這是用戶在 2025-1-15 2:17 為 https://app.immersivetranslate.com/pdf-pro/e662b068-b241-401e-ac05-82159a6bc817 保存的雙語快照頁面,由 沉浸式翻譯 提供雙語支持。了解如何保存?

Understanding Bias Stress-Induced Instabilities in ALD-Deposited ZnO FeFETs Featuring HZO Al 2 O 3 HZO Al 2 O 3 HZO-Al_(2)O_(3)\mathrm{HZO}-\mathrm{Al}_{2} \mathrm{O}_{3} - HZO Ferroelectric Stack
了解具有 HZO Al 2 O 3 HZO Al 2 O 3 HZO-Al_(2)O_(3)\mathrm{HZO}-\mathrm{Al}_{2} \mathrm{O}_{3} - HZO 鐵電堆的 ALD 沉積氧化鋅鐵氧體電晶體中偏置應力誘發的不穩定性

Chen Sun ^(o.){ }^{\odot}, Qiwen Kong ^(∙){ }^{\bullet}, Graduate Student Member, IEEE, Gan Liu ^(o+){ }^{\oplus}, Graduate Student Member, IEEE, Dong Zhang ^(o+){ }^{\oplus}, Graduate Student Member, IEEE, Leming Jiao ^(o+){ }^{\oplus}, Graduate Student Member, IEEE, Xiaolin Wang ^(∙){ }^{\bullet}, Graduate Student Member, IEEE, Jishen Zhang, Haiwen Xu ^(∙){ }^{\bullet}, Yang Feng, Rui Shao, Yue Chen, and Xiao Gong ^(∙){ }^{\bullet}
Chen Sun ^(o.){ }^{\odot} , Qiwen Kong ^(∙){ }^{\bullet} , Graduate Student Member, IEEE, Gan Liu ^(o+){ }^{\oplus} , Graduate Student Member, IEEE, Dong Zhang ^(o+){ }^{\oplus} , Graduate Student Member, IEEE、焦立明 ^(o+){ }^{\oplus} , IEEE 研究生會員, 王曉林 ^(∙){ }^{\bullet} , IEEE 研究生會員, 張吉申, 徐海文 ^(∙){ }^{\bullet} , 馮楊, 邵瑞, 陳玥, 龔曉 ^(∙){ }^{\bullet} .

Abstract  摘要

In this work, we investigate the threshold voltage ( V T H V T H V_(TH)V_{T H} ) and memory window (MW) dynamics under positive and negative bias stress (PBS/NBS) in atomic layer deposition (ALD)-grown zinc oxide (ZnO) ferroelectric field-effect transistors (FeFETs). The gate stack is engineered by inserting an Al 2 O 3 Al 2 O 3 Al_(2)O_(3)\mathrm{Al}_{2} \mathrm{O}_{3} layer between Zr -doped HfO 2 HfO 2 HfO_(2)\mathrm{HfO}_{2} (HZO) layers to form an HZO Al 2 O 3 HZO HZO Al 2 O 3 HZO HZO-Al_(2)O_(3)-HZO\mathrm{HZO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{HZO} configuration. This enhances the MW of ZnO FeFETs to 1.75 V compared to devices without the Al 2 O 3 Al 2 O 3 Al_(2)O_(3)\mathrm{Al}_{2} \mathrm{O}_{3} insertion. From bias stress characterizations, notable results are obtained, especially under NBS conditions. It is revealed that the generation of disorder state (DS) O 2 O 2 O^(2-)\mathrm{O}^{2-} defects plays a key role when devices are stressed by negative bias, leading to an abnormal positive shift in V TH V TH V_(TH)V_{\mathrm{TH}}. Importantly, the degradation in MW caused by polarization pinning during NBS is mitigated by applying an even more negative bias. This can be explained by enhanced polarization erasing due to NBS. Our investigations provide a deep understanding of bias stress-induced instabilities in ALD-deposited ZnO FeFETs.
在這項工作中,我們研究了原子層沉積 (ALD) 生長的氧化鋅 (ZnO) 鐵電場效電晶體 (FeFET) 在正負偏壓 (PBS/NBS) 下的閾值電壓 ( V T H V T H V_(TH)V_{T H} ) 和記憶視窗 (MW) 動態。閘極堆疊是透過在摻有 Zr 的 HfO 2 HfO 2 HfO_(2)\mathrm{HfO}_{2} (HZO) 層之間插入 Al 2 O 3 Al 2 O 3 Al_(2)O_(3)\mathrm{Al}_{2} \mathrm{O}_{3} 層來形成 HZO Al 2 O 3 HZO HZO Al 2 O 3 HZO HZO-Al_(2)O_(3)-HZO\mathrm{HZO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{HZO} 配置。與沒有插入 Al 2 O 3 Al 2 O 3 Al_(2)O_(3)\mathrm{Al}_{2} \mathrm{O}_{3} 的元件相比,這將 ZnO FeFET 的 MW 增強到 1.75 V。偏置應力特性分析獲得了顯著的結果,尤其是在 NBS 條件下。結果顯示,當元件受到負偏壓時,無序狀態 (DS) O 2 O 2 O^(2-)\mathrm{O}^{2-} 缺陷的產生扮演了關鍵的角色,導致 V TH V TH V_(TH)V_{\mathrm{TH}} 出現異常的正向偏移。重要的是,在 NBS 期間,由於極化釘造成的 MW 降級,會透過施加更負的偏壓而減緩。這可以用 NBS 所導致的極化擦除增強來解釋。我們的研究提供了對 ALD 沉積 ZnO FeFET 中偏壓應力誘發不穩定性的深入瞭解。

