这是用户在 2025-1-3 22:11 为 https://app.immersivetranslate.com/pdf-pro/73abbd77-dc24-4fcf-b7ff-82b675062d73 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

Simulation Modeling and Implementation of RF and MW System to Control the Insect Pests in Agriculture
RF 和 MW 系统仿真建模与实现,用于农业害虫防治

Sandeep V. Gaikwad 1 1 ^(1){ }^{1}, Arun N. Gaikwad 2 2 ^(2){ }^{2}, Rajesh Harsh 3 3 ^(3){ }^{3}, Anurag Gupta 4 4 ^(4){ }^{4}
Sandeep V. Gaikwad 1 1 ^(1){ }^{1} , Arun N. Gaikwad 2 2 ^(2){ }^{2} , Rajesh Harsh 3 3 ^(3){ }^{3} , Anurag Gupta 4 4 ^(4){ }^{4}
1 , 2 , 4 1 , 2 , 4 ^(1,2,4){ }^{1,2,4} Electronic and Telecommunication, 3 3 ^(3){ }^{3} Technical Innovation Division
1 , 2 , 4 1 , 2 , 4 ^(1,2,4){ }^{1,2,4} 电子和电信 3 3 ^(3){ }^{3} 技术创新部
1 1 ^(1){ }^{1} P.I.C.T. & Research scholar S.C.O.E., 2 2 ^(2){ }^{2} Z.C.O.E.R., 3 3 ^(3){ }^{3} S.A.M.E.E.R., 4 4 ^(4){ }^{4} P.I.C.T.
1 1 ^(1){ }^{1} P.I.C.T. & 研究学者 S.C.O.E., 2 2 ^(2){ }^{2} Z.C.O.E.R., 3 3 ^(3){ }^{3} S.A.M.E.E.R., 4 4 ^(4){ }^{4} P.I.C.T.
1 , 2 , 4 1 , 2 , 4 ^(1,2,4){ }^{1,2,4} Pune, 3 3 ^(3){ }^{3} Mumbai, India
1 , 2 , 4 1 , 2 , 4 ^(1,2,4){ }^{1,2,4} Pune、 3 3 ^(3){ }^{3} Mumbai、印度
svgaikwad@pict.edu

Abstract  抽象

The simulation modeling is used to observe the effects of microwave heating on tomato plant with its harmful insect pest as ‘Helicoverpa Armigera’. The proposed applicator is a capacitor used for microwave heating is simulated at 915 MHz , 2.45 GHz and 5.81 GHz (ISM band) with X c = 50 Ohm X c = 50 Ohm X_(c)=50Ohm\mathrm{X}_{\mathrm{c}}=50 \mathrm{Ohm}. The equations used to determine the electric field intensity, SAR (Specific Absorption Rate) and change in temperature of the tomato plant and insect pests are discussed. The parallel plate applicator is fabricated and tested. The proposed technique can be used to suppress insect pests from plants.
仿真模型用于观察微波加热对番茄植株及其有害害虫“Helicoverpa armigera”的影响。所提出的涂抹器是一种用于微波加热的电容器,模拟频率为 915 MHz、2.45 GHz 和 5.81 GHz(ISM 频段),其中 X c = 50 Ohm X c = 50 Ohm X_(c)=50Ohm\mathrm{X}_{\mathrm{c}}=50 \mathrm{Ohm} 。讨论了用于确定番茄植株和害虫的电场强度、SAR(比吸收率)和温度变化的方程。平行板涂抹器经过制造和测试。所提出的技术可用于抑制植物中的害虫。

Keywords- Microwave heating, SAR, Microwave Cu plate capacitor, Insect pest control.
关键词 - 微波加热、SAR、微波铜板电容器、害虫防治。

