这是用户在 2024-9-16 14:42 为 https://pubs.acs.org/doi/10.1021/acssynbio.7b00150 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Structure and Biophysics for a Six Letter DNA Alphabet that Includes Imidazo[1,2-a]-1,3,5-triazine-2(8H)-4(3H)-dione (X) and 2,4-Diaminopyrimidine (K)
My Activity
CONTENT TYPES

Figure 1Loading Img
  • Subscribed
Research Article
研究论文

Structure and Biophysics for a Six Letter DNA Alphabet that Includes Imidazo[1,2-a]-1,3,5-triazine-2(8H)-4(3H)-dione (X) and 2,4-Diaminopyrimidine (K)
包括咪唑[1,2-a]-1,3,5-三嗪-2(8H-4(3H)-二酮 (X) 和 2,4-二氨基嘧啶 (K) 的六字母 DNA 字母表的结构和生物物理学
Click to copy article link
点击复制文章链接
Article link copied!

View Author Information 查看作者信息
Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
Foundation for Applied Molecular Evolution, and the Westheimer Institute of Science & Technology, 13709 Progress Boulevard, Box 7, Alachua, Florida 32615, United States
§ Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Box 17, Alachua, Florida 32615, United States
ENSCO, Inc., 4849 North Wickham Road, Melbourne, Florida 32940, United States
Department of Chemistry and Chemical Biology, Indiana University, Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
*Tel.: (317) 278-8486. Fax: (317) 274-4686. E-mail: mgeorgia@iu.edu
Open PDF 打开 PDFSupporting Information (1)
支持信息 (1)

ACS Synthetic Biology

Cite this: ACS Synth. Biol. 2017, 6, 11, 2118–2129
Click to copy citationCitation copied!
https://doi.org/10.1021/acssynbio.7b00150
Published July 28, 2017
Copyright © 2017 American Chemical Society

Abstract 抽象

Click to copy section link
单击以复制部分链接
Section link copied!

A goal of synthetic biology is to develop new nucleobases that retain the desirable properties of natural nucleobases at the same time as expanding the genetic alphabet. The nonstandard Watson–Crick pair between imidazo[1,2-a]-1,3,5-triazine-2(8H)-4(3H)-dione (X) and 2,4-diaminopyrimidine (K) does exactly this, pairing via complementary arrangements of hydrogen bonding in these two nucleobases, which do not complement any natural nucleobase. Here, we report the crystal structure of a duplex DNA oligonucleotide in B-form including two consecutive X:K pairs in GATCXK DNA determined as a host–guest complex at 1.75 Å resolution. X:K pairs have significant propeller twist angles, similar to those observed for A:T pairs, and a calculated hydrogen bonding pairing energy that is weaker than that of A:T. Thus, although inclusion of X:K pairs results in a duplex DNA structure that is globally similar to that of an analogous G:C structure, the X:K pairs locally and energetically more closely resemble A:T pairs.
合成生物学的一个目标是开发新的核碱基,在扩大遗传字母表的同时保留天然核碱基的理想特性。咪唑[1,2-a]-1,3,5-三嗪-2(8H)-4(3H)-二酮 (X) 和 2,4-二氨基嘧啶 (K) 之间的非标准 Watson-Crick 对正是这样做的,通过这两个核碱基中的氢键互补排列配对,它们不补充任何天然核碱基。在这里,我们报道了 B 型双链 DNA 寡核苷酸的晶体结构,包括 GATCXK DNA 中的两个连续 XK 对,以 1.75 Å 分辨率测定为主客体复合物。XK 对具有显着的螺旋桨扭转角,类似于观察到的 A:T 对,并且计算出的氢键对能比 A:T 弱。因此,尽管包含 XK 对会导致双链 DNA 结构在整体上与类似的 G:C 结构相似,但 XK 对在局部和能量上更接近 A:T 对。

This publication is licensed under the terms of your institutional subscription. Request reuse permissions.
本出版物根据您的机构订阅条款获得许可。请求重用权限。

Copyright © 2017 American Chemical Society
版权所有 © 2017 美国化学会

A quarter-century has passed since the first experiments showed that standard DNA does not exploit all hydrogen bonding patterns possible within the Watson–Crick nucleobase pairing scheme. (1) In standard pairs, the nucleobase heterocycles attached to a deoxyribose sugar through N-glycosidic bonds on antiparallel phosphodiester strands interact on a Watson–Crick edge via hydrogen bonding interactions. However, this Watson–Crick geometry can accommodate as many as 12 nucleobases forming up to as many as six orthogonal nucleobase pairs (Figure 1). (2-6) These form an artificially expanded genetic information system (AEGIS). Explorations of AEGIS have created new technology and medicine as they have opened new frontiers for the study of nucleic acids in general. (7)
自从第一次实验表明标准 DNA 并未利用 Watson-Crick 核碱基配对方案中所有可能的氢键模式以来,已经过去了四分之一个世纪。(1) 在标准对中,通过反平行磷酸二酯链上的 N-糖苷键连接到脱氧核糖的核碱基杂环通过氢键相互作用在 Watson-Crick 边缘上相互作用。然而,这种 Watson-Crick 几何形状可以容纳多达 12 个核碱基,形成多达 6 个正交核碱基对(1)。(2-6) 这些形成了人工扩展的遗传信息系统 (AEGIS)。对 AEGIS 的探索创造了新的技术和医学,因为它们为核酸的研究开辟了新的领域。(7)

Figure 1 图 1

Figure 1. Chemical structures with atom numbers for A:T, G:C, P:Z, and X:P.
图 1.具有原子数的化学结构 A:T、G:C、PZX:P

In particular, no standard pyrimidine nucleotide presents a hydrogen bond donor–acceptor–donor pattern to a purine that presents the complementary acceptor–donor–acceptor hydrogen bonding pattern. In AEGIS, this nonstandard pattern can be implemented by the nucleotide analogues 2,4-diamino-5-(1′-β-d-2′-deoxyribofuranosyl)-pyrimidine (implementing the pyrimidine donor–acceptor–donor hydrogen bonding pattern, K), and 8-(β-d-2′-deoxyribofuranosyl)imidazo[1,2-a]-1,3,5-triazine-2(8H)-4(3H)-dione (implementing the purine acceptor–donor–acceptor hydrogen bonding pattern, X). The first nucleobase K has a pKa of ∼6.7 (as a free species, in its protonated form. (8) The second nucleobase X has a pKa of ∼8.5, reported here for the first time based on a trace of UV as a function of pH (Supporting Information Figure S1). The X:K pair differs from natural pairs in two ways. First, a pyrimidine analogue implementing a donor–acceptor–donor hydrogen bonding pattern (like K) must be a C-glycoside, joining the heterocycle to the sugar via a carbon–carbon bond. Second, that analogue presents a hydrogen bond donor, an NH2 moiety, to the minor groove. These features of K differ in both respects from natural T and C. These are both N-glycosides, and both present a C═O unit (the oxygen being O2) to the minor groove. Further, K differs in the second respect from the AEGIS 5-nitro-1H-pyridin-2-one heterocycle (presenting the pyrimidine donor–donor–acceptor pattern, trivially Z); Z also presents a C═O unit to the minor groove. (9-12) The fact that a nearly complete molecular biology has been developed for the P:Z pair suggests that a pair with a C-glycosidic component is compatible with a synthetic biology (Figure 1).
特别是,没有标准的嘧啶核苷酸呈现氢键供体 - 受体 - 供体模式,而嘌呤则呈现互补受体 - 供体 - 受体氢键模式。在 AEGIS 中,这种非标准模式可以通过核苷酸类似物 2,4-二氨基-5-(1′-β-d-2′-脱氧呋喃核糖基)-嘧啶(实现嘧啶供体-受体-供体氢键模式,K)和 8-(β-d-2′-脱氧核糖呋喃酰基)咪唑[1,2-a]-1,3,5-三嗪-2(8H-4(3H)-二酮(实现嘌呤受体-供体-受体氢键模式,X)来实现。第一个核碱基 K 的 pKa 为 ∼6.7(作为游离物质,以其质子化形式)。(8) 第二个核碱基 X 的 pKa 为 ∼8.5,这里首次根据痕量 UV 作为 pH 值的函数进行了报道(支持信息图 S1)。XK 对与自然对在两个方面不同。首先,实现供体-受体-供体氢键模式的嘧啶类似物(如 K)必须是 C-糖苷,通过碳-碳键将杂环连接到糖上。其次,该类似物将氢键供体,NH2 部分,呈现到小沟中。K 的这些特征在两个方面都与自然 T 和 C 不同。这些都是 N-糖苷,并且都在小沟中呈有一个 C═O 单位(氧是 O2)。此外,K 在第二个方面与 AEGIS 5-硝基-1H-吡啶-2-酮杂环不同(呈现嘧啶供体-供体-受体模式,简单地为 Z);Z 还为小调槽提供了一个 C═O 单元。 (9-12) 已经为 PZ 对开发了几乎完整的分子生物学这一事实表明,具有 C-糖苷成分的对与合成生物学兼容(1)。
As noted in previously published work, this particular X:K AEGIS pair is of interest because it has no tautomeric forms, protonated states, or deprotonated states that allow either the purine or the pyrimidine to mispair with any natural nucleobase to form a pair with a Watson–Crick geometry, that is, edge-on hydrogen bonded pair. (13, 14) Thus, the fidelity of X:K replication depends only on interactions made directly by the DNA polymerase involved. Native E. coli DNA polymerase I makes little full-length product for a template containing a single K in the absence of dXTP, but incorporates dTTP opposite X in the absence of dKTP in primer extension assays. (14) This mismatch arises through the formation of a type 1 X:T wobble structure. (13) Further, when challenged with a substrate containing two consecutive X:K pairs, DNA polymerase I has difficulty extending the primer; this is true whether the template includes KK or a mixture of K and X. (14)
正如以前发表的工作中所指出的,这个特殊的 XK AEGIS 对很感兴趣,因为它没有互变异构形式、质子化状态或去质子化状态,这些状态允许嘌呤或嘧啶与任何天然核碱基错配,形成具有 Watson-Crick 几何形状的对,即边上氢键对。(13, 14)因此,XK 复制的保真度仅取决于所涉及的 DNA 聚合酶直接进行的相互作用。天然大肠杆菌 DNA 聚合酶 I 在不存在 dXTP 的情况下为含有单个 K 的模板产生很少的全长产物,但在引物延伸测定中,在没有 dKTP 的情况下掺入与 X 相反的 dTTP。(14) 这种错配是通过形成 1 型 X:T 摆动结构引起的。(13) 此外,当用含有两个连续 XK 对的底物攻击时,DNA 聚合酶 I 难以延伸引物;无论模板包含 KK 还是 KX 的混合,都是如此。(14)
In earlier work, xanthosine implemented the X hydrogen bonding pattern, and five cycles of replications were carried out using an HIV-1 reverse transcriptase variant. (12) The fidelity per cycle was calculated by taking the fifth root of the overall extent of loss, which was determined through the generation of a restriction site as a consequence of the loss. The wobble pair that created the loss was studied using standing start primer extension, followed by analysis of the products using gel electrophoresis and band quantitation. Here, fidelity was measured in the absence of the complement. (13)
在早期的工作中,黄嘧啶实现了 X 氢键模式,并使用 HIV-1 逆转录酶变体进行了五个复制循环。(12) 每个周期的保真度是通过取总体损失程度的五次方根来计算的,这是通过作为损失的结果产生限制位点来确定的。使用静止起始引物延伸研究产生损失的摆动对,然后使用凝胶电泳和条带定量分析产物。在这里,保真度是在没有补码的情况下测量的。(13)
Fidelity has also been assessed by reference to the fidelity of replication of two other AEGIS pairs, the S:B pair and the Z:P pair. With these two AEGIS pairs, in contrast to the X:K pair, mismatching without geometric distortion is possible from a minor tautomer form or a minor deprotonated form. Of course, the exact fidelity depends on the exact polymerase used, the exact molecule implementing the X hydrogen bonding pattern, and the exact conditions where the fidelity is examined.
保真度也通过参考另外两个 AEGIS 对(SB 对和 ZP 对)的复制保真度来评估。与 XK 对相比,这两个 AEGIS 对可以从次要互变异构体形式或次要去质子化形式进行不匹配而不会产生几何变形。当然,确切的保真度取决于所使用的确切聚合酶、实现 X 氢键模式的确切分子以及检查保真度的确切条件。
The ability of E. coli to rescue selectable markers by mismatching was examined in living cells, which ensures fidelity of DNA replication. (14) Here, the S:B pair and the Z:P pairs, absent their complementary triphosphates, behave in large part as expected based on their tautomeric forms (for the first) and deprotonated forms (for the second). (15) The X:K pair is “seen” by the mismatch repair enzyme MutS to be a legitimate match, meaning that this DNA repair system will not excise X:K pairs in living bacterial cells. This makes the X:K pair a prime candidate to enter living systems as a fifth and sixth DNA pair, one that does not suffer from geometric distortion displayed by purely size-complementary pairs. (16, 17)
在活细胞中检查了大肠杆菌通过错配拯救选择标记物的能力,这确保了 DNA 复制的保真度。(14) 在这里,SB 对和 ZP 对,没有它们的互补三磷酸盐,根据它们的互变异构形式(对于第一个)和去质子化形式(对于第二个)在很大程度上表现为预期的。(15) 配修复酶 MutS “看到”X:K 对是合法匹配的,这意味着该 DNA 修复系统不会切除活细菌细胞中的 XK 对。这使得 XK 对成为作为第五和第六个 DNA 对进入生命系统的主要候选者,该 DNA 对不会受到纯粹大小互补对所显示的几何失真的影响。(16, 17)
To advance in a corresponding way the synthetic biology of GACTKX DNA, we began by recognizing that nucleobases play an important role in dictating the overall structure and properties of a DNA duplex. (18) In general, duplex structures and their overall local and helical parameters play an important role in recognition of the DNA in processes such as protein binding, replication, gene regulation, and subsequent transcriptional events. Exploration of the structure of duplex DNA containing unnatural nucleotides can expand our understanding of this relation. Studies of DNA duplexes having multiple and consecutive non-natural nucleobase pairs are likely to be more informative than studies with duplexes containing only one. This was the case for Z and its partner P (7-amino-9-(1′-beta-d-2′-deoxyribofuranosyl)-imidazo[1,2-c]pyrimidin-5(1H)-one), where both structural and dynamic studies of duplexes containing multiple and consecutive Z:P pairs have advanced our understanding of GACTZP DNA, as well as DNA in general. (11, 19)
为了以相应的方式推进 GACTKX DNA 的合成生物学,我们首先认识到核碱基在决定 DNA 双链体的整体结构和特性方面起着重要作用。(18) 一般来说,双链结构及其整体局部和螺旋参数在蛋白质结合、复制、基因调控和随后的转录事件等过程中识别 DNA 起着重要作用。探索含有非天然核苷酸的双链 DNA 的结构可以扩展我们对这种关系的理解。对具有多个连续非天然核碱基对的 DNA 双链体的研究可能比对仅包含一个核碱基对的双链体的研究提供更多信息。Z 及其伴侣 P (7-氨基-9-(1′-β-d-2′-脱氧呋喃核糖基)-咪唑[1,2-c]嘧啶-5(1H)-酮)就是这种情况,其中包含多个和连续 ZP 对的双链体的结构和动力学研究都促进了我们对 GACTZP DNA 以及一般 DNA 的理解。(11, 19)
With the goal of understanding how multiple X:K pairs might affect the structure of duplex DNA, which is of particular interest given that E. coli DNA polymerase I has difficulty incorporating two consecutive X:K pairs, we first examined the circular dichroism (CD) spectra of this system in aqueous solution. Then, we used a host–guest system to crystallize 5′-CTTATXXTAKKATAAG-3′, referred to as 2X2K. In this system, the N-terminal fragment (residues 24–278) of Moloney murine leukemia virus reverse transcriptase (MMLV-RT) serves as the host and a 16-mer duplex DNA oligonucleotide as the guest. (20, 21) The N-terminal fragment of MMLV-RT consists of the fingers and palm domains, and the DNA binds to a site within the fingers domain involving minor groove and backbone hydrogen bonding. (22)
为了了解多个 XK 对如何影响双链 DNA 的结构,鉴于大肠杆菌 DNA 聚合酶 I 难以掺入两个连续的 XK 对,这一点特别有趣,我们首先检查了该系统在水溶液中的圆二色谱 (CD) 光谱。然后,我们使用主客体系统结晶 5′-CTTATXXTAKKATAAG-3′,称为 2X2K。在该系统中,莫洛尼鼠白血病病毒逆转录酶 (MMLV-RT) 的 N 末端片段(残基 24-278)作为宿主,16 聚体双链体 DNA 寡核苷酸作为客体。(20, 21)MMLV-RT 的 N 端片段由手指和手掌结构域组成,DNA 与手指结构域内涉及小沟和骨架氢键的位点结合。(22)
Table 1. Data and Refinement Statistics for 2X2K
表 1.2X2K 的数据和优化统计量
a (Å) a (Å)55
b (Å) b (Å)145.6
c (Å) c (Å)46.9
space group 空间组P21212
resolution 分辨率33.72–1.75
total observations 总观测值484673
unique reflections 独特反射38305
completeness 完整性98.4 (92.3)
Rmeas (%)
R测量值 (%)
4.2 (33.8)
Rpim (%)
Rpim (%)
1.7 (15.4)
I 37.4 (4.65)
Refinement Statistics 细化统计
R value (%) R 值 (%)20.9
R free (%) R (%)23.9
RMSD bonds (Å) RMSD 债券 (Å)0.007
RMSD angles (deg) RMSD 角(度)1.114
Number of Atoms 原子数
protein/DNA 蛋白质/DNA1968/324
water 188
Average B-Factors 平均 B 因子
protein/DNA 蛋白质/DNA24.13/48.36
water 26.06
The use of the host guest system enables us to compare the structures of DNA containing unnatural nucleobases to those of natural DNA duplexes. Since the central 10 base pairs out of the 16 base pairs are free of interaction with the protein, the structures of DNA are dictated by the sequence. (20, 22-24) Moreover, different DNA sequences crystallize in the same crystal lattice; therefore, the structural comparisons are subject to the same lattice constraints. Our structural analysis of X:K pairs is supported by computational analysis of the electrostatic potential surface, dipole, and hydrogen bonding energy.
使用宿主客体系统使我们能够比较含有非天然核碱基的 DNA 的结构与天然 DNA 双链体的结构。由于 16 个碱基对中的中心 10 个碱基对与蛋白质没有相互作用,因此 DNA 的结构由序列决定。(20,22-24)此外,不同的 DNA 序列在同一个晶格中结晶;因此,结构比较受相同的晶格约束。我们对 XK 对的结构分析得到了静电势表面、偶极子和氢键能的计算分析的支持。

Results and Discussion 结果与讨论

Click to copy section link
单击以复制部分链接
Section link copied!