Index Terms-Ferroelectric field-effect transistors (FeFETs), HZO Al 2 O 3 HZO HZO Al 2 O 3 HZO HZO-Al_(2)O_(3)-HZO\mathrm{HZO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{HZO}, negative bias stress (NBS), positive bias stress (PBS), zinc oxide (ZnO).
索引主題-鐵電場效電晶體 (FeFET)、 HZO Al 2 O 3 HZO HZO Al 2 O 3 HZO HZO-Al_(2)O_(3)-HZO\mathrm{HZO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{HZO} 、負偏壓 (NBS)、正偏壓 (PBS)、氧化鋅 (ZnO)。

I. Introduction  I.簡介

IN THE pursuit of enhancing device performance beyond poly-Si channels for 3D integration, oxide semiconductors (OS) deposited by atomic layer deposition (ALD) have emerged as one of the most promising channel materials due to the high uniformity, decent electron mobility, and low process temperature [1], [2], [3], [4]. OS channels are also viable for implementation in non-volatile ferroelectric field-effect transistors (FeFETs) [5], [6], [7], with doped HfO 2 HfO 2 HfO_(2)\mathrm{HfO}_{2}, particularly HfZrO 2 HfZrO 2 HfZrO_(2)\mathrm{HfZrO}_{2} (HZO), as the ferroelectric dielectric [8], [9], [10]. OS FeFETs offer compatibility with CMOS technology, high
為了提升 3D 整合多晶矽通道以外的元件效能,以原子層沉積 (ALD) 方式沉積的氧化物半導體 (OS) 因具有高均勻性、良好的電子遷移率以及低製程溫度等優點而成為最有前途的通道材料之一 [1]、[2]、[3]、[4]。OS 通道也可應用於非揮發性鐵電場效電晶體 (FeFET) [5]、[6]、[7],以摻雜 HfO 2 HfO 2 HfO_(2)\mathrm{HfO}_{2} ,特別是 HfZrO 2 HfZrO 2 HfZrO_(2)\mathrm{HfZrO}_{2} (HZO) 作為鐵電介質 [8]、[9]、[10]。OS FeFET 具有與 CMOS 技術相容、高
scalability, and play a significant role in shaping switching speed and power consumption [11], [12], [13].
可擴充性,並在塑造切換速度和功耗方面扮演重要角色 [11]、[12]、[13]。
Nevertheless, for OS FeFETs, the threshold voltage ( V TH V TH V_(TH)V_{\mathrm{TH}} ) and memory window (MW) instabilities under positive and negative bias stress (PBS/NBS) gradually become challenges, especially when applied in 3D NAND, where the pass gate bias ( V PASS V PASS  V_("PASS ")V_{\text {PASS }} ) induces PBS and the negative turn-off voltage ( V OFF V OFF  V_("OFF ")V_{\text {OFF }} ) leads to NBS [Fig. 1(a)] [14], [15]. So far, strategies to improve the MW and cycling performance of OS FeFETs have been reported [16], [17], [18], [19]. However, the bias stressinduced V TH V TH V_(TH)V_{\mathrm{TH}} and MW instabilities, as well as the underlying mechanisms in OS FeFETs, have not been comprehensively investigated.
儘管如此,對於 OS FeFET 而言,正負偏壓 (PBS/NBS) 下的閾值電壓 ( V TH V TH V_(TH)V_{\mathrm{TH}} ) 和記憶體視窗 (MW) 不穩定性逐漸成為挑戰,尤其是當應用在 3D NAND 時,通過閘極偏壓 ( V PASS V PASS  V_("PASS ")V_{\text {PASS }} ) 會誘發 PBS,而負關閉電壓 ( V OFF V OFF  V_("OFF ")V_{\text {OFF }} ) 則會導致 NBS [圖 1(a)] [14], [15]。到目前為止,改善 OS FeFET 的 MW 和循環性能的策略已被報導 [16]、[17]、[18]、[19]。然而,偏壓應力誘發的 V TH V TH V_(TH)V_{\mathrm{TH}} 和 MW 不穩定性,以及 OS FeFET 中的潛在機理,尚未得到全面的研究。