I. Introduction  I. 引言

Agriculture is a very important sector in Indian growth, but is hamperd by produce infestation by harmful pests. RF and MW based technology provides an alternate to chemical fumigation for treating popular tomato plants.
农业是印度增长中非常重要的部门,但受到有害生物农产品侵扰的阻碍。基于 RF 和 MW 的技术为处理流行的番茄植株提供了化学熏蒸的替代方案。
Electromagnetic energy is a very powerful tool for many applications related to biological world, especially in agricultural fields, but it should be used correctly, these radiations can be used for disinfestations of insect pests like ‘Helicoverpa Armigera’ in agricultural fields. The electromagnetic exposure is absorbed by biological materials and its interaction depends upon the dielectric properties of materials as the relative permittivity ( ε ε epsi\varepsilon ). The dielectric properties of any material consist of two parts; Dielectric constant ( ε ε epsi^(')\varepsilon^{\prime} ) which reflects the ability of any biological tissue to store electromagnetic energy, which is subjected by electromagnetic radiations and dielectric loss factor ( ε ) ε (epsi^(''))\left(\varepsilon^{\prime \prime}\right) which shows the ability of any biological tissue for the conversion of electromagnetic energy into thermal energy when subjected to an electromagnetic radiation, so
电磁能对于许多与生物世界相关的应用来说是一个非常强大的工具,尤其是在农业领域,但应该正确使用,这些辐射可用于清除农业领域中的“Helicoverpa armigera”等害虫。电磁暴露被生物材料吸收,其相互作用取决于材料的介电特性,即相对介电常数 ( ε ε epsi\varepsilon )。任何材料的介电特性都由两部分组成;介电常数 ( ε ε epsi^(')\varepsilon^{\prime} ) 反映了任何生物组织储存电磁能的能力,电磁能受到电磁辐射和介电损耗因子的影响,介电损耗因子 ( ε ) ε (epsi^(''))\left(\varepsilon^{\prime \prime}\right) 表示任何生物组织在受到电磁辐射时将电磁能转化为热能的能力,所以
ε = ε j ε ε = ε j ε epsi=epsi^(')-jepsi^('')\varepsilon=\varepsilon^{\prime}-j \varepsilon^{\prime \prime}
Where,  哪里
ε = ε d + ε σ ε = ε d + ε σ epsi^('')=epsi_(d)^('')+epsi_(sigma)^('')\varepsilon^{\prime \prime}=\varepsilon_{d}^{\prime \prime}+\varepsilon_{\sigma}^{\prime \prime}
ε d ε d epsi_(d)^('')\varepsilon_{d}^{\prime \prime} represents the contribution of dipole dispersion to a biological bodies dielectric loss factor and ε σ ε σ epsi_(sigma)^('')\varepsilon_{\sigma}^{\prime \prime} contributes ionic conduction to dielectric loss factor. The ε σ ε σ epsi_(sigma)^('')\varepsilon_{\sigma}^{\prime \prime} can be determined as:
ε d ε d epsi_(d)^('')\varepsilon_{d}^{\prime \prime} 表示偶极子色散对生物体介电损耗因数的贡献,并将 ε σ ε σ epsi_(sigma)^('')\varepsilon_{\sigma}^{\prime \prime} 离子传导对介电损耗因数的贡献。可以确定为 ε σ ε σ epsi_(sigma)^('')\varepsilon_{\sigma}^{\prime \prime}
ε σ = σ 2 π f ε 0 ε σ = σ 2 π f ε 0 epsi_(sigma)^('')=(sigma)/(2pi fepsi_(0))\varepsilon_{\sigma}^{\prime \prime}=\frac{\sigma}{2 \pi f \varepsilon_{0}}
Where σ σ sigma\sigma is the ionic conductivity of biological tissue ( S / m ) , f ( S / m ) , f (S//m),f(\mathrm{S} / \mathrm{m}), \mathrm{f} is the frequency of Electromagnetic radiation in Hz and ε 0 ε 0 epsi_(0)\varepsilon_{0} is the permittivity of free space ( 8.85 × 10 12 F / m ) 8.85 × 10 12 F / m (8.85 xx10^(-12)(F)//m)\left(8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right). To understand the effects of RF and Microwave energy on biological tissue, ε , σ ε , σ epsi,sigma\varepsilon, \sigma, material density and specific heat are the required parameters [1,2,3,4].
其中 σ σ sigma\sigma 是生物组织的 ( S / m ) , f ( S / m ) , f (S//m),f(\mathrm{S} / \mathrm{m}), \mathrm{f} 离子电导率是电磁辐射的频率,单位为 Hz, ε 0 ε 0 epsi_(0)\varepsilon_{0} 是自由空间 ( 8.85 × 10 12 F / m ) 8.85 × 10 12 F / m (8.85 xx10^(-12)(F)//m)\left(8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right) 的介电常数。为了了解射频和微波能量对生物组织的影响, ε , σ ε , σ epsi,sigma\varepsilon, \sigma 材料密度和比热是必需的参数 [1,2,3,4]。

II. MATHEMATICAL STEPS  II. 数学步骤

To understand the effects of Microwave heating on a tomato plant and insect pests, following mathematical steps is used:
为了了解微波加热对番茄植株和害虫的影响,使用以下数学步骤:
Step 1: Determine Electric field intensity
第 1 步:确定电场强度

