Abstract 抽象的
Ferroptosis is a regulated form of necrotic cell death that is caused by the accumulation of oxidized phospholipids, leading to membrane damage and cell lysis1, 2. While other types of necrotic death such as pyroptosis and necroptosis are mediated by active mechanisms of execution3–6, ferroptosis is thought to result from the accumulation of unrepaired cell damage1. Previous studies suggested that ferroptosis has the ability to spread through cell populations in a wave-like manner, resulting in a distinct spatiotemporal pattern of cell death7, 8. Here we investigate the mechanism of ferroptosis execution and discover that ferroptotic cell rupture is mediated by plasma membrane pores, similarly to cell lysis in pyroptosis and necroptosis3, 4. We further find that intercellular propagation of death occurs following treatment with some ferroptosis-inducing agents, including erastin2, 9 and C’ dot nanoparticles8, but not upon direct inhibition of the ferroptosis-inhibiting enzyme Glutathione Peroxidase 4 (GPX4)10. Propagation of a ferroptosis-inducing signal occurs upstream of cell rupture, and involves the spreading of a cell swelling effect through cell populations in a lipid peroxide- and iron-dependent manner.
铁死亡是坏死性细胞死亡的一种受调节形式,由氧化磷脂的积累引起,导致膜损伤和细胞裂解1 , 2 。虽然其他类型的坏死性死亡(例如细胞焦亡和坏死性凋亡)是由活跃的执行机制介导的3 – 6 ,但铁死亡被认为是由未修复的细胞损伤累积引起的1 。先前的研究表明,铁死亡能够以波状方式在细胞群中传播,从而导致细胞死亡的独特时空模式7 , 8 。在这里,我们研究了铁死亡的执行机制,发现铁死亡细胞破裂是由质膜孔介导的,类似于焦亡和坏死性凋亡中的细胞裂解3 , 4 。我们进一步发现,用一些铁死亡诱导剂(包括erastin 2 、 9和C'点纳米颗粒8 )处理后,会发生细胞间死亡传播,但直接抑制铁死亡抑制酶谷胱甘肽过氧化物酶4 (GPX4) 10时则不会发生死亡传播。铁死亡诱导信号的传播发生在细胞破裂的上游,并涉及细胞肿胀效应以脂质过氧化物和铁依赖性方式在细胞群中传播。
The proper regulation of cell death is important for normal organismal development and the maintenance of tissue homeostasis in adulthood. It was once thought that programmed cell death occurred exclusively through apoptosis, whereas necrotic death resulted only from acute cell stress or injury. However, numerous new cell death modalities have recently been discovered, including programmed forms of necrosis that are regulated by specific and distinct cellular machineries11. One form of regulated necrosis called ferroptosis involves the iron-dependent accumulation of lipid peroxide species in cell membranes1, 2. Under physiological conditions, ferroptosis is prevented by antioxidant enzymes that limit the buildup of oxidized lipids, including GPX4, which uses glutathione as a cofactor to detoxify peroxidation products12. Cell death can be triggered by GPX4 inactivation, either through direct inhibition or depletion of cellular glutathione, thereby allowing the accumulation of phospholipid peroxides and cell damage. Recent work has uncovered an additional ferroptosis-preventing mechanism controlled by Ferroptosis Suppressor Protein 1 (FSP1), which catalyzes the reduction of the lipophilic antioxidant coenzyme Q10 (CoQ) 13, 14.
细胞死亡的适当调节对于正常的有机体发育和成年期组织稳态的维持非常重要。人们曾经认为程序性细胞死亡仅通过细胞凋亡发生,而坏死性死亡仅由急性细胞应激或损伤引起。然而,最近发现了许多新的细胞死亡方式,包括由特定和独特的细胞机制调节的程序性坏死形式11 。一种称为铁死亡的受调节坏死形式涉及细胞膜中铁依赖性脂质过氧化物的积累1 , 2 。在生理条件下,抗氧化酶可以限制氧化脂质的积累,从而防止铁死亡,其中包括 GPX4,它使用谷胱甘肽作为辅助因子来解毒过氧化产物12 。 GPX4 失活可以通过直接抑制或消耗细胞谷胱甘肽来触发细胞死亡,从而导致磷脂过氧化物的积累和细胞损伤。最近的工作发现了另一种由铁死亡抑制蛋白 1 (FSP1) 控制的铁死亡预防机制,该机制可催化亲脂性抗氧化剂辅酶 Q10 (CoQ) 的还原13 , 14 。
Ferroptosis was previously shown to spread through cell populations, resulting in spatiotemporal patterns of cell death with a wave-like appearance not previously observed in other forms of cell death7, 8. It is unknown what mechanism underlies this phenomenon and whether death propagation between neighboring cells is a consistent feature of ferroptosis or occurs only under certain conditions. Given emerging links between ferroptosis and degenerative diseases that often involve large, continuous areas of tissue damage, the propagative nature of ferroptosis is important to understand15. Furthermore, while factors that affect the accumulation of lipid peroxides and thereby modulate ferroptosis have been elucidated1, 16, little is known about how lipid peroxidation leads to plasma membrane permeabilization. Whether cell lysis is involved in the intercellular propagation of ferroptosis is also unknown17. Here we investigated the wave-like nature of ferroptosis, the mechanism of ferroptotic cell rupture, and the link between the two processes.
