Comprehensive Optimization of Western Blotting
蛋白质印迹技术的综合优化
SCI升级版 化学3区SCI基础版 化学2区IF 5.0
武汉大学人民医院心内科,武汉430060
武汉大学心血管研究所,中国武汉430060
湖北省心脏病学重点实验室,武汉430060
信件应收件人的作者。
凝胶2023,9(8),652; https://doi.org/10.3390/gels9080652
提交材料收到:2023年7月13日/修订:2023年8月11日/接受:2023年8月11日/发布:2023年8月14日
(This文章属于特刊《丙烯酸酯基水凝胶的进展》)
Abstract 摘要
蛋白质印迹技术是生物医学领域应用最广泛的技术之一。然而,由于其耗时大、步骤多、方法结果低,受到了许多研究人员的批评。为此,我们对凝胶制备、电泳、电转移、封闭、凝胶切割等步骤进行了改进。首先,我们简化了凝胶的制备步骤,通过预混各种试剂和改变催化剂或自由基生成剂的量,将整个过程缩短到10分钟。其次,通过修改运行缓冲液的配方,将电泳法的运行时间缩短到35min。然后,我们通过在电转移缓冲液中用乙醇取代甲醇来消除甲醇蒸气的危害。最后,使用聚乙烯吡咯烷酮-40可将阻断过程缩短至10分钟。我们的改进缩短了时间,提高了实验生产率,并在不妨碍与大多数现有设备兼容的情况下将实验成本降至最低。整个实验直至一次抗体孵育均可在80分钟内完成。
关键词:免疫印迹;电泳;电转移;快速阻断;凝胶切割
1. Introduction 1.介绍
蛋白质印迹(WB)是蛋白质分析化学的重要工具[1,2]。然而,其耗时大、步骤多、可靠性差等缺点受到了研究人员的批评[3,4]。它的任何一个步骤中的小错误都可能显著改变随后的整个实验。因此,投入大量时间和精力掌握这一方法的研究人员并不一定能获得满意的结果。
免疫印迹的原理并不是特别复杂。首先,混合抗原样品在凝胶上通过单向或双向电泳法分离。然后,凝胶中的单一抗原组分转移到印迹膜上,并通过印迹膜的自然吸附、电场或其他外力固化。最后,用免疫同位素探针或免疫酶探针对抗原固定的基质膜进行检测分析[5]。然而,这些简单的原则需要不同的步骤。
免疫印迹包括核心步骤,如凝胶制备、电泳、电转移、封闭和抗体孵育。每一步都要持续几小时或几天。尽管已经开发了基于三氯甲烷的商业预制凝胶[6,7],但对于高产量的实验来说,高昂的价格并不合适。因此,大多数实验室仍然使用逐个添加试剂、缓慢固化等原始方法来配制凝胶。此外,传统的电泳法(堆积胶:80V;分离胶:120V)至少需要90分钟,湿法电转移也需要90分钟。在一次抗体孵育前,至少需要60分钟来阻断脱脂奶[8]。这个长达五个小时的实验过程确实需要优化。
尽管ProteinSimple Wes等一体化仪器在市场上逐渐占据一席之地[ 9,10,11],但其高昂的价格让许多实验室望而却步。其他半自动系统,例如SNAP i. d. * 2.0[ 12]和Invitrogen™ iBind™,旨在加速蛋白质检测过程,但代价是消耗大量珍贵抗体。
无论这些仪器升级得多频繁,免疫印记的基本原理都保持不变。在这项工作中,我们修改了凝胶制备、凝胶、膜转移、封闭和凝胶切割步骤。在与大多数现有仪器兼容的同时,我们的修改缩短了所需时间,提高了实验成功率和生产力,并降低了实验成本。整个实验可以在一抗温育前80分钟内完成,极大地提高了实验人员的劳动力和生产力。
2. Results 2.结果
2.1. Pre-Mixed Reagents Simplify and Accelerate Gel Preparation
2.1.预混试剂可简化和加速凝胶的制备
考虑到各组分在凝胶制备中的作用,可以简化配制方案。以10%分离凝胶(1.5M Tris(pH 8.8),1.0 mm)和5%堆积凝胶(1.0M Tris(pH 6.8),1.0 mm)为例。凝胶制备所需试剂为去离子水、30%ACR-Bis、Tris、10%十二烷基硫酸钠、TEMED和10%AP。TEMED催化AP产生自由基,引发双丙烯酰胺和丙烯酰胺之间的交联,形成三维网络。因此,自由基的分离使混合溶液得以稳定保存。我们的结果表明,前五种试剂可以混合到一个系统中,并在4℃的黑暗中保存一个月或更长时间。这样,整个复合步骤简化为只加入混合体系和AP。同样,染料指示剂也可以加入到混合体系中而不发生反应[13],这些指示剂通常被添加到预染色凝胶中,以便于样品加载。为了使凝胶团聚更快,可以适当调整AP或TEMED来催化反应。我们比较了传统的分步加入试剂凝胶、预混合试剂凝胶和4°C下的预混合试剂凝胶。我们的结果表明,三种凝胶之间的信噪比没有显著差异(图1A,B)。