The voltage and ISM (Industry, Scientific and Medical) band frequency were applied to the Cu parallel plate capacitor and using equation (4) electric field intensity can be determined.
将电压和 ISM(工业、科学和医疗)频带频率施加到 Cu 平行板电容器上,使用公式 (4) 可以确定电场强度。
× E ¯ = B ¯ t × E ¯ = B ¯ t grad xx bar(E)=-(del( bar(B)))/(del t)\nabla \times \bar{E}=-\frac{\partial \bar{B}}{\partial t}
The energy in the capacitor was calculated using equation (5).
电容器中的能量使用公式 (5) 计算。
W = 1 2 ε | E | 2 d v Joules W = 1 2 ε | E | 2 d v  Joules  W=(1)/(2)int epsi|E|^(2)dv quad" Joules "W=\frac{1}{2} \int \varepsilon|E|^{2} d v \quad \text { Joules }
Step 2: SAR (Specific Absorption Rate) measurement: It is the rate at which electromagnetic radiation is absorbed by biological tissue and can be determined using equation (6).
第 2 步:SAR(比吸收率)测量:这是电磁辐射被生物组织吸收的速率,可以使用方程 (6) 确定。
S A R = σ | E | 2 ρ S A R = σ | E | 2 ρ SAR=(sigma|E|^(2))/(rho)S A R=\frac{\sigma|E|^{2}}{\rho}
Where σ σ sigma\sigma is electric conductivity ( S / m ) ( S / m ) (S//m)(\mathrm{S} / \mathrm{m}), and ρ ρ rho\rho is the material density ( Kg / m 3 ) Kg / m 3 (Kg//m^(3))\left(\mathrm{Kg} / \mathrm{m}^{3}\right) and E is the electric field intensity ( V / m ) ( V / m ) (V//m)(\mathrm{V} / \mathrm{m}) and SAR in W/kg [5].
其中 σ σ sigma\sigma 是电导率 ( S / m ) ( S / m ) (S//m)(\mathrm{S} / \mathrm{m}) ρ ρ rho\rho 是材料密度 ( Kg / m 3 ) Kg / m 3 (Kg//m^(3))\left(\mathrm{Kg} / \mathrm{m}^{3}\right) ,E 是电场强度 ( V / m ) ( V / m ) (V//m)(\mathrm{V} / \mathrm{m}) 和 SAR,单位为 W/kg [5]。
Step 3: The rate of Temperature change in material with respect to exposure time using SAR and specific heat of the material (here metabolic activities in biological tissue were not considered).
第 3 步:使用 SAR 和材料比热测量材料温度相对于暴露时间的变化率(这里不考虑生物组织中的代谢活动)。

