这是用户在 2024-10-18 16:56 为 https://pubs.acs.org/doi/10.1021/acs.est.0c05836 保存的双语快照页面,由 沉浸式翻译 提供双语支持。了解如何保存?

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Prediction of Oxidant Exposures and Micropollutant Abatement during Ozonation Using a Machine Learning Method

Figure 1Loading Img
  • Subscribed
Treatment and Resource Recovery

Prediction of Oxidant Exposures and Micropollutant Abatement during Ozonation Using a Machine Learning Method
使用机器学习方法预测臭氧化过程中的氧化剂暴露和微污染物去除
Click to copy article link
点击复制文章链接
Article link copied!

  • Dongwon Cha
    Dongwon Cha
    School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
    More by Dongwon Cha
  • Sanghun Park
    Sanghun Park
    School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
    More by Sanghun Park
  • Min Sik Kim
    Min Sik Kim
    School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
    Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
    More by Min Sik Kim
  • Taewan Kim
    Taewan Kim
    School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
    More by Taewan Kim
  • Seok Won Hong
    Seok Won Hong
    Water Cycle Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
  • Kyung Hwa Cho*
    Kyung Hwa Cho
    School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
    *Email: khcho@unist.ac.kr. Phone: +82-52-217-2829. Fax: +82-52-217-2819.
  • Changha Lee*
    Changha Lee
    School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
    *Email: leechangha@snu.ac.kr. Phone: +82-2-880-8630. Fax: +82-2-888-7295.
    More by Changha Lee
Open PDFSupporting Information (1)

Environmental Science & Technology

Cite this: Environ. Sci. Technol. 2021, 55, 1, 709–718
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.est.0c05836
Published December 9, 2020
Copyright © 2020 American Chemical Society

Abstract 摘要

Click to copy section link
点击复制部分链接
Section link copied!

Oxidation of micropollutants (MPs) by ozonation proceeds via the reactions with molecular ozone (O3) and hydroxyl radicals (OH). To predict MP abatement during ozonation, a model that can accurately predict oxidant exposures (i.e.,
微污染物(MPs)的氧化通过与分子臭氧(O3)和羟基自由基(•OH)的反应进行。为了预测臭氧化过程中的 MP 去除,需建立一个能够准确预测氧化剂暴露的模型。
) needs to be developed. This study demonstrates machine learning models based on the random forest (RF) algorithm to output oxidant exposures from water quality parameters (input variables) that include pH, alkalinity, dissolved organic carbon concentration, and fluorescence excitation–emission matrix (FEEM) data (to characterize organic matter). To develop the models, 60 different samples of natural waters and wastewater effluents were collected and characterized, and the oxidant exposures in each sample were determined at a specific O3 dose (2.5 mg/L). Four RF models were developed depending on how FEEM data were utilized (i.e., one model free of FEEM data, and three other models that used FEEM data of different resolutions). The regression performance and Akaike information criterion (AIC) were evaluated for each model. The models using high-resolution FEEM data generally exhibited high prediction accuracy with reasonable AIC values, implying that organic matter characteristics quantified by FEEM can be important factors to improve the accuracy of the prediction model. The developed models can be applied to predict the abatement of MPs in drinking water and wastewater ozonation processes and to optimize the O3 dose for the intended removal of target MPs. The machine learning models using higher-resolution FEEM data offer more accurate prediction by better calculating the complex nonlinear relationship between organic characteristics and oxidant exposures.
需要开发。本研究展示了基于随机森林(RF)算法的机器学习模型,以从水质参数(输入变量)中输出氧化剂暴露量,这些参数包括 pH、碱度、溶解有机碳浓度和荧光激发-发射矩阵(FEEM)数据(用于表征有机物)。为了开发这些模型,收集并表征了 60 个不同的自然水样和废水排放样本,并在特定的臭氧剂量(2.5 mg/L)下确定了每个样本中的氧化剂暴露量。根据 FEEM 数据的使用方式,开发了四个 RF 模型(即一个不使用 FEEM 数据的模型,以及三个使用不同分辨率 FEEM 数据的模型)。评估了每个模型的回归性能和赤池信息量准则(AIC)。使用高分辨率 FEEM 数据的模型通常表现出较高的预测准确性和合理的 AIC 值,这意味着通过 FEEM 量化的有机物特征可能是提高预测模型准确性的关键因素。 所开发的模型可以用于预测饮用水和废水臭氧化过程中的微污染物(MPs)去除情况,并优化用于去除目标微污染物的臭氧(O3)剂量。使用高分辨率荧光增强光谱(FEEM)数据的机器学习模型通过更好地计算有机特征与氧化剂暴露之间复杂的非线性关系,提供了更准确的预测。

This publication is licensed under the terms of your institutional subscription. Request reuse permissions.
本出版物根据您的机构订阅条款获得许可。请求重用权限。

Copyright © 2020 American Chemical Society
版权 © 2020 美国化学学会

Introduction 引言

Click to copy section link
点击复制部分链接
Section link copied!

Ozonation is an effective process for the degradation of refractory chemical pollutants and the inactivation of pathogenic microorganisms. This process has been extensively studied for the treatment of water and wastewater for the past few decades, targeting different contaminants that include taste and odor compounds, toxins, metal species, and natural organic matter, as well as pathogens. (1−3) Recent studies on ozonation have focused more on the oxidation of micropollutants (MPs), such as pharmaceuticals and personal care products, in drinking water and secondary wastewater. (4)
臭氧化是降解难降解化学污染物和灭活病原微生物的有效过程。在过去几十年中,该过程已被广泛研究用于水和废水的处理,针对不同的污染物,包括味道和气味化合物、毒素、金属物种、天然有机物以及病原体。(1−3) 最近关于臭氧化的研究更侧重于饮用水和二次废水中微污染物(MPs)的氧化,例如药物和个人护理产品。(4)
Determining the optimal dose of ozone (O3) in the ozonation process is crucial to prevent problems caused by underdose (e.g., incomplete removal of target contaminants) and overdose (e.g., formation of harmful byproducts and excessive operating cost). (1,5,6) In order to do this, the abatement of target contaminants during ozonation needs to be precisely predicted. The kinetics for the abatement of an MP during ozonation can be expressed by equations with rate constants and oxidant exposures (i.e., ) (eq 1 and the subsequent eq 2, derived from the integration of eq 1), (2) where kO3 and kOH are the second-order rate constants for the reactions of MP with O3 and hydroxyl radicals (OH), respectively.
确定臭氧(O3)在臭氧化过程中的最佳剂量对于防止因剂量不足(例如,目标污染物去除不完全)和剂量过多(例如,形成有害副产物和过高的运营成本)而导致的问题至关重要。(1,5,6) 为此,需要精确预测臭氧化过程中目标污染物的去除情况。目标污染物在臭氧化过程中的去除动力学可以用包含速率常数和氧化剂暴露(即 )的方程表示(方程 1 及其后续方程 2,源自方程 1 的积分),(2) 其中 kO3 和 kOH 分别是目标污染物与 O3 和羟基自由基(•OH)反应的二级速率常数。
(1)
(2)
The rate constant (kO3 and kOH) values for a number of MPs are already well documented, (7,8) while unknown values, if any, can be readily determined from laboratory experiments. The oxidant exposure ( and ) values vary depending on water quality parameters and O3 dose and thus are determined experimentally. (2) The value can be calculated by monitoring O3 decay over time, and the value is usually quantified by the decomposition kinetics of an externally supplied OH probe compound, such as para-chlorobenzoic acid (pCBA). (9,10) The kinetic equation for the MP abatement (eq 2) can also be expressed using the Rct concept (usually the ratio of to ); (10) there are also other modified expressions based on Rct. (11) However, determining the Rct value (or modified analogues) requires the measurements of decay (or demand) of O3 and the OH probe compound during the ozonation process, and thus, the kinetic expressions based on Rct are not conceptually different from eq 2.
许多微污染物(MP)的速率常数(kO3 和 kOH)值已经有很好的文献记录(7,8),而未知值(如果有的话)可以通过实验室实验轻松确定。氧化剂暴露( )值因水质参数和臭氧(O3)剂量而异,因此通过实验确定。(2) 值可以通过监测 O3 随时间的衰减来计算,而 值通常通过外部提供的•OH 探针化合物(如对氯苯甲酸(pCBA))的分解动力学来量化。(9,10)微污染物去除的动力学方程(方程 2)也可以使用 Rct 概念表示(通常是 的比率);(10)还有其他基于 Rct 的修正表达式。(11)然而,确定 Rct 值(或修正的类似物)需要在臭氧化过程中测量 O3 和•OH 探针化合物的衰减(或需求),因此,基于 Rct 的动力学表达式在概念上与方程 2 并没有不同。
For the full-scale ozonation process at treatment plants, it is not feasible to experimentally determine oxidant exposures. Therefore, for field application, the prediction of oxidant exposures using a mathematical model can be an alternative solution. In our recent study, empirical models were developed to predict oxidant exposures during the ozonation of natural waters using response surface methodology (RSM) with the O3 dose and water quality parameters (i.e., pH, alkalinity, dissolved organic carbon (DOC) concentration, and temperature) as independent variables. (12) These models successfully predicted oxidant exposures and MP abatement in the water source used to create the models. However, when applied to other natural waters, they did not show high accuracy, possibly because of the different characteristics of natural organic matter (NOM).
在处理厂的全规模臭氧化过程中,实验性地确定氧化剂暴露是不切实际的。因此,对于现场应用,使用数学模型预测氧化剂暴露可以作为一种替代解决方案。在我们最近的研究中,采用响应面方法(RSM)开发了经验模型,以预测自然水体臭氧化过程中的氧化剂暴露,独立变量包括 O3 剂量和水质参数(即 pH、碱度、溶解有机碳(DOC)浓度和温度)。这些模型成功地预测了用于创建模型的水源中的氧化剂暴露和微污染物去除。然而,当应用于其他自然水体时,它们并未显示出高准确性,这可能是由于自然有机物(NOM)的不同特性所致。
In order to develop more comprehensive models that are applicable to a wide range of water types, the fluorescence excitation–emission matrix (FEEM) data can be considered as input variables. The FEEM is a useful tool to analyze the characteristics of NOM and wastewater effluent organic matter (EfOM) in water samples. (13,14) The FEEM data may reflect the reactivity of NOM and EfOM with O3 and OH; in fact, it has been reported that the FEEM spectra of natural water and wastewater changed after ozonation. (15,16) To the best of our knowledge, FEEM data have not been used for any purposes related to the prediction or interpretation of oxidant exposures and MP abatement during ozonation.
为了开发适用于多种水类型的更全面模型,荧光激发-发射矩阵(FEEM)数据可以作为输入变量。FEEM 是分析水样中天然有机物(NOM)和废水排放有机物(EfOM)特征的有用工具。FEEM 数据可能反映 NOM 和 EfOM 与臭氧(O3)和•OH 的反应性;事实上,有报道指出,天然水和废水的 FEEM 光谱在臭氧化后发生了变化。根据我们所知,FEEM 数据尚未用于与臭氧化过程中氧化剂暴露和微塑料去除相关的任何目的。
Meanwhile, a machine learning technique needs to be considered for the development of a model using FEEM data. This technique is suitable to subsume an enormous number of FEEM data points into the model; in contrast, the RSM-based polynomial model can accommodate only a limited number of independent variables. Furthermore, the machine learning model is able to find the complex nonlinear relationship between independent and dependent (i.e., input and output) variables. (17)
与此同时,在使用 FEEM 数据开发模型时,需要考虑一种机器学习技术。这种技术适合将大量的 FEEM 数据点纳入模型;相比之下,基于 RSM 的多项式模型只能容纳有限数量的自变量。此外,机器学习模型能够找到自变量和因变量(即输入和输出)之间复杂的非线性关系。
This study aims to develop machine learning models that can successfully predict O3 and OH exposures and accordingly MP abatement during ozonation, using water parameters (i.e., pH, alkalinity, DOC concentration, and FEEM data) as input variables. The random forest (RF) algorithm, one of the most popular machine learning methods, was chosen for model development. Sixty different water samples (30 natural waters and 30 wastewater effluents) were collected, and their water quality parameters (input variables for the models) were analyzed. In addition, the oxidant exposures (output variables for the models) and the abatement of selected MPs in those water samples were measured at a specific O3 dose (2.5 mg/L). The machine learning models were developed and validated using training and validation subsets of variables, respectively.
本研究旨在开发能够成功预测臭氧(O3)和羟基自由基(•OH)暴露以及相应的微污染物(MP)去除的机器学习模型,使用水参数(即 pH、碱度、溶解有机碳(DOC)浓度和荧光增强光谱(FEEM)数据)作为输入变量。随机森林(RF)算法,作为最流行的机器学习方法之一,被选用于模型开发。收集了六十个不同的水样(30 个自然水样和 30 个废水排放样),并分析了它们的水质参数(模型的输入变量)。此外,在特定的臭氧剂量(2.5 mg/L)下,测量了这些水样中的氧化剂暴露(模型的输出变量)和选定微污染物的去除情况。机器学习模型分别使用变量的训练和验证子集进行开发和验证。

Materials and Methods 材料与方法

Click to copy section link
点击复制部分链接
Section link copied!

