Chen Sun ^(o.){ }^{\odot}, Qiwen Kong ^(∙){ }^{\bullet}, Graduate Student Member, IEEE, Gan Liu ^(o+){ }^{\oplus}, Graduate Student Member, IEEE, Dong Zhang ^(o+){ }^{\oplus}, Graduate Student Member, IEEE, Leming Jiao ^(o+){ }^{\oplus}, Graduate Student Member, IEEE, Xiaolin Wang ^(∙){ }^{\bullet}, Graduate Student Member, IEEE, Jishen Zhang, Haiwen Xu ^(∙){ }^{\bullet}, Yang Feng, Rui Shao, Yue Chen, and Xiao Gong ^(∙){ }^{\bullet} Chen Sun ^(o.){ }^{\odot} , Qiwen Kong ^(∙){ }^{\bullet} , Graduate Student Member, IEEE, Gan Liu ^(o+){ }^{\oplus} , Graduate Student Member, IEEE, Dong Zhang ^(o+){ }^{\oplus} , Graduate Student Member, IEEE、焦立明 ^(o+){ }^{\oplus} , IEEE 研究生會員, 王曉林 ^(∙){ }^{\bullet} , IEEE 研究生會員, 張吉申, 徐海文 ^(∙){ }^{\bullet} , 馮楊, 邵瑞, 陳玥, 龔曉 ^(∙){ }^{\bullet} .
Abstract 摘要
In this work, we investigate the threshold voltage ( V_(TH)V_{T H} ) and memory window (MW) dynamics under positive and negative bias stress (PBS/NBS) in atomic layer deposition (ALD)-grown zinc oxide (ZnO) ferroelectric field-effect transistors (FeFETs). The gate stack is engineered by inserting an Al_(2)O_(3)\mathrm{Al}_{2} \mathrm{O}_{3} layer between Zr -doped HfO_(2)\mathrm{HfO}_{2} (HZO) layers to form an HZO-Al_(2)O_(3)-HZO\mathrm{HZO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{HZO} configuration. This enhances the MW of ZnO FeFETs to 1.75 V compared to devices without the Al_(2)O_(3)\mathrm{Al}_{2} \mathrm{O}_{3} insertion. From bias stress characterizations, notable results are obtained, especially under NBS conditions. It is revealed that the generation of disorder state (DS) O^(2-)\mathrm{O}^{2-} defects plays a key role when devices are stressed by negative bias, leading to an abnormal positive shift in V_(TH)V_{\mathrm{TH}}. Importantly, the degradation in MW caused by polarization pinning during NBS is mitigated by applying an even more negative bias. This can be explained by enhanced polarization erasing due to NBS. Our investigations provide a deep understanding of bias stress-induced instabilities in ALD-deposited ZnO FeFETs. 在這項工作中,我們研究了原子層沉積 (ALD) 生長的氧化鋅 (ZnO) 鐵電場效電晶體 (FeFET) 在正負偏壓 (PBS/NBS) 下的閾值電壓 ( V_(TH)V_{T H} ) 和記憶視窗 (MW) 動態。閘極堆疊是透過在摻有 Zr 的 HfO_(2)\mathrm{HfO}_{2} (HZO) 層之間插入 Al_(2)O_(3)\mathrm{Al}_{2} \mathrm{O}_{3} 層來形成 HZO-Al_(2)O_(3)-HZO\mathrm{HZO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{HZO} 配置。與沒有插入 Al_(2)O_(3)\mathrm{Al}_{2} \mathrm{O}_{3} 的元件相比,這將 ZnO FeFET 的 MW 增強到 1.75 V。偏置應力特性分析獲得了顯著的結果,尤其是在 NBS 條件下。結果顯示,當元件受到負偏壓時,無序狀態 (DS) O^(2-)\mathrm{O}^{2-} 缺陷的產生扮演了關鍵的角色,導致 V_(TH)V_{\mathrm{TH}} 出現異常的正向偏移。重要的是,在 NBS 期間,由於極化釘造成的 MW 降級,會透過施加更負的偏壓而減緩。這可以用 NBS 所導致的極化擦除增強來解釋。我們的研究提供了對 ALD 沉積 ZnO FeFET 中偏壓應力誘發不穩定性的深入瞭解。