图1.预混合凝胶和改良的电泳运行缓冲液加快了实验过程。(A)传统凝胶、快速配方凝胶和快速配方凝胶在4°C下显影一夜后信号强度的比较。除凝胶剂外,实验程序与标准实验程序相同。(B)统计分析和比较不同凝胶制备方案形成后的信号强度(n=6)。使用不同方法制备的凝胶之间的信噪比没有实质性差异。(C)传统的运行缓冲液在200V下进行测试。除运行缓冲液外,实验程序与标准实验程序相同。(D)在200V下测试的改良电泳运行缓冲液。除封闭剂(上海伊匹西姆,中国)外,实验程序与标准实验程序相同。(E)对传统运行缓冲液中不同电压下的信号强度进行统计分析和比较(n=6)。传统的电泳运行缓冲液随着电压的升高而导致蛋白质信号的丢失。(F)对市售封堵剂的信号强度进行统计分析和比较(n=4)。标准实验程序与市售封闭剂兼容,蛋白质信号强度在一定范围内与样品量呈线性关系。(G)在不同电压条件下测试改良的电泳运行缓冲液。除改良的电泳运行缓冲液的电压外,实验程序与标准实验程序相同。
2.2. Modification of the Formula of the Running Buffer to Accelerate Electrophoresis
2.2.改进运行缓冲液配方以加速凝胶
我们在高压下测试了传统的电泳运行缓冲液(Tris 19.2 mm,甘氨酸19.2 mm,十二烷基硫酸钠3.5 mm,pH 8.3)。令人遗憾的是,随着电压的增加,出现了各种问题。最显著的缺点之一是它失去了蛋白质信号,并且不能显著缩短电泳时间(图1C,E)。为了加快电泳速度,我们修改了运行缓冲液的配方(Tris38.1 mM,甘氨酸266.7 mM,HEPES21.0 mM,SDS3.5 mM,pH 8.3)。改进的运行缓冲液在室温下200V下可在35min内完成电泳(图1D,F)(表1)。随后,我们测试了不同电压下的修饰后的电泳液(表1)。令人惊讶的是,当电压设置为300V时,它仍然正常工作(图1G),但随之而来的不断上升的热量需要冰水浴来驱散。1倍电泳缓冲液在室温保存后易发生絮凝。当然,10倍的电泳液不容易变质,但由于电解液的量较大,很难溶解。一般情况下,我们准备了5倍的电泳液用于储藏。
2.3. Replacement of Methanol with Ethanol in the Electrotransfer Buffer to Reduce Toxicity
2.3.用乙醇替代电转移缓冲液中的甲醇以降低毒性
我们在半干电转移缓冲液(Tris 36.9毫米、Glyine 39.1毫米、SDS1.3毫米和20%乙醇)中用乙醇替代了甲醇。这种升级后的配方减少了甲醇蒸气。在测试的蛋白质中,两组之间GADH、CD 81和CyC的信噪比没有统计学差异。然而,PINK的信噪比在乙醇组中最强(图2A、B)。此外,我们还测试了十二烷基硫酸钠对电转移效率的影响。我们的结果表明,添加SDs增强了GAACH和CD 81的信号强度(图2A、B)。
图2.电转移缓冲液配方和不同电转移时间对不同分子量蛋白质的影响。(A)用乙醇代替电转移缓冲液中的甲醇可以获得相同的效率。除了电转移缓冲液外,实验程序与标准实验程序相同。(B)对不同电转移缓冲液的信号强度进行统计分析和比较(n = 6)。(C)不同电转移时间对不同分子量蛋白质信号强度的影响。除了电转移时间外,实验程序与标准实验程序相同。(D)对不同电转移时间的信号强度进行统计分析和比较(n = 6)。
2.4. Proteins of Different Molecular Weights Have the Most Suitable Electrotransfer Time
2.4.不同分子量的蛋白质具有最合适的电转移时间
对于丰度足够高的蛋白质,适当延长电转移时间不会对信号强度产生显着影响。如图2C、D所示,GADH在15分钟、25分钟和35分钟的信号强度没有显着的统计学差异。然而,PINK(70 Da)的信号强度随着电转移时间的延长而增加。相比之下,CyC(15 KDa)的信号强度随着电转移时间的延长而减弱。当电转移时间延长至35分钟时,CyC的蛋白标记物无法可视化(图2C)。这些结果表明,低丰度的蛋白质具有相对合适的电转移时间。我们广泛测试了15-130 KDa的蛋白质。根据我们的实验经验,我们建议设置以下参数:10-25 KDa,25 V,15分钟; 25-55 KDa,25 V,20分钟; 55-70 KDa,25 V,25分钟;和70-130 KDa,25 V,30-35分钟。
2.5. The 0.45 μm NC Membrane Intercepts Protein Marker Dyes Better Than the 0.45 μm PVDF Membrane
2.5. 0.45 μm NC膜对蛋白标记物染料的拦截效果优于0.45 μm PDC膜