Reagents 试剂

All chemicals were of reagent grade (Sigma-Aldrich) and were used as received without additional purification. All aqueous stock solutions used deionized (DI) water (>18.2 MΩ cm) provided by a water purification system (Millipore Milli-Q Integral 5). The stock solution of O3 (>20 mg/L) was prepared in a reactor placed in a cooling bath by sparging O3-containing gas generated from an O3 generator (OzoneTech Lab-II) into DI water.
所有化学品均为试剂级(Sigma-Aldrich),并在未经过额外纯化的情况下直接使用。所有使用的水相储备溶液均采用去离子水(DI 水,>18.2 MΩ cm),由水纯化系统(Millipore Milli-Q Integral 5)提供。O3 的储备溶液(>20 mg/L)是在冷却浴中的反应器内制备的,通过将从 O3 发生器(OzoneTech Lab-II)产生的含 O3 气体通入 DI 水中。

Sampling and Characterization of Natural Water and Wastewater Effluent
自然水和废水排放的采样与表征

Thirty natural water samples were collected at different positions of five major rivers in the Republic of Korea (i.e., the Han, Geum, Nakdong, Yeongsan, and Sumjin Rivers) and their tributaries (refer to Figure S1 of the Supporting Information for sampling locations). Additionally, 30 wastewater effluent samples were collected from 30 different wastewater treatment plants located in Seoul, as well as in Gyeonggi, South Jeolla, and Gangwon provinces. The water samples were immediately filtered using glass microfiber filters (GE Whatman GF/C) and subsequently using nylon membrane filters (GE Whatman 0.45 μm) and stored at 4 °C until use.
在韩国共和国的五条主要河流(即汉江、金江、洛东江、荣山江和隋珍江)及其支流的不同位置收集了三十个自然水样(采样位置请参见支持信息的图 S1)。此外,还从位于首尔以及京畿道、全南和江原道的三十个不同污水处理厂收集了三十个废水排放样本。水样立即使用玻璃微纤维过滤器(GE Whatman GF/C)过滤,随后使用尼龙膜过滤器(GE Whatman 0.45 μm)过滤,并在 4°C 下保存直至使用。
Water quality parameters that included pH, alkalinity, DOC concentration, and FEEM data were analyzed for each sample. pH was measured using a pH meter (Thermo Scientific Orion Star A Series). DOC concentration was measured using a TOC analyzer (Sievers M5310 C); all water samples were filtered as mentioned above. Alkalinity was measured according to APHA Method 2320. (18) The FEEM data of water samples were obtained by fluorescence spectrophotometry (Hitachi F-4500). For FEEM analysis, excitation was performed from 200 to 400 nm at 5 nm intervals, while monitoring the emission spectra from 280 to 500 nm at 1 nm intervals. The scan speed was set at 1200 nm/min with both excitation and emission slits of 5 nm. The FEEM data of DI water were used as the baseline. (19)
水质参数包括 pH、碱度、DOC 浓度和 FEEM 数据,针对每个样本进行了分析。pH 值使用 pH 计(Thermo Scientific Orion Star A 系列)测量。DOC 浓度使用 TOC 分析仪(Sievers M5310 C)测量;所有水样均如上所述进行了过滤。碱度根据 APHA 方法 2320 进行测量。(18) 水样的 FEEM 数据通过荧光分光光度法(日立 F-4500)获得。FEEM 分析时,激发波长范围为 200 至 400 nm,间隔为 5 nm,同时监测 280 至 500 nm 的发射光谱,间隔为 1 nm。扫描速度设定为 1200 nm/min,激发和发射狭缝均为 5 nm。去离子水的 FEEM 数据用作基线。(19)

Ozonation Experiments 臭氧化实验

All experiments were conducted using 50 mL of water samples spiked with pCBA (OH probe compound for measurement, 1 μM) or the target MP compound (atrazine, caffeine, carbamazepine, and ibuprofen for MP abatement experiments, 0.1 μM). The experiments were conducted at room temperature (22 ± 1 °C) in conical flasks, with the caps closed. To initiate the reaction, an aliquot of O3 stock solution was injected into the reaction solution under stirring at 200 rpm ([O3]0 = 2.5 mg/L). Samples (2.5 mL) were withdrawn at predetermined time intervals and immediately added to indigo trisulfonate solution (0.28 mL) to quench the O3 residual (and at the same time, to determine the O3 concentration). For the MP abatement experiments, the final MP concentrations were measured after O3 is depleted in the solution; the time for the complete depletion of O3 varied from 1 to 30 min depending on the water sample.
所有实验均使用 50 毫升的水样,加入 pCBA(用于 测量的•OH 探针化合物,1 μM)或目标 MP 化合物(阿特拉津、咖啡因、卡马西平和布洛芬用于 MP 去除实验,0.1 μM)。实验在室温(22 ± 1 °C)下于锥形瓶中进行,瓶盖关闭。为启动反应,在搅拌 200 rpm 的条件下向反应溶液中注入一定量的 O3 储备溶液([O3]0 = 2.5 mg/L)。在预定时间间隔内取出样品(2.5 mL),并立即加入靛蓝三磺酸盐溶液(0.28 mL)以消除 O3 残留(同时测定 O3 浓度)。对于 MP 去除实验,在 O3 在溶液中耗尽后测量最终的 MP 浓度;O3 完全耗尽的时间因水样而异,范围为 1 到 30 分钟。

Analytical Methods 分析方法

The concentration of O3 was determined by monitoring the decolorization of indigo trisulfonate (the absorbance decrease at 600 nm) using UV/Vis spectrophotometry (PerkinElmer LAMBDA 465). (20) The concentrations of pCBA and MPs were analyzed by rapid separation liquid chromatography (RSLC) (Thermo Scientific UltiMate 3000) with UV absorbance detection. Phosphoric acid solution (0.1 wt %) and acetonitrile were used as eluents, and the separation was performed on a C18 column (Thermo Scientific Acclaim 120) (refer to Table S1 of the Supporting Information for detailed information about the RSLC analysis).
O3 的浓度通过监测靛蓝三磺酸盐的脱色(在 600 nm 处的吸光度降低)来确定,使用 UV/Vis 分光光度法(PerkinElmer LAMBDA 465)。(20) pCBA 和微塑料的浓度通过快速分离液相色谱(RSLC)(Thermo Scientific UltiMate 3000)进行分析,采用 UV 吸光度检测。磷酸溶液(0.1 wt%)和乙腈作为洗脱剂,分离在 C18 柱(Thermo Scientific Acclaim 120)上进行(有关 RSLC 分析的详细信息,请参见支持信息的表 S1)。

Machine Learning Process 机器学习过程

The regression tree (RT) method creates a model in the form of a tree structure to correlate the input and output variables. While the model is being developed, it sequentially breaks down a large data set into smaller and homogenous subsets. (21,22) The RT method contains two major steps; the first step allocates the entire data into the first two subsets by determining the optimal split that minimizes the sum of the squared deviations from the mean values of the two separated subsets. This splitting rule is further applied to each of the two subsets and is continued until it reaches the terminal nodes or the minimum size of a subset. The second step removes tree sections or nodes that have little influence on the target variables to achieve a more accurate prediction with less model complexity. This second step is conducted to avoid overfitting, which leads to poor results with new data sets.
回归树(RT)方法以树结构的形式创建模型,以关联输入和输出变量。在模型开发过程中,它将大型数据集逐步分解为更小且同质的子集。(21,22)RT 方法包含两个主要步骤;第一步通过确定最优分割来将整个数据分配到前两个子集中,以最小化两个分离子集均值的平方偏差之和。这个分割规则进一步应用于两个子集,并持续进行,直到达到终端节点或子集的最小大小。第二步移除对目标变量影响较小的树部分或节点,以实现更准确的预测并降低模型复杂性。此第二步的实施是为了避免过拟合,这会导致在新数据集上表现不佳。
RF is an ensemble and supervised learning method for classification or regression by developing multiple RTs with randomly sampled data (i.e., bootstrapped method) from the original data set. (23) The RF model can be developed through a much simpler training or optimization process compared to other machine learning algorithms, and the RF model has demonstrated reliable predictions in various environmental areas. (24−26) In brief, the RF model builds multiple trees to produce multiple predictions on target variables and averages them into a final output (eq 3):
随机森林(RF)是一种集成和监督学习方法,通过从原始数据集中随机抽样数据(即自助法)开发多个回归树(RT)进行分类或回归。与其他机器学习算法相比,RF 模型可以通过更简单的训练或优化过程进行开发,并且 RF 模型在各种环境领域中已显示出可靠的预测能力。简而言之,RF 模型构建多个树以对目标变量产生多个预测,并将其平均为最终输出(公式 3):
(3)
where (x) is the final output from the RF model, K is the number of trees, and T(x) is the output of each RT. MATLAB software (R2018b, MathWorks) was used to explore the RF algorithms. Further details, hyperparameters, and development procedures are described in Text S1 of the Supporting Information.
其中 f̂(x) 是 RF 模型的最终输出,K 是树的数量,T(x) 是每棵回归树的输出。使用 MATLAB 软件(R2018b,MathWorks)来探索 RF 算法。更多细节、超参数和开发过程在支持信息的文本 S1 中进行了描述。