This temperature change in terms of SAR is given as:
以 SAR 表示的温度变化为:
Δ T Δ t = ( S A R + P m P c P b ) c Δ T Δ t = S A R + P m P c P b c (Delta T)/(Delta t)=((SAR+P_(m)-P_(c)-P_(b)))/(c)\frac{\Delta T}{\Delta t}=\frac{\left(S A R+P_{m}-P_{c}-P_{b}\right)}{c}
Where Δ T Δ T Delta T\Delta T is change in temperature, Δ t Δ t Delta t\Delta t is exposure duration, P m P m P_(m)\mathrm{P}_{\mathrm{m}} is the metabolic heating rate, P c P c P_(c)\mathrm{P}_{\mathrm{c}} is the rate of heat loss per unit volume due to thermal conduction, P b P b P_(b)\mathrm{P}_{\mathrm{b}} is the heat loss per unit volume due to blood flow, c is the specific heat of tissue. During steady state condition, before exposure P m P c P b = 0 P m P c P b = 0 P_(m)-P_(c)-P_(b)=0P_{m}-P_{c}-P_{b}=0. For the agro product we can determine Δ T Δ T Delta T\Delta T using equation (8) [5].
其中 Δ T Δ T Delta T\Delta T 是温度的变化, Δ t Δ t Delta t\Delta t 是暴露持续时间, P m P m P_(m)\mathrm{P}_{\mathrm{m}} 是代谢加热速率, P c P c P_(c)\mathrm{P}_{\mathrm{c}} 是热传导引起的每单位体积热量损失率, P b P b P_(b)\mathrm{P}_{\mathrm{b}} 是血液流动引起的每单位体积热量损失,c 是组织的比热。在稳态条件下,暴露 P m P c P b = 0 P m P c P b = 0 P_(m)-P_(c)-P_(b)=0P_{m}-P_{c}-P_{b}=0 前 .对于农产品,我们可以使用公式 (8) [5] 来确定 Δ T Δ T Delta T\Delta T
Δ T Δ t = ( S A R ) c Δ T Δ t = ( S A R ) c (Delta T)/(Delta t)=((SAR))/(c)\frac{\Delta T}{\Delta t}=\frac{(S A R)}{c}
Step 4: To calculate the thermal energy generated due to EM exposure in biological tissue: Increase in temperature of a material by absorbing electromagnetic energy can be expressed as
第 4 步:计算生物组织中因 EM 暴露而产生的热能:通过吸收电磁能使材料温度升高可以表示为
Q = ρ c Δ T Δ t = 55.63 × 10 12 f E 2 ε Q = ρ c Δ T Δ t = 55.63 × 10 12 f E 2 ε Q=rho c(Delta T)/(Delta t)=55.63 xx10^(-12)fE^(2)epsi^('')Q=\rho c \frac{\Delta T}{\Delta t}=55.63 \times 10^{-12} f E^{2} \varepsilon^{\prime \prime}
where Q is power density in W / m 3 W / m 3 W//m^(3)\mathrm{W} / \mathrm{m}^{3}, c is the specific heat of the material ( J . kg 1 . C 1 ) , ρ J . kg 1 . C 1 , ρ (J.kg^(-1).^(@)C^(-1)),rho\left(\mathrm{J} . \mathrm{kg}^{-1} .{ }^{\circ} \mathrm{C}^{-1}\right), \rho is the density of the material ( kg m 3 ) , E kg m 3 , E (kg*m^(-3)),E\left(\mathrm{kg} \cdot \mathrm{m}^{-3}\right), \mathrm{E} is the electric field intensity ( V m 1 ) , f V m 1 , f (V*m^(-1)),f\left(\mathrm{V} \cdot \mathrm{m}^{-1}\right), \mathrm{f} is the frequency ( Hz ) , ε ( Hz ) , ε (Hz),epsi^('')(\mathrm{Hz}), \varepsilon^{\prime \prime} is the dielectric loss factor of the material, Δ t Δ t Delta t\Delta t is the time duration (s) and Δ T Δ T Delta T\Delta T is the temperature rise in the material ( C ) C (^(@)C)\left({ }^{\circ} \mathrm{C}\right). The equation (9) shows that higher temperatures in commodities can be achieved by longer exposure time and high power density. If the dielectric loss factor is relatively constant, rapid dielectric heating using higher frequencies can be achieved with much lower field intensities.
其中 Q 是功率密度,c W / m 3 W / m 3 W//m^(3)\mathrm{W} / \mathrm{m}^{3} 是材料的 ( J . kg 1 . C 1 ) , ρ J . kg 1 . C 1 , ρ (J.kg^(-1).^(@)C^(-1)),rho\left(\mathrm{J} . \mathrm{kg}^{-1} .{ }^{\circ} \mathrm{C}^{-1}\right), \rho 比热 是材料的密度 是电 ( kg m 3 ) , E kg m 3 , E (kg*m^(-3)),E\left(\mathrm{kg} \cdot \mathrm{m}^{-3}\right), \mathrm{E} 场强度 ( V m 1 ) , f V m 1 , f (V*m^(-1)),f\left(\mathrm{V} \cdot \mathrm{m}^{-1}\right), \mathrm{f} 是频率 ( Hz ) , ε ( Hz ) , ε (Hz),epsi^('')(\mathrm{Hz}), \varepsilon^{\prime \prime} 是材料的介电损耗因数, Δ t Δ t Delta t\Delta t 是持续时间 (s) , Δ T Δ T Delta T\Delta T 是材料的 ( C ) C (^(@)C)\left({ }^{\circ} \mathrm{C}\right) 温升。方程 (9) 表明,更长的曝光时间和高功率密度可以实现更高的商品温度。如果介电损耗因数相对恒定,则可以在低得多的场强下使用更高频率实现快速介电加热。
This equation only considers heat conduction in biological tissue not in surrounding environment.
该方程仅考虑生物组织中的热传导,而不考虑周围环境中的热传导。