Solution Properties of GATCKX
GATCKX 的解特性

The CD spectra of all four sequences (AT, GC, 2X2K, and 3K3X) exhibit B-like properties (Figure 2), with subtle differences in the peak position and heights pertaining to differences in the primary sequence of the DNA. The spectra for the AT-rich sequence exhibits a negative peak around 248 nm and a positive, longer wavelength peak at about 279 nm, typical of right-handed B-DNA. The GC-rich sequence on the other hand has a broad negative peak at around 245 nm and a positive peak for the GC-rich sequence shifted to 270 nm instead of 279 observed for the AT-rich sequence, still indicative of right-handed B-form DNA. Both 2X2K and 3K3X sequences exhibit spectra that are more similar to the GC-rich than AT-rich sequence with their broad negative peak at 250 nm and the positive peak at 273 nm. This finding suggests that the overall helical forms and the X:K chromophores more closely resemble B-form GC-rich DNA than AT-rich DNA.
所有四个序列(AT、GC、2X2K 和 3K3X)的 CD 谱图都表现出类似 B 的特性(2),峰位置和峰高的细微差异与 DNA 一级序列的差异有关。富含 AT 的序列的光谱在 248 nm 附近表现出一个负峰,在大约 279 nm 处显示出一个正的、波长更长的峰,这是右旋 B-DNA 的典型特征。另一方面,富含 GC 的序列在 245 nm 左右有一个宽的负峰,而富含 GC 的序列的正峰移动到 270 nm,而不是在富含 AT 的序列中观察到的 279 nm,这仍然表明右旋 B 型 DNA。2X2K 和 3K3X 序列的谱图与富含 GC 的序列相比,其谱图更类似于富含 GC 的序列,在 250 nm 处具有较宽的负峰,在 273 nm 处具有较宽的正峰。这一发现表明,整体螺旋形式和 XK 发色团更类似于富含 B 型 GC 的 DNA,而不是富含 AT 的 DNA。

Figure 2 图 2

Figure 2. Characterization of duplex DNA including X:K pairs by circular dichroism (CD). The ellipticity is plotted versus the wavelength for 2X2K (long dash line), 3X3K (dash dot dot line) along with control sequences for GC (dotted line), and AT (solid line). All of the duplexes have CD spectra indicative of right-handed B-form DNA.
图 2.通过环二色谱 (CD) 表征双链 DNA,包括 XK 对。绘制了 2X2K(长虚线)、3X3K(虚线点线)的椭圆度与波长的关系图,以及 GC(虚线)和 AT(实线)的控制序列。所有双链体都有指示右旋 B 型 DNA 的 CD 光谱。

Structure of the Host–Guest Complex
主客复合体的结构

To obtain a detailed understanding of the XK-containing DNA, the self-complementary 2X2K 16-mer oligonucleotide was crystallized as a host–guest complex. The host in this system is the N-terminal fragment of Moloney murine leukemia virus reverse transcriptase. Guest DNA molecules including 2X2K that crystallize in this system are B-form in the host–guest complex. 3X3K, like the corresponding oligonucleotide containing P:Z pairs (3/6ZP), did not crystallize as a host–guest complex. DNA-only crystals of 3X3K did not diffract to high resolution in contrast to those obtained for 3/6ZP. (11) The asymmetric unit of the 2X2K crystal includes one protein molecule and half of the self-complementary 16-mer DNA oligonucleotide or an 8-mer duplex. The host–guest complex is generated by crystallographic symmetry comprising two molecules of the host protein and a 16mer DNA duplex (Figure 3). Both dK and dX yielded well-defined electron density (Figure 3) in the structure and exhibited the expected hydrogen-bonding interactions, namely three hydrogen bonds between the edge-on nucleobases. The hydrogen bonding distances between the two X:K nucleobase pairs vary from 2.64 to 3.29 Å in the 2X2K structure (Figure 3) and will be discussed in more detail below. An advantage of using this system is the ability to directly compare the structures of sequences containing G:C, A:T, or P:Z base pairs in the equivalent positions, crystallized in the same host–guest complex and thus subject to the same lattice constraints.
为了详细了解含 XK 的 DNA,将自互补的 2X2K 16 聚体寡核苷酸结晶为主客体复合物。该系统中的宿主是 Moloney 鼠白血病病毒逆转录酶的 N 端片段。在该系统中结晶的客体 DNA 分子(包括 2X2K)在主客体复合物中是 B 型。3X3K 与含有 P:Z 对 (3/6ZP) 的相应寡核苷酸一样,未以主客体复合物的形式结晶。与 3/6ZP 相比,3X3K 的仅 DNA 晶体没有衍射到高分辨率。(11) 2X2K 晶体的不对称单元包括一个蛋白质分子和一半的自互补 16 聚体 DNA 寡核苷酸或一个 8 聚体双链体。主客体复合物由晶体对称性产生,包括两个宿主蛋白分子和一个 16 聚体 DNA 双链体(3)。dK 和 dX 在结构中都产生了明确的电子密度(3),并表现出预期的氢键相互作用,即边缘核碱基之间的三个氢键。在 2X2K 结构中,两个 XK 核碱基对之间的氢键距离从 2.64 到 3.29 Å 不等(3),下面将更详细地讨论。使用该系统的一个优点是能够直接比较包含等效位置的 G:C、A:T 或 PZ 碱基对的序列的结构,这些碱基对在相同的主客体复合物中结晶,因此受到相同的晶格约束。

Figure 3 图 3

Figure 3. Crystal structure of host–guest complex including self-complementary 16 base pair oligonucleotide. (A) The N-terminal fragment of Moloney murine leukemia virus reverse transcriptase serves as the host in the complex including two protein molecules, shown as cartoon renderings in cyan and green, and a 16-mer duplex, each strand shown as a stick rendering C, cyan or green, O, red, N, blue, and phosphorus in orange; X:K pairs are shown with C in magenta. The complex depicted is that of the host–guest complex for the oligonucleotide shown with two consecutive X:K nucleobase pairs (2X2K). Within our crystals, the asymmetric unit includes only half of the complex depicted and thus the equivalent of eight nucleobase pairs and one protein molecule, indicated by the dashed line. (B) The sequence of the 2X2K sequence and position numbering for the nucleobases within the duplex. (C) The final 2Fo–Fc electron density map is shown as gray mesh renderings contoured at 1.0 σ for the X:K pair at position 6.
图 3.主客体复合物的晶体结构,包括自互补的 16 个碱基对寡核苷酸。(A) 莫洛尼鼠白血病病毒逆转录酶的 N 端片段在复合物中充当宿主,包括两个蛋白质分子,显示为青色和绿色的卡通渲染,以及一个 16 聚体双链体,每条链显示为一根棒状,渲染 C、青色或绿色、O、红色、N、蓝色和橙色磷;XK 对以洋红色显示 C。所描绘的复合物是寡核苷酸的主客体复合物,以两个连续的 XK 核碱基对 (2X2K) 显示。在我们的晶体中,不对称单元仅包括所描述的复合物的一半,因此相当于 8 个核碱基对和一个蛋白质分子,如虚线所示。(B) 双链体内核碱基的 2X2K 序列序列和位置编号。(C) 最终的 2Fo-F c 电子密度图显示为 6 位 XK 对在 1.0 σ 处等高的灰色网格渲染。

The X:K pair presents a total of three electronegative atoms in the major groove as found in the natural counterparts, with potential hydrogen-bond acceptors, N5 of K and O6 of X, and a potential hydrogen-bond donor, the N4 amino group amino group of K (Figure 4). G:C, A:T, and P:Z present potential hydrogen bond acceptors including O6 of G or P and N7 of G or A and O4 of T, while the N6 amino group of A and N4 amino group of C or Z can serve as hydrogen bond donors. Z also presents the zwitterionic nitro group in the major groove, which can serve as a hydrogen bond acceptor.
XK 对在天然对应物中发现的大凹槽中总共有三个电负性原子,具有潜在的氢键受体,K 的 N5 和 X 的 O6,以及潜在的氢键供体,K 的 N4 氨基氨基(4)。G:C、A:T 和 PZ 存在潜在的氢键受体,包括 G 或 P 的 O6 和 G 或 A 的 N7 和 T 的 O4,而 A 的 N6 氨基和 C 或 Z 的 N4 氨基可以作为氢键供体。Z 还在大沟中呈现两性离子硝基,它可以作为氢键受体。

Figure 4 图 4

Figure 4. van der Waals sphere renderings are shown with O in red, N, blue, P, orange, and C in green for X:K, yellow for P:Z, cyan for G:C, and pink for A:T for major and minor groove presentation faces of the nucleobase pairs.
图 4.范德华球体渲染以红色表示 O,XK 以红色表示 O,以绿色表示 P:Z,以黄色表示 P:Z,以青色表示 G:C,以粉红色表示 A:T,表示核碱基对的大沟和小沟表示面。

The presence of a hydrogen-bond acceptor, either O2 or N3, associated with the pyrimidine or purine nucleobase, respectively, within the minor groove is thought to be an essential feature in natural pairs, G:C and A:T, that is “read” by DNA polymerases to ensure proper pairing during replication. (25, 26) The term “read” refers to specific hydrogen bonding interactions formed in the active site between the DNA polymerase and the template/primer substrate. The unnatural X:K pair differs from natural pairs in lacking a hydrogen-bond acceptor in the minor groove of K, which instead has a hydrogen-bond donor, the N2 amino group, while the unnatural P:Z pair retains the N3 and O2 atoms, respectively, in the minor groove. Specifically, in the minor groove, X presents N3 and O2 hydrogen-bond acceptors, while P and G presents N3 and a hydrogen-bond donor, the N2 amino group. Thus, the hydrogen bonding capabilities of X:K are unique from those of the other nucleobase pairs. Despite this, X:K is replicated faithfully. (13, 14)
在小沟内分别与嘧啶或嘌呤核碱基相关的氢键受体 O2 或 N3 的存在被认为是自然对 G:C 和 A:T 的基本特征,DNA 聚合酶“读取”以确保复制过程中的正确配对。(25, 26)术语“read”是指在 DNA 聚合酶和模板/引物底物之间的活性位点形成的特异性氢键相互作用。非自然的 XK 对与天然对的不同之处在于,在 K 的小沟中没有氢键受体,而是有一个氢键供体,即 N2 氨基,而非自然的 PZ 对分别在小沟中保留了 N3 和 O2 原子。具体来说,在小沟中,X 呈 N3 和 O2 氢键受体,而 P 和 G 呈 N3 和氢键供体 N2 氨基。因此,XK 的氢键能力与其他核碱基对的氢键能力不同。尽管如此,XK 还是被忠实地复制了。(13, 14)

Helical Properties of Duplex DNA Containing X:K Pairs
含有 xK 对的双链 DNA 的螺旋特性

The helical parameters of the 2X2K structure were analyzed using 3DNA, which uses El Hassan and Calladine’s method (27) to calculate the major and minor groove widths as well as other base pair parameters, (28-30) and compared to other parameters of the host–guest structures of B-form DNA in which X:K is replaced with G:C, A:T, and P:Z at the same positions, PDB IDs 4XPE, 4XPC, and 4XO0, respectively. (11) The sequences used for comparison are listed in Table 2. Overall, the 2X2K structure maintains the B-helical form with an average helical twist of 34.9° ± 4.18°, corresponding to 10.3 base pairs per turn. In comparison to the 2X2K structure, GC, AT, and PZ structures have an average helical twist of 34.7° corresponding to 10.4 base pairs per turn. Thus, incorporation of two consecutive X:K pairs in the DNA sequence does not perturb the overall helical form of the DNA duplex significantly. Variations in helical twist of the X:K base pair steps are similar to those observed in all of the structures for the same base pair positions.
使用 3DNA 分析 2X2K 结构的螺旋参数,该 3DNA 使用 El Hassan 和 Calladine 的方法 (27) 计算主要和次要沟宽以及其他碱基对参数 (28-30),并与 B 型 DNA 的主客体结构的其他参数进行比较,其中 XK 被 G 取代:C、A:T 和 PZ 位于相同位置,PDB ID 分别为 4XPE4XPC4XO0(11) 用于比较的序列列于2 中。总体而言,2X2K 结构保持了 B 螺旋形式,平均螺旋扭曲为 34.9° ± 4.18°,相当于每圈 10.3 个碱基对。与 2X2K 结构相比,GC、AT 和 PZ 结构的平均螺旋扭曲为 34.7°,相当于每圈 10.4 个碱基对。因此,在 DNA 序列中掺入两个连续的 XK 对不会显着扰乱 DNA 双链体的整体螺旋形式。XK 碱基对步骤的螺旋扭曲变化与在相同碱基对位置的所有结构中观察到的变化相似。
Table 2. Oligonucleotides Used for Analysis
表 2.用于分析的寡核苷酸
name 名字sequence (5′–3′) 序列 (5′–3′)PDB ID PDB 编号
2X2K5′-CTTATXXTAKKATAAG5VBS
2P5′-CTTATPPTAZZATAAG4XO0
AT5′-CTTATAAATTTATAAG4XPC
GC5′-CTTATGGGCCCATAAG4XPE
All four structures including 2X2K, PZ, GC, and AT are B-form throughout, but exhibit some differences in minor and major groove widths. Overall, the major and minor groove widths for 2X2K resemble those of GC and PZ (Figure 5 and Table 3). The average minor and major groove widths of 12.3 and 18.3 Å, respectively, associated with the dinucleotide steps containing X:K pairs are similar to those of the corresponding dinucleotide steps in the GC structure of 12.4 and 18.0 Å and PZ structure of 12.5 and 18.7 Å, respectively (Table 3). AT-rich sequences have a narrower minor groove, as observed in our AT structure with an average minor groove width of 9.7 Å. The minor groove of 2X2K is wider by 2.6 Å than that of the AT structure. On the other hand, the major groove of 2X2K is narrower by 0.8 Å than the AT structure with major groove width of 19.1 Å.
包括 2X2K、PZ、GC 和 AT 在内的所有四种结构都呈 B 型,但在小槽宽和大槽宽度上表现出一些差异。总体而言,2X2K 的大槽宽和短槽宽度类似于 GC 和 PZ 的宽(53)。与含有 XK 对的二核苷酸步骤相关的平均短沟宽和大沟宽分别为 12.3 Å 和 18.3 Å,这与 GC 结构中相应的二核苷酸阶限分别为 12.4 和 18.0 Å 以及 PZ 结构 12.5 和 18.7 Å 相似(3)。富含 AT 的序列具有较窄的小沟,正如我们的 AT 结构中观察到的那样,平均小沟宽度为 9.7 Å。2X2K 的小沟比 AT 结构的小沟宽 2.6 Å。另一方面,2X2K 的大槽比大槽宽度为 19.1 Å 的 AT 结构窄 0.8 Å。

Figure 5 图 5

Figure 5. Comparison of helical properties for host–guest complexes including X:K, G:C, A:T, and P:Z. The unique 8-mer DNA structure including X:K pairs (green) is shown superimposed in (A) with A:T (gray), (B) with G:C (blue), and (C) with P:Z (yellow). (D) The associated minor groove widths for the 16-mer DNA structures are shown in the same colors as designated in stuctures A–C.
图 5.主客体复合物(包括 XK、G:C、A:T 和 PZ)的螺旋特性比较。独特的 8 聚体 DNA 结构(包括 XK 对(绿色)叠加在 (A) 与 A:T(灰色)、(B) 与 G:C(蓝色)和 (C) 与 PZ(黄色)中叠加。(D) 16 聚体 DNA 结构的相关小沟宽度以与结构 A-C 中指定的颜色相同的颜色显示。

Table 3. Helical Parameters and Local Base Pair Parameters: AT, GC, 2X2K, and PZ
表 3.螺旋参数和局部碱基对参数:AT、GC、2X2K 和 PZ
local base pair parameters at position 6
位置 6 的局部碱基对参数
 X-KP-ZG-CA-T
shear (Å) 剪切 (Å)–0.44–0.87–1.40–0.22
stretch (Å) 伸展 (Å)0.08–0.42–0.47–0.34
stagger (Å) 交错 (Å)0.23–0.41–0.020.18
buckle (deg) 带扣 (DEG)6.19–11.915.38–1.40
propeller (deg) 螺旋桨 (DEG)–10.61–6.69–5.60–15.89
opening (deg) 开口(度)6.642.9612.608.06
local base pair parameters at position 7
位置 7 的局部碱基对参数
 X-KP-ZG-CA-T
shear (Å) 剪切 (Å)0.080.84–0.680.39
stretch (Å) 伸展 (Å)–0.07–0.25–0.66–0.21
stagger (Å) 交错 (Å)0.230.170.320.33
buckle (deg) 带扣 (DEG)–3.090.05–0.453.23
propeller (deg) 螺旋桨 (DEG)–19.41–10.05–12.64–17.58
opening (deg) 开口(度)–8.100.30–4.855.93
Local base pair step parameters
本地碱基对步长参数
 XX/KKPP/ZZGG/CC GG/CC 系列AA/TT AA/TT 系列
shift (Å) 移位 (Å)–2.03–0.93–1.62–0.29
slide (Å) 滑轨 (Å)0.84–0.020.99–0.22
rise (Å) 上升 (Å)3.433.033.493.13
tilt (deg) 倾斜(度)–5.12–6.26–5.74–1.17
roll (deg) 卷(度)–4.824.31–5.58–3.15
twist (deg) 扭曲(度)39.2939.0343.6739.74
helical parameters 螺旋参数
 XX/KKPP/ZZGG/CC GG/CC 系列AA/TT AA/TT 系列
x-displacement (Å)
x 位移 (Å)
1.83–0.511.870.02
y-displacement (Å)
Y 轴排量 (Å)
2.350.681.580.30
helical-rise (Å) 螺旋上升 (Å)3.543.123.523.14
inclination (deg) 倾角 (deg)–7.106.38–7.43–4.63
tip (deg) 尖端(度)7.539.277.641.71
helical-twist (deg) 螺旋扭曲 (deg)39.8939.7444.3639.88
other parameters 其他参数
 X:K
XK
P:Z
PZ
G:C G:CA:T 答:T
overall helical twist (deg)
整体螺旋扭曲 (deg)
34.93 (4.18 SD) 34.93 (4.18 标清)34.69 (8.05 SD) 34.69 (8.05 标清)34.70 (7.19 SD) 34.70 (7.19 标清)34.70 (3.49 SD) 34.70 (3.49 标清)
averagea minor groove width (Å)
平均小沟宽度 (Å)
12.312.512.49.7
averagea major groove width (Å)
平均槽宽度 (Å)
18.318.718.019.1
a

