科学 374,abe6474 (2021)。
34
L. Zhang, X. Yu, L. Zheng, Y. Zhang, Y. Li, Q. Fang, R. Gao, B. Kang, Q. Zhang, J. Y. Huang, H. Konno, X. Guo, Y. Ye, S. Gao, S. Wang, X. Hu, X. Ren, Z. Shen, W. Ouyang, Z. Zhang, Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature 564, 268–272 (2018).
35
V. Greiff, E. Miho, U. Menzel, S. T. Reddy, Bioinformatic and Statistical Analysis of Adaptive Immune Repertoires. Trends Immunol. 36, 738–749 (2015).

35V。 Greiff、E. Miho、U. Menzel、S. T. Reddy,适应性免疫库的生物信息学和统计分析。趋势免疫学。 36, 738–749 (2015)。
36
Y. Wei, C.-X. Huang, X. Xiao, D.-P. Chen, H. Shan, H. He, D.-M. Kuang, B cell heterogeneity, plasticity, and functional diversity in cancer microenvironments. Oncogene 40, 4737–4745 (2021).

36Y。魏,C.-X。黄晓晓,D.-P。陈慧山,何慧,D.-M。 Kuang,癌症微环境中 B 细胞的异质性、可塑性和功能多样性。癌基因 40, 4737–4745 (2021)。
37
G. Song, Y. Shi, L. Meng, J. Ma, S. Huang, J. Zhang, Y. Wu, J. Li, Y. Lin, S. Yang, D. Rao, Y. Cheng, J. Lin, S. Ji, Y. Liu, S. Jiang, X. Wang, S. Zhang, A. Ke, X. Wang, Y. Cao, Y. Ji, J. Zhou, J. Fan, X. Zhang, R. Xi, Q. Gao, Single-cell transcriptomic analysis suggests two molecularly distinct subtypes of intrahepatic cholangiocarcinoma. Nat. Commun. 13, 1642 (2022).

37G。宋、石、孟、马、黄、张、吴、李、林、杨、饶、程、林、吉S.,刘Y.,蒋S.,王X.,张S.,阿柯,X.王,Y.曹,Y.Ji,J.周,J.范,X.张,R. Xi,Q.Gao,单细胞转录组分析表明肝内胆管癌有两种分子上不同的亚型。纳特。交流。 13, 1642 (2022)。
38
N. S. Patil, B. Y. Nabet, S. Müller, H. Koeppen, W. Zou, J. Giltnane, A. Au-Yeung, S. Srivats, J. H. Cheng, C. Takahashi, P. E. de Almeida, A. S. Chitre, J. L. Grogan, L. Rangell, S. Jayakar, M. Peterson, A. W. Hsia, W. E. O’Gorman, M. Ballinger, R. Banchereau, D. S. Shames, Intratumoral plasma cells predict outcomes to PD-L1 blockade in non-small cell lung cancer. Cancer Cell 40, 289–300.e4 (2022).

38N。 S. Patil、B. Y. Nabet、S. Müller、H. Koeppen、W. Zou、J. Giltnane、A. Au-Yeung、S. Srivats、J. H. Cheng、C. Takahashi、P. E. de Almeida、A. S. Chitre、J. L. Grogan、 L. Rangell、S. Jayakar、M. Peterson、A. W. Hsia、W. E. O'Gorman、M. Ballinger、R. Banchereau、D. S. Shames,肿瘤内浆细胞预测非小细胞肺癌中 PD-L1 阻断的结果。癌细胞 40, 289–300.e4 (2022)。
39
C. E. Shannon, A mathematical theory of communication. Mob. Comput. Commun. Rev. 5, 3–55 (2001).

39C。 E. Shannon,《通信的数学理论》。暴民。计算。交流。修订版 5, 3–55 (2001)。
40
B. Liu, C. Li, Z. Li, D. Wang, X. Ren, Z. Zhang, An entropy-based metric for assessing the purity of single cell populations. Nat. Commun. 11, 3155 (2020).

40B。 Liu,C. Li,Z. Li,D. Wang,X. Ren,Z. Zhang,一种用于评估单细胞群纯度的基于熵的指标。纳特。交流。 11, 3155 (2020)。
41
A. T. Ruffin, A. R. Cillo, T. Tabib, A. Liu, S. Onkar, S. R. Kunning, C. Lampenfeld, H. I. Atiya, I. Abecassis, C. H. L. Kürten, Z. Qi, R. Soose, U. Duvvuri, S. Kim, S. Oesterrich, R. Lafyatis, L. G. Coffman, R. L. Ferris, D. A. A. Vignali, T. C. Bruno, B cell signatures and tertiary lymphoid structures contribute to outcome in head and neck squamous cell carcinoma. Nat. Commun. 12, 3349 (2021).

41A。 T. Ruffin、A. R. Cillo、T. Tabib、A. Liu、S. Onkar、S. R. Kunning、C. Lampenfeld、H. I. Atiya、I. Abecassis、C. H. L. Kürten、Z. Qi、R. Soose、U. Duvvuri、S. Kim、S. Oesterrich、R. Lafyatis、L. G. Coffman、R. L. Ferris、D. A. A. Vignali、T. C. Bruno,B 细胞特征和三级淋巴结构有助于头颈鳞状细胞癌的结果。纳特。交流。 12, 3349 (2021)。
42
A. J. Gentles, A. M. Newman, C. L. Liu, S. V. Bratman, W. Feng, D. Kim, V. S. Nair, Y. Xu, A. Khuong, C. D. Hoang, M. Diehn, R. B. West, S. K. Plevritis, A. A. Alizadeh, The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015).