我们对0.22μm聚偏氟乙烯膜、0.45μm聚偏氟乙烯膜和0.45μm NC膜进行了比较研究。结果表明,0.45μm PVDF不能有效地截留蛋白质标记染料(图3A),当大分子蛋白质转移到膜中时,小分子蛋白质容易过度转移。优点是背景信号相对较低。0.45μm纳米碳化膜能够截留蛋白质标记染料(图3A),但与0.45μm聚偏氟乙烯膜一样,它对小分子蛋白质也存在过度转移性问题。0.22μm聚偏氟乙烯膜不仅保留了预染色的蛋白质标记,而且还保留了小分子和中等分子量的蛋白质(图3A-C)。通过对信号强度的定量分析,发现0.22μm聚偏氟乙烯膜对小分子蛋白质(CyC、CD81)的截留能力明显强于0.45μm聚偏氟乙烯膜和0.45μm NC膜(图3B,C)。
图3.不同膜材料和孔对蛋白质信号强度的影响。(A)0.45μm聚偏氟乙烯不能有效截留蛋白质标记染料。(2)不同的膜材料和孔对不同相对分子质量的蛋白质有不同的截留能力。除膜外,实验程序与标准实验程序相同。(C)对不同材料的膜或孔的信号强度进行统计分析和比较(n=6)。
2.6. Cutting the Gel Also Avoids Band Counterfeiting
2.6.切断凝胶也可以避免带子造假
免疫印迹带是纸张欺诈的重灾区。每年都有无数的论文因为蛋白质带而在PubPeer上受到质疑。渐渐地,一些期刊开始倡导使用未切割的凝胶。未切割凝胶无疑增加了研究人员的工作量,消耗了试剂和样本。未切割凝胶的目的是确认相应分子量的目标蛋白,并验证一抗的特异性。在我们的改进方案中,切割凝胶达到了类似的效果。首先,我们用油基笔在电转移后的膜上标记目的蛋白,并将膜切割成条带。然后,将这些条带拼接成一个完整的膜,并获得图像。最后,在开发过程中保存了一张Brightfield图像。因此,照片和个人笔迹证实了这些带子的一致性。如图4所示,在趋势错误的条带中,参考蛋白跟随目标蛋白的趋势。参考蛋白的不亲和性证明这些条带是伪造的。
通过特殊笔迹证实,这三条谱带来自同一膜。通过操纵总蛋白质量,我们伪造了蛋白质条带的低、高、中趋势,但参考蛋白也显示了相同的趋势,证明存在伪造的痕迹。红色箭头表示个人笔迹。实验程序与标准实验程序相同。
2.7. Protein-Free Rapid Blocking Buffer Outperforms Skim Milk
2.7.无蛋白快速封闭缓冲液性能优于脱脂牛奶
阻断缓冲液阻止了一抗的非特异性结合,提高了信噪比。对于一些高质量的抗体,可能不会进行阻断。比较了聚乙烯吡咯烷酮(PVP-40)1%+吐温20 0.05%和5%脱脂牛奶+吐温20 0.05%的封闭率。PVP-40阻断10min的AKT、Rab27a和CD81的信号强度显著高于阻断1h的脱脂牛奶,TSG101、KCa3.1和GAPDH的信号强度也不低于后者(图5)。此外,与PVP-40相比,商用阻塞缓冲区并没有显示出压倒性的优势(图1D)。然而,PVP-40的含水缓冲液容易变质,在室温下只能储存一周。添加0.05-1%的无毒普罗克林(上海碧瑶泰、中国)可大大延长保质期。
PVP-40封闭10min的效率与脱脂牛奶封闭1h的效率相当,除封闭试剂(n=6)外,实验程序与标准实验程序相同。
3. Discussion 3.讨论
尽管免疫印迹在生化研究中具有重要意义,但由于操作繁琐,不可控变量太多,结果的重复性较差。为此,我们整合了现有的技术和解决方案,试图产生一种指导方针,使初学者能够快速掌握这项技能。同时,通过对现有设备的改进,尽可能地降低实验成本,并针对目前存在的问题提出了解决方案。
目的蛋白的浓度、溶解度和丰度对免疫印迹的结果起决定性作用。在进行下一步之前,有必要对蛋白质浓度进行量化。当样品中含有许多细胞时,容易使样品变得粘稠,导致吸管尖端堵塞,增加样品加载误差。这种粘性的主要原因是核DNA的释放。研究表明,超声波可以产生切割应力来破坏DNA结构,这大大改善了裂解和解离目标蛋白[14,15]。当然,反复研磨、移液、脱氧核糖核酸酶或用RIPA和加载缓冲液(4:1)稀释也可以降低粘度。
整个过程中,试剂一一混合并倒入凝胶制作玻璃板中。混合耗时、费力且容易混淆。我们通过将试剂混合到系统中来优化凝胶制备方案,这意味着凝胶的制备缩短至10分钟。将AP或TEMED增加50-100%显着加速凝胶的凝固。然而,过量的AP或TEMED会导致凝胶燃烧和凝胶在凝胶过程中扭曲。碱性条件下聚合反应很快,但碱性太强时凝胶又硬又脆。当需要高pH值时,应降低AP或TEMED。
传统的电泳法至少需要90分钟,这对于高通量实验来说太耗时了。事实上,毛细管电泳因其快速和高通量而彻底改变了这一领域[16,17]。然而,它需要购买昂贵的设备和定制的消耗品。这无疑将导致不愿投资于捉襟见肘的实验室。杜穆特的实验室开发了一种新的电泳液(100 mm Tris、100 mm Tricine和100 mm HEPES),可以在35分钟内完成电泳。此外,还可以提高小分子蛋白质的分辨率[18]。然而,Tricine并不便宜。我们自行研制的电泳液可以显著缩短电泳法的时间,有效分离不同分子量的蛋白质。由于离子强度的增强,热随着电压的升高而显著增加,因此散热就显得尤为重要。此外,保持电泳液的pH值也是至关重要的。结果表明,电泳后内外缓冲液的pH差约为0.3,表现出良好的缓冲性能。当然,我们只测试了HEPES的缓冲能力,其他“好”的缓冲系统理论上应该会产生很好的结果。