先前显示铁死亡在细胞群中扩散,导致细胞死亡的时空模式,具有波状外观,此前在其他形式的细胞死亡中未观察到7 , 8 。目前尚不清楚这种现象背后的机制是什么,以及相邻细胞之间的死亡传播是否是铁死亡的一致特征,还是仅在某些条件下发生。鉴于铁死亡和退行性疾病之间新出现的联系通常涉及大面积、连续的组织损伤,了解铁死亡的繁殖性质非常重要15 。此外,虽然影响脂质过氧化物积累并从而调节铁死亡的因素已被阐明1 , 16 ,但人们对脂质过氧化如何导致质膜透化知之甚少。细胞裂解是否参与铁死亡的细胞间传播也是未知的17 。在这里,我们研究了铁死亡的波状性质、铁死亡细胞破裂的机制以及两个过程之间的联系。
We previously observed wave-like spreading of ferroptosis when cells were treated with ferroptosis-inducing nanoparticles called C’ dots (Fig. 1a,b and Supplementary Video 1)8, and a similar phenomenon was reported in mouse renal tubules treated with the ferroptosis-inducing agent erastin7. However, the spatiotemporal patterns of ferroptosis have not been systematically investigated15. To quantitatively study propagation, we performed live cell imaging of several cell lines (MCF10A mammary epithelium, MCF7 breast cancer, U937 promonocytic leukemia, HAP1 chronic myelogenous leukemia, and B16F10 melanoma) in the presence of the cell death indicator SYTOX Green and different ferroptosis-inducing agents (C’ dots8, erastin2, the GPX4 inhibitor ML16210, 18, or a combination of ferric ammonium citrate (FAC) and buthionine sulfoxamine (BSO), Extended Data Fig. 1a,b). We then used a bootstrapping approach to quantify potential non-random patterns of cell death. For each movie, we calculated the mean time difference between neighboring cell deaths, μexpΔt, and compared this experimental value to a distribution of means derived from computationally generated permutations representing random orders of death (Fig. 1c,d). Consistent with wave-like propagation, ferroptosis occurred with non-random spatiotemporal patterns when it was induced by erastin, C’ dots, or FAC and BSO, as determined by comparing μexpΔt to the 95th percentile of the random distribution, μperm95Δt (Fig. 1b, d, g; Extended Data Fig. 1c). Interestingly, when ferroptosis was induced by inhibition of GPX4 through treatment with ML162, μexpΔt was more similar to the 95th percentile of the random permutations (Fig. 1g and Extended Data Fig. 1d, e).
我们之前观察到,当细胞用称为 C' 点的铁死亡诱导纳米颗粒处理时,铁死亡呈波状扩散( Fig. 1a , b 和 Supplementary Video 1 ) 8 ,并且在用铁死亡诱导剂erastin 7治疗的小鼠肾小管中也报道了类似的现象。然而,铁死亡的时空模式尚未得到系统研究15 。为了定量研究增殖,我们在存在细胞死亡指示剂 SYTOX Green 和不同铁死亡的情况下,对几种细胞系(MCF10A 乳腺上皮、MCF7 乳腺癌、U937 早单核细胞白血病、HAP1 慢性粒细胞白血病和 B16F10 黑色素瘤)进行了活细胞成像。诱导剂(C'dots 8 、erastin 2 、GPX4 抑制剂ML162 10 、 18或柠檬酸铁铵(FAC)和丁硫氨酸亚磺胺(BSO)的组合, Extended Data Fig. 1a , b )。然后,我们使用引导方法来量化细胞死亡的潜在非随机模式。对于每部电影,我们计算了相邻细胞死亡之间的平均时间差 μ expΔt ,并将该实验值与从代表随机死亡顺序的计算生成的排列得出的均值分布进行比较( Fig. 1c , d )。与波状传播一致,当由erastin、C'点或FAC和BSO诱导时,铁死亡以非随机时空模式发生,通过将μ expΔt与随机分布的第95个百分位数μ perm95Δt进行比较来确定( Fig. 1b , d , g ; Extended Data Fig. 1c )。 有趣的是,当通过 ML162 处理抑制 GPX4 诱导铁死亡时,μ expΔt更类似于随机排列的第95 个百分位( Fig. 1g 和 Extended Data Fig. 1d , e )。
Figure 1. 图 1.
Ferroptosis exhibits non-random spatiotemporal patterns. (a) B16F10 cells treated with C’ dot nanoparticles in amino acid-free (-AA) media to induce ferroptosis. Images show DIC and SYTOX Green; SYTOX-positive cells are dead. Scale bar = 20μm. Images are representative of five movies from one experiment. (b) Nuclei of ferroptotic cells in panel a, pseudocolored to indicate relative timing of cell death, as determined by time-lapse microscopy. See Supplementary Video 1. (c) Schematic summarizing our method to quantify cell death patterns. Images from time-lapse microscopy (left) are processed to determine relative timing of neighboring cell deaths (top right image, “experiment”) versus permuted trials (bottom right image, “permutation”) to detect potential non-random patterns. Images match insets in panels a and b. Scale bar = 10μm (d) Distribution of time differences between neighboring deaths (Δt) from experiment in panels a-c shown in blue, versus averaged distribution of the set of random permutations shown in orange. Graph shows fraction of total deaths with given time differences.. (e) Spatiotemporal distribution of apoptosis in MCF10A cells treated with TRAIL. Each dot represents a cell; colors indicate relative times of cell death as determined by cell morphology. Data are representative of five fields of view from one experiment. (f) Distribution of experimental time differences between neighboring deaths (Δt) in blue and averaged distribution of Δts from the corresponding permuted data in orange. Data belong to the experiment shown in panel e. (g) Ferroptosis, apoptosis, and H2O2-induced necrosis show non-random spatiotemporal patterns. Graph shows μexpΔt vs. μperm95Δt of different cell lines undergoing ferroptosis induced by the indicated treatment (FB = FAC+BSO), apoptosis induced with TRAIL, or necrosis induced with H2O2. Dashed line indicates μexpΔt = μperm95Δt. Each data point represents one movie. Data are from two independent experiments for MCF7+H2O2 and one experiment for all other conditions. (h) Spatial Propagation Index generated from data in panel e.