Average values obtained for dinucleotide steps 5–7 containing X:K, Z:P, G:C, or A:T, respectively.


a

分别包含 XKZP、G:C 或 A:T 的二核苷酸步骤 5-7 获得的平均值。

Other helical parameters including x-displacement, y-displacement, helical rise, inclination, and tip are similar to the GC structure as shown in Table 3. The helical twist angle for the X:K base pairs also lies in the range usually reported for B form DNA, with X:K having a helical twist of 39.89° (B-form DNA has helical twist values ranging between 27.9° to 40°). (31-34)X:K pairs resemble more closely G:C pairs than P:Z pairs in terms of local helical conformations. Minor variations in the values of helical parameters between GC and 2X2K are a result of sequence-dependent effects on the structure.
其他螺旋参数(包括 x 位移、y 位移、螺旋上升、倾角和尖端)与3 所示的 GC 结构相似。XK 碱基对的螺旋扭曲角也位于 B 型 DNA 通常报道的范围内,其中 XK 的螺旋扭曲为 39.89°(B 型 DNA 的螺旋扭曲值在 27.9° 至 40° 之间)。就局部螺旋构象而言,(31-34)XK 对比 PZ 对更接近 G:C 对。GC 和 2X2K 之间螺旋参数值的微小变化是结构上序列依赖性影响的结果。

Local Properties of the X:K Nucleobase Pair
XK 核碱基对的局部性质

Local base pair parameters, local base pair step parameters, and groove widths for the X:K pair were analyzed using 3DNA (Table 3). In comparing the local base pair parameters for X:K with P:Z, G:C, and A:T, the buckle values for positions 6 and 7 (refer to Figure 1 for numbering scheme), 6.19° and −3.09°, respectively, are similar to G:C values, 5.38° and −0.45°, but less similar to those for P:Z, −11.91° and 0.05° (Table 3). Shear, stagger, and opening values are within the range observed for the other base pairs, while stretch values of 0.08 and −0.07 Å for X:K pairs in positions 6 and 7 are smaller in magnitude than those observed for other base pairs.
使用 3DNA 分析 XK 对的局部碱基对参数、局部碱基对步骤参数和沟宽(3)。在比较 XKPZ、G:C 和 A:T 的局部碱基对参数时,位置 6 和 7(编号方案参见1)的屈曲值分别为 6.19° 和 −3.09°,与 G:C 值 5.38° 和 −0.45° 相似,但与 PZ 的 −11.91° 和 0.05° 的相似度较低(3).剪切、交错和开口值位于其他碱基对的观测范围内,而位置 6 和 7 的 XK 对的 0.08 和 −0.07 Å 拉伸值在幅度上小于其他碱基对的观测值。
The X:K base pair is not planar, as evidenced by propeller twist angles of −10.61° and −19.41° for positions 6 and 7, respectively, closer to those observed for A:T (−15.98° and −17.58°) than G:C (−5.6° and −12.64°) or P:Z (−6.69° and −10.05°) (Figure 6A and Table 3). Significant propeller angles in A:T pairs are often attributed to the fact that there are only two hydrogen bonds in the pair. However, this feature in the X:K pair, which has three hydrogen bonds, suggests that it is perhaps an inherent property of the base pair itself and not dependent upon the number of hydrogen bonds. Stacking interactions of X:K and A:T pairs are superficially similar as shown in Figure 6B.
XK 碱基对不是平面的,位置 6 和 7 的螺旋桨扭转角分别为 -10.61° 和 -19.41°,比 G:C(-5.6° 和 -12.64°)或 PZ(-6.69° 和 -10.05°)更接近 A:T(-15.98° 和 -17.58°)观察到的扭曲角(6A 和3)).A:T 对中的重要螺旋桨角通常归因于该对中只有两个氢键的事实。然而,具有三个氢键的 XK 对中的这一特征表明,它可能是碱基对本身的固有特性,不取决于氢键的数量。XK 和 A:T 对的堆叠交互在表面上相似,如图 6 B 所示。

Figure 6 图 6

Figure 6. Comparison of local base pair properties of X:K and A:T. (A) Cartoon/stick renderings for X:K and A:T pairs (7th nucleotide step, X7:K10 as shown in Figure 3) with a semitransparent gray molecular surface superimposed show significant propeller twist angles for the base plane of X or A vs K or T. A similar rendering is shown for a relatively planar G:C base pair (6th nucleotide step G6:C11). (B) Stacking of XX/KK and AA/TT shown as stick renderings are overall similar in accommodating the nucleobase pairs with significant propeller twist angles.
图 6.XK 和 A:T 的局部碱基对特性的比较。(a) XK 和 A:T 对的卡通/棒状渲染(第 7 个核苷酸步骤,X7:K10,如图 3 所示)与半透明灰色分子表面叠加显示 X 或 A 与 K 或 T 的基平面有明显的螺旋桨扭曲角。对于相对平面的 G:C 碱基对(第 6 个核苷酸步骤 G6:C11),显示了类似的渲染。(B) 以棒状渲染显示的 XX/KK 和 AA/TT 的堆叠在容纳具有显着螺旋桨扭转角的核碱基对方面总体上相似。

It was therefore of interest to consider the electrostatic potential surface (ESP), dipole, and hydrogen bonding energies for X:K, A:T, G:C, and P:Z pairs. The ESP approximates the short-range electronic environment, while the dipole describes a longer-range electronic effect and the hydrogen bond energies, the tightness of the Watson–Crick pair. The ESP visually displays that there are different hydrogen bonding opportunities in X:K vs A:T (Figure 7). Within the ESP map, we have also displayed the electrical dipole moments. X:K has a very different electric dipole moment than A:T, both in magnitude and direction. The electrical dipole moment for the X:K pair is rotated ∼90 deg relative to A:T. Moreover, the A:T dipole is 2.1 D whereas the dipole in X:K is only 1.3 D. The Watson–Crick hydrogen bonding energy of A:T is greater than X:K by 3.6 kcal/mol (Table 4). Thus, the contributions from three hydrogen bonds in X:K energetically are weaker than for two hydrogen bonds in A:T. The estimate of the A:T electronic binding energy matches previous calculations done. (35) The Gibbs energy of forming the X:K pair is just barely negative at −1.9 kcal/mol. Note this only tells us what the hydrogen bonding contribution to the energy is, and previous studies have shown that base-pair stacking dispersion interactions are more numerically significant to the total Gibbs energy. (36) The Watson–Crick hydrogen bonding free energy utilized CCSD(T) (37-39) /aug″-cc-pVTZ for the electronic energy, which has been shown to be accurate to ∼1 kcal/mol of the true gas-phase energy of single-reference wave functions; entropic contribution was based on the M06-2X/aug″-cc-pVTZ partition function. The overall point is clear that X:K hydrogen bonding energy per hydrogen bond is significantly weaker than A:T, allowing the net contribution of the X:K pair toward duplex stability that is slightly less than the net contribution by A:T pair, notwithstanding it having three hydrogen bonds. These calculations are consistent with lower experimental melting temperatures determined for oligonucleotides including X:K pairs (SI, Table S1).
因此,考虑 XK、A:T、G:C 和 PZ 对的静电势表面 (ESP)、偶极子和氢键能是很有趣的。ESP 近似于短程电子环境,而偶极子描述长程电子效应和氢键能,即 Watson-Crick 对的紧密性。ESP 直观地显示 XK 和 A:T 中存在不同的氢键机会(7)。在 ESP 映射中,我们还显示了电偶极矩。XK 的电偶极矩与 A:T 在大小和方向上都非常不同。X:K 对的电偶极矩相对于 A:T 旋转 ∼90 度。此外,A:T 偶极子为 2.1 D,而 XK 中的偶极子仅为 1.3 D。A:T 的 Watson-Crick 氢键能比 XK 大 3.6 kcal/mol(4)。因此,X:K 中三个氢键在能量上的贡献比 A:T 中两个氢键的贡献弱。A:T 电子结合能的估计值与之前所做的计算相匹配。(35) 形成 XK 对的吉布斯能量在 -1.9 kcal/mol 时几乎为零。请注意,这只能告诉我们氢键对能量的贡献是什么,以前的研究表明,碱基对堆叠分散相互作用在数值上对吉布斯能量的意义更大。 (36) Watson-Crick 氢键自由能利用 CCSD(T) (37-39) /aug“-cc-pVTZ 作为电子能,这已被证明精确到单参考波函数的真实气相能量的 ∼1 kcal/mol;熵贡献基于 M06-2X/aug“-cc-pVTZ 分区函数。总体观点很清楚,每个氢键的 XK 氢键能明显弱于 A:T,因此 XK 对双链体稳定性的净贡献略小于 A:T 对的净贡献,尽管它有三个氢键。这些计算结果与为包括 XK 对在内的寡核苷酸测定的较低实验熔解温度一致(SI,表 S1)。

Figure 7 图 7

Figure 7. Dipole moments and electrostatic potential maps (ESPs) for (A) X:K, (B) A:T, (C) G:C, (D) P:Z nucleobase pairs. Methyl substituents are used in place of the C1′ carbon in the deoxyribose ring. The ESP color gradation is such that red is ca. −40 kcal/mol and blue is ca. +40 kcal/mol; strict energetic interpretation is limited to indications of broad differences in reactivity. Dipole moments are shown as a blue arrow, following the convention that a positive vector points toward a positive charge density. The magnitude of the vectors is not proportional to length (length modified for ease of view).
图 7.(A) XK、(B) A:T、(C) G:C、(D) PZ 核碱基对的偶极矩和静电势图 (ESP)。使用甲基取代基代替脱氧核糖环中的 C1' 碳。ESP 色阶是这样的,红色约为 −40 kcal/mol,蓝色约为 +40 kcal/mol;严格的能量解释仅限于反应性差异的广泛指征。偶极矩显示为蓝色箭头,遵循正矢量指向正电荷密度的约定。矢量的大小与长度不成比例(为便于查看,修改了长度)。

Table 4. Watson–Crick Pair Hydrogen Bonding Energy Contributions (kcal/mol) for X:K and A:T Nucleobase Pairs
表 4.XK 和 A:T 核碱基对的 Watson-Crick 氢键对氢键能量贡献 (kcal/mol)
 X:K
XK
A:T
T
Δ
ΔU (electronic) ΔU (电子式)–15.2–16.1+0.9
ΔH–13.8–13.1–0.7
TΔS11.97.6+4.3
ΔG–1.9–5.5+3.6
Of note, in the calculated structures of the X:K pair, the proton on N1 of X is apparently transferred to N3 of K. This transfer appears to produce the most favorable arrangement of secondary interactions proposed by Jorgensen and Pranata. (40) In their analysis, a symmetric pattern of partial positive and negative charges in forming three hydrogen bonds is the least favorable arrangement. This is the hydrogen bonding arrangement depicted for X:K in Figure 1. Alternatively, deprotonation of N1 in X and protonation of N3 in K produces the most favorable secondary arrangement with three partial positive charges associated with K and three partial negative charges associated with X as depicted in Figure 8 along with the calculated electron density supporting this arrangement for the protons. Alternatively, one could say that the energy of the endergonic acid–base transfer (given the pKa values of ∼6.7 for K8 and pKa of 8.5 for X, Figure S1) comes at the expense of the exergonic hydrogen bonds formed. This helps us to understand why three hydrogen bonds are not better than two: we only achieved this at the expense of a proton transfer.
值得注意的是,在 XK 对的计算结构中,X 的 N1 上的质子显然转移到了 K 的 N3 上。这种转移似乎产生了 Jorgensen 和 Pranata 提出的最有利的次级相互作用安排。(40) 在他们的分析中,部分正电荷和负电荷形成三个氢键的对称模式是最不利的安排。这是1XK 描述的氢键排列。或者,X 中 N1 的去质子化和 K 中 N3 的质子化产生最有利的二次排列,如图 8 所示,三个部分正电荷与 K 相关,三个部分负电荷与 X 相关,以及计算出的电子密度支持质子的这种排列。或者,可以说内能酸-碱转移的能量(假设 K8 的 pKa 值为 ∼6.7,X 的 pKa 值为 8.5,图 S1)是以牺牲形成的放能氢键为代价的。这有助于我们理解为什么三个氢键不比两个好:我们只是以牺牲质子转移为代价来实现这一点。

Figure 8 图 8

Figure 8. Calculated X:K pair has a proton transfer. (A) The chemical structure is shown for the calculated X:K pair with bond distances in the vicinity of the hydrogen bonding pairs. Bond lengths (Å) of key species for Watson–Crick binding of X:K. All calculations are based on M06-2X/aug″-cc-pVDZ geometries, expected to be accurate to within 0.03 Å. Note the proton transfer from X to K, as shown by the bond lengths. (B) The calculated electron density is shown for the X:K pair and clearly shows that the proton involved in the central hydrogen bonding pair is associated with N3 of K and not N1 of X. Electron density contours given at 0.04 electron charge/Bohr3 from the KS-DFT density matrix.
图 8.计算出的 XK 对具有质子转移。(A) 显示了计算的 XK 对的化学结构,键距离在氢键对附近。XK 的 Watson-Crick 结合关键物质的键长 (Å)。所有计算均基于 M06-2X/aug“-cc-pVDZ 几何结构,预计精度在 0.03 Å 以内。请注意从 XK 的质子转移,如键长所示。(B) 计算出的电子密度显示了 XK 对,并清楚地表明参与中心氢键对的质子与 K 的 N3 相关,而不是 X 的 N1。KS-DFT 密度矩阵中给出的电子密度等值线为 0.04 个电子电荷/玻尔3

One might be skeptical of the computational claim that an acid–base transfer is necessary to form the Watson–Crick pair. This finding is independent of the gas-phase DFT calculation, however. If one uses an implicit solvent model (Cramer and Truhlar’s SMD model SMD) to represent an aqueous solvent with the same DFT protocol, the proton transfer is also observed (1.05 Å hydrogen-bond distance to the K nitrogen, 1.79 Å to the X nitrogen). Similarly, if one uses an ab initio wave function calculation with no empirical parameters such as MP2 (otherwise known as MBPT(2)), the same features are observed (1.09 Å to the K nitrogen, 1.62 Å to the X nitrogen).
人们可能会对计算声明持怀疑态度,即酸碱转移是形成 Watson-Crick 对所必需的。然而,这一发现与气相 DFT 计算无关。如果使用隐式溶剂模型(Cramer 和 Truhlar 的 SMD 模型 SMD)来表示具有相同 DFT 方案的水性溶剂,则还会观察到质子转移(与 K 氮的氢键距离为 1.05 Å,与 X 氮的氢键距离为 1.79 Å)。同样,如果使用没有经验参数(如 MP2(也称为 MBPT(2)的从头计算,则会观察到相同的特征(1.09 Å 到 K 氮,1.62 Å 到 X 氮)。
The fact that the hydrogen bonding is weaker in X:K than in A:T likely contributes to the observed propensity to propeller. As noted above, the X:K pairs each include one hydrogen bond longer than 3.0 Å. For position 6, O2–N2, N1–N3, and O6–N4 hydrogen bonding distances are 2.64, 2.98, and 3.18 Å, respectively; for position 7, O2–N2, N1–N3, and O6–N4 are 3.28, 2.98, and 2.69 Å, respectively (see Figure 1 for atom numbers, Figure 3 for position numbers). Thus, for position 6, the long hydrogen bond is the O6–N4 bond, while for position 7, it is the O2–N2 bond. This finding is consistent with weaker theoretical hydrogen bonding in general, larger propeller angles, and potentially a contribution from buckling as well. The X:K pair at position 6 has a buckle angle of 6.2° and propeller angle of −10.6°, while position 7 buckles in the opposite direction, buckle angle of −3.1°, and has a propeller angle of −19.4°. Similarly, the A:T pairs have one long hydrogen bond for positions 6 and 7 (numbering shown in Figure 3), in this case the same bond, N6–O4, 3.08, and 3.13 Å, respectively. Both of the A:T pairs have large propeller angles, −15.9 and −17.6° with small buckle angles, −1.4° and 3.2°, respectively.
XK 中的氢键比 A:T 中的氢键弱这一事实可能有助于观察到螺旋桨的倾向。如上所述,每个 XK 对都包含一个长度超过 3.0 Å 的氢键。对于位置 6,O2-N2、N1-N3 和 O6-N4 氢键距离分别为 2.64、2.98 和 3.18 Å;对于位置 7,O2–N2、N1–N3 和 O6–N4 分别为 3.28、2.98 和 2.69 Å(原子数见1,位置数见3)。因此,对于位置 6,长氢键是 O6-N4 键,而对于位置 7,它是 O2-N2 键。这一发现与一般较弱的理论氢键、较大的螺旋桨角度以及屈曲可能也有助于的结果一致。位置 6 的 XK 对的弯曲角为 6.2°,螺旋桨角为 −10.6°,而位置 7 的弯曲方向相反,弯曲角为 -3.1°,螺旋桨角为 −19.4°。同样,A:T 对在位置 6 和 7 有一个长氢键(编号如图 3 所示),在本例中是相同的键,分别为 N6-O4、3.08 和 3.13 Å。A:T 对都有大螺旋桨角,分别为 -15.9 和 -17.6°,带小扣角,分别为 -1.4° 和 3.2°。
On the other hand, P:Z hydrogen bonding distances at position 6 for N2–O2, N1–N3, and O6–N4 are 2.57, 2.79, and 2.94 Å, respectively, and the values for position 7 P:Z are 2.63, 2.80, and 2.90 Å, respectively. (11) This finding is consistent with stronger theoretical hydrogen bonding reported for P:Z (41) than G:C or A:T. P:Z pairs have also been shown to be more stable than possible mispairs experimentally. (42) Finally, the G:C pair in position 6 exhibits one long hydrogen bond for position 6, O6–N4 distance of 3.37 Å, potentially due to a combination of shearing by −1.4 Å, buckling of 5.4°, and opening of 12.6°. For position 7, all three hydrogen bonds are 2.71 Å. Thus, in the absence of a large shearing effect, G:C hydrogen bonding interactions are all less than 3.0 Å. The two P:Z pairs are also sheared by −0.87 and 0.84 Å, respectively, for positions 6 and 7, but retain normal hydrogen bonding distances.
另一方面,N2-O2、N1-N3 和 O6-N4 在 6 位的 PZ 氢键距离分别为 2.57、2.79 和 2.94 Å,7 位 PZ 的值分别为 2.63、2.80 和 2.90 Å。(11) 这一发现与报道的 PZ (41) 比 G:C 或 A:T 更强的理论氢键一致。(42) 最后,位置 6 的 G:C 对在位置 6 处表现出一个长氢键,O6–N4 距离为 3.37 Å,这可能是由于 −1.4 Å 的剪切、5.4° 的屈曲和 12.6° 的开口的组合。对于位置 7,所有三个氢键均为 2.71 Å。因此,在没有大剪切效应的情况下,G:C 氢键相互作用都小于 3.0 Å。两个 PZ 对在位置 6 和 7 也分别被 −0.87 和 0.84 Å 剪切,但保持正常的氢键距离。
A comparison with other local base pair step parameters of the 2X2K structure with other B-form DNA structures (G:C, A:T and P:Z), including axial rise per nucleotide (B-DNA values range between 3.03 Å to 3.37 Å) and base pair tilt (B-DNA values range between −5.9° to −16.4°), (31-34) shows that both rise and tilt values for 2X2K lie in the same range. The XX/KK dinucleotide step base has a rise and tilt of 3.43 Å and −5.12°. The phosphate–phosphate (P–P) distances also show little deviation from that of the standard B-form DNA. The P–P distance for B-DNA is around 7 Å, while for XX and KK, the P–P distances are 6.5 and 6.3 Å, respectively. (34) The chi angles of all the residues fall in the anticonformation as found in B-form DNA. Our results suggest that the 2X2K structure resembles B-form DNA, specifically B-form DNA sequences rich in G:C base pairs.
与 2X2K 结构与其他 B 型 DNA 结构(G:C、A:T 和 PZ)的其他局部碱基对步骤参数的比较,包括每个核苷酸的轴向上升(B-DNA 值范围在 3.03 Å 至 3.37 Å 之间)和碱基对倾斜(B-DNA 值范围在 -5.9° 至 -16.4°之间),(31-34) 表明 2X2K 的上升和倾斜值位于同一范围内。XX/KK 二核苷酸阶梯基座的上升和倾斜为 3.43 Å 和 −5.12°。磷酸盐-磷酸盐 (P-P) 距离也与标准 B 型 DNA 的偏差很小。B-DNA 的 P-P 距离约为 7 Å,而 XXKK 的 P-P 距离分别为 6.5 和 6.3 Å。(34) 所有残基的气角都属于 B 型 DNA 中的构象。我们的结果表明,2X2K 结构类似于 B 型 DNA,特别是富含 G:C 碱基对的 B 型 DNA 序列。