与传统的湿电转移相比,半干系统的效率无与伦比。维拉纽瓦的实验室已成功在Towbin的转移缓冲液中使用了丙酮[ 19]。Ghanshyam等人试图降低甲醇的浓度。他们的结果表明,电转移缓冲液中的甲醇对大蛋白质信号几乎没有影响。然而,较低浓度的甲醇(10%)足以为小分子或中等分子量的蛋白质产生最大信号[ 20]。我们的研究证实,乙醇对于小分子或中等分子量的蛋白质也是合理的。使用乙醇基电转移缓冲液将蛋白质有效转移到NC和氨纶膜上。此外,添加十二烷基硫酸钠还提高了电转移效率[ 21]。
Garic等人开发了一种电转移缓冲液(48 mMTris、20 mMMHEPES、1.3 mMMNaHSO、1.0 mMEDTA和1.3 mMMN,N-二甲基甲氨),可用于在12分钟内完成电转移。NaHSO通过充当还原剂来弥补了SDs的缺乏,增强了大蛋白质的溶解度,并充当HEPES和HEPPS/EPPS产生的自由基的清除剂。此外,EDTA还间接稳定含嗪环的缓冲液并可以水合金属离子。N,N-二甲基甲胺充当离液剂[ 22]。随后,Grogery及其同事申请了一项快速电转移缓冲液(336 mM Trisis、260 mM Glycine、140 mM Tricine和2.5 mM EDTA)的专利(US 9989493 B2),可以在5-10分钟内转移10-300 KDa蛋白质。这种快速电转移缓冲液的离子强度是传统转移缓冲液的10倍,会产生相当大的热量。因此,加入20%的乙醇对于散热是有效的。
有趣的是,预染色的蛋白标记物并不能真正反映蛋白是否转移到0.45 μm的聚偏氟乙烯膜上。在半干体系中,染料可以在5分钟内同时转移到0.45 μm的聚偏氟乙烯膜和下纸片上,但几乎没有蛋白质转移到0.45 μm的聚偏氟乙烯膜上。事实上,预染色的蛋白质标记物是纯化的蛋白质和染料的混合物,当暴露于电场时可能会分离。因此,蛋白质是否转移到膜上是取决于时间的。
到目前为止,学术界仍然无法协调不同分子量蛋白质的转移问题。小分子量蛋白质比大分子量蛋白质移动得更快,这导致了一种异步转移。传统的做法是将大分子和小分子的蛋白质分开转移。对其原因的深入讨论仍在进行中。0.45μm聚偏氟乙烯膜对快速运动的小分子蛋白质有较弱的截留力,容易透过膜。Karey等人。报道称,使用0.5%的戊二醛来检测低分子量的酸性和碱性等电点蛋白,使免疫印迹的灵敏度提高了1.5-12倍[23]。Jing和他的同事提出,有机溶剂和加热大大避免了蛋白质信号的损失[24]。总而言之,他们的方法可以通过增强蛋白质与膜的结合来降低检测阈值。然而,这种固定方法的信号增强只能限于对具有一定分子量区间的蛋白质的检测。因此,我们提出了以下解决方案:1.降低电压,延长电传输时间。当电场力和PVDF膜的电阻(机械阻力和静电力)达到平衡时,蛋白质不会定向运动。2.用多层0.45μm聚偏氟乙烯膜截留转运蛋白。当蛋白转移到第一个0.45μm聚偏氟乙烯膜时,第二个膜在一定时间内截留第一个转移的小分子蛋白。3.减小PVDF膜的孔径意味着增加膜的阻力。如果是0。使用22 μm的聚偏氟乙烯膜,延长封闭时间可以解决深背景的问题。但这些溶液只能在一定程度上提高保留不同分子量蛋白质的能力。增加膜厚度或堆叠不同孔尺寸的膜可能会提供一些新的想法。
参考蛋白和目标蛋白不在同一膜上可见的问题是免疫印记的固有缺陷。如果没有参考蛋白,这些趋势就可以随意操纵。当然,最有效的方法是在一抗剥离后温育同一膜。然而,蛋白质或抗体的结合特性各不相同,因此需要探索剥离条件,这无疑会消耗时间和精力。这个问题可以使用我们上面提出的摄影技术部分解决。此外,可用作参考蛋白的全细胞蛋白包括GADH(37 KDa)、肌动蛋白(42 KDa)、a-Tubulin(50 KDa)、β-Tubulin(55 KDa)和HSP 90(90 KDa)[ 25,26]。当在同一膜上切割不同分子量需求的目标蛋白时,可以在其他未切割区域切割参考蛋白,以确保每个膜都有参考蛋白。
块效应是提高信噪比的一种有效方法。脱脂牛奶需要立即制备,因为这种溶液会迅速变质,并掩盖一些主要抗体。其他物质,如牛血清白蛋白、鱼胶和吐温-20,不会缩短封闭时间[27]。以前的研究发现,豆浆是一种廉价的替代商业上可获得的快速封闭试剂[28]。然而,它也有不适合长期保存的缺点。PVP-40具有无毒和生物相容性,早在30年前就被报道为封闭剂[29]。崔报告说,PVP的优势是在任何检测通道中都没有或非常低的自发荧光。然而,它在阻止非特定条带方面效果较差[30]。通过一系列的时间梯度比较,我们发现PVP-40即使在短时间内也具有良好的封闭效果。如图1D所示,商业封闭剂可能不会提供成本效益优势。