铁死亡表现出非随机的时空模式。 (a)在无氨基酸 (-AA) 培养基中用 C' 点纳米颗粒处理 B16F10 细胞以诱导铁死亡。图像显示 DIC 和 SYTOX Green; SYTOX 阳性细胞已死亡。比例尺 = 20μm。图像代表一项实验中的五部电影。 (b) a 图中铁死亡细胞的细胞核,用伪彩色表示细胞死亡的相对时间,由延时显微镜确定。看 Supplementary Video 1 。 (c)示意图总结了我们量化细胞死亡模式的方法。对延时显微镜图像(左)进行处理,以确定邻近细胞死亡的相对时间(右上图像,“实验”)与排列试验(右下图像,“排列”),以检测潜在的非随机模式。图像与面板 a 和 b 中的插图匹配。比例尺 = 10μm (d)面板 ac 中实验的相邻死亡 (Δt) 之间的时间差分布以蓝色显示,而随机排列组的平均分布以橙色显示。图表显示了给定时间差异下的总死亡分数。 (e)用 TRAIL 处理的 MCF10A 细胞中细胞凋亡的时空分布。每个点代表一个细胞;颜色表示由细胞形态确定的细胞死亡的相对时间。数据代表一项实验的五个视场。 (f)蓝色相邻死亡 (Δt) 之间的实验时间差分布和橙色相应排列数据的 Δts 平均分布。数据属于面板 e 中所示的实验。 (g)铁死亡、细胞凋亡和H 2 O 2诱导的坏死显示出非随机的时空模式。图表显示了不同细胞系的μ expΔt与μ perm95Δt 的关系,这些细胞系经历了指定处理(FB = FAC+BSO)诱导的铁死亡、TRAIL 诱导的细胞凋亡或H 2 O 2诱导的坏死。虚线表示 μ expΔt = μ perm95Δt 。每个数据点代表一部电影。数据来自MCF7+H 2 O 2的两项独立实验和所有其他条件的一项实验。 (h)根据面板 e 中的数据生成的空间传播指数。
To measure intercellular death propagation in different forms of cell death, we induced necrosis by treatment with hydrogen peroxide (H2O2), and apoptosis using TNF-related apoptosis-inducing ligand (TRAIL). While H2O2-induced necrosis and TRAIL-induced apoptosis displayed no visually obvious wave-like spreading of death (Fig. 1e, f, Supplementary Video 2), they did result in death patterns with non-random spatiotemporal features (Fig. 1g). In order to better compare the propagative features of these different forms of cell death, we devised a measure termed the spatial propagation index (SPI). When propagation is not the major determinant of the spatiotemporal distribution of cell death across a population, we expect μexpΔt to have similar or larger values than μperm95Δt, as death occurs independently of neighboring cell deaths in the vicinity. However, when propagation does play a major role, i.e. cells are affected by the death of their neighbors, we expect μexpΔt to be much smaller than μperm95Δt due to the non-random spatial order of death. Thus we defined the
为了测量不同形式的细胞死亡中细胞间死亡传播,我们通过过氧化氢 (H2O) 处理诱导坏死,并使用 TNF 相关凋亡诱导配体 (TRAIL) 诱导细胞凋亡。虽然 H2O 诱导的坏死和 TRAIL 诱导的细胞凋亡没有表现出视觉上明显的波状死亡扩散 (, , ),但它们确实导致了具有非随机时空特征的死亡模式 ()。为了更好地比较这些不同形式的细胞死亡的增殖特征,我们设计了一种称为(SPI)的测量方法。当传播不是群体中细胞死亡时空分布的主要决定因素时,我们预计 μ 具有相似或大于 μ 的值,因为死亡的发生独立于附近的相邻细胞死亡。然而,当传播确实发挥主要作用时,即细胞受到其邻居死亡的影响时,由于死亡的非随机空间顺序,我们预计μ远小于μ。因此我们定义了
To examine the mechanism of ferroptotic propagation, we first asked whether iron and lipid peroxidation, two known drivers of ferroptosis, are required for propagation. The addition of the lipid peroxidation inhibitor liproxstatin-1 or the iron chelator deferoxamine (DFO) to cell cultures after the initiation of ferroptosis stopped death from spreading (Fig. 2a–d, Supplementary Video 3), demonstrating that iron and lipid peroxidation are both required for continuous ferroptosis propagation. Because iron and lipid peroxidation are also necessary for ferroptosis to occur in individual cells, these results suggested that the full execution of ferroptosis, including cell lysis, could be required for the spreading of death between cells.
为了研究铁死亡繁殖的机制,我们首先询问铁死亡的两个已知驱动因素铁和脂质过氧化是否是繁殖所必需的。在铁死亡开始后,向细胞培养物中添加脂质过氧化抑制剂 liproxstatin-1 或铁螯合剂去铁胺 (DFO) 可阻止死亡蔓延。 Fig. 2a – d , Supplementary Video 3 ),证明铁和脂质过氧化都是持续铁死亡繁殖所必需的。由于铁和脂质过氧化对于单个细胞中发生铁死亡也是必要的,因此这些结果表明铁死亡的完全执行(包括细胞裂解)可能是细胞之间死亡传播所必需的。
Figure 2. 图 2.
Ferroptosis spreading requires lipid peroxidation and iron and involves cell swelling. (a) Distance of ferroptosis spreading in HAP1 cells incubated with FAC and BSO, and treated with Liproxstatin-1 (Lip-1), Deferoxamine (DFO), or DMSO control after wave initiation. Distance was quantified 2h after drug addition. N = three independent experiments, averaged across three or four microscopic fields of view per replicate. Dunnett’s test; ***p=0.0008, **p=0.001. (b-d) Representative images from experiments quantified in panel a. Timing of treatment with DMSO (b), Lip-1 (c), or DFO (d) is indicated as 0h. Images show DIC and SYTOX Green fluorescence. Death waves are indicated by an arrow and a red border, live cells are indicated with a blue border on each image. Note Lip-1 and DFO-treated cells are shown 9 hours after treatment (+9h), versus 2 hours after treatment for DMSO (+2h). See Supplementary Video 3. (e) HAP1 cells treated with FAC and BSO round prior to ferroptotic cell rupture (arrowhead). Images are representative of four independent experiments. (f) The cell swelling marker cPLA2-mKate translocates to the nuclear envelope (arrowhead) prior to SYTOX Green labeling in HeLa cells treated with FAC and BSO. See Supplementary Video 4. Images are representative of two independent experiments. All scale bars = 10μm. Statistical source data can be found at Source data figure 2.