The Bigger Picture. Why Terran DNA Uses the Standard Nucleobase Pairs
更大的图景。为什么 Terran DNA 使用标准核碱基对

As experimental work associated with AEGIS pairs has developed, we have learned that pairs with nonstandard hydrogen bonding arrangements are able to robustly support duplex structures. This includes duplexes between strands where multiple consecutive nonstandard pairs are present. This is not the case for pairs whose pairing principle is based solely on hydrophobic interactions or size complementarity, lacking interbase hydrogen bonding. One example is Romesberg’s nonstandard bases d5SICS and dNaM that pair by hydrophobic and geometric complementarity and stack via an intercalative mode rather than edge on in duplex DNA. (16, 43) Another is Hirao’s hydrophobic unnatural base pair system between 7-(2-thienyl)imidazo[4,5-b]pyridine (Ds) and 2-nitro-4-propynylpyrrole (Px). (44, 45) Hirao’s hydrophobic nucleobases Ds:Px are successfully amplified in a PCR reaction; and the crystal structure of the ternary complex of Klentaq incorporating dPxTP opposite Ds indicates that the hydrophobic pairs can also act as promising candidates for incorporation by DNA polymerases. (46) However, these studies do not describe the effect of multiple hydrophobic base pairs on the overall structure of DNA duplex. A clash of templating dDs with side chain oxygen atom of Thr664, more flexible thumb domain in the ternary structure and lack of a binary structure incorporating these hydrophobic nucleotides suggest that more studies would be needed for hydrophobic base pairs before their use for the expansion of the genetic alphabet. (46)
随着与 AEGIS 对相关的实验工作的发展,我们了解到具有非标准氢键排列的对能够稳健地支持双相结构。这包括存在多个连续非标准对的链之间的双工。对于配对原理仅基于疏水相互作用或尺寸互补性、缺乏碱基间氢键的对,情况并非如此。一个例子是 Romesberg 的非标准碱基 d5SICS 和 dNaM,它们通过疏水和几何互补性配对,并通过嵌入模式堆叠,而不是在双链 DNA 中边缘堆叠。(16, 43)另一个是 7-(2-噻吩基)咪唑[4,5-b]吡啶 (Ds) 和 2-硝基-4-丙炔基吡咯 (Px) 之间的 Hirao 疏水性非自然碱基对系统。(44, 45)Hirao 的疏水性核碱基 Ds:Px 在 PCR 反应中成功扩增;Klentaq 的三元复合物的晶体结构掺入 dPxTP 与 Ds 相反,表明疏水对也可以作为 DNA 聚合酶掺入的有希望的候选者。(46) 然而,这些研究并未描述多个疏水碱基对对 DNA 双链体整体结构的影响。模板 dD 与 Thr664 的侧链氧原子的冲突、三元结构中更灵活的拇指结构域以及缺乏包含这些疏水核苷酸的二元结构表明,在将疏水碱基对用于扩展遗传字母表之前,需要对疏水碱基对进行更多研究。(46)
To date, the vast majority of functional and structural data existing for nonstandard nucleobases mainly focuses on the incorporation of a single non-natural base pair in a DNA duplex. It is important to understand the effect of incorporation of multiple nonstandard base pairs in a duplex DNA that will not distort the overall structure of DNA significantly and also provide a basis for their retention in duplex DNA after multiple rounds of replication. Thus, the X:K pair meets a goal of synthetic biology, to develop expanded genetic systems that retain the desirable properties of natural nucleobases, including full evolvability.
迄今为止,存在的绝大多数非标准核碱基的功能和结构数据主要集中在 DNA 双链体中单个非天然碱基对的掺入。了解在双链 DNA 中掺入多个非标准碱基对的效果非常重要,它不会显著扭曲 DNA 的整体结构,并且还为它们在多轮复制后保留在双链 DNA 中提供了基础。因此,XK 对满足了合成生物学的目标,即开发扩展的遗传系统,保留天然核碱基的理想特性,包括完全进化性。
These observations, however, also raise the question as to why natural DNA uses the nucleobases that it does. For example, we struggle to understand why adenine presents only two hydrogen bonding units to its thymine complement, while advanced biotechnologists must struggle to obtain uniform hybridization and priming in a system that contains a “weak” nucleobase pair and a “strong” nucleobase pair. Why not use 2-aminoadenine (diaminopurine) instead of adenine and get a pair joined by three canonical hydrogen bonds?
然而,这些观察结果也提出了一个问题,即为什么天然 DNA 使用它的核碱基。例如,我们很难理解为什么腺嘌呤只向其胸腺嘧啶互补体提供两个氢键单元,而高级生物技术专家必须努力在包含“弱”核碱基对和“强”核碱基对的系统中获得均匀的杂交和引发。为什么不使用 2-氨基腺嘌呤(二氨基嘌呤)代替腺嘌呤,并获得一对由三个经典氢键连接的氢键呢?
Under a Darwinian model, one cannot speak of “optimization” of a genetic system without presuming that alternative systems were accessible through random variation. In fact, some viruses are known to use 2-aminoadenine in their DNA, suggesting that this alternative was in fact available to terran life during its natural history. (47) Given this, one might interpret the surprisingly weak pair between 2-aminoadenine and thymidine, especially in DNA as compared to RNA, (48) as a second example of the disadvantage of symmetry in Watson–Crick pairing. This disadvantage is also present in the similarly symmetrical X:K pair.
在达尔文模型下,如果不假设替代系统可以通过随机变异获得,就不能谈论遗传系统的“优化”。事实上,已知一些病毒在其 DNA 中使用 2-氨基腺嘌呤,这表明这种替代品实际上在其自然历史中可供地球生命使用。(47) 鉴于此,人们可能会将 2-氨基腺嘌呤和胸苷之间出奇的弱对解释,尤其是在 DNA 中与 RNA 相比,(48) 作为 Watson-Crick 配对中对称性缺点的第二个例子。这个缺点也存在于类似对称的 XK 对中。

Conclusion 结论

Click to copy section link
单击以复制部分链接
Section link copied!

In summary, properties of interest associated with the X:K pair include a unique pattern of hydrogen-bond donor and acceptors presented in the major and minor grooves that differs from those of A:T, G:C, or P:Z. As we observed for P:Z, inclusion of two consecutive X:K base pairs and four X:K pairs total in a self-complementary 16-mer oligonucleotide is readily accommodated in B-form DNA within our host–guest system. It is essential that any artificial components be accommodated in B-form DNA, as that is the form in which genomic DNA is most often found in cells. Sequence-specific properties associated with dinucleotide steps independent of their position in the oligonucleotide (excluding the three terminal base pairs involved in interactions with the protein) were previously demonstrated for a host–guest study of the CA dinucleotide integrase processing site. (24) Thus, the host–guest system has been vetted for analysis of sequence specific effects free of differing lattice constraints that might impact the structural properties of the oligonucleotides.
总之,与 XK 对相关的感兴趣特性包括出现在大沟和小沟中的独特氢键供体和受体模式,这与 A:T、G:C 或 PZ 不同。正如我们观察到的 PZ,包括两个连续的 XK 碱基对和四个 X:自互补的 16 聚体寡核苷酸中的总 K 对很容易适应我们的宿主-客体系统的 B 型 DNA 中。B 型 DNA 中必须包含任何人工成分,因为这是基因组 DNA 在细胞中最常见的形式。与二核苷酸步骤相关的序列特异性特性与它们在寡核苷酸中的位置无关(不包括与蛋白质相互作用所涉及的三个末端碱基对)先前已在 CA 二核苷酸整合酶加工位点的宿主-客体研究中得到证明。(24) 因此,已经审查了主客体系统,用于分析序列特异性效应,而没有可能影响寡核苷酸结构性质的不同晶格约束。
In this study, we analyzed the structural properties of the dinucleotide base pair steps for positions 6 and 7 including X:K, P:Z, G:C, or A:T. Structurally, the X:K pairs exhibit propeller angles similar to those in A:T pairs, while buckle values and other base pair parameter values were similar to those of G:C in the same position. The propensity for X:K pairs to exhibit significant propeller twist angles is supported by melting temperature data and calculation of hydrogen bonding energies for X:K, which are in fact weaker than A:T. These calculations support a hydrogen bonding pair of X:K comprising a deprotonated X and protonated K. Overall, the helical properties of 2X2K are B-form and most similar to G:C and P:Z with major and minor groove widths similar to those observed for G:C.
在这项研究中,我们分析了位置 6 和 7 的二核苷酸碱基对步骤的结构特性,包括 XKPZ、G:C 或 A:T。在结构上,XK 对表现出与 A:T 对相似的螺旋桨角度,而扣值和其他碱基对参数值与 G 相似:C 处于同一位置。X:K 对表现出显着螺旋桨扭曲角的倾向得到了 XK 的熔化温度数据和氢键能计算的支持,X:K 实际上比 A:T 弱。这些计算支持由去质子化 X 和质子化 K 组成的氢键对 XK。总体而言,2X2K 的螺旋特性为 B 型,与 G:C 和 PZ 最相似,大槽和小槽宽度与 G:C 相似。
Thus, the inability of E. coli DNA polymerase I to incorporate two consecutive X:K pairs does not result from significant distortions in duplex DNA due to consecutive X:K pairs. Rather, it more likely results from the chemical properties of the nucleobases, the lack of a hydrogen bond acceptor in K, for example; DNA polymerases are known to “read” the minor groove through specific hydrogen bonding interactions. (25, 26) This is not a significant limitation for the use of X:K in expanding the genome as its use as a single pair is supported. In summary, we conclude that inclusion of X:K pairs provides unique properties while still maintaining compatibility with biologically relevant forms of DNA and therefore has the potential to expand the genetic alphabet.
因此,大肠杆菌 DNA 聚合酶 I 无法掺入两个连续的 XK 对并不是由于连续的 XK 对导致双链体 DNA 的显著扭曲造成的。相反,它更可能是由核碱基的化学性质引起的,例如 K 中缺乏氢键受体;已知 DNA 聚合酶通过特定的氢键相互作用“读取”小沟。(25, 26)这对于使用 XK 扩展基因组来说并不是一个显着的限制,因为它支持将其用作单个对。总之,我们得出结论,包含 XK 对提供了独特的特性,同时仍然保持与生物学相关形式的 DNA 的兼容性,因此有可能扩展遗传字母表。

Methods 方法

Click to copy section link
单击以复制部分链接
Section link copied!

Synthesis and Purification of KX Containing Oligonucleotides
含 KX 的寡核苷酸的合成和纯化

AEGIS-containing oligonucleotides were prepared by solid phase synthesis using phosphoramidites of dX and dK synthesized using procedures described elsewhere. These phosphoramidites are now available via Firebird Biomolecular Sciences, LLC (www.firebirdbio.com, Alachua, FL). The GACTKX “six letter” DNA molecules 5′-CTTATXXTAKKATAAG-3′ (2X2K) and 5′-CTTATXXXKKATAAG-3′ (3K3X) were prepared in house, as described below. The remaining sequences used here were purchased from IDT (Coralville IA).
使用使用其他地方描述的程序合成的 dX 和 dK 亚磷酰胺,通过固相合成制备含 AEGIS 的寡核苷酸。这些亚磷酰胺现在可通过 Firebird Biomolecular Sciences, LLC(www.firebirdbio.com,佛罗里达州阿拉楚阿)获得。GACTKX“六个字母”DNA 分子 5'-CTTATXXTAKKATAAG-3' (2X2K) 和 5'-CTTATXXXKKATAAG-3' (3K3X) 是在内部制备的,如下所述。此处使用的其余序列购自 IDT(爱荷华州克拉尔维尔)。
Experiments showed that deprotection of GACTKX DNA oligonucleotides by treatment under standard conditions (ammonium hydroxide, 55 °C, overnight) led to substantial decomposition of the dX heterocycle. Therefore, the A, G, C, and K exocyclic amines were protected as the phenoxyacetyl, phenoxyacetyl, acetyl, and isobutyroyl groups, respectively. Then, all GACTKX oligonucleotides used in this study were deprotected using 50 mM K2CO3 in MeOH at 55 °C, overnight. They were then purified by HPLC.
实验表明,在标准条件(氢氧化铵,55 °C,过夜)下处理 GACTKX DNA 寡核苷酸后,其脱保护导致 dX 杂环大量分解。因此,A、G、C 和 K 外环胺分别以苯氧乙酰基、苯氧基乙酰基、乙酰基和异丁酰基的形式受到保护。然后,在 55 °C 下使用 50 mM K2CO3 的 MeOH 溶液去除本研究中使用的所有 GACTKX 寡核苷酸过夜。然后通过 HPLC 纯化它们。

Circular Dichroism Analyses
圆二色性分析

Circular dichroism (CD) studies were used to assess the helical form of the oligonucleotide duplexes in aqueous solution that was buffered at neutral pH with low salt concentrations. The self-pairing DNA sequences analyzed included 2X2K (5′-CTTATXXTAKKATAAG-3′), 3X3K (5′- CTTATXXXKKKATAAG-3′), the corresponding sequence with A:T pairs (5′-CTTATAAATTTATAAG-3′) and the corresponding sequence with G:C pairs (5′-CTTATGGGCCCATAAG-3′).
圆二色性 (CD) 研究用于评估寡核苷酸双链体在中性 pH 值和低盐浓度缓冲的水溶液中的螺旋形式。分析的自配对 DNA 序列包括 2X2K (5'-CTTATXXTAKKATAAG-3')、3X3K (5'-CTTATXXXKKKATAAG-3')、具有 A:T 对的相应序列 (5'-CTTATAAATTTATAAG-3') 和具有 G:C 对的相应序列 (5'-CTTATGGGCCCATAAG-3')。
For CD analysis, stock solutions (2.5 mM) of these DNA sequences were diluted to 5 μM with buffer containing 10 mM HEPES pH 7.0 and 10 mM MgCl2. The CD spectra for DNA sequences were collected on a Jasco J-810 CD instrument at a temperature of 25 °C, at a rate of 50 nm/min and a wavelength increment of 0.1 nm. Ellipticity, Ø (mdegrees) was recorded for the DNA sequences from a wavelength of 320–220 nm. The final spectrum is the average of five scans corrected for ellipticity readings obtained for buffer (10 mM HEPES pH 7.0, 10 mM MgCl2) by itself. Spectra were initially measured for GC and AT control sequences and subsequently for 2X2K and 3X3K sequences.
对于 CD 分析,用含有 10 mM HEPES pH 7.0 和 10 mM MgCl2 的缓冲液将这些 DNA 序列的储备液 (2.5 mM) 稀释至 5 μM。DNA 序列的 CD 光谱在 Jasco J-810 CD 仪器上以 25 °C 的温度、50 nm/min 的速率和 0.1 nm 的波长增量收集。记录 320-220 nm 波长的 DNA 序列的椭圆度 Ø (mdegrees)。最终谱图是针对缓冲液(10 mM HEPES pH 7.0,10 mM MgCl2)自身获得的椭圆度读数进行校正的五次扫描的平均值。最初测量 GC 和 AT 对照序列的谱图,随后测量 2X2K 和 3X3K 序列的谱图。