4. Conclusions 4.结论
我们大幅修改了免疫印记的关键步骤。首先,简化的凝胶制备方案大大提高了速度并减少了失败的机会。其次,改进的凝胶缓冲液配方在与传统配方相媲美的同时大幅减少了所需的时间。第三,用乙醇取代电转移缓冲液中的甲醇可以显着减少实验室操作员接触危险气体的情况。最后,VP-40在弥补脱脂奶的缺点的同时也达到了类似的结果。与传统协议相比,我们的标准实验过程将效率提高了近四倍。我们的修改表明,即使是低质量的抗体也可以正常可视化。如果将一抗与膜在室温下孵育,则可以在一天内完成实验。
5. Materials and Methods
5.材料和方法
5.1. Reagents 5.1.试剂
放射免疫沉淀分析裂解缓冲液(利华生物,武汉,中国),鸡尾酒100×(100M PMSF(百时美施贵宝,上海,中国),1毫克/毫升亮肽(百时美施贵宝,上海,中国),1毫克/毫升他汀(百时美施贵宝,上海,中国)),负载缓冲液5×(1M Tris 1.25毫升,十二烷基硫酸钠0.5g,溴酚蓝25毫克,100%甘油2.5,β-巯基乙醇250微克L),加入去离子水至10毫升),30%ACR-BIS(丙烯酰胺:双丙烯酰胺=29:1),过硫酸铵(AP,服务生物,武汉,过硫铵)甘氨酸(北京,中国)、三元(北京,中国)和2-[4-(2-羟乙基)哌嗪-1-基]乙磺酸(HEPES,生物弗罗克斯,德国艾因豪森)。一抗:细胞色素C(CyC,12 KDa,GeneTex,美国欧文,CA,1:1000),CD81(胞外体膜标记物,26 KDa,Abmart,上海,中国,1:1000),Rab27a(外体分泌相关蛋白,28 kDa,ServiceBio,武汉,中国,1:1000),GAPDH(甘油醛-3-磷酸脱氢酶,36 KDa,ServiceBio,武汉,中国,1:1000),TSG101(肿瘤易感基因101蛋白,46 kDa,ServiceBio,武汉,中国,1:1000),KCa3.1(钾激活钙通道亚家族N成员4,48 kDa,Da Proteintech,武汉,中国,1:1000)AKT(AKT Serine/Threonine Kinase 1,60 kDa,武汉,中国,1:1000)和PINK(PTEN诱导的可能的Kinase蛋白,63 kDa,GeneTex,美国,欧文,CA,1:1000)。二次辣根过氧化物酶标记抗体(Proteintech,武汉,中国,1:3 000),预染蛋白标记物(ThermoFisher,波士顿,美国,26616),0.22和0.45µm聚偏氟乙烯膜(聚偏氟乙烯,微孔,美国伯灵顿,美国),0。45 µm硝酸纤维素膜(NC,Millipore,Burlington,MA,USA)、PBS(BioSharp,中国北京)、Tween-20(Servebio,中国武汉)和MEL化学发光试剂盒(Servebio,中国武汉)。
5.2. Tissue Lysates 5.2.组织裂解物
这项研究得到了我们机构审查委员会动物研究小组委员会的批准。从30 mg C57BL/6J小鼠心肌组织中提取蛋白质,加入800μL RIPA和100×鸡尾酒。然后,将组织粉碎两次(静心、上海、中国;10赫兹,45 S),在冰上裂解10分钟。组织悬浮液在12,000g下离心20分钟,并去掉沉淀物。根据制造商的说明,用BCA蛋白质分析试剂盒(Aspen,武汉,中国)测定蛋白质浓度。将样品加入5倍加载缓冲液中,在100℃下煮沸10min。
5.3. Standard Experimental Procedure
5.3.标准实验程序
用快速凝胶(Mini Gel)分离每孔总蛋白30微克。用改良的200V运行缓冲液进行电泳35min(Mini-Protean Tetra Cell Systems,Bio-Rad,洛杉矶,加利福尼亚州,美国)。然后,将蛋白质转移到含有十二烷基硫酸钠的乙醇基电转移缓冲液的0.45微米PVDF膜上25分钟(美国加利福尼亚州洛杉矶,Bio-Rad的Trans-Blot SD半干凝胶转移细胞),并用PVP-40阻断10分钟。随后,将膜与一抗在4℃下孵育过夜,然后在PBST中冲洗三次。膜与相应的二抗在室温下孵育1h,用PBST漂洗3次,然后显影(ChemiDoc XRS System,Bio-Rad,洛杉矶,加利福尼亚州,美国)。
5.4. Analysis of Signal Intensities
5.4.信号强度分析
使用Image Lab(Bio-Rad,Hercules,CA,USA)和GraphPad Prism 8.0(GraphPad Software,Boston,MA,USA)测量和比较蛋白质带的信号强度。每条蛋白条带内的密度体积以强度/mm 2 表示。所有值均为平均值±S.E.