In this study, OS FeFETs with an ALD-deposited zinc oxide ( ZnO ) ( ZnO ) (ZnO)(\mathrm{ZnO}) channel and an HZO Al 2 O 3 HZO HZO Al 2 O 3 HZO HZO-Al_(2)O_(3)-HZO\mathrm{HZO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{HZO} ferroelectric stack are reported, achieving an enhanced MW of 1.75 V attributed to the insertion of Al 2 O 3 Al 2 O 3 Al_(2)O_(3)\mathrm{Al}_{2} \mathrm{O}_{3}. Based on the MW-optimized ZnO FeFETs, bias stress characterizations are conducted. During PBS, it is observed that typical electron trapping effect dominates device behavior, resulting in a positive V TH V TH V_(TH)V_{\mathrm{TH}} shift. This effect, combined with polarization pinning due to oxygen vacancies at the ferroelectric and channel interface, also leads to MW reduction. During NBS, the degradation in MW is caused by polarization pinning at the gate and ferroelectric interface. However, applying a more negative bias alleviates the MW degradation due to enhanced polarization erasing after NBS. Moreover, it is revealed that the abnormal positive V TH V TH V_(TH)V_{\mathrm{TH}} shift under NBS can be explained by the generation of disorder state (DS) O 2 O 2 O^(2-)\mathrm{O}^{2-} defects.
本研究報告了具有 ALD 沉積氧化鋅 ( ZnO ) ( ZnO ) (ZnO)(\mathrm{ZnO}) 通道和 HZO Al 2 O 3 HZO HZO Al 2 O 3 HZO HZO-Al_(2)O_(3)-HZO\mathrm{HZO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{HZO} 鐵電堆疊的 OS FeFET,由於插入了 Al 2 O 3 Al 2 O 3 Al_(2)O_(3)\mathrm{Al}_{2} \mathrm{O}_{3} 而實現了 1.75 V 的增強 MW。在 MW 最佳化 ZnO FeFET 的基礎上,進行了偏置應力特性分析。在 PBS 期間,觀察到典型的電子捕集效應主導裝置行為,導致 V TH V TH V_(TH)V_{\mathrm{TH}} 正向偏移。此效應與鐵電體和通道介面上的氧空位所造成的極化釘(polarization pinning)結合,也會導致 MW 下降。在 NBS 期間,閘極和鐵電介面的極化釘滯會導致 MW 下降。然而,在 NBS 之後,由於極化擦除的增強,施加更多的負偏壓會減緩 MW 的劣化。此外,研究還發現在 NBS 下的異常正 V TH V TH V_(TH)V_{\mathrm{TH}} 移動可以用無序狀態 (DS) O 2 O 2 O^(2-)\mathrm{O}^{2-} 缺陷的產生來解釋。