Crystallization and Data Collection
结晶和数据收集

The self-complementary 16-mer DNA oligonucleotides containing either two or three X:K pairs (2X2K or 3X3K) were resuspended in buffer containing 10 mM HEPES (pH 7.0) and 10 mM MgCl2 and then annealed by heating to 70 °C followed by slow cooling to room temperature to give a final concentration of 2.5 mM duplex DNA. The protein (the N-terminal fragment including residues 24–278 of Moloney murine leukemia virus reverse transcriptase, MMLV RT) was diluted to a concentration of 0.65 mM in two steps. A 2.9 mM stock solution of the protein was diluted to 1.4 mM using 50 mM MES (pH 6.0) and 0.3 M NaCl. This 1.4 mM substock was then further diluted to 0.65 mM in 100 mM HEPES (pH 7.5) and 0.3 M NaCl. The host–2X2K or host–3X3K (protein–DNA) complex was set at a ratio of 1:2 respectively (0.43 mM protein/ 0.86 mM DNA) in buffer containing 100 mM HEPES (pH 7.5), 0.3 M NaCl and incubated at 4 °C for 1 h.
将含有 2 对或 3 对 XK(2X2K 或 3X3K)的自互补 16 聚体 DNA 寡核苷酸重悬于含有 10 mM HEPES (pH 7.0) 和 10 mM MgCl2 的缓冲液中,然后加热至 70 °C 进行退火,然后缓慢冷却至室温,得到最终浓度为 2.5 mM 的双链体 DNA。分两步将蛋白质(包括 Moloney 鼠白血病病毒逆转录酶 MMLV RT 残基 24-278 的 N 末端片段)稀释至 0.65 mM 的浓度。使用 50 mM MES (pH 6.0) 和 0.3 M NaCl 将 2.9 mM 蛋白质储备液稀释至 1.4 mM。然后将该 1.4 mM 亚储备液在 100 mM HEPES (pH 7.5) 和 0.3 M NaCl 中进一步稀释至 0.65 mM。将宿主–2X2K 或宿主–3X3K(蛋白质–DNA)复合物分别以 1:2 的比例(0.43 mM 蛋白质/0.86 mM DNA)设置在含有 100 mM HEPES (pH 7.5)、0.3 M NaCl 的缓冲液中,并在 4 °C 下孵育 1 小时。
The self-nucleated protein–DNA crystals of host–GC were used as seeds for crystallizing host protein with oligonucleotides containing KX. Crystals of host protein complexed with GC grew in hanging drops containing 1 μL of protein–DNA complex and 1 μL of solution containing 10% PEG 4000, 5 mM magnesium acetate, and 50 mM ADA (pH 6.5). The reservoir solution consisted of 500 μL of 10% PEG 4000, 5 mM magnesium acetate, and 50 mM ADA (pH 6.5). Host–2X2K microseeded crystals grew at 8% PEG 4000, 5 mM magnesium acetate, and 50 mM ADA (pH 6.5). No host–guest crystals were obtained for the 3X3K complex. DNA-only 3X3K crystals did not diffract to high resolution and were not further pursued. The host–2X2K crystals were cryoprotected in 9% PEG 4000, 5 mM magnesium acetate, 100 mM HEPES (pH 7.5), and 20% ethylene glycol before flash freezing in liquid nitrogen for data collection.
使用宿主-GC 的自成核蛋白质-DNA 晶体作为种子,用含有 KX 的寡核苷酸结晶宿主蛋白质。与 GC 复合物结合的宿主蛋白晶体在含有 1 μL 蛋白质-DNA 复合物和 1 μL 含有 10% PEG 4000、5 mM 乙酸镁和 50 mM ADA (pH 6.5) 的溶液的悬滴中生长。储液槽溶液由 500 μL 10% PEG 4000、5 mM 乙酸镁和 50 mM ADA (pH 6.5) 组成。宿主–2X2K 微晶种晶体在 8% PEG 4000、5 mM 乙酸镁和 50 mM ADA (pH 6.5) 下生长。没有获得 3X3K 复合物的主客体晶体。仅 DNA 的 3X3K 晶体没有衍射到高分辨率,因此没有被进一步追求。在 9% PEG 4000、5 mM 乙酸镁、100 mM HEPES (pH 7.5) 和 20% 乙二醇中冷冻保护宿主–2X2K 晶体,然后在液氮中快速冷冻以进行数据收集。
The 2X2K host–guest complex data were collected to a resolution of 1.75 Å at SBC-19-BM beamline at the Advanced Photon Source, Argonne National Laboratory, Darien, IL. Data reduction was carried out in space group P21212, and data were indexed, integrated, and scaled using HKL3000. (49) The host–guest crystal structure was determined by molecular replacement using the CCP4 program MOLREP (50) using the protein model from PDB ID 4XO0. (11) Use of the protein model alone for phasing provided unbiased electron density for the DNA in the host guest complex. Adjustments to the protein model and addition of water molecules were done in COOT (51) and initially refined in REFMAC. (52)
在伊利诺伊州达里恩阿贡国家实验室高级光子源的 SBC-19-BM 光束线上以 1.75 Å 的分辨率收集 2X2K 主客体复合物数据。数据缩减在空间群 P2121 2中进行,并使用 HKL3000对数据进行索引、整合和缩放。(49) 使用 PDB ID 4XO0 的蛋白质模型,使用 CCP4 程序 MOLREP (50) 通过分子置换来确定主客体晶体结构。(11) 单独使用蛋白质模型进行定相为宿主客体复合物中的 DNA 提供了无偏电子密度。在 COOT (51) 中对蛋白质模型的调整和水分子的添加,最初在 REFMAC 中精制。(52)
For building the DNA, initially 3 base pairs were built, followed by refinement in REFMAC to improve the electron density for the next consecutive base pairs. The protein–DNA refinement was followed by the addition of two more base pairs and refinement in REFMAC. The parameter and linking files for KX were created in PHENIX. (53) Finally, the last three base pairs were added including the Ks and Xs, and refinement was done using PHENIX. Multiple rounds of model adjustment in COOT and refinement in PHENIX yielded R-work and R-free values of 20.86% and 23.85%, respectively. Coordinates have been deposited for 2X2K with PDB (Table 1) with PDB identifier 5VBS.
为了构建 DNA,最初构建 3 个碱基对,然后在 REFMAC 中精炼以提高下一个连续碱基对的电子密度。蛋白质-DNA 精制之后,再添加两个碱基对并在 REFMAC 中精制。KX 的参数和链接文件是在 PHENIX 中创建的。(53) 最后,添加了最后三个碱基对,包括 Ks 和 Xs,并使用 PHENIX 进行了细化。在 COOT 中进行多轮模型调整,在 PHENIX 中进行细化,R-work 和 R-free 值分别为 20.86% 和 23.85%。PDB 的坐标已存入 2X2K(1),PDB 标识符为 5VBS

Quantum Mechanical Calculations
量子力学计算

Structures of the X:K, P:Z, G:C, and A:T pairs were optimized using M06-2X (54)/aug″-cc-pVTZ (55) in the Gaussian 09 software. (56) In each structure, the 2′-deoxyribose was modeled by a methyl group to represent the surrounding electronic environment. The single prime notation refers to the use of aug′-cc-pVTZ on all heavy atoms (not hydrogen); the use of double primes indicates that no diffuse functions were used on either hydrogen or carbon atoms. This approach was chosen due to the linear dependencies present by having so many diffuse functions over aromatic rings, indicating that their absence helps SCF convergence with no loss in the basis representation.
在 Gaussian 09 软件中使用 M06-2X (54)/aug“-cc-pVTZ (55) 优化了 XKPZ、G:C 和 A:T 对的结构。(56) 在每个结构中,2'-脱氧核糖由甲基建模以表示周围的电子环境。单素数符号是指在所有重原子(不是氢)上使用 aug′-cc-pVTZ;使用双素数表明没有对氢原子或碳原子使用漫反射函数。选择这种方法是因为芳香环上具有如此多的扩散函数存在线性依赖性,这表明它们的缺失有助于 SCF 收敛,而不会损失基表示。
A structure was deemed to be “optimized” when the RMS force was no greater than 1.0 × 10–4 Hartree/Bohr over all geometric parameters and no single geometric parameter had a force greater than 3.3 × 10–4 Hartree/Bohr. The KS-DFT (57, 58) Lebedev integration grid used 99 radial points and 590 solid angle points. The SCF was deemed to be “converged” when the change in SCF matrix elements was less than 10–6. Spherical d functions were used throughout for all basis sets in this paper. The construction of all electrostatic potential maps used the KS determinant density with isocontours 0.001 elementary charge per cubic Bohr. The M06-2X functional was chosen for its strong performance in calculating organic molecule energies, geometries, and dispersion phenomena, despite being parametrized empirically. All dipole moments calculated were based on this SCF reference.
当 RMS 力在所有几何参数上不大于 1.0 × 10-4 Hartree/Bohr 并且没有单个几何参数的力大于 3.3 × 10-4 Hartree/Bohr 时,结构被认为是“优化的”。KS-DFT (57, 58) Lebedev 积分网格使用了 99 个径向点和 590 个立体角点。当 SCF 矩阵元素的变化小于 10-6 时,SCF 被认为是“收敛的”。在本文中,所有基集都使用了球形 d 函数。所有静电势图的构建都使用 KS 行列式密度,等值线为每立方玻尔 0.001 基本电荷。选择 M06-2X 泛函是因为其在计算有机分子能量、几何形状和色散现象方面的强大性能,尽管它是凭经验参数化的。计算的所有偶极矩均基于此 SCF 参考。
The Watson–Crick hydrogen bonding free energy utilized the composite method of CCSD(T) (37-39)/aug′-cc-pVDZ describing the electronic energy, which has been shown to be accurate to ∼1 kcal/mol of the true gas-phase energy of single-reference wave functions. (59) The basis set extrapolation used the Helgaker (36) scheme for aug″-cc-pVTZ and aug″-cc-pVQZ extrapolation. The coupled cluster equations were considered “converged” when the coupled cluster energy equation tensor amplitudes changed less than 10–6. All coupled cluster and MP2 calculations utilized the ACES3 software (60) for its ability to parallelize over thousands of processors. All calculations were performed on the Big Red II supercomputer of Indiana University. The entropic contributions to the free energy used the vibrational partition function based on M06-2X/aug″-cc-pVTZ optimization. The Watson–Crick hydrogen bond energy is here defined to be the difference between the interacting pair (say PZ) vs the lone fragments, each individually optimized (P and Z, separately, in this case).
Watson-Crick 氢键自由能利用 CCSD(T) (37-39)/aug′-cc-pVDZ 的复合方法描述电子能,该方法已被证明精确到单参考波函数的真实气相能量的 ∼1 kcal/mol。(59) 基集外推使用 Helgaker (36) 方案进行 aug“-cc-pVTZ 和 aug”-cc-pVQZ 外推。当耦合簇能量方程张量幅度变化小于 10-6 时,耦合簇方程被认为是“收敛的”。所有耦合的集群和 MP2 计算都使用 ACES3 软件 (60),因为它能够并行处理数千个处理器。所有计算均在印第安纳大学的 Big Red II 超级计算机上进行。熵对自由能的贡献使用了基于 M06-2X/aug“-cc-pVTZ 优化的振动分配函数。Watson-Crick 氢键能在这里定义为相互作用对(比如 PZ)与孤片段之间的差值,每个片段都单独优化(在本例中分别为 P 和 Z)。

Supporting Information 支持信息

Click to copy section link
单击以复制部分链接
Section link copied!

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acssynbio.7b00150.
支持信息可在 ACS Publications 网站上免费获取,网址为 DOI:10.1021/acssynbio.7b00150

  • Figure S1. UV absorbance as a function of pH for the dX nucleoside gives pKa of 8.5 ± 0.1. Table S1. Melting point temperatures for oligonucleotides containing X:K pairs Coordinates of M06-2X/aug″-cc-pVDZ optimized structures, Å (PDF)
    图 S1.dX 核苷的紫外吸光度与 pH 值的函数关系,得到 pKa 为 8.5 ± 0.1。表 S1.含有 X:K 对的寡核苷酸的熔点温度 M06-2X/aug“-cc-pVDZ 优化结构的坐标,Å (PDF

Terms & Conditions  条款和条件

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
大多数电子支持信息文件无需订阅 ACS Web 版本即可获得。此类文件可以按文章下载用于研究用途(如果有链接到相关文章的公共使用许可证,则该许可证可能允许其他用途)。可以通过 RightsLink 权限系统请求 ACS 以用于其他用途:http://pubs.acs.org/page/copyright/permissions.html

Author Information 作者信息

Click to copy section link
单击以复制部分链接
Section link copied!

  • Corresponding Author 通讯作者
    • Millie M. Georgiadis - Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United StatesDepartment of Chemistry and Chemical Biology, Indiana University, Purdue University Indianapolis, Indianapolis, Indiana 46202, United StatesOrcidhttp://orcid.org/0000-0003-2976-4576 Email: mgeorgia@iu.edu
      Millie M. Georgiadis - 印第安纳大学医学院生物化学与分子生物学系,印第安纳波利斯,印第安纳州46202,美国;普渡大学印第安纳波利斯分校化学与化学生物学系,印第安纳波利斯,印第安纳州 46202,美国; Orcid http://orcid.org/0000-0003-2976-4576 电子邮件: mgeorgia@iu.edu
  • Authors 作者
    • Isha Singh - Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
      Isha Singh - 生物化学与分子生物学系,印第安纳大学医学院,印第安纳波利斯,印第安纳州46202,美国
    • Myong-Jung Kim - Foundation for Applied Molecular Evolution, and the Westheimer Institute of Science & Technology, 13709 Progress Boulevard, Box 7, Alachua, Florida 32615, United StatesFirebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Box 17, Alachua, Florida 32615, United States
      Myong-Jung Kim - 应用分子进化基金会和韦斯特海默科学技术研究所,地址:13709 Progress Boulevard, Box 7, Alachua, Florida 32615, United States;Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Box 17, 阿拉楚阿, 佛罗里达州 32615, 美国
    • Robert W. Molt - Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United StatesENSCO, Inc., 4849 North Wickham Road, Melbourne, Florida 32940, United States
      Robert W. Molt - 印第安纳大学医学院生物化学与分子生物学系,印第安纳波利斯,印第安纳州46202,美国;ENSCO, Inc., 4849 North Wickham Road, 墨尔本, 佛罗里达州 32940, 美国
    • Shuichi Hoshika - Foundation for Applied Molecular Evolution, and the Westheimer Institute of Science & Technology, 13709 Progress Boulevard, Box 7, Alachua, Florida 32615, United StatesFirebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Box 17, Alachua, Florida 32615, United States
      Shuichi Hoshika - 应用分子进化基金会和Westheimer科学与技术研究所,13709 Progress Boulevard, Box 7, Alachua, Florida 32615, 美国;Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Box 17, 阿拉楚阿, 佛罗里达州 32615, 美国
    • Steven A. Benner - Foundation for Applied Molecular Evolution, and the Westheimer Institute of Science & Technology, 13709 Progress Boulevard, Box 7, Alachua, Florida 32615, United StatesFirebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Box 17, Alachua, Florida 32615, United StatesOrcidhttp://orcid.org/0000-0002-3318-9917
      Steven A. Benner - 应用分子进化基金会,以及Westheimer科学与技术研究所,地址为13709 Progress Boulevard, Box 7, Alachua, Florida 32615, United States;Firebird Biomolecular Sciences LLC,13709 Progress Boulevard, Box 17, Alachua, Florida 32615, 美国; Orcid http://orcid.org/0000-0002-3318-9917
  • Notes 笔记
    The authors declare no competing financial interest.
    作者声明没有竞争性的经济利益。

Acknowledgment 确认

Click to copy section link
单击以复制部分链接
Section link copied!

Results shown in this report are derived from work performed at Argonne National Laboratory, Structural Biology Center at the Advanced Photon Source. Argonne is operated by UChicago Argonne, LLC, for the U.S. Department of Energy, Office of Biological and Environmental Research under Contract DE-AC02-06CH11357. Calculations were performed on the Indiana University Big Red 2 supercomputer. The authors thank the Lilly Endowment, Inc. for support of the Indiana University Pervasive Technology Institute and the Indiana METACyt Initiative. The material is based in part upon work supported by NASA under awards NNX14AK37G and NNX15AF46G. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration. Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R01GM111386. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. This material is also based in part upon work supported by the National Science Foundation under Grant No. CHE 1507816.
本报告中显示的结果来自阿贡国家实验室结构生物学中心在先进光子源进行的工作。Argonne 由 UChicago Argonne, LLC 为美国能源部生物与环境研究办公室运营,合同编号为 DE-AC02-06CH11357。在印第安纳大学 Big Red 2 超级计算机上执行计算。作者感谢 Lilly Endowment, Inc. 对印第安纳大学普适技术研究所和印第安纳州 METACyt 倡议的支持。该材料部分基于 NASA 在 NNX14AK37G 和 NNX15AF46G 奖项下支持的工作。本材料中表达的任何意见、发现、结论或建议均为作者的观点,并不一定反映美国国家航空航天局的观点。本出版物中报告的研究得到了美国国立卫生研究院国家普通医学科学研究所的支持,奖项编号为 R01GM111386。内容完全由作者负责,并不一定代表 NIH 的官方观点。本材料还部分基于美国国家科学基金会 (National Science Foundation) 在 Grant No.CHE 1507816。

References 引用

Click to copy section link
单击以复制部分链接
Section link copied!