铁死亡的扩散需要脂质过氧化和铁,并涉及细胞肿胀。 ( a ) 与 FAC 和 BSO 一起孵育,并在波启动后用 Liproxstatin-1 (Lip-1)、去铁胺 (DFO) 或 DMSO 对照处理的 HAP1 细胞中铁死亡扩散的距离。添加药物后2小时对距离进行量化。 N = 三个独立实验,每次重复的三个或四个微观视场的平均值。邓尼特测试; ***p=0.0008,**p=0.001。 ( bd) a 组中量化的实验的代表性图像。用 DMSO (b)、Lip-1 (c) 或 DFO (d) 处理的时间表示为 0 小时。图像显示 DIC 和 SYTOX Green 荧光。每个图像上的死亡波由箭头和红色边框表示,活细胞由蓝色边框表示。注意 Lip-1 和 DFO 处理的细胞显示为处理后 9 小时 (+9h),而 DMSO 处理后为 2 小时 (+2h)。看 Supplementary Video 3 。 ( e ) 在铁死亡细胞破裂之前用 FAC 和 BSO 处理的 HAP1 细胞(箭头)。图像代表四个独立实验。 ( f)在用 FAC 和 BSO 处理的 HeLa 细胞中,细胞肿胀标记物 cPLA2-mKate 在 SYTOX Green 标记之前易位至核膜(箭头)。看 Supplementary Video 4 。图像代表两个独立实验。所有比例尺 = 10μm。统计源数据可以在 Source data figure 2 。
How ferroptosis is executed downstream of lipid peroxidation is not clearly defined. We noted from time-lapse imaging that ferroptotic cells appeared to round and swell prior to cell death (Fig. 2e). Like cell death, swelling also appeared to spread through cell populations in a manner that was blocked by treatment with liproxstatin-1 or DFO (Supplementary Video 3). Expression of an mKate-tagged version of the zebrafish cPLA2 enzyme, which localizes to the nuclear envelope upon osmotic swelling in HeLa cells19, confirmed that ferroptotic cells indeed swell prior to undergoing rupture (Fig. 2f, Supplementary Video 4). Cell swelling is also known to occur during pyroptosis and necroptosis, both of which involve the formation of pores in the plasma membrane, leading to the influx of extracellular ions and water molecules3, 4. Pore-mediated cell rupture can be inhibited by incubating cells with large carbohydrates known as osmoprotectants4. Osmoprotectants with a diameter larger than the pores protect cells from lysis by osmotically balancing large intracellular molecules that cannot diffuse freely across the perforated membrane, while smaller osmoprotectants do not. Thus, while osmoprotectants of sufficient size do not block plasma membrane permeabilization, pore-mediated ion exchange, or cell death, they prevent osmotic cell lysis caused by pore formation. Indeed, cell rupture resulting from FAC and BSO-induced ferroptosis, as measured by the release of lactate dehydrogenase (LDH), was inhibited by the addition of polyethylene glycols (PEGs) with molecular weights of 1450 and 3350 Da, but not by the smaller osmoprotectants sucrose and raffinose (Fig. 3a). The translocation of cPLA2-mKate to the nuclear envelope was also reduced by PEG1450 and PEG3350 (Fig. 3b), suggesting that ferroptotic swelling and rupture may be caused by the opening of nano-scale pores in the plasma membrane. Induction of ferroptosis with erastin or the GPX4 inhibitors RSL3 and ML162 likewise resulted in cell rupture that was inhibited by treatment with PEG 1450 or 3350 (Fig. 3d,e). LDH release caused by H2O2-induced death, on the other hand, was not affected by osmoprotectants (Fig. 3c).
脂质过氧化下游如何执行铁死亡尚不清楚。我们从延时成像中注意到,铁死亡细胞在细胞死亡之前似乎变圆并膨胀( Fig. 2e )。与细胞死亡一样,肿胀似乎也在细胞群中扩散,但用 liproxstatin-1 或 DFO 治疗可阻断这种方式。 Supplementary Video 3 )。斑马鱼 cPLA2 酶的 mKate 标记版本的表达(该酶在 HeLa 细胞中渗透性膨胀时定位于核膜19 )证实了铁死亡细胞在破裂之前确实会膨胀( Fig. 2f , Supplementary Video 4 )。众所周知,细胞肿胀也发生在细胞焦亡和坏死性凋亡过程中,这两种情况都涉及质膜中孔的形成,导致细胞外离子和水分子的流入3 , 4 。将细胞与被称为渗透保护剂的大碳水化合物一起孵育可以抑制孔介导的细胞破裂4 。直径大于孔的渗透保护剂通过渗透平衡不能自由扩散穿过穿孔膜的大细胞内分子来保护细胞免于裂解,而较小的渗透保护剂则不能。因此,虽然足够大小的渗透保护剂不会阻止质膜透化、孔介导的离子交换或细胞死亡,但它们可以防止由孔形成引起的渗透细胞裂解。事实上,通过添加分子量为 1450 和 3350 Da 的聚乙二醇 (PEG) 可以抑制由 FAC 和 BSO 诱导的铁死亡引起的细胞破裂(通过乳酸脱氢酶 (LDH) 的释放来测量),但较小的聚乙二醇 (PEG) 则不会抑制细胞破裂。渗透保护剂蔗糖和棉子糖( Fig. 3a )。 PEG1450 和 PEG3350 也减少了 cPLA2-mKate 向核膜的易位( Fig. 3b ),表明铁死亡膨胀和破裂可能是由质膜中纳米级孔的打开引起的。用erastin或GPX4抑制剂RSL3和ML162诱导铁死亡同样会导致细胞破裂,而用PEG 1450或3350处理可抑制细胞破裂( Fig. 3d , e )。另一方面,H 2 O 2诱导的死亡引起的 LDH 释放不受渗透保护剂的影响( Fig. 3c )。
Figure 3. 图 3.
Ferroptotic cell rupture is inhibited by osmoprotectants. (a) Percent lactate dehydrogenase (LDH) released from ferroptotic HeLa cells treated with FAC and BSO and the indicated osmoprotectants: sucrose, raffinose, PEG1450, and PEG3350. Images show DIC and Sytox Green fluorescence for Hela cells treated with FAC + BSO in the presence or absence of PEG3350. Scale bar = 10μm. Diameters of osmoprotectants are shown in the table. N=5 biologically independent experiments. Dunnett’s test; ***p=0.0001, ****p=0.0001. (b) Swelling of ferroptotic HeLa cells treated with FAC and BSO as measured by recruitment of cPLA2-mKate to the nuclear envelope, determined by time-lapse microscopy. N=4 biologically independent experiments. Dunnett’s test; *p=0.0318, ***p=0.0002. (c) LDH release by HeLa cells treated with H2O2 and the indicated osmoprotectants, relative to HeLa cells treated with H2O2 only. N=3 biologically independent experiments. Dunnett’s test; all comparisons not significant. Raffinose: p=0.307, PEG1450: p=0.9999, PEG3350: p=0.7764. (d, e) LDH release in HT1080 cells treated with H2O2, RSL3, or erastin and HAP1 cells treated with ML162 or FAC and BSO and the indicated osmoprotectants, relative to the treatment alone. N=6 (RSL3 and erastin), 3 (H2O2 and ML162), or 5 (FAC + BSO) biologically independent experiments. Dunnett’s test; RSL3+PEG1450: p=0.0067, erastin+PEG1450: p=0.0001, RSL3+PEG3350: p=0.0001, erastin+PEG3350: p=0.0001, ML162+PEG1450: p=0.003, FAC&BSO+PEG1450: p=0.0001, ML162+PEG3350: p=0.0048, FAC&BSO+PEG3350: p=0.0001. Statistical source data can be found at Source data figure 3.