II. MW Enhancement in ALD ZnO FeFETs
II.ALD 氧化鋅 FeFET 的 MW 增強

Fig. 1(b) illustrates the schematic of the ALD-deposited ZnO FeFET with a bottom-gate metal-ferroelectricsemiconductor (MFS) structure, and the ferroelectric layer is a stack of HZO Al 2 O 3 HZO HZO Al 2 O 3 HZO HZO-Al_(2)O_(3)-HZO\mathrm{HZO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{HZO}. The process flow is shown in Fig. 1©. Here, 10 nm HZO ( F A ) , 15 nm HZO ( F B ) 10 nm HZO F A , 15 nm HZO F B 10nmHZO(F_(A)),15nmHZO(F_(B))10 \mathrm{~nm} \mathrm{HZO}\left(\mathrm{F}_{\mathrm{A}}\right), 15 \mathrm{~nm} \mathrm{HZO}\left(\mathrm{F}_{\mathrm{B}}\right), and the stack of 7 nm HZO / 2 nm Al I 2 / 7 nm HZO ( F C ) 7 nm HZO / 2 nm Al I 2 / 7 nm HZO F C 7nmHZO//2nmAlI_(2)//7nmHZO(F_(C))7 \mathrm{~nm} \mathrm{HZO} / 2 \mathrm{~nm} \mathrm{Al} \mathrm{I}_{2} / 7 \mathrm{~nm} \mathrm{HZO}\left(\mathrm{F}_{\mathrm{C}}\right) were deposited using ALD at 300 C 300 C 300^(@)C300{ }^{\circ} \mathrm{C} in different samples for comparison. The ferroelectricity was stabilized by depositing W sacrificial capping layer, rapid thermal annealing (RTA) at 400 C 400 C 400^(@)C400{ }^{\circ} \mathrm{C} for 60 s , and W removal. ZnO channel with a thickness of 7.5 nm was deposited by ALD at 150 C 150 C 150^(@)C150{ }^{\circ} \mathrm{C} using C 4 H 10 Zn C 4 H 10 Zn C_(4)H_(10)Zn\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{Zn} (DEZ) and H 2 O H 2 O H_(2)O\mathrm{H}_{2} \mathrm{O} as the precursors. Fig. 1(d)
圖1(b)為ALD-deposited ZnO FeFET的示意圖,其為底澆口金屬-鐵電半導體(MFS)結構,鐵電層為 HZO Al 2 O 3 HZO HZO Al 2 O 3 HZO HZO-Al_(2)O_(3)-HZO\mathrm{HZO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{HZO} 的堆疊層。製程流程如圖 1© 所示。在此, 10 nm HZO ( F A ) , 15 nm HZO ( F B ) 10 nm HZO F A , 15 nm HZO F B 10nmHZO(F_(A)),15nmHZO(F_(B))10 \mathrm{~nm} \mathrm{HZO}\left(\mathrm{F}_{\mathrm{A}}\right), 15 \mathrm{~nm} \mathrm{HZO}\left(\mathrm{F}_{\mathrm{B}}\right) ,以及 7 nm HZO / 2 nm Al I 2 / 7 nm HZO ( F C ) 7 nm HZO / 2 nm Al I 2 / 7 nm HZO F C 7nmHZO//2nmAlI_(2)//7nmHZO(F_(C))7 \mathrm{~nm} \mathrm{HZO} / 2 \mathrm{~nm} \mathrm{Al} \mathrm{I}_{2} / 7 \mathrm{~nm} \mathrm{HZO}\left(\mathrm{F}_{\mathrm{C}}\right) 的堆疊是使用 ALD 在 300 C 300 C 300^(@)C300{ }^{\circ} \mathrm{C} 處沉積在不同的樣品中,以作比較。透過沉積 W 犧牲封蓋層、在 400 C 400 C 400^(@)C400{ }^{\circ} \mathrm{C} 下快速熱退火 (RTA) 60 秒,並移除 W 來穩定鐵電性。以 C 4 H 10 Zn C 4 H 10 Zn C_(4)H_(10)Zn\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{Zn} (DEZ) 和 H 2 O H 2 O H_(2)O\mathrm{H}_{2} \mathrm{O} 為前體,透過 ALD 在 150 C 150 C 150^(@)C150{ }^{\circ} \mathrm{C} 沉積厚度為 7.5 nm 的 ZnO 通道。圖 1(d)

Fig. 1. (a) Typical I D S V G S I D S V G S I_(DS)-V_(GS)I_{D S}-V_{G S} curves of OS FeFETs. Applying V P A S S V P A S S V_(PASS)V_{P A S S} and V OFF V OFF  V_("OFF ")V_{\text {OFF }} leads to PBS and NBS, respectively. (b) Schematic illustration of a ZnO FeFET. © Key process flow. (d) TEM image of the ZnO FeFET featuring the HZO Al 2 O 3 HZO HZO Al 2 O 3 HZO HZO-Al_(2)O_(3)-HZO\mathrm{HZO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{HZO} ferroelectric stack.
圖 1. (a) OS FeFET 的典型 I D S V G S I D S V G S I_(DS)-V_(GS)I_{D S}-V_{G S} 曲線。應用 V P A S S V P A S S V_(PASS)V_{P A S S} V OFF V OFF  V_("OFF ")V_{\text {OFF }} 會分別導致 PBS 和 NBS。(b) ZnO FeFET 的示意圖。© 關鍵製程流程。(d) 以 HZO Al 2 O 3 HZO HZO Al 2 O 3 HZO HZO-Al_(2)O_(3)-HZO\mathrm{HZO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{HZO} 鐵電堆為特色的 ZnO FeFET 的 TEM 影像。