Model Development and Evaluation
模型开发与评估

Four RF models (i.e., FEEM-Free, FEEM-LowRes, FEEM-HighRes, and FEEM-FullRes) were devised with different input variables regarding the FEEM data; the use of higher resolution FEEM data (greater number of data points) leads to longer computation time. The three variables (pH, alkalinity, and DOC concentration) were used in common for the four RF models. FEEM-Free did not use the FEEM data as input variables. FEEM-LowRes and FEEM-HighRes used percent fluorescence response (P(i,n)) data obtained by the fluorescence regional integration (FRI) with low and high resolutions, respectively. Details of the FRI calculation are described elsewhere. (19) FEEM-FullRes used all FEEM data points as input variables.
四个 RF 模型(即 FEEM-Free、FEEM-LowRes、FEEM-HighRes 和 FEEM-FullRes)是根据 FEEM 数据的不同输入变量设计的;使用更高分辨率的 FEEM 数据(数据点数量更多)会导致更长的计算时间。这三个变量(pH、碱度和 DOC 浓度)在四个 RF 模型中是共同使用的。FEEM-Free 没有使用 FEEM 数据作为输入变量。FEEM-LowRes 和 FEEM-HighRes 分别使用了通过荧光区域积分(FRI)获得的低分辨率和高分辨率的荧光响应百分比(P(,n))数据。FRI 计算的详细信息在其他地方有描述。(19) FEEM-FullRes 使用所有 FEEM 数据点作为输入变量。
The RF trees were trained for 70% (42 out of 60) of the water samples, while the remaining 30% of the samples (out-of-bag samples) were used for validation. (21) The prediction accuracy of the models was evaluated by calculating the coefficient of determination (R2) and the root mean square error (RMSE) for the linear regression of measured versus predicted values. Variable importance (VI) was assessed by measuring the extent of the decrease in prediction accuracy after reordering the variable; a single variable in out-of-bag samples was randomly reordered without changing the other variables. In addition, the Akaike information criterion (AIC), derived from information theory, was used to evaluate the performance of the RF models, where a smaller AIC value indicates better performance. (27,28) The residual sum of squares (RSS) and AIC were calculated by the following equations (eqs 4 and 5)
RF 树模型使用 70%的水样(60 个样本中的 42 个)进行训练,而剩余 30%的样本(袋外样本)用于验证。(21)通过计算测量值与预测值的线性回归的决定系数(R²)和均方根误差(RMSE)来评估模型的预测准确性。变量重要性(VI)通过测量在重新排序变量后预测准确性的下降程度来评估;在袋外样本中,单个变量被随机重新排序,而不改变其他变量。此外,基于信息理论的赤池信息量准则(AIC)用于评估 RF 模型的性能,其中较小的 AIC 值表示更好的性能。(27,28)残差平方和(RSS)和 AIC 通过以下方程计算(方程 4 和 5)。
(4)
(5)
where n is the number of observations, Yiobs is the ith observation, Yisim is the ith modeled value, and is the number of variables.
其中 n 是观察值的数量,Yobs 是第 th 个观察值,Ysim 是第 th 个模型值,K̂ 是变量的数量。

Results and Discussion 结果与讨论

Click to copy section link
点击复制部分链接
Section link copied!

Determination of Oxidant Exposures
氧化剂暴露的测定

The exposures of O3 and OH (i.e., ) during ozonation were determined for the 60 water samples by monitoring the decay of O3 and pCBA, respectively. Figure 1 presents the time–concentration profiles of O3 and pCBA for two selected water samples (no. 2 for natural water and no. 5 for wastewater effluent; refer to Tables S2 and S3 of the Supporting Information, respectively). Upon adding O3, a portion of O3 is instantaneously consumed because of the direct reactions of O3 with NOM and EfOM [defined as instantaneous ozone demand (IOD)]. In the second phase, O3 decays slowly, following pseudo-first-order kinetics. (1,5,29) These typical patterns of O3 decay were clearly shown in our results (Figure 1a); in particular, the O3 decay in wastewater effluent was faster than that in natural water because of the higher organic loading. Meanwhile, the decomposition of pCBA during ozonation was faster in natural water than in wastewater effluent (Figure 1b), indicating that the OH concentration is higher in natural water; organics usually scavenge OH.
在臭氧化过程中,通过监测 O3 和 pCBA 的衰减,确定了 60 个水样中 O3 和•OH 的暴露量(即 )。图 1 展示了两个选定水样(自然水样编号 2 和废水排放样编号 5)的 O3 和 pCBA 的时间-浓度曲线(具体参见支持信息中的表 S2 和 S3)。在添加 O3 后,由于 O3 与天然有机物(NOM)和效应有机物(EfOM)的直接反应,部分 O3 瞬时被消耗[定义为瞬时臭氧需求(IOD)]。在第二阶段,O3 缓慢衰减,遵循伪一级动力学(1,5,29)。这些 O3 衰减的典型模式在我们的结果中得到了清晰的展示(图 1a);特别是,废水排放中的 O3 衰减速度快于自然水样,原因是有机负荷更高。同时,臭氧化过程中 pCBA 的分解在自然水中比在废水排放中更快(图 1b),这表明自然水中的•OH 浓度更高;有机物通常会清除•OH。

Figure 1 图 1

Figure 1. (a) Time–concentration profiles of O3. Inset: time-dependent exposures of O3 during ozonation. (b) Time–concentration profiles of pCBA. Inset: time-dependent exposures of OH during ozonation (Data shown for two selected water samples, no. 2 in Table S2 of the Supporting Information for natural water and no. 5 in Table S3 of the Supporting Information for wastewater effluent) ([O3]0 = 2.5 mg/L).
图 1. (a) O3 的时间-浓度曲线。插图:臭氧化过程中 O3 的时间依赖性暴露。(b) pCBA 的时间-浓度曲线。插图:臭氧化过程中•OH 的时间依赖性暴露(数据来自两个选定的水样,自然水的表 S2 中编号 2,废水排放的表 S3 中编号 5)([O3]0 = 2.5 mg/L)。

The time–concentration profiles of O3 and pCBA (Figure 1a,b) were converted into the exposures of O3 and OH (see the inset of Figure 1a,b, respectively). For the calculation of , the data points for O3 decay were fitted to two-phase exponential association equations (ExpAssoc) using Origin software (Origin 2020, OriginLab) (refer to the dashed lines as shown in Figure 1a), and the resultant curves were integrated over time to obtain (see the inset of Figure 1a). The value as a function of time (see the inset of Figure 1b) was calculated from the decomposition kinetics of pCBA (Figure 1b) using the following equation (eq 6)
O3 和 pCBA 的时间-浓度曲线(图 1a,b)被转换为 O3 和•OH 的暴露量(分别见图 1a,b 的插图)。为了计算 ,O3 衰减的数据点使用 Origin 软件(Origin 2020, OriginLab)拟合为双相指数关联方程(ExpAssoc)(参见图 1a 中所示的虚线),并对得到的曲线进行时间积分以获得 (见图 1a 的插图)。 值作为时间的函数(见图 1b 的插图)是通过以下方程(方程 6)从 pCBA 的分解动力学(图 1b)计算得出的。
(6)
where kOH,pCBA is the second-order rate constant for the reaction of pCBA with OH (5 × 109 M–1 s–1). (30) The fit curves of pCBA decomposition to two-phase exponential association equations (refer to the dashed lines as shown in Figure 1b) were used for the calculation.
kOH,pCBA 是 pCBA 与•OH 反应的二级速率常数(5 × 10^9 M–1 s–1)。(30) pCBA 分解的拟合曲线采用了两相指数关联方程(参见图 1b 中所示的虚线)用于 计算。
Figures S2–S9 and Tables S2 and S3 of the Supporting Information summarize the time–concentration profiles of O3 and pCBA and the calculated oxidant exposures as functions of time during the ozonation of all 60 water samples, respectively.
支持信息中的图 S2–S9 和表 S2、S3 总结了在臭氧化所有 60 个水样品过程中 O3 和 pCBA 的时间-浓度曲线以及计算的氧化剂暴露随时间变化的情况。

Effects of DOC Concentration, pH, and Alkalinity on Oxidant Exposures
DOC 浓度、pH 值和碱度对氧化剂暴露的影响

The concentration of DOC, pH, and alkalinity were measured for the 60 water samples. In general, wastewater effluents showed higher DOC concentration (3–6 mg/L) and lower pH (7.0–7.5) values, compared to natural waters (DOC concentration of 1–5 mg/L and pH 7.5–8.5). Wastewater effluents showed a wider range of alkalinity (10–200 mg/L as CaCO3), compared to natural waters (25–75 mg/L as CaCO3). Tables S4 and S5 of the Supporting Information summarize the measured values of DOC concentration, pH, and alkalinity for all samples.
对 60 个水样的溶解有机碳(DOC)浓度、pH 值和碱度进行了测量。一般而言,废水排放物的 DOC 浓度较高(3–6 mg/L),pH 值较低(7.0–7.5),与自然水体(DOC 浓度为 1–5 mg/L,pH 值为 7.5–8.5)相比。废水排放物的碱度范围更广(10–200 mg/L,以 CaCO3 计),而自然水体的碱度为 25–75 mg/L(以 CaCO3 计)。支持信息中的表 S4 和 S5 总结了所有样本的 DOC 浓度、pH 值和碱度的测量值。
The limit values of oxidant exposures during the ozonation of water samples (i.e., the oxidant exposures until the complete depletion of O3) were plotted as functions of DOC concentration, pH, and alkalinity, respectively. Oxidant exposures tended to decrease with increasing DOC concentration because organic substances serve as major oxidant sinks (Figure 2). However, pH and alkalinity did not exhibit clear correlation with the oxidant exposures (refer to Figure S10 of the Supporting Information).
在水样臭氧化过程中,氧化剂暴露的限值(即,直到 O3 完全耗竭的氧化剂暴露)分别作为 DOC 浓度、pH 和碱度的函数进行绘制。随着 DOC 浓度的增加,氧化剂暴露趋向于减少,因为有机物质作为主要的氧化剂汇(见图 2)。然而,pH 和碱度与氧化剂暴露之间并未表现出明显的相关性(参见支持信息的图 S10)。

Figure 2 图 2

Figure 2. (a) O3 exposures and (b) OH exposures (for the 60 water samples) as functions of DOC concentration ([O3]0 = 2.5 mg/L).
图 2. (a) O3 暴露和(b) •OH 暴露(针对 60 个水样)作为 DOC 浓度的函数([O3]0 = 2.5 mg/L)。

Fluorescence Excitation–Emission Matrix
荧光激发-发射矩阵

The FEEM spectra were obtained for the 60 water samples. Figure 3 shows the FEEM contour plots of two selected water samples (no. 4 for natural water and no. 5 for wastewater effluent); Figures S11 and S12 of the Supporting Information show the respective plots for all 60 samples. It is noteworthy that the two samples show different FEEM patterns (compare Figure 3a,b) even though both samples have similar levels of DOC concentration (4.77 and 4.99 ppm, respectively), indicating that FEEM reflects different characteristics of organic substances.
FEEM 光谱是针对 60 个水样获得的。图 3 显示了两个选定水样的 FEEM 等高线图(编号 4 为自然水,编号 5 为废水排放);支持信息中的图 S11 和 S12 显示了所有 60 个样本的相应图。值得注意的是,尽管两个样本的 DOC 浓度相似(分别为 4.77 和 4.99 ppm),但这两个样本显示出不同的 FEEM 模式(比较图 3a 和 b),这表明 FEEM 反映了有机物质的不同特征。

Figure 3 图 3

Figure 3. FEEM contour plots of (a) natural water and (b) wastewater effluent (the data shown for two selected water samples, no. 4 in Table S2 of the Supporting Information for natural water and no. 5 in Table S3 of the Supporting Information for wastewater effluent).
图 3. 自然水和废水排放的 FEEM 等高线图 (a) 自然水和 (b) 废水排放(所示数据为两个选定水样的结果,支持信息中自然水的表 S2 中的第 4 号样本和废水排放的表 S3 中的第 5 号样本)。