渗透保护剂可抑制铁死亡细胞破裂。 ( a )用FAC和BSO以及指定的渗透保护剂:蔗糖、棉子糖、PEG1450和PEG3350处理的铁死亡HeLa细胞释放的乳酸脱氢酶(LDH)百分比。图像显示在存在或不存在 PEG3350 的情况下用 FAC + BSO 处理的 Hela 细胞的 DIC 和 Sytox Green 荧光。比例尺 = 10μm。渗透保护剂的直径示于表中。 N=5 个生物学独立的实验。邓尼特测试; ***p=0.0001,***p=0.0001。 ( b ) 用 FAC 和 BSO 处理的铁焦亡 HeLa 细胞的肿胀,通过将 cPLA2-mKate 募集到核膜来测量,并通过延时显微镜测定。 N=4 生物学独立实验。邓尼特测试; *p=0.0318,***p=0.0002。 ( c )相对于仅用H 2 O 2处理的HeLa细胞,用H 2 O 2和所示渗透保护剂处理的HeLa细胞的LDH释放。 N=3 个生物学独立的实验。邓尼特测试;所有比较都不显着。棉子糖:p=0.307,PEG1450:p=0.9999,PEG3350:p=0.7764。 ( d,e )相对于单独处理,用H 2 O 2 、RSL3或erastin处理的HT1080细胞以及用ML162或FAC和BSO以及指定的渗透保护剂处理的HAP1细胞中LDH的释放。 N=6(RSL3 和erastin)、3(H 2 O 2和ML162)或5(FAC + BSO)个生物学独立实验。邓尼特测试; RSL3+PEG1450:p=0.0067,erastin+PEG1450:p=0.0001,RSL3+PEG3350:p=0.0001,erastin+PEG3350:p=0.0001,ML162+PEG1450:p=0.003,FAC&BSO+PEG1450:p=0.0001, ML162+PEG3350:p=0.0048,FAC&BSO+PEG3350:p=0.0001。 统计源数据可以在 Source data figure 3 。
As ferroptotic cell rupture could be inhibited using osmoprotectants, we sought to examine whether cell lysis is required for ferroptosis propagation. When HAP1 cells were treated with FAC and BSO in the presence of the osmoprotectant PEG1450, we observed waves of cell rounding that spread through cell colonies and appeared similar to waves of cell death (Supplementary Video 5). However, SYTOX uptake was reduced, consistent with the inhibition of cell rupture. To quantify these waves, we expressed a fluorescent sensor of nuclear calcium (GCaMP6-NLS) in HAP1 cells, reasoning that pore formation might lead to a spike in intracellular calcium levels that could be used as a readout of cell permeabilization. Live imaging of ferroptotic cells demonstrated that GCaMP fluorescence indeed increased prior to the uptake of SYTOX, and that GCaMP signals spread through cell populations in a similar manner to SYTOX and cell rounding (Fig. 4a, Supplementary Video 6). We compared the relative timing of GCaMP and SYTOX fluorescence for individual cells and found a high degree of correlation, indicating that GCaMP signals could be used instead of SYTOX uptake to assess propagation (Fig. 4b). When cells were treated with PEG1450 to inhibit rupture, wave-like spreading of GCaMP fluorescence still occurred (Fig. 4c, Supplementary Video 7). We quantitatively examined the spatiotemporal GCaMP patterns, and found that their non-random nature was similar to SYTOX death waves in both the presence and absence of osmoprotectants (Fig. 4d,e), demonstrating that propagation occurs in the absence of cell rupture.
由于使用渗透保护剂可以抑制铁死亡细胞破裂,因此我们试图检查铁死亡传播是否需要细胞裂解。当 HAP1 细胞在渗透保护剂 PEG1450 存在的情况下用 FAC 和 BSO 处理时,我们观察到细胞变圆波在细胞集落中扩散,看起来与细胞死亡波类似。 Supplementary Video 5 )。然而,SYTOX 的摄取减少,与细胞破裂的抑制一致。为了量化这些波,我们在 HAP1 细胞中表达了核钙荧光传感器 (GCaMP6-NLS),推断孔的形成可能会导致细胞内钙水平的峰值,这可以用作细胞透化的读数。铁死亡细胞的实时成像表明,GCaMP 荧光确实在吸收 SYTOX 之前增加,并且 GCaMP 信号以与 SYTOX 和细胞圆整类似的方式在细胞群中传播。 Fig. 4a , Supplementary Video 6 )。我们比较了单个细胞的 GCaMP 和 SYTOX 荧光的相对时间,发现了高度的相关性,表明可以使用 GCaMP 信号代替 SYTOX 摄取来评估增殖( Fig. 4b )。当细胞用 PEG1450 处理以抑制破裂时,GCaMP 荧光的波状扩散仍然发生( Fig. 4c , Supplementary Video 7 )。我们定量检查了时空 GCaMP 模式,发现在存在和不存在渗透保护剂的情况下,它们的非随机性质与 SYTOX 死亡波相似( Fig. 4d , e ),证明增殖是在没有细胞破裂的情况下发生的。
Figure 4. 图 4.
Ferroptosis spreading involves calcium flux and does not require cell rupture. (a) Images show spreading of GCaMP fluorescence (green) prior to cell rupture marked by SYTOX Orange (red) in HAP1 cells treated with FAC and BSO. Dashed circles show origin of death spreading. Note that cells lose GCaMP fluorescence upon cell rupture, likely due to GCaMP efflux. See Supplementary Video 6. Images are representative of three independent experiments. (b) Correlation between relative timing of GCaMP fluorescence and SYTOX labeling in HAP1 cells treated with FAC and BSO. Each dot represents a cell and each color represents a different field of view. Data from one experiment.. (c) Images show spreading of GCaMP fluorescence (green) and SYTOX Orange (red) in HAP1 cells treated with FAC and BSO and PEG1450. Dashed circles show origin of death spreading. Note that PEG1450-treated cells maintain GCaMP fluorescence and do not label with SYTOX Orange, unlike control cells in panel a. See Supplementary Video 7. Images are representative of three independent experiments. (d) Graph showing μexpΔt vs. μperm95Δt of movies of HAP1 cells treated with FAC and BSO and the indicated osmoprotectants, analyzed using GCaMP fluorescence. Dashed line indicates μexpΔt = μperm95Δt. Each data point represents one movie. Data are from one experiment. (e) Spatial Propagation Index calculated for experiments shown in panel d. All scale bars = 10μm. Statistical source data can be found at Source data figure 4.