(b)
2 P r 2 P r 2P_(r)2 P_{\mathrm{r}}
( μ C / cm 2 ) μ C / cm 2 (muC//cm^(2))\left(\mu \mathrm{C} / \mathrm{cm}^{2}\right)
2P_(r) (muC//cm^(2))| $2 P_{\mathrm{r}}$ | | :---: | | $\left(\mu \mathrm{C} / \mathrm{cm}^{2}\right)$ |
+ V c + V c +V_(c)+V_{\mathrm{c}}
( V ) ( V ) (V)(\mathrm{V})
+V_(c) (V)| $+V_{\mathrm{c}}$ | | :---: | | $(\mathrm{V})$ |
V c V c -V_(c)-V_{\mathrm{c}}
( V ) ( V ) (V)(\mathrm{V})
-V_(c) (V)| $-V_{\mathrm{c}}$ | | :---: | | $(\mathrm{V})$ |
F A F A F_(A)\mathrm{F}_{\mathrm{A}} 37.4 0.87 -1.48
F B F B F_(B)\mathrm{~F}_{\mathrm{B}} 11.7 1.31 -2.02
F C F C F_(C)\mathrm{~F}_{\mathrm{C}} 33.1 3.08 -3.87
(b) "2P_(r) (muC//cm^(2))" "+V_(c) (V)" "-V_(c) (V)" F_(A) 37.4 0.87 -1.48 F_(B) 11.7 1.31 -2.02 F_(C) 33.1 3.08 -3.87| (b) | $2 P_{\mathrm{r}}$ <br> $\left(\mu \mathrm{C} / \mathrm{cm}^{2}\right)$ | $+V_{\mathrm{c}}$ <br> $(\mathrm{V})$ | $-V_{\mathrm{c}}$ <br> $(\mathrm{V})$ | | :---: | :---: | :---: | :---: | | $\mathrm{F}_{\mathrm{A}}$ | 37.4 | 0.87 | -1.48 | | $\mathrm{~F}_{\mathrm{B}}$ | 11.7 | 1.31 | -2.02 | | $\mathrm{~F}_{\mathrm{C}}$ | 33.1 | 3.08 | -3.87 |

Fig. 2. (a) Polarization loops of capacitors with 10 nm HZO, 15 nm HZO , and HZO Al 2 O 3 HZO ( 7 nm / 2 nm / 7 nm ) HZO Al 2 O 3 HZO ( 7 nm / 2 nm / 7 nm ) HZO-Al_(2)O_(3)-HZO(7nm//2nm//7nm)\mathrm{HZO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{HZO}(7 \mathrm{~nm} / 2 \mathrm{~nm} / 7 \mathrm{~nm}). (b) Extracted 2 P r 2 P r 2P_(r)2 P_{r} and V c V c V_(c)V_{\mathrm{c}}. © I DS V GS I DS V GS I_(DS)-V_(GS)I_{\mathrm{DS}}-V_{\mathrm{GS}} curves for FeFETs with various ferroelectrics. (d) Extracted MW. FeFET with the HZO Al 2 O 3 HZO HZO Al 2 O 3 HZO HZO-Al_(2)O_(3)-HZO\mathrm{HZO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{HZO} stack shows an enhanced MW of 1.75 V .
圖 2. (a) 10 nm HZO、15 nm HZO 及 HZO Al 2 O 3 HZO ( 7 nm / 2 nm / 7 nm ) HZO Al 2 O 3 HZO ( 7 nm / 2 nm / 7 nm ) HZO-Al_(2)O_(3)-HZO(7nm//2nm//7nm)\mathrm{HZO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{HZO}(7 \mathrm{~nm} / 2 \mathrm{~nm} / 7 \mathrm{~nm}) 電容的極化迴路。 (b) 擷取的 2 P r 2 P r 2P_(r)2 P_{r} V c V c V_(c)V_{\mathrm{c}} . © I DS V GS I DS V GS I_(DS)-V_(GS)I_{\mathrm{DS}}-V_{\mathrm{GS}} 具有各種鐵電性的 FeFET 曲線。(d) 擷取的 MW.具有 HZO Al 2 O 3 HZO HZO Al 2 O 3 HZO HZO-Al_(2)O_(3)-HZO\mathrm{HZO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{HZO} 疊層的 FeFET 顯示出 1.75 V 的增強 MW .