According to the literature, (31−34) the FEEM spectra are divided into five regions that consecutively indicate aromatic proteins, such as tyrosine (aromatic protein I, Region 1); aromatic proteins, such as tryptophan or compounds attributed to biochemical oxygen demand (aromatic protein II, Region 2); fulvic acid-like substances (Region 3); soluble microbial byproduct-like compounds (Region 4); and humic acid-like substances (Region 5) (refer to Figure S13a of the Supporting Information for the division of the five regions). The FEEM spectra of natural waters show at least two characteristic peaks: a low intensity peak at excitation wavelength (EX) 330 nm/emission wavelength (EM) 430 nm in Region 5 and a high intensity peak at EX 240 nm/EM 440 nm in Region 3 (Figures 3a and S11 of the Supporting Information). This result is consistent with the observation that fulvic- and humic acid-like substances (representing Regions 3 and 5, respectively) account for up to 80% of NOM in natural water. (35) For some natural water samples (particularly those from the lower reaches of the Nakdong River, see plots 4–7 in Figure S11 of the Supporting Information), two additional peaks in the FEEM spectra were observed at EX 240 nm/EM 350 nm in Region 2, and at EX 280 nm/EM 320 nm in Region 4. These peaks may result from residual chemical contaminants and some protein-like soluble microbial products (SMPs) from nearby wastewater effluents (36,37) because the Nakdong River is highly impacted by municipal and industrial wastewater discharges from the Daegu metropolitan area and the Gumi National Industrial Complex.
根据文献(31−34),荧光增强光谱(FEEM)被分为五个区域,依次指示芳香族蛋白质,例如酪氨酸(芳香族蛋白质 I,区域 1);芳香族蛋白质,例如色氨酸或归因于生化需氧量的化合物(芳香族蛋白质 II,区域 2);类腐殖酸物质(区域 3);可溶性微生物副产物类化合物(区域 4);以及类腐殖酸物质(区域 5)(有关五个区域的划分,请参见支持信息的图 S13a)。自然水体的 FEEM 光谱显示至少有两个特征峰:在区域 5 的激发波长(EX)330 nm/发射波长(EM)430 nm 处有一个低强度峰,在区域 3 的 EX 240 nm/EM 440 nm 处有一个高强度峰(支持信息的图 3a 和 S11)。这一结果与观察到的类腐殖酸和类腐殖酸物质(分别代表区域 3 和 5)占自然水体中有机物质(NOM)高达 80% 的现象一致。 对于一些自然水样(特别是来自 Nakdong 河下游的样本,参见支持信息中图 S11 的图 4-7),在区域 2 的 EX 240 nm/EM 350 nm 和区域 4 的 EX 280 nm/EM 320 nm 处观察到了 FEEM 光谱中的两个额外峰。这些峰可能是由于附近废水排放中的残留化学污染物和某些类蛋白质的可溶性微生物产品(SMPs)所致,因为 Nakdong 河受到大邱都市区和龟尾国家工业园区的市政和工业废水排放的严重影响。
The FEEM spectra of wastewater effluents generally show two distinctive peaks at EX 330 nm/EM 430 nm in Region 5 and at EX 240 nm/EM 440 nm in Region 3 (Figures 3b, and S12 of the Supporting Information). In some cases, the aforementioned peak in Region 5 shifted to EX 300 nm and EM 380 nm in Region 4 (see plots 10, 17, and 25 in Figure S12 of the Supporting Information). The fluorescence in regions 3 and 5 is attributed to fulvic- and humic acid-like SMPs derived from the biological treatment processes in wastewater treatment plants; a similar EEM pattern was observed for laboratory-generated SMP. (37)
废水排放的 FEEM 光谱通常在区域 5 的 EX 330 nm/EM 430 nm 和区域 3 的 EX 240 nm/EM 440 nm 处显示出两个明显的峰(见支持信息的图 3b 和 S12)。在某些情况下,区域 5 中上述峰值在区域 4 中移至 EX 300 nm 和 EM 380 nm(见支持信息的图 S12 中的图 10、17 和 25)。区域 3 和 5 中的荧光归因于来自废水处理厂生物处理过程的类腐殖酸和类腐殖质的 SMP;实验室生成的 SMP 也观察到了类似的 EEM 模式。(37)
The FEEM data were converted into the P(i,n) values (input variables) using FRI for two RF models (i.e., FEEM-LowRes and FEEM-HighRes). For the FEEM-LowRes model, five P(i,n) values were calculated for the five regions in the FEEM contour plot (see Figure S13a of the Supporting Information); Tables S6 and S7 of the Supporting Information provide the values of all 60 water samples. For the FEEM-HighRes model, a total of 83 P(i,n) values were obtained for each FEEM plot divided into smaller regions with the grid dimension of 20 nm × 20 nm (see Figure S13b of the Supporting Information). The P(i,n) values for the FEEM-HighRes model were calculated for all 60 water samples (data not shown). For the FEEM-FullRes model, all 9724 data points of the FEEM plot were used as input variables.
FEEM 数据通过 FRI 转换为 P(,n)值(输入变量),用于两个 RF 模型(即 FEEM-LowRes 和 FEEM-HighRes)。对于 FEEM-LowRes 模型,计算了 FEEM 等高线图中五个区域的五个 P(,n)值(见支持信息的图 S13a);支持信息的表 S6 和 S7 提供了所有 60 个水样的值。对于 FEEM-HighRes 模型,总共获得了 83 个 P(,n)值,针对每个 FEEM 图将其划分为更小的区域,网格尺寸为 20 nm × 20 nm(见支持信息的图 S13b)。FEEM-HighRes 模型的 P(,n)值是为所有 60 个水样计算的(数据未显示)。对于 FEEM-FullRes 模型,使用了 FEEM 图的所有 9724 个数据点作为输入变量。

Prediction of Oxidant Exposures by RF Models
通过 RF 模型预测氧化剂暴露

The measured oxidant exposures were compared to those predicted by the four RF models, and the R2 and RMSE values were calculated (refer to Figure 4 for and Figure 5 for ). For the prediction (Figure 4), the FEEM-FullRes model showed the highest accuracy among the four RF models with the highest R2 (0.874 and 0.798 for training and validation, respectively) and the lowest RMSE values (1.65 × 10–3 and 1.61 × 10–3 M s for training and validation, respectively). The prediction accuracy (assessed by R2 and RMSE) decreased in the order: FEEM-HighRes > FEEM-LowRes > FEEM-Free. For the prediction (Figure 5), the FEEM-FullRes and FEEM-HighRes models showed the highest prediction accuracy, followed by FEEM-LowRes and FEEM-Free. The FEEM-FullRes model showed the highest R2 and the lowest RMSE values for training (0.931 and 4.98 × 10–11 M s, respectively). However, the FEEM-FullRes and FEEM-HighRes models showed similar R2 (0.766 and 0.772) and RMSE (5.53 × 10–11 and 5.51 × 10–11 M s) values for validation, respectively. The comparison of the four RF models confirms that the incorporation of FEEM data into the model leads to more accurate prediction of oxidant exposures, implying that FEEM can reflect the different characteristics of NOM and EfOM regarding their reactions with oxidants. Additionally, a direct comparison with simpler ridge regression models was also conducted (Figures S14 and S15 of the Supporting Information); detailed discussions were included in Text S2 of the Supporting Information.
测量的氧化剂暴露量与四个随机森林模型预测的结果进行了比较,并计算了 R²和 RMSE 值(参见图 4 中的 和图 5 中的 )。对于 预测(图 4),FEEM-FullRes 模型在四个随机森林模型中显示出最高的准确性,R²值最高(训练和验证分别为 0.874 和 0.798),RMSE 值最低(训练和验证分别为 1.65 × 10⁻³和 1.61 × 10⁻³ M s)。预测准确性(通过 R²和 RMSE 评估)按顺序递减:FEEM-HighRes > FEEM-LowRes > FEEM-Free。对于 预测(图 5),FEEM-FullRes 和 FEEM-HighRes 模型显示出最高的预测准确性,其次是 FEEM-LowRes 和 FEEM-Free。FEEM-FullRes 模型在训练中显示出最高的 R²和最低的 RMSE 值(分别为 0.931 和 4.98 × 10⁻¹¹ M s)。然而,FEEM-FullRes 和 FEEM-HighRes 模型在验证中显示出相似的 R²(分别为 0.766 和 0.772)和 RMSE(分别为 5.53 × 10⁻¹¹和 5.51 × 10⁻¹¹ M s)值。 四个 RF 模型的比较确认,将 FEEM 数据纳入模型可以更准确地预测氧化剂暴露,这意味着 FEEM 能够反映 NOM 和 EfOM 在与氧化剂反应时的不同特征。此外,还进行了与更简单的脊回归模型的直接比较(见支持信息的图 S14 和 S15);详细讨论已包含在支持信息的文本 S2 中。

Figure 4 图 4

Figure 4. Plots of measured vs predicted O3 exposures for four RF models, (a) FEEM-Free, (b) FEEM-LowRes, (c) FEEM-HighRes, and (d) FEEM-FullRes ([O3]0 = 2.5 mg/L).
图 4. 四个 RF 模型的测量与预测 O3 暴露的图表,(a) FEEM-Free,(b) FEEM-LowRes,(c) FEEM-HighRes,(d) FEEM-FullRes ([O3]0 = 2.5 mg/L)。

Figure 5 图 5

Figure 5. Plots of measured vs predicted OH exposures for four RF models, (a) FEEM-Free, (b) FEEM-LowRes, (c) FEEM-HighRes, and (d) FEEM-FullRes ([O3]0 = 2.5 mg/L).
图 5. 四个 RF 模型的测量与预测•OH 暴露的图表,(a) FEEM-Free,(b) FEEM-LowRes,(c) FEEM-HighRes,(d) FEEM-FullRes ([O3]0 = 2.5 mg/L)。

VI of the FEEM FRI data was assessed for and predictions of the FEEM-HighRes model, which provides insights into which FEEM regions have a greater impact on oxidant exposures; the contour plots featuring VI were presented for and predictions (refer to Figure S16 of the Supporting Information). For the prediction (refer to Figure S16a of the Supporting Information), the most important spots were observed in the upper edge of Region 5 (humic acid-like chromophores with relatively high molecular weight), and in the lower left side of Region 4 (protein-like SMPs). The organic substances corresponding to these spots appear to be sensitive to the reaction with O3; indeed, previous studies showed that the FEEM intensities in these areas were preferentially removed by ozonation. (15,16) For the prediction (refer to Figure S16b of the Supporting Information), a noticeably important spot was found in the upper edge of Region 5 (at a similar position to the one for ). Considering the nonselective reactivity of OH relative to O3, the organic substances for the common spot in Region 5 may be associated with the generation of OH via the reactions with O3, rather than the consumption of OH. Additional VI assessments (including non-FEEM variables) were conducted for FEEM-Free and FEEM-HighRes models (refer to Text S3 and Figure S17 of the Supporting Information for details).
FEEM FRI 数据的 VI 被评估用于 的 FEEM-HighRes 模型预测,这提供了对哪些 FEEM 区域对氧化剂暴露影响更大的洞察;包含 VI 的等高线图展示了 的预测(请参见支持信息的图 S16)。对于 预测(请参见支持信息的图 S16a),在区域 5 的上边缘(相对高分子量的腐殖酸类色素)和区域 4 的左下侧(蛋白质类 SMPs)观察到了最重要的点。这些点对应的有机物质似乎对与 O3 的反应敏感;实际上,之前的研究表明,这些区域的 FEEM 强度在臭氧化过程中被优先去除。(15,16) 对于 预测(请参见支持信息的图 S16b),在区域 5 的上边缘发现了一个显著重要的点(与 的位置相似)。 考虑到•OH 相对于 O3 的非选择性反应性,第 5 区的常见点的有机物质可能与通过与 O3 反应生成•OH 有关,而不是•OH 的消耗。对 FEEM-Free 和 FEEM-HighRes 模型进行了额外的 VI 评估(包括非 FEEM 变量)(详细信息请参见支持信息中的文本 S3 和图 S17)。
The RSS and AIC values were calculated for the prediction of and by four RF models (refer to Table S8 of the Supporting Information). The FEEM-FullRes model was found to exhibit extremely high AIC values (19,299.6 and 18,887.2 for and , respectively) compared to other models. Such high AIC values mainly result from the immense number of input parameters (9724 FEEM data points for the FEEM-FullRes model), which can cause overfitting (high accuracy for training, but relatively low accuracy for validation). Indeed, the gap between R2 values for training and validation was greater for the FEEM-FullRes model than for the FEEM-HighRes, especially for (Figures 4 and 5).
RSS 和 AIC 值是通过四个 RF 模型计算得出的,用于预测 (参见支持信息的表 S8)。与其他模型相比,FEEM-FullRes 模型的 AIC 值极高( 分别为 19,299.6 和 18,887.2)。如此高的 AIC 值主要是由于输入参数的数量庞大(FEEM-FullRes 模型有 9724 个 FEEM 数据点),这可能导致过拟合(训练时准确度高,但验证时相对准确度低)。实际上,FEEM-FullRes 模型的训练和验证的 R2 值之间的差距大于 FEEM-HighRes 模型,尤其是在 时(图 4 和图 5)。