This article references 60 other publications.
本文引用了其他 60 种出版物。

  1. 1
    Ghosh, A. and Bansal, M. (2003) A glossary of DNA structures from A to Z Acta Crystallogr., Sect. D: Biol. Crystallogr. 59, 620 DOI: 10.1107/S0907444903003251

    1
    高希,A.Bansal, M.2003 A glossary of DNA structures from A to Z Acta Crystallogr., Sect. D: Biol. Crystallogr. 59 620 DOI: 10.1107/S0907444903003251
  2. 2
    Switzer, C., Moroney, S. E., and Benner, S. A. (1989) Enzymatic incorporation of a new base pair into DNA and RNA J. Am. Chem. Soc. 111, 8322 DOI: 10.1021/ja00203a067

    2
    瑞士 C.莫罗尼, SEBenner, S. A.1989 新的碱基对酶促掺入 DNA 和 RNA 中 J. Am. Chem. Soc. 111 8322 DOI: 10.1021/JA00203A067
  3. 3
    Piccirilli, J. A., Krauch, T., Moroney, S. E., and Benner, S. A. (1990) Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet Nature 343, 33 DOI: 10.1038/343033a0

    3
    皮奇里利,J. A.克劳奇, T.莫罗尼, SEBenner, S. A.1990 新的碱基对酶促掺入 DNA 和 RNA 扩展了遗传字母表 Nature 343 33 DOI: 10.1038/343033A0
  4. 4
    Benner, S. A. (2004) Understanding nucleic acids using synthetic chemistry Acc. Chem. Res. 37, 784 DOI: 10.1021/ar040004z

    4
    本纳,SA2004 使用合成化学了解核酸 Acc. Chem. Res. 37 784 DOI: 10.1021/AR040004Z
  5. 5
    Geyer, C. R., Battersby, T. R., and Benner, S. A. (2003) Nucleobase pairing in expanded Watson-Crick-like genetic information systems Structure 11, 1485 DOI: 10.1016/j.str.2003.11.008

    5
    盖尔,C. R.巴特斯比, TRBenner, S. A.2003 扩展的 Watson-Crick 样遗传信息系统中的核碱基配对结构 11 1485 DOI: 10.1016/j.str.2003.11.008
  6. 6
    Yakovchuk, P., Protozanova, E., and Frank-Kamenetskii, M. D. (2006) Base-stacking and base-pairing contributions into thermal stability of the DNA double helix Nucleic Acids Res. 34, 564 DOI: 10.1093/nar/gkj454

    6
    雅科夫丘克,P.普罗托扎诺娃, E.Frank-Kamenetskii, M. D.2006 碱基堆叠和碱基配对对 DNA 双螺旋核酸热稳定性的贡献 Res. 34 564 DOI: 10.1093/NAR/GKJ454
  7. 7
    Benner, S. A., Karalkar, N. B., Hoshika, S., Laos, R., Shaw, R. W., Matsuura, M., Fajardo, D., and Moussatche, P. (2016) Alternative Watson-Crick Synthetic Genetic Systems Cold Spring Harbor Perspect. Biol. 8, a023770 DOI: 10.1101/cshperspect.a023770

    7
    本纳,SA卡拉卡尔, NB星香, S.老挝, R.肖, RW松浦, M.法哈多, D.Moussatche, P.2016 替代 Watson-Crick 合成遗传系统冷泉港观察。生物学 8 a023770 DOI: 10.1101/cshperspect.a023770
  8. 8
    Lutz, M. J., Horlacher, J., and Benner, S. A. (1998) Recognition of a non-standard base pair by thermostable DNA polymerases Bioorg. Med. Chem. Lett. 8, 1149 DOI: 10.1016/S0960-894X(98)00177-2

    8
    卢茨,MJ霍拉赫, J.Benner, S. A.1998 热稳定 DNA 聚合酶对非标准碱基对的识别 Bioorg. Med. Chem. Lett. 8 1149 DOI: 编号:10.1016/S0960-894X(98)00177-2
  9. 9
    Yang, Z., Chen, F., Chamberlin, S. G., and Benner, S. A. (2010) Expanded genetic alphabets in the polymerase chain reaction Angew. Chem., Int. Ed. 49, 177 DOI: 10.1002/anie.200905173

    9
    杨 Z.陈 F.张伯伦, SGBenner, S. A.2010 聚合酶链反应中的扩展遗传字母。Angew. Chem., Int. Ed. 49 177 DOI: 10.1002/anie.200905173
  10. 10
    Yang, Z., Chen, F., Alvarado, J. B., and Benner, S. A. (2011) Amplification, mutation, and sequencing of a six-letter synthetic genetic system J. Am. Chem. Soc. 133, 15105 DOI: 10.1021/ja204910n

    10
    杨 Z.陈 F.阿尔瓦拉多, JBBenner, S. A.2011 六字母合成遗传系统的扩增、突变和测序 J. Am. Chem. Soc. 133 15105 DOI: 10.1021/JA204910N
  11. 11
    Georgiadis, M. M., Singh, I., Kellett, W. F., Hoshika, S., Benner, S. A., and Richards, N. G. (2015) Structural basis for a six nucleotide genetic alphabet J. Am. Chem. Soc. 137, 6947 DOI: 10.1021/jacs.5b03482

    11
    乔治亚迪斯,M. M.辛格, I.凯利特, WF星香, S.本纳, SA理查兹,N. G.2015 六核苷酸遗传字母的结构基础 J. Am. Chem. Soc. 137 6947 DOI: 10.1021/jacs.5b03482
  12. 12
    Sismour, A. M., Lutz, S., Park, J. H., Lutz, M. J., Boyer, P. L., Hughes, S. H., and Benner, S. A. (2004) PCR amplification of DNA containing non-standard base pairs by variants of reverse transcriptase from Human Immunodeficiency Virus-1 Nucleic Acids Res. 32, 728 DOI: 10.1093/nar/gkh241

    12
    西斯莫尔,上午卢茨, S.帕克, JH卢茨, MJ博耶, PL休斯, SHBenner, S. A.2004 通过人类免疫缺陷病毒 1 核酸逆转录酶变体对含有非标准碱基对的 DNA 进行 PCR 扩增 Res. 32 728 DOI: 10.1093/纳尔/GKH241
  13. 13
    Winiger, C. B., Kim, M. J., Hoshika, S., Shaw, R. W., Moses, J. D., Matsuura, M. F., Gerloff, D. L., and Benner, S. A. (2016) Polymerase Interactions with Wobble Mismatches in Synthetic Genetic Systems and Their Evolutionary Implications Biochemistry 55, 3847 DOI: 10.1021/acs.biochem.6b00533

    13
    维尼格,CB金, MJ星香, S.肖, RW摩西, J. D.松浦, MF格洛夫, DLBenner, S. A.2016 合成遗传系统中聚合酶与摆动错配的相互作用及其进化意义生物化学 55 3847 DOI: 10.1021/acs.biochem.6b00533
  14. 14
    Winiger, C. B., Shaw, R. W., Kim, M. J., Moses, J. D., Matsuura, M. F., and Benner, S. A. (2017) Expanded Genetic Alphabets: Managing Nucleotides That Lack Tautomeric, Protonated, or Deprotonated Versions Complementary to Natural Nucleotides ACS Synth. Biol. 6, 194 DOI: 10.1021/acssynbio.6b00193

    14
    维尼格,CB肖, RW金, MJ摩西, J. D.松浦, MFBenner, S. A.2017 扩展遗传字母表:管理缺乏与天然核苷酸互补的互变异体、质子化或去质子化版本的核苷酸 ACS Synth. Biol. 6 194 DOI: 10.1021/acssynbio.6b00193
  15. 15
    Benner, S. A. and Shaw, R. W. In Vivo Conversion of Nucleosides in Plasmid DNA. US Patent Application 14218405, 2015.

    15Benner, SA 和 Shaw, RW质粒 DNA 中核苷的体内转化。美国专利申请 14218405,2015。
  16. 16
    Betz, K., Malyshev, D. A., Lavergne, T., Welte, W., Diederichs, K., Dwyer, T. J., Ordoukhanian, P., Romesberg, F. E., and Marx, A. (2012) KlenTaq polymerase replicates unnatural base pairs by inducing a Watson-Crick geometry Nat. Chem. Biol. 8, 612 DOI: 10.1038/nchembio.966

    16
    贝茨,K.马雷舍夫, DA拉弗涅, T.韦尔特, W.迪德里希斯, K.德怀尔, TJOrdoukhanian, P.罗梅斯伯格, FEMarx, A.2012 KlenTaq 聚合酶通过诱导 Watson-Crick 几何来复制非自然碱基对 Nat. Chem. Biol. 8 612 DOI: 10.1038/nchembio.966
  17. 17
    Malyshev, D. A., Dhami, K., Lavergne, T., Chen, T., Dai, N., Foster, J. M., Correa, I. R., Jr., and Romesberg, F. E. (2014) A semi-synthetic organism with an expanded genetic alphabet Nature 509, 385 DOI: 10.1038/nature13314

    17
    马雷舍夫,DA达米, K.拉弗涅, T.陈 T.戴, N.福斯特, JM科雷亚, IR, Jr.Romesberg, F. E.2014 具有扩展遗传字母表的半合成生物体 Nature 509 385 DOI: 10.1038/自然13314
  18. 18
    Neidle, S. (1999) Nucleic Acid Structure, Oxford University Press, New York.

    18Neidle, S. (1999) 核酸结构,牛津大学出版社,纽约。
  19. 19
    Molt, R. W., Jr., Georgiadis, M. M., and Richards, N. G. J. (2017) Consecutive non-natural PZ nucleobase pairs in DNA impact helical structure as seen in 50 mus molecular dynamics simulations Nucleic Acids Res. 45, 3643 DOI: 10.1093/nar/gkx144

    19
    小莫尔特乔治亚迪斯, MM。理查兹,新墨西哥2017 DNA 中连续的非天然 PZ 核碱基对影响螺旋结构,如 50 mus 分子动力学模拟中所见 核酸研究 45 3643 DOI: 10.1093/纳尔/GKX144
  20. 20
    Sun, D., Jessen, S., Liu, C., Liu, X., Najmudin, S., and Georgiadis, M. M. (1998) Cloning, expression, and purification of a catalytic fragment of Moloney murine leukemia virus reverse transcriptase: crystallization of nucleic acid complexes Protein Sci. 7, 1575 DOI: 10.1002/pro.5560070711

    20
    Sun, D.杰森, S.刘 C.刘, X.纳吉穆丁, S.Georgiadis, M. M.1998 莫洛尼鼠白血病病毒逆转录酶催化片段的克隆、表达和纯化:核酸复合物的结晶 蛋白质科学 7 1575 DOI: 10.1002/专业版 5560070711
  21. 21
    Cote, M. L., Yohannan, S. J., and Georgiadis, M. M. (2000) Use of an N-terminal fragment from moloney murine leukemia virus reverse transcriptase to facilitate crystallization and analysis of a pseudo-16-mer DNA molecule containing G-A mispairs Acta Crystallogr., Sect. D: Biol. Crystallogr. 56, 1120 DOI: 10.1107/S0907444900008246

    21
    科特,M. L.约翰南, SJGeorgiadis, M. M.2000 使用来自 moloney 鼠白血病病毒逆转录酶的 N 端片段促进含有 G-A 错配的伪 16 聚体 DNA 分子的结晶和分析Acta Crystallogr., Sect. D: Biol. Crystallogr. 56 1120 DOI: 10.1107/S0907444900008246
  22. 22
    Najmudin, S., Cote, M. L., Sun, D., Yohannan, S., Montano, S. P., Gu, J., and Georgiadis, M. M. (2000) Crystal structures of an N-terminal fragment from Moloney murine leukemia virus reverse transcriptase complexed with nucleic acid: functional implications for template-primer binding to the fingers domain J. Mol. Biol. 296, 613 DOI: 10.1006/jmbi.1999.3477

    22
    纳吉穆丁科特, ML。孙, D.约翰南, S.蒙塔诺, SP顾 J.Georgiadis, M. M.2000 来自 Moloney 鼠白血病病毒逆转录酶与核酸复合的 N 端片段的晶体结构:模板引物结合到手指结构域的功能意义 J. Mol. Biol. 296 613 DOI: 10.1006/jmbi.1999.3477
  23. 23
    Cote, M. L. and Georgiadis, M. M. (2001) Structure of a pseudo-16-mer DNA with stacked guanines and two G-A mispairs complexed with the N-terminal fragment of Moloney murine leukemia virus reverse transcriptase Acta Crystallogr., Sect. D: Biol. Crystallogr. 57, 1238 DOI: 10.1107/S090744490100943X

    23
    科特,M. L.Georgiadis, M. M.2001 具有堆叠鸟嘌呤和两个 G-A 错对的假 16-mer DNA 的结构,与莫洛尼鼠白血病病毒逆转录酶的 N 端片段复合晶体学报,D 部分:生物学晶体学家。57 1238 DOI: 10.1107/S090744490100943X
  24. 24
    Montano, S. P., Cote, M. L., Roth, M. J., and Georgiadis, M. M. (2006) Crystal structures of oligonucleotides including the integrase processing site of the Moloney murine leukemia virus Nucleic Acids Res. 34, 5353 DOI: 10.1093/nar/gkl693

    24
    蒙塔诺,SP科特, ML。罗斯, MJGeorgiadis, M. M.2006 寡核苷酸的晶体结构,包括莫洛尼鼠白血病病毒的整合酶加工位核酸研究 34 5353 DOI: 10.1093 / 纳尔 / GKL693
  25. 25
    Joyce, C. M. and Steitz, T. A. (1994) Function and structure relationships in DNA polymerases Annu. Rev. Biochem. 63, 777 DOI: 10.1146/annurev.bi.63.070194.004021

    25
    乔伊斯,CMSteitz, TA1994 DNA 聚合酶的功能和结构关系 Annu. Rev. Biochem. 63 777 DOI: 10.1146/annurev.bi.63.070194.004021
  26. 26
    Hendrickson, C. L., Devine, K. G., and Benner, S. A. (2004) Probing minor groove recognition contacts by DNA polymerases and reverse transcriptases using 3-deaza-2′-deoxyadenosine Nucleic Acids Res. 32, 2241 DOI: 10.1093/nar/gkh542

    26
    亨德里克森,CL德文, K. G.Benner, S. A.2004 使用 3-deaza-2′-deoxyadenosine Nucleic Acids 探测 DNA 聚合酶和逆转录酶的小沟识别接触 Res. 32 2241 DOI: 10.1093/纳尔/GKH542
  27. 27
    El Hassan, M. a. and Calladine, C. R. (1998) Two distinct modes of protein-induced bending in DNA J. Mol. Biol. 282, 331 DOI: 10.1006/jmbi.1998.1994

    27
    马萨诸塞州埃尔哈桑Calladine, C. R.1998 DNA 中蛋白质诱导弯曲的两种不同模式。J. Mol. Biol. 282 331 DOI: 1998 年 10 月 1006 日/JMBI.1994
  28. 28
    Lu, X. J. and Olson, W. K. (2003) 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures Nucleic Acids Res. 31, 5108 DOI: 10.1093/nar/gkg680

    28
    卢 X. J.奥尔森,WK2003 3DNA:用于分析、重建和可视化三维核酸结构的软件包 核酸研究 31 5108 DOI: 10.1093/纳尔/GKG680
  29. 29
    Lu, X. J. and Olson, W. K. (2008) 3DNA: a versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures Nat. Protoc. 3, 1213 DOI: 10.1038/nprot.2008.104

    29
    卢 X. J.奥尔森,WK2008 3DNA:用于分析、重建和可视化三维核酸结构的多功能集成软件系统 Nat. Protoc. 3 1213 DOI: 10.1038/nprot.2008.104
  30. 30
    Colasanti, A. V., Lu, X. J., and Olson, W. K. (2013) Analyzing and building nucleic acid structures with 3DNA J. Visualized Exp. e4401 DOI: 10.3791/4401

    30
    科拉桑蒂,A. V.卢, XJOlson, WK2013 用 3DNA J. 分析和构建核酸结构 Visualized Exp. e4401 DOI: 10.3791/4401
  31. 31
    Prive, G. G., Heinemann, U., Chandrasegaran, S., Kan, L. S., Kopka, M. L., and Dickerson, R. E. (1987) Helix geometry, hydration, and G.A mismatch in a B-DNA decamer Science 238, 498 DOI: 10.1126/science.3310237

    31
    普里夫,G. G.海涅曼, U.钱德拉塞加兰, S.堪萨斯, L. S.科普卡, ML。迪克森,R. E.1987 B-DNA 十聚体科学中的螺旋几何形状、水合和 G.A 错配 238 498 DOI: 10.1126/科学.3310237
  32. 32
    Grzeskowiak, K. (1996) Sequence-dependent structural variation in B-DNA Chem. Biol. 3, 785 DOI: 10.1016/S1074-5521(96)90062-9

    32
    格热斯科维亚克,K.1996 B-DNA 化学生物学中的序列依赖性结构变异 Biol. 3 785 DOI: 10.1016/S1074-5521(96)90062-9
  33. 33
    Berman, H. M. (1997) Crystal studies of B-DNA: the answers and the questions Biopolymers 44, 23 DOI: 10.1002/(SICI)1097-0282(1997)44:1<23::AID-BIP3>3.0.CO;2-1

    33
    伯曼,HM1997 B-DNA 的晶体研究:答案和问题 生物聚合物 44 23 DOI: 10.1002/(SICI)1097-0282(1997)44:1<23::AID-BIP3>3.0.CO;2-1
  34. 34
    Drew, H. R., Wing, R. M., Takano, T., Broka, C., Tanaka, S., Itakura, K., and Dickerson, R. E. (1981) Structure of a B-DNA dodecamer: conformation and dynamics Proc. Natl. Acad. Sci. U. S. A. 78, 2179 DOI: 10.1073/pnas.78.4.2179

    34
    德鲁,H. R.Wing , RM高野, T.布罗卡, C.田中, S.板仓, K.迪克森,R. E.1981 B-DNA 十二聚体的结构:构象和动力学 Proc. Natl. Acad. Sci. U. S. A. 78 2179 DOI: 10.1073/pnas.78.4.2179
  35. 35
    Sponer, J., Jurecka, P., and Hobza, P. (2004) Accurate interaction energies of hydrogen-bonded nucleic acid base pairs J. Am. Chem. Soc. 126, 10142 DOI: 10.1021/ja048436s

    35
    斯波纳,J.尤雷卡, P.Hobza, P.2004 氢键核酸碱基对的精确相互作用能 J. Am. Chem. Soc. 126 10142 DOI: 10.1021/JA048436s
  36. 36
    Bak, K. L., Jørgensen, P., Olsen, J., Helgaker, T., and Klopper, W. (2000) Accuracy of atomization energies and reaction enthalpies in standard and extrapolated electronic wave function/basis set calculations J. Chem. Phys. 112, 9229 DOI: 10.1063/1.481544

    36
    巴克,KLJørgensen, P.奥尔森, J.赫尔加克, T.Klopper, W.2000 标准和外推电子波函数/基集计算中原子化能和反应焓的准确性 J. Chem. Phys. 112 9229 DOI: 10.1063/1.481544
  37. 37
    Watts, J. D., Gauss, J., and Bartlett, R. J. (1993) Coupled-cluster methods with noniterative triple excitations for restricted open-shell Hartree–Fock and other general single determinant reference functions. Energies and analytical gradients J. Chem. Phys. 98, 8718 DOI: 10.1063/1.464480

    37
    瓦茨,法学博士高斯, J.巴特利特,RJ。1993 具有非迭代三重激励的耦合集群方法,用于受限开壳 Hartree-Fock 和其他一般的单一行列式参考函数。能量和分析梯度 J. Chem. Phys. 98 8718 DOI: 10.1063/1.464480
  38. 38
    Coester, F. and Kümmel, H. (1960) Short-Range Correlations in Nuclear Wave Functions Nucl. Phys. 17, 477 DOI: 10.1016/0029-5582(60)90140-1

    38
    科斯特,F.Kümmel, H.1960 核波函数中的短程相关性 Nucl. Phys. 17 477 DOI: 10.1016/0029-5582(60)90140-1
  39. 39
    Purvis, G. D. and Bartlett, R. J. (1982) A full coupled-cluster singles and doubles model: The inclusion of disconnected triples J. Chem. Phys. 76, 1910 DOI: 10.1063/1.443164

    39
    珀维斯,GD巴特利特,RJ。1982 一个完整的耦合集群单双模型:包含断开连接的三元组 J. Chem. Phys. 76 1910 DOI: 10.1063/1.443164
  40. 40
    Jorgensen, W. L. and Pranata, J. (1990) Importance of secondary interactions in triply hydrogen bonded complexes: guanine-cytosine vs uracil-2,6-diaminopyridine J. Am. Chem. Soc. 112, 2008 DOI: 10.1021/ja00161a061

    40
    乔根森,WLPranata, J.1990 三氢键配合物中次级相互作用的重要性:鸟嘌呤-胞嘧啶与尿嘧啶-2,6-二氨基吡啶 J. Am. Chem. Soc. 112 2008 DOI: 10.1021/JA00161A061
  41. 41
    Wang, W., Sheng, X., Zhang, S., Huang, F., Sun, C., Liu, J., and Chen, D. (2016) Theoretical characterization of the conformational features of unnatural oligonucleotides containing a six nucleotide genetic alphabet Phys. Chem. Chem. Phys. 18, 28492 DOI: 10.1039/C6CP05594J