presents the transmission electron microscopy (TEM) image of a ZnO FeFET with the HZO Al 2 O 3 HZO HZO Al 2 O 3 HZO HZO-Al_(2)O_(3)-HZO\mathrm{HZO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{HZO} stack, revealing that the inserted Al 2 O 3 Al 2 O 3 Al_(2)O_(3)\mathrm{Al}_{2} \mathrm{O}_{3} affects the crystallization of the two HZO layers and results in different grain orientations.
展示了具有 HZO Al 2 O 3 HZO HZO Al 2 O 3 HZO HZO-Al_(2)O_(3)-HZO\mathrm{HZO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{HZO} 堆疊的 ZnO FeFET 的透射電子顯微鏡 (TEM) 圖像,揭示出插入的 Al 2 O 3 Al 2 O 3 Al_(2)O_(3)\mathrm{Al}_{2} \mathrm{O}_{3} 會影響兩個 HZO 層的結晶,並導致不同的晶粒取向。
Capacitors with a W / W / W//\mathrm{W} / ferroelectric / ZnO / Ni / ZnO / Ni //ZnO//Ni/ \mathrm{ZnO} / \mathrm{Ni} structure and various ferroelectrics ( F A , F B F A , F B (F_(A),F_(B):}\left(\mathrm{F}_{\mathrm{A}}, \mathrm{F}_{\mathrm{B}}\right., and F C ) F C {:F_(C))\left.\mathrm{F}_{\mathrm{C}}\right) were fabricated to extract remanent polarization ( P r ) P r (P_(r))\left(P_{\mathrm{r}}\right) and coercive voltage ( V c ) V c (V_(c))\left(V_{\mathrm{c}}\right), especially V c V c -V_(c)-V_{\mathrm{c}}, which are crucial for optimizing the MW of OS FeFETs. The polarization loops are depicted in Fig. 2(a), while Fig. 2(b) gives the 2 P r 2 P r 2P_(r)2 P_{\mathrm{r}} and V c V c V_(c)V_{\mathrm{c}}. The HZO Al 2 O 3 HZO HZO Al 2 O 3 HZO HZO-Al_(2)O_(3)-HZO\mathrm{HZO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{HZO} stack achieves a larger V c V c V_(c)V_{\mathrm{c}} than the others and a high 2 P r 2 P r 2P_(r)2 P_{\mathrm{r}} of 33.1 μ C / cm 2 33.1 μ C / cm 2 33.1 muC//cm^(2)33.1 \mu \mathrm{C} / \mathrm{cm}^{2}.
製作了具有 W / W / W//\mathrm{W} / 鐵電 / ZnO / Ni / ZnO / Ni //ZnO//Ni/ \mathrm{ZnO} / \mathrm{Ni} 結構和各種鐵電 ( F A , F B F A , F B (F_(A),F_(B):}\left(\mathrm{F}_{\mathrm{A}}, \mathrm{F}_{\mathrm{B}}\right. ,以及 F C ) F C {:F_(C))\left.\mathrm{F}_{\mathrm{C}}\right) 的電容,以提取剩餘極化 ( P r ) P r (P_(r))\left(P_{\mathrm{r}}\right) 和矯正電壓 ( V c ) V c (V_(c))\left(V_{\mathrm{c}}\right) ,尤其是 V c V c -V_(c)-V_{\mathrm{c}} ,這對於優化 OS FeFET 的 MW 至關重要。圖 2(a) 描述了極化環路,而圖 2(b) 則給出了 2 P r 2 P r 2P_(r)2 P_{\mathrm{r}} V c V c V_(c)V_{\mathrm{c}} HZO Al 2 O 3 HZO HZO Al 2 O 3 HZO HZO-Al_(2)O_(3)-HZO\mathrm{HZO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{HZO} 堆疊達到比其他堆疊更大的 V c V c V_(c)V_{\mathrm{c}} 以及 33.1 μ C / cm 2 33.1 μ C / cm 2 33.1 muC//cm^(2)33.1 \mu \mathrm{C} / \mathrm{cm}^{2} 的高 2 P r 2 P r 2P_(r)2 P_{\mathrm{r}}
The transfer characteristics ( I DS V GS I DS V GS I_(DS)-V_(GS)I_{\mathrm{DS}}-V_{\mathrm{GS}} ) for FeFETs ( L CH = L CH = (L_(CH)=:}\left(L_{\mathrm{CH}}=\right. 5 μ m 5 μ m 5mum5 \mu \mathrm{~m} ) with these ferroelectrics are illustrated in Fig. 2©. Fig. 2(d) shows the extracted MW. The ZnO FeFET with 10 nm HZO has a small MW due to the limitation of V c V c -V_(c)-V_{\mathrm{c}}. As V GS V GS V_(GS)V_{\mathrm{GS}} sweeps in reverse and approaches V c V c -V_(c)-V_{\mathrm{c}}, the device switches to the erased state and turns off, restricting the programmed V TH V TH V_(TH)V_{\mathrm{TH}} and MW [6], [20]. Then, increasing the HZO thickness to 15 nm increases V c V c V_(c)V_{\mathrm{c}}, but the drawback is the low 2 P r 2 P r 2P_(r)2 P_{\mathrm{r}}, and an even smaller MW is obtained. Notably, the ZnO FeFET with the HZO Al 2 O 3 HZO HZO Al 2 O 3 HZO HZO-Al_(2)O_(3)-HZO\mathrm{HZO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{HZO} stack exhibits the largest MW of 1.75 V attributed to the decent 2 P r 2 P r 2P_(r)2 P_{\mathrm{r}} and V c V c V_(c)V_{\mathrm{c}}. Here, the electron tunneling through the inserted Al 2 O 3 Al 2 O 3 Al_(2)O_(3)\mathrm{Al}_{2} \mathrm{O}_{3} is also believed to be a reason for the large MW, and further optimization of the HZO and Al 2 O 3 Al 2 O 3 Al_(2)O_(3)\mathrm{Al}_{2} \mathrm{O}_{3} thicknesses can be conducted to achieve better performance [21].
使用這些鐵電體的 FeFET ( L CH = L CH = (L_(CH)=:}\left(L_{\mathrm{CH}}=\right. 5 μ m 5 μ m 5mum5 \mu \mathrm{~m} ) 的傳輸特性 ( I DS V GS I DS V GS I_(DS)-V_(GS)I_{\mathrm{DS}}-V_{\mathrm{GS}} ) 如圖 2© 所示。圖 2(d) 顯示了提取的 MW。由於 V c V c -V_(c)-V_{\mathrm{c}} 的限制,具有 10 nm HZO 的 ZnO FeFET 的 MW 較小。當 V GS V GS V_(GS)V_{\mathrm{GS}} 反向掃描並接近 V c V c -V_(c)-V_{\mathrm{c}} 時,元件切換到擦除狀態並關閉,限制了燒錄的 V TH V TH V_(TH)V_{\mathrm{TH}} 和 MW [6]、[20]。然後,將 HZO 厚度增加到 15 nm 會增加 V c V c V_(c)V_{\mathrm{c}} ,但缺點是 2 P r 2 P r 2P_(r)2 P_{\mathrm{r}} 很低,而且會得到更小的 MW。值得注意的是,具有 HZO Al 2 O 3 HZO HZO Al 2 O 3 HZO HZO-Al_(2)O_(3)-HZO\mathrm{HZO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{HZO} 疊層的 ZnO FeFET 顯示出 1.75 V 的最大 MW,這歸功於像樣的 2 P r 2 P r 2P_(r)2 P_{\mathrm{r}} V c V c V_(c)V_{\mathrm{c}} 。 在此,電子透過插入的 Al 2 O 3 Al 2 O 3 Al_(2)O_(3)\mathrm{Al}_{2} \mathrm{O}_{3} 的隧道作用也被認為是產生大 MW 的原因之一,可進一步優化 HZO 和 Al 2 O 3 Al 2 O 3 Al_(2)O_(3)\mathrm{Al}_{2} \mathrm{O}_{3} 的厚度,以獲得更好的性能 [21]。