Prediction of MP Abatement
MP 减排预测

Four MPs (i.e., atrazine, caffeine, carbamazepine, and ibuprofen) were selected, considering the rate constants for their reactions with oxidants. Table S9 of the Supporting Information presents the kO3 and kOH values of selected MPs. Atrazine and ibuprofen have low reactivity with O3, and thus their abatement during ozonation proceeds mainly by OH. However, ibuprofen is anticipated to be more degraded than atrazine because it has approximately threefold higher kOH. Caffeine has moderate reactivity with O3; therefore, the contributions of both O3 and OH could be important. Carbamazepine is highly reactive with O3, and the direct reaction with O3 could be the dominant route for its abatement during ozonation.
选择了四种微污染物(即,阿特拉津、咖啡因、卡马西平和布洛芬),考虑到它们与氧化剂反应的速率常数。支持信息的表 S9 展示了所选微污染物的 kO3 和 kOH 值。阿特拉津和布洛芬与 O3 的反应性较低,因此它们在臭氧化过程中的去除主要依赖于•OH。然而,预计布洛芬的降解程度将高于阿特拉津,因为它的 kOH 值大约高出三倍。咖啡因与 O3 的反应性适中,因此 O3 和•OH 的贡献可能都很重要。卡马西平与 O3 的反应性很高,直接与 O3 的反应可能是其在臭氧化过程中去除的主要途径。
The selected MPs were spiked in 15 natural water and wastewater effluent samples (i.e., total 30 samples). The percent removals of MPs in the ozonation process after the depletion of O3 were measured (refer to Figure S18 of the Supporting Information). For natural water samples (refer to Figure S18a of the Supporting Information), atrazine was degraded by 30–90% and ibuprofen by 60–99%, and caffeine was completely degraded except for one sample. For wastewater effluent samples (refer to Figure S18b of the Supporting Information), atrazine was degraded by 20–60%, ibuprofen by 40–90%, and caffeine by 60–99%. For all cases, carbamazepine was almost completely degraded.
所选的微量污染物(MPs)在 15 个自然水和废水排放样本中进行了检测(即总共 30 个样本)。在臭氧消耗后,测量了臭氧化过程中的 MPs 去除百分比(参见支持信息的图 S18)。对于自然水样本(参见支持信息的图 S18a),阿特拉津的降解率为 30-90%,布洛芬为 60-99%,咖啡因几乎完全降解,只有一个样本例外。对于废水排放样本(参见支持信息的图 S18b),阿特拉津的降解率为 20-60%,布洛芬为 40-90%,咖啡因为 60-99%。在所有情况下,卡马西平几乎完全降解。
Meanwhile, the abatement of the selected MPs was calculated from eq 2 using and values predicted by the four RF models (calculated for the water samples in which the MP abatement experiments were conducted), and the outcomes were compared to the values measured by experiments (Figure 6). Overall, the model predictions fit reasonably with the experimental measurements. The FEEM-FullRes model showed the highest R2 (0.904) and the lowest RMSE (6.60%) values, followed by FEEM-HighRes > FEEM-LowRes = FEEM-Free. The difference in prediction accuracy among the models was less significant, compared to the cases of and prediction (Figures 4 and 5), indicating that the predicted values of and somewhat offset each other.
与此同时,所选微塑料的减少量是根据方程 2 使用四个随机森林模型预测的 值计算得出的(该计算是针对进行微塑料减少实验的水样),并将结果与实验测得的值进行了比较(图 6)。总体而言,模型预测与实验测量结果相当吻合。FEEM-FullRes 模型显示出最高的 R²值(0.904)和最低的均方根误差(RMSE)值(6.60%),其次是 FEEM-HighRes > FEEM-LowRes = FEEM-Free。与 预测的情况相比,各模型之间的预测准确性差异不太显著(图 4 和图 5),这表明 的预测值在某种程度上相互抵消。

Figure 6 图 6

Figure 6. Plots of the measured vs predicted MP abatement for four RF models, (a) FEEM-Free, (b) FEEM-LowRes, (c) FFEM-HighRes, and (d) FEEM-FullRes (Raw data for measured values are presented in Figure S18 of the Supporting Information) ([MP]0 = 0.1 μM, [O3]0 = 2.5 mg/L).
图 6. 四个 RF 模型的测量与预测 MP 减排的图表,(a) FEEM-Free,(b) FEEM-LowRes,(c) FFEM-HighRes,(d) FEEM-FullRes(测量值的原始数据见支持信息的图 S18)([MP]0 = 0.1 μM, [O3]0 = 2.5 mg/L)。

Implications and Research Imperatives
影响及研究迫切性

In this study, comprehensive models for the prediction of MP abatement by ozonation were developed. It was demonstrated that using a machine learning technique with FEEM data (input variables to characterize organic substances) could successfully be used to predict oxidant exposures, and in turn, MP abatement, during the ozonation of different water samples. The use of higher-resolution FEEM data generally offers more accurate prediction. However, the increased resolution requires an increased number of input variables for the prediction model, causing longer computation time and possible overfitting. We believe that FEEM-based models can be applied in predicting the abatement of target MPs in drinking water and wastewater ozonation processes and in determining the optimal O3 dose for intended purposes. For the practical application, the prediction models need to be more advanced; in fact, the enhancement in prediction accuracy by using the FEEM data was not significant for the prediction of MP abatement. In order to improve the reliability and comprehensibility of the prediction models, the machine learning models need to be trained with a greater number of water samples, with a wider spectrum of organic characteristics. In addition, the method of processing the FEEM data into the input variables needs to be further advanced (e.g., optimizing the division of the FEEM contour plot for FRI and taking account of time-dependent FEEM data during ozonation).
在本研究中,开发了用于预测臭氧化过程中微塑料(MP)去除的综合模型。研究表明,使用机器学习技术结合荧光增强光谱(FEEM)数据(用于表征有机物的输入变量)可以成功预测氧化剂暴露,从而预测不同水样的微塑料去除。使用更高分辨率的 FEEM 数据通常能提供更准确的预测。然而,分辨率的提高需要更多的输入变量,这导致计算时间延长和可能的过拟合。我们认为基于 FEEM 的模型可以应用于预测饮用水和废水臭氧化过程中的目标微塑料去除,并确定用于特定目的的最佳臭氧剂量。对于实际应用,预测模型需要更先进;实际上,使用 FEEM 数据提高预测准确性的效果在微塑料去除的预测中并不显著。 为了提高预测模型的可靠性和可理解性,机器学习模型需要用更多的水样本进行训练,并且这些样本应具有更广泛的有机特征。此外,处理 FEEM 数据以生成输入变量的方法需要进一步改进(例如,优化 FRI 的 FEEM 等高线图的划分,并考虑臭氧化过程中时间依赖的 FEEM 数据)。

Supporting Information 支持信息

Click to copy section link
点击复制部分链接
Section link copied!

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.est.0c05836.
支持信息可免费获取,网址为 https://pubs.acs.org/doi/10.1021/acs.est.0c05836。

  • Additional details, hyperparameters, and development procedures of the RF model, comparison of RF and ridge regression models, variable importance for FEEM-Free and FEEM-HighRes models, HPLC operating conditions, oxidant exposure values, water characteristic values, percent fluorescence response values, regression performance and AIC values, second-order rate constant values, river water sampling sites, time-dependent concentration profiles of ozone, time-dependent concentration profiles of pCBA, time-dependent exposure profiles of ozone, time-dependent exposure profiles of OH, oxidant exposures as functions of pH and alkalinity, FEEM contour plots, division of FRI regions, comparison of oxidant exposures for RF and ridge regression models, variable importance for the prediction of oxidant exposures, and MP abatement experiment results (PDF)
    RF 模型的附加细节、超参数和开发程序,RF 与岭回归模型的比较,FEEM-Free 和 FEEM-HighRes 模型的变量重要性,HPLC 操作条件,氧化剂暴露值,水体特征值,荧光响应百分比值,回归性能和 AIC 值,二级反应速率常数值,河水采样点,臭氧的时间依赖浓度曲线,pCBA 的时间依赖浓度曲线,臭氧的时间依赖暴露曲线,•OH 的时间依赖暴露曲线,氧化剂暴露与 pH 和碱度的关系,FEEM 等高线图,FRI 区域的划分,RF 与岭回归模型的氧化剂暴露比较,氧化剂暴露预测的变量重要性,以及 MP 减排实验结果(PDF)

Prediction of Oxidant Exposures and Micropollutant Abatement during Ozonation Using a Machine Learning Method

38 views

27 shares

0 downloads

S
1
S
upporting Information 支持信息
for 
Prediction 预测
of Oxidant Exposures and Micropollutant
氧化剂暴露与微污染物
Abatement during Ozonation Using a Machine Learning
臭氧化过程中的减排利用机器学习
M
ethod  方法
Dongwon Cha 查东元
,
Sanghun Park 朴相勋
,
Min Sik Kim 金敏锡
†, 
§
,
Taewan Kim 金太完
,
Seok Won Hong 洪石元
,
Kyung Hwa Cho 赵京华
,
*,
Changha Lee 李长哈
†, 
*
School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Seoul
化学与生物工程学院,化学过程研究所(ICP),首尔
National University, 1 Gwanak
国立大学,1 冠岳
-
ro, Gwanak 罗,冠岳
-
gu, Seoul 08826, Republic of Korea
首尔 08826,韩国
School of Urban and Envir
城市与环境学院
onmental Engineering, Ulsan National Institute of Science and
环境工程,蔚山国立科学技术学院
Technology (UNIST), 50 UNIST
技术(UNIST),50 UNIST
-
gil, Ulju 吉尔,乌尔朱
-
gun, Ulsan 44919, Republic of Korea
枪,韩国蔚山 44919
§
Department of Chemical and Environmental Engineering, Yale University, New Haven, CT
耶鲁大学化学与环境工程系,康涅狄格州纽黑文
06520, United States 06520,美国
Water Cycle 水循环
Research Center, Korea Institute of Science and Technology (KIST), Hwarangro
研究中心,韩国科学技术院(KIST),华朗路
14 Gil 5, Seongbuk
-
gu, Seoul, 02792, Republic of Korea
首尔,02792,韩国
*Corresponding authors *通讯作者
Tel.:  电话:
+82‒52‒217‒2829
(K.H. Cho);
+82‒2‒880‒8630
(C. Lee)
Fax: +82 传真:+82
-
52
-
217
-
2819 (K.H. Cho);
+82‒2‒888‒7295
(C. Lee)
E
mail:  邮件:
khcho@unist.ac.kr
(K.H. Cho);
leechangha@snu.ac.kr
(C. Lee)
T
h
e
supporting 支持
information 信息
contains  包含
2
8
pages,  页,
9
tables, and  表格,和
1
8
figures. 图表。
S
2
Text  文本
S1.
Additional details 附加细节
,
hyperparameters 超参数
, and development procedure
和开发程序
of the RF  射频的
model 模型
The RF model was developed using the following hyperparameters after considering the
RF 模型是在考虑以下超参数后开发的
number of data (42 training sets). The minimum parent size was 10 (left as default) a
数据数量(42 个训练集)。最小父节点大小为 10(保持默认)。
nd the  翻译文本:nd the
minimum leaf size was designed as 1 due to the small data set. Additionally, the maximum
最小叶子大小被设计为 1,因为数据集较小。此外,最大
number of branches (depth) was set to 5 to prevent over
分支数量(深度)设置为 5,以防止过度
-
fitting problems driven by the
拟合问题驱动的
minimum leaf size. Bootstrap aggregating (i.e., bagging) ensemble method
最小叶子大小。自助聚合(即,装袋)集成方法
was used to
被用来
improve the stability and accuracy of the model. The number of ensemble learning cycles (i.e.,
提高模型的稳定性和准确性。集成学习周期的数量(即,
number of trees for ensemble) was set to 100.
集成的树木数量设置为 100。
The procedure for the development of the RF model is as follows:
RF 模型开发的程序如下:
(a)
T
he training and validation data se
训练和验证数据集
t
s
were randomly divided into
被随机分配到
sets of  集合的
42 and 18,
42 和 18,
respectively.  分别。
(b)
T
he training set was resampled with replacement
训练集进行了有放回的重采样
s
, thus different training data set
因此,不同的训练数据集
s
w
ere 翻译文本:这里
permuted ( 置换(
i.e.,  即,
bootstrapping).  引导法。
T
he bootstrapping method can substitute a cross
自助法可以替代交叉验证
-
validation process by producing independent datasets through sampling with
通过抽样生成独立数据集的验证过程
replacement.  替代。
Each bootstrap set was used to train a decision tree model, then 100 tree
每个自助采样集用于训练一个决策树模型,然后生成 100 棵树
models were prepared for ensemble modeling.
模型已为集成建模做好准备。
(c)
E
n
semble modeling aggregate
似乎建模聚合
d
the prediction of each tree model and result
每个树模型的预测及结果
ed
in  
a
final  最终
prediction achieving a reduced variance.
预测实现了方差的减少。