Author Contributions 作者贡献
D.L.写了手稿。D.L.和qz对研究的构思和设计做出了贡献。DL,H.W.和S.C.合作制定公式。所有作者均已阅读并同意手稿的出版版本。
Funding 资金
本工作得到国家自然科学基金项目(81970277和82170312)的资助。
Institutional Review Board Statement
机构审查委员会声明
Informed Consent Statement
知情同意声明
Data Availability Statement
数据可用性声明
Conflicts of Interest 利益冲突
作者声明没有竞争的经济利益。
References 参考文献
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
在T4噬菌体头部组装过程中结构蛋白的切割。《自然》1970年,227,680-685。[谷歌学者][CrossRef][PubMed] - Towbin, H.; Staehelin, T.; Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA 1979, 76, 4350–4354. [Google Scholar] [CrossRef] [PubMed]
Towbin,H.;Staehelin,T.;Gordon,J.蛋白质从聚丙烯酰胺凝胶到硝化纤维素片的电泳性转移:程序和一些应用。程序娜塔莉。阿卡德。SCI。美国1979,76,4350-4354。[谷歌学者][CrossRef][PubMed] - Gilda, J.E.; Ghosh, R.; Cheah, J.X.; West, T.M.; Bodine, S.C.; Gomes, A.V. Western Blotting Inaccuracies with Unverified Antibodies: Need for a Western Blotting Minimal Reporting Standard (WBMRS). PLoS ONE 2015, 10, e0135392. [Google Scholar] [CrossRef]
吉尔达,J.E.;Ghosh,R.;Cheah,J.X.;West,T.M.;Bodine,S.C.;戈麦斯,A.V.:未经验证的抗体的蛋白质印迹不准确性:需要蛋白质印迹最小报告标准(WBMRS)。PLOS One 2015,10,e0135392。[谷歌学者][CrossRef] - Zhang, K.; Zhang, J.; Ding, N.; Zellmer, L.; Zhao, Y.; Liu, S.; Liao, D.J. ACTB and GAPDH appear at multiple SDS-PAGE positions, thus not suitable as reference genes for determining protein loading in techniques like Western blotting. Open Life Sci. 2021, 16, 1278–1292. [Google Scholar] [CrossRef] [PubMed]
在蛋白质印迹等技术中,ACTB和GAPDH出现在多个SDS-PAGE位置,因此不适合作为蛋白质载量测定的参考基因。开放生命科学。2021、16、1278-1292。[谷歌学者][CrossRef][PubMed] - Sule, R.; Rivera, G.; Gomes, A.V. Western blotting (immunoblotting): History, theory, uses, protocol and problems. BioTechniques 2023. [CrossRef]
免疫印迹:历史、理论、用途、协议和问题。2023年生物技术展。[交叉引用] - Penna, A.; Cahalan, M. Western Blotting using the Invitrogen NuPage Novex Bis Tris minigels. J. Vis. Exp. 2007, 7, 264. [Google Scholar] [CrossRef] [Green Version]
使用Invitgen NuPage Novex Bis Tris Minigels进行的免疫印迹。J·维斯。实验2007、7、264。[谷歌学者][CrossRef][绿色版] - Desai, S.; Dworecki, B.; Cichon, E. Direct immunodetection of antigens within the precast polyacrylamide gel. Anal. Biochem. 2001, 297, 94–98. [Google Scholar] [CrossRef]
Desai,S.;Dworecki,B.;Cichon,E.预制聚丙烯酰胺凝胶内抗原的直接免疫检测。肛门。生物化学。2001、297、94-98。[谷歌学者][CrossRef] - Mahmood, T.; Yang, P.C. Western blot: Technique, theory, and trouble shooting. N. Am. J. Med. Sci. 2012, 4, 429–434. [Google Scholar] [CrossRef]
《西方印迹:技术、理论和疑难解答》。N.AmJ.Med.SCI。2012年,4,429-434。[谷歌学者][CrossRef] - Scheller, C.; Krebs, F.; Wiesner, R.; Wätzig, H.; Oltmann-Norden, I. A comparative study of CE-SDS, SDS-PAGE, and Simple Western-Precision, repeatability, and apparent molecular mass shifts by glycosylation. Electrophoresis 2021, 42, 1521–1531. [Google Scholar] [CrossRef]
谢勒,C.;克雷布斯,F.;威斯纳,R.;瓦齐格,H.;奥尔特曼-诺登岛CE-SDS-PAGE和Simple Western-精密度、重复性和糖基化表观分子质量变化的比较研究。凝胶法2021,42,1521-1531。[ Google Scholar] [ CrossRef] - Harris, V.M. Protein detection by Simple Western™ analysis. Methods Mol. Biol. 2015, 1312, 465–468. [Google Scholar] [CrossRef]
哈里斯,VM.通过Simple Western™分析进行蛋白质检测。Methods Mol. Biol. 2015,1312,465-468。[ Google Scholar] [ CrossRef] - Beekman, C.; Janson, A.A.; Baghat, A.; van Deutekom, J.C.; Datson, N.A. Use of capillary Western immunoassay (Wes) for quantification of dystrophin levels in skeletal muscle of healthy controls and individuals with Becker and Duchenne muscular dystrophy. PLoS ONE 2018, 13, e0195850. [Google Scholar] [CrossRef] [PubMed]
比克曼,C.;詹森,AA;巴哈特,A.; van Deutekom,JC; Datson,NA使用毛细血管Western免疫分析法(Wes)量化健康对照组和Becker和Duchenne肌营养不良症患者骨骼肌中的肌营养不良蛋白水平。PLoS ONE 2018,13,e0195850。[ Google Scholar] [ CrossRef] [ PubMed] - Signore, M.; Manganelli, V.; Hodge, A. Antibody Validation by Western Blotting. Methods Mol. Biol. 2017, 1606, 51–70. [Google Scholar] [PubMed]