43
C. M. Tipton, C. F. Fucile, J. Darce, A. Chida, T. Ichikawa, I. Gregoretti, S. Schieferl, J. Hom, S. Jenks, R. J. Feldman, R. Mehr, C. Wei, F. E.-H. Lee, W. C. Cheung, A. F. Rosenberg, I. Sanz, Diversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosus. Nat. Immunol. 16, 755–765 (2015).
44
J. H. Lam, F. L. Smith, N. Baumgarth, B Cell Activation and Response Regulation During Viral Infections. Viral Immunol. 33, 294–306 (2020).
45
J. G. Cyster, C. D. C. Allen, B Cell Responses: Cell Interaction Dynamics and Decisions. Cell 177, 524–540 (2019).
46
Y. Ye, Z. Chen, S. Jiang, F. Jia, T. Li, X. Lu, J. Xue, X. Lian, J. Ma, P. Hao, L. Lu, S. Ye, N. Shen, C. Bao, Q. Fu, X. Zhang, Single-cell profiling reveals distinct adaptive immune hallmarks in MDA5+ dermatomyositis with therapeutic implications. Nat. Commun. 13, 6458 (2022).
47
S. Biswas, G. Mandal, K. K. Payne, C. M. Anadon, C. D. Gatenbee, R. A. Chaurio, T. L. Costich, C. Moran, C. M. Harro, K. E. Rigolizzo, J. A. Mine, J. Trillo-Tinoco, N. Sasamoto, K. L. Terry, D. Marchion, A. Buras, R. M. Wenham, X. Yu, M. K. Townsend, S. S. Tworoger, P. C. Rodriguez, A. R. Anderson, J. R. Conejo-Garcia, IgA transcytosis and antigen recognition govern ovarian cancer immunity. Nature 591, 464–470 (2021).
48
M. Duan, D. C. Nguyen, C. J. Joyner, C. L. Saney, C. M. Tipton, J. Andrews, S. Lonial, C. Kim, I. Hentenaar, A. Kosters, E. Ghosn, A. Jackson, S. Knechtle, S. Maruthamuthu, S. Chandran, T. Martin, R. Rajalingam, F. Vincenti, C. Breeden, I. Sanz, G. Gibson, F. E.-H. Lee, Understanding heterogeneity of human bone marrow plasma cell maturation and survival pathways by single-cell analyses. Cell Rep. 42, 112682 (2023).
49
G. S. Gulati, S. S. Sikandar, D. J. Wesche, A. Manjunath, A. Bharadwaj, M. J. Berger, F. Ilagan, A. H. Kuo, R. W. Hsieh, S. Cai, M. Zabala, F. A. Scheeren, N. A. Lobo, D. Qian, F. B. Yu, F. M. Dirbas, M. F. Clarke, A. M. Newman, Single-cell transcriptional diversity is a hallmark of developmental potential. Science 367, 405–411 (2020).
50
Q. Li, scTour: A deep learning architecture for robust inference and accurate prediction of cellular dynamics. Genome Biol. 24, 149 (2023).
51
J. Cao, M. Spielmann, X. Qiu, X. Huang, D. M. Ibrahim, A. J. Hill, F. Zhang, S. Mundlos, L. Christiansen, F. J. Steemers, C. Trapnell, J. Shendure, The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).
52
S. A. Jenks, K. S. Cashman, M. C. Woodruff, F. E. Lee, I. Sanz, Extrafollicular responses in humans and SLE. Immunol. Rev. 288, 136–148 (2019).
53
A. Sagardoy, J. I. Martinez-Ferrandis, S. Roa, K. L. Bunting, M. A. Aznar, O. Elemento, R. Shaknovich, L. Fontán, V. Fresquet, I. Perez-Roger, E. F. Robles, L. De Smedt, X. Sagaert, A. Melnick, J. A. Martinez-Climent, Downregulation of FOXP1 is required during germinal center B-cell function. Blood 121, 4311–4320 (2013).
54
K. M. Toellner, FOXP1 inhibits plasma cell differentiation. Blood 126, 2076–2077 (2015).
55
C. Bohannon, R. Powers, L. Satyabhama, A. Cui, C. Tipton, M. Michaeli, I. Skountzou, R. S. Mittler, S. H. Kleinstein, R. Mehr, F. E.-Y. Lee, I. Sanz, J. Jacob, Long-lived antigen-induced IgM plasma cells demonstrate somatic mutations and contribute to long-term protection. Nat. Commun. 7, 11826 (2016).
56
K. Csomos, B. Ujhazi, P. Blazso, J. L. Herrera, C. M. Tipton, T. Kawai, S. Gordon, M. Ellison, K. Wu, M. Stowell, L. Haynes, R. Cruz, B. Zakota, J. Nguyen, M. Altrich, C. B. Geier, S. Sharapova, J. F. Dasso, J. W. Leiding, G. Smith, W. Al-Herz, M. de Barros Dorna, O. Fadugba, E. Fronkova, V. Kanderova, M. Svaton, S. E. Henrickson, J. D. Hernandez, T. Kuijpers, S. M. Kandilarova, E. Naumova, T. Milota, A. Sediva, D. Moshous, B. Neven, T. Saco, R. Sargur, S. Savic, J. Sleasman, G. Sunkersett, B. R. Ward, M. Komatsu, S. Pittaluga, A. Kumanovics, M. J. Butte, M. P. Cancro, S. Pillai, E. Meffre, L. D. Notarangelo, J. E. Walter, Partial RAG deficiency in humans induces dysregulated peripheral lymphocyte development and humoral tolerance defect with accumulation of T-bet+ B cells. Nat. Immunol. 23, 1256–1272 (2022).