Terms & Conditions  条款与条件

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Authors
    • Kyung Hwa Cho - School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea Email: khcho@unist.ac.kr
    • Changha Lee - School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of KoreaOrcidhttp://orcid.org/0000-0002-0404-9405 Email: leechangha@snu.ac.kr
  • Authors
    • Dongwon Cha - School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
    • Sanghun Park - School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
    • Min Sik Kim - School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of KoreaDepartment of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
    • Taewan Kim - School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
    • Seok Won Hong - Water Cycle Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of KoreaOrcidhttp://orcid.org/0000-0003-0961-3842
  • Notes
    The authors declare no competing financial interest.

Acknowledgments

Click to copy section linkSection link copied!

This work was supported by the Korea Environment Industry & Technology Institute (KEITI) through the Developing Innovative Drinking Water and Wastewater Technologies Project, funded by the Korea Ministry of Environment (MOE) (2019002710003), as well as Open Innovation R&D (Together PRO) Project supported by K-Water.

References

Click to copy section linkSection link copied!

This article references 37 other publications.

  1. 1
    Hoigné, J. Chemistry of Aqueous Ozone and Transformation of Pollutants by Ozonation and Advanced Oxidation Processes. In Quality and Treatment of Drinking Water II, Part of The Handbook of Environmental Chemistry (Part C: Water Pollution); Hrubec, J., Ed.; Springer: Berlin, 1998; Vol 5, pp 83141.
  2. 2
    Lee, Y.; von Gunten, U. Advances in predicting organic contaminant abatement during ozonation of municipal wastewater effluent: reaction kinetics, transformation products, and changes of biological effects. Environ. Sci.: Water Res. Technol. 2016, 2, 421442,  DOI: 10.1039/c6ew00025h
  3. 3
    Glaze, W. H. Drinking-water treatment with ozone. Environ. Sci. Technol. 1987, 21, 224230,  DOI: 10.1021/es00157a001
  4. 4
    Huber, M. M.; Canonica, S.; Park, G.-Y.; von Gunten, U. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ. Sci. Technol. 2003, 37, 10161024,  DOI: 10.1021/es025896h
  5. 5
    von Gunten, U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res. 2003, 37, 14431467,  DOI: 10.1016/S0043-1354(02)00457-8
  6. 6
    Schmidt, C. K.; Brauch, H.-J. N,N-dimethylsulfamide as precursor for N-nitrosodimethylamine (NDMA) formation upon ozonation and its fate during drinking water treatment. Environ. Sci. Technol. 2008, 42, 63406346,  DOI: 10.1021/es7030467
  7. 7
    von Sonntag, C.; von Gunten, U. Chemistry of Ozone in Water and Wastewater Treatment: From Basic Principles to Applications; IWA Publishing: London, 2012.
  8. 8
    Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solution. J. Phys. Chem. Ref. Data 1988, 17, 513,  DOI: 10.1063/1.555805
  9. 9
    von Gunten, U.; Hoigné, J. Bromate formation during ozonation of bromide-containing waters: Interaction of ozone and hydroxyl radical reactions. Environ. Sci. Technol. 1994, 28, 12341242,  DOI: 10.1021/es00056a009
  10. 10
    Elovitz, M. S.; von Gunten, U. Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept. Ozone: Sci. Eng. 1999, 21, 239260,  DOI: 10.1080/01919519908547239
  11. 11
    Kwon, M.; Kye, H.; Jung, Y.; Yoon, Y.; Kang, J.-W. Performance characterization and kinetic modeling of ozonation using a new method: ROH,O3 concept. Water Res. 2017, 122, 172182,  DOI: 10.1016/j.watres.2017.05.062
  12. 12
    Kim, M. S.; Cha, D.; Lee, K.-M.; Lee, H.-J.; Kim, T.; Lee, C. Modeling of ozone decomposition, oxidant exposures, and the abatement of micropollutants during ozonation processes. Water Res. 2020, 169, 115230,  DOI: 10.1016/j.watres.2019.115230
  13. 13
    Mobed, J. J.; Hemmingsen, S. L.; Autry, J. L.; McGown, L. B. Fluorescence characterization of IHSS humic substances: Total luminescence spectra with absorbance correction. Environ. Sci. Technol. 1996, 30, 30613065,  DOI: 10.1021/es960132l
  14. 14
    Baker, A. Fluorescence excitation-emission matrix characterization of some sewage-impacted rivers. Environ. Sci. Technol. 2001, 35, 948953,  DOI: 10.1021/es000177t
  15. 15
    Yu, H.; Qu, F.; Zhang, X.; Shao, S.; Rong, H.; Liang, H.; Bai, L.; Ma, J. Development of correlation spectroscopy (COS) method for analyzing fluorescence excitation emission matrix (EEM): A case study of effluent organic matter (EfOM) ozonation. Chemosphere 2019, 228, 3543,  DOI: 10.1016/j.chemosphere.2019.04.119
  16. 16
    Cui, Y.; Yu, J.; Su, M.; Jia, Z.; Liu, T.; Oinuma, G.; Yamauchi, T. Humic acid removal by gas-liquid interface discharge plasma: performance, mechanism and comparison to ozonation. Environ. Sci.: Water Res. Technol. 2019, 5, 152160,  DOI: 10.1039/c8ew00520f
  17. 17
    Li, L.; Rong, S.; Wang, R.; Yu, S. Recent advances in artificial intelligence and machine learning for nonlinear relationship analysis and process control in drinking water treatment: A review. Chem. Eng. J. 2021, 405, 126673,  DOI: 10.1016/j.cej.2020.126673
  18. 18
    American Public Health Association (APHA), Standard Methods for the Examination of Water and Wastewater; Greenberg, A. E., Clesceri, L. S., Eaton, A. D., Eds.; APHA: Washington, DC, 1992.
  19. 19
    Chen, W.; Westerhoff, P.; Leenheer, J. A.; Booksh, K. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 2003, 37, 57015710,  DOI: 10.1021/es034354c
  20. 20
    Bader, H.; Hoigné, J. Determination of ozone in water by the indigo method. Water Res. 1981, 15, 449456,  DOI: 10.1016/0043-1354(81)90054-3
  21. 21
    Breiman, L.; Friedman, J. H.; Olshen, R. A.; Stone, C. J. Classification and Regression Trees; Chapman and Hall/CRC: Boca Raton, FL, 1984.
  22. 22
    Ließ, M.; Glaser, B.; Huwe, B. Uncertainty in the spatial prediction of soil texture. Geoderma 2012, 170, 7079,  DOI: 10.1016/j.geoderma.2011.10.010
  23. 23
    Breiman, L. Random Forests. Mach. Learn. 2001, 45, 532,  DOI: 10.1023/A:1010933404324
  24. 24
    Baek, S.-S.; Choi, Y.; Jeon, J.; Pyo, J.; Park, J.; Cho, K. H. Replacing the internal standard to estimate micropollutants using deep and machine learning. Water Res. 2021, 188, 116535,  DOI: 10.1016/j.watres.2020.116535
  25. 25
    Sevgen, E.; Kocaman, S.; Nefeslioglu, H. A.; Gokceoglu, C. A novel performance assessment approach using photogrammetric techniques for landslide susceptibility mapping with logistic regression, ANN and Random Forest. Sensors 2019, 19, 3940,  DOI: 10.3390/s19183940
  26. 26
    Singh, B.; Sihag, P.; Singh, K. Modelling of impact of water quality on infiltration rate of soil by random forest regression. Model. Earth Syst. Environ. 2017, 3, 9991004,  DOI: 10.1007/s40808-017-0347-3
  27. 27
    Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principle. In Selected Papers of Hirotugu Akaike; Parzen, E., Tanabe, K., Kitagawa, G., Eds.; Springer: New York, NY, 1998.
  28. 28
    Snipes, M.; Taylor, D. C. Model selection and Akaike information criteria: An example from wine ratings and prices. Wine Econ. Policy 2014, 3, 39,  DOI: 10.1016/j.wep.2014.03.001
  29. 29
    Buffle, M.-O.; von Gunten, U. Phenols and amine induced HO· generation during the initial phase of natural water ozonation. Environ. Sci. Technol. 2006, 40, 30573063,  DOI: 10.1021/es052020c
  30. 30
    Neta, P.; Dorfman, L. M. Pulse Radiolysis Studies. XIII. Rate Constants for the Reaction of Hydroxyl Radicals with Aromatic Compounds in Aqueous Solutions. In Radiation Chemistry Volume I. Aqueous Media, Biology, Dosimetry; Hart, E. J., Ed.; American Chemical Society: Washington, DC, 1968.
  31. 31
    Determann, S.; Reuter, R.; Wagner, P.; Willkomm, R. Fluorescent matter in the eastern Atlantic Ocean. Part 1: Method of measurement and near-surface distribution. Deep Sea Res., Part I 1994, 41, 659675,  DOI: 10.1016/0967-0637(94)90048-5
  32. 32
    Ahmad, S. R.; Reynolds, D. M. Monitoring of water quality using fluorescence technique: Prospect of on-line process control. Water Res. 1999, 33, 20692074,  DOI: 10.1016/S0043-1354(98)00435-7
  33. 33
    Mounier, S.; Patel, N.; Quilici, L.; Benaim, J. Y.; Benamou, C. Fluorescence 3D de la matière organique dissoute du fleuve amazone. Water Res. 1999, 33, 15231533,  DOI: 10.1016/S0043-1354(98)00347-9
  34. 34
    Coble, P. G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem. 1996, 51, 325346,  DOI: 10.1016/0304-4203(95)00062-3
  35. 35
    Singh, R. Membrane Technology and Engineering for Water Purification; Butterworth-Heinemann: Oxford, U.K., 2015.
  36. 36
    Chun, K. C.; Chang, R. W.; Williams, G. P.; Chang, Y. S.; Tomasko, D.; LaGory, K.; Ditmars, J.; Chun, H. D.; Lee, B.-K. Water quality issues in the Nakdong River basin in the Republic of Korea. Environ. Eng. Policy 1999, 2, 131143,  DOI: 10.1007/s100220000024
  37. 37
    Nam, S.-N.; Amy, G. Differentiation of wastewater effluent organic matter (EfOM) from natural organic matter (NOM) using multiple analytical techniques. Water Sci. Technol. 2008, 57, 10091015,  DOI: 10.2166/wst.2008.165

Cited By

Click to copy section linkSection link copied!
Citation Statements
  • Supporting
    Supporting0
  • Mentioning
    Mentioning20
  • Contrasting
    Contrasting0
Explore this article's citation statements on scite.ai

This article is cited by 30 publications.