铁死亡扩散涉及钙流并且不需要细胞破裂。 ( a ) 图像显示在用 FAC 和 BSO 处理的 HAP1 细胞中,细胞破裂之前 GCaMP 荧光(绿色)的扩散,以 SYTOX 橙色(红色)标记。虚线圆圈显示死亡传播的起源。请注意,细胞在破裂时会失去 GCaMP 荧光,这可能是由于 GCaMP 外流造成的。看 Supplementary Video 6 。图像代表三个独立实验。 ( b )用FAC和BSO处理的HAP1细胞中GCaMP荧光和SYTOX标记的相对时间之间的相关性。每个点代表一个细胞,每种颜色代表不同的视野。来自一项实验的数据。 ( c ) 图像显示 GCaMP 荧光(绿色)和 SYTOX 橙色(红色)在用 FAC、BSO 和 PEG1450 处理的 HAP1 细胞中扩散。虚线圆圈显示死亡传播的起源。请注意,与图 a 中的对照细胞不同,PEG1450 处理的细胞保持 GCaMP 荧光并且不使用 SYTOX Orange 标记。看 Supplementary Video 7 。图像代表三个独立实验。 (d)显示用 FAC 和 BSO 以及指定渗透保护剂处理的 HAP1 细胞电影的 μ expΔt与 μ perm95Δt的关系图,并使用 GCaMP 荧光进行分析。虚线表示 μ expΔt = μ perm95Δt 。每个数据点代表一部电影。数据来自一项实验。 ( e ) 为面板 d 中所示的实验计算的空间传播指数。所有比例尺 = 10μm。统计源数据可以在 Source data figure 4 。
While treatment with osmoprotectants did not prevent propagation, we wondered if it might affect wave speed. To test this we used U937 cells, which exhibit long-lived, unidirectional waves of ferroptosis that can be imaged by differential interference contrast (DIC) microscopy even in the absence of SYTOX staining (Fig. 5a). Treatment of U937 cells with PEG3350 inhibited cell lysis (Fig. 5b) yet had no effect on the induction of cell death waves (Supplementary Video 8), consistent with the HAP1 data. However, when we measured the speed of these ferroptosis waves, we found them to be slightly but significantly slower in the presence of PEG3350 (1.66 vs. 1.37 μm/min, see Fig. 5c), demonstrating that ferroptosis propagation is faster when cells are able to fully lyse.
虽然渗透保护剂的处理并不能阻止传播,但我们想知道它是否会影响波速。为了测试这一点,我们使用了 U937 细胞,该细胞表现出长寿命、单向的铁死亡波,即使在没有 SYTOX 染色的情况下,也可以通过微分干涉对比 (DIC) 显微镜对其进行成像。 Fig. 5a )。用 PEG3350 处理 U937 细胞可抑制细胞裂解( Fig. 5b )但对细胞死亡波的诱导没有影响( Supplementary Video 8 ),与HAP1数据一致。然而,当我们测量这些铁死亡波的速度时,我们发现它们在 PEG3350 存在的情况下稍微但显着变慢(1.66 与 1.37 μm/min,参见 Fig. 5c ),证明当细胞能够完全裂解时,铁死亡传播速度更快。
Figure 5. 图 5.
PEG3350 slows ferroptosis propagation (a) Wave-like spreading of ferroptosis in U937 cells treated with FAC and BSO, imaged by DIC microscopy. Arrows indicate direction of wave spreading; inset shows boundary between live and dead cells. See Supplementary Video 8. Image is representative of four independent experiments. Scale bar = 10μm (b) Percent LDH release in U937 cells treated with FAC and BSO in control and PEG3350-treated conditions. Data are from four biological replicates. **p=0.004 and was obtained using a two-sided t-test. (c) Wave-like spreading of ferroptosis is slower in the presence of PEG3350. Inset shows a representative example of death progression at each time point indicated by yellow lines. Graph shows distance over time of wave spreading in U937 cells treated with FAC and BSO. Data points indicate means from five independent waves per condition; error bars represent SD; line shows linear regression and its 95% confidence interval (shaded regions). Scale bar = 25μm. (d) Model for osmotic regulation of ferroptosis and cell death propagation. Ferroptosis induction involves the opening of plasma membrane pores that allow for solute exchange with the external environment, leading to cell swelling that occurs priors to cell death and is marked by cPLA2 translocation to the nuclear membrane (red). After swelling, ferroptotic cells undergo rupture and death marked by the rapid influx of death-indicating dyes such as Sytox Green. When ferroptosis is induced by treatment with erastin, C’ dots, or FAC and BSO, but not by treatment with the GPX4 inhibitor ML162, death propagates to neighboring cells in an iron and lipid peroxide-dependent manner, through a signal that is sent independently of cell rupture. Statistical source data can be found at Source data figure 5.