57
Y. Li, Z. Wang, F. Han, M. Zhang, T. Yang, M. Chen, J. Du, Y. Wang, L. Zhu, H. Hou, Y. Chang, L. Han, X. Lyu, N. Zhang, W. Sun, Z. Cai, W. Wei, Single-cell transcriptome analysis profiles cellular and molecular alterations in submandibular gland and blood in IgG4-related disease. Ann. Rheum. Dis. 82, 1348–1358 (2023).
58
R. Alaggio, C. Amador, I. Anagnostopoulos, A. D. Attygalle, I. B. O. Araujo, E. Berti, G. Bhagat, A. M. Borges, D. Boyer, M. Calaminici, A. Chadburn, J. K. C. Chan, W. Cheuk, W.-J. Chng, J. K. Choi, S.-S. Chuang, S. E. Coupland, M. Czader, S. S. Dave, D. de Jong, M.-Q. Du, K. S. Elenitoba-Johnson, J. Ferry, J. Geyer, D. Gratzinger, J. Guitart, S. Gujral, M. Harris, C. J. Harrison, S. Hartmann, A. Hochhaus, P. M. Jansen, K. Karube, W. Kempf, J. Khoury, H. Kimura, W. Klapper, A. E. Kovach, S. Kumar, A. J. Lazar, S. Lazzi, L. Leoncini, N. Leung, V. Leventaki, X.-Q. Li, M. S. Lim, W.-P. Liu, A. Louissaint Jr., A. Marcogliese, L. J. Medeiros, M. Michal, R. N. Miranda, C. Mitteldorf, S. Montes-Moreno, W. Morice, V. Nardi, K. N. Naresh, Y. Natkunam, S.-B. Ng, I. Oschlies, G. Ott, M. Parrens, M. Pulitzer, S. V. Rajkumar, A. C. Rawstron, K. Rech, A. Rosenwald, J. Said, C. Sarkozy, S. Sayed, C. Saygin, A. Schuh, W. Sewell, R. Siebert, A. R. Sohani, R. Tooze, A. Traverse-Glehen, F. Vega, B. Vergier, A. D. Wechalekar, B. Wood, L. Xerri, W. Xiao, The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 36, 1720–1748 (2022).
59
W. Wen, W. Su, H. Tang, W. Le, X. Zhang, Y. Zheng, X. Liu, L. Xie, J. Li, J. Ye, L. Dong, X. Cui, Y. Miao, D. Wang, J. Dong, C. Xiao, W. Chen, H. Wang, Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell Discov. 6, 31 (2020).
60
S. A. Ehrhardt, M. Zehner, V. Krähling, H. Cohen-Dvashi, C. Kreer, N. Elad, H. Gruell, M. S. Ercanoglu, P. Schommers, L. Gieselmann, R. Eggeling, C. Dahlke, T. Wolf, N. Pfeifer, M. M. Addo, R. Diskin, S. Becker, F. Klein, Polyclonal and convergent antibody response to Ebola virus vaccine rVSV-ZEBOV. Nat. Med. 25, 1589–1600 (2019).
61
H. W. King, K. L. Wells, Z. Shipony, A. S. Kathiria, L. E. Wagar, C. Lareau, N. Orban, R. Capasso, M. M. Davis, L. M. Steinmetz, L. K. James, W. J. Greenleaf, Integrated single-cell transcriptomics and epigenomics reveals strong germinal center-associated etiology of autoimmune risk loci. Sci. Immunol. 6, eabh3768 (2021).
62
M. You, L. Chen, D. Zhang, P. Zhao, Z. Chen, E.-Q. Qin, Y. Gao, M. M. Davis, P. Yang, Single-cell epigenomic landscape of peripheral immune cells reveals establishment of trained immunity in individuals convalescing from COVID-19. Nat. Cell Biol. 23, 620–630 (2021).
63
C. D. Scharer, E. L. Blalock, T. Mi, B. G. Barwick, S. A. Jenks, T. Deguchi, K. S. Cashman, B. E. Neary, D. G. Patterson, S. L. Hicks, A. Khosroshahi, F. Eun-Hyung Lee, C. Wei, I. Sanz, J. M. Boss, Epigenetic programming underpins B cell dysfunction in human SLE. Nat. Immunol. 20, 1071–1082 (2019).
64
A. T. Satpathy, J. M. Granja, K. E. Yost, Y. Qi, F. Meschi, G. P. McDermott, B. N. Olsen, M. R. Mumbach, S. E. Pierce, M. R. Corces, P. Shah, J. C. Bell, D. Jhutty, C. M. Nemec, J. Wang, L. Wang, Y. Yin, P. G. Giresi, A. L. S. Chang, G. X. Y. Zheng, W. J. Greenleaf, H. Y. Chang, Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nat. Biotechnol. 37, 925–936 (2019).
65
S. L. Nutt, B. L. Kee, The transcriptional regulation of B cell lineage commitment. Immunity 26, 715–725 (2007).
66
S. Aibar, C. B. González-Blas, T. Moerman, V. A. Huynh-Thu, H. Imrichova, G. Hulselmans, F. Rambow, J.-C. Marine, P. Geurts, J. Aerts, J. van den Oord, Z. K. Atak, J. Wouters, S. Aerts, SCENIC: Single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).
67
N. S. Wang, L. J. McHeyzer-Williams, S. L. Okitsu, T. P. Burris, S. L. Reiner, M. G. McHeyzer-Williams, Divergent transcriptional programming of class-specific B cell memory by T-bet and RORα. Nat. Immunol. 13, 604–611 (2012).
68
Y. Ohkubo, M. Arima, E. Arguni, S. Okada, K. Yamashita, S. Asari, S. Obata, A. Sakamoto, M. Hatano, J. O-Wang, M. Ebara, H. Saisho, T. Tokuhisa, A role for c-fos/activator protein 1 in B lymphocyte terminal differentiation. J. Immunol. 174, 7703–7710 (2005).