IN THE pursuit of enhancing device performance beyond poly-Si channels for 3D integration, oxide semiconductors (OS) deposited by atomic layer deposition (ALD) have emerged as one of the most promising channel materials due to the high uniformity, decent electron mobility, and low process temperature [1], [2], [3], [4]. OS channels are also viable for implementation in non-volatile ferroelectric field-effect transistors (FeFETs) [5], [6], [7], with doped HfO_(2)\mathrm{HfO}_{2}, particularly HfZrO_(2)\mathrm{HfZrO}_{2} (HZO), as the ferroelectric dielectric [8], [9], [10]. OS FeFETs offer compatibility with CMOS technology, high 為了提升 3D 整合多晶矽通道以外的元件效能,以原子層沉積 (ALD) 方式沉積的氧化物半導體 (OS) 因具有高均勻性、良好的電子遷移率以及低製程溫度等優點而成為最有前途的通道材料之一 [1]、[2]、[3]、[4]。OS 通道也可應用於非揮發性鐵電場效電晶體 (FeFET) [5]、[6]、[7],以摻雜 HfO_(2)\mathrm{HfO}_{2} ,特別是 HfZrO_(2)\mathrm{HfZrO}_{2} (HZO) 作為鐵電介質 [8]、[9]、[10]。OS FeFET 具有與 CMOS 技術相容、高
scalability, and play a significant role in shaping switching speed and power consumption [11], [12], [13]. 可擴充性,並在塑造切換速度和功耗方面扮演重要角色 [11]、[12]、[13]。
Nevertheless, for OS FeFETs, the threshold voltage ( V_(TH)V_{\mathrm{TH}} ) and memory window (MW) instabilities under positive and negative bias stress (PBS/NBS) gradually become challenges, especially when applied in 3D NAND, where the pass gate bias ( V_("PASS ")V_{\text {PASS }} ) induces PBS and the negative turn-off voltage ( V_("OFF ")V_{\text {OFF }} ) leads to NBS [Fig. 1(a)] [14], [15]. So far, strategies to improve the MW and cycling performance of OS FeFETs have been reported [16], [17], [18], [19]. However, the bias stressinduced V_(TH)V_{\mathrm{TH}} and MW instabilities, as well as the underlying mechanisms in OS FeFETs, have not been comprehensively investigated. 儘管如此,對於 OS FeFET 而言,正負偏壓 (PBS/NBS) 下的閾值電壓 ( V_(TH)V_{\mathrm{TH}} ) 和記憶體視窗 (MW) 不穩定性逐漸成為挑戰,尤其是當應用在 3D NAND 時,通過閘極偏壓 ( V_("PASS ")V_{\text {PASS }} ) 會誘發 PBS,而負關閉電壓 ( V_("OFF ")V_{\text {OFF }} ) 則會導致 NBS [圖 1(a)] [14], [15]。到目前為止,改善 OS FeFET 的 MW 和循環性能的策略已被報導 [16]、[17]、[18]、[19]。然而,偏壓應力誘發的 V_(TH)V_{\mathrm{TH}} 和 MW 不穩定性,以及 OS FeFET 中的潛在機理,尚未得到全面的研究。
In this study, OS FeFETs with an ALD-deposited zinc oxide (ZnO)(\mathrm{ZnO}) channel and an HZO-Al_(2)O_(3)-HZO\mathrm{HZO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{HZO} ferroelectric stack are reported, achieving an enhanced MW of 1.75 V attributed to the insertion of Al_(2)O_(3)\mathrm{Al}_{2} \mathrm{O}_{3}. Based on the MW-optimized ZnO FeFETs, bias stress characterizations are conducted. During PBS, it is observed that typical electron trapping effect dominates device behavior, resulting in a positive V_(TH)V_{\mathrm{TH}} shift. This effect, combined with polarization pinning due to oxygen vacancies at the ferroelectric and channel interface, also leads to MW reduction. During NBS, the degradation in MW is caused by polarization pinning at the gate and ferroelectric interface. However, applying a more negative bias alleviates the MW degradation due to enhanced polarization erasing after NBS. Moreover, it is revealed that the abnormal positive V_(TH)V_{\mathrm{TH}} shift under NBS can be explained by the generation of disorder state (DS) O^(2-)\mathrm{O}^{2-} defects. 本研究報告了具有 ALD 沉積氧化鋅 (ZnO)(\mathrm{ZnO}) 通道和 HZO-Al_(2)O_(3)-HZO\mathrm{HZO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{HZO} 鐵電堆疊的 OS FeFET,由於插入了 Al_(2)O_(3)\mathrm{Al}_{2} \mathrm{O}_{3} 而實現了 1.75 V 的增強 MW。在 MW 最佳化 ZnO FeFET 的基礎上,進行了偏置應力特性分析。在 PBS 期間,觀察到典型的電子捕集效應主導裝置行為,導致 V_(TH)V_{\mathrm{TH}} 正向偏移。此效應與鐵電體和通道介面上的氧空位所造成的極化釘(polarization pinning)結合,也會導致 MW 下降。在 NBS 期間,閘極和鐵電介面的極化釘滯會導致 MW 下降。然而,在 NBS 之後,由於極化擦除的增強,施加更多的負偏壓會減緩 MW 的劣化。此外,研究還發現在 NBS 下的異常正 V_(TH)V_{\mathrm{TH}} 移動可以用無序狀態 (DS) O^(2-)\mathrm{O}^{2-} 缺陷的產生來解釋。