PEG3350 减缓铁死亡传播 ( a ) 用 FAC 和 BSO 处理的 U937 细胞中铁死亡呈波状扩散,通过 DIC 显微镜成像。箭头表示波传播方向;插图显示活细胞和死细胞之间的边界。看 Supplementary Video 8 。图像代表四个独立实验。比例尺 = 10μm ( b ) 在对照和 PEG3350 处理条件下用 FAC 和 BSO 处理的 U937 细胞中 LDH 释放百分比。数据来自四个生物学重复。 **p=0.004,通过双边 t 检验获得。 ( c ) 存在 PEG3350 时,铁死亡的波状传播速度较慢。插图显示了黄线所示的每个时间点的死亡进展的代表性示例。图表显示了用 FAC 和 BSO 处理的 U937 细胞中波传播的距离随时间的变化。数据点表示每个条件下五个独立波的平均值;误差线代表SD;线显示线性回归及其 95% 置信区间(阴影区域)。比例尺 = 25μm。 ( d )铁死亡和细胞死亡传播的渗透调节模型。铁死亡诱导涉及质膜孔的打开,允许与外部环境进行溶质交换,导致细胞死亡之前发生的细胞肿胀,其特征是 cPLA2 易位到核膜(红色)。肿胀后,铁死亡细胞会破裂并死亡,其标志是死亡指示染料(例如 Sytox Green)的快速流入。 当用erastin、C'点或FAC和BSO治疗而不是用GPX4抑制剂ML162治疗诱导铁死亡时,死亡通过独立发送的信号以铁和脂质过氧化物依赖性方式传播到邻近细胞细胞破裂。统计源数据可以在 Source data figure 5 。
Together these data indicate that wave-like spreading is a feature of specific forms of ferroptosis that requires the continuous presence of iron and lipid peroxidation, and involves a signal that propagates upstream of cell rupture. While ferroptosis propagation has been previously observed7, 8, here we quantitatively establish the existence of non-random spatiotemporal patterns of ferroptosis in multiple contexts. Our method allowed us to distinguish two types of ferroptosis: cell-autonomous or “single-cell ferroptosis” observed in response to GPX4 inhibition, and propagative or “multicellular ferroptosis” that is induced by treatments that inhibit the generation of glutathione (erastin, BSO) and/or increase cellular iron concentrations (FAC, C’ dots). Why direct GPX4 inhibition does not induce propagative ferroptosis is important to examine in future studies, and may relate to activities of iron or functions of glutathione that do not directly involve GPX420.
这些数据共同表明,波状扩散是铁死亡特定形式的一个特征,需要铁和脂质过氧化的持续存在,并且涉及在细胞破裂上游传播的信号。虽然之前已经观察到铁死亡的传播7 , 8 ,但在这里我们定量地确定了多种情况下铁死亡的非随机时空模式的存在。我们的方法使我们能够区分两种类型的铁死亡:响应 GPX4 抑制而观察到的细胞自主性或“单细胞铁死亡”,以及通过抑制谷胱甘肽生成(erastin、BSO)的治疗诱导的增殖性或“多细胞铁死亡”。 )和/或增加细胞铁浓度(FAC、C'点)。为什么直接 GPX4 抑制不会诱导增殖性铁死亡对于未来的研究很重要,并且可能与不直接涉及 GPX4 的铁活性或谷胱甘肽功能有关20 。
Non-autonomous cell death effects have been described elsewhere, most notably in the radiation-induced bystander effect (RIBE), where damage and death rates are increased in cells adjacent to those exposed to radiation21. While RIBE may increase death frequencies, such phenotypes appear distinct from the wave-like death observed during ferroptosis that, in many cases, leads to the near-complete elimination of a cell population7, 8, 15. Further discovery of the underlying molecular mechanisms is required to determine whether death propagation in these different systems involves similar signaling mechanisms. Numerous factors are proposed to mediate RIBE, including gap junctions, TGFβ22, p53, and cyclooxygenase-2 (COX-2) signaling21. While our U937 data suggest that gap junctions are not involved in ferroptosis propagation, since these cells do not form cell junctions (Supplementary Video 8), whether other RIBE signals could play a role in ferroptosis spreading is not yet known. Our finding that the presence of an osmoprotectant slows propagation could suggest that the release of a spreadable factor is enhanced by cell rupture, although further experiments are needed to test this.
非自主细胞死亡效应已在其他地方描述过,最引人注目的是辐射诱导的旁观者效应 (RIBE),其中与暴露于辐射的细胞相邻的细胞的损伤和死亡率增加21 。虽然 RIBE 可能会增加死亡频率,但这种表型似乎与铁死亡期间观察到的波状死亡不同,铁死亡期间观察到的波状死亡在许多情况下导致细胞群几乎完全消除7 , 8 , 15 。需要进一步发现潜在的分子机制,以确定这些不同系统中的死亡传播是否涉及相似的信号机制。许多因素被认为可以介导 RIBE,包括间隙连接、TGFβ 22 、p53 和环氧合酶-2 (COX-2) 信号传导21 。虽然我们的 U937 数据表明间隙连接不参与铁死亡传播,因为这些细胞不形成细胞连接( Supplementary Video 8 ),其他 RIBE 信号是否在铁死亡扩散中发挥作用尚不清楚。我们发现渗透保护剂的存在会减缓增殖,这可能表明细胞破裂会增强可扩散因子的释放,尽管需要进一步的实验来测试这一点。
Our data also indicate that ferroptosis is an osmotic process, as it involves cell swelling (Fig. 5d), and can be blocked by the addition of large osmoprotectants. The ability of osmoprotectants to block lysis following induction of necroptosis or pyroptosis both in culture and in vivo, and the observed size-dependence of the protective effects of different osmoprotectants (Fig. 3), have been interpreted previously as evidence for the existence of pore-like structures that trigger lysis in these forms of necrosis3, 4. This is indeed known to occur during pyroptosis, in which the caspase-dependent cleavage of Gasdermin D (GSDMD) triggers its oligomerization in the plasma membrane23, 24. Similarly, necroptosis may involve plasma membrane permeabilization mediated by the pseudokinase MLKL25, 26. Our data thus suggest that ferroptotic rupture is mediated by the formation of plasma membrane pores of a few nanometers in diameter and that cell permeabilization during ferroptosis could be a regulated process. Intriguingly, lipid peroxidation has been proposed to lead to conformational changes in lipid domains and plasma membrane regions27, 28, raising the possibility that pore formation could occur through a lipid-based mechanism rather than by activation of a pore-forming protein. Ferroptotic pore formation could regulate not only cell death execution but also the potential release of pro-inflammatory cytokines or DAMPs, which is known to occur during pyroptosis29. We previously showed that ferroptosis induction in mouse xenografts leads to tumor regression and a concomitant immune response, implying that ferroptosis-inducing agents may be promising cancer therapies8, 15. Ferroptosis is also implicated in cell death resulting from ischemia reperfusion injury during stroke or myocardial infarction, as well as in acute kidney injury, all of which result in the formation of large zones of necrotic tissue, possibly indicating a role for ferroptosis propagation in these diseases1, 15. Intriguingly, the paper by Katikaneni et al. published in this issue shows large waves of cellular deformation occurring in intact zebrafish larvae following microperfusion of arachidonic acid (AA). As AA is a known driver of ferroptosis, this finding suggests that wave-like propagation of ferroptosis may also occur in vivo, causing widespread tissue damage30. Uncovering the molecular mechanisms that regulate ferroptosis execution and propagation through cell populations will ultimately further our understanding of how modulators of ferroptosis may be leveraged for therapeutic benefit.