    41
    王 W.盛 X.张 S.黄 F.太阳, C.刘 J.Chen, D.2016 包含六核苷酸遗传字母的非天然寡核苷酸构象特征的理论表征 Phys. Chem. Chem. Phys. 18 28492 DOI: 10.1039/C6CP05594J
  42. 42
    Wang, X., Hoshika, S., Peterson, R. J., Kim, M. J., Benner, S. A., and Kahn, J. D. (2017) Biophysics of Artificially Expanded Genetic Information Systems. Thermodynamics of DNA Duplexes Containing Matches and Mismatches Involving 2-Amino-3-nitropyridin-6-one (Z) and Imidazo[1,2-a]-1,3,5-triazin-4(8H)one (P) ACS Synth. Biol. 6, 782 DOI: 10.1021/acssynbio.6b00224

    42
    王 X.星香, S.彼得森, RJ金, MJ本纳, SAKahn, J. D.2017 人工扩展遗传信息系统的生物物理学。含有涉及 2-氨基-3-硝基吡啶-6-酮 (Z) 和咪唑[1,2-A]-1,3,5-三嗪-4(8H)酮 (P) 的匹配和错配的 DNA 双链体的热力学 ACS Synth. Biol. 6 782 DOI: 10.1021/acssynbio.6b00224
  43. 43
    Malyshev, D. A., Pfaff, D. A., Ippoliti, S. I., Hwang, G. T., Dwyer, T. J., and Romesberg, F. E. (2010) Solution structure, mechanism of replication, and optimization of an unnatural base pair Chem. - Eur. J. 16, 12650 DOI: 10.1002/chem.201000959

    43
    马雷舍夫,D. A.普法夫, DA伊波利蒂, S. I.黄, GT德怀尔, TJRomesberg, F. E.2010 非天然碱基对的溶液结构、复制机制和优化 Chem. - Eur. J. 16 12650 DOI: 10.1002/化学201000959
  44. 44
    Kimoto, M., Kawai, R., Mitsui, T., Yokoyama, S., and Hirao, I. (2009) An unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules Nucleic Acids Res. 37, e14 DOI: 10.1093/nar/gkn956

    44
    木本 M.河合, R.三井, T.横山, S.Hirao, I.2009 用于 DNA 分子高效 PCR 扩增和功能化的非天然碱基对系统核酸研究 37 e14 DOI: 10.1093/NAR/GKN956
  45. 45
    Yamashige, R., Kimoto, M., Takezawa, Y., Sato, A., Mitsui, T., Yokoyama, S., and Hirao, I. (2012) Highly specific unnatural base pair systems as a third base pair for PCR amplification Nucleic Acids Res. 40, 2793 DOI: 10.1093/nar/gkr1068

    45
    山重 R.木本, M.竹泽, Y.佐藤, A.三井, T.横山, S.Hirao, I.2012 高度特异性的非天然碱基对系统作为 PCR 扩增的第三个碱基对 Nucleic Acids Res. 40 2793 DOI: 10.1093/NAR/GKR1068
  46. 46
    Betz, K., Kimoto, M., Diederichs, K., Hirao, I., and Marx, A. (2017) Structural Basis for Expansion of the Genetic Alphabet with an Artificial Nucleobase Pair Angew. Chem., Int. Ed. DOI: 10.1002/anie.201706478

    46
    贝茨,K.木本, M.迪德里希斯, K.平尾, I.Marx, A.2017 用人工核碱基对扩展遗传字母表的结构基础 Angew. Chem., Int. Ed. DOI: 10.1002/anie.201706478
  47. 47
    Kirnos, M. D., Khudyakov, I. Y., Alexandrushkina, N. I., and Vanyushin, B. F. (1977) 2-aminoadenine is an adenine substituting for a base in S-2L cyanophage DNA Nature 270, 369 DOI: 10.1038/270369a0

    47
    基尔诺斯,医学博士胡迪亚科夫, I. Y.亚历山德鲁什金娜, N. I.Vanyushin, BF。1977 2-氨基腺嘌呤是腺嘌呤替代 S-2L 蓝噬细胞 DNA 中的碱基 Nature 270 369 DOI: 10.1038/270369A0
  48. 48
    Howard, F. B. and Miles, H. T. (1984) 2NH2A X T helices in the ribo- and deoxypolynucleotide series. Structural and energetic consequences of 2NH2A substitution Biochemistry 23, 6723 DOI: 10.1021/bi00321a068

    48
    霍华德,FBH. T. 的迈尔斯。1984 核糖多核苷酸和脱氧多核苷酸系列中的 2NH2A X T 螺旋。2NH2A 取代的结构和能量后果 生物化学 23 6723 DOI: 10.1021/BI00321A068
  49. 49
    Minor, W., Cymborowski, M., Otwinowski, Z., and Chruszcz, M. (2006) HKL-3000: the integration of data reduction and structure solution--from diffraction images to an initial model in minutes Acta Crystallogr., Sect. D: Biol. Crystallogr. 62, 859 DOI: 10.1107/S0907444906019949

    49
    米诺,W.辛博罗夫斯基, M.奥特温诺夫斯基, Z.Chruszcz, M.2006 HKL-3000:数据缩减和结构解决方案的集成--在几分钟内从衍射图像到初始模型Acta Crystallogr., Sect. D: Biol. Crystallogr. 62 859 DOI: 10.1107/S0907444906019949
  50. 50
    Vagin, A. and Teplyakov, A. (2010) Molecular replacement with MOLREP Acta Crystallogr., Sect. D: Biol. Crystallogr. 66, 22 DOI: 10.1107/S0907444909042589

    50
    阴道,A.Teplyakov, A.2010 用 MOLREP Acta Crystallogr., Sect. D: Biol. Crystallogr. 66 22 DOI: 10.1107/S0907444909042589
  51. 51
    Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. (2010) Features and development of Coot Acta Crystallogr., Sect. D: Biol. Crystallogr. 66, 486 DOI: 10.1107/S0907444910007493

    51
    埃姆斯利,P.洛坎普, B.斯科特, WGCowtan, K.2010 Coot Acta Crystallogr. 的特征和发展,D 节:Biol. Crystallogr. 66 486 DOI: 10.1107/S0907444910007493
  52. 52
    Murshudov, G. N., Vagin, A. A., and Dodson, E. J. (1997) Refinement of macromolecular structures by the maximum-likelihood method Acta Crystallogr., Sect. D: Biol. Crystallogr. 53, 240 DOI: 10.1107/S0907444996012255

    52
    穆尔舒多夫,G. N.阴道, AADodson, EJ1997 通过最大似然法细化大分子结构学报,D部分:生物学晶体学家。53 240 DOI: 10.1107/S0907444996012255
  53. 53
    Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., and Zwart, P. H. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution Acta Crystallogr., Sect. D: Biol. Crystallogr. 66, 213 DOI: 10.1107/S0907444909052925

    53
    亚当斯,P. D.阿福宁, PVBunkoczi, G.陈, V. B.戴维斯, IW埃科尔斯, N.Headd, J. J.洪 L. W.卡普拉尔, GJGrosse-Kunstleve, RW麦考伊, AJ莫里亚蒂, NW奥夫纳, R.里德, RJ理查森, D. C.理查森, JS特威利格, TCZwart, PH2010 PHENIX:用于大分子结构解决方案的基于 Python 的综合系统Acta Crystallogr., Sect. D: Biol. Crystallogr. 66 213 DOI: 10.1107/S0907444909052925
  54. 54
    Zhao, Y. and Truhlar, D. G. (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals Theor. Chem. Acc. 120, 215 DOI: 10.1007/s00214-007-0310-x

    54
    赵 Y.Truhlar, D. G.2008 用于主族热化学、热化学动力学、非共价相互作用、激发态和过渡元素的 M06 密度泛函套件:两个新的泛函和四个 M06 类泛函和 12 个其他泛函的系统测试。化学 Acc. 120 215 DOI: 10.1007/s00214-007-0310-x
  55. 55
    Kendall, R. A., Dunning, T. H., Jr, and Harrison, R. J. (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions J. Chem. Phys. 96, 6796 DOI: 10.1063/1.462569

    55
    肯德尔,RADunning, TH, Jr Harrison, RJ1992 重新审视第一行原子的电子亲和力。系统基集和波函数 J. Chem. Phys. 96 6796 DOI: 10.1063/1.462569
  56. 56
    Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., and Fox, D. J. (2009) Gaussian 09, revision E.01, Gaussian, Inc., Wallingford, CT.

    56Frisch, MJ, 卡车, GW, Schlegel, HB, Scuseria, GE, Robb, MA, Cheeseman, JR, Scalmani, G., Barone, V., Mennucci, B., Petersson, GA, Nakatsuji, H., Caricato, M., Li, X., Hratchian, HP, Izmaylov, AF, Bloino, J., Zheng, G., Sonnenberg, JL, Hada, M., Ehara, M., 丰田, K., Fukuda, R., 长谷川, J., 石田,M.,中岛,T.,本田,Y.,北尾,O.,中井,H.,Vreven,T.,蒙哥马利,JA,Jr.,佩拉尔塔,JE,奥利亚罗,F.,Bearpark,M.,Heyd,JJ,兄弟,E.,Kudin,KN,Staroverov,VN,小林,R.,诺曼德,J.,Raghavachari,K.,伦德尔,A.,布兰特,JC,艾扬格,SS,托马西,J.,科西,M.,雷加,N.,米勒姆,JM, 克莱恩,M.,诺克斯,JE,克罗斯,JB,巴肯,V.,阿达莫,C.,贾拉米洛,J.,贡佩茨,R.,斯特拉特曼,RE,亚兹耶夫,O.,奥斯汀,AJ,卡米,R.,波梅利,C.,奥赫特斯基,JW,马丁,RL,Morokuma,K.,Zakrzewski,VG,沃斯,GA,萨尔瓦多,P.,丹能伯格,JJ,达普里奇,S.,丹尼尔斯,AD,法卡斯,O.,福斯曼,JB, Ortiz, J. V., Cioslowski, J., and Fox, D. J. (2009) Gaussian 09, revision E.01, Gaussian, Inc., Wallingford, CT.
  57. 57
    Hohenberg, P. and Kohn, W. (1964) Inhomogeneous Electron Gas Phys. Rev. 136, B864 DOI: 10.1103/PhysRev.136.B864

    57
    霍恩伯格,P.Kohn, W.1964 非均匀电子气体物理学 Rev. 136 B864 DOI: 10.1103/PhysRev.136.B864
  58. 58
    Kohn, W. and Sham, L. J. (1965) Self-Consistent Equations Including Exchange and Correlation Effects Phys. Rev. 140, A1133 DOI: 10.1103/PhysRev.140.A1133

    58
    科恩,W.Sham, LJ1965 自洽方程,包括交换和相关性效应 Phys. Rev. 140 A1133 DOI: 10.1103/PhysRev.140.A1133
  59. 59
    Řezáč, J. and Hobza, P. (2016) Benchmark Calculations of Interaction Energies in Noncovalent Complexes and Their Applications Chem. Rev. 116, 5038 DOI: 10.1021/acs.chemrev.5b00526

    59
    热扎奇 J.Hobza, P.2016 非共价配合物中相互作用能的基准计算及其应用 Chem. Rev. 116 5038 DOI: 10.1021/acs.chemrev.5b00526
  60. 60
    Lotrich, V. F., Flocke, N., Ponton, M., Yau, A. D., Perera, A. S., Deumens, E., and Bartlett, R. J. (2008) Parallel implementation of electronic structure energy, gradient, and Hessian calculations J. Chem. Phys. 128, 194104 DOI: 10.1063/1.2920482

    60
    洛特里希,V. F.弗洛克, N.庞顿, M.丘, A. D.佩雷拉, A. S.杜门斯, E.巴特利特,RJ。2008 电子结构能量、梯度和 Hessian 计算的并行实现,J. Chem. Phys. 128 194104 DOI: 10.1063/1.2920482

Cited By 施引文献

Click to copy section link
单击以复制部分链接
Section link copied!
Citation Statements 引文陈述
  • Supporting 配套
    Supporting 配套1
  • Mentioning 
    Mentioning 9
  • Contrasting 对比
    Contrasting 对比0
Explore this article's citation statements on scite.ai
scite.ai 上浏览本文的引文陈述 

This article is cited by 10 publications.
本文被 10 篇出版物引用。

  1. Dasharath Kondhare, Aigui Zhang, Peter Leonard, Frank Seela. Alkynylated and Dendronized 5-Aza-7-deazaguanine Nucleosides: Cross-Coupling with Tripropargylamine and Linear Alkynes, Click Functionalization, and Fluorescence of Pyrene Adducts. The Journal of Organic Chemistry 2020, 85 (16) , 10525-10538. https://doi.org/10.1021/acs.joc.0c00926
    Dasharath Kondhare、Aigui Zhang、Peter Leonard、Frank Seela炔基化和树枝化 5-氮杂-7-脱氮鸟嘌呤核苷:与三炔丙胺和线性炔烃的交叉偶联、点击官能团化和芘加合物的荧光。 有机化学杂志 202085 (16) , 10525-10538。https://doi.org/10.1021/acs.joc.0c00926
  2. B. Behera, P. Das, N. R. Jena. Accurate Base Pair Energies of Artificially Expanded Genetic Information Systems (AEGIS): Clues for Their Mutagenic Characteristics. The Journal of Physical Chemistry B 2019, 123 (31) , 6728-6739. https://doi.org/10.1021/acs.jpcb.9b04653
    B. Behera, P. Das, NR 耶拿人工扩展遗传信息系统 (AEGIS) 的准确碱基对能量:其诱变特性的线索。 物理化学杂志 B 2019123 (31) , 6728-6739。https://doi.org/10.1021/acs.jpcb.9b04653
  3. N. R. Jena, P. Das, P. K. Shukla. Complementary base pair interactions between different rare tautomers of the second-generation artificial genetic alphabets. Journal of Molecular Modeling 2023, 29 (5) https://doi.org/10.1007/s00894-023-05537-0
    NR 耶拿P. Das,PK Shukla第二代人工遗传字母表的不同稀有 tautomers 之间的互补碱基对相互作用。 分子建模杂志 202329 (5) https://doi.org/10.1007/s00894-023-05537-0
  4. Jinzhe Zeng, Yujun Tao, Timothy J. Giese, Darrin M. York. Modern semiempirical electronic structure methods and machine learning potentials for drug discovery: Conformers, tautomers, and protonation states. The Journal of Chemical Physics 2023, 158 (12) https://doi.org/10.1063/5.0139281
  5. Madhura S. Shukla, Shuichi Hoshika, Steven A. Benner, Millie M. Georgiadis. Crystal structures of ‘ALternative Isoinformational ENgineered’ DNA in B-form. Philosophical Transactions of the Royal Society B: Biological Sciences 2023, 378 (1871) https://doi.org/10.1098/rstb.2022.0028
  6. Simon Vecchioni, Ruojie Sha, Yoel P. Ohayon. Beyond Watson-Crick: The Next 40 Years of Semantomorphic Science. 2023, 3-15. https://doi.org/10.1007/978-981-19-9891-1_1
  7. Liqin Zhang, Sai Wang, Zunyi Yang, Shuichi Hoshika, Sitao Xie, Jin Li, Xigao Chen, Shuo Wan, Long Li, Steven A. Benner, Weihong Tan. An Aptamer‐Nanotrain Assembled from Six‐Letter DNA Delivers Doxorubicin Selectively to Liver Cancer Cells. Angewandte Chemie 2020, 132 (2) , 673-678. https://doi.org/10.1002/ange.201909691
  8. Liqin Zhang, Sai Wang, Zunyi Yang, Shuichi Hoshika, Sitao Xie, Jin Li, Xigao Chen, Shuo Wan, Long Li, Steven A. Benner, Weihong Tan. An Aptamer‐Nanotrain Assembled from Six‐Letter DNA Delivers Doxorubicin Selectively to Liver Cancer Cells. Angewandte Chemie International Edition 2020, 59 (2) , 663-668. https://doi.org/10.1002/anie.201909691
  9. Nilesh B Karalkar, Steven A Benner. The challenge of synthetic biology. Synthetic Darwinism and the aperiodic crystal structure. Current Opinion in Chemical Biology 2018, 46 , 188-195. https://doi.org/10.1016/j.cbpa.2018.07.008
  10. Elisa Biondi, Steven A. Benner. Artificially Expanded Genetic Information Systems for New Aptamer Technologies. Biomedicines 2018, 6 (2) , 53. https://doi.org/10.3390/biomedicines6020053
Open PDF

ACS Synthetic Biology ACS 合成生物学

Cite this: ACS Synth. Biol. 2017, 6, 11, 2118–2129
引用此内容:ACS Synth。生物学2017, 6, 11, 2118–2129
Click to copy citation 点击复制引文Citation copied!
https://doi.org/10.1021/acssynbio.7b00150
Published July 28, 2017
发布时间 2017 年 7 月 28 日
Copyright © 2017 American Chemical Society
版权所有 © 2017 美国化学会

Article Views 文章浏览量

673

Altmetric

-

Citations 引文

Learn about these metrics
了解这些指标

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract 抽象

    Figure 1 图 1

    Figure 1. Chemical structures with atom numbers for A:T, G:C, P:Z, and X:P.

    Figure 2

    Figure 2. Characterization of duplex DNA including X:K pairs by circular dichroism (CD). The ellipticity is plotted versus the wavelength for 2X2K (long dash line), 3X3K (dash dot dot line) along with control sequences for GC (dotted line), and AT (solid line). All of the duplexes have CD spectra indicative of right-handed B-form DNA.

    Figure 3

    Figure 3. Crystal structure of host–guest complex including self-complementary 16 base pair oligonucleotide. (A) The N-terminal fragment of Moloney murine leukemia virus reverse transcriptase serves as the host in the complex including two protein molecules, shown as cartoon renderings in cyan and green, and a 16-mer duplex, each strand shown as a stick rendering C, cyan or green, O, red, N, blue, and phosphorus in orange; X:K pairs are shown with C in magenta. The complex depicted is that of the host–guest complex for the oligonucleotide shown with two consecutive X:K nucleobase pairs (2X2K). Within our crystals, the asymmetric unit includes only half of the complex depicted and thus the equivalent of eight nucleobase pairs and one protein molecule, indicated by the dashed line. (B) The sequence of the 2X2K sequence and position numbering for the nucleobases within the duplex. (C) The final 2Fo–Fc electron density map is shown as gray mesh renderings contoured at 1.0 σ for the X:K pair at position 6.

    Figure 4

    Figure 4. van der Waals sphere renderings are shown with O in red, N, blue, P, orange, and C in green for X:K, yellow for P:Z, cyan for G:C, and pink for A:T for major and minor groove presentation faces of the nucleobase pairs.