  1. Rabbi Sikder, Tianyu Zhang, Tao Ye. Predicting THM Formation and Revealing Its Contributors in Drinking Water Treatment Using Machine Learning. ACS ES&T Water 2024, 4 (3) , 899-912. https://doi.org/10.1021/acsestwater.3c00020
  2. Yangyang Wu, Yingze Li, Ze Jiang, Ziyang Xu, Mingbao Yang, Jiahui Ding, Changyong Zhang. Machine Learning Prediction of Phosphate Adsorption on Six Different Metal-Containing Adsorbents. ACS ES&T Engineering 2023, 3 (8) , 1135-1146. https://doi.org/10.1021/acsestengg.3c00001
  3. Jose D. Hernandez-Betancur, Gerardo J. Ruiz-Mercado, Mariano Martin. Predicting Chemical End-of-Life Scenarios Using Structure-Based Classification Models. ACS Sustainable Chemistry & Engineering 2023, 11 (9) , 3594-3602. https://doi.org/10.1021/acssuschemeng.2c05662
  4. Xin Yang, Fernando L. Rosario-Ortiz, Yu Lei, Yanheng Pan, Xin Lei, Paul Westerhoff. Multiple Roles of Dissolved Organic Matter in Advanced Oxidation Processes. Environmental Science & Technology 2022, 56 (16) , 11111-11131. https://doi.org/10.1021/acs.est.2c01017
  5. Guangfei Yu, Yiqiu Wu, Hongbin Cao, Qingfeng Ge, Qin Dai, Sihan Sun, Yongbing Xie. Insights into the Mechanism of Ozone Activation and Singlet Oxygen Generation on N-Doped Defective Nanocarbons: A DFT and Machine Learning Study. Environmental Science & Technology 2022, 56 (12) , 7853-7863. https://doi.org/10.1021/acs.est.1c08666
  6. Ning Wei, Zhenyu Jia, Zhengyu Men, Chunzhe Ren, Yanjie Zhang, Jianfei Peng, Lin Wu, Ting Wang, Qijun Zhang, Hongjun Mao. Machine Learning Predicts Emissions of Brake Wear PM2.5: Model Construction and Interpretation. Environmental Science & Technology Letters 2022, 9 (5) , 352-358. https://doi.org/10.1021/acs.estlett.2c00117
  7. Xiangzhou Yuan, Manu Suvarna, Sean Low, Pavani Dulanja Dissanayake, Ki Bong Lee, Jie Li, Xiaonan Wang, Yong Sik Ok. Applied Machine Learning for Prediction of CO2 Adsorption on Biomass Waste-Derived Porous Carbons. Environmental Science & Technology 2021, 55 (17) , 11925-11936. https://doi.org/10.1021/acs.est.1c01849
  8. Nohyeong Jeong, Tai-heng Chung, Tiezheng Tong. Predicting Micropollutant Removal by Reverse Osmosis and Nanofiltration Membranes: Is Machine Learning Viable?. Environmental Science & Technology 2021, 55 (16) , 11348-11359. https://doi.org/10.1021/acs.est.1c04041
  9. Benjie Zhu, Chenxing Li, Jialiang Liu, Fei Gao, Fang Liu, Xiaoguang Duan. Adsorption promoted heterogeneous catalytic ozonation for removing emerging contaminations: The intrinsic correlations with biochar properties and complementary effect of adsorption and ozonation processes. Separation and Purification Technology 2025, 354 , 128726. https://doi.org/10.1016/j.seppur.2024.128726
  10. Wei Zhuang, Xiao Zhao, Qianqian Luo, Xinyuan Lv, Zhilin Zhang, Lihua Zhang, Minghao Sui. Task decomposition strategy based on machine learning for boosting performance and identifying mechanisms in heterogeneous activation of peracetic acid process. Water Research 2024, 267 , 122521. https://doi.org/10.1016/j.watres.2024.122521
  11. Homin Kye, Sook-Hyun Nam, Eunju Kim, Jaewuk Koo, Yonghyun Shin, Juwon Lee, Tae-Mun Hwang. Application of tryptophan-like fluorescence index to quantify the trace organic compounds removal in wastewater ozonation. Chemosphere 2024, 363 , 142862. https://doi.org/10.1016/j.chemosphere.2024.142862
  12. Dongwon Cha, Sanghun Park, Min Sik Kim, Jaesang Lee, Yunho Lee, Kyung Hwa Cho, Changha Lee. Prediction of hydroxyl radical exposure during ozonation using different machine learning methods with ozone decay kinetic parameters. Water Research 2024, 261 , 122067. https://doi.org/10.1016/j.watres.2024.122067
  13. Wei Zhuang, Xiao Zhao, Yiying Zhang, Qianqian Luo, Lihua Zhang, Minghao Sui. Autoencoded chemical feature interaction machine learning method boosting performance of piezoelectric catalytic process. Nano Energy 2024, 126 , 109670. https://doi.org/10.1016/j.nanoen.2024.109670
  14. Rakesh Kumar, Deepa Kundu, Tapos Kormoker, Sarita Joshi, Pawan Kumar Rose, Sundhanshu Kumar, Prafulla Kumar Sahoo, Prabhakar Sharma, Jasmeet Lamba. Phycoremediation of potentially toxic elements for agricultural and industrial wastewater treatment: Recent advances, challenges, and future prospects. Desalination and Water Treatment 2024, 319 , 100505. https://doi.org/10.1016/j.dwt.2024.100505
  15. Chandrasekhar Nettem, Gopalan Rajaraman. How do quantum chemical descriptors shape hydrogen atom abstraction reactivity in cupric-superoxo species? A combined DFT and machine learning perspective. Inorganic Chemistry Frontiers 2024, 11 (13) , 3830-3846. https://doi.org/10.1039/D4QI00701H
  16. Abolhassan Banisheikholeslami, Farhad Qaderi. Applied machine learning to the determination of biochar hydrogen sulfide adsorption capacity. Machine Learning 2024, 113 (6) , 3419-3441. https://doi.org/10.1007/s10994-023-06446-2
  17. Libo Xia, Xiaoxuan Hao, Yun Zhou. Machine learning-based global trends and the development prospects of wastewater treatment: A bibliometric analysis. Journal of Environmental Chemical Engineering 2024, 12 (3) , 112732. https://doi.org/10.1016/j.jece.2024.112732
  18. Benjie Zhu, Yuting Wang, Chenxing Li, Fei Gao, Fang Liu, Guofei Jiang, Huaqing Zhang, Xiaoguang Duan. Construction of catalytic ozonation synergistic photo-self-Fenton system and analysis of synergistic catalysis and reaction mechanism activated by modified carbon nitride. Applied Catalysis B: Environmental 2024, 342 , 123408. https://doi.org/10.1016/j.apcatb.2023.123408
  19. Yongkai Huang, Yiling Chen. Prediction of Total Phosphorus Based on Distance Correlation and Machine Learning Methods—a Case Study of Dongjiang River, China. Water, Air, & Soil Pollution 2024, 235 (2) https://doi.org/10.1007/s11270-024-06913-z
  20. Ahmed E. Alprol, Abdallah Tageldein Mansour, Marwa Ezz El-Din Ibrahim, Mohamed Ashour. Artificial Intelligence Technologies Revolutionizing Wastewater Treatment: Current Trends and Future Prospective. Water 2024, 16 (2) , 314. https://doi.org/10.3390/w16020314
  21. Zow Afshan, Sherin Zafar, Safdar Tanvir. Prediction of Water Quality Through Machine Learning: A Review. 2024, 527-550. https://doi.org/10.1007/978-981-97-4228-8_35
  22. Wei Zhang, Waqar Muhammad Ashraf, Sachini Supunsala Senadheera, Daniel S. Alessi, Filip M.G. Tack, Yong Sik Ok. Machine learning based prediction and experimental validation of arsenite and arsenate sorption on biochars. Science of The Total Environment 2023, 904 , 166678. https://doi.org/10.1016/j.scitotenv.2023.166678
  23. Rongkui Su, Zishi Li, Xiancheng Ma, Yuying Li, Zheng Zeng, Liqing Li, Peng Sheng, Hanqing Wang, Shaobin Wang. Machine learning, experiments and molecular simulation demonstrate the adsorption mechanism of acetone on porous carbon at different pressures. Separation and Purification Technology 2023, 323 , 124480. https://doi.org/10.1016/j.seppur.2023.124480
  24. Caihong Qin, Rongrong Liu, Chaochao Jiang, Mengke Guo, Rui Yu, Jiayu Huang, Wenwen Bai, Xiaoqing Dang. Non-thermal plasma coupled liquid-phase catalysis /Fe2+ for VOCs removal: Enhanced mechanism of protocatechuic acid. Journal of Industrial and Engineering Chemistry 2023, 122 , 334-340. https://doi.org/10.1016/j.jiec.2023.02.033
  25. Xiancheng Ma, Wenjun Xu, Rongkui Su, Lishu Shao, Zheng Zeng, Liqing Li, Hanqing Wang. Insights into CO2 capture in porous carbons from machine learning, experiments and molecular simulation. Separation and Purification Technology 2023, 306 , 122521. https://doi.org/10.1016/j.seppur.2022.122521
  26. Sanghun Park, Jaegyu Shim, Nakyung Yoon, Sungman Lee, Donggeun Kwak, Seungyong Lee, Young Mo Kim, Moon Son, Kyung Hwa Cho. Deep reinforcement learning in an ultrafiltration system: Optimizing operating pressure and chemical cleaning conditions. Chemosphere 2022, 308 , 136364. https://doi.org/10.1016/j.chemosphere.2022.136364
  27. Mengyuan Zhu, Jiawei Wang, Xiao Yang, Yu Zhang, Linyu Zhang, Hongqiang Ren, Bing Wu, Lin Ye. A review of the application of machine learning in water quality evaluation. Eco-Environment & Health 2022, 1 (2) , 107-116. https://doi.org/10.1016/j.eehl.2022.06.001
  28. Hanan Ahmed Hosni Mahmoud, Nada Ali Hakami, Alaaeldin M. Hafez, . An Intelligent Deep Learning Model for CO2 Adsorption Prediction. Adsorption Science & Technology 2022, 2022 https://doi.org/10.1155/2022/8136302
  29. Yuquan Zhao, Jian Shen, Jimeng Feng, Zhitong Sun, Tianyang Sun, Decai Liu, Mansong Xi, Rui Li, Xinze Wang. The Estimation of Chemical Oxygen Demand of Erhai Lake Basin and Its Links with DOM Fluorescent Components Using Machine Learning. Water 2021, 13 (24) , 3629. https://doi.org/10.3390/w13243629
  30. Ruixing Huang, Chengxue Ma, Jun Ma, Xiaoliu Huangfu, Qiang He. Machine learning in natural and engineered water systems. Water Research 2021, 205 , 117666. https://doi.org/10.1016/j.watres.2021.117666
Open PDF

Environmental Science & Technology

Cite this: Environ. Sci. Technol. 2021, 55, 1, 709–718
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.est.0c05836
Published December 9, 2020
Copyright © 2020 American Chemical Society

Article Views

3742

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. (a) Time–concentration profiles of O3. Inset: time-dependent exposures of O3 during ozonation. (b) Time–concentration profiles of pCBA. Inset: time-dependent exposures of OH during ozonation (Data shown for two selected water samples, no. 2 in Table S2 of the Supporting Information for natural water and no. 5 in Table S3 of the Supporting Information for wastewater effluent) ([O3]0 = 2.5 mg/L).