69
N. S. De Silva, M. M. Anderson, A. Carette, K. Silva, N. Heise, G. Bhagat, U. Klein, Transcription factors of the alternative NF-κB pathway are required for germinal center B-cell development. Proc. Natl. Acad. Sci. U.S.A. 113, 9063–9068 (2016).
70
D. Langlais, L. B. Barreiro, P. Gros, The macrophage IRF8/IRF1 regulome is required for protection against infections and is associated with chronic inflammation. J. Exp. Med. 213, 585–603 (2016).
71
S. M. Downs-Canner, J. Meier, B. G. Vincent, J. S. Serody, B Cell Function in the Tumor Microenvironment. Annu. Rev. Immunol. 40, 169–193 (2022).
72
J. Ma, B. Zheng, S. Goswami, L. Meng, D. Zhang, C. Cao, T. Li, F. Zhu, L. Ma, Z. Zhang, S. Zhang, M. Duan, Q. Chen, Q. Gao, X. Zhang, PD1Hi CD8+ T cells correlate with exhausted signature and poor clinical outcome in hepatocellular carcinoma. J. Immunother. Cancer 7, 331 (2019).
73
A. Musolino, W. J. Gradishar, H. S. Rugo, J. L. Nordstrom, E. P. Rock, F. Arnaldez, M. D. Pegram, Role of Fcγ receptors in HER2-targeted breast cancer therapy. J. Immunother. Cancer 10, e003171 (2022).
74
J. J. Knox, A. Myles, M. P. Cancro, T-bet+ memory B cells: Generation, function, and fate. Immunol. Rev. 288, 149–160 (2019).
75
J. L. Johnson, R. L. Rosenthal, J. J. Knox, A. Myles, M. S. Naradikian, J. Madej, M. Kostiv, A. M. Rosenfeld, W. Meng, S. R. Christensen, S. E. Hensley, J. Yewdell, D. H. Canaday, J. Zhu, A. B. McDermott, Y. Dori, M. Itkin, E. J. Wherry, N. Pardi, D. Weissman, A. Naji, E. T. L. Prak, M. R. Betts, M. P. Cancro, The Transcription Factor T-bet Resolves Memory B Cell Subsets with Distinct Tissue Distributions and Antibody Specificities in Mice and Humans. Immunity 52, 842–855.e6 (2020).
76
W. Song, O. Q. Antao, E. Condiff, G. M. Sanchez, I. Chernova, K. Zembrzuski, H. Steach, K. Rubtsova, D. Angeletti, A. Lemenze, B. J. Laidlaw, J. Craft, J. S. Weinstein, Development of Tbet- and CD11c-expressing B cells in a viral infection requires T follicular helper cells outside of germinal centers. Immunity 55, 290–307.e5 (2022).
77
W. Ise, M. Kohyama, B. U. Schraml, T. Zhang, B. Schwer, U. Basu, F. W. Alt, J. Tang, E. M. Oltz, T. L. Murphy, K. M. Murphy, The transcription factor BATF controls the global regulators of class-switch recombination in both B cells and T cells. Nat. Immunol. 12, 536–543 (2011).
78
B. Daniel, K. E. Yost, S. Hsiung, K. Sandor, Y. Xia, Y. Qi, K. J. Hiam-Galvez, M. Black, C. J. Raposo, Q. Shi, S. L. Meier, J. A. Belk, J. R. Giles, E. J. Wherry, H. Y. Chang, T. Egawa, A. T. Satpathy, Divergent clonal differentiation trajectories of T cell exhaustion. Nat. Immunol. 23, 1614–1627 (2022).
79
J. Calderaro, F. Petitprez, E. Becht, A. Laurent, T. Z. Hirsch, B. Rousseau, A. Luciani, G. Amaddeo, J. Derman, C. Charpy, J. Zucman-Rossi, W. H. Fridman, C. Sautès-Fridman, Intra-tumoral tertiary lymphoid structures are associated with a low risk of early recurrence of hepatocellular carcinoma. J. Hepatol. 70, 58–65 (2019).
80
M. Meylan, F. Petitprez, L. Lacroix, L. Di Tommaso, M. Roncalli, A. Bougoüin, A. Laurent, G. Amaddeo, D. Sommacale, H. Regnault, J. Derman, C. Charpy, F. Lafdil, J.-M. Pawlotsky, C. Sautès-Fridman, W. H. Fridman, J. Calderaro, Early Hepatic Lesions Display Immature Tertiary Lymphoid Structures and Show Elevated Expression of Immune Inhibitory and Immunosuppressive Molecules. Clin. Cancer Res. 26, 4381–4389 (2020).
81
K. Siliņa, A. Soltermann, F. M. Attar, R. Casanova, Z. M. Uckeley, H. Thut, M. Wandres, S. Isajevs, P. Cheng, A. Curioni-Fontecedro, P. Foukas, M. P. Levesque, H. Moch, A. Linē, M. van den Broek, Germinal Centers Determine the Prognostic Relevance of Tertiary Lymphoid Structures and Are Impaired by Corticosteroids in Lung Squamous Cell Carcinoma. Cancer Res. 78, 1308–1320 (2018).
82
A. J. Gunderson, V. Rajamanickam, C. Bui, B. Bernard, J. Pucilowska, C. Ballesteros-Merino, M. Schmidt, K. McCarty, M. Philips, B. Piening, C. Dubay, T. Medler, P. Newell, P. Hansen, E. Tran, E. Tang, C. Bifulco, M. Crittenden, M. Gough, K. H. Young, Germinal center reactions in tertiary lymphoid structures associate with neoantigen burden, humoral immunity and long-term survivorship in pancreatic cancer. OncoImmunology 10, 1900635 (2021).