    Figure 5

    Figure 5. Comparison of helical properties for host–guest complexes including X:K, G:C, A:T, and P:Z. The unique 8-mer DNA structure including X:K pairs (green) is shown superimposed in (A) with A:T (gray), (B) with G:C (blue), and (C) with P:Z (yellow). (D) The associated minor groove widths for the 16-mer DNA structures are shown in the same colors as designated in stuctures A–C.

    Figure 6

    Figure 6. Comparison of local base pair properties of X:K and A:T. (A) Cartoon/stick renderings for X:K and A:T pairs (7th nucleotide step, X7:K10 as shown in Figure 3) with a semitransparent gray molecular surface superimposed show significant propeller twist angles for the base plane of X or A vs K or T. A similar rendering is shown for a relatively planar G:C base pair (6th nucleotide step G6:C11). (B) Stacking of XX/KK and AA/TT shown as stick renderings are overall similar in accommodating the nucleobase pairs with significant propeller twist angles.

    Figure 7

    Figure 7. Dipole moments and electrostatic potential maps (ESPs) for (A) X:K, (B) A:T, (C) G:C, (D) P:Z nucleobase pairs. Methyl substituents are used in place of the C1′ carbon in the deoxyribose ring. The ESP color gradation is such that red is ca. −40 kcal/mol and blue is ca. +40 kcal/mol; strict energetic interpretation is limited to indications of broad differences in reactivity. Dipole moments are shown as a blue arrow, following the convention that a positive vector points toward a positive charge density. The magnitude of the vectors is not proportional to length (length modified for ease of view).

    Figure 8

    Figure 8. Calculated X:K pair has a proton transfer. (A) The chemical structure is shown for the calculated X:K pair with bond distances in the vicinity of the hydrogen bonding pairs. Bond lengths (Å) of key species for Watson–Crick binding of X:K. All calculations are based on M06-2X/aug″-cc-pVDZ geometries, expected to be accurate to within 0.03 Å. Note the proton transfer from X to K, as shown by the bond lengths. (B) The calculated electron density is shown for the X:K pair and clearly shows that the proton involved in the central hydrogen bonding pair is associated with N3 of K and not N1 of X. Electron density contours given at 0.04 electron charge/Bohr3 from the KS-DFT density matrix.

  • References


    This article references 60 other publications.

    1. 1
      Ghosh, A. and Bansal, M. (2003) A glossary of DNA structures from A to Z Acta Crystallogr., Sect. D: Biol. Crystallogr. 59, 620 DOI: 10.1107/S0907444903003251
    2. 2
      Switzer, C., Moroney, S. E., and Benner, S. A. (1989) Enzymatic incorporation of a new base pair into DNA and RNA J. Am. Chem. Soc. 111, 8322 DOI: 10.1021/ja00203a067
    3. 3
      Piccirilli, J. A., Krauch, T., Moroney, S. E., and Benner, S. A. (1990) Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet Nature 343, 33 DOI: 10.1038/343033a0
    4. 4
      Benner, S. A. (2004) Understanding nucleic acids using synthetic chemistry Acc. Chem. Res. 37, 784 DOI: 10.1021/ar040004z
    5. 5
      Geyer, C. R., Battersby, T. R., and Benner, S. A. (2003) Nucleobase pairing in expanded Watson-Crick-like genetic information systems Structure 11, 1485 DOI: 10.1016/j.str.2003.11.008
    6. 6
      Yakovchuk, P., Protozanova, E., and Frank-Kamenetskii, M. D. (2006) Base-stacking and base-pairing contributions into thermal stability of the DNA double helix Nucleic Acids Res. 34, 564 DOI: 10.1093/nar/gkj454
    7. 7
      Benner, S. A., Karalkar, N. B., Hoshika, S., Laos, R., Shaw, R. W., Matsuura, M., Fajardo, D., and Moussatche, P. (2016) Alternative Watson-Crick Synthetic Genetic Systems Cold Spring Harbor Perspect. Biol. 8, a023770 DOI: 10.1101/cshperspect.a023770
    8. 8
      Lutz, M. J., Horlacher, J., and Benner, S. A. (1998) Recognition of a non-standard base pair by thermostable DNA polymerases Bioorg. Med. Chem. Lett. 8, 1149 DOI: 10.1016/S0960-894X(98)00177-2
    9. 9
      Yang, Z., Chen, F., Chamberlin, S. G., and Benner, S. A. (2010) Expanded genetic alphabets in the polymerase chain reaction Angew. Chem., Int. Ed. 49, 177 DOI: 10.1002/anie.200905173
    10. 10
      Yang, Z., Chen, F., Alvarado, J. B., and Benner, S. A. (2011) Amplification, mutation, and sequencing of a six-letter synthetic genetic system J. Am. Chem. Soc. 133, 15105 DOI: 10.1021/ja204910n
    11. 11
      Georgiadis, M. M., Singh, I., Kellett, W. F., Hoshika, S., Benner, S. A., and Richards, N. G. (2015) Structural basis for a six nucleotide genetic alphabet J. Am. Chem. Soc. 137, 6947 DOI: 10.1021/jacs.5b03482
    12. 12
      Sismour, A. M., Lutz, S., Park, J. H., Lutz, M. J., Boyer, P. L., Hughes, S. H., and Benner, S. A. (2004) PCR amplification of DNA containing non-standard base pairs by variants of reverse transcriptase from Human Immunodeficiency Virus-1 Nucleic Acids Res. 32, 728 DOI: 10.1093/nar/gkh241
    13. 13
      Winiger, C. B., Kim, M. J., Hoshika, S., Shaw, R. W., Moses, J. D., Matsuura, M. F., Gerloff, D. L., and Benner, S. A. (2016) Polymerase Interactions with Wobble Mismatches in Synthetic Genetic Systems and Their Evolutionary Implications Biochemistry 55, 3847 DOI: 10.1021/acs.biochem.6b00533
    14. 14
      Winiger, C. B., Shaw, R. W., Kim, M. J., Moses, J. D., Matsuura, M. F., and Benner, S. A. (2017) Expanded Genetic Alphabets: Managing Nucleotides That Lack Tautomeric, Protonated, or Deprotonated Versions Complementary to Natural Nucleotides ACS Synth. Biol. 6, 194 DOI: 10.1021/acssynbio.6b00193
    15. 15
      Benner, S. A. and Shaw, R. W. In Vivo Conversion of Nucleosides in Plasmid DNA. US Patent Application 14218405, 2015.
    16. 16
      Betz, K., Malyshev, D. A., Lavergne, T., Welte, W., Diederichs, K., Dwyer, T. J., Ordoukhanian, P., Romesberg, F. E., and Marx, A. (2012) KlenTaq polymerase replicates unnatural base pairs by inducing a Watson-Crick geometry Nat. Chem. Biol. 8, 612 DOI: 10.1038/nchembio.966
    17. 17
      Malyshev, D. A., Dhami, K., Lavergne, T., Chen, T., Dai, N., Foster, J. M., Correa, I. R., Jr., and Romesberg, F. E. (2014) A semi-synthetic organism with an expanded genetic alphabet Nature 509, 385 DOI: 10.1038/nature13314
    18. 18
      Neidle, S. (1999) Nucleic Acid Structure, Oxford University Press, New York.
    19. 19
      Molt, R. W., Jr., Georgiadis, M. M., and Richards, N. G. J. (2017) Consecutive non-natural PZ nucleobase pairs in DNA impact helical structure as seen in 50 mus molecular dynamics simulations Nucleic Acids Res. 45, 3643 DOI: 10.1093/nar/gkx144
    20. 20
      Sun, D., Jessen, S., Liu, C., Liu, X., Najmudin, S., and Georgiadis, M. M. (1998) Cloning, expression, and purification of a catalytic fragment of Moloney murine leukemia virus reverse transcriptase: crystallization of nucleic acid complexes Protein Sci. 7, 1575 DOI: 10.1002/pro.5560070711
    21. 21
      Cote, M. L., Yohannan, S. J., and Georgiadis, M. M. (2000) Use of an N-terminal fragment from moloney murine leukemia virus reverse transcriptase to facilitate crystallization and analysis of a pseudo-16-mer DNA molecule containing G-A mispairs Acta Crystallogr., Sect. D: Biol. Crystallogr. 56, 1120 DOI: 10.1107/S0907444900008246
    22. 22
      Najmudin, S., Cote, M. L., Sun, D., Yohannan, S., Montano, S. P., Gu, J., and Georgiadis, M. M. (2000) Crystal structures of an N-terminal fragment from Moloney murine leukemia virus reverse transcriptase complexed with nucleic acid: functional implications for template-primer binding to the fingers domain J. Mol. Biol. 296, 613 DOI: 10.1006/jmbi.1999.3477
    23. 23
      Cote, M. L. and Georgiadis, M. M. (2001) Structure of a pseudo-16-mer DNA with stacked guanines and two G-A mispairs complexed with the N-terminal fragment of Moloney murine leukemia virus reverse transcriptase Acta Crystallogr., Sect. D: Biol. Crystallogr. 57, 1238 DOI: 10.1107/S090744490100943X
    24. 24
      Montano, S. P., Cote, M. L., Roth, M. J., and Georgiadis, M. M. (2006) Crystal structures of oligonucleotides including the integrase processing site of the Moloney murine leukemia virus Nucleic Acids Res. 34, 5353 DOI: 10.1093/nar/gkl693
    25. 25
      Joyce, C. M. and Steitz, T. A. (1994) Function and structure relationships in DNA polymerases Annu. Rev. Biochem. 63, 777 DOI: 10.1146/annurev.bi.63.070194.004021
    26. 26
      Hendrickson, C. L., Devine, K. G., and Benner, S. A. (2004) Probing minor groove recognition contacts by DNA polymerases and reverse transcriptases using 3-deaza-2′-deoxyadenosine Nucleic Acids Res. 32, 2241 DOI: 10.1093/nar/gkh542
    27. 27
      El Hassan, M. a. and Calladine, C. R. (1998) Two distinct modes of protein-induced bending in DNA J. Mol. Biol. 282, 331 DOI: 10.1006/jmbi.1998.1994
    28. 28
      Lu, X. J. and Olson, W. K. (2003) 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures Nucleic Acids Res. 31, 5108 DOI: 10.1093/nar/gkg680
    29. 29
      Lu, X. J. and Olson, W. K. (2008) 3DNA: a versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures Nat. Protoc. 3, 1213 DOI: 10.1038/nprot.2008.104
    30. 30
      Colasanti, A. V., Lu, X. J., and Olson, W. K. (2013) Analyzing and building nucleic acid structures with 3DNA J. Visualized Exp. e4401 DOI: 10.3791/4401
    31. 31
      Prive, G. G., Heinemann, U., Chandrasegaran, S., Kan, L. S., Kopka, M. L., and Dickerson, R. E. (1987) Helix geometry, hydration, and G.A mismatch in a B-DNA decamer Science 238, 498 DOI: 10.1126/science.3310237
    32. 32
      Grzeskowiak, K. (1996) Sequence-dependent structural variation in B-DNA Chem. Biol. 3, 785 DOI: 10.1016/S1074-5521(96)90062-9
    33. 33
      Berman, H. M. (1997) Crystal studies of B-DNA: the answers and the questions Biopolymers 44, 23 DOI: 10.1002/(SICI)1097-0282(1997)44:1<23::AID-BIP3>3.0.CO;2-1
    34. 34
      Drew, H. R., Wing, R. M., Takano, T., Broka, C., Tanaka, S., Itakura, K., and Dickerson, R. E. (1981) Structure of a B-DNA dodecamer: conformation and dynamics Proc. Natl. Acad. Sci. U. S. A. 78, 2179 DOI: 10.1073/pnas.78.4.2179
    35. 35
      Sponer, J., Jurecka, P., and Hobza, P. (2004) Accurate interaction energies of hydrogen-bonded nucleic acid base pairs J. Am. Chem. Soc. 126, 10142 DOI: 10.1021/ja048436s
    36. 36
      Bak, K. L., Jørgensen, P., Olsen, J., Helgaker, T., and Klopper, W. (2000) Accuracy of atomization energies and reaction enthalpies in standard and extrapolated electronic wave function/basis set calculations J. Chem. Phys. 112, 9229 DOI: 10.1063/1.481544
    37. 37
      Watts, J. D., Gauss, J., and Bartlett, R. J. (1993) Coupled-cluster methods with noniterative triple excitations for restricted open-shell Hartree–Fock and other general single determinant reference functions. Energies and analytical gradients J. Chem. Phys. 98, 8718 DOI: 10.1063/1.464480
    38. 38
      Coester, F. and Kümmel, H. (1960) Short-Range Correlations in Nuclear Wave Functions Nucl. Phys. 17, 477 DOI: 10.1016/0029-5582(60)90140-1
    39. 39
      Purvis, G. D. and Bartlett, R. J. (1982) A full coupled-cluster singles and doubles model: The inclusion of disconnected triples J. Chem. Phys. 76, 1910 DOI: 10.1063/1.443164
    40. 40
      Jorgensen, W. L. and Pranata, J. (1990) Importance of secondary interactions in triply hydrogen bonded complexes: guanine-cytosine vs uracil-2,6-diaminopyridine J. Am. Chem. Soc. 112, 2008 DOI: 10.1021/ja00161a061
    41. 41
      Wang, W., Sheng, X., Zhang, S., Huang, F., Sun, C., Liu, J., and Chen, D. (2016) Theoretical characterization of the conformational features of unnatural oligonucleotides containing a six nucleotide genetic alphabet Phys. Chem. Chem. Phys. 18, 28492 DOI: 10.1039/C6CP05594J
    42. 42
      Wang, X., Hoshika, S., Peterson, R. J., Kim, M. J., Benner, S. A., and Kahn, J. D. (2017) Biophysics of Artificially Expanded Genetic Information Systems. Thermodynamics of DNA Duplexes Containing Matches and Mismatches Involving 2-Amino-3-nitropyridin-6-one (Z) and Imidazo[1,2-a]-1,3,5-triazin-4(8H)one (P) ACS Synth. Biol. 6, 782 DOI: 10.1021/acssynbio.6b00224
    43. 43
      Malyshev, D. A., Pfaff, D. A., Ippoliti, S. I., Hwang, G. T., Dwyer, T. J., and Romesberg, F. E. (2010) Solution structure, mechanism of replication, and optimization of an unnatural base pair Chem. - Eur. J. 16, 12650 DOI: 10.1002/chem.201000959
    44. 44
      Kimoto, M., Kawai, R., Mitsui, T., Yokoyama, S., and Hirao, I. (2009) An unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules Nucleic Acids Res. 37, e14 DOI: 10.1093/nar/gkn956
    45. 45
      Yamashige, R., Kimoto, M., Takezawa, Y., Sato, A., Mitsui, T., Yokoyama, S., and Hirao, I. (2012) Highly specific unnatural base pair systems as a third base pair for PCR amplification Nucleic Acids Res. 40, 2793 DOI: 10.1093/nar/gkr1068
    46. 46
      Betz, K., Kimoto, M., Diederichs, K., Hirao, I., and Marx, A. (2017) Structural Basis for Expansion of the Genetic Alphabet with an Artificial Nucleobase Pair Angew. Chem., Int. Ed. DOI: 10.1002/anie.201706478
    47. 47
      Kirnos, M. D., Khudyakov, I. Y., Alexandrushkina, N. I., and Vanyushin, B. F. (1977) 2-aminoadenine is an adenine substituting for a base in S-2L cyanophage DNA Nature 270, 369 DOI: 10.1038/270369a0
    48. 48
      Howard, F. B. and Miles, H. T. (1984) 2NH2A X T helices in the ribo- and deoxypolynucleotide series. Structural and energetic consequences of 2NH2A substitution Biochemistry 23, 6723 DOI: 10.1021/bi00321a068
    49. 49
      Minor, W., Cymborowski, M., Otwinowski, Z., and Chruszcz, M. (2006) HKL-3000: the integration of data reduction and structure solution--from diffraction images to an initial model in minutes Acta Crystallogr., Sect. D: Biol. Crystallogr. 62, 859 DOI: 10.1107/S0907444906019949
    50. 50
      Vagin, A. and Teplyakov, A. (2010) Molecular replacement with MOLREP Acta Crystallogr., Sect. D: Biol. Crystallogr. 66, 22 DOI: 10.1107/S0907444909042589
    51. 51
      Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. (2010) Features and development of Coot Acta Crystallogr., Sect. D: Biol. Crystallogr. 66, 486 DOI: 10.1107/S0907444910007493
    52. 52
      Murshudov, G. N., Vagin, A. A., and Dodson, E. J. (1997) Refinement of macromolecular structures by the maximum-likelihood method Acta Crystallogr., Sect. D: Biol. Crystallogr. 53, 240 DOI: 10.1107/S0907444996012255
    53. 53
      Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., and Zwart, P. H. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution Acta Crystallogr., Sect. D: Biol. Crystallogr. 66, 213 DOI: 10.1107/S0907444909052925
    54. 54
      Zhao, Y. and Truhlar, D. G. (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals Theor. Chem. Acc. 120, 215 DOI: 10.1007/s00214-007-0310-x
    55. 55
      Kendall, R. A., Dunning, T. H., Jr, and Harrison, R. J. (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions J. Chem. Phys. 96, 6796 DOI: 10.1063/1.462569
    56. 56
      Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., and Fox, D. J. (2009) Gaussian 09, revision E.01, Gaussian, Inc., Wallingford, CT.
    57. 57
      Hohenberg, P. and Kohn, W. (1964) Inhomogeneous Electron Gas Phys. Rev. 136, B864 DOI: 10.1103/PhysRev.136.B864
    58. 58
      Kohn, W. and Sham, L. J. (1965) Self-Consistent Equations Including Exchange and Correlation Effects Phys. Rev. 140, A1133 DOI: 10.1103/PhysRev.140.A1133
    59. 59
      Řezáč, J. and Hobza, P. (2016) Benchmark Calculations of Interaction Energies in Noncovalent Complexes and Their Applications Chem. Rev. 116, 5038 DOI: 10.1021/acs.chemrev.5b00526
    60. 60
      Lotrich, V. F., Flocke, N., Ponton, M., Yau, A. D., Perera, A. S., Deumens, E., and Bartlett, R. J. (2008) Parallel implementation of electronic structure energy, gradient, and Hessian calculations J. Chem. Phys. 128, 194104 DOI: 10.1063/1.2920482
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acssynbio.7b00150.

    • Figure S1. UV absorbance as a function of pH for the dX nucleoside gives pKa of 8.5 ± 0.1. Table S1. Melting point temperatures for oligonucleotides containing X:K pairs Coordinates of M06-2X/aug″-cc-pVDZ optimized structures, Å (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.