II. MW Enhancement in ALD ZnO FeFETs II.ALD 氧化鋅 FeFET 的 MW 增強
Capacitors with a W//\mathrm{W} / ferroelectric //ZnO//Ni/ \mathrm{ZnO} / \mathrm{Ni} structure and various ferroelectrics (F_(A),F_(B):}\left(\mathrm{F}_{\mathrm{A}}, \mathrm{F}_{\mathrm{B}}\right., and {:F_(C))\left.\mathrm{F}_{\mathrm{C}}\right) were fabricated to extract remanent polarization (P_(r))\left(P_{\mathrm{r}}\right) and coercive voltage (V_(c))\left(V_{\mathrm{c}}\right), especially -V_(c)-V_{\mathrm{c}}, which are crucial for optimizing the MW of OS FeFETs. The polarization loops are depicted in Fig. 2(a), while Fig. 2(b) gives the 2P_(r)2 P_{\mathrm{r}} and V_(c)V_{\mathrm{c}}. The HZO-Al_(2)O_(3)-HZO\mathrm{HZO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{HZO} stack achieves a larger V_(c)V_{\mathrm{c}} than the others and a high 2P_(r)2 P_{\mathrm{r}} of 33.1 muC//cm^(2)33.1 \mu \mathrm{C} / \mathrm{cm}^{2}. 製作了具有 W//\mathrm{W} / 鐵電 //ZnO//Ni/ \mathrm{ZnO} / \mathrm{Ni} 結構和各種鐵電 (F_(A),F_(B):}\left(\mathrm{F}_{\mathrm{A}}, \mathrm{F}_{\mathrm{B}}\right. ,以及 {:F_(C))\left.\mathrm{F}_{\mathrm{C}}\right) 的電容,以提取剩餘極化 (P_(r))\left(P_{\mathrm{r}}\right) 和矯正電壓 (V_(c))\left(V_{\mathrm{c}}\right) ,尤其是 -V_(c)-V_{\mathrm{c}} ,這對於優化 OS FeFET 的 MW 至關重要。圖 2(a) 描述了極化環路,而圖 2(b) 則給出了 2P_(r)2 P_{\mathrm{r}} 和 V_(c)V_{\mathrm{c}} 。 HZO-Al_(2)O_(3)-HZO\mathrm{HZO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{HZO} 堆疊達到比其他堆疊更大的 V_(c)V_{\mathrm{c}} 以及 33.1 muC//cm^(2)33.1 \mu \mathrm{C} / \mathrm{cm}^{2} 的高 2P_(r)2 P_{\mathrm{r}} 。
III. Evaluations of V_(Th)\mathrm{V}_{\mathrm{Th}} and MW Under Bias Stress III.偏壓下 V_(Th)\mathrm{V}_{\mathrm{Th}} 與 MW 的評估
Fig. 3(a) shows the endurance of ZnO FeFETs, achieving high endurance of over 10^(8)10^{8} cycles. To stabilize the devices and ensure reliable results, PBS/NBS evaluations were conducted after 10 cycles. Fig. 3(b) shows the measurement setup, where I_(DS)-V_(GS)I_{\mathrm{DS}}-V_{\mathrm{GS}} curves are obtained by DC sweeps ( -5.5 V to 5.5 V ) for V_(TH)V_{\mathrm{TH}} and MW extraction. In addition to studying PBS/NBS for devices in erased state during stress (DC sweep ends in reverse), results for programmed state (DC sweep ends with a forward sweep) will also be discussed. Although DC sweeps would induce a recovery effect, this effect is applied uniformly across all devices and does not affect the validity of the overall trend. 圖 3(a) 顯示 ZnO FeFET 的耐久性,達到超過 10^(8)10^{8} 循環的高耐久性。為了穩定元件並確保可靠的結果,在 10 次循環後進行 PBS/NBS 評估。圖 3(b) 顯示量測設定,其中 I_(DS)-V_(GS)I_{\mathrm{DS}}-V_{\mathrm{GS}} 曲線是透過直流掃描 ( -5.5 V 至 5.5 V ) 獲得 V_(TH)V_{\mathrm{TH}} 和 MW 抽取。除了研究器件在應力期間處於擦除狀態 (直流掃描以反向結束) 時的 PBS/NBS 外,還會討論編程狀態 (直流掃描以正向掃描結束) 的結果。雖然直流掃描會誘發恢復效應,但此效應均勻地應用於所有裝置,並不會影響整體趨勢的有效性。