83
L. M. Kelly, J. P. Pereira, T. Yi, Y. Xu, J. G. Cyster, EBI2 guides serial movements of activated B cells and ligand activity is detectable in lymphoid and nonlymphoid tissues. J. Immunol. 187, 3026–3032 (2011).
84
K. Miyauchi, A. Sugimoto-Ishige, Y. Harada, Y. Adachi, Y. Usami, T. Kaji, K. Inoue, H. Hasegawa, T. Watanabe, A. Hijikata, S. Fukuyama, T. Maemura, M. Okada-Hatakeyama, O. Ohara, Y. Kawaoka, Y. Takahashi, T. Takemori, M. Kubo, Protective neutralizing influenza antibody response in the absence of T follicular helper cells. Nat. Immunol. 17, 1447–1458 (2016).
85
T. Chu, Z. Wang, D. Pe’er, C. G. Danko, Cell type and gene expression deconvolution with BayesPrism enables Bayesian integrative analysis across bulk and single-cell RNA sequencing in oncology. Nat. Cancer 3, 505–517 (2022).
86
D. A. Rao, M. F. Gurish, J. L. Marshall, K. Slowikowski, C. Y. Fonseka, Y. Liu, L. T. Donlin, L. A. Henderson, K. Wei, F. Mizoguchi, N. C. Teslovich, M. E. Weinblatt, E. M. Massarotti, J. S. Coblyn, S. M. Helfgott, Y. C. Lee, D. J. Todd, V. P. Bykerk, S. M. Goodman, A. B. Pernis, L. B. Ivashkiv, E. W. Karlson, P. A. Nigrovic, A. Filer, C. D. Buckley, J. A. Lederer, S. Raychaudhuri, M. B. Brenner, Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542, 110–114 (2017).
87
A. V. Bocharnikov, J. Keegan, V. S. Wacleche, Y. Cao, C. Y. Fonseka, G. Wang, E. S. Muise, K. X. Zhang, A. Arazi, G. Keras, Z. J. Li, Y. Qu, M. F. Gurish, M. Petri, J. P. Buyon, C. Putterman, D. Wofsy, J. A. James, J. M. Guthridge, B. Diamond, J. H. Anolik, M. F. Mackey, S. E. Alves, P. A. Nigrovic, K. H. Costenbader, M. B. Brenner, J. A. Lederer, D. A. Rao, Accelerating Medicines Partnership (AMP) RA/SLE Network, PD-1hiCXCR5- T peripheral helper cells promote B cell responses in lupus via MAF and IL-21. JCI Insight 4, e130062 (2019).
88
S. Jin, C. F. Guerrero-Juarez, L. Zhang, I. Chang, R. Ramos, C.-H. Kuan, P. Myung, M. V. Plikus, Q. Nie, Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088 (2021).
89
Y. Wu, S. Yang, J. Ma, Z. Chen, G. Song, D. Rao, Y. Cheng, S. Huang, Y. Liu, S. Jiang, J. Liu, X. Huang, X. Wang, S. Qiu, J. Xu, R. Xi, F. Bai, J. Zhou, J. Fan, X. Zhang, Q. Gao, Spatiotemporal Immune Landscape of Colorectal Cancer Liver Metastasis at Single-Cell Level. Cancer Discov. 12, 134–153 (2022).
90
D. Klysz, X. Tai, P. A. Robert, M. Craveiro, G. Cretenet, L. Oburoglu, C. Mongellaz, S. Floess, V. Fritz, M. I. Matias, C. Yong, N. Surh, J. C. Marie, J. Huehn, V. Zimmermann, S. Kinet, V. Dardalhon, N. Taylor, Glutamine-dependent α-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci. Signal. 8, ra97 (2015).
91
M. O. Johnson, M. M. Wolf, M. Z. Madden, G. Andrejeva, A. Sugiura, D. C. Contreras, D. Maseda, M. V. Liberti, K. Paz, R. J. Kishton, M. E. Johnson, A. A. de Cubas, P. Wu, G. Li, Y. Zhang, D. C. Newcomb, A. D. Wells, N. P. Restifo, W. K. Rathmell, J. W. Locasale, M. L. Davila, B. R. Blazar, J. C. Rathmell, Distinct Regulation of Th17 and Th1 Cell Differentiation by Glutaminase-Dependent Metabolism. Cell 175, 1780–1795.e19 (2018).
92
I. Elia, M. C. Haigis, Metabolites and the tumour microenvironment: From cellular mechanisms to systemic metabolism. Nat. Metab. 3, 21–32 (2021).
93
A. Hirayama, K. Kami, M. Sugimoto, M. Sugawara, N. Toki, H. Onozuka, T. Kinoshita, N. Saito, A. Ochiai, M. Tomita, H. Esumi, T. Soga, Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res. 69, 4918–4925 (2009).
94
D. Chen, Y. Wang, G. K. Manakkat Vijay, S. Fu, C. W. Nash, D. Xu, D. He, N. Salomonis, H. Singh, H. Xu, Coupled analysis of transcriptome and BCR mutations reveals role of OXPHOS in affinity maturation. Nat. Immunol. 22, 904–913 (2021).
95
P. S. Liu, Y.-T. Chen, X. Li, P.-C. Hsueh, S.-F. Tzeng, H. Chen, P.-Z. Shi, X. Xie, S. Parik, M. Planque, S.-M. Fendt, P.-C. Ho, CD40 signal rewires fatty acid and glutamine metabolism for stimulating macrophage anti-tumorigenic functions. Nat. Immunol. 24, 452–462 (2023).