Fig. 3. (a) Endurance of ZnO FeFETs. (b) Measurement setup for PBS/NBS. © I DS V GS I DS  V GS  I_("DS ")-V_("GS ")I_{\text {DS }}-V_{\text {GS }} curves under PBS ( V STRESS = 2 V ) V STRESS  = 2 V (V_("STRESS ")=2(V))\left(V_{\text {STRESS }}=2 \mathrm{~V}\right) for the device with an L C H L C H L_(CH)L_{C H} of 500 nm . (d)-(e) Extracted V T H V T H V_(TH)V_{T H} shift in programmed and erased states for ZnO FeFETs under different V Stress. (f) MW V Stress. (f)  MW V_("Stress. (f) ")MWV_{\text {Stress. (f) }} \mathrm{MW} change over stress time.
圖 3. (a) ZnO FeFET 的耐久性。(b) PBS/NBS 的量測設定。(d)-(e) ZnO FeFET 在不同 V Stress. (f) MW V Stress. (f)  MW V_("Stress. (f) ")MWV_{\text {Stress. (f) }} \mathrm{MW} 應力時間變化下,擷取的 V T H V T H V_(TH)V_{T H} 燒錄及擦除狀態的位移。

III. Evaluations of V Th V Th V_(Th)\mathrm{V}_{\mathrm{Th}} and MW Under Bias Stress
III.偏壓下 V Th V Th V_(Th)\mathrm{V}_{\mathrm{Th}} 與 MW 的評估