我们的数据还表明铁死亡是一个渗透过程,因为它涉及细胞肿胀( Fig. 5d ),并且可以通过添加大量渗透保护剂来阻断。渗透保护剂在培养物和体内诱导坏死性凋亡或焦亡后阻止裂解的能力,以及观察到的不同渗透保护剂的保护作用的大小依赖性( Fig. 3 ),之前已被解释为存在类孔结构的证据,这些结构会引发这些形式的坏死3 、 4 的溶解。这确实已知发生在焦亡期间,其中 Gasdermin D (GSDMD) 的半胱天冬酶依赖性裂解触发其在质膜中的寡聚化23 、 24 。类似地,坏死性凋亡可能涉及由假激酶 MLKL 25、26介导的质膜透化。因此,我们的数据表明,铁死亡破裂是由直径为几纳米的质膜孔的形成介导的,并且铁死亡期间的细胞透化可能是一个受调节的过程。有趣的是,脂质过氧化被认为会导致脂质结构域和质膜区域27、28的构象变化,从而提高了通过基于脂质的机制而不是通过成孔蛋白的激活来发生孔形成的可能性。铁死亡孔的形成不仅可以调节细胞死亡的执行,还可以调节促炎细胞因子或 DAMP 的潜在释放,已知这发生在细胞焦亡期间29 。 我们之前表明,小鼠异种移植物中的铁死亡诱导导致肿瘤消退和伴随的免疫反应,这意味着铁死亡诱导剂可能是有前途的癌症疗法8 , 15 。铁死亡还与中风或心肌梗塞期间的缺血再灌注损伤以及急性肾损伤引起的细胞死亡有关,所有这些都会导致大片坏死组织的形成,可能表明铁死亡在这些疾病中传播的作用1 , 15 .有趣的是,Katikaneni等人的论文。本期发表的研究表明,在微灌注花生四烯酸 (AA) 后,完整的斑马鱼幼虫中发生了大波的细胞变形。由于 AA 是铁死亡的已知驱动因素,这一发现表明铁死亡的波状传播也可能在体内发生,导致广泛的组织损伤30 。揭示调节铁死亡执行和通过细胞群传播的分子机制最终将进一步加深我们对如何利用铁死亡调节剂获得治疗益处的理解。
Methods 方法
Cell culture 细胞培养
HT1080 cells (ATCC), HeLa cells (ATCC), HAP1 chronic myelogenous leukemia cells (the kind gift of Dr. Jan Carette, Stanford School of Medicine), and MCF7 breast cancer cells (Lombardi Cancer Center, Georgetown University) were cultured in high-glucose Dulbecco’s Modified Eagle’s Medium (DMEM) (MSKCC Media Preparation Facility) supplemented with 10% heat-inactivated fetal bovine serum (FBS) (F2442; Sigma-Aldrich) and penicillin/streptomycin (30-002-CI; Mediatech). B16F10 melanoma cells (ATCC) and U937 promonocytic leukemia cells (ATCC) were grown in RPMI-1640 (11875-093; ThermoFisher) containing 10% heat-inactivated FBS and penicillin/streptomycin, and MCF10A mammary epithelium cells (ATCC) were cultured in DMEM/F12 (11320-033; ThermoFisher) supplemented with 5% horse serum (HS) (S12150; Atlanta Biologicals), 20ng/mL epidermal growth factor (EGF) (AF-100-15; Peprotech), 10μg/mL insulin (I9278; Sigma-Aldrich), 0.5μg/mL hydrocortisone (H-0888; Sigma-Aldrich), 100ng/mL cholera toxin (C-8052; Sigma-Aldrich), and penicillin/streptomycin. HeLa cells expressing Danio rerio cytosolic phospholipase A2 (cPLA2)-mKate have been described previously12. HAP1 cells expressing GCaMP6-NLS were generated using the Sleeping Beauty transposase system. HAP1 cells were transfected with pSB-CMV-MCS-Puro GCaMP6-NLS and pSB-cag-100x-Transposase, using Lipofectamine 3000 (L3000-015; ThermoFisher) as recommended by the manufacturer. Amino acid-free culture medium was prepared by dialyzing FBS or HS in PBS (MSKCC Media Preparation Facility) using MWCO 3500 dialysis tubing (21-152-9; Fisherbrand) and adding it to amino acid-free base media (MSKCC Media Preparation Facility). These media were used in combination with FAC and BSO to induce ferroptosis in MCF10A and MCF7 cells, and with αMSH-tagged C’ dots to induce ferroptosis in B16F10 cells.
HT1080细胞(ATCC)、HeLa细胞(ATCC)、HAP1慢性粒细胞白血病细胞(斯坦福大学医学院Jan Carette博士的善意礼物)和MCF7乳腺癌细胞(乔治敦大学Lombardi癌症中心)在高浓度培养皿中培养。 -补充有 10% 热灭活胎儿的葡萄糖杜尔贝科改良伊格尔培养基 (DMEM)(MSKCC 培养基制备设施)牛血清(FBS)(F2442;Sigma-Aldrich)和青霉素/链霉素(30-002-CI;Mediatech)。 B16F10 黑色素瘤细胞 (ATCC) 和 U937 早单核细胞白血病细胞 (ATCC) 在含有 10% 热灭活 FBS 和青霉素/链霉素的 RPMI-1640 (11875-093; ThermoFisher) 中生长,MCF10A 乳腺上皮细胞 (ATCC) 在DMEM/F12 (11320-033;ThermoFisher)补充有 5% 马血清 (HS)( S12150 ;亚特兰大生物制品公司(Atlanta Biologicals))、20ng/mL表皮生长因子(EGF)(AF-100-15;Peprotech)、10μg/mL胰岛素(I9278;Sigma-Aldrich)、0.5μg/mL氢化可的松(H-0888;Sigma-Aldrich)、 100ng/mL 霍乱毒素(C-8052;Sigma-Aldrich),以及青霉素/链霉素。先前已描述过表达斑马鱼胞质磷脂酶 A2 (cPLA2)-mKate 的 HeLa 细胞12