96
T. Xu, K. M. Stewart, X. Wang, K. Liu, M. Xie, J. K. Ryu, K. Li, T. Ma, H. Wang, L. Ni, S. Zhu, N. Cao, D. Zhu, Y. Zhang, K. Akassoglou, C. Dong, E. M. Driggers, S. Ding, Metabolic control of TH17 and induced Treg cell balance by an epigenetic mechanism. Nature 548, 228–233 (2017).
97
T. C. Bruno, P. J. Ebner, B. L. Moore, O. G. Squalls, K. A. Waugh, E. B. Eruslanov, S. Singhal, J. D. Mitchell, W. A. Franklin, D. T. Merrick, M. D. McCarter, B. E. Palmer, J. A. Kern, J. E. Slansky, Antigen-Presenting Intratumoral B Cells Affect CD4+ TIL Phenotypes in Non-Small Cell Lung Cancer Patients. Cancer Immunol. Res. 5, 898–907 (2017).
98
W. Hugo, J. M. Zaretsky, L. Sun, C. Song, B. H. Moreno, S. Hu-Lieskovan, B. Berent-Maoz, J. Pang, B. Chmielowski, G. Cherry, E. Seja, S. Lomeli, X. Kong, M. C. Kelley, J. A. Sosman, D. B. Johnson, A. Ribas, R. S. Lo, Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma. Cell 165, 35–44 (2016).
99
A. Prat, A. Navarro, L. Paré, N. Reguart, P. Galván, T. Pascual, A. Martínez, P. Nuciforo, L. Comerma, L. Alos, N. Pardo, S. Cedrés, C. Fan, J. S. Parker, L. Gaba, I. Victoria, N. Viñolas, A. Vivancos, A. Arance, E. Felip, Immune-Related Gene Expression Profiling After PD-1 Blockade in Non-Small Cell Lung Carcinoma, Head and Neck Squamous Cell Carcinoma, and Melanoma. Cancer Res. 77, 3540–3550 (2017).
100
C. Gregoire, L. Spinelli, S. Villazala-Merino, L. Gil, M. P. Holgado, M. Moussa, C. Dong, A. Zarubica, M. Fallet, J.-M. Navarro, B. Malissen, P. Milpied, M. Gaya, Viral infection engenders bona fide and bystander subsets of lung-resident memory B cells through a permissive mechanism. Immunity 55, 1216–1233.e9 (2022).
101
Q. Hu, Y. Hong, P. Qi, G. Lu, X. Mai, S. Xu, X. He, Y. Guo, L. Gao, Z. Jing, J. Wang, T. Cai, Y. Zhang, Atlas of breast cancer infiltrated B-lymphocytes revealed by paired single-cell RNA-sequencing and antigen receptor profiling. Nat. Commun. 12, 2186 (2021).
102
J. Qian, S. Olbrecht, B. Boeckx, H. Vos, D. Laoui, E. Etlioglu, E. Wauters, V. Pomella, S. Verbandt, P. Busschaert, A. Bassez, A. Franken, M. V. Bempt, J. Xiong, B. Weynand, Y. van Herck, A. Antoranz, F. M. Bosisio, B. Thienpont, G. Floris, I. Vergote, A. Smeets, S. Tejpar, D. Lambrechts, A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling. Cell Res. 30, 745–762 (2020).
103
H. Li, J. Wang, H. Liu, T. Lan, L. Xu, G. Wang, K. Yuan, H. Wu, Existence of intratumoral tertiary lymphoid structures is associated with immune cells infiltration and predicts better prognosis in early-stage hepatocellular carcinoma. Aging (Albany NY) 12, 3451–3472 (2020).
104
L. Vanhersecke, M. Brunet, J.-P. Guégan, C. Rey, A. Bougouin, S. Cousin, S. L. Moulec, B. Besse, Y. Loriot, M. Larroquette, I. Soubeyran, M. Toulmonde, G. Roubaud, S. Pernot, M. Cabart, F. Chomy, C. Lefevre, K. Bourcier, M. Kind, I. Giglioli, C. Sautès-Fridman, V. Velasco, F. Courgeon, E. Oflazoglu, A. Savina, A. Marabelle, J.-C. Soria, C. Bellera, C. Sofeu, A. Bessede, W. H. Fridman, F. L. Loarer, A. Italiano, Mature tertiary lymphoid structures predict immune checkpoint inhibitor efficacy in solid tumors independently of PD-L1 expression. Nat. Cancer 2, 794–802 (2021).
105
N. Horeweg, H. H. Workel, D. Loiero, D. N. Church, L. Vermij, A. Léon-Castillo, R. T. Krog, S. M. de Boer, R. A. Nout, M. E. Powell, L. R. Mileshkin, H. MacKay, A. Leary, N. Singh, I. M. Jürgenliemk-Schulz, V. T. H. B. M. Smit, C. L. Creutzberg, V. H. Koelzer, H. W. Nijman, T. Bosse, M. de Bruyn, TransPORTEC consortium, Tertiary lymphoid structures critical for prognosis in endometrial cancer patients. Nat. Commun. 13, 1373 (2022).
106
F. Posch, K. Silina, S. Leibl, A. Mündlein, H. Moch, A. Siebenhüner, P. Samaras, J. Riedl, M. Stotz, J. Szkandera, H. Stöger, M. Pichler, R. Stupp, M. van den Broek, P. Schraml, A. Gerger, U. Petrausch, T. Winder, Maturation of tertiary lymphoid structures and recurrence of stage II and III colorectal cancer. OncoImmunology 7, e1378844 (2017).
107
C. D. Buckley, F. Barone, S. Nayar, C. Bénézech, J. Caamaño, Stromal cells in chronic inflammation and tertiary lymphoid organ formation. Annu. Rev. Immunol. 33, 715–745 (2015).