    Figure 2

    Figure 2. (a) O3 exposures and (b) OH exposures (for the 60 water samples) as functions of DOC concentration ([O3]0 = 2.5 mg/L).

    Figure 3

    Figure 3. FEEM contour plots of (a) natural water and (b) wastewater effluent (the data shown for two selected water samples, no. 4 in Table S2 of the Supporting Information for natural water and no. 5 in Table S3 of the Supporting Information for wastewater effluent).

    Figure 4

    Figure 4. Plots of measured vs predicted O3 exposures for four RF models, (a) FEEM-Free, (b) FEEM-LowRes, (c) FEEM-HighRes, and (d) FEEM-FullRes ([O3]0 = 2.5 mg/L).

    Figure 5

    Figure 5. Plots of measured vs predicted OH exposures for four RF models, (a) FEEM-Free, (b) FEEM-LowRes, (c) FEEM-HighRes, and (d) FEEM-FullRes ([O3]0 = 2.5 mg/L).

    Figure 6

    Figure 6. Plots of the measured vs predicted MP abatement for four RF models, (a) FEEM-Free, (b) FEEM-LowRes, (c) FFEM-HighRes, and (d) FEEM-FullRes (Raw data for measured values are presented in Figure S18 of the Supporting Information) ([MP]0 = 0.1 μM, [O3]0 = 2.5 mg/L).

  • References


    This article references 37 other publications.

    1. 1
      Hoigné, J. Chemistry of Aqueous Ozone and Transformation of Pollutants by Ozonation and Advanced Oxidation Processes. In Quality and Treatment of Drinking Water II, Part of The Handbook of Environmental Chemistry (Part C: Water Pollution); Hrubec, J., Ed.; Springer: Berlin, 1998; Vol 5, pp 83141.
    2. 2
      Lee, Y.; von Gunten, U. Advances in predicting organic contaminant abatement during ozonation of municipal wastewater effluent: reaction kinetics, transformation products, and changes of biological effects. Environ. Sci.: Water Res. Technol. 2016, 2, 421442,  DOI: 10.1039/c6ew00025h
    3. 3
      Glaze, W. H. Drinking-water treatment with ozone. Environ. Sci. Technol. 1987, 21, 224230,  DOI: 10.1021/es00157a001
    4. 4
      Huber, M. M.; Canonica, S.; Park, G.-Y.; von Gunten, U. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ. Sci. Technol. 2003, 37, 10161024,  DOI: 10.1021/es025896h
    5. 5
      von Gunten, U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res. 2003, 37, 14431467,  DOI: 10.1016/S0043-1354(02)00457-8
    6. 6
      Schmidt, C. K.; Brauch, H.-J. N,N-dimethylsulfamide as precursor for N-nitrosodimethylamine (NDMA) formation upon ozonation and its fate during drinking water treatment. Environ. Sci. Technol. 2008, 42, 63406346,  DOI: 10.1021/es7030467
    7. 7
      von Sonntag, C.; von Gunten, U. Chemistry of Ozone in Water and Wastewater Treatment: From Basic Principles to Applications; IWA Publishing: London, 2012.
    8. 8
      Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solution. J. Phys. Chem. Ref. Data 1988, 17, 513,  DOI: 10.1063/1.555805
    9. 9
      von Gunten, U.; Hoigné, J. Bromate formation during ozonation of bromide-containing waters: Interaction of ozone and hydroxyl radical reactions. Environ. Sci. Technol. 1994, 28, 12341242,  DOI: 10.1021/es00056a009
    10. 10
      Elovitz, M. S.; von Gunten, U. Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept. Ozone: Sci. Eng. 1999, 21, 239260,  DOI: 10.1080/01919519908547239
    11. 11
      Kwon, M.; Kye, H.; Jung, Y.; Yoon, Y.; Kang, J.-W. Performance characterization and kinetic modeling of ozonation using a new method: ROH,O3 concept. Water Res. 2017, 122, 172182,  DOI: 10.1016/j.watres.2017.05.062
    12. 12
      Kim, M. S.; Cha, D.; Lee, K.-M.; Lee, H.-J.; Kim, T.; Lee, C. Modeling of ozone decomposition, oxidant exposures, and the abatement of micropollutants during ozonation processes. Water Res. 2020, 169, 115230,  DOI: 10.1016/j.watres.2019.115230
    13. 13
      Mobed, J. J.; Hemmingsen, S. L.; Autry, J. L.; McGown, L. B. Fluorescence characterization of IHSS humic substances: Total luminescence spectra with absorbance correction. Environ. Sci. Technol. 1996, 30, 30613065,  DOI: 10.1021/es960132l
    14. 14
      Baker, A. Fluorescence excitation-emission matrix characterization of some sewage-impacted rivers. Environ. Sci. Technol. 2001, 35, 948953,  DOI: 10.1021/es000177t
    15. 15
      Yu, H.; Qu, F.; Zhang, X.; Shao, S.; Rong, H.; Liang, H.; Bai, L.; Ma, J. Development of correlation spectroscopy (COS) method for analyzing fluorescence excitation emission matrix (EEM): A case study of effluent organic matter (EfOM) ozonation. Chemosphere 2019, 228, 3543,  DOI: 10.1016/j.chemosphere.2019.04.119
    16. 16
      Cui, Y.; Yu, J.; Su, M.; Jia, Z.; Liu, T.; Oinuma, G.; Yamauchi, T. Humic acid removal by gas-liquid interface discharge plasma: performance, mechanism and comparison to ozonation. Environ. Sci.: Water Res. Technol. 2019, 5, 152160,  DOI: 10.1039/c8ew00520f
    17. 17
      Li, L.; Rong, S.; Wang, R.; Yu, S. Recent advances in artificial intelligence and machine learning for nonlinear relationship analysis and process control in drinking water treatment: A review. Chem. Eng. J. 2021, 405, 126673,  DOI: 10.1016/j.cej.2020.126673
    18. 18
      American Public Health Association (APHA), Standard Methods for the Examination of Water and Wastewater; Greenberg, A. E., Clesceri, L. S., Eaton, A. D., Eds.; APHA: Washington, DC, 1992.
    19. 19
      Chen, W.; Westerhoff, P.; Leenheer, J. A.; Booksh, K. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 2003, 37, 57015710,  DOI: 10.1021/es034354c
    20. 20
      Bader, H.; Hoigné, J. Determination of ozone in water by the indigo method. Water Res. 1981, 15, 449456,  DOI: 10.1016/0043-1354(81)90054-3
    21. 21
      Breiman, L.; Friedman, J. H.; Olshen, R. A.; Stone, C. J. Classification and Regression Trees; Chapman and Hall/CRC: Boca Raton, FL, 1984.
    22. 22
      Ließ, M.; Glaser, B.; Huwe, B. Uncertainty in the spatial prediction of soil texture. Geoderma 2012, 170, 7079,  DOI: 10.1016/j.geoderma.2011.10.010
    23. 23
      Breiman, L. Random Forests. Mach. Learn. 2001, 45, 532,  DOI: 10.1023/A:1010933404324
    24. 24
      Baek, S.-S.; Choi, Y.; Jeon, J.; Pyo, J.; Park, J.; Cho, K. H. Replacing the internal standard to estimate micropollutants using deep and machine learning. Water Res. 2021, 188, 116535,  DOI: 10.1016/j.watres.2020.116535
    25. 25
      Sevgen, E.; Kocaman, S.; Nefeslioglu, H. A.; Gokceoglu, C. A novel performance assessment approach using photogrammetric techniques for landslide susceptibility mapping with logistic regression, ANN and Random Forest. Sensors 2019, 19, 3940,  DOI: 10.3390/s19183940
    26. 26
      Singh, B.; Sihag, P.; Singh, K. Modelling of impact of water quality on infiltration rate of soil by random forest regression. Model. Earth Syst. Environ. 2017, 3, 9991004,  DOI: 10.1007/s40808-017-0347-3
    27. 27
      Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principle. In Selected Papers of Hirotugu Akaike; Parzen, E., Tanabe, K., Kitagawa, G., Eds.; Springer: New York, NY, 1998.
    28. 28
      Snipes, M.; Taylor, D. C. Model selection and Akaike information criteria: An example from wine ratings and prices. Wine Econ. Policy 2014, 3, 39,  DOI: 10.1016/j.wep.2014.03.001
    29. 29
      Buffle, M.-O.; von Gunten, U. Phenols and amine induced HO· generation during the initial phase of natural water ozonation. Environ. Sci. Technol. 2006, 40, 30573063,  DOI: 10.1021/es052020c
    30. 30
      Neta, P.; Dorfman, L. M. Pulse Radiolysis Studies. XIII. Rate Constants for the Reaction of Hydroxyl Radicals with Aromatic Compounds in Aqueous Solutions. In Radiation Chemistry Volume I. Aqueous Media, Biology, Dosimetry; Hart, E. J., Ed.; American Chemical Society: Washington, DC, 1968.
    31. 31
      Determann, S.; Reuter, R.; Wagner, P.; Willkomm, R. Fluorescent matter in the eastern Atlantic Ocean. Part 1: Method of measurement and near-surface distribution. Deep Sea Res., Part I 1994, 41, 659675,  DOI: 10.1016/0967-0637(94)90048-5
    32. 32
      Ahmad, S. R.; Reynolds, D. M. Monitoring of water quality using fluorescence technique: Prospect of on-line process control. Water Res. 1999, 33, 20692074,  DOI: 10.1016/S0043-1354(98)00435-7
    33. 33
      Mounier, S.; Patel, N.; Quilici, L.; Benaim, J. Y.; Benamou, C. Fluorescence 3D de la matière organique dissoute du fleuve amazone. Water Res. 1999, 33, 15231533,  DOI: 10.1016/S0043-1354(98)00347-9
    34. 34
      Coble, P. G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem. 1996, 51, 325346,  DOI: 10.1016/0304-4203(95)00062-3
    35. 35
      Singh, R. Membrane Technology and Engineering for Water Purification; Butterworth-Heinemann: Oxford, U.K., 2015.
    36. 36
      Chun, K. C.; Chang, R. W.; Williams, G. P.; Chang, Y. S.; Tomasko, D.; LaGory, K.; Ditmars, J.; Chun, H. D.; Lee, B.-K. Water quality issues in the Nakdong River basin in the Republic of Korea. Environ. Eng. Policy 1999, 2, 131143,  DOI: 10.1007/s100220000024
    37. 37
      Nam, S.-N.; Amy, G. Differentiation of wastewater effluent organic matter (EfOM) from natural organic matter (NOM) using multiple analytical techniques. Water Sci. Technol. 2008, 57, 10091015,  DOI: 10.2166/wst.2008.165
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.est.0c05836.

    • Additional details, hyperparameters, and development procedures of the RF model, comparison of RF and ridge regression models, variable importance for FEEM-Free and FEEM-HighRes models, HPLC operating conditions, oxidant exposure values, water characteristic values, percent fluorescence response values, regression performance and AIC values, second-order rate constant values, river water sampling sites, time-dependent concentration profiles of ozone, time-dependent concentration profiles of pCBA, time-dependent exposure profiles of ozone, time-dependent exposure profiles of OH, oxidant exposures as functions of pH and alkalinity, FEEM contour plots, division of FRI regions, comparison of oxidant exposures for RF and ridge regression models, variable importance for the prediction of oxidant exposures, and MP abatement experiment results (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.