先生,M.;曼加内利,V.;霍奇,A.通过蛋白质Blotting进行抗体验证。Methods Mol. Biol. 2017,1606,51-70。[ Google Scholar] [ PubMed] - Hagiwara, M. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blotting analyses via colored stacking gels. Anal. Biochem. 2022, 652, 114751. [Google Scholar] [CrossRef] [PubMed]
Hagiwara、十二烷基硫酸钠-聚丙烯酰胺凝胶电泳法和有色堆积凝胶的Western blotting分析。肛门。生物化学。2022年、652年、114751年。[谷歌学者][CrossRef][PubMed] - Burgess, K.A.; Miller, A.F.; Oceandy, D.; Saiani, A. Western blot analysis of cells encapsulated in self-assembling peptide hydrogels. BioTechniques 2017, 63, 253–260. [Google Scholar] [CrossRef] [Green Version]
伯吉斯,K.A.;米勒,A.F.;Ocean andy,D.;Saiani,A.生物技术,2017,63,253-260。[谷歌学者][CrossRef][绿色版] - Chaiyarit, S.; Thongboonkerd, V. Comparative analyses of cell disruption methods for mitochondrial isolation in high-throughput proteomics study. Anal. Biochem. 2009, 394, 249–258. [Google Scholar] [CrossRef]
高通量蛋白质组学研究中线粒体分离细胞破坏方法的比较分析。肛门。生物化学。2009、394、249-258。[谷歌学者][CrossRef] - Jin, S.; Furtaw, M.D.; Chen, H.; Lamb, D.T.; Ferguson, S.A.; Arvin, N.E.; Kennedy, R.T. Multiplexed Western Blotting Using Microchip Electrophoresis. Anal. Chem. 2016, 88, 6703–6710. [Google Scholar] [CrossRef] [Green Version]
使用微芯片电泳法进行多重蛋白质印迹。肛门。化学。2016、88、6703-6710。[谷歌学者][CrossRef][绿色版] - Jin, S.; Anderson, G.J.; Kennedy, R.T. Western blotting using microchip electrophoresis interfaced to a protein capture membrane. Anal. Chem. 2013, 85, 6073–6079. [Google Scholar] [CrossRef] [Green Version]
金,S;安德森,G.J.;肯尼迪,R.T.使用微芯片电泳法连接到蛋白质捕获膜上的Western印迹。肛门。化学。2013,85,6073-6079。[谷歌学者][CrossRef][绿色版] - Dumut, D.C.; Garić, D.; Centorame, A.; Radzioch, D. The gradient-like separation and reduced running time with Tris-Tricine-HEPES buffer for SDS-PAGE. Anal. Biochem. 2022, 653, 114789. [Google Scholar] [CrossRef]
Dumut,D.C.;Garić,D.;Centorame,A.;Radzioch,D.用Tris-Tricine-HEPES缓冲液进行SDSPAGE的梯度样分离和缩短的运行时间。肛门。生物化学。2022年,653,114789。[谷歌学者][CrossRef] - Villanueva, M.A. Electrotransfer of proteins in an environmentally friendly methanol-free transfer buffer. Anal. Biochem. 2008, 373, 377–379. [Google Scholar] [CrossRef]
在环境友好的无甲醇转移缓冲液中蛋白质的电转移。肛门。生物化学。2008年,373,377-379。[谷歌学者][CrossRef] - Heda, G.D.; Shrestha, L.; Thapa, S.; Ghimire, S.; Raut, D. Optimization of western blotting for the detection of proteins of different molecular weight. BioTechniques 2020, 68, 318–324. [Google Scholar] [CrossRef] [Green Version]
Heda,G.D.;Shrestha,L.;Thapa,S.;Ghimire,S.;Raut,D.蛋白质印迹检测不同分子量蛋白质的优化。生物技术,2020,68,318-324。[谷歌学者][CrossRef][绿色版] - Kinoshita-Kikuta, E.; Kinoshita, E.; Matsuda, A.; Koike, T. Tips on improving the efficiency of electrotransfer of target proteins from Phos-tag SDS-PAGE gel. Proteomics 2014, 14, 2437–2442. [Google Scholar] [CrossRef] [PubMed]
Kinoshita-Kikuta,E.;木下,E。;松田,A.;小池,T.提高Phos-tag SDS-PGA凝胶中目标蛋白电转移效率的提示。蛋白质组学2014,14,2437-2442。[ Google Scholar] [ CrossRef] [ PubMed] - Garić, D.; Humbert, L.; Fils-Aimé, N.; Korah, J.; Zarfabian, Y.; Lebrun, J.J.; Ali, S. Development of buffers for fast semidry transfer of proteins. Anal. Biochem. 2013, 441, 182–184. [Google Scholar] [CrossRef] [PubMed]
加里奇,D.;汉伯特,L.; Fils-Aimé,N.;科拉,J。;扎法比安,Y.;莱布伦,JJ; Ali,S.蛋白质快速半干转移缓冲液的开发。Anal. Biochem. 2013,441,182-184。[ Google Scholar] [ CrossRef] [ PubMed] - Karey, K.P.; Sirbasku, D.A. Glutaraldehyde fixation increases retention of low molecular weight proteins (growth factors) transferred to nylon membranes for western blot analysis. Anal. Biochem. 1989, 178, 255–259. [Google Scholar] [CrossRef]