108
C. Cui, J. Wang, E. Fagerberg, P.-M. Chen, K. A. Connolly, M. Damo, J. F. Cheung, T. Mao, A. S. Askari, S. Chen, B. Fitzgerald, G. G. Foster, S. C. Eisenbarth, H. Zhao, J. Craft, N. S. Joshi, Neoantigen-driven B cell and CD4 T follicular helper cell collaboration promotes anti-tumor CD8 T cell responses. Cell 184, 6101–6118.e13 (2021).
109
M. C. Woodruff, R. P. Ramonell, N. S. Haddad, F. A. Anam, M. E. Rudolph, T. A. Walker, A. D. Truong, A. N. Dixit, J. E. Han, M. Cabrera-Mora, M. C. Runnstrom, R. Bugrovsky, J. Hom, E. C. Connolly, I. Albizua, V. Javia, K. S. Cashman, D. C. Nguyen, S. Kyu, A. Singh Saini, M. Piazza, C. M. Tipton, A. Khosroshahi, G. Gibson, G. S. Martin, C. L. Maier, A. Esper, S. A. Jenks, F. E.-H. Lee, I. Sanz, Dysregulated naive B cells and de novo autoreactivity in severe COVID-19. Nature 611, 139–147 (2022).
110
M. Rakaee, T. K. Kilvaer, S. Jamaly, T. Berg, E.-E. Paulsen, M. Berglund, E. Richardsen, S. Andersen, S. Al-Saad, M. Poehl, F. Pezzella, D. J. Kwiatkowski, R. M. Bremnes, L. R. Busund, T. Donnem, Tertiary lymphoid structure score: A promising approach to refine the TNM staging in resected non-small cell lung cancer. Br. J. Cancer 124, 1680–1689 (2021).
111
J. Lv, Y. Wei, J.-H. Yin, Y.-P. Chen, G.-Q. Zhou, C. Wei, X.-Y. Liang, Y. Zhang, C.-J. Zhang, S.-W. He, Q.-M. He, Z.-L. Huang, J.-L. Guan, J.-Y. Shen, X.-M. Li, J.-Y. Li, W.-F. Li, L.-L. Tang, Y.-P. Mao, R. Guo, R. Sun, Y.-H. Zheng, W.-W. Zhou, K.-X. Xiong, S.-Q. Wang, X. Jin, N. Liu, G.-B. Li, D.-M. Kuang, Y. Sun, J. Ma, The tumor immune microenvironment of nasopharyngeal carcinoma after gemcitabine plus cisplatin treatment. Nat. Med. 29, 1424–1436 (2023).
112
L. Gong, D. L.-W. Kwong, W. Dai, P. Wu, S. Li, Q. Yan, Y. Zhang, B. Zhang, X. Fang, L. Liu, M. Luo, B. Liu, L. K.-Y. Chow, Q. Chen, J. Huang, V. H.-F. Lee, K.-O. Lam, A. W.-I. Lo, Z. Chen, Y. Wang, A. W.-M. Lee, X.-Y. Guan, Comprehensive single-cell sequencing reveals the stromal dynamics and tumor-specific characteristics in the microenvironment of nasopharyngeal carcinoma. Nat. Commun. 12, 1540 (2021).
113
J. A. Roco, L. Mesin, S. C. Binder, C. Nefzger, P. Gonzalez-Figueroa, P. F. Canete, J. Ellyard, Q. Shen, P. A. Robert, J. Cappello, H. Vohra, Y. Zhang, C. R. Nowosad, A. Schiepers, L. M. Corcoran, K.-M. Toellner, J. M. Polo, M. Meyer-Hermann, G. D. Victora, C. G. Vinuesa, Class-Switch Recombination Occurs Infrequently in Germinal Centers. Immunity 51, 337–350.e7 (2019).
114
J. Jellusova, Metabolic control of B cell immune responses. Curr. Opin. Immunol. 63, 21–28 (2020).
115
W. G. Kaelin Jr, S. L. McKnight, Influence of metabolism on epigenetics and disease. Cell 153, 56–69 (2013).
116
S. H. Cho, A. L. Raybuck, K. Stengel, M. Wei, T. C. Beck, E. Volanakis, J. W. Thomas, S. Hiebert, V. H. Haase, M. R. Boothby, Germinal centre hypoxia and regulation of antibody qualities by a hypoxia response system. Nature 537, 234–238 (2016).
117
M. H. Sumikawa, S. Iwata, M. Zhang, H. Miyata, M. Ueno, Y. Todoroki, A. Nagayasu, R. Kanda, K. Sonomoto, K. Torimoto, S. Lee, S. Nakayamada, K. Yamamoto, Y. Okada, Y. Tanaka, An enhanced mitochondrial function through glutamine metabolism in plasmablast differentiation in systemic lupus erythematosus. Rheumatology (Oxford) 61, 3049–3059 (2022).
118
J. Ma, Y. Wu, L. Ma, Processed data for the paper ‘A blueprint for tumor-infiltrating B cells across human cancers,’ Zenodo (2024);
119
A. Butler, P. Hoffman, P. Smibert, E. Papalexi, R. Satija, Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).
120
S. C. van den Brink, F. Sage, Á. Vértesy, B. Spanjaard, J. Peterson-Maduro, C. S. Baron, C. Robin, A. van Oudenaarden, Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat. Methods 14, 935–936 (2017).
121
N. T. Gupta, J. A. Vander Heiden, M. Uduman, D. Gadala-Maria, G. Yaari, S. H. Kleinstein, Change-O: A toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data. Bioinformatics 31, 3356–3358 (2015).