III. Simulation Design  三、仿真设计

In this simulation, a parallel plate capacitor is used as an applicator for heating tomato plant with tomatoes and its pests ‘Helicoverpa Armigera’ (pupa and larvae stages) at 915 MHz , 2.45 GHz MHz , 2.45 GHz MHz,2.45GHz\mathrm{MHz}, 2.45 \mathrm{GHz} and 5.81 GHz . Simulation was performed using 3D, COMSOL MULTIPHYSICS software. In the designed model as shown in fig. 1 , tomato plant with tomatoes and insects surrounded by air are placed between two copper plates. One of the Cu plates is connected to a voltage source and other to the ground. Fig. 1 also shows the applicator design at 915 MHz with 25 cm × 25 cm 25 cm × 25 cm 25cmxx25cm25 \mathrm{~cm} \times 25 \mathrm{~cm} Cu plates. The distance between the plates is 16 cm , the capacitance is 3.54 pf and X c X c X_(c)\mathrm{X}_{\mathrm{c}} 50 50 ~~50\approx 50 ohm with an air as dielectric. Similarly, it was simulated for 2.45 GHz and 5.81 GHz . For the simulation modeling,
在此模拟中,平行板电容器用作施药器,用于在 915 MHz , 2.45 GHz MHz , 2.45 GHz MHz,2.45GHz\mathrm{MHz}, 2.45 \mathrm{GHz} GHz 和 5.81 GHz 下加热带有西红柿及其害虫“Helicoverpa armigera”(蛹和幼虫阶段)的番茄植株。使用 COMSOL MULTIPHYSICS 的 3D 软件进行仿真。在如图 1 所示的设计模型中,西红柿植株和西红柿被空气包围的昆虫被放置在两块铜板之间。其中一个铜板连接到电压源,另一个连接到地。图 1 还显示了 915 MHz 下使用铜板的 25 cm × 25 cm 25 cm × 25 cm 25cmxx25cm25 \mathrm{~cm} \times 25 \mathrm{~cm} 涂覆器设计。板之间的距离为 16 cm ,电容为 3.54 pf 和 X c X c X_(c)\mathrm{X}_{\mathrm{c}} 50 50 ~~50\approx 50 ohm,空气作为电介质。同样,它是针对 2.45 GHz 和 5.81 GHz 进行模拟的。对于仿真建模,

the dielectric properties of tomato plant with tomatoes and an insect were measured using Agilent (PNA) N5221A (10MHz 13 GHz ) open-ended coaxial probe at S.A.M.E.E.R., Mumbai. The “Electric Current” module of COMSOL MULTIPHISICS was used which requires only electric conductivity and relative permittivity properties for modeling purpose of tomato plant with tomatoes and insect.
在孟买 S.A.M.E.R. 使用安捷伦 (PNA) N5221A (10MHz 13 GHz) 开口同轴探头测量番茄植株与西红柿和昆虫的介电性能。使用了 COMSOL MULTIPHISICS 的“电流”模块,该模块只需要电导率和相对介电常数属性,即可对西红柿和昆虫的番茄植株进行建模。

Fig. 1. Tomato plant with tomato and insect are placed inside the Cu plate applicator designed at 915 MHz using COMSOL software.
图 1.使用 COMSOL 软件将带有番茄和昆虫的番茄植物放置在设计为 915 MHz 的铜板涂抹器中。
To observe the field pattern inside and outside of the applicator “Electromagnetic wave, frequency domain” module was used in simulation, and is shown in fig. 2. The port is applied through the air and field pattern was observed. It is observed in simulation that the field is present inside and outside, but its intensity is more inside than outside of the applicator.
为了观察涂覆器内部和外部的场模式,在仿真中使用了“电磁波,频域”模块,如图 2 所示。该端口通过空气施加,并观察到场模式。在模拟中观察到,磁场存在于内部和外部,但其强度更多的是涂抹器的内部而不是外部。

Fig. 2. The field pattern inside and outside of the Cu plate applicator at 915 MHz with air using COMSOL software.
图 2.使用 COMSOL 软件在 915 MHz 下用空气拍摄的铜板涂抹器内部和外部的场图。