凯瑞,KP; Sirbasku,D.A.味精固定增加了转移到尼龙膜上用于蛋白质杂交分析的低分子量蛋白质(生长因子)的保留。Anal. Biochem. 1989,178,255-259。[ Google Scholar] [ CrossRef] - Xu, J.; Sun, H.; Huang, G.; Liu, G.; Li, Z.; Yang, H.; Dong, W. A fixation method for the optimisation of western blotting. Sci. Rep. 2019, 9, 6649. [Google Scholar] [CrossRef] [Green Version]
徐,J; Sun,H.;黄,G。;刘,G。;李,Z。;杨,H.;东,W.优化蛋白质印记的固定方法。Sci.代表2019年,9,6649。[ Google Scholar] [ CrossRef] [绿色版本] - Ferguson, R.E.; Carroll, H.P.; Harris, A.; Maher, E.R.; Selby, P.J.; Banks, R.E. Housekeeping proteins: A preliminary study illustrating some limitations as useful references in protein expression studies. Proteomics 2005, 5, 566–571. [Google Scholar] [CrossRef]
弗格森,RE;卡罗尔,惠普;哈里斯,A。;马赫,急诊室;塞尔比,PJ;班克斯,RE管家蛋白质:一项初步研究阐明了一些局限性,作为蛋白质表达研究的有用参考。蛋白质组学2005,5,566-571。[ Google Scholar] [ CrossRef] - Shi, J.; Huang, T.; Chai, S.; Guo, Y.; Wei, J.; Dou, S.; Liu, G. Identification of Reference and Biomarker Proteins in Chlamydomonas reinhardtii Cultured under Different Stress Conditions. Int. J. Mol. Sci. 2017, 18, 1822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
石军;黄涛;柴生;郭勇;魏军;窦松生;刘国国。不同胁迫条件下培养的莱茵衣藻参考蛋白和生物标志物蛋白的鉴定。内部J.Mol.SCI。2017、18、1822年。[谷歌学者][CrossRef][PubMed][绿色版] - Kothari, V.; Mathews, S.T. Detection of Blotted Proteins: Not All Blockers Are Created Equal. Methods Mol. Biol. 2015, 1314, 27–32. [Google Scholar] [CrossRef]
斑点蛋白的检测:并不是所有的阻滞剂都是平等的。方法:用小鼠。比奥尔。2015年,1314,27-32。[谷歌学者][CrossRef] - Galva, C.; Gatto, C.; Milanick, M. Soymilk: An effective and inexpensive blocking agent for immunoblotting. Anal. Biochem. 2012, 426, 22–23. [Google Scholar] [CrossRef] [Green Version]
Galva,C.;Gatto,C.;Milanick,M.豆浆:一种有效且廉价的免疫印迹封闭剂。肛门。生物化学。2012年,426,22-23。[谷歌学者][CrossRef][绿色版] - Haycock, J.W. Polyvinylpyrrolidone as a blocking agent in immunochemical studies. Anal. Biochem. 1993, 208, 397–399. [Google Scholar] [CrossRef]
在免疫化学研究中作为封闭剂的聚乙烯吡咯烷酮。肛门。生物化学。1993、208、397-399。[谷歌学者][CrossRef] - Cui, Y. Optimization of blocking conditions for fluorescent Western blot. Anal. Biochem. 2020, 593, 113598. [Google Scholar] [CrossRef]
崔勇。荧光蛋白印迹封闭条件的优化。肛门。生物化学。2020年,593,113598。[谷歌学者][CrossRef]
Voltage | Time (RT/LT min) | RT pH (Internal Buffer/External Buffer) | LT pH (Internal Buffer/External Buffer) |
---|---|---|---|
150 V | 45/55 | 8.52/8.31 | 8.47/8.31 |
200 V | 35/40 | 8.59/8.30 | 8.48/8.33 |
250 V | 23/29 | 8.53/8.39 | 8.59/8.31 |
300 V | 22/27 | 8.64/8.32 | 8.57/8.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. 免责声明/出版商注:所有出版物中包含的声明、观点和数据仅限于个人作者和撰稿人的声明、观点和数据,而不是MDPI和/或编辑的声明、观点和数据。MDPI和/或编辑不对内容中提及的任何想法、方法、说明或产品造成的任何人身或财产伤害承担责任。 |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
作者的©2023。被许可人MDPI,巴塞尔,瑞士。本文是根据知识共享署名(CC By)许可证(https://creativecommons.org/licenses/by/4.0/).)的条款和条件分发的开放获取文章
Share and Cite 分享和引用
Liu, D.; Wu, H.; Cui, S.; Zhao, Q.
Comprehensive Optimization of Western Blotting. Gels 2023, 9, 652.
https://doi.org/10.3390/gels9080652
刘,D.;吴,H.;崔,S.;赵Q。Western Blotting的全面优化。Gels 2023,9,652。https://doi.org/10.3390/gels9080652
Liu D, Wu H, Cui S, Zhao Q.
Comprehensive Optimization of Western Blotting. Gels. 2023; 9(8):652.
https://doi.org/10.3390/gels9080652
刘D、吴H、崔S、赵Q。Western Blotting的全面优化。凝胶。2023; 9(8):652。https://doi.org/10.3390/gels9080652
Liu, Dishiwen, Haoliang Wu, Shengyu Cui, and Qingyan Zhao.
2023. "Comprehensive Optimization of Western Blotting" Gels 9, no. 8: 652.
https://doi.org/10.3390/gels9080652
刘、狄世文、吴浩亮、崔圣宇和赵清艳。2023.“Western Blotting的综合优化”凝胶9,第8期:652。https://doi.org/10.3390/gels9080652
请注意,从2016年第一期起,该杂志使用文章号而不是页面号。请在此处查看更多详细信息。
Article Metrics 文章收件箱
Citations 引文
未找到本文的引用,但您可以查看Google Scholar
Article Access Statistics
文章访问统计
有关期刊统计数据的更多信息,请单击此处。
来自同一IP地址的多个请求算作一个视图。