122
J. N. Stern, G. Yaari, J. A. Vander Heiden, G. Church, W. F. Donahue, R. Q. Hintzen, A. J. Huttner, J. D. Laman, R. M. Nagra, A. Nylander, D. Pitt, S. Ramanan, B. A. Siddiqui, F. Vigneault, S. H. Kleinstein, D. A. Hafler, K. C. O’Connor, B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes. Sci. Transl. Med. 6, 248ra107 (2014).
123
M. Delacher, M. Simon, L. Sanderink, A. Hotz-Wagenblatt, M. Wuttke, K. Schambeck, L. Schmidleithner, S. Bittner, A. Pant, U. Ritter, T. Hehlgans, D. Riegel, V. Schneider, F. K. Groeber-Becker, A. Eigenberger, C. Gebhard, N. Strieder, A. Fischer, M. Rehli, P. Hoffmann, M. Edinger, T. Strowig, J. Huehn, C. Schmidl, J. M. Werner, L. Prantl, B. Brors, C. D. Imbusch, M. Feuerer, Single-cell chromatin accessibility landscape identifies tissue repair program in human regulatory T cells. Immunity 54, 702–720.e17 (2021).
124
J. M. Granja, M. R. Corces, S. E. Pierce, S. T. Bagdatli, H. Choudhry, H. Y. Chang, W. J. Greenleaf, ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat. Genet. 53, 403–411 (2021).
125
A. N. Schep, B. Wu, J. D. Buenrostro, W. J. Greenleaf, chromVAR: Inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat. Methods 14, 975–978 (2017).
126
D. Aran, Z. Hu, A. J. Butte, xCell: Digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 18, 220 (2017).
127
E. Becht, N. A. Giraldo, L. Lacroix, B. Buttard, N. Elarouci, F. Petitprez, J. Selves, P. Laurent-Puig, C. Sautès-Fridman, W. H. Fridman, A. de Reyniès, Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 17, 218 (2016).
128
F. Finotello, C. Mayer, C. Plattner, G. Laschober, D. Rieder, H. Hackl, A. Krogsdam, Z. Loncova, W. Posch, D. Wilflingseder, S. Sopper, M. Ijsselsteijn, T. P. Brouwer, D. Johnson, Y. Xu, Y. Wang, M. E. Sanders, M. V. Estrada, P. Ericsson-Gonzalez, P. Charoentong, J. Balko, N. F. D. C. C. de Miranda, Z. Trajanoski, Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med. 11, 34 (2019).
129
M. S. Rooney, S. A. Shukla, C. J. Wu, G. Getz, N. Hacohen, Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015).
130
P. Danaher, S. Warren, L. Dennis, L. D’Amico, A. White, M. L. Disis, M. A. Geller, K. Odunsi, J. Beechem, S. P. Fling, Gene expression markers of Tumor Infiltrating Leukocytes. J. Immunother. Cancer 5, 18 (2017).
131
G. Bindea, B. Mlecnik, M. Tosolini, A. Kirilovsky, M. Waldner, A. C. Obenauf, H. Angell, T. Fredriksen, L. Lafontaine, A. Berger, P. Bruneval, W. H. Fridman, C. Becker, F. Pagès, M. R. Speicher, Z. Trajanoski, J. Galon, Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39, 782–795 (2013).
132
V. Bergen, M. Lange, S. Peidli, F. A. Wolf, F. J. Theis, Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).
133
F. A. Wolf, F. K. Hamey, M. Plass, J. Solana, J. S. Dahlin, B. Göttgens, N. Rajewsky, L. Simon, F. J. Theis, PAGA: Graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 20, 59 (2019).
134
C. Domínguez Conde, C. Xu, L. B. Jarvis, D. B. Rainbow, S. B. Wells, T. Gomes, S. K. Howlett, O. Suchanek, K. Polanski, H. W. King, L. Mamanova, N. Huang, P. A. Szabo, L. Richardson, L. Bolt, E. S. Fasouli, K. T. Mahbubani, M. Prete, L. Tuck, N. Richoz, Z. K. Tuong, L. Campos, H. S. Mousa, E. J. Needham, S. Pritchard, T. Li, R. Elmentaite, J. Park, E. Rahmani, D. Chen, D. K. Menon, O. A. Bayraktar, L. K. James, K. B. Meyer, N. Yosef, M. R. Clatworthy, P. A. Sims, D. L. Farber, K. Saeb-Parsy, J. L. Jones, S. A. Teichmann, Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science 376, eabl5197 (2022).
135
A. Andersson, L. Larsson, L. Stenbeck, F. Salmén, A. Ehinger, S. Z. Wu, G. Al-Eryani, D. Roden, A. Swarbrick, Å. Borg, J. Frisén, C. Engblom, J. Lundeberg, Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions. Nat. Commun. 12, 6012 (2021).
136
S. Hänzelmann, R. Castelo, J. Guinney, GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14, 7 (2013).
137
R. Vento-Tormo, M. Efremova, R. A. Botting, M. Y. Turco, M. Vento-Tormo, K. B. Meyer, J.-E. Park, E. Stephenson, K. Polański, A. Goncalves, L. Gardner, S. Holmqvist, J. Henriksson, A. Zou, A. M. Sharkey, B. Millar, B. Innes, L. Wood, A. Wilbrey-Clark, R. P. Payne, M. A. Ivarsson, S. Lisgo, A. Filby, D. H. Rowitch, J. N. Bulmer, G. J. Wright, M. J. T. Stubbington, M. Haniffa, A. Moffett, S. A. Teichmann, Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 563, 347–353 (2018).
138
H. L. Crowell, C. Soneson, P.-L. Germain, D. Calini, L. Collin, C. Raposo, D. Malhotra, M. D. Robinson, muscat detects subpopulation-specific state transitions from multi-sample multi-condition single-cell transcriptomics data. Nat. Commun. 11, 6077 (2020).