Fig. 3(a) shows the endurance of ZnO FeFETs, achieving high endurance of over 10 8 10 8 10^(8)10^{8} cycles. To stabilize the devices and ensure reliable results, PBS/NBS evaluations were conducted after 10 cycles. Fig. 3(b) shows the measurement setup, where I DS V GS I DS V GS I_(DS)-V_(GS)I_{\mathrm{DS}}-V_{\mathrm{GS}} curves are obtained by DC sweeps ( -5.5 V to 5.5 V ) for V TH V TH V_(TH)V_{\mathrm{TH}} and MW extraction. In addition to studying PBS/NBS for devices in erased state during stress (DC sweep ends in reverse), results for programmed state (DC sweep ends with a forward sweep) will also be discussed. Although DC sweeps would induce a recovery effect, this effect is applied uniformly across all devices and does not affect the validity of the overall trend.
圖 3(a) 顯示 ZnO FeFET 的耐久性,達到超過 10 8 10 8 10^(8)10^{8} 循環的高耐久性。為了穩定元件並確保可靠的結果,在 10 次循環後進行 PBS/NBS 評估。圖 3(b) 顯示量測設定,其中 I DS V GS I DS V GS I_(DS)-V_(GS)I_{\mathrm{DS}}-V_{\mathrm{GS}} 曲線是透過直流掃描 ( -5.5 V 至 5.5 V ) 獲得 V TH V TH V_(TH)V_{\mathrm{TH}} 和 MW 抽取。除了研究器件在應力期間處於擦除狀態 (直流掃描以反向結束) 時的 PBS/NBS 外,還會討論編程狀態 (直流掃描以正向掃描結束) 的結果。雖然直流掃描會誘發恢復效應,但此效應均勻地應用於所有裝置,並不會影響整體趨勢的有效性。
The V TH V TH V_(TH)V_{\mathrm{TH}} is defined using the constant current method at a current level of W CH / L CH × 10 7 A W CH / L CH × 10 7 A W_(CH)//L_(CH)xx10^(-7)AW_{\mathrm{CH}} / L_{\mathrm{CH}} \times 10^{-7} \mathrm{~A}, where W CH W CH W_(CH)W_{\mathrm{CH}} is the channel width. The MW is the difference between the V TH V TH V_(TH)V_{\mathrm{TH}} values of the erased and programmed states. Fig. 3© depicts the measured I DS V GS I DS V GS I_(DS)-V_(GS)I_{\mathrm{DS}}-V_{\mathrm{GS}} curves under PBS with a stress voltage ( V STRESS V STRESS  V_("STRESS ")V_{\text {STRESS }} ) of 2 V after various stress times for a ZnO FeFET with a W CH W CH W_(CH)W_{\mathrm{CH}} of 5 μ m 5 μ m 5mum5 \mu \mathrm{~m} and an L CH L CH L_(CH)L_{\mathrm{CH}} of 500 nm . In the programmed I DS V GS I DS V GS I_(DS)-V_(GS)I_{\mathrm{DS}}-V_{\mathrm{GS}} curves, the positive shift in the on-state region is more noticeable than in the subthreshold region. This could be due to contact effects and the reduced effectiveness of polarization switching in assisting the device to turn off as the V TH V TH V_(TH)V_{\mathrm{TH}} moves away from V c V c -V_(c)-V_{\mathrm{c}}.
V TH V TH V_(TH)V_{\mathrm{TH}} 是使用定電流方法在 W CH / L CH × 10 7 A W CH / L CH × 10 7 A W_(CH)//L_(CH)xx10^(-7)AW_{\mathrm{CH}} / L_{\mathrm{CH}} \times 10^{-7} \mathrm{~A} 的電流等級下定義的,其中 W CH W CH W_(CH)W_{\mathrm{CH}} 是通道寬度。MW 是擦除狀態和燒錄狀態的 V TH V TH V_(TH)V_{\mathrm{TH}} 值之差。圖 3© 描述在不同應力時間後,應力電壓 ( V STRESS V STRESS  V_("STRESS ")V_{\text {STRESS }} ) 為 2 V 的 PBS 下,對於 W CH W CH W_(CH)W_{\mathrm{CH}} 5 μ m 5 μ m 5mum5 \mu \mathrm{~m} L CH L CH L_(CH)L_{\mathrm{CH}} 為 500 nm 的 ZnO FeFET 所測得的 I DS V GS I DS V GS I_(DS)-V_(GS)I_{\mathrm{DS}}-V_{\mathrm{GS}} 曲線。在燒錄的 I DS V GS I DS V GS I_(DS)-V_(GS)I_{\mathrm{DS}}-V_{\mathrm{GS}}