IV. Copper Plate Applicator Design And Testing
四、铜板涂布机设计与测试

As per simulated design parameters, Cu plate applicator was developed for 915 MHz , 2.45 GHz 915 MHz , 2.45 GHz 915MHz,2.45GHz915 \mathrm{MHz}, 2.45 \mathrm{GHz} with X c 50 ohm X c 50 ohm X_(c)~~50ohm\mathrm{X}_{\mathrm{c}} \approx 50 \mathrm{ohm}. The S11 of the applicator is measured for air and the tomato plant on PNA (Agilent: N5221A 10MHz -13 GHz). Fig. 3 shows
根据模拟设计参数,铜板涂抹器是用 915 MHz , 2.45 GHz 915 MHz , 2.45 GHz 915MHz,2.45GHz915 \mathrm{MHz}, 2.45 \mathrm{GHz} 开发的 X c 50 ohm X c 50 ohm X_(c)~~50ohm\mathrm{X}_{\mathrm{c}} \approx 50 \mathrm{ohm} 。在 PNA(安捷伦:N5221A 10MHz -13 GHz)上测量空气和番茄植株的 S11。图 3 显示

the setup of Cu plate applicator and PNA for the measurement of S11, VSWR and impedance.
用于测量 S11、VSWR 和阻抗的铜板涂抹器和 PNA 的设置。

Fig. 3. Cu plate applicator without tomato plant at 2.45 GHz .
图 3.2.45 GHz 下没有番茄植物的铜板涂抹器。

V. Result And Discussion  V. 结果与讨论

The electric field inside the applicator is used to apply heat in the dielectric material. The temperature rise inside material was averaged and volume dependent. The temperature change was not experimentally measured. The use of a parallel plate capacitor at microwave frequency is newly proposed design. The fig. 4 to fig. 6 shows details of the rise in temperature after applying 10 V to 500 V for 5 min , to tomato plant with tomato, Pupa and larvae. The temperature needed for a lethal effect and the maximum temperature without causing damage to the tomato plant yet to be verified practically. However on the soil, surface temperature above 43 C 43 C 43^(@)C43^{\circ} \mathrm{C} were lethal for neonates, and exposure to these temperature contributed greatly to the overall mortality rate observed [9].
涂抹器内部的电场用于在介电材料中施加热量。材料内部的温升是平均的,并且与体积有关。温度变化没有经过实验测量。在微波频率下使用平行板电容器是新提出的设计。图 4 至图 6 显示了对带有番茄、蛹和幼虫的番茄植株施加 10 V 至 500 V 5 分钟后温度升高的细节。产生致命效果所需的温度和不对番茄植株造成损害的最高温度还有待实际验证。然而,在土壤中,上述 43 C 43 C 43^(@)C43^{\circ} \mathrm{C} 表面温度对新生儿来说是致命的,暴露于这些温度下对观察到的总体死亡率有很大影响 [9]。

Fig. 4. Voltage Vs Change in temperature at 915 MHz for Δ t = 5 min Δ t = 5 min Delta t=5min\Delta t=5 \mathrm{~min}.
图 4.电压 与 915 MHz Δ t = 5 min Δ t = 5 min Delta t=5min\Delta t=5 \mathrm{~min} 时的温度变化。
Applicator at 2.45 GHz  2.45 GHz 的胶枪
Fig. 5. Voltage Vs Change in temperature at 2.45 MHz for Δ t = 5 min Δ t = 5 min Deltat=5min\Delta \mathrm{t}=5 \mathrm{~min}.
图 5.电压 与 2.45 MHz Δ t = 5 min Δ t = 5 min Deltat=5min\Delta \mathrm{t}=5 \mathrm{~min} 时的温度变化。
Applicator at 5.81 GHz  5.81 GHz 胶枪
Fig. 6. Voltage Vs Change in temperature at 5.81 MHz for Δ t = 5 min Δ t = 5 min Deltat=5min\Delta \mathrm{t}=5 \mathrm{~min}.
图 6.电压与 5.81 MHz Δ t = 5 min Δ t = 5 min Deltat=5min\Delta \mathrm{t}=5 \mathrm{~min} 时的温度变化。

The above graph shows that, the rise in temperature for tomato is very less than the insect and this system can be beneficial for controlling the harmful insects on plants. The response of S 11 S 11 S_(11)\mathrm{S}_{11} in fig. 7 is lower than -15 dBm and impedance measured was 43 Ohms without tomato plant inside the Cu plate applicator.
上图显示,西红柿的温度上升非常小于昆虫,该系统有利于控制植物上的有害昆虫。图 7 S 11 S 11 S_(11)\mathrm{S}_{11} 中的响应低于 -15 dBm,测得的阻抗为 43 欧姆,铜板涂抹器内没有番茄植物。

Fig. 7. S11 measured using PNA (Agilent: N5221A 10 MHz 13 GHz ) 10 MHz 13 GHz ) 10MHz-13GHz)10 \mathrm{MHz} \mathrm{-13} \mathrm{GHz)}